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A B S T R A C T

Online content have become an important medium to disseminate information and
express opinions. With the proliferation of online document collections, users are
faced with the problem of missing the big picture in a sea of irrelevant and/or di-
verse content. In this thesis, we addresses the problem of information organization
of online document collections, and provide algorithms that create a structured
representation of the otherwise unstructured content. We leverage the expressive-
ness of latent probabilistic models (e.g. topic models) and non-parametric Bayes
techniques (e.g. Dirichlet processes), and give online and distributed inference
algorithms that scale to terabyte datasets and adapt the inferred representation with
the arrival of new documents. Throughout the thesis, we consider two different
domains: research publications and social media (news articles and blog posts);
and focus on modeling two facets of contnet: temporal dynamics and structural
correspondence.

To model the temporal dynamics of document collections, we introduce a non-
parametric Bayes model that we call the recurrent Chinese restaurant process
(RCRP). RCRP is a framework for modeling complex longitudinal data, in which
the number of mixture components at each time point is unbounded. On top of this
process, we develop a hierarchical extension and use it to build an infinite dynamic
topic model that recovers the timeline of ideas in research publications. Despite
the expressiveness of the aforementioned model, it fails to capture the essential
element of dynamics in social media: stories. To remedy this, we developed a
multi-resolution model that treats stories as a first-citizen object and combines
long-term, high-level topics with short-lived, tightly-focused storylines. Inference in
the new model is carried out via a sequential Monte Carlo algorithm that processes
new documents on real time.

We then consider the problem of structural correspondence in document col-
lections both across modalities and communities. In research publications, this
problem arises due to the multi-modalities of research papers and the pressing
need for developing systems that can retrieve relevant documents based on any of
these modalities (e.g. figures, text, named entities, to name a few). In social media
this problem arises due to ideological bias of the document’s author that mixes
facts with opinions. For both problems we develop a series of factored models. In
research publications, the developed model represents ideas across modalities and
as such can solve the aforementioned retrieval problem. In social media, the model
contrasts the same idea across different ideologies, and as such can explain the
bias of a given document on a topical-level and help the user staying informed by
providing documents that express alternative views.

Finally, we address the problem of inferring users’ intent when they interact
with document collections, and how this intent changes over time. The induced
user model can then be used in matching users with relevant content.
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Part I

I N T R O D U C T O RY M AT E R I A L





1
I N T R O D U C T I O N

1.1 motivation and thesis statement

Online document collections have become an important medium to disseminate
information and express opinions. Examples of online document collections are
abound in different domains. For example, online conference proceedings, journal
transactions, and the arxiv, to name a few, are currently the main source of infor-
mation dissemination in the scientific community. In social media, news portals,
and blogs are used on a daily basis to broadcast new stories and express opinions
about mainstream events. With the proliferation of such collections, users are faced
with the problem of missing the big picture in a sea of irrelevant and/or diverse
content1. In this thesis, we addresses the problem of information organization
of online document collections, and provide algorithms that create a structured
representation of the otherwise unstructured collection. The induced structured
representation can then be used in guiding the users during their information
search episodes.

To endow the user with the complete big picture, we focus on modeling two
important aspects of document collections: temporal dynamics, and structural
correspondence. Documents in online collections are always time-stamped with
the publication time. Models that ignore this time-stamp and feature a static repre-
sentation prevent the users from zooming in and out through time to understand
how the story they are looking for develop over time, or how the research topic
they are interested in evolve across the years. Furthermore, documents are often
accompanied with side information such as the author of a blog post, or an illus-
trative figure in a scientific paper. Models that feature a flat representation restrict
the users to use only one modality in searching for relevant papers, or give users
only one side of the coin by overwhelming them with stories written from a single
ideology.

In this thesis, we leverage the expressiveness of latent probabilistic models (e.g.
topic models) and non-parametric Bayes techniques (e.g. Dirichlet processes) to
build a dynamic and multi-faceted representation of document collections. To
illustrate the power, expressiveness and flexibility of these techniques, throughout
the thesis, we apply our models to two different domains: research publications
and social media (news articles and blog posts). Furthermore, we give online
and distributed inference algorithms that scale to terabyte datasets and adapt the
inferred representation with the arrival of new documents.

Finally, rather then passively relying on the user to find their information based
on the induced representation, we address the problem of modeling users intents
when they interact with document collections and how these intents change over
time. The induced user model can then be used in pro-actively matching users
with relevant content.

1 We use the terms document collection and content ex changeably in this thesis

3
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Figure 1.1: Dependency relationship between the content of this thesis

1.2 thesis organization

After this introductory chapter, we review important and relevant concepts for
this thesis in Chapter 2. The rest of this thesis is then divided into three parts:
modeling dynamic content (Chapter 3,4 and 5), Modeling multi-faceted content
(Chapter 6 and 7) and modeling users (chapter 8). The content of these chapters is
summarized below and their inter-dependency is depicted in Figure 1.1.

• Part II: Modeling dynamic content: in this part we design dynamic non-
parametric models of time-evolving content in both research publications and
social media.

– In Chapter 3, we introduce a non-parametric Bayes model that we call the
recurrent Chinese restaurant process (RCRP). RCRP is a framework for
modeling complex longitudinal data, in which the number of mixture
components at each time point is unbounded. We illustrate the utility
of this process via dynamic mixtures models in which documents are
assumed to be generated from a single component.

– In Chapter 4, we consider the problem of modeling research publications
to understand the evolution of research ideas and identify paper that
spawn new fields. To achieve this goal, we relax the assumption made
in Chapter 3 and allow each document to address multiple topics using
a dynamic hierarchical model built on top of the RCRP. We also give an
efficient Gibbs sampling algorithm for this new process.

– In Chapter 5, we give a unified model for streaming news that jointly
solves the three major problems associated with news articles: cluster-
ing documents into stories, classifying stories into topics, and trend



1.2 thesis organization 5

analysis. We propose a multi-resolution model that treats stories as
a first-citizen objects and combines long-term, high-level topics with
short-lived, tightly-focused storylines. Inference in the new model is
carried out via an online scalable, sequential Monte Carlo algorithm that
processes new documents on real time (one document at a time).

• Part III: Modeling multi-faceted content: Textual content is always accompa-
nied with illustrative figures (as in research publications) or tagged with the
author’s ideology (as in social media such as blogs). In this part we focus
on modeling multi-faceted content and give models that can leverage unla-
beled and partially labeled content using transfer learning and semi-supervised
inference algorithms.

– In Chapter 6, we address the problem of modeling figures in biological
literature. In biological articles, a typical figure often comprises multiple
panels, accompanied by either scoped or global captioned text. Moreover,
the text in the caption contains important semantic entities such as
protein names, gene ontology, tissues labels, etc., relevant to the images
in the figure. We present a new structured probabilistic topic model
built on a realistic figure generation scheme to model the structurally
annotated biological figures. The resulting program constitutes one of
the key IR engines in our SLIF system that has recently entered the final
round (4 out 70 competing systems) of the Elsevier Grand Challenge
on Knowledge Enhancement in the Life Science. In this chapter we also
given a transfer learning framework that leverages the power of partially
labeled data.

– In Chapter 7, we address a similar problem to the one addressed in
Chapter 7 but in the social media domain. The problem arises due to
ideological bias of the document’s author that mixes facts with opinions.
We develop a factored model that contrasts the same idea across different
ideologies, and as such can explain the bias of a given document on a
topical-level and help the user staying informed by providing documents
that express alternative views. We also give a semi-supervised inference
algorithm that harnesses the power of unlabeled data.

• Part IV: Modeling users: the structured representation inferred by the models
discussed in this thesis empower the user with the necessary tools to find
what they are looking for and give users the big picture of dynamic, multi-
faceted content. In this part we take a pro-active approach and model users’
intents and how these intents change over time.

– In Chapter 8, we design a multi-scale dynamic model for user model-
ing. The proposed model captures both the short-term and long-term
intents of the user. Moreover, we design an online, distributed inference
algorithm that scales to tens of million of users and adapts the inferred
representation with the arrival of new users’ interactions. The model
presented in this Chapter utilizes a finite-dimensional approximation to
the processes given in Part II.



6 introduction

1.3 thesis contribution and related publications

The contribution of this thesis, along with related publications, can be classified
along the following three dimensions:

• Models:

– The recurrent Chinese restaurant process for modeling complex longitu-
dinal data[9].

• Inference algorithms:

– Collapsed Gibbs sampling inference algorithms for variants of the (hier-
archical) RCRP [9, 12].

– An online sequential monto Carlo inference algorithm for a variant of
the RCRP [4].

– An online distributed inference algorithm for a fixed-dimension variant
of the RCRP[5].

– A tight approximate inference algorithm for non-conjugate admixture
models [7]

– A Metropolis-Hasting based semi-supervised learning algoirthm for
inference in tightly-couple latent variable models[11]

• Applications:

– Research Publications: Modeling the evolution of ideas [12] and scientific
figures [13]

– Social Media: unified analysis of news stories [5] and detection of politcal
bias in the blogshpere [11]

– Personalizations: time-sensitive and multi-scale learning of user interests
which is then used in delivering personalized content [5].

– Systems: an IR system for biological figures[2, 3, 38] which was finalist
(4 out of 70 teams) of the Elsevier Grand Challenge on Knowledge
Enhancement in the Life Science.



2
B A C K G R O U N D

Clustering is a popular unsupervised technique used to explore and visualize a
document collection. Out of the many available clustering models, the mixture of
uni-grams model is most-often used for document clustering. This model assumes
that each document is generated from a single component (cluster or topic)1

and that each cluster is a uni-gram distribution over a given vocabulary. This
assumption limits the expressive power of the model, and does not allow for
modeling documents as a mixture of topics. For example, a document might
address health and sport but the mixture of uni-gram model has to generate this
document from a single component and as such the model can not discover salient,
pure clusters.

Recently, mixed membership models, also known as admixture models, have
been proposed to remedy the aforementioned deficiency of mixture models. Sta-
tistically, an object w is said to be derived from an admixture if it consists of a bag
of elements, say {w1, . . . ,wN}, each sampled independently or coupled in some
way, from a mixture model, according to an admixing coefficient vector θ, which
represents the (normalized) fraction of contribution from each of the mixture
component to the object being modeled. In a typical text modeling setting, each
document corresponds to an object, the words thereof correspond to the elements
constituting the object, and the document-specific admixing coefficient vector is
often known as a topic vector. Since the admixture formalism enables an object to
be synthesized from elements drawn from a mixture of multiple sources, it is
also known as mixed membership model in the statistical community [48]. Special
instances of admixture models have been used for population genetics [107], text
modeling [29], and network mining [15]. In the text modeling case, which is the
focus of this thesis, it is named as the latent Dirichlet allocation (LDA) model due
to the choice of a Dirichlet distribution as the prior for the topic vector θ [29]. A
precursor to mixed membership models is the probabilistic latent semantic analysis
model [65] (pLSA), however, pLSA is not a fully generative models as it models the
document topic vector as a parameter and as such it is susceptible to over-fitting
[29].

Since mixed membership models are central to this thesis, we give a more in
depth overview of topic models (pioneered by the LDA model) in section 2.1
and then in section 2.2 we explore Dirichlet processes and how they are used
to implement mixed membership models with potentially infinite number of
components.

1 Throughout the thesis, we will use the words topic, mixture and component interchangeably to
denote the same concept.

7
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Figure 2.1: Basic mixture and (infinite) mixed membership models. (a) LDA, (b) DPM and
(c) HDP mixture (an infinite mixed membership model)

2.1 topic models

In this section we review recent advances in topic models. Topic models is an are of
research that was pioneered by the latent Dirichlet allocation model (LDA) [29]. The
graphical representation of LDA is given in figure 2.1.(a). We first begin by detailing
the generative process of LDA. LDA employs a semantic entity known as topic to
drive the generation of the document in question. Each topic is represented by a
topic-specific word distribution which is modeled as a multinomial distribution
over words, denoted by Multi(β). The generative process of LDA proceeds as
follows:

1. Draw topic proportions θd|α ∼ Dir(α).

2. For each word

(a) Draw a topic zdi|θd ∼ Mult(θd).

(b) Draw a word wdi|zdi,β ∼ Multi(βzdi).

In step 1 each document d samples a topic-mixing vector θd from a Dirichlet
prior. The component θd,k of this vector defines how likely topic k will appear in
document d. For each word in the document wdi, a topic indicator zdi is sampled
from θd, and then the word itself is sampled from a topic-specific word distribution
specified by this indicator. Recent research in topic models seek to improve the
expressiveness of one the following: topic vector, topic distribution, and document
representation.

Much of the expressiveness of topic models lies in the choice of the prior for
the topic vectors of documents. While the choice of a Dirichlet prior is mathemati-
cally convenient due to the conjugacy between the Dirichlet and the Multinomial
distributions, it fails to capture non-trivial correlations among the elements of the
topic vector θ. Several alternatives have been proposed to replace the Dirichlet
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distribution by a Logistic normal distribution [26, 7], a directed acyclic graph
[82] or a linear sparse Gaussian prior [109]. All of these models seek to uncover
the structure of correlation between topics and as such can model the fact that
two topics like sports and health are more likely to occur in a document as op-
posed to sports and politics. Another direction of research seeks to utilize the
side-information of the document to influence the document’s topic vector. For
example, one would assume that all the documents written by a single author
would address the same topics, and as such would have similar topic vectors. There
are two main techniques to incorporate this intuition: upstream and downstream
conditioning. In upstream models, the topic vector is sampled conditioned on the
side information [91, 111, 77], while in downstream models, the side information
is generated based on the topic vector of the document [28, 139]. Upstream models
are often trained using the conditional maximum likelihood principle (CMLE),
while downstream models can be trained either using the MLE principle [28]
or the max-margin principle [139]. Finally, several authors proposed to use the
inter-document relationships to smooth the topic vectors across related documents.
For example, one would expect that if document A cites document B, then both
documents are likely to speak about similar topics [95, 34].

Another direction of research seeks to improve the representation of the topic
distribution β. Instead of using a uni-gram distribution, several authors proposed
to use N-gram models [123, 128] to capture popular and salient phrases in each
topic. On the other hands, other authors propose to keep the uni-gram distribution
because its computational advantages and use statistical tests as a post-processing
step to recover salient N-gram phrases for each topic [41]. Since the topic dis-
tributions are a corpus-wide parameters which are shared across all documents
in the collection, several authors proposed to smooth those parameters across
related collections. This relationship can encode temporal dependency [27, 126] or
citation graph [125]. Finally several authors proposed to depart from the flat topic
relationship, and arrange topics in a hierarchy [25, 24, 90].

Mostly, topic models are applied to documents represented as a bag of words,
however, some recent work departed from this representation by representing
documents as a sequence of words [123, 128], a sequence of phrases [34], a sequence
of words and part of speech tags [57],or a set of dependency parse trees [30]. Several
other applications of topic models consider documents represented by more than
one modality such as text and images [22].

2.2 dirichlet processes

In section 2.1 we assumed that the number of topics (mixtures) in the model is
fixed. Selecting the number of topics is a model selection problem that can be
addresses using for instance cross validation. Alternatively, one can consider non-
parametric techniques that adapt the number of topics to the data set at hand.
The power of non-parametric techniques is not limited to model selection, but
they endow the designer with necessary tools to specify priors over sophisticated
(possibly infinite) structures like trees and sequences, and provide a principled
way of learning these structures form data. We first give an overview of Dirichlet
processes (DPs) and how they can be used to instantiate a clustering with infinite
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number of components via the Dirichlet process mixture model (DPM) - DPM is the
infinite equivalent of the mixture of uni-gram model. Then, we discuss Hierarchical
Dirichlet processes (HDPs) and show how they can be used to instantiate an infinite
mixed membership model.

The Dirichlet process (DP), see Figure 2.1.(b), is a distribution over distributions
[50]. A DP denoted by DP(G0,α) is parameterized by a base measure G0 and a
concentration parameter α. We write G ∼ DP(G0,α) for a draw of a distribution G
from the Dirichlet process. G itself is a distribution over a given parameter space θ,
therefore we can draw parameters θ1:N from G. Integrating out G, the parameters
θ follow a Polya urn distribution [19], also knows as the Chinese restaurant process
(CRP), in which the previously drawn values of θ have strictly positive probability
of being redrawn again, thus making the underlying probability measure G discrete
with probability one. More formally,

θi|θ1:i−1,G0,α ∼
∑
k

mk
i− 1+α

δ(φk) +
α

i− 1+α
G0. (2.1)

where φ1:k denotes the distinct values among the parameters θ, and mk is the
number of parameters θ having value φk. By using the DP at the top of a hier-
archical model, one obtains the Dirichlet process mixture model, DPM [16]. The
generative process thus proceeds as follows:

G|α,G0 ∼ DP(α,G0), θd|G ∼ G, wd|θd ∼ F(.|θd), (2.2)

where F is a given likelihood function parameterized by θ.
Instead of modeling each document wd as a single data point, we could model

each document as a DP. In this setting,each word wdn is a data point and thus
will be associated with a topic sampled from the random measure Gd, where
Gd ∼ DP(α,G0). The random measure Gd thus represents the document-specific
mixing vector over a potentially infinite number of topics. To share the same set
of topics across documents, [116] introduced the Hierarchical Dirichlet Process
(HDP). In HDP, see figure 2.1.(c), the document-specific random measures are tied
together by modeling the base measure G0 itself as a random measure sampled
from a DP(γ,H). The discreteness of the base measure G0 ensures topic sharing
between all the documents.

Integrating out all random measures, we obtain the equivalent Chinese restaurant
franchise processes(CRF) [116]. In our document modeling setting, the generative
story behind this process proceeds as follows. Each document is refereed to as a
restaurant where words inside the document are referred to as customers. The set
of documents shares a global menu of topics. The words in each document are
divided into groups, each of which shares a table. Each table is associated with a
topic (dish in the metaphor), and words sitting on each table are associated with
the table’s topic. To associate a topic with word wdi we proceed as follows. The
word can sit on table bdb that has ndb words with probability ndb

i−1+α , and shares
the topic, ψdb on this table, or picks a new table, bnew with probability α

i−1+α

and orders a new topic, ψdbnew sampled from the global menu. A topic φk that
is used in mk tables across all documents is ordered from the global menu with
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probability mk∑K
l=1ml+γ

, or a new topic, knew not used in any document, is ordered

with probability γ∑K
l=1ml+γ

, φknew ∼ H. If we let θdi denotes the distribution of the

topic associated with word wdi, then putting everything together we have:

θdi|θd,1:i−1,α,ψ ∼

b=Bd∑
b=1

ndb

i− 1+α
δψdb +

α

i− 1+α
δψdbnew (2.3)

ψdbnew |ψ,γ ∼

K∑
k=1

mk∑
K

l=1
ml + γ

δφk +
γ∑

K

l=1
ml + γ

H (2.4)

where Bd is the number of tables in document d. This gives a mixed membership
model with potentially infinite number of topics and as such can be used to solve
the model selection problem in LDA.





Part II

M O D E L I N G D Y N A M I C C O N T E N T





3
T H E R E C U R R E N T C H I N E S E R E S TA U R A N T P R O C E S S

3.1 introduction

Dirichlet process mixture models provide a flexible Bayesian framework for estimat-
ing a distribution as an infinite mixture of simpler distributions that could identify
latent classes in the data [97]. However the full exchangeability assumption they
employ makes them an unappealing choice for modeling longitudinal data such as
text, audio and video streams that can arrive or accumulate as epochs, where data
points inside the same epoch can be assumed to be fully exchangeable, whereas
across the epochs both the structure (i.e., the number of mixture components) and
the parametrization of the data distributions can evolve and therefore unexchange-
able. In this chapter, we present the temporal Dirichlet process mixture model
(TDPM) as a framework for modeling these complex longitudinal data, in which the
number of mixture components at each time point is unbounded; the components
themselves can retain, die out or emerge over time; and the actual parametrization
of each component can also evolve over time in a Markovian fashion. In the context
of text-stream model, each component can thus be considered as a common themes
or latent class that spans consecutive time points. For instance, when modeling the
temporal stream of news articles on a, say, weekly basis, moving from week to week,
some old themes could fade out (e.g., the mid-term election is now over in US),
while new topics could appear over time (e.g., the presidential debate is currently
taking place). Moreover, the specific content of the lasting themes could also change
over time (e.g, the war in Iraq is developing with some slight shift of focus). The
rest of this chapter is organized as follows. First we define the TDPM in Section
3.2 and give three different, and equivalent, constructions for this process: via the
recurrent Chinese restaurant process, as the infinite limit of a finite dynamic mixture
model, and finally via a temporally dependent random measures. In Section 3.3
we give a Gibbs sampling algorithm for posterior inference. Section 3.4 extends
the construction to higher order dependencies. In Section 3.5 we use the TDPM
to built 1 an infinite dynamic mixture of Gaussian factors (i.e., an infinite mixture
Kalman filters of different life-spans) and illustrate it on simulated data. Then in
section 3.6, we give a simple non-parametric topic model on top of the TDPM and
use it to analyze the NIPS12 collection. In Section 3.7, we discuss relation to related
work and in Section 3.8 we conclude and discuss possible future problems.

3.2 the temporal dirichlet process mixture model

In many domains, data items are not fully exchangeable, but rather partially
exchangeable at best. In the TDPM model1 to be presented, data are assumed to
arrive in T consecutive epochs, and inside the same epoch all objects are fully
exchangeable.

1 A preliminary earlier version of the TDPM model first appeared in [19]

15
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Figure 3.1: Three constructions for the TDPM. a) The recurrent Chinese restaurant process
and b) The infinite limit of a finite dynamic mixture model. In b, diamonds rep-
resent hyper-parameters, shaded circles are observed variables, and unshaded
ones are hidden variables, plates denote replications, where the number of
replica is written inside the plate, for instance n1. (C)Time dependent random
measure construction of the TDPM. The direction of the arrows make it explicit
that the random measure Gt at time t depends on the atom location on time
t− 1 as well as on the base measure G0.
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Intuitively the TDPM seek to model cluster parameters evolution over time
using any time series model, and to capture cluster popularity evolution over
time via the rich-gets-richer effect, i.e. the popularity of cluster k at time t is
proportionable to how many data points were associated with cluster k at time
t− 1. In the following subsections, we will formalize these notions by giving three
equivalent constructions for the TDPM as summarized in Figure 3.1. However,
before giving these constructions that parallel those given for the DPM in section 3,
we first start by specifying some notations.

3.2.1 Notations and Conventions:

We let nt denotes the number of data points in the tth epoch, and xt,i denotes the
ith point in epoch t. The mixture components (clusters) that generate the data can
emerge, die out, or evolve its parametrization evolve over time in a Markovian
fashion, therefore, we generalize the notion of a mixture into a chain that links
the parameters of the mixture component over time. We let φk denote chain k,
φk,t denoted the state (parameter value) of chain k at time t, and nk,t denotes the
number of data points associated with chain k at time t. Moreover, we use n(i)

k,t
to denote the same quantity just before the arrival of datum xt,i. Note that the
chains need not have the same life span; however, once retained over time they
keep the same chain index. Moreover, the set of chain indexes available at time
t might not be contiguous (because some chains may have died out). Therefore,
we define It to denote the set of chain indexes available at time t. We sometimes
overload notation and use I(i)t to denote the same quantity just before the arrival
of datum xt,i. Each data item xt,i is generated from a mixture with parameter θt,i,
if we let ct,i denotes the chain index associated with this datum, then we have
θt,i = φct,i,t — in other words, the set of φ’s define the unique mixtures/clusters,
or put it equivalently, two data items might have equal θ values if they belong to
the same cluster. Moreover, we might use the following abbreviations for notational
simplicity (z denotes a generic variable):

• {zt,.} to denote {zt,1, zt,2, · · · }

• zt,1:i to denote {zt,1, zt,2, · · · , zt,i}

3.2.2 The Recurrent Chinese Restaurant Process

The RCRP depicted in Figure 3.1-a, is a generalization of the CRP introduced
in Chapter 2.2. The RCRP operates in epochs, say, days. Customers entered the
restaurant in a given day are not allowed to stay beyond the end of this day. At
the end of each day, the consumptions of dishes are analyzed by the owner of the
restaurant who assumes that popular dishes will remain popular in the next day,
and uses this fact to plan the ingredients to be bought, and the seating plan for the
next day. To encourage customers in the next day to try out those pre-planed dishes,
he records on each table the dish which was served there, as well as the number
of customers who shared it. As another incentive, he allows the first customer to
set on such a table to order a (flavored) variation of the dish recorded there. In
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this metaphor, dishes correspond to chains, and the variation correspond to the
dynamic evolution of the chain. The generative process proceeds as follows. At
day t, customer i can pick an empty table, k, that was used to serve dish φk,t−1,
with probability equals to nk,t−1

Nt−1+i+α−1
, he then chooses the current flavor of the

dish,φk,t, distributed according to φk,t ∼ P(.|φk,t−1). If this retained table k has

already n(i)
k,tcustomers, then he joins them with probability

nk,t−1+n
(i)
k,t

Nt−1+i+α−1
and shares

the current flavor of the dish there. Alternatively, he can pick a new empty table that
was not used in the previous day,t− 1, i.e., not available in It−1, with probability

α
Nt−1+i+α−1

,lets call it K+, and orders a dish φK+,t ∼ G0 — this is the mechanism
by which a new chain/cluster emerges. Finally, he can share a new table k, with

n
(i)
k,t customers, with probability

n
(i)
k,t

Nt−1+i+α−1
and shares the newly ordered dish

with them. Putting everything together, we have:

θt,i|{θt−1,.}, θt,1:i−1,G0,α ∼
1

Nt−1 + i+α− 1
×
[ ∑
k∈It−1

(
nk,t−1 +n

(i)
k,t

)
δ(φk,t) +

∑
k∈I(i)t −It−1

n
(i)
k,tδ(φk,t) +αG0

]
(3.1)

where in the first summation φk,t ∼ P(.|φk,t−1) (i.e. retained from the previous
day), and in the second one φk,t ∼ G0 which is drawn by the jth customer at time
t for some j < i (i.e. new chains born at epoch t). If we conveniently define nk,t

to be 0 for k ∈ It−1 − I
(i)
t (chains which died out) and similarly nk,t−1 be 0 for

k ∈ I(i)t − It−1 (i.e. newly born chains at time t), then we can compactly write
Equation 3.1 as:

θt,i|{θt−1,.}, θt,i:i−1,G0,α ∼
1

Nt−1 + i+α− 1
× (3.2)[ ∑

k∈It−1∪I(i)t

(
nk,t−1 +n

(i)
k,t

)
δ(φk,t) +αG0

]

3.2.3 The infinite Limit of a finite Dynamic Mixture Model

In this section we show that the same sampling scheme in Equation (3.2) can
be obtained as the infinite limit of the finite mixture model in Figure 3.1-b. We
consider the following generative process for a finite dynamic mixture model with
K mixtures. For each t do:

1. ∀k: Draw φk,t ∼ P(.|φk,t−1)

2. Draw πt ∼ Dir(n1,t−1 +α/K, · · · ,nK,t−1 +α/K)

3. ∀i ∈ Nt Draw ct,i ∼Multi(πt) , xt,i ∼ F(.|φct,i,t)

By integrating over the mixing proportion πt, It is quite easy to write the prior
for ct,i as conditional probability of the following form:
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P(ct,i = k|ct−1,1:Nt−1 , ct,1:i−1) =
nk,t−1 +n

(i)
k,t +α/K

Nt−1 + i+α− 1
. (3.3)

If we let K→∞, we find that the conditional probabilities defining the ct,i reachs
the following limit:

P(ct,i = k|ct−1,1:Nt−1 , ct,1:i−1) =
nk,t−1 +n

(i)
k,t

Nt−1 + i+α− 1

P(ct,i = a new cluter) =
α

Nt−1 + i+α− 1
(3.4)

Putting Equations (3.3) and (3.4) together, we can arrive at Equation (3.2).

3.2.4 The Temporarily Dependent Random Measures view of the TDPM

Here we show that the same process in Section 3.2 can be arrived at if we model
each epoch using a DPM and connect the random measures Gt as shown in Figure
5. This appendix is rather technical and is provided only for completeness, however
it can be skipped without any loss of continuity.

The derivation here depends on the well known fact that the posterior of a DP is a
also a DP [50]. That is, G|φ1, · · · ,φk,G0,α ∼ DP

(
α+n,

∑
k
nk
n+αδ(φk) +

α
n+αG0

)
,

where {φk} are the collection of unique values of θ1:n sampled from G. Now, we
consider the following generative process. For each t, do:

1. ∀k ∈ It−1 draw φk,t ∼ P(.|φk,t−1)

2. Draw Gt|{φk,t}∀k ∈ It−1,G0,α ∼ DP(α+Nt−1,Gt0)

3. ∀i ∈ Nt, Draw θt,i|Gt ∼ Gt xt,n|θt,n ∼ F(.|θt,n)

whereGt0 =
∑
k∈It−1

nk,t−1
Nt−1+α

δ(φk,t)+
α

Nt−1+α
G0. Now by integratingGt ∼ DP(Nt−1+

α,Gt0). We can easily show that:

θt,i|{θt−1,.}, θt,1:i−1,G0,α ∼
1

i+ (α+Nt−1) − 1
× (3.5)[ ∑

k∈I(i)t

n
(i)
k,tδ(φk,t) + (α+Nt−1)G

t
0

]
Now substituting Gt0 into the above equation plus some straightforward algebra,

we arrive at:

θt,i|{θt−1,.}, θt,1:i−1,G0,α ∼
1

Nt−1 + i+α− 1
× (3.6)[ ∑

k∈I(i)t

n
(i)
k,tδ(φk,t) +

∑
k∈It−1

nk,t−1δ(φk,t) +αG0

]
which when rearranged is equivalent to Equation 3.2
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3.3 gibbs sampling algorithms

Given the previous constructions for the TDPM model, we are ready to derive a
Gibbs sampling scheme equivalent to algorithm 2 in [97]. The state of the sampler
contains both the chain indicator for every data item, {ct,i}, as well as the value
of all the available chains at all time epochs, {φk,t}. We iterate between two steps:
given the current state of the chains, we sample a class indicator for every data item,
and then given the class indicators for all data item, we update the current state of
the chains. We begin by the second step, let φ(x)

k denote the collection of data points
associated with chain k at all time steps, that is φ(x)

k = {∀t(∀i ∈ Nt) xt,i|ct,i = k}.
Note also that conditioning on the class indicators, each chain is conditionally
independent from the other chains. Therefore, P(φk|{ct,i}) = P({φk,t}|φ

(x)
k ). This

calculation depends on both the chain dynamic evolution model P(.|) and the
data likelihood F(.|.), therefore, this posterior should be handled in a case by case
fashion, for instance, when the dynamic evolution model is a linear state-space
model with Gaussian emission (likelihood), this posterior can be calculated exactly
via the RTS smoother [72]. Once this posterior is calculated, we can update the
current state of the chains by sampling each chain over time as a block from this
posterior. Now, we proceed to the first step, for a given data point, xt,i, conditioning
on the state of the chains and other indicator variables (i.e. how data points other
than xt,i are assigned to chains), we sample ct,i as follows:

P(ct,i|ct−1, ct,−i, ct+1, xt,i, {φk}t,t−1,G0,α) ∝
P(ct,i|ct−1, ct,−i, xt,i, {φk}t,t−1,G0,α)P(ct+1|ct), (3.7)

where we introduce the following abbreviations: ct−1, ct+1 denotes all indicators
at time t− 1 and t respectively. ct,−i denotes the chain indicators at time t without
ct,i, and {φk}t,t−1 denotes all chains alive at either time epoch t or t − 1, i.e.,
φk∀k ∈ It−1 ∪ It. We also let n(−i)

k,t denote nk,t without the contribution of data
point xt,i. The first factor in Equation (3.7) can be computed using Eq. (3.2) as
follows:

P(ct,i = k ∈ It−1 ∪ It|...) ∝
nk,t−1 +n

(−i)
k,t

Nt−1 +Nt +α− 1
F(xt,i|φk,t)

P(ct,i = K
+|...) ∝ α

Nt−1 +Nt +α− 1

∫
F(xt,i|θ)dG0(θ), (3.8)

where K+ denotes a globally new chain index (i.e., a new chain is born). It should
be noted here that in the first part of Equation (3.8), there is a subtlety that we
glossed over. When we consider a chain from time t− 1 that has not been inherited
yet at time t (that is k ∈ It−1,n(−i)

k,t = 0), we must treat it exactly as we treat
sampling a new chain from G0 with G0 replaced by P(φk,t|φk,t−1).

The second factor in Equation (3.7) can be computed with reference to the
construction in section 4.3 as follows (note that ct here includes the current value
of ct,i under consideration in Equation (3.7). First, note that computing this part
is equivalent to integrating over the mixture weights πt+1 which depend on the
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counts of the chain indicators at time t. The subtlety here is that in section 4.3 we
let K→∞; however, here we only need to let the two count vectors be of equal size,
which is Kt,t+1 = |It,t+1|, where as defined before It,t+1 = It ∪ It+1, by padding
the counts of the corresponding missing chains with zeros. It is straightforward to
show that:

P(ct+1|ct) =
Γ
(∑

k∈It,t+1 nk,t +α/Kt,t+1

)
∏
k∈It,t+1 Γ(nk,t +α/Kt,t+1)

×∏
k∈It,t+1 Γ(nk,t +nk,t+1 +α/Kt,t+1)

Γ
(∑

k∈It,t+1 nk,t +nk,t+1 +α/Kt,t+1

) (3.9)

It should be noted that the cost of running a full Gibs iteration is O(n) where n
is the total number of data points.

3.4 modeling higher-order dependencies

One problem with the above construction of the TDPM is that it forgets too quickly
especially when it comes to its ability to model cluster popularity at time t+ 1
based on its usage pattern at time t, while ignoring all previous information before
time epoch t. Moreover, once a cluster is dead, i.e. its usage pattern at time t is 0, it
can no longer be revived again. Clearly, in some applications one might want to
give a slack for a cluster before declaring it dead. For example, when the TDPM
is used to model news stories on a daily basis, if a theme that was active in time
epoch t− 1 had no documents associated with it at time t, then the TDPM will
consider it dead, however, in practice, this might not be the case.

Figure 3.2: Simulating various clustering patterns from a TDPM(α,λ,W). Top: DPM, middle:
a TDPM and bottom: a set of independent DPM at each epoch. See section 6

for more details
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By analogy to the RCRP equivalent construction, the owner who plans the
restaurant ingredients based on a daily usage is less prudent than an owner who
considers a larger time frame, perhaps a week. However, one should not treat the
usage pattern of cluster k at time t and at time, say, t−h, as contributing equally to
our prediction of this cluster’s popularity at time t+ 1. A possible solution here is
to incorporate historic usage patterns by decaying their contribution exponentially
over time epochs. A similar idea has been proposed in [55], however in [55], each
epoch has exactly one data point, and the width of the history window used in
[55] is rather infinity — or more precisely at most n. This in fact makes the cost of
running a single Gibbs iteration, i.e. sampling all data items once, O(n2). In the
solution we propose here, we define two new hyperparmaters, kernel width, λ, and
history size, W. We will describe our approach only using the RCRP for simplicity
since as shown before, it is equivalent to the other constructions. To model higher
order dependencies, the only difference is that the owner of the restaurant records
on each table, not only its usage pattern on day t− 1, but its weighted cumulative
usage pattern over the last W days. Where the weight associated with the count
from day t− h is given by exp

−h
λ , and as such the contribution from epoch t− h

decays exponentially over time. A customer xt,n entering the restaurant at time t
will behave exactly in the same way as before using the new numbers recorded on
the table.

There are two implications to this addition. First, the cost of running one Gibbs
iteration is O(n×W), which is still manageable as W must be smaller than T ,
the number of epochs, which is in turn much smaller than the total number of
data points, n, thus we still maintain a linear time complexity. Second, an active
cluster is considered dead if and only if, it is not used for exactly W contiguous
echoes, which creates the necessary slack we were looking for. Changing the
Gibbs sampling equations in section 5 to accommodate this new addition is very
straightforward and removed for the light of space.

It is interesting to note that these two new hyper-parameters allow the TDPM to
degenerate to either a set of independent DPMs at each epoch when W=0, and to a
global DPM, i.e ignoring time, when W = T and λ = ∞. In between, the values of
these two parameters affect the expected life span of a given cluster/chain. The
larger the value of W and λ, the longer the expected life span of chains, and vice
versa.

To illustrate this phenomenon, we sampled different cluster configurations from
the TDPM model by running the RCRP metaphor for T = 50 epochs and seating
300 customers at each epoch. We simulated three hyper-parameter configurations
(α, λ,W) as follows. The configuration used at the top of Figure 3.2 is (5,∞,50=T)
which reduces the TDPM to a DPM. The configuration at the middle is a TDPM
with hyperparmaters (5,.4,4), while the bottom TDPM degenerates to a set of
independent DPMs at each epoch by setting the hyper-parameters to (5,.5,0) —
in fact the value of λ here is irrelevant. For each row, the first panel depicts the
duration of each chain/cluster,the second panel shows the popularity index at
each epoch, i.e. each epoch is represented by a bar of length one, and each active
chain is represented by a color whose length is proportional to its popularity at
this epoch. The third panel gives the number of active chains at each epoch and the
fourth panel shows the number of chains with a given life-span (duration). This
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fourth panel is a frequency curve and in general all TDPMs exhibit a power-law
(Zipf’s) distribution as the one in the middle, but with different tail lengths, while a
DPM and independent DPMs show no such power-law curves. Another interesting
observation can be spotted in the second column: note how cluster intensities
change smoothly over time in the TDPM case, while it is abrupt in independent
DPMs or rarely changing in a global DPM. This shows that TDPM with three
tunable variables can capture a wide range of clustering behaviors.

3.5 infinite dynamic mixture of gaussian factors

(a) (c) (e)

(b) (d) (f)

Figure 3.3: Illustrating results on simulated data. Panels (a,b) contrast the accuracy of the
recovered clustering, using global and local consistency measures, against that
estimated using fixed dimensional models (see text for details). Panels (c-f)
illustrate the TDPM ability to vary the number of clusters/chains over time,
results from fixed-dimensional models, which is fixed over time, are not shown
to avoid cluttering the display. Panel (d) and (f) illustrate that most omissions
(errors) are due to insignificant chains. All results are averaged over 10 samples
taken 100 iterations apart for the TDPM, and over 10 random initializations
for the fixed-dimensional models. Error bars are not shown in panels (c-f) for
clarity, however,the maximum standard error is 1.4

.

In this section we show how to use the TDPM model to implement an infinite
dynamic mixture of Gaussian factors. We let each chain represent the evolution of
the mean parameter of a Gaussian distribution with a fixed covariance Σ. The chain
dynamics is taken to be a linear state-space model, and for simplicity, we reduce it
to a random walk. More precisely, for a given chain φk: φk,t|φk,t−1 ∼ N(φk,t−1, ρI)
and xt,i|ct,i = k ∼ N(φk,t,Σ). The base measure G0 = N(0,σI). Using the Gibbs
sampling algorithm in section 5, computing the chain posterior given its associated
data points, φ(x)

k , can be done exactly using the RTS smoother algorithm [73]. We
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simulated 30 epochs, each of which has 100 points from the TDMP with the above
specification, and with hyperparmaters as follows: α = 2.5, W = 1, – = .8, ff =

10,  = 0.1and ˚ = 0.1I. We ran Gibbs sampling for 1000 iterations and then took
10 samples every 100 iterations for evaluations. The results shown in Figure 3 are
averaged over these 10 samples. To measure the success of the TDPM, we compared
the clustering produced by the TDPM to the ground truth, and to that produced
from a fixed dynamic mixture of Kalman Filters [72] with various number of
chains, K =(5,10,15,20,25,30). For each K, we ran 10 trials with different random
initializations and averaged the results.

We compared the clustering produced by the two methods, TDPM, and the
one with fixed number of evolving chains over time, to the ground truth using the
variation of information measure in [88]. This measure uses the mutual information
between the two clustering under consideration, and their entropy to approximate
the distance between them across the lattice of all possible clustering (see [88]
for more details). We explored two ways of applying this measure to dynamic
clustering, the global variation of information, GVI, and the local variation of
information, LVI. In GVI, we ignored time, and considered two data points to
belong to the same cluster if they were generated from the same chain at any
time point. In LVI, we applied the VI measure at each time epoch separately and
averaged the results over epochs. GVI captures global consistency of the produced
clustering, while LVI captures local consistency (adaptability to changes in the
number of clusters). The results are shown in Figure 3.3-a, 3.3-b (lower values
are better)and show that the TDPM is superior to a model in which the number
of clusters are fixed over time, moreover, setting K to the maximum number of
chains over all time epochs does not help. In addition to these measures, we also
examined the ability of the TDPM to track the evolution of the number of chains
(Figure 3.3-c)and their duration over time (Figure 3.3-e). These two figures show
that in general, the TDPM tracks the correct ground-truth behavior, and in fact
most of the errors are due to insignificant chains, i.e. chains/clusters which contain
a very small (1-3) data points as shown in Figure 3.3-d and Figure 3-f. It is worth
mentioning that the fixed dimension models produce the same number of chains
over time, which we omit from Figure 3.3-(c-f) for clarity.

3.6 a simple non-parametric dynamic topic model

Statistical admixture topic models have recently gained much popularity in manag-
ing large document collections. In these models, each document is sampled from a
mixture model according to a document’s specific mixing vector over the mixture
components (topics), which are often represented as a multinomial distribution over
a given vocabulary. An example of such models is the well-known latent Dirichlet
allocation (LDA)[29]. Recent approaches advocate the importance of modeling
the dynamics of different aspects of topic models: topic trends [127], topic word
distributions [27] and topic correlations [83]. In this section we show how to imple-
ment a simple non-parametric dynamic topic model. The model presented here is
simpler than mainstream topic models in that each document is generated from a
single topic rather than from a mixture of topics as in LDA. However, this is not a
restriction of our framework, as we will mention in the future work section how
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Figure 3.4: Illustrating results on the NIPS12 dataset. Top: keywords over time in some
topics. Left-bottom: chains (topics) death-birth over time. Right-botoom: the
popularity of some topics over the years, where topics names are hand labeled.

this simple model can be extend to a full-fledged one. The model we present here
is only meant as another illustration of the generality of our framework.

To implement this simple non-parametric dynamic topic model, SNDTM for
short, let xt,i represent a document composed of word frequency counts. Each
chain represents the natural parameter of the multinomial distribution associated
with a given topic, similar to the the dynamic LDA model in [27]. Each topic’s
natural parameter chain, φk, evolves using a random walk model [27]. To generate
a document, first map the natural parameter of its topic φk,t to the simplex via
the logistic transformation in Equation (8-10), and then generate the document, i.e.
xt,i|ct,i = k ∼ Multinomial(xt,i|Logistic(ffik,t)).

In Equations (3.10), C(φk,t) is a normalization constant (i.e., the log partition
function). We denote this logistic transformation with the function Logisitc(.).
Furthermore, due to the normalizability constrain of the multinomial parameters,
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~βk,t only has M− 1 degree of freedom, where M is the vocabulary length. Thus
we only need to represent and evolve the first M− 1 components of φk,t and leave
φk,t = 0. For simplicity, we omit this technicality from further consideration.

βk,t,m = exp{φk,t,m −C(φk,t)}, ∀m = 1, . . . ,M

where C(φk,t) = log
( M∑
m=1

exp{φk,t,m}
)

. (3.10)

One problem with the above construction is the non-conjugacy between the
multinomial distribution and the logistic normal distribution. In essence, we can
no longer use vanilla RTS smoother to compute the posterior over each chain
as required by the Gibbs sampling algorithm in Section 3.3. In [27], numerical
techniques were proposed to solve this problem; here, for simplicity, we use a
deterministic Laplace approximation to overcome this non-conjugacy problem. We
first put the emission of chain φk at time t in the exponential family representation.
It is quite straightforward to show that:

∏
x∈φxk,t

M∏
m=1

p(xt,i,m|φk,t) = exp{vk,tφk,t − |vk,t|×C(φk,t)} (3.11)

where vk,t is an M-dimensional (row) vector that represents the histogram of
word occurrences from topic k at time step t . And |.| is the L1 norm of a given
vector. Equation (3.11) still does not represent a Gaussian emission due to the
problematic C(φk,t). Therefore, we approximate it with a second-order quadratic
Taylor approximation around φ̂k,t — to be specified shortly . This results in a
linear and quadratic term of φk,t. If we let H and g to be the hessian and gradient
of such expansion, we can re-arrange equation (3.11) into a gaussian emission with
mean χφ̂k,t

and covariance ϕη̂k,t given by:

ϕφ̂k,t
= inv

(
|vk,t|H(φ̂k,t)

)
, (3.12)

χφ̂k,t
= φ̂k,t +ϕη̂tk

(
vk,t − |vk,t|g(φ̂k,t)

)
. (3.13)

Using this Gaussian approximation to the non-gaussian emission, we can com-
pute the posterior over φk,t|φ

(x)
k,t using the RTS smoother with observations, and

observation noises as given by Equations (3.13) and (3.12) respectively. Due to the
high-dimensionality of the associated vectors in this linear state-space model, we
approximate the Hessian in the above calculations with its diagonal, which results
in an M-independent linear state-space models, one for each word. Moreover, φ̂k,t

is set to inverseLogisitic
(

vk,t
|vk,t|

)
, which is the inverse logistic transformation of the

MLE (maximum likelihood estimation) of the topic’s k multinomial distribution at
time t.

We used this simple model to analyze the NIPS12 collection that contains the
proceedings of the Neural Information Processing Conference from 1987-1999

2.

2 Available from http://www.cs.toronto.edu/ roweis/data.html
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Stop words were removed from this collection, we also removed infrequent words
and kept only the top most frequent 2000 words. We divided the collection into
13 epochs based on the publication year of the paper. We set the hyperparmaters
of the TDPM as in Section 7 with α = .1, and we ran Gibbs sampling for 1000

iterations. To speed up convergence, we initialized the sampler from the result
of a global non-parametric clustering using the method in [42] which resulted
in around 7 clusters, each of which spans the whole 13 years. In Figure 3.4, we
display topic durations, which shows that the model indeed captures the death
and birth of various topics. In the same figure, we also show the top keywords in
some topics (chains) as they evolve over time. As shown in this figure, regardless
of the simplicity of the model, it captured meaningful topic evolutions.

3.7 relation to other dynamic non-parametric bayesian approaches

We have purposefully delayed discussing the relationship between the TDPM and
other dependent DPM models until we lay down the foundation of our model
in order to place the discussion in context. In fact, several approaches have been
recently proposed to solve the same fundamental problem addressed in this chapter:
how to add the notion of time into the DPM. With the exception of [55], most
of these approaches use the stick-breaking construction of the DPM [59][86]. In
this construction, the DPM is modeled as an infinite mixture model, where each
mixture component has a weight associated with it. Coupling the weights and/or
(component parameters) of nearby DPMs results in a form of dependency between
them. This new process is called ordered-based (Dependent) DPMs. However, we
believe that utilizing the CRP directly is easier as we have explained in section
4.2, and more importantly, this approach enables us to model the rich-gets-richer
phenomenon, which we believe captures, in a wide range of applications, how
a cluster popularity evolves over time. As for the work in [55], we have already
explained one difference in Section 3.4. Another difference is that in [55] cluster
parameters are fixed and do not evolve over time. Recently, a simple clustering-topic
model built on top of [59] was proposed in [113]. This is similar to the experiments
we carried in section 8, however, in [113] the cluster (topic) parameters were fixed
over time.

3.8 discussion

In this chapter we presented the temporal Dirichlet process mixture model as a
framework for modeling complex longitudinal data. In the TDPM, data is divided
into epochs, where the data items within each epoch are partially exchangeable.
Moreover, The number of mixture components used to explain the dependency
structure in the data is unbounded. Components can retain, die out or emerge over
time, and the actual parameterization of each component can also evolve over time
in a Markovian fashion. We gave various constructions of the TDPM as well as
a Gibbs sampling algorithm for posterior inference. We also showed how to use
the TDPM to implement an infinite mixture of Kalman filters as well as a simple
non-parametric dynamic topic model.



28 the recurrent chinese restaurant process

One question that remains is what marginal distribution is realized by the process
introduced in this chapter. Is the current process marginally a DP? In [23], the
authors extends our work and gives a new process called distance-dependent CRP
that is applicable to any distance function not only time as in our formalization.
[23] also shows that these class of processes (which covers the RCRP introduced
here) are not marginally DP unless the process degenerates to either a singe DP
or a set of independent DPs (see Figure 3.2), and that our process rather defines a
distribution of time-varying partitions. What is the implication of these results? It
means that if data points are not missing at random in each epoch, then inference
is not guaranteed to be consistent. To see this, note that the missing points (say at
time t) should also affect the distribution of the data at time t+ 1 according to the
process, however, inference for the data at time t+ 1 missed those points. As such,
the marginal distribution of the data point at time t+ 1 after the arrival of the new
missing data at time t is not the same to the distribution without the missed data
(i.e. the process does not satisfy the marginalization constraints [50]). This means
that our model is better looked at as a conditional model and thus two applications
are possible: 1) structure recovery, in which we are interested in P(ct|xt), i.e. the
clustering configuration (as we are in this Chapter and in Chapters 4, 5 and 8), or
2) future prediction, where we care about computing P(xt+1|x1:t) since the process
is conditionally DP and thus inference in this case is consistent (as the case in
Chapter 5 and 8).

Finally, in [10] we proposed a collapsed variational inference algorithm for the
same process yet its efficacy is still to be evaluated. It is interesting to explore
search based techniques [42] that showed promising results in the DPM case and
achieved up to 200-300 speedup over using Gibbs sampling.
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T I M E L I N E : R E C O V E R I N G B I RT H / D E AT H A N D E V O L U T I O N
O F T O P I C S I N T E X T S T R E A M

4.1 introduction

With the dramatic increase of digital document collections such as online journal
articles, the arxiv, conference proceedings, blogs, to name a few, there is a great de-
mand for developing automatic text analysis models for analyzing these collections
and organizing its content. Statistical admixture topic models [29] were proven to
be a very useful tool to attain that goal and have recently gained much popularity
in managing large collection of documents. Via an admixture model, one can
project each document into a low dimensional space where their latent semantic
(such as topical aspects) can be captured. This low dimensional representation can
then be used for tasks like measuring document-document similarity or merely
as a visualization tool that gives a bird’s eye view of the collection and guides its
exploration in a structured fashion.

An admixture topic model posits that each document is sampled from a fixed-
dimensional mixture model according to a document’s specific mixing vector over
the topics. The variabilities in the topic mixing vectors of the documents are usually
modeled as a Dirichlet distribution [29], although other alternatives have been
explored in the literature [20, 81]. The components of this Dirichlet distribution
encode the popularity of each of the topics in the collection. However, document
collections often come as temporal streams where documents can be organized into
epochs; examples of an epoch include: documents in an issue of a scientific journal
or the proceeding of a conference in a given year. Documents inside each epoch
are assumed to be exchangeable while the order between documents is maintained
across epochs. With this organization, several aspects of the aforementioned static
topic models are likely to change over time, specifically: topic popularity, topic word
distribution and the number of topics.

Several models exist that could accommodate the evolution of some but not all
of the aforementioned aspects. [27] proposed a dynamic topic model in which the
topic’s word distribution and popularity are linked across epochs using state space
models, however, the number of topics are kept fixed. [127] presented the topics
over time model that captures topic popularity over time via a beta distribution,
however, topic distributions over words and the number of topics were fixed over
time, although the authors discussed a non-parametric extension over the number
of topics. Moreover, the shapes of permitted topic trends in the TOT model are
restricted to those attained by the beta distribution. On the other hand, several
models were proposed that could potentially evolve all the aforementioned aspect
albeit in a simple clustering settings, i.e. each document is assumed to be sampled
from a single topic [9, 33, 113]. As we will show in this chapter, accommodating
the evolution of the aforementioned aspects in a full-fledged admixture setting is
non-trivial and introduces its own hurdles. Moreover, it is widely accepted [29] that

29
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admixture models are superior compared to simple clustering models for modeling
text documents, especially for long documents such as research papers.

In this chapter we introduce iDTM: infinite dynamic topic models which can
accommodate the evolution of the aforementioned aspects. iDTM allows for un-
bounded number of topics: topics can be born and die at any epoch, the topics’
word distributions evolve according to a first-order state space model, and the
topics’ popularity evolve using the rich-gets richer scheme via a ∆-order process.
iDTM is built on top of the recurrent Chinese restaurant franchise (RCRF) process
which introduces dependencies between the atom locations (topics) and weights
(popularity) of each epoch. The RCRF process is built on top of the RCRP process
introduce in Chapter 3 [9].

To summarize, the contributions of this chapter are:

• A principled formulation of a dynamic topic model that evolves: topic trend,
topic distribution, and number of topics over time.

• An efficient sampling algorithm that relies on dynamic maintenance of cached
sufficient statistics to speed up the sampler.

• An empirical evaluation and illustration of the proposed model over simu-
lated data and over the NIPS proceedings.

• A study of the sensitivity of the model to the setting of its hyperparameters.

4.2 settings and background

In this section, we lay the foundation for the rest of this chapter by first detail-
ing our settings and then reviewing some necessary background to make the
chapter self-contained. We are interested in modeling an ordered set of docu-
ments w = (w1, · · · ,wT ), where T denotes the number of epochs and wt de-
notes the documents at epoch t. Furthermore, wt = (wtd)

Dt
d=1

, where Dt is the
number of documents at epoch t. Moreover, each document comprises a set of
ntd words, wtd = (wtdi)

Ntd
i=1

, where each word wtdi ∈ {1, · · · , W}. Our goal is to
discover potentially an unbounded number of topics (φk)

∞
k=1

where each topic
φk = (φk,tk1

, · · · ,φk,tk2
) spans a set of epoches where 1 6 tk1 6 tk2 6 T , and φk,t is

the topic’s word distribution at epoch t.

4.2.1 Temporal Dirichlet Process Mixture Model: A Recap

For reader’s conveneince, we recap the the temporal Dirichlet process mixture
model (TDPM) introduced in 3. TDPM is a framework for modeling complex
longitudinal data, in which the number of mixture components at each time point
is unbounded; the components themselves can retain, die out or emerge over time;
and the actual parameterization of each component can also evolve over time in
a Markovian fashion. In TDPM, the random measure G is time-varying, and the
process stipulates that:
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Gt|φ1:k,G0,α ∼ DP

(
α+

∑
k

m ′kt,
∑
k

m ′k,t∑
l
m ′lt +α

δ(φk) +
α∑

l
m ′lt +α

G0

)
(4.1)

where {φ1:k} are the mixture components available in the previous ∆ epochs, in
other words, {φ1:k} is the collection of unique values of the parameters θt:t−∆, where
θtn is the parameter associated with data point xtn. If we let mkt denotes the
number of parameters in epoch t associated with component k, then m

′
kt, the prior

weight of component k at epoch t is defined as:

m
′
kt =

∆∑
δ=1

exp
−δ
λ mk,t−δ (4.2)

,where ∆, λ define the width and decay factor of the time-decaying kernel. This
defines a ∆−order process where the strength of dependencies between epoch-
specific DPs are controlled with ∆, λ. In Chapter 3 and [9] we showed that these
two hyper-parameters allow the TDPM to degenerate to either a set of independent
DPMs at each epoch when ∆=0, and to a global DPM, i.e ignoring time, when
∆ = T and λ = ∞. In between, the values of these two parameters affect the
expected life span of a given component. The larger the value of ∆ and λ, the
longer the expected life span of the topic, and vice versa. Finally, the life-span of
topics followed a power law distribution [9].

In addition to changing the weight associated with each component, the parame-
terization φk of each component changes over time in a markovian fashion, i.e.:
φkt|φk,t−1 ∼ P(.|φk,t−1). Integrating out the random measures G1:T , the parameters
θ1:t follow a polya-urn distribution with time-decay, or as termed in Chapter 3,
the recurrent Chinese restaurant process (RCRP). More formally:

θti|θt−1:t−∆, θt,1:i−1,G0,α ∝
∑
k

(
m ′kt +mkt

)
δ(φkt) +αG0 (4.3)

The RCRP allows each document w to be generated from a single component
(topic), thus making it suboptimal in modeling multi-topic documents. On the
other hand as we detailed in Section 2.2 the HDP process allows each document
to be generated from multiple topics, thus it seems natural to combine the two
models to achieve our goal.

4.3 infinite dynamic topic models

Now we proceed to introducing our model, iDTM which allows for infinite number
of topics with variable durations. The documents in epoch t are modeled using
an epoch specific HDP with high-level base measure denoted as Gt0. These epoch-
specific base measures {Gt0} are tied together using the TDPM process of Chapter 3.
Integrating all random measure, we get the recurrent Chinese restaurant franchise
process (RCRF).
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Figure 4.1: The recurrent Chinese restaurant franchise (RCRF) precoces. The figure shows
a first-order process with no decay to avoid cluttering the display,however see
the text for the description of a general ∆-order process.

Figure 4.1 depicts a RCRF process of order one for clarity, however, in this section
we give a description of a general process of order ∆. In the RCRF, the document
in each epoch is modeled using a CRFP, and then the global menus of each epoch
are tied over time as depicted in Figure 4.1.

As in the RCRP, the popularity of a topic at epoch t depends both on its usage at
this epoch, mkt as well as it historic usage at the proceedings ∆ epochs, m ′kt, where
m ′kt is given in (4.2). This means that a topic is considered dead only when it is
unused for a consecutive ∆ epochs. For simplicity, we let m ′kt = 0 for newly-born
topics at epoch t, and mkt = 0 for topics available to be used(i.e having m ′kt > 0)
but not yet used in any document at epoch t.

The generative process at the first epoch proceeds exactly as in the CRF process.
At epoch t, to associate a topic with word wtdi we proceed as follows. Word wtdi
can sit on table b that has ntdb customers and has topic ψtdb with probability ntdb

i−1+α .
Alternatively, wtdi can choose to start a new table, bnew

td with probability α
i−1+α

and choose a new topic. It can choose an already existing topic from the menu

at epoch t with probability mkt+m
′
kt∑Kt

l=1mlt+m
′
lt+γ

, Kt is the number of topics at epoch t.

Furthermore, if this topic is inherited but not yet used by any previous word (i.e
mkt = 0), then wtdi modifies the distribution of this topic: φkt ∼ P(.|φk,t−1). Finally,
wtdi can choose a brand new topic φKnew

t
∼ H, with probability γ∑Kt

l=1mlt+m
′
lt+γ

and

increment Kt. Putting everything together, we have:

θtdi|θtd,1:i−1,α,ψt−∆:t ∼

b=Btd∑
b=1

ntdb

i− 1+α
δψtdb +

α

i− 1+α
δψtdbnew (4.4)
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ψtdbnew |ψ,γ ∼
∑

k:mkt>0

mkt +m
′
kt∑

Kt
l=1
mlt +m

′
lt + γ

δφkt

+
∑

k:mkt=0

mkt +m
′
kt∑

Kt
l=1
mlt +m

′
lt + γ

P(.|φk,t−1)

+
γ∑

Kt
l=1
mlt +m

′
lt + γ

H (4.5)

If we use the RCRF process as a prior over word assignment to topics in a
mixed-membership model, we get the infinite dynamic topic model (iDTM). In
iDTM, each word is assigned to a topic as in the RCRF process, and then the word
is generated from this topic’s distribution. The base measure H is modeled as
H = N(0,σI), and the word distribution of the topic k at epoch t, φkt evolves using
a random walk kernel as in [27]:φk,t|φk,t−1 ∼ N(φk,t−1, ρI). To generate word wtdi
from its associated topic, say φkt, we first map the natural parameters of this topic
φk,t to the simplex via the logistic transformation L, and then generate the word,
i.e.: wtdi|φkt ∼ M

(
L(φkt)

)
, where L(φkt) = expφkt∑W

w=1 expφk,t,w
. This choice introduces

non-conjugacy between the base measure and the likelihood function which we
have to deal with in Section 4.4.

4.4 a gibbs sampling algorithm

In this section, we give a Gibbs sampling algorithm for posterior inference in
the iDTM. We construct a Markov chain over (k,b,φ), where ktdb,btdi,φkt are as
given in Section 4.3: the index of the topic on table b in document td, the table
index assigned to word wtdi, and the parameterization of topic k at time epoch t,
respectively. We use the following notations. Adding a superscript −i to a variable,
indicate the same quantity it is added to without the contribution of object i. For
example n−tdi

tdb is the number of customers sitting on table b in document d in
epoch t without the contribution of word wtdi, and k−tdbt is kt\ktdb. We alternate
sampling each variable conditioned on its Markov blanket as follows:

Sampling a topic ktdb for table tdb: The conditional distribution for ktdb is given
by:

P(ktdb = k|k−tdb
t−∆:t+∆,btd,φ,wt) ∝ P(ktdb = k|k−tdb

t−∆:t,φ, vtdb) ×
∆∏
δ=1

P(kt+δ|k−tdb→k
t+δ−∆:t+δ−1) (4.6)

where vtdb is the frequency count vector (of length W) of the words sitting on table
tdb, and the notation (−tdb→k) means the same as k−tdb

t−∆:t+∆ but in addition we set
ktdb = k. The second factor in (4.6) is the transition probability which measures the
likelihood of the table assignments at future epochs if we choose to assign ktdb = k.
Now we focus on computing one of these probabilities in the second factor in (4.6)
at epoch t+ δ. With reference to the construction in Section 4.3 and Eq (4.5), and
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considering that documents are exchangeable within each epoch, similar to [16],
we have 1:

P(kt+δ|k−tdb→k
t+δ−∆:t+δ−1) = γ

Kbornt+δ

∏
s∈Kbornt+δ

[1]ms,t+δ
∏
s/∈Kbornt+δ

[m ′,−tdb→ks,t+δ ]ms,t+δ∏m.,t+δ
i=1 (m ′,−tdb→k.,t+δ + γ+ i)

(4.7)

where Kbornt+δ is the number of topics born at epoch t+ δ,m.,t+δ is the summation of
mk,t+δ over the first dimension (the topic), and m ′.,t+δ is defined similarly. Finally,
[a]c = a(a+ 1) · · · (a+ c− 1).

Now we turn to the first factor in (4.6). Using (4.5), we have:

P
(
ktdb = k|k

−tdb
t−∆:t,φ, vtdb

)
∝



(
m−tdb
kt +m

′
kt

)
f(vtdb|φkt)

k is being used : m−tdb
kt > 0

m
′
kt

∫
f(vtdb|φkt)dP(φkt|φk,t−1)

k is available but not used : m
′
kt > 0

γ
∫
f(vtdb|φkt)dH(φkt)

k is a new topic

Unfortunately, due to the non-conjugacy neither the second nor the third case
above can be computed analytically. In Chapter 3 a Laplace approximation was
used to fit these integrals. This was possible since the integrals were evaluated over
the whole document (a mixture model), however in our setting (mixed-membership
model), we need to evaluate these integrals over small groups of words (like words
on a given table). We found that the deterministic approximation overestimates
the integrals and increases the rate of generating new topics, therefore we resort
to algorithm 8 in [97]. In this case, we replace both of these integrals with Q fresh
samples from their respective distributions, and equally divide the corresponding
probability mass among these new samples. These samples are then treated as
if they were already existing topics. We choose to use Q = 1 for the transition
kernel since in our application, iDTM, this kernel usually has a small variance.
Substituting this in Equation (4.8), we get that:

P
(
ktdb = k|k

−tdb
t−∆:t,φ, vtdb

)
∝



(
m−tdb
kt +m

′
kt

)
f(vtdb|φkt)

k is used:m−tdb
kt > 0

m
′
kt f(vtdb|φkt)

m
′
kt > 0,m−tdb

kt = 0,φkt ∼ P(.|φk,t−1)
γ
Qf(vtdb|φ

q
kt)

k is a new topic,φqkt ∼ H,q = 1 · · ·Q
(4.8)

1 In Chapter 3 and in [9], we used a finite dynamic-mixture model, which is equivalent on the limit
to RCRP, to compute the same quantity. The formula here is exact and have the same amount of
computation as the approximate formula. We also note that our formula gives better results
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Sampling a table btdi for word xtdi: With reference to (4.4), the conditional
distribution is :

P
(
btdi = b|b

−tdi
td ,kt−∆:t+∆,φ, xtdi) ∝


n−tdi
tdb f(xtdi|φktjb ,t)

b is an existing table

αP
(
ktjbnew = k|kt−∆:t+∆

−tdi,b−tdi
td ,φ, xtdi,

)
bnew is a new table,k ∈ kt

(4.9)

Several points are in order to explain (4.9). There are two choices for word
wtdi:either to sit on an existing table, or to sit on a new table and choose a new
topic. In the second case, we need to sample a topic for this new table which leads
to the same equation as in (4.8). Moreover, if wtdi was already sitting on a table by
itself, then we need to first remove the contribution of this table from the count
vector m. Finally, note that in the second line, P is a proper distribution (i.e. it
should be normalized) and thus the total probability mass for sitting on a new
table is till α regardless of how many topics are available at epoch t.

Sampling φk: P(φk|b,k, x) = P(φk|vk), where vk = {vk,t}, vk,t is the frequency
count vector of words generated from this topic at epoch t. This a state space
model with nonlinear emission, and fortunately there is a large body of literature
on how to use Metropolis-Hasting to sample from this distribution [115, 54].
There are two strategy to deal with this posterior: either sample from it as a
block, or to sequentially sample each φkt. Both of these options involve an M-H
proposal,however, due to the strong correlation between the successive values of
φkt, we found that sampling this posterior as a block is superior. Let q(φk) be
the proposal distribution, and let φ∗

k denote a sample from this proposal. The
acceptance ratio is r = min(1,u), where u is as follows (for simplicity assume that
the chain starts at t = t1):

H(φ∗k,t1
)×

∏
t f(vkt|φ

∗
kt)P(φ

∗
kt|φ
∗
k,t−1)

H(φk,t1
)×

∏
t f(vkt|φkt)P(φkt|φk,t−1)

×
∏
t q(φkt)∏
t q(φ

∗
kt)

(4.10)

With probability r the proposed values are accepted and with probability 1− r
the old values are retained. Our proposal is based on a Laplace approximation to
the LTR smoother (details of calculating this proposal is given below). A similar
Laplace proposal has been used successively in the context of Bayesian inference of
the parameters of a Logistic-Normal distribution [63], as well as in the context of
non-linear state space models in [54] who also noted that this proposal has high
acceptance rate (a fact that we also observed).

Fitting the proposal distribution in (4.10)

Our goal is to sample P(φk|vk), where vk = {vk,t}, vk,t is the frequency count vector
of words generated from this topic at epoch t. Without loss of generality, and for no-
tational simplicity, we will drop the topic index k, and assume that the topic’s lifes-
pan is form 1 to T . Thus we would like to compute P(φ1, . . . ,φT |v1, . . . , vT ). This is
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a linear state-space model with non-linear emission, thus the RTS smoother [92] will
not result in a closed form solution. Therefore, we seek a Laplace-approximation
to this posterior and call this approximation, q(φ) =

∏
t q(φt). To compute q we

note that the RTS smoother defines two recurrences: the forward recurrence, and
the backward recurrence. Following [92], lets assume that the forward value at
epoch t− 1 is given by α̂(φt−1) ∼ N(ut−1, ˇt−1) where ˇ has a diagonal covariance.
The forward equation becomes:

α̂(φt) = LN(vt|φt)×∫
φt

N(φt|φt−1, ρI)N(φt−1|ut−1, ˇt−1)

= LN(vt|φt)N(φt|φt−1, ˇt−1 + ρI) (4.11)

Equation (4.11) does not result in the desired Gaussian form because of the
non-conjugacy between the LN and the normal distributions. Therefore, we seek a
Laplace approximation to (4.11) which puts it back into the desired Gaussian form
to continue the recurrence. In this case ut is the mode of (4.11) and ˇt is the negative
inverse Hessian of (4.11) evaluated at the mode. We use a Diagonal-approximation
of the Hessian though because of the high-dimensionality of φ.

As detailed in [92], the backward recurrence can be defined using the α̂’s instead
of the data, and can be computed exactly if the dynamic model is linear, which is
the case in our model. This backward recurrence computes q(φt|v1, . . . , vT ) that
we desire.

4.4.1 Practical Considerations

A naive implementation of the Gibbs sampling algorithm in 4.4 might be slow.
We note here that the difference between the sampler we described in 4.4 and
the sampler of a standard CRFP comes in the calculation of the vales of m ′kt and
for the calculation of (4.7). The case for m ′ is simple if we note that it needs to
be computed only once before sampling variables in epoch t, moreover, because
of the form of the exponential kernel used, we can define a recurrence over m ′kt
as: m ′kt =

(
m ′k,t−1 +mk,t−1

)
exp

−1
λ if t < ∆ and m ′kt =

(
m ′k,t−1 +mk,t−1

)
exp

−1
λ −

exp
−(∆+1)
λ mk,t−(∆+1) otherwise.

On the other hand, a naive implementation of (4.7) costs anO(K2∆) as we need to
compute it for ∆ epochs and for each k. Here we describe an alternative approach.
We divide and multiply (4.7) with P(kt+δ|kt+δ−∆:t+δ−1) , which is the likelihood of
the table assignments at epoch t+ δ given the current configuration with the old
value of ktdb = kold. This is legitimate since this value is constant across k. Now
we absorb the value we multiplied in the normalization constant, and focus on the
following ratio:

Ct+δ(kold → knew) =
P(kt+δ|k−tdb→k

t+δ−∆:t+δ−1)

P(kt+δ|kt+δ−∆:t+δ−1)
(4.12)

where Ct+δ(kold → knew) is the cost contributed by the assignment of the table at
epoch t+ δ for moving an occupancy from table kold to knew. In fact (4.12) is all
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what we need to compute (4.7) and thus (4.6). The idea here is that all the terms not
involving kold and knew will cancel from (4.12), leaving only 2 terms that involve
kold and knew to be computed. To see why this is the case, note that m ′,−tdb→k

new

s,t+δ

reduces to m ′s,t+δ whenever s /∈ {knew,kold}. Furthermore, we can cache this two
dimensional array at each epoch and dynamically update it whenever the sampled
value in (4.6) for ktdb is different from kold. In this case, we need to update
Ct+δ(kold → .) and Ct+δ(knew → .). Thus the cost of computing the transition
probability reduces from O(K2∆) to at most O(K∆). Moreover, especially at later
stages of the sampler when tables do not change their topic assignments frequently,
the improvement ratio will be more than that.

4.5 experimental results

In this section we illustrate iDTM by measuring its ability to recover the death and
birth of topics in a simulated dataset and in recovering topic evolution in the NIPS
dataset. For all the experiments in this chapter, we place a vague gamma prior (1,1)
over the hyperparameters γ,α and sample them separately for each epoch using
the method described in [116]. Unless otherwise stated, we use the following values
for the hyperparameters: the variance of the base measure H, σ = 10; the variance
of the random walk kernel over the natural parameters of each topic, ρ = 0.01;
∆ = 4; the number of sample from the base measure Q = 5, and finally λ = .5.

Initialization of the Markov chain is quite important. Our setup proceeds as
follows. In the first iteration, we run the Gibbs sampler in the filtering mode (i.e.
sampling each epoch conditioned on the ∆ preceding epochs only) and used a
liberal value for α = 4 and γ = 10 to encourage the generation of large number
of topics. An initial large number of topics in desirable since as noted in [117],
initializing HDP-like models with large number of topics results in a better mixing
than initializing the sampler with a smaller number of topics. In the subsequent
iterations, we ran our standard Gibbs sampler that also samples the values of α,γ.
Finally, we ran all samplers for 2000 iterations and took 10 samples 200 iterations
apart and then used the sample with the highest Likelihood for evaluation and
visualization

4.5.1 Simulation Results

We generated a simple time-evolving document collection over T = 20 epochs. We
set the vocabulary size to 16, and hand-crafted the birth-death of 8 topics, as well
as their words’ distributions as shown in Figure 4.2. Each topic puts its mass on 4

words. At each epoch we add a 5% random noise to each topic’s word distribution.
We then ran the RCRFP with α = 1.5 to generate 100 documents at each epoch
each of which having 50 words. γ was set to zero in this generation since the topics
layout were fixed by hand. Moreover, Once a topic is alive, say at epoch t, its prior
popularity m

′
is set to the average prior popularity at epoch t. Our goal was to

assess the efficacy of iDTM in recovering abrupt death and birth of topics. Finally
given the generated data, we ran the sampler described in Section 4.4 to recover
the topics and their durations. As depicted in Figure 4.2, iDTM was able to recover
the correct distribution for each topic as well as its correct lifespan.
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Figure 4.2: Illustrating simulation results. Left: topic’s death-birth over time (topics num-
bered from bottom-top). Ground truth is shown in red and recovered in blue.
Right: from top to bottom, topics’ distribution after iteration 1, a posterior sam-
ple, ground truth (numbered from left to right), and finally a set of documents
at different time epochs from the training data.

4.5.2 Timeline of the NIPS Conference

We used iDTM to analyze the proceedings of the NIPS conference from the years
1987-1999. We removed words that appear more than 5000 times or less than 100

times which results in a vocabulary size of 3379 words. The collection contains
1740 documents, where each document contains on average 950 words. Documents
were divided into 13 epochs based on the publication year. We ran iDTM to recover
the structure of topic evolution in this corpus.

Start state

Posterior sample

(b)

(c)(a)

Figure 4.3: (a) The sampler initial state and the MAP posterior sample. Each line represents
the lifespan of a topic. (b) Symmetrized-KL divergence between the unigram
distribution of words at epoch t, t− 1. (c) The number of alive topics over years
in the NIPS collections.

Figure 4.3.a shows the initial state of the sampler and the MAP posterior sample.
Each horizontal line gives the duration of a topic where the x-axis denotes time.
Figure 4.3.c shows the number of topics in the collection over time. We also draw
the symmetrized KL-divergence between the unigram distribution of words at
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epoch t and t− 1. It can be noticed that whenever there is a sharp change in the
KL value, the model responds by changing the number of topics. However, when
the KL value is stable (but not zero), the model responds by changing the word
distributions of the topics and/or the topics’ trends. This is in contrast to DTM
which can only change the last two quantities. We would like to add that the
trend of always-increasing number of topics is not an artifact of the model, but
rather a property of the NIPS conference in this lifespan: none of the topics that we
observed die completely during this time period. Moreover, as we illustrated in the
simulation study, the model can detect an abrupt death of topics.

In Figure 4.4, we show a timeline of the conference pointing out the birth of some
of the topics. We also give how their trends change over time and show a few
examples of how the top words in each topic change over time. In Figure 4.5, we
show a timeline of the Kernel topic illustrating, in some years, the top 2 (3 in case
of a tie) papers with the highest weights for this topic. Indeed the three papers in
1996 are the papers that started this topic in the NIPS community. We would like
to warn here that the papers having the highest weights of a topic need not be the
most influential papers about this topic. Perhaps this is true in the year in which
the topic was born, but for subsequent years, these papers give an overview of how
this topic is being addressed along the years, and it can provide a concise input
for summarization systems utilizing topic models as in [60]. Finally it is worth
mentioning that iDTM differs from DTM in the way they model topic trends: DTM
assumes a smooth evolution of trends, whereas iDTM assumes a non-parametric
model and as such can spawn a topic with a large initial trend as in the Kernel
topic in 1996.

4.5.2.1 Quantitative Evaluation

In Addition to the above qualitative evaluation, we compared iDTM against DTM
[27] and against HDP [116]. To compare with DTM, we followed the model in
[27], and used a diagonal covariance for the logistic-normal distribution over the
topic-mixing vector at each epoch. We linked the means of the logistic-normal
distributions at each epoch via a random walk model, and we evolved the distri-
bution of each topic as we did in iDTM. To make a fair comparison, in fitting the
variational distribution over the topic’s word distribution φ in DTM , we used a
Laplace variational approximation similar to the one we used in fitting the proposal
distribution for iDTM. Moreover, we used importance sampling with the variational
distribution as a proposal for calculating the test LL for DTM.

We divided the data into 75% for training and 25% for testing, where the training
and test documents were selected uniformly across epochs. As shown in Figure
4.6, iDTM gives better predictive LL over DTM and HDP.

4.5.2.2 Hyperparameter Sensitivity

To assess the sensitivity of iDTM to hyperparameters’ settings, we conducted a
sensitivity analysis in which we hold all hyperparameters fixed at their default
values, and vary one of them. As noted earlier, the hyperparameters are: the
variance of the base measure σ; the variance of the random walk kernel over the
natural parameters of each topic, ρ; and the parameter of the time-decaying kernel,
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Figure 4.4: Timeline for the NIPS conference. Top: birth of a number of topics and their
trends over time. Bottom: top words in some topics over time.

λ. We should note here that the order of the process ∆ can be safely set to T ,
however, to reduce computation, we can set ∆ to cover the support of the time-
decaying kernel, i.e, we can choose ∆ such that exp

−∆
λ is smaller than a threshold,

say .001. The results are shown in Figure 4.7.
When ρ is set to 1, the performance deteriorates and the topics become incoherent

over time. We noticed that in this setting the model recovers only 5 to 7 topics.
When ρ is set to .0001, the word distribution of each topic becomes almost fixed
over time. In between, the model peaks at ρ = .01. It should be clear from the
figure that an underestimate of the optimal value of ρ is less detrimental than
an overestimate, thus we recommend setting ρ in the range [.001, .1]. It should be
noted that we could add a prior over ρ and sample it every iteration as well; we
leave this for future work.

While varying λ, we fixed ∆ = T to avoid biasing the result. A large value of
λ degenerates the process toward HDP, and we noticed that when λ = 6, some
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Figure 4.5: Timeline for the Kernel topic. The figure shows the top words in the topic in
each year and the top 2 (3 in case of a tie) papers with the highest weights of
this topic in some years

Figure 4.6: Held-out LL comparison between DTM,iDTM and HDP.

topics,like ICA, weren’t born and where modeled as a continuation of other related
topics. λ depends on the application and the nature of the data. In the future, we
plan to place a discrete prior over λ and sample it as well. Finally, the best setting
for the variance of the base measure σ is from [5, 10], which results in topics with
reasonably sparse word distributions.

4.6 discussion

In this chapter we addressed the problem of modeling time-varying document
collections. We presented a topic model, iDTM, that can adapt the number of topics,
the word distributions of topics, and the topics’ trend over time. To the best of
our knowledge, this is the first model of its kind. We used the model to analyze
the NIPS conference proceedings and drew several timelines for the conference:
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(a) (b)

(c)

Figure 4.7: Sensitivity of iDTM to hyperparameters. Every panel vary one hyperparameter
while keeping all other hyperparameters fixed to their default values. (a):
Varying base measure variance σ. (b):Variance of the random walk model over
topic parameters ρ (ρ is drawn in log-scale). (c):Parameter of time-decaying
kernel λ (∆ is fixed at 13 in this specific experiments)

a timeline of topic birth and evolution as well as a timeline for each topic that
shows its trend over time and the papers with the highest weight of this topic in
its mixing vector. This information provides a bird’s eye view of the collection, and
can be used as input to a summarization system for each topic. In the future, we
plan to extend our Gibbs sampler to sample all the hyperparameters of the model.
We also plan to extend our model to evolve an HDP at various levels, for instance,
lower levels might correspond to conferences, and the highest level to time. This
framework will enable us to understand topic evolution within and across different
conferences or disciplines.
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I N F I N I T E S T O RY L I N E S F R O M S T R E A M I N G T E X T

5.1 introduction

Internet news portals provide an increasingly important service for information
dissemination. For good performance they need to provide essential capabilities to
the reader:

Clustering: Given the high frequency of news articles — in considerable excess
of one article per second even for quality English news sites — it is vital to group
similar articles together such that readers can sift through relevant information
quickly.

Timelines: Aggregation of articles should not only occur in terms of current
articles but it should also account for previous news. This matters considerably for
stories that are just about to drop off the radar so that they may be categorized
efficiently into the bigger context of related news.

Content analysis: We would like to group content at three levels of organization:
high-level topics, individual stories, and entities. For any given story, we would
like to be able to identify the most relevant topics, and also the individual entities
that distinguish this event from others which are in the same overall topic. For
example, while the topic of the story might be the death of a pop star, the identity
Michael Jackson will help distinguish this story from similar stories.

Online processing: As we continually receive news documents, our understand-
ing of the topics occurring in the event stream should improve. This is not necessarily
the case for simple clustering models — increasing the amount of data, along time,
will simply increase the number of clusters.Yet topic models are unsuitable for
direct analysis since they do not reason well at an individual event level.

The above desiderata are often served by separate algorithms which cluster,
annotate, and classify news. Such an endeavour can be costly in terms of required
editorial data and engineering support. Instead, we propose a unified statistical
model to satisfy all demands simultaneously. We show how this model can be
applied to data from a major Internet News portal.

From the view of statistics, LDA and clustering serve two rather incomparable
goals, both of which are suitable to address the above problems partially. Yet, each
of these tools in isolation is quite unsuitable to address the challenge.

Clustering is one of the first tools one would suggest to address the problem of
news aggregation. However, it is deficient in three regards: the number of clusters
is a linear function of the number of days (assuming that the expected number
of stories per day is constant), yet models such as Dirichlet Process Mixtures [16]
only allow for a logarithmic or sublinear growth in clusters. Secondly, clusters
have a strong aspect of temporal coherence. While both aspects can be addressed
by the Recurrent Chinese Restaurant Process [9], clustering falls short of a third
requirement: the model accuracy does not improve in a meaningful way as we
obtain more data — doubling the time span covered by the documents simply

43
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doubles the number of clusters. But it contributes nothing to improving our
language model.

Topic Models excel at the converse: They provide insight into the content of
documents by exploiting exchangeability rather than independence when modeling
documents [29]. This leads to highly intuitive and human understandable document
representations, yet they are not particularly well-suited to clustering and grouping
documents. For instance, they would not be capable of distinguishing between the
affairs of two different athletes, provided that they play related sports, even if the
dramatis personae were different. We address this challenge by building a hierarchical
Bayesian model which contains topics at its top level and clusters drawn from a
Recurrent Chinese Restaurant Process at its bottom level. In this sense it is related
to Pachinko Allocation [81] and the Hierarchical Dirichlet Process [116]. One of the
main differences to these models is that we mix different datatypes, i.e. distributions
and clusters. This allows us to combine the strengths of both methods: as we obtain
more documents, topics will allow us to obtain a more accurate representation
of the data stream. At the same time, clusters will provide us with an accurate
representation of related news articles.

A key aspect to estimation in graphical models is scalability, in particular when
one is concerned with news documents arriving at a rate in excess of 1 document
per second (considerably higher rates apply for blog posts). There has been previous
work on scalable inference, starting with the collapsed sampler representation for
LDA [58], efficient sampling algorithms that exploit sparsity [133], distributed
implementations [112, 17], and Sequential Monte Carlo (SMC) estimation [32].
The problem of efficient inference is exacerbated in our case since we need to
obtain an online estimate, that is, we need to be able to generate clusters essentially
on the fly as news arrives and to update topics accordingly. We address this by
designing an SMC sampler which is executed in parallel by allocating particles to
cores. The datastructure is a variant of the tree described by [32]. Our experiments
demonstrate both the scalability and accuracy of our approach when compared to
editorially curated data of a major Internet news portal.

5.2 statistical model

In a nutshell, our model emulates the process of news articles. We assume that
stories occur with an approximately even probability over time. A story is char-
acterized by a mixture of topics and the names of the key entities involved in
it. Any article discussing this story then draws its words from the topic mixture
associated with the story, the associated named entities, and any story-specific
words that are not well explained by the topic mixture. The latter modification
allows us to improve our estimates for a given story once it becomes popular.
In summary, we model news story clustering by applying a topic model to the
clusters, while simultaneously allowing for cluster generation using the Recurrent
Chinese Restaurant Process (RCRP).

Such a model has a number of advantages: estimates in topic models increase
with the amount of data available, hence twice as much data will lead to corre-
spondingly improved topics. Modeling a story by its mixture of topics ensures
that we have a plausible cluster model right from the start, even after observing
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Figure 5.1: Plate diagram of the models. Top left: Recurrent Chinese Restaurant Process
clustering; Top right: Latent Dirichlet Allocation; Bottom: Topic-Cluster model.

only one article for a new story. Third, the RCRP ensures a continuous flow of new
stories over time. Finally, a distinct named entity model ensures that we capture
the characteristic terms rapidly.

Note that while the discussion in this chapter focuses on topic models for dealing
with news articles, the applicability of the topic-cluster model is considerably more
broad. For instance, in modeling natural images it is reasonable to assume that
scenes are composed of basic topical constituents, yet it is equally reasonable
to assume that the particular arrangement of these constituents also matters to
distinguish images. There we could use the topics to represent constituents and
the cluster model to group imagery according to scene arrangement information.
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Likewise, our model has applications in bioinformatics, e.g. in modeling haplotype
distributions.

5.2.1 Recurrent Chinese Restaurant Process

A critical feature for disambiguating storylines is time. Stories come and go, and
it makes little sense to try to associate a document with a storyline that has not
been seen over a long period of time. We turn to the Recurrent Chinese Restaurant
Process [9], which generalizes the well-known Chinese Restaurant Process (CRP)
[104] to model partially exchangeable data like document streams. The RCRP
provides a nonparametric model over storyline strength, and permits sampling-
based inference over a potentially unbounded number of stories.

For concreteness, we need to introduce some notation: we denote time (epoch)
by t, documents by d, and the position of a word wdi in a document d by i. The
story associated with document d is denoted by sd (or sdt if we want to make the
dependence on the epoch t explicit). Documents are assumed to be divided into
epochs (e.g., one hour or one day); we assume exchangeability only within each
epoch. For a new document at epoch t, a probability mass proportional to γ is
reserved for generating a new storyline. Each existing storyline may be selected
with probability proportional to the sum mst +m

′
st, where mst is the number of

documents at epoch t that belong to storyline s, and m ′st is the prior weight for
storyline s at time t. Finally, we denote by βs the word distribution for story s and
we let β0 be the prior for word distributions. We compactly write

std|s1:t−1, st,1:d−1 ∼ RCRP(γ, λ,∆) (5.1)

to indicate the distribution

P(std|s1:t−1, st,1:d−1) ∝

m ′st +m−td
st existing story

γ new story
(5.2)

As in the original CRP, the count m−td
st is the number of documents in storyline s

at epoch t, not including d. The temporal aspect of the model is introduced via the
prior m

′
st, which is defined as

m
′
st =

∆∑
δ=1

e−
δ
λms,t−δ. (5.3)

This prior defines a time-decaying kernel, parametrized by ∆ (width) and λ (decay
factor). When ∆ = 0 the RCRP degenerates to a set of independent Chinese
Restaurant Processes at each epoch; when ∆ = T and λ = ∞ we obtain a global
CRP that ignores time. In between, the values of these two parameters affect the
expected life span of a given component, such that the lifespan of each storyline
follows a power law distribution [9]. The graphical model is given on the top left
in Figure 5.1.

We note that dividing documents into epochs allows for the cluster strength at
time t to be efficiently computed, in terms of the components (m,m ′) in (5.2). Alter-
natively, one could define a continuous, time-decaying kernel over the time stamps
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of the documents. When processing document d at time t ′ however, computing
any story’s strength would now require summation over all earlier documents
associated with that story, which is non-scalable. In the news domain, taking epochs
to be one day long means that the recency of a given story decays only at epoch
boundaries, and is captured by m ′. A finer epoch resolution and a wider ∆ can be
used without affecting computational efficiency – it is easy to derive an iterative
update m ′s,t+1 = exp−1/λ(mst +m

′
st) − exp−(∆+1)/λms,t−(∆+1), which has constant

runtime w.r.t. ∆.

5.2.2 Topic Models

The second component of the topic-cluster model is given by Latent Dirichlet
Allocation [29], as described in the top right of Figure 5.1. Rather than assuming that
documents belong to clusters, we assume that there exists a topic distribution θd for
document d and that each word wdi is drawn from the distribution φt associated
with topic zdi. Here φ0 denotes the Dirichlet prior over word distributions. Finally,
θd is drawn from a Dirichlet distribution with mean π and precision α.

1. For all topics t draw

a) word distribution φk from word prior φ0

2. For each document d draw

a) topic distribution θd from Dirichlet prior (π,α)
b) For each position (d, i) in d draw

i. topic zdi from topic distribution θd
ii. word wdi from word distribution φzdi

The key difference to the basic clustering model is that our estimate will improve as
we receive more data. When using a nonparametric version, i.e. a Dirichlet process,
we would end up adding more topics as more data arrives while simultaneously
refining the estimates of current topics.

5.2.3 Time-Dependent Topic-Cluster Model

We now proceed to defining the contribution of the present chapter — a time-
dependent topic-cluster model. While some of the design choices (e.g. the fact that
we treat named entities differently) are specific to news, the generic model is more
broadly applicable.

We now combine clustering and topic models into our proposed storylines model
by imbuing each storyline with a Dirichlet distribution over topic strength vectors
with parameters (π,α). For each article in a storyline the topic proportions θd are
drawn from this Dirichlet distribution.

Words are drawn either from the storyline or one of the topics. This can be
modeled by adding an element K+ 1 to the topic proportions θd. If the latent
topic indicator zn 6 K, then the word is drawn from the topic φzn ; otherwise it is
drawn from a distribution linked to the storyline βs. This story-specific distribution
captures the burstiness of the characteristic words in each story.
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Topic models usually focus on individual words, but news stories often center
around specific people and locations For this reason, we extract named entities edi
from text in a preprocessing step, and model their generation directly. Note that
we make no effort to resolve names “Barack Obama” and “President Obama” to
a single underlying semantic entity, but we do treat these expressions as single
tokens in a vocabulary over names.

1. For each topic k ∈ 1 . . . K, draw a distribution over words φk ∼ Dir(φ0)
2. For each document d ∈ {1, · · · ,Dt}:

a) Draw the storyline indicator
std|s1:t−1, st,1:d−1 ∼ RCRP(γ, λ,∆)

b) If std is a new storyline,
i. Draw a distribution over words
βsnew |G0 ∼ Dir(β0)

ii. Draw a distribution over named entities Ωsnew |G0 ∼ Dir(Ω0)
iii. Draw a Dirichlet distribution over topic proportions ısnew |G0 ∼

Dir(π0)
c) Draw the topic proportions θtd|std ∼ Dir(αıstd)
d) Draw the words

wtd|std ∼ LDA
(
θstd , {φ1, · · · ,φK,βstd}

)
e) Draw the named entities etd|std ∼ MΩstd

where LDA
(
θstd , {φ1, · · · ,φK,βstd}

)
indicates a probability distribution over word

vectors in the form of a Latent Dirichlet Allocation model [29] with topic propor-
tions θstd and topics {φ1, · · · ,φK,βstd}. The hyperparameters β0,φ0,Ω0,π0 are all
symmetric Dirichlet.
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t time

d document

(t,d) document d in epoch t

(d, i) position i in document d (word or entity)

std story associated with document d

st aggregate cluster variables at time t

edi entity at position i in document d

zdi topic at position i in document d

wdi word at position i in document d

θsd topic distribution for document d

Ωs Entity distribution for story s

Ω0 prior for entity distributions

α Strength of Dirichlet prior over topics

π0 Mean of Dirichlet prior over topics

πs Mean of Dirichlet prior for story s

βs word distribution for story specific “topic”

for story s

β0 Dirichlet prior for story-word distribution

φk word distributions for topic k.

φ0 Dirichlet prior for topic-word distribution.

5.3 online scalable inference

Our goal is to compute online the posterior distribution P(z1:T , s1:T |x1:T), where
xt, zt, st are shorthands for all of the documents at epoch t ( xtd = 〈wtd, etd〉), the
topic indicators at epoch t and story indicators at epoch t. Markov Chain Monte
Carlo (MCMC) methods which are widely used to compute this posterior are
inherently batch methods and do not scale well to the amount of data we consider.
Furthermore they are unsuitable for streaming data.

5.3.1 Sequential Monte Carlo

Instead, we apply a sequential Monte Carlo (SMC) method known as particle
filters [46]. Particle filters approximate the posterior distribution over the latent
variables up until document t,d− 1, i.e. P(z1:t,d−1, s1:t,d−1|x1:t,d−1), where (1 : t,d)
is a shorthand for all documents up to document d at time t. When a new docu-
ment td arrives, the posterior is updated yielding P(z1:td, s1:td|x1:td). The posterior
approximation is maintained as a set of weighted particles that each represent a
hypothesis about the hidden variables; the weight of each particle represents how
well the hypothesis maintained by the particle explains the data.

The structure is described in Algorithms 1 and 2. The algorithm processes one
document at a time in the order of arrival. This should not be confused with the
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Algorithm 1 A Particle Filter Algorithm

Initialize ωf1 to 1
F for all f ∈ {1, . . . F}

for each document d with time stamp t do
for f ∈ {1, . . . F} do

Sample sftd, zftd using MCMC
ωf ← ωfP(xtd|zftd, sftd, x1:t,d−1)

end for
Normalize particle weights
if ‖ωt‖−22 < threshold then

resample particles
for f ∈ {1, . . . F} do

MCMC pass over 10 random past documents
end for

end if
end for

Algorithm 2 MCMC over document td

q(s) = P(s|s−tdt−∆:t)P(etd|s, rest)
for iter = 0 to MAXITER do

for each word wtdi do
Sample ztdi using (5.4)

end for
if iter = 1 then

Sample std using (5.5)
else

Sample s∗ using q(s)

r =
P(ztd|s∗,rest)P(wK+1td |s∗,rest)
P(ztd|std,rest)P(wK+1td |std,rest)

Accept std ← s∗ with probability min(r, 1)
end if

end for
Return ztd, std

time stamp of the document. For example, we can chose the epoch length to be a full
day but still process documents inside the same day as they arrive (although they all
have the same timestamp). The main ingredient for designing a particle filter is the
proposal distribution Q(ztd, std|z1:t,d−1, s1:t,d−1, x1:td). Usually this proposal is taken
to be the prior distribution P(ztd, std|z1:t,d−1, s1:t,d−1) since computing the posterior is
hard. We take Q to be the posterior P(ztd, std|z1:t,d−1, s1:t,d−1, x1:td), which minimizes
the variance of the resulting particle weights [46]. Unfortunately computing this
posterior for a single document is intractable, thus we use MCMC and run a
Markov chain over (ztd, std) whose equilibrium distribution is the sought-after
posterior. The exact sampling equations af s and ztd are given below. This idea
was inspired by the work of [68] who used a restricted Gibbs scan over a set of
coupled variables to define a proposal distribution, where the proposed value
of the variables is taken to be the last sample. Jain and Neal used this idea in
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the context of an MCMC sampler, here we use it in the context of a sequential
importance sampler (i.e. SMC).

Sampling topic indicators: For the topic of word i in document d and epoch t, we
sample from

P(ztdi = k|wtdi = w, std = s, rest) =
C−i
tdk +α

C−i
sk+π0

C−i
s. +π0(K+1)

C−i
td. +α

C−i
kw +φ0

C−i
k. +φ0W

(5.4)

where rest denotes all other hidden variables, C−i
tdk refers to the count of topic k

and document d in epoch t, not including the currently sampled index i; C−i
sk is the

count of topic k with story s, while C−i
kw is the count of word w with topic k (which

indexes the story if k = K+ 1); traditional dot notation is used to indicate sums over
indices (e.g. C−i

td. =
∑
kC

−i
tdk). Note that this is just the standard sampling equation

for LDA except that the prior over the document’s topic vector θ is replaced by it’s
story mean topic vector.

Sampling story indicators: The sampling equation for the storyline std decomposes
as follows:

P(std|s−tdt−∆:t, ztd, etd, wK+1
td , rest) ∝ P(std|s−tdt−∆:t)︸ ︷︷ ︸

Prior

×P(ztd|std, rest)P(etd|std, rest)P(wK+1td |std, rest)︸ ︷︷ ︸
Emission

(5.5)

where the prior follows from the RCRP (5.2), wK+1td are the set of words in document
d sampled from the story specific language model βstd , and the emission terms for
wK+1td , etd are simple ratios of partition functions. For example, the emission term
for entities, P(etd|std = s, rest) is given by:

Γ
(∑E

e=1 [C
−td
se +Ω0]

)
Γ
(∑E

e=1 [Ctd,e +C−td
se +Ω0]

) E∏
e=1

Γ
(
Ctd,e +C

−td
se +Ω0

)
Γ
(
C−td
se +Ω0

) (5.6)

Since we integrated out θ, the emission term over ztd does not have a closed form
solution and is computed using the chain rule as follows:

P(ztd|std = s, rest) =
ntd∏
i=1

P(ztdi|std = s, z−td,(n>i)
td , rest) (5.7)

where the superscript −td, (n > i) means excluding all words in document td
after, and including, position i. Terms in the product are computed using (5.4).

We alternate between sampling (5.4) and (5.5) for 20 iterations. Unfortunately,
even then the chain is too slow for online inference, because of (5.7) which scales
linearly with the number of words in the document. In addition we need to compute
this term for every active story. To solve this we use a proposal distribution

q(s) = P(std|s−tdt−∆:t)P(etd|std, rest)

whose computation scales linearly with the number of entities in the document.
We then sample s∗ from this proposal and compute the acceptance ratio r which is
simply

r =
P(ztd|s∗, rest)P(wK+1td |s∗, rest)
P(ztd|std, rest)P(wK+1td |std, rest)

.
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Thus we need only to compute (5.7) twice per MCMC iteration. Another attractive
property of the proposal distribution q(s) is that the proposal is constant and does
not depend on ztd. As made explicit in Algorithm 2 we precompute it once for the
entire MCMC sweep. Finally, the unnormalized importance weight for particle f
after processing document td, can be shown to be equal to:

ωf ← ωfP(xtd|zftd, sftd, x1:t,d−1), (5.8)

which has the intuitive explanation that the weight for particle f is updated by
multiplying the marginal probability of the new observation xt, which we compute
from the last 10 samples of the MCMC sweep over a given document. Finally, if
the effective number of particles ‖ωt‖−22 falls below a threshold we stochastically
replicate each particle based on its normalized weight. To encourage diversity
in those replicated particles, we select a small number of documents (10 in our
implementation) from the recent 1000 documents, and do a single MCMC sweep
over them, and then finally reset the weight of each particle to uniform.

We note that an alternative approach to conducting the particle filter algorithm
would sequentially order std followed by ztd. Specifically, we would use q(s) defined
above as the proposal distribution over std, and then sample ztd sequentially using
Eq (5.4) conditioned on the sampled value of std. However, this approach requires
a huge number of particles to capture the uncertainty introduced by sampling
std before actually seeing the document, since ztd and std are tightly coupled.
Moreover, our approach results in less variance over the posterior of (ztd, std) and
thus requires fewer particles, as we will demonstrate empirically.

5.3.2 Speeding up the Sampler

While the sampler specified by (5.4) and (5.5) and the proposal distribution q(s)
are efficient, they scale linearly with the number of topics and stories. [133] noted
that samplers that follow (5.4) can be made more efficient by taking advantage of
the sparsity structure of the word-topic and document-topic counts: each word
is assigned to only a few topics and each document (story) addresses only a
few topics. We leverage this insight here and present an extended, efficient data
structure in Section 5.3.3 that is suitable for particle filtering.

We first note that (5.4) follows the standard form of a collapsed Gibbs sampler for
LDA, albeit with a story-specific prior over θtd. We make the approximation that
the document’s story-specific prior is constant while we sample the document, i.e.
the counts C−i

sk are constants. This turns the problem into the same form addressed
in [133]. The mass of the sampler in (5.4) can be broken down into three parts:
prior mass, document-topic mass and word-topic mass. The first is dense and
constant (due to our approximation), while the last two masses are sparse. The
document-topic mass tracks the non-zero terms in C−i

tdk, and the word-topic mass
tracks the non-zero terms in C−i

kw.
The sum of each of these masses can be computed once at the beginning of

the sampler. The document-topic mass can be updated in O(1) after each word
[133], while the word-topic mass is very sparse and can be computed for each
word in nearly constant time. Finally the prior mass is only re-computed when
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the document’s story changes. Thus the cost of sampling a given word is almost
constant rather than O(k) during the execution of Algorithm 1.

Unfortunately, the same idea can not be applied to sampling s, as each of the
components in (5.5) depends on multiple terms (see for example (5.6)). Their prod-
ucts do not fold into separate masses as in (5.4). Still, we note that the entity-story
counts are sparse (C−td

se = 0), thus most of the terms in the product component
(e ∈ E) of (5.6) reduce to the form Γ(Ctd,e +Ω0)/Γ(Ω0). Hence we simply compute
this form once for all stories with C−td

se = 0; for the few stories having C−td
se > 0,

we explicitly compute the product component. We also use the same idea for
computing P(wK+1td |std, rest). With these choices, the entire MCMC sweep for a
given document takes around 50-100ms when using MAXITER = 15 and K = 100 as
opposed to 200-300ms for a naive implementation.

Hyperparameters:
The hyperparameters for topic, word and entity distributionss, φ0,Ω0 and β0

are optimized as described in [122] every 200 documents. The topic-prior π0,1:K+1

is modeled as asymmetric Dirichlet prior and is also optimized as in [122] every
200 documents. For the RCRP, the hyperparameter γt is epoch-specific with a
Gamma(1,1) prior; we sample its value after every batch of 20 documents [49]. The
kernel parameters are set to ∆ = 3 and λ = 0.5 — results were robust across a
range of settings. Finally we set α = 1

5.3.3 Implementation and Storage

Filter threads update particles

Root

1

games: 1
officials: 3
league: 4

2

3

(empty) league: 5

minister: 1

games: 0
season: 2

Initial tree
(ready for threads)

Root

1

games: 1
officials: 3
league: 4

2

3

(empty) league: 5
games: 3

minister: 7

games: 0
season: 2

0 = get(1,’games’) set(2,’games’,3)

set(3,’minister’,7)

Resampling copies particles

Root

games: 1
officials: 3
league: 4

2,1

3

(empty) league: 5
games: 3

minister: 7

games: 0
season: 2

copy(2,1)

Prune unused branches

Root

games: 1
officials: 3
league: 4

2,1

3

(empty) league: 5
games: 3

minister: 7

games: 0
season: 2

Collapse long branches

Root

games: 1
officials: 3
league: 4

2,1

3

league: 5
games: 3

minister: 7

2,1games: 3
season: 2
league: 5

maintain_prune()maintain_collapse()

Create new leaves

Root

games: 1
officials: 3
league: 4

3

minister: 7

games: 3
season: 2
league: 5

branch(1)

branch(2)

1 2

(empty) (empty)

New initial tree
(ready for threads)

Root

games: 1
officials: 3
league: 4

3

minister: 7

games: 3
season: 2
league: 5

1 2

(empty) (empty)

Figure 5.2: Inheritance tree operations in the context of our SMC algorithm. Numbers
within a vertex represent associated particles. Each vertex’s hash map is repre-
sented by a table, connected by a dotted line.
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Implementing our parallel SMC algorithm for large datasets poses runtime and
memory challenges. While our algorithm mostly works on single particles by
spawning one computational thread per particle filter, it also has to copy entire
particles during particle re-sampling (done via a master thread). Hence we require
a thread-safe data structure that supports fast updates of individual particles’ data,
and fast copying of particles.

It should be obvious that the naive implementation, where each particle has
its own set of arrays for storage, is very inefficient when it comes to particle
resampling — in the worst case, we would have to duplicate all particle arrays
element-by-element. Worse, our memory requirements would grow linearly in
the number of particles, making large data streams impractical even for modest
numbers of particles.

inheritance trees Instead, we employ an idea from Canini et al. [32], in
which particles maintain a memory-efficient representation called an “inheritance
tree". In this representation, each particle is associated with a tree vertex, which
stores the actual data. The key idea is that child vertices inherit their ancestors’
data, so they need only store changes relative to their ancestors, in the form of
a dictionary or hash map. To save memory, data elements with value 0 are not
explictly represented unless necessary (e.g. when a parent has nonzero value). New
vertices are created only when writing data, and only under two circumstances:
first, when the particle to be changed shares a vertex with other particles, and
second, when the particle to be changed is associated with an interior vertex. In
both cases, a new leaf vertex is created for the particle in question.

This representation dramatically reduces memory usage for large numbers of
particles, and also makes particle replication a constant runtime operation. The
tradeoff however, is that data retrieval becomes linear time in the depth of the tree,
although writing data remains (amortized) constant time. This disadvantage can
be mitigated via tree maintenance operations, in which we prune branches without
particles and then collapse unnecessary long branches — refer to Figure 5.2 for an
example. With tree maintenance, data retrieval becomes a practically constant time
operation.

thread safety Thus far, we have only described Canini et al.’s version of the
inheritance tree, which is not thread-safe. To see why, consider what happens when
particle 1 is associated with the parent vertex of particle 2. If a thread writes to
particle 1 while another is reading from particle 2, it may happen that the second
thread needs to read from the parent vertex. This creates a race condition, which is
unacceptable for our parallel algorithm.

To ensure thread safety, we augment the inheritance tree by requiring every
particle to have its own leaf in the tree. This makes particle writes thread-safe,
because no particle is ever an ancestor of another, and writes only go to the particle
itself, never to ancestors. Furthermore, every particle is associated with only one
computational thread, so there will never be simultaneous writes to the same
particle. On the other hand, data reads, even to ancestors, are inherently thread-
safe and present no issue. To maintain this requirement, observe that particle-vertex
associations can only change during particle resampling, which is handled by a a
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master thread. Immediately after resampling, we branch off a new leaf for every
particle at an interior node. Once this is done, the individual filter threads may be
run safely in parallel.

In summary, the inheritance tree has four operations, detailed in Figure 5.2:

1. branch(f): creates a new leaf for particle f.
2. get(f,i), set(f,i,value): retrieve/write data elements i for particle f.
3. copy(f,g): replicate particle f to g.
4. maintain(): prune particle-less branches and collapse unnecessary long

branches.

Root

1

India: [(I-P tension,3),(Tax bills,1)]
Pakistan: [(I-P tension,2),(Tax bills,1)]
Congress: [(I-P tension,1),(Tax bills,1)]

2

3

(empty) Congress: [(I-P tension,0),(Tax bills,2)]

Bush: [(I-P tension,1),(Tax bills,2)]
India: [(Tax bills,0)]

India: [(I-P tension,2)]
US: [(I-P tension,1),[Tax bills,1)]

Extended Inheritance Tree

[(I-P tension,2),(Tax bills,1)] = get_list(1,’India’)

set_entry(3,’India’,’Tax bills’,0)

Note: “I-P tension” is short for “India-Pakistan tension”

Figure 5.3: Operations on an extended inheritance tree, which stores sets of objects in parti-
cles, shown as lists in tables connected to particle-numbered tree nodes. Our
algorithm requires particles to store some data as sets of objects instead of
arrays — in this example, for every named entity, e.g. “Congress", we need to
store a set of (story,association-count) pairs, e.g. (“Tax bills",2). The extended
inheritance tree allows (a) the particles to be replicated in constant-time, and (b)
the object sets to be retrieved in amortized linear time. Notice that every particle
is associated with a leaf, which ensures thread safety during write operations.
Internal vertices store entries common to leaf vertices.

extended inheritance trees Our thread-safe inheritance tree supports
most of our data storage needs. However, parts of our algorithm require storage of
sets of objects, rather than integer values. For example, our story sampling equation
(5.5) needs the set of stories associated with each named entity, as well as the
number of times each story-to-entity association occurs.

To solve this problem, we extend the basic inheritance tree by making its hash
maps store other hash maps as values. These second-level hash maps then store
objects as key-value pairs; note that individual objects can be shared with parent
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vertices — see Figure 5.3. Using the story sampling equation (5.5) as an example,
the first-level hash map uses named entities as keys, and the second-level hash
map uses stories as keys and association counts as values (Figure 5.3 shows an
example with stories taken from Figure 5.4).

Observe that the count for a particular story-entity association can be retrieved
or updated in amortized constant time. Retrieving all associations for a given entity
is usually linear in the number of associations. Finally note that the list associated
with each key (NE or word) is not sorted as in [133] as this will prevent sharing
across particles. Nevertheless, our implementation balances storage and execution
time.

5.4 experiments

We examine our model on three English news samples of varying sizes extracted
from Yahoo! News over a two-month period. Details of the three news samples are
listed in Table 5.1. We use the named entity recognizer in [138], and we remove
common stop-words and tokens which are neither verbs, nor nouns, nor adjectives.
We divide each of the samples into a set of 12-hour epochs (corresponding to
AM and PM time of the day) according to the article publication date and time.
For all experiments, we use 8-particles running on an 8-core machine, and unless
otherwise stated, we set MAXITER=15.

5.4.1 Structured Browsing

In Figure 5.4 we present a qualitative illustration of the utility of our model for
structure browsing. The storylines include the UEFA soccer championships, a
tax bill under consideration in the United States, and tension between India and
Pakistan. Our model identifies connections between these storylines and relevant
high-level topics: the UEFA story relates to a more general topic about sports; both
the tax bill and the India-Pakistan stories relate to the politics topics, but only the
latter story relates to the topic about civil unrest. Note that each storyline contains a
plot of strength over time; the UEFA storyline is strongly multimodal, peaking near
the dates of matches. This demonstrates the importance of a flexible nonparametric
model for time, rather than using a unimodal distribution.

End-users can take advantage of the organization obtained by our model by
browsing the collection of high-level topics and then descend to specific stories
indexed under each topic — like opening a physical newspaper and going directly
to the sports page. However, our model provides a number of other affordances
for structured browsing which were not possible under previous approaches.
Figure 5.5 shows two examples. First, users can request similar stories by topic:
starting from a story about India-Pakistan tension, the system returns a story about
the Middle-east conflict, which also features topics such as diplomacy, politics, and
unrest. In addition, users can focus their query with specific keywords or entities:
the right side of Figure 5.5 shows the result of querying for similar stories but
requiring the keyword nuclear to have high salience in the term probability vector
of any story returned by the query. Similarly, users might require a specific entity —
for example, accepting only stories that are a topical match and include the entity
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Figure 5.4: Some example storylines and topics extracted by our system. For each storyline
we list the top words in the left column, and the top named entities at the right;
the plot at the bottom shows the storyline strength over time. For topics we
show the top words. The lines between storylines and topics indicate that at
least 10% of terms in a storyline are generated from the linked topic.
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Nuclear programs
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Figure 5.5: An example of structure browsing of documents related to the India-Pakistan
tensions (see text for details).

Vajpayee. This combination of topic-level analysis with surface-level matching on
terms or entities is a unique contribution of our model, and was not possible with
previous technology.
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5.4.2 Evaluating Clustering Accuracy

We evaluate the clustering accuracy of our model over the Yahoo! news datasets.
Each dataset contains 2525 editorially judged “must-link” (45%) and “cannot-link”
(55%) article pairs. Must-link pairs refer to articles in the same story, whereas
cannot-link pairs are not related.

For the sake of evaluating clustering, we compare against a variant of a strong 1-
NN (single-link clustering) baseline [40]. This simple baseline is the best performing
system on TDT2004 task and was shown to be competitive with Bayesian models
[137]. This method finds the closest 1-NN for an incoming document among all
documents seen thus far. If the distance to this 1-NN is above a threshold, the
document starts a new story, otherwise it is linked to its 1-NN. Since this method
examines all previously seen documents, it is not scalable to large-datasets. In [103],
the authors showed that using locality sensitive hashing (LSH), one can restrict the
subset of documents examined with little effect of the final accuracy. Here, we use
a similar idea, but we even allow the baseline to be fit offline. First, we compute the
similarities between articles via LSH [62, 56], then construct a pairwise similarity
graph on which a single-link clustering algorithm is applied to form larger clusters.
The single-link algorithm is stopped when no two clusters to be merged have
similarity score larger than a threshold tuned on a separate validation set (our
algorithm has no access to this validation set). In the remainder of this paper, we
simply refer to this baseline as LSHC.

From Table 5.1, we see that our online, single-pass method is competitive with
the off-line and tuned baseline on all the samples and that the difference in perfor-
mance is larger for small sample sizes. We believe this happens as our model can
isolate story-specific words and entities from background topics and thus can link
documents in the same story even when there are few documents in each story.

5.4.3 Hyperparameter Sensitivity

We conduct five experiments to study the effect of various model hyperparameters
and tuning parameters. First, we study the effect of the number of topics. Table 5.2
shows how performance changes with the number of topics K. It is evident that
K = 50− 100 is sufficient. Moreover, since we optimize π0, the effect of the number
of topics is negligible [122] For the rest of the experiments in this section, we use
sample-1 with K = 100.

Second, we study the number of Gibbs sampling iterations used to process a
single document, MAXITER. In Figure 5.6, we show how the time to process each
document grows with the number of processed documents, for different values of
MAXITER. As expected, doubling MAXITER increases the time needed to process a
document, however performance only increases marginally.

Third, we study the effectiveness of optimizing the hyperparameters φ0,β0
and Ω0. In this experiment, we turn off hyperparameter optimization altogether,
set φ0 = .01 (which is a common value in topic models), and vary β0 and Ω0.
The results are shown in Table 5.3. Moreover, when we enable hyperparameter
optimization, we obtain (φ0,β0,Ω0) = (0.0204, 0.0038, 0.0025) with accuracy 0.8289,
which demonstrates its effectiveness.
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Figure 5.6: Effect of MAXITER, sample-1, K = 100

Fourth, we tested the contribution of each feature of our model (Table 5.4).
As evident, each aspect of the model improves performance. We note here that
removing time not only makes performance suboptimal, but also causes stories to
persist throughout the corpus, eventually increasing running time to an astounding
2 seconds per document.

Finally, we show the effect of the number of particles in Table 5.5. This validates
our earlier hypothesis that the restricted Gibbs scan over (ztd, std) results in a
posterior with small variance, thus only a few particles are sufficient to get good
performance.

5.5 related work

Our approach is non-parametric over stories, allowing the number of stories to
be determined by the data. In similar fashion [137] describe an online clustering
approach using the Dirichlet Process. This work equates storylines with clusters,
and does not model high-level topics. Also, non-parametric clustering has been
previously combined with topic models, with the cluster defining a distribution
over topics [136, 121]. We differ from these approaches in several respects: we
incorporate temporal information and named entities, and we permit both the
storylines and topics to emit words.

Recent work on topic models has focused on improving scalability; we focus on
sampling-based methods, which are most relevant to our approach. Our approach
is most influenced by the particle filter of [32], but we differ in that the high-order
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Table 5.1: Details of Yahoo! News dataset and corresponding clustering accuracies of the
baseline (LSHC) and our method (Story), K = 100.

Sample Sample Num Num Story LSHC

No. size Words Entities Acc. Acc.

1 111,732 19,218 12,475 0.8289 0.738

2 274,969 29,604 21,797 0.8388 0.791

3 547,057 40,576 32,637 0.8395 0.800

Table 5.2: Clustering accuracies vs. number of topics.

sample-No. K=50 K=100 K=200 K=300

1 0.8261 0.8289 0.8186 0.8122

2 0.8293 0.8388 0.8344 0.8301

3 0.8401 0.8395 0.8373 0.8275

Table 5.3: The effect of hyperparameters on sample-1, with K = 100,φ0 = .01, and no
hyperparameter optimization.

β0 = .1 β0 = .01 β0 = .001

Ω0 = .1 0.7196 0.7140 0.7057

Ω0 = .01 0.7770 0.7936 0.7845

Ω0 = .001 0.8178 0.8209 0.8313

Table 5.4: Component Contribution, sample-1, K = 100.

Removed Time Names Story Topics

Feature entites words (equiv. RCRP)

Accuracy 0.8225 .6937 0.8114 0.7321

Table 5.5: Number of particles, sample-1, K = 100.

#Particles 4 8 16 32 50

Accuracy 0.8101 08289 0.8299 0.8308 0.8358

dependencies of our model require special handling, as well as an adaptation of
the sparse sampler of [133].

5.6 discussion

We present a scalable probabilistic model for extracting storylines in news and
blogs. The key aspects of our model are (1) a principled distinction between topics
and storylines, (2) a non-parametric model of storyline strength over time, and (3)
an online efficient inference algorithm over a non-trivial dynamic non-parametric
model. We contribute a very efficient data structure for fast-parallel sampling and
demonstrated the efficacy of our approach on hundreds of thousands of articles
from a major news portal.
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6
S T R U C T U R E D C O R R E S P O N D E N C E M O D E L I N G O F
S C I E N T I F I C F I G U R E S

6.1 introduction

The rapid accumulation of literatures on a wide array of biological phenomena
in diverse model systems and with rich experimental approaches has generated
a vast body of online information that must be properly managed, circulated,
processed and curated in a systematic and easily browsable and summarizable way.
Among such information, of particular interest due to its rich and concentrated
information content, but presenting unsolved technical challenges for information
processing and retrieval due to its complex structures and heterogeneous semantics,
are the diverse types of figures present in almost all scholarly articles. Although
there exist a number of successful text-based data mining systems for processing
on-line biological literatures, the unavailability of a reliable, scalable, and accurate
figure processing systems still prevents information from biological figures, which
often comprise the most crucial and informative part of the message conveyed by
an scholarly article, from being fully explored in an automatic, systematic, and
high-throughout way.

Compared to figures in other scientific disciplines, biological figures are quite
a stand-alone source of information that summarizes the findings of the research
being reported in the articles. A random sampling of such figures in the publicly
available PubMed Central database would reveal that in some, if not most of the
cases, a biological figure can provide as much information as a normal abstract.
This high-throughput, information-rich, but highly complicated knowledge source
calls for automated systems that would help biologists to find their information
needs quickly and satisfactorily. These systems should provide biologists with a
structured way of browsing the otherwise unstructured knowledge source in a
way that would inspire them to ask questions that they never thought of before, or
reach a piece of information that they would have never considered pertinent to
start with.

The problem of automated knowledge extraction from biological literature figures
is reminiscent of the actively studied field of multimedia information management
and retrieval. Several approaches have been proposed to model associated text and
images for various tasks like annotation [100], retrieval [70, 131] and visualization
[22]. However, the structurally-annotated biological figures pose a set of new chal-
lenges to mainstream multimedia information management systems that can be
summarized as follows:

• Structured Annotation: as shown in Figure 6.1, biological figures are divided
into a set of sub-figures called panels. This hierarchical organization results
in a local and global annotation scheme in which portions of the caption
are associated with a given panel via the panel pointer (like "(a)" in Figure
6.1), while other portions of the caption are shared across all the panels and

63
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provide contextual information. We call the former scoped caption, while we
call the later global caption. How can this annotation scheme be modeled
effectively?

• Free-Form Text: unlike most associated text-image datasets, the text annota-
tion associated with each figure is a free-form text as opposed to high-quality,
specific terms that are highly pertinent to the information content of the figure.
How can the relevant words in the caption be discovered automatically?

• Multimodal Annotation: although text is the main source of modality asso-
ciated with biological figures, the figure’s caption contains other entities like
protein names, GO-term locations and other gene products. How can these
entities be extracted and modeled effectively?

We address the problem of modeling structurally-annotated biological figures by
extending a successful probabilistic graphical model known as the correspondence
latent Dirichlet allocation [22] (cLDA) model, which was successfully employed for
modeling annotated images. We present the struct-cLDA (structured, correspon-
dence LDA) model that addresses the aforementioned challenges in biological
literature figures. The rest of this chapter is organized as follows. In Section 6.2,
we give an overview of our approach and basic preprocessing of the data. Then in
Section 6.3, we detail our model in a series of simples steps. Section 6.4 outlines
a collapsed Gibbs sampling algorithm for inference and learning. In Section 6.5
we provide a comprehensive evaluation of our approach using qualitative and
quantitative measures. Finally in Section 6, we provide a simple transfer learning
mechanism from non-visual data and illustrate its utility. The model presented in
this chapter has been integrated into the publicly available Structured Literature
Image Finder (SLIF) system , first described in [94]. Our system has recently partic-
ipated in the Elsevier Grand Challenge on Knowledge Enhancement in the Life
Science, which is an international contest created to improve the way scientific
information is communicated and used, and was selected as one of the 4 finalists
among the 70 participating teams 1.

6.2 figure pre-processing

In this section we briefly give an overall picture of the SLIF system (Structured
Literature Image Finder). SLIF consists of a pipeline for extracting structured
information from papers and a web application for accessing that information.
The SLIF pipeline is broken into three main sections: caption processing, image
processing (which are refereed to as figure preprocessing in Figure 6.1) and topic
modeling, as illustrated as Figure 6.1.

The pipeline begins by finding all figure-captions pairs. Each caption is then
processed to identify biological entities (e.g., names of proteins)[75]. The second
step in caption processing is to identify pointers from the caption that refer to a
specific panel in the figure , and the caption is broken into "scopes" so that terms
can be linked to specific parts of the figure [39]. The image processing section begins
by splitting each figure into its constituent panels, followed by describing each

1 http://www.elseviergrandchallenge.com/finalists.html
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Figure 6.1: Overview of our approach, please refer to Section 2 for more details. (Best
viewed in color)

panel using a set of biologically relevant image features.In our implementation, we
used a set of high-quality 26 image features that span morphological and texture
features [93].

The first two steps result in panel-segmented, structurally and multi-modally
annotated figures as shown in the bottom-left of Figure 6.1 (Discovered protein
entities are underlined and highlighted in red). The last step in the pipeline, which
is the main focus in this chapter, is to discover a set of latent themes that are
present in the collection of papers. These themes are called topics and serve as
the basis for visualization and semantic representation. Each topic consists of a
triplet of distributions over words, image features and proteins. Each figure in
turn is represented as a distribution over these topics, and this distribution reflects
the themes addressed in the figure. Moreover, each panel in the figure is also
represented as a distribution over these topics as shown in Figure 6.1; this feature
is useful in capturing the variability of the topics addressed in figures with a wide
coverage and allows retrieval at either the panel or figure level. This representation
serves as the basis for various tasks like image-based retrieval, text-based retrieval
and multimodal-based retrieval. Moreover, these discovered topics provide an
overview of the information content of the collection, and structurally guide its
exploration.

6.3 structured correspondence topic models

In this section we introduce the struct-cLDA model (structured correspondence
LDA model) that addresses all the challenges introduced by structurally-annotated
biological figures. As the name implies, struct-cLDA builds on top of and extends
cLDA which was designed for modeling associated text and image data. We begin
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(a) cLDA: Correspondence LDA

(b)struct-cLDA: structured cLDA

Figure 6.2: The cLDA and struct-cLDA Models. Shaded circles represent observed variables
and their colors denote modality (blue for words and red for protein entities),
unshaded circles represent hidden variables, diamonds represent model param-
eters, and plates represent replications. Some super/subscripts are removed for
clarity — see text for explanation.

by introducing the cLDA; then in a series of steps we show how we extended
the cLDA to address the new challenges introduced by the structurally-annotated
biological figures. In Figure 6.2, we depict side-by-size the graphical representations
of the original cLDA model and our struct-cLDA model, to make explicit the new
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innovations. Following conventions in the machine learning literature, we use bold
face letters to denote vectors and normal face letters for scalars. For example, wp is
the vector containing all words that appear in panel p. That is, wp = (wp1 , · · · ,wpNp),
where Np is the number of words in panel p.

6.3.1 The Correspondence LDA

The cLDA model is a generative model for annotated data – data with multiple
types where the instance of one type (such as a caption) serves as a description
of the other type (such as an image). cLDA employs a semantic entity known as
the topic to drive the generation of the annotated data in question. Each topic is
represented by two content-specific distributions: a topic-specific word distribution,
and a topic-specific distribution over image features. For example, imagine a
topic on microarray analysis, the word distribution may have high frequency on
words like genes, arrays, normalization, etc., and the image-feature distribution
may be biased toward red and green colors. Whereas for a topic on Drosophila
development, the word distribution should now have high frequency on even-
skipped, embryo, wing, etc., and the image-feature distribution would now bias
toward certain texture and color features typical in microscopic images of the
developing Drosophila embryos. The topic-specific word distribution is modeled
as a multinomial distribution over words, denoted by Multi(β); and image features
are real-valued and thus follows a Gaussian distribution, denoted by N(µ,σ). As
mentioned in Section 2, in our study, each panel is described using M = 26 image
features, thus each topic has 26 Gaussian distributions: one for each image feature.

The generative process of a figure f under cLDA is given as follows:

1. Draw θf ∼ Dir(α1)

2. For every image feature gm

a) Draw topic zm ∼ Multi(θf)

b) Draw gm|zm = k ∼ N(µk,m,σ2k,m)

3. For every word wn in caption

a) Draw topic yn ∼ Unif(z1, ..., zm)

b) Draw wn|yn = k ∼ Multi(βk)

In step 1 each figure f samples a topic-mixing vector, θf from a Dirichlet prior.
The component θf,k of this vector defines how likely topic k will appear in figure f.
For each image features in the figure, gm, a topic indicator,zm , is sampled from
θf, and then the image feature itself is sampled from a topic-specific image-feature
distribution specified by this indicator. The correspondence property of cLDA is
manifested in the way the words in the caption of the figure are generated in step
3. Since each word should, in principle, describes a portion of the image, the topic
indicator of each word, y, should correspond to one of those topic indicators used
in generating the image features. Specifically, the topic indicator of the n-th word,
yn, is sampled uniformly from those indicators associated with the image features
of the figure as in step 3.(a). Finally, the word, wn, is sampled from the selected
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topic’s distribution over words. This generative model explicitly define a likelihood
function of the observed data (i.e. annotated figures), thus it offers a principled
way of fitting the model parameters such as α1, µ and ff, based on a maximum
likelihood principled [22]. Given the model and the data, one can predict the topical
content of the figure by computing the posterior estimation of the topic vector θf
associated with the figure. Since the image feature and word distributions of each
topic are highly correlated, the correspondence between image features and words
in the caption is enforced.

6.3.2 Structured Correspondence LDA

In this section we detail the struct-cLDA model that addressed the new challenges
introduced by biological figures. Figure 6.2 depicts a graphical representation of
the model. In a struct-cLDA, each topic, k, now has a triplet representation: a
multinomial distribution of words βk, a multinomial distribution over protein
entities Ωk, and a set of M normal distributions, one for each image feature. The
full generative scheme of a multi-panel biological figure, f under this model is
outlined below:

1. Draw θf ∼ Dir(α1)

2. Draw λf ∼ Beta(a,b)

3. For every panel p in Pf:

a) For every image feature gpm in panel p:

i. Draw topic zpm ∼ Multi(θf)

ii. Draw g
p
m|z

p
m = k ∼ N(µk,m,σ2k,m)

b) For every word wpn in scoped caption of panel p

i. Draw topic ypn ∼ Unif(zp1 , ..., zpm)

ii. Draw w
p
n|y

p
n = k ∼ Multi(βk)

4. For every word wfn in global caption:

a) Draw coin xn ∼ Bernoulli(λf)

b) If(xn == 1)

i. Draw topic yfn ∼ Unif(z1, · · · , zPf)

ii. Draw wfn|y
f
n = k ∼ Multi(βk)

c) If(xn == 0)

i. Draw wfn ∼ Multi(β0)

5. For every protein entity rl in global caption:

a) Draw topic vl ∼ Unif(z1, · · · , zPf)

b) Draw rl|vl = k ∼ Multi(Ωk)

In the following subsections we break the above generative steps into parts each
of which addresses a specific challenge introduced by biological figures.
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6.3.2.1 Modeling Scoped Caption

In this subsection, we describe how we approached the problem of modeling
scoped and global captions. As shown in Figure 6.1, the input to the topic modeling
module is a partially-segmented figure where some of the words in the caption are
associated directly with a given panel, say p, and the remaining words serve as a
global caption which is shared across all the Pf panels in figure f, and provides
contextual information. There are two obvious approaches to deal with this problem
that would enable the use of the flat cLDA model described in Section 6.3.1:

• Scoped-only annotation: in this scheme the input to the cLDA model is the
panels with their associated scoped captions. Clearly this results in an under-
representation problem as contextual information at the figure level is not
included.

• Caption replication: in this scheme the whole figure caption is replicated
with each panel, and this constitutes the input to the cLDA model. Clearly
this results in an over-representation problem and a bias in the discovered
topics towards over-modeling figures with large number of panels due to the
replication effect.

In addition to the above problems, resorting to a panel-level abstraction is rather
suboptimal because of the lack of modeling the interaction between panels at the
figure level which precludes processing retrieval queries at the whole figure level.

We introduce scoping to model this phenomenon. As shown in Figure 6.2.(b), the
topic-mixing vector θf of the figure is shared across all the panels (step 1). However,
each panel’s set of words, wp = (wp1 ,wp2 · · · ,wpNp), correspond only to this panel’s
image features. Moreover, words in the figure’s global caption, wf, correspond
to all the image features in all the panels of this figure. This suggests a two-layer
cLDA generative process:the scoped caption is generated in 3.(b) which with 3.(a)
represents exactly the same generative process of cLDA over image features of a
panel and words in the scoped caption of this panel. In the next subsection we will
detail the generation of words in the global caption.

6.3.2.2 Modeling Global Caption

As we noted earlier, the global caption is shared across all panels, and represents
contextual information or a description that is shared across all panels. This sug-
gests that words in the global caption of figure f can be generated by corresponding
them to the collective set of topic indicators used in generating the image features
in all the panels – this is in fact equivalent to a flat cLDA model between words
in the global caption and the image features in all the panels. If we took this
approach, we found that corpus-level stopwords in the form of non content-bearing
words(like: bar, cell, red and green) appear at the top of all the discovered topics
due to their high frequencies. This problem is well known in the topic modeling
community and is solved by pre-processing the collection and removing these stop-
words using a fixed vocabulary list. However, we would like our model to be able to
discover these corpus-level stopwords (which we will refer to as background words)
automatically rather than manually specifying them for each corpus. In fact, inherent
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in the modeling assumption of cLDA is the fact that annotations are specific to the
figure and of high quality: that is, every word in the caption describes a part in the
image. However, captions in biological figures are free-form text and therefore this
assumption is violated. To solve this problem, we use factoring which is similar
to background subtraction in [35]. Specifically, we introduce a background topic,
β0, that is used to generate the corpus-level stopwords. This process is equivalent
to factoring these stopwords from content-bearing topics — we call this process
factoring.

The generative process for the global caption now proceeds as follows. With each
figure, f, we associate a coin whose bias is given by λf (step 2). This bias models
the ratio of content-bearing to background words in the figure, and is sampled
individually for each figure from a beta distribution. As shown in step 4, to generate
a word in the global caption, wfn, we first flip the coin and name the outcome, xn.
If xn is head, we pick a topic indicator for this word,yfn,uniformly from the topic
indicators used to generate the image features of the panels in this Figure (step
4.(b)). Then, we generate the word from this topic’s distribution over words, βyfn .
On the other hand, if xn is tail, we sample this word from the background topic β0
(step 4.(c)).2

6.3.2.3 Modeling Multimodal Annotation

The final step to reach our goal is to model multimodal annotations. For simplicity,
we restrict our attention here to protein annotations, although other forms of
gene products like GO-terms could be added similarly. For simplicity, we only
allow protein annotations to appear in the global caption although it is very
straightforward to model scoped multimodal annotation in the same way we
modeled scoped word captions. Generating a protein entity is very similar to
generating a word in the global caption. To generate a protein entity, rl, in step
5.(a) we pick a topic indicator for this protein entity,vl,uniformly from the topic
indicators used to generate the image features of the panels in this Figure. Then,
we generate the protein entity from this topic’s distribution over protein entities
Ωvl .

It should be noted that while protein entities are words, modeling them separately
from other caption words has several advantages. First, protein mentions have high
variance, i.e., the same protein entity can be referred to in the caption using many
textual forms. Mapping these forms, also known as protein mentions, to protein
entities is a standard process known as normalization [78]; our implementation
followed our earlier work in [75]. Second, protein entities are rare words and
have different frequency spectrums than normal caption words, thus modeling
them separately has the advantage of discovering the relationship between words
and protein entities despite this frequency mismatch: when protein entities are
modeled as normal words, they do not always appear at the top of each topic’s
distribution over words due to their low frequencies compared to other caption
words’ frequencies, and thus can be missed. Moreover, endowing each topic with
two distributions over words and protein entities results in more interpretable

2 Beta Distribution is the conjugate prior to the Bernoulli distribution which makes posterior inference
simpler.
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topics (see Section 6.5.1) and enables more advanced query types (see Section 6.5.3
and 6.5.4).

6.3.2.4 A Note about Hyperparmaters

All multinomial distributions in the models in Figure 6.2 are endowed with a
dirichlet prior to avoid overfitting as discussed in [22]. Perhaps the only part that
warrants a description is our choice for the prior over the mean and variance
of each image feature’s distribution. Each image feature is modeled as a normal
distribution whose mean and variance are topic-specific. The standard practice is
to embellish the parameters of a normal distribution with an inverse Wishart prior,
however, here we took a simpler approach. We place a non-informative prior over
the values of the mean parameters of these image features, that is all values are
equally likely, that is µk,m ∼ Unif. Our intuition stems from the fact that different
features have different ranges. However, we place an inverse prior over the variance
to penalize large variances: σ2k,m ∝ 1/σ2k,m (see [53] chapter 3.2). The reason for this
choice stems from the noise introduced during calculation of the image features.
Without this prior, a maximum likelihood (ML) estimation of σ2 in a given topic
is not robust to outliers. This is because the model is free to increase the variance
arbitrarily in order to accommodate the data assigned to this topic. However, with
our choice of this form of the prior, it can be shown (see [53] chapter 3.2) that
the predictive (posterior) distribution over future image features assigned to this
topic follows a Student-t distribution, which is known to be a robust version of the
normal distribution that would have resulted if we had used an MLE estimate of
the variance parameter instead.

6.4 a collapsed gibbs sampling algorithm

The main inference tasks can be summarized as follows:

• Learning: Given a collection of figures, find a point estimate for the model
parameters (i.e. each topic’s distribution over words, protein entities and
image features).

• Inference: Given a new figure, and a point estimate of the model parameters,
find the latent representation of this figure over topics (θf).

Under a hierarchical Bayesian setting, both of these tasks can be handled via
posterior inference. Given the generative process and hyperparmaters choices,
outlined in section 6.3.2 we seek to compute:

P(f1:F,β1:K,µ1:K,σ21:K,Ω1:K,β0|α1:4,a,b, w, g, r),

where f is shorthand for the hidden variables (θf, λf, y, z, x, v) in figure f. The
above posterior probability can be easily written down from the generative model
in section 6.3.2, however, we omit it for the lack for space. The above posterior is
intractable,and we approximate it via a collapsed Gibbs sampling procedure [58]
by integrating out, i.e. collapsing, the following hidden variables: the topic-mixing
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vectors of each figure, θf, the coin bias λf for each figure, as well as the topic
distributions over all modalities (βk,Ωk,µk,m,σ2k,m, and β0).

Therefore, the state of the sampler at each iteration contains only the following
topic indicators for all figures: topic indicators for words in the global caption
(yf), topic indicators for words in the scoped captions for all panels (y1, · · · , yPf),
topic indicators for all image features (z1, · · · , zPf), and topic indicators for all
protein entities in the global caption (v). We alternate sampling each of these
variables conditioned on its Markov blanket until convergence. At convergence,
we can calculate expected values for all the parameters that were integrated out,
especially for the topic distributions over all modalities, and for each figure’s latent
representation (mixing-vector). To ease the calculation of the Gibbs sampling update
equations we keep a set of sufficient statistics (SS) in the form of co-occurrence
counts and sum matrices of the form C

EQ
eq to denote the number of times instance

e appeared with instance q. For example, CWKwk gives the number of times word w
was sampled from topic k. Moreover, we follow the standard practice of using the
subscript −i to denote the same quantity it is added to without the contribution of
item i. For example,CWKwk,−i is the same as CWKwk without the contribution of word
wi. For simplicity, we might drop dependencies on the panel or figure whenever
the meaning is implicit form the context.

Sampling a topic (ypn) for a given panel word (wpn):

P(ypn = k|wpn = w, yp
−n, wp

−n, zp) ∝
CKPkp∑
k ′ C

KP
k ′p

CWKwk,−n +α2∑
w ′ C

WK
w ′k,−n +Wα2

(6.1)

Sampling a topic (vl) for a given protein entity (rl):

P(vl = k|rl = r, v−l, r−l, z) ∝
CKFkf∑
k ′ C

KF
k ′f

CRKrk,−l +α4∑
r ′ C

RK
r ′k,−l + Rα4

(6.2)

The above two local distributions have the same form which consists of two
terms. The first term measures how likely it is to assign topic k to this word (protein
entity) based on the topic indicators of the corresponding image features (at the
panel level in Equation (6.1), and at the figure level in Equation (6.2) — i.e. the
set of all image features’ indicators in all panels). The second term measures the
probability of generating this word (protein entity) from topic k’s distribution over
words (protein entities) .

Sampling a coin and a topic (xn,yfn) for a given global caption word (wfn):
For a given word in the shared global caption, it is easier to sample (xn,yfn) as a

block — a similar approach was used in [35].

P(xn = 0|x−n,wfn = w, w−n) ∝
CXF0f,−n + b∑

x ′ C
XF
x ′f,−n + a+ b

CW0w,−n +α3∑
w ′ C

W0
w ′,−n +Wα3

(6.3)

Where, CW0w is the word count matrix for the background topic, and CXFxf counts,
in figure f, how many words were assigned to the background topic (x = 0) and
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how many words were assigned to a panel’s image feature and were thus sampled
from a latent topic (x = 1). Similarly,

P(xn = 1, zfn = k|x−n,wfn = w, w−n, z) ∝ (6.4)

CKFkf∑
k ′ C

KF
k ′f

CXF1f,−n + a∑
x ′ C

XF
x ′f,−n + a+ b

CWKwk,−n +α2∑
w ′ C

WK
w ′k,−n +Wα2

The above two equations can be normalized to form a K+ 1 multinomial distribu-
tion — K information-bearing topics when xn = 1, in addition to the background
topic when x = 0.

Sampling a topic (zpm) for the mth image feature (gpm) in panel p:
Perhaps this is the most involved equation as all other topic indicators in the

figure/panels are influenced by the topic indicators of the image features. For
simplicity, the (| · · · ) in the equation below is a shorthand for all these topic
indicators which are: topic indicators of words in the global caption (yf), topic
indicators of words in the scoped caption of panel p (yp), topic indicators of all
other image features in all panels (z1, · · · , zPf), and topic indicators for protein
entities in the global caption (v).

P(zpm = k|gpm = g, · · · ) ∝ (6.5)
CKFkf,−m +α1∑
k ′ C

KF
k ′f,−m +Kα1

t(g; µ̂k,m, σ̂2k,m,CMKmk,−m − 1)×

Unif(yf|zpm = k)×Unif(v|zpm = k)×Unif(yp|zpm = k)

where t(g;µ,σ2,n) is a student t-distribution with mean µ, variance σ2, and n
degree of freedom (see [53] chapter 3.2). µ̂k,m is the sample mean of the values of
image feature m that are assigned to topic k, and σ̂2k,m is defined similarly. CMKmk is
the number of times image feature m was sampled from topic k. The first two parts
in Equation (6.5) are similar to the previous sampling equations: they measure the
comparability of joining a topic given the observed feature and the topics assigned
to neighboring image features. However, since every other annotation in the figure
is generated based on the topic indicator of the image feature, three extra terms
are needed. These terms measure how likely is the current assignment of the topic
indicators of other annotations — panel words, figure words, and protein entities
— given the new assignment to this image feature’s topic indicator. Notice that
this uniform probabilities are exactly the same probabilities that appeared in the
generative process, and also the same factors that appeared as the first fraction in
Eqs. (6.4,6.2,6.1) respectively — however after updating the corresponding C matrix
with the new value of zpm under consideration. For example, Unif(yp) is computed
as follows — please recall that yp is a vector of topic indicators for words in panel
p, that is yp = (yp1 ,yp2 , · · · ,ypNp):

Unif(yp|zpm = k) =

Np∏
n=1

CKP
y
p
np,−m + 1(ypn = k)∑

k ′ C
KP
k ′p,−m + 1(ypn = k)
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Intuitively, for each word n in panel p, the above fraction measures how likely is
its topic ypn, if we sample the image feature under consideration from topic k. The 1
is the indicator function which is 1 if and only if the expression inside it is evaluated
to be true. Therefore, adding this function to the sufficient statistics CKP has the
effect of updating CKP with the current topic assignment under consideration
(k) for image feature m. This fraction is exactly the same as the first fraction in
Equation (6.1). Unif(yf|z

p
m = k) and Unif(v|zpm = k) are defined similarly with

relation to the first fraction in Equation (6.4) and Equation (6.2) respectively.
Eqs. (6.1-6.5) are iterated until convergence, then expected values for the collapsed

variables can be obtained via simple normalization operations over their respective
count matrices using posterior samples. Moreover, the expected topics’ distributions
over each modality can be calculated similarly.

For instance, the figure’s latent representation (θf) and the figure’s foreground/back-
ground bias (λf) can be calculated as follows3:

E[θf,k] =
CKFkf +α1∑
k
′ CKFk ′f +Kα1

(6.6)

E[λf] =
CXF1f + a

CXF1f +CXF0f + a+ b

Moreover, the topics’ distributions over each modality can be calculated as
follows4:

E[βw,k] =
CWKwk +α2∑
w
′ CWKw ′k +Wα2

(6.7)

E[Ωr,k] =
CRKrk +α4∑
r
′ CRKr ′k + Rα4

The mean (µ̂k,m) and variance (σ̂2k,m) for topic k’s distribution over image feature
m are calculated as the empirical mean and variance of the values of image features
of type m that are assigned to this topic, i.e., the image features whose topic
indicators = k.

At test time, to obtain the latent representation of a test figure, we hold the topic
count matrices fixed, iterate Eqs. (6.1-6.5) until convergence, and then calculate
the expected latent representation of each figure from posterior samples after
convergence.
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EBA Method Cell structure Tumors

Figure 6.3: Illustrative three topics from a 20-topics run of the struct-cLDA model. For each
topic we show: the top words with their probabilities, the top protein entities
with their probabilities, and the top ranked panels under this topic. The topics
were labeled manually.

6.5 experimental results

We evaluated our models on a set of articles that were downloaded from the
publicly available PubMed5 database. We applied the preprocessing steps described
on section 6.2 to extract the figures, segment the captions and extract protein entities.
The resulting dataset that we used for the experiments in this chapter consists of
5556 panels divided into 750 figures. Each figure has on average 8 panels, however
some figures have up to 25 panels. The number of word types is 2698, and the
number of protein entity types discovered is 227. The average number of words
per caption is 150 words. We divided this dataset into 85% for training and 15% for
testing. For all the experiments reported below, we set all the α hyperparmaters
to .01 (except α1 = .1), and (a,b) to 3 and 1 respectively. We found that the final
results are not largely sensitive to these assignments. We ran Gibbs sampling to
learn the topics until the in-sample likelihood converges which took a few hundred
iterations for all models.

For comparison, we used cLDA and LSI as baselines. To apply cLDA to this
dataset, we duplicated the whole figure caption and its associated protein entities
with each panel to obtain a flat representation of the structured figures. Therefore,
we will refer to this model as cLDA-d. For LSI, we followed the same strategy and
then concatenated the word vector, image features and protein entities to form

3 Technically, the expressions in Equation (6.6) are due to only one sample from the posterior after
convergence. The standard practice is to collect multiple samples from the posterior and average the
result of Equation (6.6) over these samples. We omitted this technicality for simplicity.

4 As we noted above, the expressions in Equation (6.7) are due to only one sample from the posterior
after convergence. The standard practice is to collect multiple samples from the posterior and choose
the topics’ distributions associated with the sample with the highest marginal data loglikelihood (as
averaging the topic distributions across samples is not well-defined). We also omitted this technicality
for simplicity.

5 http://www.pubmedcentral.nih.gov
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a single vector. Moreover, to understand the contribution of each feature in our
model (scoping vs factoring), we removed factoring from the struct-cLDA model
to obtain a model that only employs scoping, and we call the resulting model
struct-cLDA−f.

In the following subsections we provide a quantitative as well as a qualitative
evaluation of our model and compare it against the LSI and cLDA baselines over
various visualization and retrieval tasks. Clearly, our goal from these comparisons
is just to show that a straightforward application of simpler flat models can not
address our problem adequately. In this chapter, we extended cLDA to cope with
the structure of the figures under consideration, however, adapting LSI, and other
related techniques, to cope with this structure is left as an open problem. Moreover,
our choice of comparing against LSI for annotation and retrievals tasks stems
from the fact that in these tasks our own proposed model serves merely as a
dimensionality reduction technique.

6.5.1 Visualization and Structured Browsing

In this section, we examine a few topics discovered by the struct-cLDA model
when applied to the aforementioned dataset. In Figure 6.3, we depict three topics
from a run of the struct-cLDA with K=20. For each topic we display its top words,
protein entities, and the top 9 panels under this topic (i.e. the panels with the
highest component for this topic in their latent representation θf). It is interesting
to note that all these topics are biologically meaningful. For instance, the first
topic represents the theme related to the EBA (The enucleation before activation)
method which is a conventional method of producing an embryo and comprises
enucleating oocytes, transferring donor cells into oocytes, fusing the oocytes and
the donor cells, and activating the fused reconstruction cells. Clearly the occurrence
of the word "oocytes" in this topic is relevant. Moreover, protein "VP26" has been
shown in various studies to interact with protein "actin" during these procedures.
The second topics is about various cell structure types. For example,"stromule" is
a microscopic structure found in plant cells and extends from the surface of all
"plastid" types which are major organelles found in plants and algae. The third
topic is about tumor-related experiments. Examining its top words and proteins
we found "cbp" and "hbl" which are known tumor suppressors. Moreover, "actin"
has been shown to be an important protein for tumor developments due to its rule
in cell division. Also, "Cx43" is a genetic sequence that codes for a protein that
has tumor suppressing effect, moreover, protein "Caspases-3" is a member of the
Caspases family which plays essential roles in apoptosis (programmed cell death).
Interestingly, "UNC" appears in this topic due to the wide usage of the University
of North Carolina tumor dataset.

These topics enable biologists to have an overview of the themes that are available
in the collection, and provide them with a structured way of browsing the otherwise
unstructured collection. For instance, the user might choose to expand the tumor
topic and retrieve figures in which this topic is highly represented.Moreover, given
a figure f, as shown in Figure 6.4, the system can visualize its topic decomposition,
i.e. what are the topics represented in this figure along with its weights, either at
the whole figure level, θf, or at the panel level.
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Inhibition3 of the interphase18 progression1 following surgical removal of the spindle1 midzone1 structures. An NRK1 cell was cut3 at anaphase18 to form daughter1

cells with ( top ) and without ( bottom ) the spindle1 midzone1 structures ( cutting3 site10 indicated by the dotted line , a ). Subsequent1 time10 lapse1 recording
indicates that both daughter1 cells formed18 nuclear envelop ( arrows , d). However, only the daughter1 cell with spindle1 midzone1 ( top1 ) showed cytokinesis1

like contractions3 ( c , arrows ). The daughter1 cell with spindle1 midzone1 entered9 the subsequent1 mitosis10 11 hours after microsurgery1 (e, arrow), whereas the
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Figure 6.4: Illustrating topic decomposition and structured browsing. A biological figure
tagged with its topic decomposition at different granularities: each panel (top-
right), caption words (second row), and the whole figure (bottom-left). In
tagging the caption, light grey colors are used for words that were removed
during pre-processing stages, and dark grey colors are used for background
words. Some topics are illustrated at the bottom row. (best viewed in color)

The figure in Figure 6.4 is composed of 6 panels, and thus our model gives
a topic decomposition of each panel, a topic decomposition of the whole figure
(bottom-left), and a topic assignment for each word in the caption. This, in fact, is a
key feature of our model as it breaks the figure into its themes and allows biologist
to explore each of these themes separately. For instance, this figure addresses
several phases of cell division, under a controlled condition, that starts from the
Anaphase stage (panels (a-c)) and progresses towards post mitosis stages (panels
(d-f)). Indeed, our model was able to discern these stages correctly via the latent
representation it assigns to each panel. Please note that this figure represents a case
in which the scoped-caption module was not able to segment the caption due to
the unorthodox referencing style used in this figure, however, the model was able
to produce a reasonable latent representation. In the bottom-right of Figure 6.4,
we show three important topics addressed in this figures. It is quite interesting
that Topic 13, which corresponds to various biological processes important to cell
division, was associated with this figure mainly due to its image content, not its
word content. Moreover, while the figure does not mention any protein entities, the
associated protein entities with each topic play key roles during all stages of cell
division addressed in the figure: for instance, dna ligase is an important protein for
DNA replication. Therefore, the biologist might decide to retrieve similar figures
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(based on the latent representation of the whole figure) that address cell division
under the same conditions, retrieve figures that address a given stage per see
(based on the latent representation of some panels), or further explore a given
topic by retrieving its representing figures as we discussed earlier. These features
glue the figures in the whole collection via a web of interactions enabled by the
similarity between the latent representation of each figure at multiple granularities.
Moreover, this unified latent representation enables comparing figures with largely
different number of panels.

Table 6.1: The effect of the background topic

Factored Model Non-factored Model: struct-cLDA−f

Background Topic Normal Topic 1 Normal Topic 2

cells 0.0559 red 0.0458 cells 0.09

cell 0.0289 green 0.0385 bar 0.0435

bar 0.0265 cells 0.0351 cell 0.0386

gfp 0.0243 infected 0.0346 antibody 0.0318

scale 0.024 actin 0.0244 protein 0.0282

red 0.0197 transfected 0.0222 staining 0.0202

green 0.0188 images 0.0218 visualized 0.0171

images 0.0188 membrane 0.0167 expressed 0.0141

arrows 0.0157 fluorescent 0.0167 section 0.0129

shown 0.0151 fixed 0.0163 tissue 0.0129
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Figure 6.5: Understating model’s features contributions: (a) Convergence (b) Time per
iteration and (c) Perplexity

.

Finally, in Table 6.1 we examine the effect of introducing the factored background
topic on the quality of the discovered topics. Table 6.1 shows the background topic
from the struct-cLDA model which clearly consists of corpus-level stopwords that
carry no information. Examining a few topics discovered using a non-factored
model (i.e. by removing the factoring component from struct-cLDA), it is clear that
many of these stopwords (underlined in Table 6.1) found its way to the top list in
seemingly information-bearing topics, and thus obscure their clarity and clutter
the representation.
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6.5.2 Timing Analysis and Convergence

Figure 6.5.b compares the time, in seconds, consumed by each model in performing
a full Gibbs iteration over the training set. All the models were coded in Matlab. It is
clear from this figure that replicating the caption with each panel in order to be able
to use a standard cLDA model increases the running time considerably. In addition
both of the two models converges after roughly the same number of iteration (a few
hundred for this dataset as depicted for the struct-cLDA model in Figure 6.5.a). This
result shows that while struct-LDA is seemingly more sophisticated than its ancestor
cLDA, this sophistication does not incur a large added penalty on the running
time, on the contrary it runs even faster, and also enhances the performance (as
shown qualitatively in Table 6.1 and quantitatively using perplexity analysis in
Figure 6.5.c to be detailed in Section 6.5.3.1) and enables sophisticated retrieval
tasks (as will be shown using the struct-cLDA model in Sections 6.5.3 and 6.5.4 ).

6.5.3 Annotation Task

Since the main goal of the models presented in this chapter is discovering the
correspondence between mixed modalities, therefore, a good model once observed
parts of the figure, should be able to annotate the figure with the missing modalities.
In this section, we examine the ability of the struct-cLDA model to predict the
textual caption of the figure based on observing the image features, and predict
protein entity annotations of a given figure based on observing its image features
and textual caption.

6.5.3.1 Caption Perplexity

For the first task, we computed the perplexity of the figures’s caption based on
observing its image features. Perplexity, which is used in the language modeling
community, is equivalent algebraically to the inverse of the geometric mean per-
word likelihood, that is:

Perplexity = exp
[
−
∑
f logp(wf, {wp}|{gp})∑
f

(
Nf +

∑Pf
p=1Np

) ]
The above conditional probability can be computed by running the Gibbs sam-

pling algorithm of Section 4 by iterating Equation (6.5) only until convergence
(with no words or protein entities used). A number of posterior samples can then
be generated from this posterior distribution by resuming the Gibbs Sampling on
Eqs. (6.1,6.3 and 6.4) while holding the image features topic indicators fixed. These
samples are then used to compute the average likelihood of the caption conditioned
on the image features. Figure 6.5.(c) compares caption perplexity using cLDA-d,
struct-cLDA, and struct-cLDA−f. This experiment shows that modeling the figure
as a whole via the struct-cLDA−f model is better than duplicating the caption
across panels, as this duplicating results in over representation and less accurate
predictions. Moreover, factoring out background words, as in the struct-cLDA
model, further improves the performance because, as was shown in Table 6.1, it
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Rank at 100% recall Average Rank

Best Rank

Figure 6.6: Evaluating protein annotation quality based on observing text and image
features using various measures. Figures show comparison between the struct-
cLDA model and LSI.( Lower better)

.

excludes non content-bearing words from being associated with image features
and thus misleading the predictions.

6.5.3.2 Protein Annotation

To annotate a test figure based on observing its image features and caption words,
we first project the figure to the latent topic space using the observed parts of the
figure by first iterating Eqs. (6.1,6.3,6.4,6.5 until convergence, and then collecting
posterior samples for θf. Moreover, from the training phase, we can compute each
topic’s distribution over the protein vocabulary (Ωk). Finally, the probability that
figure f is annotated with protein r, can be computed as follows:

P(r|f) =
∑
k

P(k|f)P(r|k) =
∑
k

θkfΩrk (6.8)

It is interesting to note that the above measure is equivalent to a dot product in the
latent topic space between the figure representation θf and the latent representation
of the protein entity r — as we can consider Ωrk as the projection of the protein
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entity over the kth topical dimension. Protein entities can then be ranked based
on this measure. We compare the ranking produced by the struct-cLDA with that
produced by LSI. Applying LSI to the training dataset results in a representation
of each term (image feature, protein entity, and text word) over the LSI semantic
space. These terms are then used to project a new figure in the testset onto this
space using "folding" as discussed in [43]. Afterwards cosine similarity is used as
the distance measure for ranking. We evaluated each ranking using three measures:
the highest (low in value) rank, average rank and lowest rank (Rank at 100% recall)
of the actual annotations as it appear in the recovered rankings. Figure 6.6 shows
the result across various number of topics (factors for LSI).

Dna (9) Localization (20)

BrdU (3) Cortex (10)

Figure 6.7: Illustrating figure retrieval performance. Each column depicts the result for
a give query written on its top with the number of true positives written in
parenthesis (the size of the test set is 131 figures). The figure shows comparisons
between struct-cLDA and LSI. The horizontal lines are the average precision for
each model. (Better viewed in color)

.

6.5.4 Multi-Modal Figure Retrieval

Perhaps the most challenging task in multimedia retrieval is to retrieve a set of
images based on a multimodal query. Given a query composed of a set of text
words and protein entities, q = (w1, · · · ,wn, r1, · · · , rm), we can use the query
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langauge model [105] as a measure to evaluate the likelihood of the query give a
test document as follows:

P(q|f) =
∏
w∈q

P(w|f)
∏
r∈q

P(r|f) (6.9)

=
∏
w∈q

[∑
k

θkfβwk

]∏
r∈q

[∑
k

θkfΩrk

]
As we noted in Equation (6.8), p(w|f) is a simple dot product operation between

the latent representations of the word w and the latent representation of figure f
in the induced topical space. The above measure can then be used to rank figures
in the testset for evaluation. We compared the performance of struct-cLDA to
LSI. Each of the two models has access to only the image features of figures in
the testset. Query computations in LSI are handled using cosine similarity after
folding both the test figures and the query onto the LSI space [43]. Figure 6.7
shows the precision-recall curves over 4 queries. For a given query, an image is
considered relevant if the query words appear in its caption (which is hidden from
both LSI and struct-cLDA, and is only used for evaluation). As shown in Figure 6.7,
struct-cLDA compares favorably to LSI across a range of factors (we only show the
result for K = 15 for space limitations but the same behavior was observed as we
vary the number of factors).

6.6 transfer learning from partial figures

In this section, we explore the utility of using non-visual data to enhance the
performance of our model. We restrict our attention on textual date accompanied
with protein entities. This data can be in the form of biological abstracts tagged
with protein entities, or other biological figures that lack visual data (which we
refer to as partial figures). Partial figures occur frequently in our pipeline due to
the absence of the resolution of the figure which is necessary for normalization of
the image features. We focus here on this case, although the former case can be
handled accordingly. A partial figure f comprises a set of global words and protein
entities can be generated as follows:

1. Draw θf ∼ Dir(α1)

2. Draw λf ∼ Beta(a,b)

3. For every word wfn in global caption:

a) Draw coin xn ∼ Bernoulli(λf)

b) If(xn == 1)

i. Draw topic yfn ∼ Mult(θf)

ii. Draw wfn|y
f
n = k ∼ Multi(βk)

c) If(xn == 0)

i. Draw wfn ∼ Multi(β0)



6.6 transfer learning from partial figures 83

4. For every protein entity rl in global caption:

a) Draw topic vl ∼ Unif(yf1, · · · ,yfNf)

b) Draw rl|vl = k ∼ Multi(Ωk)
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Figure 6.8: Illustrating the utility of using partial figures as a function of its ratio in the
training set. The task is protein annotation based on (a) Figure’s image and text
and (b) Image content of the figure only

.

In essence, the captions words are moved to the highest level in the correspon-
dence hierarchy, and a factored, flat cLDA model is used that generates protein
entities from the topic indicators used in generating the figure’s words. As we
made explicit in the above generative process, the partial figures share the same set
of topic parameters over words and proteins (β1:K, Ω1:K). Extending the collapsed
Gibbs sampling algorithm from Section 6.4 for this case is quite straightforward
and omitted.

To balance the partial and full figures, we first extract the word and protein
vocabulary using only the full figures, then project the partial figures over this vo-
cabulary, and finally keep partial figures that retain at least one protein annotation
and train the model over this larger set. To evaluate the utility of partial figures,
we used the protein annotation task of Section 6.5.3. In this task, a test figure is
annotated based on its text and image features. As shown in Figure 6.8.(a), the
performance increases as the ratio of partial figures in the training set increases
. This behavior should be expected because the annotation is based on both the
text and image features of the test figure. However, interestingly, we found that
the annotation quality also increases if we annotate the test figures after observing
only its image features as shown in Figure 6.8.(b). This shows that, during training,
the model was able to transfer text-protein correlations form the partial figures to
image-protein correlations via the triplet topic representations (a mechanism which
is illustrated in Figure .
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Figure 6.9: Illustration the transfer learning mechanism from partial figures.
.

6.7 discussion

In this chapter we addressed the problem of modeling structurally and multi-
modally annotated biological figures for visualization and retrieval tasks. We
presented the structured correspondence LDA model that addresses all the chal-
lenges posed by these figures. We illustrated the usefulness of our models using
various visualization and retrieval tasks. Recent extensions to LDA and cLDA bear
resemblances to some features in the models presented in this paper, such as [99]
in its ability to model entities, and [18, 69] in their abilities to model many-many
annotations. However, our goal in this paper was mainly focused on modeling bio-
logical figures with an eye towards building a model that can be useful in various
domains where modeling uncertain hierarchical, scoped associations is required. In
the future, we plan to extend our model to incorporate other sources of hierarchal
correspondences like modeling the association between figures and the text of their
containing papers.
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7.1 introduction

With the avalanche of user-generated articles over the web, it is quite important to
develop models that can recognize the ideological bias behind a given document,
summarize where this bias is manifested on a topical level, and provide the user
with alternate views that would help him/her staying informed about different
perspectives. In this chapter, we follow the notion of ideology as defines by Van Dijk
in [45] as “a set of general abstract beliefs commonly shared by a group of people.”
In other words, an ideology is a set of ideas that directs one’s goals, expectations,
and actions. For instance, freedom of choice is a general aim that directs the actions
of “liberals”, whereas conservation of values is the parallel for “conservatives”.

We can attribute the lexical variations of the word content of a document to three
factors:

• Writer Ideological Belief. A liberal writer might use words like freedom
and choice regardless of the topical content of the document. These words
define the abstract notion of belief held by the writer and its frequency in the
document largely depends on the writer’s style.

• Topical Content. This constitutes the main source of the lexical variations in
a given document. For instance, a document about abortion is more likely to
have facts related to abortion, health, marriage and relationships.

• Topic-Ideology Interaction. When a liberal thinker writes about abortion,
his/her abstract beliefs are materialized into a set of concrete opinions and
stances, therefore, we might find words like: pro-choice and feminism. On
the contrary, a conservative writer might stress issues like pro-life, God and
faith.

Given a collection of ideologically-labeled documents, our goal is to develop
a computer model that factors the document collection into a representation that
reflects the aforementioned three sources of lexical variations. This representation
can then be used for:

• Visualization. By visualizing the abstract notion of belief in each ideology,
and the way each ideology approaches and views mainstream topics, the
user can view and contrast each ideology side-by-side and build the right
mental landscape that acts as the basis for his/her future decision making.

• Classification or Ideology Identification. Given a document, we would like
to tell the user from which side it was written, and explain the ideological
bias in the document at a topical level.

85
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• Staying Informed: Getting alternative views1. Given a document written
from perspective A, we would like the model to provide the user with other
documents that represent alternative views about the same topic addressed
in the original document.

In this chapter, we approach this problem using Topic Models [29]. We introduce
a factored topic model that we call multi-view Latent Dirichlet Allocation or mview-
LDA for short. Our model views the word content of each document as the result
of the interaction between the document’s idealogical and topical dimensions. The
rest of this chapter is organized as follows. First, in Section 7.2, we review related
work, and then present our model in Section 7.3. Then in Section 7.4, we detail a
collapsed Gibbs sampling algorithm for posterior inference. Sections 7.5 and 7.6
give details about the dataset used in the evaluation and illustrate the capabilities of
our model using both qualitative and quantitative measures. Section 7.7 describes
and evaluates the efficacy of a semi-supervised extension, and finally in Section 7.8
we conclude and list several directions for future research.

7.2 related work

Ideological text is inherently subjective, thus our work is related to the growing
area of subjectivity analysis [130, 110]. The goal of this area of research is to
learn to discriminate between subjective and objective text. In contrast,in modeling
ideology, we aim toward contrasting two or more ideological perspectives each
of which is subjective in nature. Further more, subjective text can be classified
into sentiments which gave rise to a surge of work in automatic opinion mining
[130, 135, 134, 120, 106] as well as sentiment analysis and product review mining
[96, 66, 101, 31, 119, 118, 87, 85]. The research goal of sentiment analysis and
classification is to identify language used to convey positive and negative opinions,
which differs from contrasting two ideological perspectives. While ideology can be
expressed in the form of a sentiment toward a given topic,like abortion, ideological
perspectives are reflected in many ways other than sentiments as we will illustrate
later in the chapter. Perhaps more related to this chapter is the work of [51, 84]
whose goal is to detect bias in news articles via discriminative and generative
approaches, respectively. However, this work still addresses ideology at an abstract
level as opposed to our approach of modeling ideology at a topical level. Finally,
independently, [102] gives a construction similar to ours however for a different
task.

7.3 multi-view topic models

In this section we introduce multi-view topic models, or mview-LDA for short.
Our model, mview-LDA, views each document as the result of the interaction
between its topical and idealogical dimensions. The model seeks to explain lexical
variabilities in the document by attributing this variabilities to one of those dimen-
sions or to their interactions. Topic models, like LDA, define a generative process

1 In this chapter, we use the words ideology, view, perspective interchangeably to denote the same
concept
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Figure 7.1: A plate diagram of the graphical model.

for a document collection based on a set of parameters. LDA employs a semantic
entity known as topic to drive the generation of the document in question. Each
topic is represented by a topic-specific word distribution which is modeled as a
multinomial distribution over words, denoted by Multi(β). The generative process
of LDA proceeds as follows:

1. Draw topic proportions θd|α ∼ Dir(α).

2. For each word
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(a) Draw a topic zn|θd ∼ Mult(θd).

(b) Draw a word wn|zn,β ∼ Multi(βzn).

In step 1 each document d samples a topic-mixing vector θd from a Dirichlet
prior. The component θd,k of this vector defines how likely topic k will appear in
document d. For each word in the document wn, a topic indicator zn is sampled
from θd, and then the word itself is sampled from a topic-specific word distribution
specified by this indicator. Thus LDA can capture and represent lexical variabilities
via the components of θd which represents the topical content of the document.
In the next section we will explain how our new model mview-LDA can capture
other sources of lexical variabilities beyond topical content.

7.3.1 Multi-View LDA

As we noted earlier, LDA captures lexical variabilities due to topical content via
θd and the set of topics β1:K. In mview-LDA each document d is tagged with the
ideological view it represents via the observed variable vd which takes values in the
discrete range: {1, 2, · · · ,V} as shown in Fig. 7.1. For simplicity, lets first assume that
V = 2. The topics β1:K retain the same meaning: a set of Kmultinomial distributions
each of which represents a given theme or factual topic. In addition, we utilize an
ideology-specific topic Ωv which is again a multinomial distribution over the same
vocabulary. Ωv models the abstract belief shared by all the documents written from
view v. In other words, if v denotes the liberal perspective, then Ωv gives high
probability to words like progressive, choice, etc. Moreover, we defined a set of
K× V topics that we refer to as ideology-specific topics. For example, topic φv,k

represents how ideology v addresses topic k. The generative process of a document
d with ideological view vd proceeds as follows:

1. Draw ξd ∼ Beta(a1,b1)

2. Draw topic proportions θd|α ∼ Dir(α2).

3. For each word wn

a) Draw xn,1 ∼ Bernoulli(ξd)

b) If(xn,1 = 1)

i. Draw wn|xn,1 = 1 ∼ Multi(Ωvd)

c) If(xn,1 = 0)

i. Draw zn|θd ∼ Mult(θd).

ii. Draw xn,2|vd, zn ∼ Bernoulli(λzn)

iii. If(xn,2 = 1)

A. Draw wn|zn,β ∼ Multi(βzn).

iv. If(xn,2 = 0)

A. Draw wn|vd, zn ∼ Multi(φvd,zn).

In step 1, we draw a document-specific biased coin,ξd. The bias of this coin
determines the proportions of words in the document that are generated from its
ideology background topic Ωvd . As in LDA, we draw the document-specific topic
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proportion θd from a Dirichlet prior. θd thus controls the lexical variabilities due
to topical content inside the document.

To generate a word wn, we first generate a coin flip xn,1 from the coin ξd. If
it turns head, then we proceed to generate this word from the ideology-specific
topic associated with the document’s ideological view vd. In this case, the word is
drawn independently of the topical content of the document, and thus accounts
for the lexical variation due to the ideology associated with the document. The
proportion of such words is document-specific by design and depends on the
writer’s style to a large degree. If xn,1 turns to be tail,we proceed to the next
step and draw a topic-indicator zn. Now, we have two choices: either to generate
this word directly from the ideology-independent portion of the topic βzn , or to
draw the word from the ideology-specific portion φvd,zn . The choice here is not
document specific, but rather depends on the interaction between the ideology and
the specific topic in question. If the ideology associated with the document holds a
strong opinion or view with regard to this topic, then we expect that most of the
time we will take the second choice, and generate wn from φvd,zn ; and vice versa.
This decision is controlled by the Bernoulli variable λzn . Therefore, in step c.ii, we
first generate a coin flip xn,2 from λzn . Based on xn,2 we either generate the word
from the ideology-independent portion of the topic βzn , and this constitutes how
the model accounts for lexical variation due to the topical content of the document,
or generate the word from the ideology-specific portion of the topic φvd,zn , and
this specifies how the model accounts for lexical variation due to the interaction
between the topical and ideological dimensions of the document.

Finally, it is worth mentioning that the decision to model λzn
2 at the topic-

ideology level rather than at the document level, as we have done with ξd, stems
from our goal to capture ideology-specific behavior on a corpus level rather than
capturing document-specific writing style. However, it is worth mentioning that if
one truly seeks to measure the degree of bias associated with a given document,then
one can compute the frequency of the event xn,2 = 0 from posterior samples. In
this case, λzn acts as the prior bias only. Moreover, computing the frequency of the
event xn,2 = 0 and zn = k gives the document’s bias toward topic k per se.

Finally, it is worth mentioning that all multinomial topics in the model: β,Ω,φ
are generated once for the whole collection from a symmetric Dirichlet prior,
similarly, all bias variables, λ1:K are sampled from a Beta distribution also once at
the beginning of the generative process.

7.4 posterior inference via collapsed gibbs sampling

The main tasks can be summarized as follows:

• Learning: Given a collection of documents, find a point estimate of the model
parameters (i.e. β,Ω,φ, λ,etc.).

• Inference: Given a new document, and a point estimate of the model param-
eters, find the posterior distribution of the latent variables associated with

2 In an earlier version of the work we modeled λ on a per-ideology basis, however, we found that
using a single shared λ results in more robust results
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the document at hand:
(θd, {xn,1}, {zn}, {xn,2}).

Under a hierarchical Bayesian setting, both of these tasks can be handled via
posterior inference. Under the generative process, and hyperparmaters choices,
outlined in section 7.3, we seek to compute:

P(d1:D,β1:K,Ω1:V ,φ1:V,1:K,λ1:K|α,a,b, w, v),

where d is a shorthand for the hidden variables (θd, ξd, z, x1, x2) in document d.
The above posterior probability is unfortunately intractable,and we approximate it
via a collapsed Gibbs sampling procedure [58, 53] by integrating out, i.e. collapsing,
the following hidden variables: the topic-mixing vectors θd and the ideology bias
ξd for each document, as well as all the multinomial topic distributions: (β,Ω and
φ) in addition to the ideology-topic biases given by the set of – random variables.

Therefore, the state of the sampler at each iteration contains only the following
topic indicators and coin flips for each document:(z, x1, x2). We alternate sampling
each of these variables conditioned on its Markov blanket until convergence. At
convergence, we can calculate expected values for all the parameters that were
integrated out, especially for the topic distributions, for each document’s latent
representation (mixing-vector) and for all coin biases. To ease the calculation of
the Gibbs sampling update equations we keep a set of sufficient statistics (SS) in
the form of co-occurrence counts and sum matrices of the form C

EQ
eq to denote the

number of times instance e appeared with instance q. For example, CWKwk gives
the number of times word w was sampled from the ideology-independent portion
of topic k. Moreover, we follow the standard practice of using the subscript −i to
denote the same quantity it is added to without the contribution of item i. For
example,CWKwk,−i is the same as CWKwk without the contribution of word wi. For
simplicity, we might drop dependencies on the document whenever the meaning
is implicit form the context.

For word wn in document d, instead of sampling zn, xn,1, xn,2 independently,
we sample them as a block as follows:

P(xn,1 = 1|wn = w, vd = v) ∝ (CDX1d1,−n + a1)×
CVWvw,−n +α1∑
w ′(C

VW
vw ′,−n +α1)

P(xn,1 = 0, x2,n = 1, zn = k|wn = w, vd = v)

∝ (CDX1d0,−n + b1)×
CKX2k1,−n + a2

CKX2k1,−n +CKX2k0,−n + a2 + b2

×
CKWkw,−n +α1∑
w ′(C

KW
kw ′,−n +α1)

×
CDKdk,−n +α2∑
k ′(C

DK
dk ′,−n +α2)
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P(xn,1 = 0, x2,n = 0, zn = k|wn = w, vd = v)

∝ (CDX1d0,−n + b1)×
CKX2k0,−n + b2

CKX2k1,−n +CKX2k0,−n + a2 + b2

×
CVKWvkw,−n +α1∑
w ′(C

VKW
vkw ′,−n +α1)

×
CDKdk,−n +α2∑
k ′(C

DK
dk ′,−n +α2)

The above three equations can be normalized to form a 2 ∗ K+ 1 multinomial
distribution: one component for generating a word from the ideology topic, K
components for generating the word from the ideology-independent portion of
topic k = 1, · · · ,K, and finally K components for generating the word from the
ideology-specific portion of topic k = 1, · · · ,K. Each of these 2 ∗K+ 1 cases corre-
sponds to a unique assignment of the variables zn, xn,1, xn,2. Therefore, our Gibbs
sampler just repeatedly draws sample from this 2 ∗K+ 1-components multinomial
distribution until convergence. Upon convergence, we compute point estimates for
all the collapsed variables by a simple marginalization of the appropriate count ma-
trices. During inference, we hold the corpus-level count matrices fixed, and keep
sampling from the above 2 ∗K+ 1-component multinomial while only changing the
document-level count matrices: CDK,CDX1 until convergence. Upon convergence,
we compute estimates for ξd and θd by normalizing CDK and CDX1 (or possibly
averaging this quantity across posterior samples). As we mentioned in Section 7.3,
to compute the ideology-bias in addressing a given topic say k in a given document,
say d, we can simply compute the expected value of the event xn,2 = 0 and zn = k

across posterior samples.

7.5 data sets

We evaluated our model over three datasets: the bitterlemons croups and a two
political blog-data set. Below we give details of each dataset.

7.5.1 The Bitterlemons dataset

The bitterlemons corpus consists of the articles published on the website http://bitterlemons.org/.
The website is set up to contribute to mutual understanding between Palestinians
and Israelis through the open exchange of ideas. Every week, an issue about the
Israeli-Palestinian conflict is selected for discussion, and a Palestinian editor and
an Israeli editor contribute one article each addressing the issue. In addition, the
Israeli and Palestinian editors invite one Israeli and one Palestinian to express their
views on the issue. The data was collected and pre-proceed as describes in [84].
Overall, the dataset contains 297 documents written from the Israeli’s point of view,
and 297 documents written from the Palestinian’s point of view. On average each
document contains around 740 words. After trimming words appearing less than
5 times, we ended up with a vocabulary size of 4100 words. We split the dataset
randomly and used 80% of the documents for training and the rest for testing.
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Figure 7.2: Illustrating the big picture overview over the bitterlemons dataset using few
topics. Each box lists the top words in the corresponding multinomial topic
distribution. See text for more details

7.5.2 The Political Blog Datasets

The first dataset refereed to as Blog-1 is a subset of the data collected and processed
in [132]. The authors in [132] collected blog posts from blog sites focusing on
American politics during the period November 2007 to October 2008. We selected
three blog sites from this dataset: the Right Wing News (right-ideology) ; the
Carpetbagger, and Daily Kos as representatives of the liberal view (left-ideology).
After trimming short posts of less than 20 words, we ended up with 2040 posts
distributed as 1400 from the left-wing and the rest from the right-wing. On average,
each post contains around 100 words and the total size of the vocabulary is 14276

words. For this dataset, we followed the train-test split in [132]. In this split each
blog is represented in both training and test sets. Thus this dataset does not
measure the model’s ability to generalize to a totally different writing style.

The second dataset refereed to as Blog-2 is similar to Blog-1 in its topical content
and time frame but larger in its blog coverage [47]. Blog-2 spans 6 blogs: three
from the left-wing and three from the right-wing. The dataset contains 13246 posts.
After removing words that appear less then 20 times, the total vocabulary becomes
13236 with an average of 200 words per post. We used 4 blogs (2 from each view)
for training and held two blogs (one from each view) for testing. Thus this dataset
measures the model’s ability to generalize to a totally new blog.

7.6 experimental results

In this section we gave various qualitative and quantitative evaluations of our
model over the datasets listed in Section 7.5. For all experiments, we set α1 =
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.01,α2 = .1,a = 1 and b = 1. We run Gibbs sampling during training for 1000

iterations. During inference, we ran Gibbs sampling for 300 iterations, and took 10

samples, with 50-iterations lag, for evaluations.

7.6.1 Visualization and Browsing

One advantage of our approach is its ability to create a “big-picture" overview of
the interaction between ideology and topics. In figure 7.2 we show a portion of
that diagram over the bitterlemons dataset. First note how the ideology-specific
topics in both ideology share the top-three words, which highlights that the two
ideologies seek peace even though they still both disagree on other issues. The
figure gives example of three topics: the US role, the Roadmap peace process, and
the Arab involvement in the conflict (the name of these topics were hand-crafted).
For each topic, we display the top words in the ideology-independent part of the
topic (β), along with top words in each ideology’s view of the topic (φ).

For example, when discussing the roadmap process, the Palestinian view brings
the following issues: [the Israeli side should] implement the obligatory points in this
agreement, stop expansion of settlements, and move forward to the commitments
brought by this process. On the other hand, the Israeli side brings the following
points: [Israelis] need to build confidence [with Palestinian], address the role of
terrorism on the implementation of the process, and ask for a positive recognition
of Israel from the different Palestinian political parties. As we can see, the ideology-
specific portion of the topic needn’t always represent a sentiment shared by
its members toward a given topic, but it might rather includes extra important
dimensions that need to be taken into consideration when addressing this topic.

Another interesting topic addresses the involvement of the neighboring Arab
countries in the conflict. From the Israeli point of view, Israel is worried about the
existence of hizballah [in lebanon] and its relationship with radical Iran, and how
this might affect the Palestinian-uprising (Intifada) and Jihad. From the other side,
the Palestinians think that the Arab neighbors need to be involved in the peace
process and negotiations as some of these countries like Syria and Lebanon are
involved in the conflict.

The user can use the above chart as an entry point to retrieve various documents
pertinent to a given topic or to a given view over a specific topic. For instance,
if the user asks for a representative sample of the Israeli(Palestinian) view with
regard to the roadmap process, the system can first retrieve documents tagged
with the Israeli(Palestinian) view and having a high topical value in their latent
representation θ over this topic. Finally, the system then sorts these documents by
how much bias they show over this topic. As we discussed in Section 7.4, this can
be done by computing the expected value of the event xn,2 = 0 and zn = k where
k is the topic under consideration.

7.6.2 Classification

We have also performed a classification task over all the datasets. The Scenario
proceeded as follows. We train a model over the training data with various number
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(a) (b)

(c)

Figure 7.3: Classification accuracy over the Bitterlemons dataset in (a) and over the two
blog datasets in (b) and (c). For SVM we give the best result obtained across
a wide range of the SVM’s regularization parameter(not the cross-validation
result).

of topics. Then given a test document, we predict its ideology using the following
equation:

vd = argmaxv∈VP(wd|v); (7.1)

We use three baselines. The first baseline is an SVM classifier trained on the
normalized word frequency of each document. We trained SVM using a regular-
ization parameter in the range {1, 10, 20, · · · , 100} and report the best result (i.e.
no cross-validation was performed). The other two are supervised LDA models:
supervised LDA (sLDA) [37, 28] and discLDA [77]. discLDA is a conditional model
that divides the available number of topics into class-specific topics and shared-
topics. Since the code is not publicly available, we followed the same strategy in
the original paper and share 0.1K topics across ideologies and then divide the
rest of the topics between ideologies3. However, unlike our model, there are no
internal relationships between these two sets of topics. The decision rule employed
by discLDA is very similar to the one we used for mview-LDA in Eq (7.1). For
sLDA, we used the publicly available code by the authors.

3 [77] gave an optimization algorithm for learning the topic structure (transformation matrix), however
since the code is not available, we resorted to one of the fixed splitting strategies mentioned in the
paper. We tried other splits but this one gives the best results
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As shown in Figure 7.3, our model performs better than the baselines over
the three datasets. We should note from this figure that mview-LDA peaks at a
small number of topics, however, each topic is represented by three multinomials.
Moreover, it is evident from the figure that the experiment over the blog-2 dataset
which measures each model’s ability to generalizes to a totally unseen new blog
is a harder task than generalizing to unseen posts form the same blog. However,
our model still performs competitively with the SVM baseline. We believe that
separating each topic into an ideology-independent part and ideology-specific part
is the key behind this performance, as it is expected that the new blogs would still
share much of the ideology-independent parts of the topics and hopefully would
use similar (but no necessarily all) words from the ideology-specific parts of each
topic when addressing this topic.

Finally, it should be noted that the bitterlemons dataset is a multi-author dataset
and thus the models were tested on some authors that were not seen during
training, however, two factors contributed to the good performance by all models
over this dataset. The first being the larger size of each document (740 words per
document as compared to 200 words per post in blog-2) and the second being the
more formal writing style in the bitterlemons dataset.

7.6.3 An Ablation Study

To understand the contribution of each component of our model, we conducted
an ablation study over the bitterlemons dataset. In this experiment we turned-off
one feature of our model at a time and measured the classification performance.
The results are shown in Figure 7.4. Full, refers to the full model; No-Ω refers
to a model in which the ideology-specific background topic Ω is turned-off; and
No-φ refers to a model in which the ideology-specific portions of the topics are
turned-off. As evident from the figure, φ is more important to the model than Ω
and the difference in performance between the full model and the No-φ model
is rather significant. In fact without φ the model has little power to discriminate
between ideologies beyond the ideology-specific background topic Ω.

Figure 7.4: An Ablation study over the bitterlemons dataset.
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Figure 7.5: Evaluating the performance of the view-Retrieval task. Figure compare perfor-
mance between mview-LD vs. an SVM+a smoothed language model approach
using three measures: average rank, best rank and rank at full recall. ( Lower
better)

.

7.6.4 Retrieval: Getting the Other Views

To evaluate the ability of our model in finding alternative views toward a given
topic, we conducted the following experiment over the Bitterlemons corpus. In this
corpus each document is associated with a meta-topic that highlights the issues
addressed in this document like: “A possible Jordanian role", “Demography and
the conflict",etc. There are a total of 148 meta-topics. These topics were not used
in fitting our model but we use them in the evaluation as follows. We divided the
dataset into 60% for training and 40% for testing. We trained mview-LDA over the
training set, and then used the learned model to infer the latent representation
of the test documents as well as their ideologies. We then used each document
in the training set as a query to retrieve documents from the test set that address
the same meta-topic in the query document but from the other-side’s perspective.
Note that we have access to the view of the query document but not the view of
the test document. Moreover, the value of the meta-topic is only used to construct
the ground-truth result of each query over the test set. In addition to mview-LDA,
we also implemented a strong baseline using SVM+Dirichlet smoothing that we
will refer to as LM. In this baseline, we build an SVM classifier over the training
set, and use Dirichlet-smoothing to represent each document (in test and training
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set) as a multinomial-distribution over the vocabulary. Given a query document d,
we rank documents in the test set by each model as follows:

• mview-LDA: we computed the cosine-distance between θmv−LDA−shared
d and

θmv−LDA−shared
d ′ weighted by the probability that d ′ is written from a different

view than vd. The latter quantity can be computed by normalizing P(v|d ′).
Moreover, θmv−LDA−shared

d,k ∝
∑
n I
[
(xn,1 = 0) and (xn,2 = 1) and (zn = k)

]
,

and n ranges over words in document d. Intuitively, we would like θmv−LDA−shared
d

to reflect variation due to the topical content, but not ideological view of the
document.

• LM: For a document d ′, we apply the SVM classifier to get P(v|d ′), then we
measure similarity by computing the cosine-distance between the smoothed
multinomial-distribution of d and d ′. We combine these two components as
in mview-LDA.

Finally we rank documents in the test set in a descending-order and evaluate
the resulting ranking using three measures: the rank at full recall (lowest rank),
average rank, and best rank of the ground-truth documents as they appear in the
predicted ranking. Figure 7.5 shows the results across a number of topics. From
this figure, it is clear that our model outperforms this baseline over all measures. It
should be noted that this is a very hard task since the meta-topics are very fine-
grained like: Settlements revisited, The status of the settlements, Is the roadmap
still relevant?,The ceasefire and the roadmap: a progress report,etc. We did not
attempt to cluster these meta-topics since our goal is just to compare our model
against the baseline.

7.7 a mh-based semi-supervised algorithm

In this section we present and assess the efficacy of a semi-supervised extension
of mview-LDA. In this setting, the model is given a set of ideologically-labeled
documents and a set of unlabeled documents. One of the key advantages of using
a probabilistic graphical model is the ability to deal with hidden variables in a
principled way. Thus the only change needed in this case is adding a single step
in the sampling algorithm to sample the ideology v of an unlabeled document as
follows:

P(vd = v|rest) ∝ P(wd|vd = v, zd, x1,d, x2,d)

Note that the probability of the indicators (x1,d, x2,d, zd) do not depend on the
view of the document and thus got absorbed in the normalization constant, and thus
one only needs to measures the likelihood of generating the words in the document
under the view v. We divide the words into three groups: Ad = {wn|xn,1 = 1} is the
set of words generated from the view-background topic, Bd,k = {wn|zn = k, xn,1 =

0, xn,2 = 1} is the set of words generated from βk, and Cd,k = {wn|zn = k, xn,1 =

0, xn,2 = 0} is the set of words generated from φk,v. The probability of Bd,k does
not depend on the value of v and thus can be absorbed into the normalization
factor. Therefore, we only need to compute the following probability:
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R mview-LDA ss-mview-LDA

80 65.60 66.41

60 62.31 65.43

20 60.87 63.25

Table 7.1: Classification performance of the semi-supervised model. R is the ratio of labeled
documents.

P(Ad,Cd,1:K|vd = v, rest) =
∏
k

∫
φk,v

P(Cd,k|φk,v, rest)p(φk,v|rest)dφk,v

×
∫
Ω

P(Ad|Ω, rest)p(Ω|rest)dΩ (7.2)

All the integrals in (7.2) reduce to the ratio of two log partition functions. For
example, the product of integrals containing Cd,k reduce to:

∏
k

∫
φk,v

P(Cd,k|φk,v, rest)p(φk,v|rest)dφk,v

=
∏
k

∏
w Γ
(
CDKW,X2=0
dkw +CVKWvkw,−d +α1

)
Γ
(∑

w

[
CDKW,X2=0
dkw +CVKWvkw,−d +α1

]) × Γ
(∑

w

[
CVKWvkw +α1

])
∏
w Γ
(
CVKWvkw,−d +α1

)
(7.3)

Unfortunately, the above scheme does not mix well because the value of the
integrals in (7.2) are very low for any view other than the view of the document in
the current state of the sampler. This happens because of the tight coupling between
vd and the indicators (x1, x2, z). To remedy this problem we used a Metropolis-
Hasting step to sample (vd, x1, x2, z) jointly. We construct a set of V proposals each
of which is indexed by a possible view: qv(x1, x2, z) = P(x1, x2, z|vd = v, wd). Since
we have a collection of proposal distributions, we select one of them at random at
each step. To generate a sample from qv∗(), we run a few iterations of a restricted
Gibbs scan over the document d conditioned on fixing vd = v∗ and then take the
last sample jointly with v∗ as our proposed new state. With probability min(r,1),
the new state (v∗, x1∗, x2∗, z∗) is accepted, otherwise the old state is retained. The
acceptance ratio,r, is computed as: r = p(wd|v∗,x1∗,x2∗,z∗)

p(wd|v,x1,x2,z) , where the non-* variables
represent the current state of the sampler. It is interesting to note that the above
acceptance ratio is equivalent to a likelihood ratio test. We compute the marginal
probability P(wd|..) using the estimated-theta method [124].

We evaluated the semi-supervised extension using the blog-2 dataset as follows.
We reveal R% of the labels in the training set; then we train mview-LDA only
over the labeled portion and train the semi-supervised version (ss-mview-LDA) on
both the labeled and unlabeled documents. Finally we evaluate the classification
performance on the test set. We used R = {20, 40, 80}. The results are given in Table
7.1 which shows a decent improvement over the supervised mview-LDA.
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7.8 discussion

In this chapter, we addressed the problem of modeling ideological perspective at a
topical level. We developed a factored topic model that we called multiView-LDA
or mview-LDA for short. mview-LDA factors a document collection into three set
of topics: ideology-specific, topic-specific, and ideology-topic ones. We showed that
the resulting representation can be used to give a bird-eyes’ view to where each
ideology stands with regard to mainstream topics. Moreover, we illustrated how
the latent structure induced by the model can by used to perform bias-detection at
the document and topic level, and retrieve documents that represent alternative
views.

It is important to mention that our model induces a hierarchical structure over
the topics, and thus it is interesting to contrast it with hierarchical topic models
like hLDA [25] and PAM [82, 90]. First, these models are unsupervised in nature,
while our model is supervised. Second, the semantic of the hierarchical structure
in our model is different than the one induced by those models since documents in
our model are constrained to use a specific portion of the topic structure while in
those models documents can freely sample words from any topic. Finally,in the
future we plan to extend our model to perform joint modeling and summarization
of idealogical discourse.
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L E R A N I N G U E R S D Y N A M I C A C T I V I T Y P R O F I L E S

8.1 introduction

Computational advertising, content targeting, personalized recommendation, and
web search, all benefit from a detailed knowledge of the interests of the user in
order to personalize the results and improve relevance. For this purpose, user
activity is tracked by publishers and third parties through browser cookies that
uniquely identify the user visits to web sites. A variety of different actions are
associated with each user as web page visits, search queries, etc. These actions are
distilled into a compact description of the user profile.

In this paper we focus on generation of compact and effective user profiles from
the history of user actions. One of the key challenges in this task is that the user
history is a mixture of user interest over a period of time. In order to reason about
the user, the personalization layer needs to be able to separate between the distinct
interests to avoid degrading the user experience.

The framework presented in this paper is based on topic models which is
able to capture the user interests in an unsupervised fashion. We demonstrate the
effectiveness of this framework for the audience selection task in display advertising.
Audience selection is one of the core activities in display advertising where the
goal is to select a good target for a particular campaign.

There are several challenges with topical analysis of the user action streams. First,
for production strength system, the analysis has to scale to hundreds of millions
of users with tens, if not hundreds of actions daily. Most of the topical analysis
models are computationally expensive and cannot perform at this scale. The second
issue is that of time dependence: Users’ interests change over time and it is this
change that proves to be commercially very valuable since it may indicate purchase
intents. For example, if a user suddenly increases the number of queries for the
Caribian and cruises, this may indicate interest in a cruise vacation. The appearance
of this new topic of interest in the user’s stream of actions can be predictive of his
interest. Furthermore, there are external effects that may govern user behavior. For
instance, an underwater oil spill does not convert users into deep sea exploration
aficionados yet it affects search behavior and thus needs to be filtered out.

Finally, generating good features that describe user behavior does not necessarily
translate into good features that are predictive of commercially relevant decisions. In
other words, we ultimately want to obtain discriminatively useful features. Hence
we would like to obtain a user profiling algorithm which has at least the potential of
being adapted to the profiling task at hand.

We propose a coherent approach using Bayesian statistics to achieve all those
goals and we show that it excels at the task of predicting user responses for display
advertising targeting.

In summary the contributions of this paper are as follow:

• We develop a Bayesian approach for online modeling of user interests.

103
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• Our model incrementally adapts both the user-topic associations and the
topic composition based on the stream of user actions.

• We show how topic models can be used for improved targeting for display
advertising, an application that requires analysis of tens of millions of users in
real time.

8.2 framework and background

We begin by spelling out the intuition behind our model in qualitative terms and
describe the concepts behind the statistical model which is capable of addressing
core profile generation issues, which we will address below and in Section 8.3:

• unsupervised topic acquisition
• dynamic topic descriptions
• dynamic user topical description
• filtering-out of global events

When categorizing user behavior it is tempting to group users into categories.
That is, one might aim to group users together based on their (similar) behavior.
While this has been used successfully in the analysis of user data [1] it tends to
be rather limited when it comes to large numbers of users and large amounts
of behavioral data: With millions of users it makes sense to use more than 1000

clusters in order to describe the user behavior. However, an inflation of clusters
decreases the interpretability of the clusters considerably. Secondly, we would
like to exploit sharing of statistical strength between clusters, e.g. if a number of
clusters contain users interested in Latin music one would like to transfer modeling
knowledge between them.

This can be addressed by topic models such as Latent Dirichlet Allocation (LDA)
[21]. There objects (users) are characterized by a mixture of topics (interests).
It is intuitively clear that such a topical mixture may carry considerably more
information. For instance, even if we are allowed to choose only two out of 1000

topics we can already model 500,000 possible combinations. In other words, we can
model the same variety of observations in a considerably more compressed fashion
than what would be needed if we wanted to describe things in terms of clusters.
The other key advantage of such models is that they are fully unsupervised. That is,
they require no editorial data. Instead, they build the entire model by attempting to
describe the data available. A key benefit in this setting is that it allows us to cover
the entire range of interests rather than only those that an editor might be aware of.
As a result this method is not language and culture specific. In the following we
will be using the words topic and interest interchangeably.

Our strategy is thus to describe users as a mixture of topics and to assume
that each of their actions is motivated by choosing a topic of interest first and
subsequently a word to describe that action from the catalog of words consistent
with that particular interest. For the purpose of this paper the user actions are
either to issue a query or view an object (page, search result, or a video). We
represent each user as a bag of words extracted from those actions and we use the
term user action to denote generating a word from this bag. For instance, when
issuing a query, each word in the query is an action. Similarly, when viewing a
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Figure 8.1: Latent Dirichlet Allocation.

video, each textual tag of the video represents an actions, and when viewing a
page, each word in the title of the page is an action.

In the following subsections we first review the Latent Dirichelt Allocation model
(LDA) and then give an equivalent Polya-Urn scheme representation which will
serve as the basis for the time-varying model described later in the paper.

8.2.1 Latent Dirichlet Allocation

LDA was introduced by [21] for the purpose of document modeling. The associated
graphical model is given in Figure 8.1. In it, the variables wij correspond to the
j-th action of user i that we observe. All remaining variables are considered latent,
i.e. they are unobserved.
The associated graphical model assumes that the order in which the actions wij
occur is irrelevant, both in terms of their absolute position relative to other users
and in terms of their local position. θi represents user i’s specific distribution over
topics (interests), and φk represents the topic distribution over words. Typically
one chooses for p(θi|λΩ) and for p(φk|β) Dirichlet distributions, hence the name
Dirichlet Allocation. The full generative process is specified as follow:

1. Draw once Ω|α ∼ Dir(α/K).
2. Draw each topic, φk|β ∼ Dir(β).
3. For each user i:

a) Draw topic proportions θi|λ,Ω ∼ Dir(λΩ).
b) For each word

(a) Draw a topic zij|θd ∼ Mult(θi).
(b) Draw a word wij|zij,φ ∼ Multi(φzij).

In the above generative process, we decided to factor out the global distribution
over topics into two parts: Ω and λ. Ω is a normalized vector, i.e., a probability
distribution and represents the prior distribution over topics (interests) across users,
and is sampled from a symmetric Dirichlet prior parametrized by α/K. λ on the
other hand, is a scalar, and controls how each user’s distribution over interests
might vary from the prior distribution. This factored representation is critical for
the rest of this paper.
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8.2.2 A Polya-Urn Representation of LDA

In order to make explicit how the above LDA generative process captures local
and global users’ interests, we present an equivalent representation obtained
by integrating out the global topic distribution Ω and the user-specific topic
distribution θ. Let us assume that user i has generated j− 1 actions and considering
generating action j. Among those j− 1 actions, let nik represent the number of
actions expressing interest k. To generate action j the user might choose to either
repeat an old interest with probability proportional to nik (and increment nik)
or to consider a totally new interest with probability proportional to λ. In the
former case, the user action is controlled by the user’s mindset, and in the latter
case the new interest is decided by considering the global frequency of interests
across all users. We let mk represent the global frequency by which interest k is
expressed across users. Thus, user i can select to express interest k with probability
proportional to mk+α/K and increment mk (as will as nik). This allows the model
to capture the fact that not every action expressed by the user represents a genuine
user’s interest. For example, a user might search for articles about the oil spill just
because of the large buzz created about this incident. Putting everything together,
we have:

P(zij = k|wij = w, rest) ∝
(
nik + λ

mk +
α
K∑

k ′mk ′ +α

)
P(wij|φk) (8.1)

In the literature, this model is known as the hierarchical Polya-Urn model [19] in
which previously expressed interests have a reinforcing effect of being re-expressed
either at the user-level or across users. Moreover, this model is also equivalent
to a fixed-dimensional version of the hierarchical Dirichlet process (HDP) [116]. In
Figure 8.2 we graphically show this representation. The static model is equivalent
to a single vertical slice (with no prior over m nor n). This figure makes explicit
that every visit to the global process by user i creates a new table which is denoted
by a big circle. Thus mk represents the total number of tables associated with
topic k across all users. Note that in the standard HDP metaphor, to generate
an action j, one first selects a table proportional to its popularity (or a new table
with probability ∝ λ), and then generates the action from the topic associated
with the selected table. The process described above is strictly equivalent since the
probability of choosing topic k under this standard HDP metaphor is thus equal to
the number of words assigned to all tables serving topic k (which we denoted by
nik). In Section 8.3, we will describe the time-varying version of this process.

8.3 time-varying user model: tvum

We now introduce our model : time-varying user model (TVUM). In Section 8.2.1,
we assumed that user actions are fully exchangeable, and that user’s interests
are fixed over time. It is reasonable though to assume that a user’s interests are
not fixed over time, instead, we may assume that the proportions change and
that new interests may arise. For instance, after the birth of a baby users will
naturally be interested in parenting issues and their preferences in automobiles
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Figure 8.2: A time-varying hierarchical Polya-urn representation of the TVUM process
(can also be regarded as a fixed-dimensional,fully-evolving recurrent Chinese
restaurant franchise process [12]). Here (unlink in [12]) all levels are evolving.
The top level represents the global process that captures the global topic trends.
Each row gives the process for a given user. Each bar represents a topic’s
popularity (either global popularity m, or user-specific popularity n). The
dotted (bottom) part of each bar represents the prior (m̃ for global topic prior,
and ñ for user-specific topic prior). To avoid clutter, we only show first-order
dependencies, however, the global process evolves according to an exponential
kernel and the user-specific processes evolve according to a multi-scale kernel
as shown in Figure 8.3. Note here also that user interactions are sparse and
users need not appear at all days nor enter in the system in the same day.
Finally, small circles in user processes represent words and are colored with
their corresponding topics. (best viewed in color)

may change. Furthermore, specific projects, such as planning a holiday, purchasing
a car, obtaining a mortgage, etc. will lead to a marked change in user activity. In
the classical document context of LDA this is the equivalent of allowing the topics
contained in a document to drift slowly as the document progresses. In the context
of users this means that we assume that the daily interest distribution per user is
allowed to drift slowly over time.

We divide user actions into epochs based on the time stamp of the action. The
epoch length depends on the nature of the application and can range from a
few minutes to a full day as in our motivating application. Figure 8.2 depicts the
generative process of TVUM. Users’ actions inside each epoch are modeled using
an epoch-specific , fixed-dimensional hierarchical Polya-Urn model as described in
Section 8.2.2. As time goes by, three aspects of the static model change: the global
distribution over interests, the user-specific distribution over interests and the topic
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Figure 8.3: An illustrative example describing how TVUM captures the user’s long and
short-term interests. (best viewed in color)

distribution over words, φ. We address each of which in the following subsections
and then summarize the full process in Section 8.3.4

8.3.1 Dynamic Global Interests

The global trend of interests change over time. For example, the release of the
iPhone 4 results in an increase in the global interest of the ’mobile gadgets’ topic
(intent) for a few days or weeks to follow. To capture that, we use a similar idea
to that introduced in [12] and stipulate that the popularity of an interest k at time
t depends both on the topic usages at time t, mtk, and on its historic usages at
previous epochs, where the contribution of the previous epochs is summarized as
m̃tk. We use exponential decay with kernel parameter κ defined as follows:

m̃tk =

t−1∑
h=1

exp
h−t
κ mhk . (8.2)

8.3.2 Dynamic User’s Interests

Now we turn to model the dynamics in the user-specific interests. The topic trends
of a given user nik is now made dependent on time via ntik. This is after all, the
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very variable that we wish to estimate. We could use the same exponential decay
idea that we used in modeling the change in the global trends of interests, however,
the change in the user’s interests over time is rather more complicated. Consider
the set of actions observed from user i up to time t− 1 as depicted in Figure 8.3.
For simplicity, assume that all of these actions are words from queries. Each day,
we observe a set of queries issued by the user. In the figure we also list a set
of 4 interests (topics). For each topic, we give the top words in its distribution
as recorded in φ. What could be the expected interests of the user at time t? To
answer this question, we observe that we can factor out the interests of the user
into short-term interests and long-term (or persistent) interests. For example, this
user has a long-term interest in Diet (Food) related materials. From the user history
we can also discern two transient short-term interests localized on time: one over
finding a job and the other over buying a car. To discover the long-term interests of
the user, we could count the frequency of expressing interest k across the whole
user history. This gives the long-term interests of the user. As depicted in Figure 8.3,
this shows that the user has a long-term interest over Diet. Similarly we could
compute the same quantity for the recent week and month to get the short-term
interests of the user. As shown in Figure 8.3, it is clear that in the recent month, the
user was mainly looking for a job and then started to look for a car in the recent
week. Thus to get the expected user-specific’s popularity over interests ñti for user i
at time t , we combine these three levels of abstractions using a weighted sum as
follows:

ñtik = µweekñ
t,week
ik + µmonthñ

t,month
ik + µallñ

t,all
ik (8.3)

Here ñtik is our estimate for user i’s interest over topic k at time t, and ñt,week
ik =∑t−7

h=t n
h
ik, nhik is the frequency of expressing interest k by user i at time h, and

ñt,week is just the sum of these frequencies over the past week. The other two
quantities ñt,all and ñt,month are defined accordingly over their respective time
ranges. The set of weights µ gives the contribution of every abstraction to the
final estimate. In Figure 8.3, we show the final estimate at time t and it shows
that we expect that the user will continue to look for cars, might still look for
Diet related content, or with some probability considers a new job. There are a
few observations here. First, if we had used an exponential decay as we employed
for modeling the global trends, the model would have forgotten quickly about
the user’s long-term interest in Diet. This happens because the user history is
sparse and the time between the user’s activities might range from days to weeks.
However, for modeling the change in the global trends of topics, it is enough to
consider the preceding days to get a good estimate about the future: if an interest
starts to fade, it is likely that it will die soon unless the data at future days tells us
something else. The second observation is that ñti is not enough to capture what
the user will look for at time t, as the user might still consider a new interest. For
example, the user might develop an interest in obtaining a loan to finance his new
car purchase. To model this effect, we combine the aforementioned prior with the
global distribution over interests, as we will detail in Section 8.3.4, to generate the
user actions at time t.

Finally, it is hard to fit or tune three different weights as in (8.3), thus we use
µweek = µ,µmonth = µ2 and µall = µ3, where µ ∈ [0, 1]. For values of µ close to
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0, more weight is given to the short-term interests and for values of µ close to 1

a uniform weight is given to all levels which implies more weight given to the
long-term interests as they are aggregates over a longer time period. It is quite
straightforward to optimize µ on a per user basis using gradient decent or set it to
a default value for all users.

8.3.3 Dynamic Topics

The final ingredient in our model is rendering the topics themselves dynamic.
Indeed as we observe more user interactions, we expect the topic distribution
over words to change in response to world events like the release of a new car.
This feature is related to earlier work in dynamic topic models [27, 12] which
uses non-conjugate logistic normal priors (which are challenging during inference)
and [67] which uses multi-scale priors similar to Figure 8.3. Our approach here
resembles [67] but with a simpler form for the prior. We achieve this dynamic effect
by making the topic distribution over words φk time dependent, i.e. we have φtk
which now depends on the smoothing prior ˜̨tk in addition to the static prior β. The
component β̃tkw of ˜̨tk depends on a decayed version of the frequencies of observing
word w from topic k at times 1 : t− 1. This is similar to the way we modeled the
dynamics of the global distribution over interests, and we use an exponential decay
kernel parametrized by κ0:

β̃tkw =

t−1∑
h=1

exp
h−t
κ0 nhkw, (8.4)

Here nhkw is the frequency of observing word w from topic k at day h. Finally, we

have φtk ∼ Dir
(

˜̨tk +β
)

Note that the decision to add β to the above prior enforces that the components
of the prior corresponding to new words (i.e. words that have β̃tkw = 0)is non-zero
and as such new words can appear as time goes by.

8.3.4 Summary of TVUM

We now put all the pieces together and give the full generative process of TVUM.
Consider generating action j for user i at time t. User i can choose an interest k
with probability proportional to ntik + ñ

t
ik and then increments ntik. Alternatively,

the user can choose a new interest with probability proportional to λ. To select
this new interest, he considers the global trend of interests across users: he select
interest k with probability proportional to mtk + m̃

t
k +α/K and increment mtk as

well as ntik. Finally the user generates the word wtij from topic k’s distribution at
time t, φtk. Putting everything together, we have:

(ztij = k|w
t
ij = w, rest) ∝

(
ntik + ñ

t
ik + λ

mtk + m̃
t
k +

α
K∑

k ′m
t
k ′ + m̃

t
k ′ +α

)
P(wtij|φ

t
k)

(8.5)

In fact, taking the limit of this model as K → ∞ we get the recurrent Chinese
restaurant franchise process as in [12] albeit with all levels being evolved and with
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different level-specific time-kernels. In [12] only the top level evolves since a given
document does not persist across time epochs. Moreover, our fixed-dimensional
approximation is more amenable for distributed inference and is still not highly
affected by the number of topics as we will demonstrate in the experimental section.

8.3.5 Inference

The problem of inferring interests for millions of users over several months is
formidable and it considerably exceeds the scale of published work on scalable
topic models including [112]. As a result exact inference, even by sampling, is
computationally infeasible: for instance, in a collapsed sampler along the lines
of [58, 133] the temporal interdependence of topic assignments would require
inordinate amounts of computation even when resampling single topic assignments
for user actions: it affects all actions within a range of one month if we use
a correspondingly long dependence model to describe the topic and interest
evolution.

A possible solution is to use Sequential Monte Carlo (SMC) methods such as
those proposed by [32] for online inference of topic models. The problem is that due
to the long-range dependence the particles in the SMC estimator quickly become
too heavy, so we need to rebalance and resample fairly frequently. This problem
is exacerbated by the sheer amount of data — we need to distribute the inference
algorithm over several computers. This means that whenever we resample particles
we need to transfer and update the state of many computers. Such an approach
very quickly becomes infeasible and we need to resort to further approximations.

We make the design choice of essentially following an inference procedure. That
is, we only perform forward inference through the set of dependent variables for
each time step and we attempt to infer zt only given estimates and observations
for t ′ 6 t. This allows us to obtain improving results as time progresses, alas at the
expense of rather suboptimal estimates at the beginning of the inference chain.

A second reason for the design choice to perform forward sampling only is a
practical one: data keeps on arriving at the estimator and we obviously would
like to update the user profiles as we go along. This is only feasible if we need
not revisit old data constantly while new data keeps on arriving. Our setting
allows effectively for an online sampling procedure where we track the current
interest distribution and the nature of interests relative to incoming data. Thus to
summarize our inference procedure incrementally runs a fast batch MCMC over
the data at epoch t given the state of the sampler at earlier epochs.

8.3.5.1 Sampling Details

Our sampler resembles in spirit the collapsed, direct-assignment sampler with
augmented representation as described in [116]. We collapse the topic multinomials
(φt) and compute the posterior over zt given assignments to hidden variables
at previous epochs. As noted in Equation (8.5), sampling z would couple topic
indicators across all users via mt (recall from Figure 8.2 that mtk is the number of
tables across all users serving topic k). This fact is undesirable especially when users
are distributed across machines. To remedy this, we augment the representation by
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Figure 8.4: Synchronization during a sampling cycle.

instantiating and sampling the global topic distribution at time time, i.e. Ωt. Thus
the sampler alternate between sampling zt, mt, and Ωt. It should be noted that
collapsing φt also introduces coupling across users, however we deal with that
using the same architecture in [112].

Sampling ztij: The conditional probability for ztij has the same structure as in
LDA albeit with the previously defined compound prior. We have:

P(ztij = k|w
t
ij = w,Ωt, ñti) ∝

(
n
t,−j
ik + ñtik +ΛΩ

t
) n

t,−j
kw + β̃tkw +β∑
l n
t,−j
kl + β̃tkl +β

(8.6)

where ntkw is the number of times a word w was sampled form topic k (this is
known as the topic-word matrix). The notation −jmeans excluding the contribution
of word j. The structure of (8.6)allows us to utilize the efficient sparse sampler
described in [133] which in fact was another reason to our choice of using the
augmented representation (i.e. instantiating Ωt).

Sampling mtk: Since our sampler does not explicitly maintain the word-table
assignments, we need to sample mtk =

∑
im

t
ik. Where mtik is the number of tables

in user i’s process serving topic k. This last quantity mtik follows what is called
the Antoniak distribution [116]. A sample from this distribution can be obtained as
follows. First, set mtik = 0, then for j = 1 · · ·ntik, flip a coin with bias λΩtk

j−1+λΩtk
, and

increment mtik if the coin turns head. The final value of mtik is a sample from the
Antoniak distribution. Recall that ntik is the number of words expressing interest k
from user i at time t.

Sampling Ωt: By examining the structure of Equations (8.1,8.5), and the equiva-
lence between the construction in Section 8.2.2 and LDA, it is straighforward to see
that P(Ωt|mt, m̃t) ∼ Dir(m̃t + mt +α/K).
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This constitutes a single Gibbs cycle. For each time epoch (day) we iterate this
cycle 100 times over all active users in that day. 100 iterations were enough due to
1) the small size of user observations at each day, and 2) the informative prior from
earlier days.

8.3.5.2 System Aspects

To be able to apply the model to tens of millions of users, we use a distributed
implementation following the architecture in [112]. The state of the sampler com-
prises the topic-word counts matrix, and the user-topic counts matrix. The former is
shared across users and is maintained in a distributed hash table using memcached

[112]. The later is user-specific an can be maintained locally in each client. We
distribute the users at time t across N clients. Each client executes a foreground
thread to implement (8.6) and a background thread that synchronizes its local copy
of the topic-word counts matrix with the global copy in memcached. As shown
in Figure 8.4, after this step, Ωt and mtk should be sampled. However, sampling
Ωt requires a reduction step across clients to collect and sum mtik. First, each client
writes to memcached its contribution for mtk (which is the sum of the values of
mtik for users i assigned to this client), then the clients reach a barrier where they
wait for each other to proceed to the next stage of the cycle. We implemented a
sense-reversing barrier algorithm which arranges the nodes in a tree and thus has
a latency that scales logarithmically with N [89]. After this barrier, all counts are
in memcached and as such one client sums these counts to obtain mt, uses it to
sample Ωt, and finally writes the sampled value of Ωt back to the memcached.
All other clients wait for this event (signaled via a barrier), and then read the new
value of Ωt and this finalizes a single cycle.

8.4 experiments

In our experiments we demonstrate three aspects which are crucial for practical
use of the TVUM for the purpose of user profiling:

• We show that the discovered user interests are effective when used as fea-
tures for behavioural targeting. This holds both in the sense of generating
interpretable features and in the sense of generating predictive models.

• Secondly we demonstrate the scalability of our inference algorithm across
both the number of machines and number of users. In particular we demon-
strate that our algorithm is capable of processing tens of millions of users
quite efficiently. This is over 10 times larger than the largest dataset analyzed
by [112] (they report the largest scale results we are aware of) who only
discuss plain LDA.

• Third, we show that our model and inference algorithm are robust to a wide
range of parameter settings. This means that it is applicable to a wide range
of problems without the need to excessively hand-tune its parameters.
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Figure 8.5: Characteristics of the data sets.

dataset # days # users Voc # campaigns size

1 56 13.34M 100K 241 242GB

2 44 33.5M 100K 216 435GB

Table 8.1: Basic statistics of the data used.

8.4.1 Datasets and Tasks

We used two datasets each of which spans approximately two months. The exact
dates of each dataset are hidden for privacy reasons. In each case we collected
a set of ad-campaigns and sampled a set of users who were shown ads in this
campaign during the covered time period. For each user, we represented the users’
interaction history as a sequence of tokens. More precisely, the user is represented
at day t as a bag of words comprising the queries they issued at this day and the
textual content of the pages they view on this day. This constitutes the input to all
the models discussed in the following subsections. Thus all datasets are Yahoo!
privacy policy compliant, since we don’t retain the precise page the user viewed
on Yahoo! Sports (for instance) but rather retain only the description of the page at
a higher level in terms of words extracted from the content.

For evaluation purposes, we also collect the user’s response to individual ads:
the ads they converted on (positive response); and the ads they ignored either by
not clicking or not coverting post-click (negative response). We used the users’
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Figure 8.6: Dynamic interests of two users.

responses to ads in the last week as a test set and the remaining responses as
a training set. The characteristics of each dataset are shown in Figure 8.5 and
Table 8.1. As evident from Figure 8.5, the first dataset is sparser than the second
dataset which presents a challenge for any model.

Our task is to build a model based on users’ history that can predict whether or
not a user will convert given an ads. We break this problem in two parts. First, we
translate the user’s history into a feature-vector profile using the TVUM and other
baselines. Second, the profiles are used to build an SVM model that is evaluated
over the test set using ROC area under the curve as metrics.

8.4.2 Interpretability

Figure 8.6 qualitatively illustrates our model. For each user we plot the interest
distribution over 6 salient topics. For each topic we print the top words as recorded
in φ. The top part of the figure shows the dynamic interest of two users (User A
— left; User B — right) as a function of time. Our model discovers that A has a
long-term interest in dating, health, and celebrity albeit to a varying degree. In the
last 10 days, A developed a short-term interest in baseball, quite possibly due to the
global rise in interest in baseball (within our dataset). On the other hand B has a
long-term interest in sports and finance; B was interested in dating in the first week,
and was mainly looking for jobs in the last month. These discovered time-varying
features for each user are useful for timely targeting of users with products. The
following experiments buttress this intuition.
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Figure 8.7: Performance vs. number of conversions.

8.4.3 Performance

To show that the proposed TVUM is effective for extracting user interest we com-
pare it to two baselines: a bag of words model (BOW) which does not incorporate
any topical or temporal dependencies, and a static LDA model which incorporates
topical information but no time dependence. The bag of words (BOW) model just
outputs the concatenation of the user history up until time t as its representation of
the user’s interest at time t. This is in fact a very strong baseline. One advantage of
the TVUM is that it is capable of processing user data in an online fashion, that is,
we may estimate the user interest distribution one day at a time, sweeping through
the dataset.

The training data for the SVM consists of the user’s distribution over intent at
time t (or a bag of words alternatively) and the user’s response to the ad. For the
TVUM, we used the following default parameters:1 we set the number of topics
K = 200,β = 0.01,µ = e−1 ≈ .6, κ = κ0 = λ = 1.

In Figure 8.7, we show a comparison between this BOW baseline and the TVUM
as a function of the number of positive conversions in each campaign. In this figure,
we also show a third model that combines the BOW features with the TVUM
features. As evident, our model improves over the baseline in both datasets across
all the campaigns. We observe that, in general, the number of positive examples in
ad campaigns is scarce. Therefore, models that feature a compact representation
of the user’s history overall perform better and can leverage the BOW features to
further improve its performance. We can also notice from this figure that the gain
over the BOW baseline is larger in campaigns with medium to small number of
conversions. We also experimented with a variation of the BOW baseline featuring
BOW+time decay. In this variation of BOW, we use an exponential decay of the
form at

′−t over the word counts in the BOW baseline such that distant history will

1 It is possible to learn µ for users with long history (greater than two weeks). The likelihood of µ
is Drichlet-multinomial compound and µ can be learnt using gradient descent. We leave this as a
future work.
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Table 8.2: Average ROC measure across models (TVUM: time-varying user model, BOW:
bag of words baseline).

BOW TVUM TVUM+BOW LDA+BOW

dataset 1 54.40 55.78 56.94 55.80

dataset 2 57.03 58.70 60.38 58.54

Table 8.3: Time (in minutes) per Gibbs iteration, i.e. time to process a single day for all
users.

topics 50 100 200

dataset 1 50 machines 0.7 0.9 1.2

dataset 2 100 machines 0.9 1.1 1.5

Table 8.4: Effect of the number of topics on predictive accuracy.

topics TVUM TVUM + BOW

dataset 1 50 55.32 56.01

100 55.5 56.56

200 55.8 56.94

dataset 2 50 59.10 60.40

100 59.14 60.60

200 58.7 60.38

Table 8.5: The effect of the topic-decay parameter on the performance of TVUM+BOW.

Decay(κ0) none 1 2 3

dataset 1 200 topics 56.2 56.94 56.51 56.51

dataset 2 100 topics 60.68 60.60 60.40 60.40

be given less weight at time t, however, the best result in this case was obtained
when a = 1 (i.e. ignoring time), thus our model was able to leverage temporal
information in a better way.

To summarize the performance of each model over all campaigns, we give in
Table 8.2 a weighted average of the ROC measure across campaigns, where the
weight of each campaign is proportional to the number of positive examples in the
campaign.

Finally, Table 8.2 also shows a comparison with a static LDA model+BOW
features. Due to the large scale of this dataset, we can not apply batch LDA
directory over it. Instead, we sampled 2M users from the training set and built
a static LDA model over them. Then, we used variational inference to infer our
estimate of the user’s interest at time t, where t can be in the training or test set.
Note here that LDA does not have the notion of a user in the model in a sense
that when predicting the user’s history at time t1 and later at t2, the user history
up until time t1 and time t2 are presented as separate documents to the model.
As evident from Table 8.2, our model beats static LDA on both datasets due to
its ability to model time, and to maintain a coherent representation of the user as
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a time-evolving entity (note that in this application of predicting conversion, an
increase of 1-2 points of the ROC measure is considered significant)

8.4.4 Speed and Efficiency

One key advantage of our model is its ability to process data in an online and
distributed fashion. This allows us to process data at a scale quite unlike any
system that we are aware of. Rather than processing a small number of millions
of documents (i.e. users) [129, 98] while requiring a large cluster of computers,
and rather than being able to process tens of millions of documents without time
dependence [112], we are able to process tens to hundreds of millions of users in a
dynamic fashion at a speed of less than two hours per day of data being processed.
This is quite a significant improvement since it makes topic models suitable for
Yahoo’s user base.

Table 8.3 provides the time for a single Gibbs-sampling iteration for different
number of topics and using different number of machines. Since dataset 2 is almost
double the size of dataset 1 in terms of the number of users, we doubled the
number of machines when processing dataset 2. As shown in this table, the time
per iteration is almost the same across the two datasets. The slight increase in
time for dataset 2 arises because of the cost of synchronization and inter-client
communications which was kept low thanks to the logarithmic complexity of the
tree-based barrier algorithm.

8.4.5 Sensitivity Analysis

We evaluate the sensitivity of our results to the model’s parameters. Bayesian
models depend on the specification of the parameters which encode our prior
belief. However, no matter what prior is used, as long as the prior does not exclude
the correct answer, the model can reach the true conclusion as the size of the
dataset increases (a fact which is true in our application). We first study the effect
of the number of topics and then the effect of the decay parameter κ0 for the topic
distribution over words. The effect of the decay parameter for the global topic
distribution κ was negligible.

Number of Topics: We varied the number of topics in the range 50, 100, 200. Re-
sults are presented in Table 8.4. From these tables, we first observe that the effect
on the final performance is not quite large in both datasets. This is largely due to
the fact that our inference algorithm optimizes over the topic’s global distribution
Ω which allows it to adapt the effective number of topics for each dataset [122].
For dataset 1, the performance increases as we add more topics. This is due to the
sparsity and non-homogeneity of this dataset. Thus, the arrival of new users at each
day requires more topics to model their intents properly. Whereas dataset 2 was
more homogeneous, and as such, 100 topics were enough. We recommend setting
the number of topics in the low hundreds for behavioural targeting applications.

Topic-Distribution Decay: Decaying the topic’s word distribution has two impor-
tant roles. First, it allows the model to recover from a poor initial estimate, and
second, it enables the model to capture drifts in the topic’s focus. As shown in
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Table 8.5 this feature helps in the first dataset due to the initial poor estimate of the
topics in the first few days because of the low number of available users. However
for the second homogeneous dataset, the performance slightly increases if we turn
this feature off. We recommend setting κ0 to a value between 1 and 3. It is possible
to learn this parameter, however, this requires the storage of all the past topic
distributions over time which is prohibitive in terms of storage requirements. In
our implementation, because of the form of the decay function, we only need to
discount the topic-word counts at the end of each day and use this as the initial
estimate for the following day.

8.5 related work

The emergence of the web has allowed for collection and processing of user
data magnitudes larger than previously possible. Thus has resulted in spike of
interest in user data analysis and profile generation as reported in [36, 52, 74, 79].
Profile generation has been reported for a few different applications. In [114]
the authors describe profiles for search personalization. Here, the authors build
profiles based on the query stream of the user and users similar to it. The authors
also report an alternative that is based on the relevance feedback approaches in
information retrieval over the documents that the user have perceived as relevant.
Both techniques are orthogonal to the work presented in this paper and could be
used to produce a potentially richer set of of features that will serve as an input to
the topical analysis.

User profile generation is also studied in other online settings and also for
content recommendation (e.g., [61, 76, 80]). Most of these focus on detecting the
user’s short term vs long term interest and using these in the proposed application.
In our case, we blend the short term and long term interests into a single profile. A
survey of user profile generation can be found in [52].

In the area of audience selection, Provost et al. [108] have recently shown that
user profiles can be built based on co-visitation patterns of social network pages.
These profiles are used to predict the performance of brad display advertisements
over 15 campaigns. In [36] the authors discuss prediction of clicks and impressions
of events (queries, page views) within a set of predefined categories. Supervised
linear poisson regression is used to model these counts based on a labeled set of
user-class pairs of data instances.

While there are many profile generating algorithms satisfying a partial set of
requirements outlined in this paper we are unaware of methods covering the entire
range of the desiderata. In the topical analysis area, there are many predictive
algorithms which try modeling the observed data via static generative model. The
examples include singular value decomposition of the (user, action) matrix thus
yielding a technique also known as Latent Semantic Indexing [44] or more advanced
techniques such as Probabilistic Latent Semantic Indexing [64] or Latent Dirichlet
Allocation [21]. However, while reducing the dimensionality of the space (the
number for unique features), LSI and PLSI yield a dense vectorial representation.
All of these approaches are static in terms of the user and to be able to apply new
data we need to recompute the topical model from scratch. Finally, several models
exist in the literature that could accommodate the evolution of topic global trends ,
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topic distribution over words [27, 67] and the number of topics [12]. However, we
are not aware of any attempts to model the intra-document drift of topics which
corresponds to a user in our application – which is the main contribution of this
paper.

8.6 conclusion

In this paper, we addressed the problem of user profile generation for behavioural
targeting. We presented a time-varying hierarchical user model that captures both
the user’s long term and short term interests. While models of this nature were not
known to scale for web-scale applications, we showed a streaming distributed infer-
ence algorithm that both scales to tens of millions of users and adapts the inferred
user’s interest as it gets to know more about the user. Our learnt user representation
was experimentally proven to be effective in computational advertising.

There are several directions for future research. First, we focused in this paper on
the dynamic aspect of user profiles, and integrated all available user actions into
a single vocabulary. While this approach seems promising, it would be beneficial
to model each facet of the user action independently perhaps using a different
language model for each facet. It is also possible to build a supervised model as in
[28] that uses the users’ responses to historical ads in inferring the user’s interests.
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C O N C L U S I O N S A N D F U T U R E W O R K

Online content has become the mean for information dissemination in many
domains. It is reported that there are 50 million scientific journal articles published
thus far [71], 126 million blogs 1, an average of one news story published per
second 2, and around 27 million tweets per day. With this diverse and dynamic
content, it is easy for users to miss the big picture in a sea of irrelevant content.
In this thesis we focused on building a structured representation of content and
users and derived efficient online and scalable inference algorithms to learn this
representation from data. We have the following conclusions:

• Mixed membership models and non-parametric Bayesian models are very flexi-
ble and modular framework for modeling both users and content. We have
demonstrated this flexibility by considering two different problems (temporal
dynamics and multi-faceted content) and addressing them in two different
domains (social media and scientific publications).

• Non-parametric Bayesian models are not slow. It is true that exact posterior infer-
ence in graphical models in general is an intractable problem, however, the
posterior distribution is mostly peaked in real world applications, especially
when there are large data, and as such the posterior distribution can be
efficiently approximated. Moreover, we have demonstrated in this thesis that
such models can be made to work on large scale (Chapter 8) and on real time
(Chapter 5).

• Unlabeled data helps. While this fact is not surprising, we have demonstrated
this fact on this thesis using the two domains we considered (as well as in a
related work in the context of deep architectures [14]).

• Tightly-coupled variables are key to discover structure in the data. For instance
the tight relationship between the story indicator (or ideology) of the doc-
ument and its topic distribution (Chapter 5 and 7) were key to the success
of these models. However, tightly-coupled variables make inference challenging
especially when all the tightly-coupled variables are hidden as is the case
in Chapter 5 and in the semi-supervised model in Chapter 7. Usually this
problem is solved by using a blocked sampler that samples the coupled
variables as a block, however this is intractable in our models since this
requires sampling from a joint distribution whose size is exponential in the
number of words in the document. In this thesis we proposed to carry a
few iterations of a restricted Gibbs scan over those coupled variables and use a
posterior sample from this scan as a proposal. This idea was inspired by the
split-merge sampler proposed by Neal [68]. We have shown that this proposal

1 http://www.blogpulse.com/
2 Personal communication with the Yahoo! news team
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works well inside a Metropolis-Hasting sampler in Chapter 7 and inside a
sequential monto Carlo algorithm in Chapter 5.

We identify three directions for future work:

• Dynamic multi-faceted models: while we addressed the problems of modeling
dynamic and multi-faceted content separately in this thesis, the modularity
of our approaches makes it easy to combine our models. For instance, with
such models one can examine how different ideologies converge and diverge
over time with regard to their views on several issues.

• Joint models: in this thesis we addressed the problem of modeling scientific
figures separately from modeling research papers. However, a joint whole-
paper model would enable building better information retrieval systems.

• Supervised models: it is also interesting to close the loop in the user model
proposed in Chapter 8 and use the user’s response to the recommend content
in the model using supervised topic models [28, 139]. Moreover, integrat-
ing user-user relationships form social network is another fruitful direction
for future work perhaps using elements from our earlier work in network
modeling[8, 6, 95]
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