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Carnegie Mellon University Instituto Superior Técnico
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Abstract

Statistical Parametric Speech Synthesis (SPSS) offers flexibility and
computational advantage compared to other methods for Text-to-Speech
Synthesis. While the speech output is intelligible, statistically trained
voices are less natural due to the amount of signal processing and statis-
tical averaging that goes into building the models. Much of the blame
for the lack of naturalness falls on the inappropriate and monotonous
prosody in synthesized speech. The voice source, which directly effects
the prosody, is a complementary source of information than the vocal
tract and has its own patterns that need to be dealt with appropriately.
Under this hypothesis, this thesis investigates the representations and
optimal strategies for prosody modelling within the SPSS paradigm.

We propose the Statistical Phrase/Accent Model (SPAM) of intonation
as a framework that is both (i) a computational model with associated
training and synthesis methods for prosody and (ii) has strong theo-
retical basis for prosodic description. The SPAM framework combines
the strengths of existing complementary views of intonation like Au-
tosegmental Metrical Phonology, Production paradigms like the Fujisaki
Model and purely computational approaches like the TILT model. We
demonstrate Accent Groups, a new data derived phonological unit, as
the optimal representational level to model Pitch accents and integrate
it within a multi-tier phonological model to synthesize natural and ex-
pressive intonation contours. In addition to improving text-to-speech
synthesis, the framework is shown to improve voice conversion, both
intra-lingually across speakers, and cross-lingually across languages.

We apply the proposed techniques on synthesis of Audiobooks by
incorporating richer semantic and contextual features beyond the sen-
tence. We also look at the closely related problem of voice conversion
within the SPAM framework to more effectively capture the speaking
style of a target speaker. The techniques are also applied for the case of
cross-lingual voice conversion, in the context of speech-to-speech ma-
chine translation which aims to automatically dub a video into a target
language, while preserving the speaker’s intent in the original language
after translation. Appropriate objective and subjective evaluations are
conducted to show the performance of the proposed techniques.
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Chapter 1

Text-to-Speech Synthesis

Text-to-synthesis is the technology that aims to generate speech output from text
input. There has been a long tradition in the practice of speech synthesis from the
early attempts by Wolfgang von Kempelen in eighteenth century using physical
models, to today’s pervasive use of the technology in popular products like Apple’s
Siri, Google Now etc. This chapter provides a brief overview of the field over the
decades with a description of the current state-of-the art. The narrative is attempted
to lay the foundation for the rest of the thesis. While this chapter is aimed to provide
a holistic view of the technology, some concepts beyond the scope of this thesis may
be grossly omitted or treated only cursorily.

1.1 Human Speech production

Before reviewing speech synthesis by computers, it is illustrative to understand
the speech production process in humans. The first stage in speech production
in humans is at speech planning in the brain at the semantic level. The planned
concepts are then realized as a sequence of words, and phonemes in the language in
the speech motor cortex and the associated stimuli are sent to the speech production
faculties, namely the lungs, vocal cords and the speech articulators [Bouchard et al.,
2013]. Figure 1.1 shows the speech production apparatus in humans.

Air from the lungs when released under pressure passes through the vocal cords
causing them to vibrate at regular intervals to produce voicing in vowel sounds like
/ae/ ( as in cat) or /iy/ (as in heat), and remain relaxed, not vibrating during the
production of unvoiced consonants like /s/ (as in hiss) or /hh/ (as in hat). The
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4 Chapter 1: Text-to-Speech Synthesis

Lung 
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Oral  
Cavity

Lips

Figure 1.1: Illustration of the human speech production showing the voice source
and vocal tract

frequency at which the vocal folds open and close is referred to as the fundamental
frequency (denoted F0) of speech, it is therefore non-existent during the production
of unvoiced consonants. The excitation of the vocal folds is further modified by
the other articulators like the velum, palate, teeth, lips and nose. These along with
the shape of the mouth, tongue and the position of the tongue constriction (the
place and manner) add higher frequency resonances to the speech that enable us to
produce different phonemes of the language. Phonetics is the subfield of linguistics
that deals with aspects of production and perception of different sounds [Stevens,
2000]. A related field is of Phonology that deals with the systematic organization of
the sounds to form different words in the language [Chomsky and Halle, 1968].

Much like in the case of text, realizing notions of grammar, syntax and semantics
is not straightforward in speech, which is a more complex and continuous phe-
nomenon [Steedman, 2013]. Hence the variance when different speakers utter the
same sentence or the same speaker utters a sentence in different ways in different
contexts. The speech produced also depends on para-linguistic factors that effect
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the speaker like emotional state, context of the sentence, speaking environment,
listener’s level of interest and the social distance. Given the same string of words,
there is more than one way of uttering it in order to convey different meanings or
varying degrees of expression of the same meaning as relevant to its context.

Given a sentence, it is uttered in phrases that are separated by long or short
pauses. Each phrase is delivered by speaking every word with the right level of
intensity and emphasis to effectively convey the underlying intent of the sentence
as appropriate for its context. There are hence two aspects in spoken language (i)
what has been said in an utterance ? — the underlying sequence of words and (ii)
how it has been said ? — all non-verbal detail that cannot be alluded to in text (also
known as its prosody, more on this in Chapter 2).

1.2 Historical Overview

Early attempts at speech synthesis were done through physical models of the human
speech production apparatus [von Kempelen, 1791]. Air was pumped through
constrictions and tubes to simulate the vocal tract. However, these attempts were
purely meant for educatory purposes to advance our understanding of phonetics
and were only moderately successful in synthesizing various speech sounds. The
next well known synthesizer was the Voder [Dudley, 1938] by Bell labs which
was a combination of several electro-mechanical devices which were manually
operated to produce certain English phonemes. The most significant development
then was the invention of the spectrogram, a spectro-temporal representation of
speech that spawned a sub-area called Acoustic Phonetics which dealt with the
study of spectral properties of vowels and consonants [Jakobson et al., 1952]. These
studies lead to the development of Formant synthesizers that aim to completely
reconstruct speech from a carefully recorded set of parameters and a cascade of
filters designed to mimic the resonances of the vocal tract [Klatt, 1980]. These values
were manually recorded by experts by observing the spectrograms of phonemes
recorded in different contexts.

The next paradigm of concatenative speech synthesis is made possible largely
due to the advances in digital storage and processing techniques. Segmented speech
instances are joined together optimizing certain acoustic distance measures over
a voice database of the target speaker’s recorded speech. These could be sub-
word instances like diphones [Olive et al., 1993], or longer units, as available in
a ‘large’ database from the desired speaker and speaking style. These techniques
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are known for the naturalness in the resulting voice, because segments of natural
speech are joined together, pitch synchronously to generate the target sentence. It
is worth mentioning that Unit Selection [Hunt and Black, 1996], a concatenative
synthesis technique (or a close variant of it) remains the preferred technique for
most commercially available speech synthesizers and is still widely researched in
several languages.

A complementary paradigm of statistical speech synthesis [Tokuda et al., 1995]
has emerged with advances in automatic speech analysis and synthesis techniques.
The so called Statistical Parametric Speech Synthesis (SPSS, [Zen et al., 2009]) sys-
tems are currently among the most researched systems and are garnering immense
interest due to their reliability, ease of training and relaxed requirements on the size
and consistency of the speech database. The techniques presented in this thesis are
developed for (and within) the SPSS paradigm and a brief introduction is provided
in the following section.

1.3 Statistical Parametric Speech Synthesis

The premise of statistical parametric speech synthesis is that speech can be re-
constructed from parametric representations that can be automatically extracted
and predicted from text. This is the main contrast that differentiates it from the
concatenative techniques in that it doesn’t contain any real speech as the model,
but just the statistics of speech representations [Zen et al., 2009]. In this section,
we will briefly look at the components of an SPSS system.

As with all statistical systems, there is a training phase which involves building
source and filter models that are used at test time to generate speech. Each word is
expanded as a sequence of its constituent phonemes. Within the Clustergen SPSS
system [Black, 2006], each phoneme is modelled as a 3-state Markov sequence
(shown in Fig. 1.2). An appropriate spectral representation of speech is selected
and the speech is analyzed into this feature representation. Usually these are LPC
or MFCC features over a short window (called frame, analysed over a window
of 25 millisecond with a shift of about 5 millisecond) of speech. All the speech
frames belonging to a single state are pooled together and their statistics (Gaussian
mean/variance) are estimated.

The first step in creation of an SPSS voice is the sub-phonetic segmentation
of the entire training data. Data-driven techniques using Hidden Markov models
are often employed for segmentation [Prahallad et al., 2006]. In the next stage,
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aa_1 aa_2 aa_3

Figure 1.2: Modeling each phoneme as a 3 state Markov chain in SPSS

speech is analyzed into parametric representations. The models are then built to
predict these representations only from text input. In order to effectively capture the
variance within the entirety of training instances, the contexts are typically clustered
using decision trees using linguistic, syntactic and positional features, shown in
Fig. 1.3. The intermediate nodes of these trees include discrete or continuous valued
questions about each training instance and the leaf nodes contain the statistics of
the frames that fall within those set of questions. A fully trained voice consists of
models for the spectra, F0, and duration for each phoneme state.

Phone is aa

word final syllable stress

duration 
< 0.23

SyntaxSemantics

Context

Figure 1.3: Contextual decision trees for storing statistics of spectra, F0 and duration

At runtime, for synthesizing speech, text input is analyzed and normalized for
expansion of abbreviations, number sequences etc [Sproat et al., 1999]. A phrasing
model then ‘parses’ the words into groups of words that are uttered with pauses
between them [Parlikar and Black, 2011]. This is followed by a dictionary lookup
(or prediction using letter-to-sound rules) to convert the word string to a string of
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phonemes. At runtime, the trained spectral and prosodic decision trees are traversed
to predict the optimal parameters [Tokuda et al., 2000] that are converted to speech
using an inverse filter [Tokuda et al., 1995]. Figure 1.4 illustrates this sequential
pipeline architecture showing the different stages in conversion of text to speech.

Text Analysis

Lexical lookup

Phrasing Postlexical Rules Duration

Spectral 
Prediction

F0 
Prediction

Waveform synthesis

Alice was beginning to get ....

Figure 1.4: Runtime architecture of an SPSS system, synthesizing speech from text

The SPSS paradigm offers several advantages in that it can generate acceptable
and intelligible voices without requiring large, consistent and high quality speech
databases. Also the design of a parametric representation makes it amenable to a
variety of transformation scenarios like speaker transformation [Toda et al., 2007],
changing the voice characteristics for a noisy ambience [Anumanchipalli et al.,
2010] or for synthesizing a different language [Anumanchipalli and Black, 2010].
However, SPSS techniques are far from sounding natural, with most qualitative
assessments characterizing the synthetic voice as sounding robotic and unnatural.
Current research in SPSS has been to largely improve the naturalness of statistical
voices and in this thesis, we improve SPSS by focussing on the prosody modelling.

1.4 Thesis Statement

We’ve seen that SPSS techniques have advanced to a stage where they are completely
intelligible. This is very much to the credit of advances in spectral modelling and
optimal prediction strategies. While the voice quality of SPSS based systems is
acceptable and intelligible, often better than Unit Selection systems, they score low
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on the naturalness and preferrability metrics than the latter [King and Karaiskos,
2009].

Qualitatively, SPSS voices are perceived to be lacking in expression compared to
high quality Unit Selection voices, mainly due to the monotonous and inappropriate
prosody of the synthesized speech due to the averaging out of speech frames from
different contexts. Earlier techniques have dealt with F0 as yet another parameter
stream with the spectrum and the same modelling techniques have been used to
model spectra and F0 [Black, 2006, Zen et al., 2007]. This is sub-optimal since F0

has its distinct perceptual function and its own acoustic patterns that distinguish
it from the more quasi-static spectral features. To corroborate this hypothesis, this
thesis aims to show that —

“It is possible to model intonation in a way that is both theoretically sound and
computationally feasible for (i) synthesis of expressive prosody in Text-to-Speech; and
(ii) for conversion of speaking style across speakers and languages.”

We propose a model for computational prosodic description — including its
analyses, modelling and conversion. We evaluate the proposed model by application
to creation of high quality text-to-speech systems in prosodically diverse tasks. The
framework is further exploited for the closely related problem of voice conversion.
This includes applications to conversion between two speakers in a language and in
the context of speech-to-speech machine translation between two languages.

1.5 Thesis Contributions

The following are the contributions of this thesis in speech synthesis and voice
conversion —

• Prosody modelling in SPSS: We improve state-of-the art statistical parametric
speech synthesis by proposing a multi-tier phonological intonation model
(SPAM) for generation of F0 at synthesis. We consolidate complementary
views of intonation to empirically determine the optimal phonological unit to
model intonation, a very practical engineering approach to validate findings
in speech science and for application in speech synthesis technology.

• Automatic discovery of Accent Groups: We use a linear time algorithm that
determines accent groups, a data-derived phonological unit which, besides im-
proving SPSS, can be exploited to bootstrap speech synthesizers in languages
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without writing systems.

• Audiobook Synthesis: We apply the proposed models for synthesis of tasks
with increasing prosodic variety. We incorporate richer semantic features
and propose techniques for synthesis in the context beyond the sentence,
evaluating this on multi-paragraph text input like audiobooks.

• Style capturing voice conversion: A 2-level approach is proposed for F0

transformation in voice conversion using the SPAM framework. It is shown
to be more sensitive to the speaking style of the target speaker than existing
approaches.

• Intent transfer in Speech Translation: We describe an approach to transfer
the original speaker’s prosody appropriately into a target language within the
context of speech-to-speech machine translation. The method uses a parallel
speech corpus from a bi-lingual speaker to learn the right transform functions.
These approaches are extended to automatic dubbing of videos into a target
language while preserving speaker intent in the original language.

1.6 Organization of this Thesis

The necessary background into Prosody and related work in intonation is provided
in Chapter 2. Chapter 3 investigates various phonological units as the modelling unit
for intonation. Chapter 4 introduces the proposed Statistical Phrase/Accent Model
as a framework for intonation modelling within SPSS and provides the necessary
empirical justifications for it.

As applications of the proposed SPAM framework, Chapter 5 describes synthesis
strategies for Audiobooks, with the integration of higher level linguistic information.
Further, the SPAM framework is applied for voice conversion, in Chapter 6 presenting
a case for a 2-level approach to voice conversion across speakers. Chapter 7 describes
an approach for transferring prosodic prominence cues across languages in a speech-
to-speech Machine Translation system. Conclusions and potential future work based
on this thesis are presented in Chapter 8.



Chapter 2

Prosody in Text-to-Speech

This chapter gives an overview of prosody — its parts, functions and theories as a
reference for the concepts introduced in the following chapters. Prosody is that part
of spoken language dealing with how a sentence is delivered, hence encompassing
all non-verbal aspects of the utterance. There are many competing views on prosody,
often at odds with one another, both in analysis and synthesis. These are all valid
theories with no one unified paradigm of description, alluding to the complexity
and richness in prosodic form that humans employ in spoken communication. Once
again, it is impossible to review all existing paradigms of all aspects of prosody.
This chapter only highlights those parts that are relevant for the reminder of the
thesis. More comprehensive accounts on Prosody may be found in [Taylor, 2009,
Chapters 6 & 9].

2.1 Prosody in Spoken Language

As the broad phenomena that manifests the manner in which a sentence is uttered,
there are several acoustic components to what constitutes prosody. These include
the phrasing patterns, rhythm and intonation, which is the pitch or tune of the
utterance. Of these, intonation forms the most important part of prosody, to the
extent that both the terms are used interchangeably. Phrasing and duration are the
other major elements that constitute prosody.

Duration (Segmental duration) refers to the time that the speaker spends within
each phoneme in delivering the utterance. Several low level factors like phonetic
context, prominence of the associated syllable, word and phrase effect the segmental

11



12 Chapter 2: Prosody in Text-to-Speech

duration.

Phrasing refers to the process where in speakers group words within an utterance,
each group separated by a short or long pause. Given a sentence, there are several
valid ways of grouping the words and laying different pause durations in speaking
it. While there exists an agreement that phrasing occurs in systematic ways that
are generic across speakers (to a certain extent), there is no universally accepted
theory on how to describe phrasing. This is because there is no direct relation
between the linguistic syntax and prosodic phrasing. It depends on many acoustic
and phonological constraints factors like the speaking rate, number of words and
more importantly, the general idiosyncratic traits of the speaker.

Intonation forms a major part of prosody (and this thesis). The term intonation
is used to refer to the systematic way in which speakers employ Pitch to convey
the underlying meaning in a sentence. Pitch is the perceptual correlate to what
listeners perceive as the overall tune of the utterance. Pitch itself is directly related
to the Fundamental Frequency (or F0) of the speaker’s vocal cords while speaking
the sentence. Informally, the terms Pitch contour, Fundamental Frequency and
Intonation all refer to the same notion of spoken communication. Fig 2.1 shows
an example F0 contour of an utterance by a female news reader from the Boston
University Radio Speech Corpus [Ostendorf et al., 1996]. (All F0 contours illustrated
in this thesis are extracted using methods described in [Yegnanarayana and Sri
Rama Murty, 2009], and interpolations are carried out over all non-silence, unvoiced
regions to model F0 as a continuous phenomenon over each phrase).

 0

 50

 100

 150

 200

 250

 300

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

F0

Time (in 5 millisecond frames)

Smooth interpolated F0 contour
Raw F0

Figure 2.1: A smooth F0 contour interpolated through unvoiced speech regions
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It can be seen that the raw F0 (green dots) is non-existent in unvoiced regions,
in contrast to the smooth F0. The smoothed F0 interpolated through the unvoiced
regions also removes some spurious candidates, there by generating contours that
can be continuously analyzed with respect to the underlying text. Following the
notation introduced by [Bolinger, 1986], Fig 2.2 shows the word sequence for the
same utterance as Fig 2.1 where the words are placed roughly at their mean pitch
during the delivery of that word.

 0
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F0

Word sequence

Word sequence in Bolinger's notation

A

nineteen

eighteen

state

constitutional
amendment

made

Massachusetts

one

of
twenty

three

states

where

citizens can

enact
laws

by
plebescite

Figure 2.2: Pitch aligned word sequence in Bolinger’s notation for the sentence “A nineteen-
eighteen state constitutional amendment made Massacheussetts one of twenty three states
where citizens can enact laws by plebiscite.”

The relative pitch differences between the words signify different levels of
importance, for the information conveyed in the sentence. This is given by the
novelty of the concept introduced and the speaker’s intention of where she wants
her listeners to focus on. It can be seen that the speaker has quite effectively
used her F0 to lay emphasis on the words in the sentence in the context of the
longer paragraph (not shown in Fig 2.1). Of course this representation shows only
word level differences, but the same holds at the syllabic or phonetic levels as
appropriate to the lexical stress (primary or secondary etc.,) or accentedness levels
of the associated syllables.

The overall trend of the F0 broadly reveals the type of the sentence. For example,
in English, questions are likely to have a contour rising towards the end of the
utterance and declarative/neutral statements may have a falling contour. The
emotional state of the speaker (anger, happiness, sadness, fear, disgust and surprise)
also effects the intonation showing a wider or narrow dynamic range, according to
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the speaker state.

The two important aspects that are widely discussed of the F0 are the excursions
(or tones) on the contour from the global trends, the highs and lows; and boundary
tones, the trajectory of the contour immediately before the phrase boundaries.
Bolinger himself was the first to coin the term Pitch Accent, to refer to the recurring
excursions that add the intended meaning to the underlying text.

Beyond the phenomena identified, there are additional aspects like affective and
augmentative prosody that add some redundant variance (and microposody, the
local flutter) to the contour to ensure ample information is provided to the listener
to decode the intended meaning.

2.2 Prosody Modeling in TTS

In TTS, Phrasing is the first step in the synthesis of prosody (refer Fig. 1.4) and
has a direct bearing on all subsequent stages like F0 prediction in the synthesis
pipeline. Traditionally, a shallow decision is made at each word boundary, whether
or not there should be a phrase break in that context. Parts of speech and positional
information are used as features for classifiers that assigns breaks (or not) at
each word boundary [Black and Taylor, 1997]. These models are trained on a
segmentations of a standard speech database. Recent techniques show the speaker
dependency of phrasing patterns and claim improvements by explicitly modeling
speaker and style specific phrasing patterns [Parlikar and Black, 2011].

In the Clustergen SPSS system [Black, 2006], duration models are used to
predict the segmental durations of each phoneme state. The spectra and F0 are
then predicted using trained CART models for each frame (5 millisecond duration).
These decision tree models have syntactic and contextual questions that are both
categorical and continuous) as the intermediate nodes. In all, the Clustergen system
uses 61 base features in training the trees. Table 2.1 lists some of the features used.

While the modeling unit changes for the parameter streams (sub-phoneme
state for duration and frame for spectral and F0 modeling), the features used
for clustering are about the same. There are some differences between different
implementations of SPSS – HTS [Zen et al., 2007] predicts even F0 and spectra
at the level of the sub-phoneme state and performs optimal interpolation through
the frames. OpenMary [Schröder and Trouvain, 2003] predicts a target value for
each word before interpolation. For the frame-based Clustergen system, an example
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Table 2.1: Some contextual/lexical features used in CART model training.

phoneme identity durational features (if available)
phoneme state relative and absolute positions in phoneme state
positional features features of the phoneme/syllable/word
#content words in left/right distance from phrase boundary
#syllable coda/rhyme characteristics presence of minor/major phrase boundary
Parts of speech All of the above for previous/next units

#syllables in word
...

predicted contour for an unseen test sentence is shown in Fig. 2.3. The same
durations employed in the reference speech are used for prediction to allow the
direct comparison of the F0 contours.
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Figure 2.3: Predicted F0 contour against an unseen sentence’s smooth F0 contour

It can be seen that the predicted contour (in solid red) is relatively not as smooth
as the original contour. The same value for F0 is predicted for many consecutive
frames. This is because the features used for clustering do not have a low enough
resolution to discriminate F0 at the level of the frame. This causes the synthetic
speech to sound unnatural. Smoothing techniques after prediction have shown little
improvement to improve the synthesis quality.

Another problem is that of reduced dynamic range of the synthesized contours.
Again, this is because the linguistic features used are very rudimentary and cluster
semantically distinct regions together. This is what causes the synthetic speech to
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sound monotonous and void of any affect, which we saw was the main goal of
intonation. To empirically confirm this, Table 2.2 shows the mean and standard
deviations in the values of predicted and original F0 contours for 45 test sentences
for a Clustergen voice built on [Ostendorf et al., 1996, Speaker F2B]. Note the
significant drop (about 13 Hz) in the variance of predicted contours.

Table 2.2: Comparison of F0 mean/ranges for the original and synthesized F0

F0 source mean range (std/dev)
Reference F0 167.85 30.28
Predicted F0 168.67 18.55

These drawbacks exist across all SPSS systems, and work arounds like artificially
increasing the variance have been proposed [Toda and Tokuda, 2007] to improve
the perceived naturalness of synthesis outputs. The goal in this thesis is to improve
the naturalness and acceptability of SPSS voices through improved modeling of F0.
Towards this goal, the following sections provide an overview of general paradigms
in understanding intonation, and computational F0 modeling techniques.

2.3 Paradigms in Intonation

Intonation has evolved into a field of its own that is thoroughly researched across
diverse disciplines including, speech synthesis, psycholinguistics, language process-
ing, speech pathology etc. While the interest in the latter fields of enquiry is in
analyzing how pitch systematically complements or presents underlying intent, in
speech synthesis, there is the additional goal of generating appropriate contours
only from text input. With this in view, we also comment here on the relevance of
each approach discussed for use in Text-to-Speech synthesis.

2.3.1 Intonational Phonology

The premise of Intonational Phonology, is quite literally that there is a phonological
organization to pitch contours. While this is obvious for tonal languages like Man-
darin, where relative pitch differences among the tones are phonetically perceived
to refer to different words, the hypothesis here is that even in intonational languages
like English, there is a phonological basis, that is to serve some linguistic purpose to
convey the underlying semantics [Ladd, 1996].
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Pierrehumbert’s influential work on the phonetics and phonology of American
English [Pierrehumbert, 1980], and earlier works on Autosegmental Metrical(AM)
phonology [Liberman, 1975, Bruce, 1977] laid the groundwork for the current
scope of Intonation Phonology. This was (and is still being) extended to several
European and Asian languages. Ladd identifies the following four tenets of the AM
theory that form the basis of much of the discussion in Intonation Phonology. These
are —

1. Sequential tonal structure: Describing the pitch contour as a sequence of events
associated with the underlying segmental string. Between such events, the
contour is phonologically unspecified and merely serves as transitions between
the events

2. Distinction between Pitch Accent and stress: Though pitch accents serve as
perceptual cues to stress or prominence, they are part of a larger prosodic
organization of the sentence and are distinct both functionally and acoustically
from lexical stress on accented syllables.

3. Analysis of pitch accents in terms of level tones: Pitch accents and boundary
tones can be qualitatively analyzed as consisting of primitive level tones or
pitch targets, High (H) and Low (L).

4. Local sources for global trends: The phonetic realizations of a pitch accent
(actual trajectory of the contour) is entirely complementary to the tone identity
as an H or L, that are dependent on other factors like its position in the
utterance etc.

A practical exposition of these tenets is proposed and an analysis scheme for
studying intonation has developed as the ToBI standard (Tones and Break In-
dices [Silverman et al., 1992]), extending Pierrehumbert’s original recommenda-
tions for F0 analysis. The scheme recommends combinations of the H and L symbols
marking all phonologically interesting events with this notation, denoting with a
‘*’ for the accents and a ‘%’ for the phrase boundary. Fig. 2.4 shows an expert
annotation of a pitch contour under the ToBI scheme.

Once annotated, discussion in intonational phonology then is on the sequence of
events, and what they functionally signify in the speech, how each speaker, dialect or
language may use these uniquely shaped events to cater to distinct communicative
needs. As a framework to ‘explain’ the pitch contour in tandem with the underlying
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Figure 2.4: A smooth F0 contour annotated with ToBI labels

segment sequence, ToBI is very successful and spawned several parallel lines of
enquiry.

The biggest bottleneck in this approach is getting the annotations itself. ToBI
annotation is very subjective and takes lot of effort to identify which events are
phonologically relevant. Also, the inter annotator disagreement is quite high even
among experts. Though there are current efforts to automate the annotation pro-
cess [Rosenberg, 2010], the fundamental qualitative nature of the framework makes
it unsuitable for TTS as such. There have been methods for synthesis [Anderson
et al., 1984, Black and Hunt, 1996] that convert tone sequences to a pitch contour
but these are either rule driven and/or expect a tone sequence, thereby not scaling
to general TTS systems. This also holds for rest of the research in speech sciences
which remain qualitative and descriptive but offer little predictive knowledge about
intonation [Xu, 2012], an invariable requirement for TTS.

2.3.2 Production Models

A parallel view of intonation based on human speech production was independently
proposed as the now famous Fujisaki model [Fujisaki, 1983]. The model is rooted
in the fact that while speaking, the sub-glottal pressure decreases over the length of
the phrase. This causes lesser velocity of air passing through the vocal cords causing
the fundamental frequency to decrease towards the phrase end.

Consequently, the approach recommends 3-level additive modeling of the log-
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arithmic F0
1 contour comprising the baseline, phrase and accent commands. The

baseline contributes to the minimum value of pitch for the speaker. The phrase
and accent commands themselves are each modelled as critically damped second
order filters, generating steep declining contours, controlled by parameters. While
the original formulation recommended using a constant value for a speaker, later
techniques have shown benefit with variable values depending on the task and
sentence type. Figure 2.5 illustrates the Fujisaki model where the F0 is formed
additively by the three underlying baseline, phrase and accent components.
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Figure 2.5: Fujisaki model — ln (F0) as a superposition of the baseline, phrase and accents.

Though Fujisaki model was initially developed for Japanese declarative sen-
tences, it is later developed in other languages. While the original method prescribed
expert annotation to mark the beginning of the accent and phrase commands, auto-
matic techniques are now used for extraction of Fujisaki parameters from directly
from speech data [Mixdorff, 2000]. The Fujisaki model offers an elegant expla-
nation for the general overall trend of ‘declination’ (or ‘downdrift’) of F0 over the
phrase, however, the model is incapable of synthesizing arbitrary F0 contours. By
design, the model assumes a falling contour, consequently not generating phrase
final rises (like question utterances that have a definite rise towards the end). Also
the recommendation of a constant value for the filter parameters cannot explain
arbitrary pitch contours with a wide variety of events on them, not necessarily
steeply falling.

While providing a sound mathematical formulation for F0, the Fujisaki model
doesn’t relate the process (or the commands) to an underlying linguistic structure,

1Logarithmic F0 is related to semitones, making the notion of superposition tangible.
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making the model unsuitable for use directly in a TTS system. Where as in TTS, we
have only text from which F0 contours need to be predicted.

The idea of modeling F0 as an additive phenomenon, however, gained traction
with many techniques falling within the paradigm of super-positional contours [Sun,
2002, Bailly and Holm, 2005, van Santen et al., 2005, Sakai et al., 2009, Anu-
manchipalli et al., 2011, Wu and Soong, 2012], the recent techniques even under
the SPSS paradigm.

2.3.3 The Tilt Model

With a view to develop a purely engineered description of the pitch contour, Taylor
developed the Tilt model [Taylor, 2000a], with exact analysis and synthesis methods.
Fundamentally, Tilt subscribes to the AM theory in describing the F0 contour as a
sequence of events connected by transitions. However, rather than categorizing
these shapes, Taylor proposes using continuous feature tuples that can losslessly
(almost) code the shape in terms of the event amplitude duration and a shape
descriptor that can represent any arbitrary shape between a complete rise (+1) to a
complete fall (-1).

rise 
amplitude

rise 
duration

fall 
duration

fall 
amplitude

+1 +0.5 0.0 -0.5 -1

|Arise | - |Afall|

|Arise | + |Afall|
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|Drise | - |Dfall|

|Drise | + |Dfall|
tiltdur= 

tilt = 
tiltamp+ tiltdur

        2
a) b)

c)

Figure 2.6: a) Analyzing each intonational event using its rise/fall values. b) three
parameters to code any arbitrary rise/fall event c) Examples of 5 pitch accents with the
continuous tilt value ranging from -1 to +1
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Similarly, Taylor proposed synthesis methods that use the tilt parameter tuple
to synthesize an appropriate event bearing those values. The approach also ‘links’
each intonational event to an underlying segmental sequence of syllables, where
every accented syllable is linked to an event on the pitch contour. The connections
are prescribed to be linear from the end of one event to the beginning of another.

While the Tilt model is not fundamentally rooted in the physiology or phonology
of speech, it offers several practical advantages in that it can automatically analyze
and synthesize arbitrary contours (hence evading the problems of the other models).
[Dusterhoff et al., 1999] further applies the Tilt model to predict F0 contours
from text in a TTS system, by first predicting the accented syllables and then the
associated Tilt vector.

2.3.4 Other Methods

While we have seen three very different views to understanding intonation, there still
are relevant others. There are stylization methods like [d ‘Alessandro and Mertens,
1995] which model the contour with piecewise linear, yet perceptually lossless
approximations; the MOMEL method of smoothing using quadratic splines [Hirst
et al., 2000] that are later analyzed for phonological relevance. [Möhler and Conkie,
1998] employs vector quantization over parametric F0 representations. There are
also approaches borrowing the unit selection paradigm where there is no explicit
notion of modeling prosody, but natural contours from similar contexts in a speech
database are used after certain cost optimizations [Malfrere et al., 1998, Meron,
2001, Raux and Black, 2003].

Yet another complementary paradigm is of information structure where semantic
aspects like theme and rheme are studied as relevant for intonation [Hirschberg and
Pierrehumbert, 1986, Hirschberg, 1992, Prevost, 1996]. These are not alternative
strategies but go alongside intonational phonology yet with a view to completely
describe intonation in its entire pragmatic context [Prevost and Steedman, 1994].
A comprehensive review of these methods can be found in [Steedman, 2013].

2.4 TTS desirables for an Intonation Model

Despite the whole array of methods discussed to understand and model intonation,
there still isn’t a working framework for the synthesis of appropriate intonation
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within TTS for any arbitrary speaker and speaking style. This brings us to the
question of what the criteria are which a model should satisfy to be considered
optimal for Text-to-Speech. As practitioners, we identify the following criteria as
being important —

1. Expressive and natural intonation : The primary goal of being able to generate
appropriate intonation that is expressive over a variety of tasks and sounds
natural doing so.

2. Automatic analysis and synthesis : The ease of automatic computational
methods to analyze natural pitch contours and to synthesize them from the
parametric representation.

3. Optimal use of training data : The model must make optimal use of the training
data, elegantly dealing with cases where only minimal data is available, to
cases where several hours of speech may be available from a speaker.

4. Amenable to transformation : Ideally the model is amenable to transformation
between speakers, dialects and languages.

5. Predictable from text : The model should be able to use text-based based fea-
tures with no other available sources of information (like specifying accented
syllables).

6. Theoretical relevance : The model must be interpretable to either further
our knowledge about speech communication or be able to validate existing
theories.
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Statistical Phrase/Accent Model of
Intonation (SPAM)

23





Chapter 3

Optimal Unit for Intonation
Modeling

Having reviewed the state-of-the art in general TTS and prosody modeling, this
chapter brings us to the current investigation in this thesis to improve these com-
ponents. In this chapter, we attempt to find the right phonological level to model
intonation within SPSS.

3.1 Phonological resolution and synthetic F0

In this section we describe our attempts at finding the right level to model F0 for
improved naturalness in synthesis. The unique challenge F0 modelling presents is
the complex relationship between the linguistic context and its phonetic realization.
We have seen in Chapter 2 that there are some sentence level aspects like whether
the sentence is declarative or interrogative which effect the general rise or fall of
the contour. The speaker’s expressiveness and speaking style effect the F0 dynamic
range (variance). The word level aspects like syntactic category and semantic role
with the neighboring words effect the word level F0 dynamics. The lexical stress
patterns also manifest in relative intonational event lengths and duration. It is
therefore important that the contributions from all these units are incorporated into
training the contextual F0 trees. However, in any given speech database, since the
distribution of these units is skewed in favor of very short and local contexts, the
richer linguistic features may not be chosen in model training which is optimized on
entropy. Table 3.1 shows the distribution of phonological units in 1 hour of speech
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for [Ostendorf et al., 1996, Speaker F2B]. Only non-pause regions are counted for
phonemes and frames.

Table 3.1: Distribution of phonological units in 1 hour of Radio news speech
Unit Number of instances

Sentence 464
Phrase 1052
Word 9214

Syllable 14717
Phoneme 38523

Phoneme state 115569
Frame 592830

It is clear that there is a huge decrease in the number of available units to train
from as we go to higher order phonological units. Since the data is analyzed at
the frame level several training samples have the same values for the higher order
features. As an example feature, word POS (part of speech, refer Table 2.1) will be
the same for hundreds of frames, even as the value of F0 may vastly vary over the
duration of the word, making the feature irrelevant [Yu et al., 2010].

So it is important that the model bring features from all these levels to bear on
its linguistic→prosodic mapping. The modeling unit is the most important aspect in
the design of intonation models that effects the quality of this mapping. Here we
set out to find the best unit, from among the ones accessible at training time.

3.1.1 Quantitative analysis

Using the Tilt model as a parameterization, CART trees are built with appropriate
features for each modeling unit considered. The baseline is the standard Frame level
CART tree built on the training data, with a full feature set containing questions
from all phonological levels. The performance of such a model is discussed in
Section 2.2, where we have seen predicted F0, lacks the smoothness and dynamic
range of natural F0. Given that syllable is the smallest phonological unit with a valid
notion of F0, we test here, the hypothesis that higher levels of phonology may model
F0 better for these aspects. Table 3.2 compares the mean squared error between the
predicted F0 and reference F0 for an unseen sentence for speaker F2B using several
modeling units.
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Table 3.2: Objective comparison of original and synthesized for F0

Modeling unit F0
Mean Std/dev

Original 167.852 30.276
Frame Predicted 168.673 18.549

Syllable Predicted 175.254 16.484
Word Predicted 177.003 18.950

It can be seen that there is not much improvement in the the dynamic range
using higher level units like syllable or word. In fact there may be a certain loss due
to the overestimation of the mean F0. This can be explained by the fact that though
the general trend of the contour goes down towards the end of the utterance, there
are only a few of the boundary units (word or syllable), that are overwhelmed by
intermediate syllables, thus discounting their contribution. Moreover the Frame
level model are exclusively optimized for the mean of the F0, without any longer
scoped-representation, there by giving a better mean estimate.

Table 3.3 shows correlation and mean squared error measures for different
modelling units compared against the reference smoothed F0 contours of 45 test
sentences of speaker F2B.

Table 3.3: Objective comparison of predicted F0 contours against references
Modeling unit Predicted F0

RMSE CORR
Frame 28.02 0.49

Syllable 30.33 0.40
Word 30.34 0.44

It comes as no surprise that frame level contours fare better on these metrics
because they are optimized on mean squared error, where as the syllable and word
level models have an inherent parameterization which also attempts to take longer
aspects like peak position, event amplitude etc., into consideration. It should be
noted that these measures are only tenuous in evaluating the quality of synthetic
intonation [Clark and Dusterhoff, 1999]. The most reliable indicators remain human
perceptual evaluations, where native listeners pick one stimulus over the another
(as the current evaluation standard in annual Blizzard TTS challenges [Black and
Tokuda, 2005]). The next section does a qualitative analysis of the nature of
predicted intonation contours under different modeling units.
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3.1.2 Qualitative Analysis

Predicted F0 contours for the three phonological levels considered are shown in the
Figure 3.1.

It can be visually seen that, the predicted F0 contours are smooth in the syllable
and word level predictions, mainly due to the design choice of the Tilt representation.
It is interesting that higher level artefacts like peak alignment seem better in the
word level modelling. The over prediction of the accents though is perhaps due
to limited training data at the word level. Also, they are over smoothed over the
length of the word. The syllable level predicted contour have relatively more detail,
but lose out on peak alignment (consequently correlation, Table 3.3). The frame
level point-to-point prediction has the highest resolution, but it is unnatural. These
general trends also hold in listening tests, with word level contours sounding over-
smoothed and frame predicted speech sounding buzzy. It should be noted that while
we show the word level here for illustrative purposes, it is not a scalable unit for
intonation modeling, at least under the Tilt representation which accommodates
only one Rise-Fall event. Consider the 4-syllable word Massacheussetts, which is
likely to have 2 pitch accents in any natural utterance of the word, which are
sub-optimally handled at the word level. The problem is far more complex for
agglutinative languages like German or Hungarian which allow increasingly more
number of syllables per word.

What is clear from this analysis, though is that higher level modeling units
can help improve the phonetic realizations and perception of synthetic contours
for their smoothness and for improved modelling of longer range aspects of the
text-tune alignment like event duration, peak position etc. Another inference is the
fact that an accent may span multiple syllables, and the intonational event should
be modelled as one unit over the constituent syllables rather than as individual
syllables modelling sub-parts of one event. So the optimal unit is above the level of
the syllable but not necessarily the word. This brings us to the notion of an Accent
Group, detailed in the next section.

3.2 Accent Group as a unit for Intonation Modeling

Our goal now is to model each intonational event as itself, without modelling parts
of it. We have seen that the pitch accent could be spread across multiple syllables.
So the ideal unit must is beyond the level of the syllable. However, while the word
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Figure 3.1: Prediction of parametric representation of F0 at the frame, syllable and
word levels using Tilt as the representation for the syllable/word units.
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is a discrete unit in text, it doesn’t hold for intonation, because function words are
(often) not phonetically remarkable and may be subsumed in the accents of content
word syllables in their immediate context. On the other hand, there are words like
Massacheussetts which can themselves have more than one pitch accent on them.
So, the ideal unit is also not tied to word boundaries. We refer to this abstract unit
as an Accent Group. Figure 3.2 illustrates this idea showing the underlying syllables
that group together, to each intonational event.

syl syl syl syl    syl syl syl

F0

Figure 3.2: Illustrating the notion of an Accent group, an intonationally atomic unit.
The vertical red lines mark the accent group boundaries

Needless to state, this illustration is on an artificial contour and real pitch
contours are much harder to automatically ‘parse’ into a discrete set of events.
One definite boundary is that of a pause i.e., an Accent Group cannot go across
a pause, and has to be demarcated by it (into prosodic phrases). Within each
prosodic phrase, however, there are no rules as to how syllables can be grouped
together. While this is notionally very similar to Metrical Foot [Klabbers and van
Santen, 2006], most prescriptions for what a foot should be do not hold when
dealing with real speech. Hence, though we appeal to the idea of grouping syllables,
we do not use any explicit definition of what an accent group should be — except
that it should have only one pitch accent on it. We use a data-driven approach
to automatically determine the accent grouping as appropriate to that particular
speaker and speaking style used in the training speech data.

3.2.1 Accent Group within Intonational Phonology

The current discussion of a data-driven unit we referred to as the accent group in
fact closely relates a number of previously proposed units in speech phonology like
the stress group, metrical foot etc.,. It therefore merits a discussion to situate and
contrast the current notion of Accent Group explicitly with existing phonological
groupings.
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The notion of identifying linguistically relevant (supra)segments to explain
the rhythm of a language is most formally treated within Autosegmental Metrical
Phonology [Liberman, 1975, Pierrehumbert, 1980, Goldsmith, 1990]. The broadest
dichotomy in the context of duration between languages is being stress-timed (like
English) or syllable-timed (like French). This is to identify what are the isochronous
phonological units that explain rhythm in speech. A group of syllables beginning
with a stressed syllable followed by any number of unstressed syllables is called
a stress group. Similar extensions were proposed to formally define a group of
syllables beginning with an accented syllable followed by any number of unaccented
syllables [Mobius, 1997]. These groups are often each referred to as (metrical) foot,
alluding to recurring patterns of syllable groupings in classical poetry. Beckman
[1997] has argued that an intonational typology for spontaneous speech cannot
be formally and exhaustively prescribed because of the variety of unknown factors
contributing to prosodic variety. There is an interest, however, in empirically
describing speech in terms of intonational coding and typology [Klabbers and van
Santen, 2006, Gooden et al., 2009].

The purpose of the current definition of Accent Group is thus to serve as a
unit that is both phonologically relatable as a group of syllables but to also be
generalizable to explain the intonational phonetics of continuous speech. Also,
the unit is inherently descriptive, with methods to automatically deduce metrical
grouping from Pitch contours. This is in contrast to the prescriptive nature of earlier
formal phonological groupings as discussed above. It is to be noted however, that
the current Accent Group unit likely encompasses all of the above formal notions.

3.2.2 Data-driven Accent Group Discovery

In this section, we propose an automatic approach to extract Accent Groups, given
the speech and an underlying segmental (syllable) sequence. Using Tilt as the pa-
rameterization, the technique tries to find the best Tilt-resynthesized approximation
for a given pitch contour. Syllables are grouped together, if and only if, doing so
helps improve the resynthesis error, or is within an acceptable threshold, accounting
for microprosody (which is beyond the discussion at this stage). Incremental combi-
nations of syllables are analyzed together to find the best-fit, where the contour can
be approximated to a rise-fall contour with negligible resynthesis error. The exact
procedure followed is given here as Algorithm 1.

ε is the acceptable error threshold within which a syllable is included within the
accent group. ε can be empirically set to relax or tighten the condition, asymptoti-
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Algorithm 1: Accent Group Discovery from Speech
1: for all phrases do
2: accent group initialized
3: for all syllables do
4: add syllable to accent group
5: syl accent = tilt analyze (ln(F0)) over syllable
6: syl err = ln(F0) - tilt resynth(syl accent)
7: agroup accent = tilt analyze (F0) over accent group
8: agroup err = ln(F0) - tilt resynth(agroup accent)
9: if ( agroup err ≥ prev agroup err + syl err + ε) then

10: accent group= accent group - { current syllable}
11: /* accent group ended on previous syllable */
12: output prev agroup accent
13: accent group = current syllable
14: prev agroup err = syl err
15: prev agroup accent = syl accent
16: else
17: prev agroup err = agroup err
18: prev agroup accent = agroup accent
19: end if
20: end for
21: if accent group 6= φ then
22: /* accent group must end at phrase boundary */
23: output prev foot accent
24: accent group = φ
25: prev agroup err = 0
26: end if
27: end for

cally making each syllable its own accent group, to modelling the entire phrase as
one rise-fall event. The method is linear in the number of syllables in the utterance
and as output, gives a list of accent groups over the underlying syllable sequence.
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3.2.3 Analysis of data-derived Accent Groups

In this section, we characterize the automatically detected accent groups both
qualitatively and qualitatively. Figure 3.3 shows the performance of the above
algorithm on a real utterance. The figure also shows the resynthesized F0 contour
over each Accent Group using the analyzed Tilt parameters. Each rise-fall event is
one detected Accent Group.

 0

 50

 100

 150

 200

 250

 300

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

F0

Time (in 5 millisecond frames)

F0 Resynthesized per Accent Group
Original smooth F0

Figure 3.3: Resynthesized F0 for automatically detected Accent Groups

It can be seen that the algorithm detects all major accents (all H*s in the ToBI
labelling, refer Figure 2.4) in the pitch contour. The local fluctuations are ignored
by design. On average, over the entire training data of 1 hour, the correlation of the
resynthesized contours against the originals was found to be 0.88, which is quite
high, also suggesting that the procedure hasn’t made gross errors in detection of the
Accent Groups. The number of detected Accent Groups detected under this setting
was between the number of syllables and words in the data as shown in Table 3.4.
It is worth mentioning that our hypothesis about the ideal phonological unit was
also that it was higher than the number of syllables but lesser than the number of
words.

These numbers suggest that not all words have an accent on them but every
other syllable is likely to have an accent, on average. This is not to be misinterpreted
as a rise fall event on every second syllable however, e.g., in the Figure 3.3, the first
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Table 3.4: Comparing data-derived Accent Groups against other phonological units
Unit Number of instances

Sentence 464
Phrase 1052
Word 9214

Accent Group 7751
Syllable 14717

Phoneme 38523

accent in the contour is over 3 syllables, and the last accent is over 4 syllables. To
exactly reveal the distribution, Figure 3.4 shows the histogram of the lengths (in
number of syllables) of detected Accent Groups.

Indeed most Accent Groups are monosyllabic, and the number rapidly reduces
over the increasing number of syllables per group. Since we also analyze the contour
within each detected Accent Group using the Tilt parametrization, the shapes of the
contours are available. A histogram of the shapes, in terms of the tilt parameter,
is shown in Figure 3.5.

It can be seen that a majority of the Accent Groups are complete rises or falls,
these can be interpreted as the connections between actual pitch contours. Discount-
ing for these connections, the distribution is symmetric with around around 0, which
is a bell-shaped symmetric rise-fall event (refer Figure 2.6), with the peak located
half way through the accent group. These findings are consistent with earlier results
on metrical feet in a hand-labelled speech database shown in [Klabbers and van
Santen, 2006].

3.2.4 Accent Group Prediction from Text

In the previous sections, we have seen how an utterance can be prosodically
‘parsed’ into its constituent Accent Groups, and have characterized the automatically
detected accent groups. The current problem at hand, is however, to incorporate
an intonation model within a Text-to-Speech system where text is the only input.
This section presents an approach to train a stochastic model that, given a sentence,
predicts a valid Accent Grouping over its sequence of syllables.

This problem is analogous to parsing a sentence into its linguistic constituents
or to the more closely related problem of phrase break prediction, where a decision
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Figure 3.4: Histogram showing the number of Accent Groups against number of syllables
in each

is made at each word boundary, whether or not there should be a phrase boundary
following that word. In the current scenario, a decision has to be made after each
syllable, if it is a valid candidate for an Accent Group boundary. Exploiting the
recent results in style specific phrasing [Parlikar and Black, 2012], we employ a
similar strategy by training a stochastic context free grammar (SCFG, [Pereira and
Schabes, 1992]) of data-derived Accent Group parses of uniquely identified syllables.
These form the unique set of terminals over which to train an SCFG, the syllables
are tagged with six broad boolean descriptors — if the syllable is phrase final, initial,
word final or initial, lexically stressed and has a predicted accent on it. Such a
scheme uses about 30 combinations of tags in the 1 hour of Radio news speech
presented. Higher number of tags lead to an increase in the number of terminal
nodes to process, for which there may not be sufficient data to train an SCFG. To
illustrate, a phrase having 4 syllables with 2 accent groups of 1 and 3 syllables each
may be represented as —

(( syl 1 1 1 1 1 0 ) ( syl 1 1 1 1 0 0 syl 1 1 1 0 0 0 syl 1 0 0 1 0 0 ))

Such parses are created using the automatic accent group extraction method
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Figure 3.5: Histogram showing number of accent groups within each Tilt shape

and given as the input to the SCFG. Once trained, the grammar can produce
parse representations for unseen sequences of syllables at runtime. While useful,
these parses are not very accurate since they encode limited information via the
boolean descriptors. To induce higher level linguistic features to determine the
Accent Grouping decision, we use the automatically induced parses along with other
contextual questions about the syllable in question to train a CART tree that can
predict the accent boundary decision after each syllable. In all, 83 questions were
designed from which decision trees are automatically trained for Accent boundary
detection in syllable sequences of unseen text. In the experiments reported here, the
models had over 70% accuracy in Break/Non-Break (B/NB) prediction at all syllable
boundaries, compared to the reference sequences, obtained through application of
the Data-driven Accent Group discovery (Section 3.2.2).

Additionally, to take the predictions on the neighboring syllables into context,
an n-gram language model can be trained on B/NB sequences corresponding to
the accent groupings in the syllables of the training data. The language model
scores can then be used to condition the predictions as appropriate to their context.
The language model score can also be scaled to alter the overall number of accent
groups that compose a sequence of syllables.
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3.2.5 Modeling F0 phonetic detail over the Accent Group

The last section presented an approach for automatic discovery of phonological
units where the F0 is one contiguous event. This treatment makes it ideal to be
modelled using the Tilt method which parametrizes each intonational event as a
rise-fall event. The contour over each identified Accent Group is analyzed for the
event amplitude, duration, peak position and a shape descriptor, also referred to as
tilt. These four values form the representation of the F0 contour bounded within
the accent group. Though the connections between genuine pitch accents are also
modelled similarly, their insignificance reflects in their amplitudes being small, and
as the shape being a pure rise or fall (tilt ' -1 or +1). The goal now is to model
the shape of the contour, given an Accent Group. We do this by training a decision
tree that predicts the 4-valued Tilt vector given contextual features about the accent
group. A feature set specific for the Accent Group is designed, which includes
linguistic and positional features related to the main syllable of the accent group,
which we assume as being the first lexically stressed syllable of a content word, the
features related to the first syllable, last syllable and word level features for these
syllables etc.,. In all, 63 features were used for the clustering at this stage. Since in
TTS, duration prediction happens before F0 is predicted, the only parameters that
need to be predicted are the Tilt amplitude, peak and tilt shape. Mean subtraction
and variance normalization is done on these values over the entire training data so
as not to bias the models towards one of these parameters.

At runtime, the decision trees are traversed for an unseen Accent Group to
predict the most likely shape of the pitch contour, given the training data.

3.2.6 The Accent Group in SPSS

So far, we have seen approaches to all the necessary components to making an
intonation model that can chunk an unseen sentence into groups of syllables and
predict an appropriate pitch contour for it. The final step, is integration of the
described intonation model into the SPSS system. Towards this, we introduce a new
level within the Festival prosodic structure called the “Accent Group”. Each Accent
Group is linked to one or more syllables as its child nodes and has the Phrase as its
parent node. The Accent Group level is explicitly not linked to the word level since
accents could span syllables across words or a word itself can have multiple accents
on it as seen in earlier sections. Fig. 3.6 illustrates the proposed Accent Group unit
in the context of Festival TTS architecture [Black et al., 1998] that is used across all
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SPSS implementations.

3.3 Objective Evaluation

To evaluate the performance of Accent Group as a modeling unit, the SPSS system
was modified to integrate intonation models at different phonological resolutions.
An unseen set of sentences in synthesized using the Accent Group intonation model
described in the previous section. This includes the two stages of parsing the syllable
sequence into Accent Groups and predicting the pitch contour as appropriate to
each group. Figure 3.7 shows the contour for an unseen test sentence, the same
sentence used in Figure 3.1 for other intonation models with the frame, syllable
and word units.

It can be seen that the peak alignment is much better and the dynamic range
seems improved relative to other modeling units. This is also shown in Table 3.5
where the Accent Group generated intonation is closer to the statistics of the original
F0 compared to the other levels.

Table 3.5: Comparing Accent Group against other Modeling units for synthetic F0

Modeling unit F0
Mean Standard Deviation

Original 167.852 30.276
Frame Predicted 168.673 18.549

Syllable Predicted 175.254 16.484
Accent Group 173.079 21.236
Word Predicted 177.003 18.950

To further test each phonological level, Table 3.6 presents the objective results
comparing the proposed units matched against reference unseen utterances for
3 speech databases. These are chosen for increasing prosodic complexity — i)
Read speech (speaker SLT, [Kominek and Black, 2003]), ii) Radio News (speaker
F2B, [Ostendorf et al., 1996]) and ii) Audiobook task, (The adventures of Tom
Sawyer, Blizzard ‘12 Annual Speech Synthesis challenge). The root mean squared
error (RMSE) and correlation with the reference contours are averaged across the
test set.

The primary conclusions from this table are (i) read speech databases have
predictable intonation values that statistical models seem to model well. (ii) As



3.3 Objective Evaluation 39

p3 p4 p5 p6p2p1

syl2 syl3syl1

W1 W2

AG

Ph1

s1 s2 s3

Phrase

Accent Group

Word

Syllable

Phoneme

State

Frame

F0
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Figure 3.7: Predicted F0 for predicted Accent Groups

the prosodic complexity increases, the default statistical models fail to capture
the prosodic variance (iii) As increasingly more data is made available, models
employing higher order phonological units tend to converge to similar predictions
and (iv) Accent grouping is indeed a hidden part of intonation, when the true accent
grouping is provided, F0 estimates are more close to natural in all tasks— better
than any other phonological unit.

3.4 Subjective Evaluation over the Mechanical Turk

As RMSE and correlation are not ideal metrics for evaluating perceptual goodness
of synthetic intonation, subjective ABX listening tests on each pairs of the above
models were carried out. The prosodically rich audio book task is chosen for this
purpose.

One caveat with the subjective evaluation of intonation is the fact that listeners
may not be sensitive to subtle differences in speech and may not be able to select
one system over the other consistently. The nature of question asked during the
listening test may also effect listener responses. These include questions like —
‘which stimulus do you like ?’ ’which voice is more understandable ?’ ‘which of these
sounds more natural?’ etc., that are all valid aspects of intonation but could elicit
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Table 3.6: Objective comparisons proposed vs. default models on three tasks
SLT F2B TATS

Unit err corr err corr err corr

Frame 10.97 0.62 37.22 0.38 29.95 0.079
Syllable 12.15 0.47 37.05 0.23 25.28 0.066
Word 12.65 0.46 36.30 0.33 25.80 0.0810

Accent 13.13 0.43 35.79 0.33 25.96 0.064
Group
Accent 11.49 0.51 35.50 0.34 24.91 0.092
Group
Oracle

different listener responses. In all listening tests in the current work, we ask the
question ‘which of these stimuli do you prefer to hear ?’ assuming that it captures most
of the desirables of good intonation in a synthetic voice. The challenge of reliability
of listener preferences can be overcome by taking into account a large number of
listeners, so that the preferences are both statistically reliable and generalizable
accross listeners.

While we report subjective evaluation on a single dimension here (listener
preference), there may still be value in a detailed inquiry into the task, stimuli and
careful design setup of listening experiments [Hinterleitner et al., 2011]. Evaluation
of higher level communicative functions like prosody is perhaps better done beyond
the sentence level with implicit and explicit test design. Explicit tests may include
questions on perceived salience of words etc where as implicit tests may include tasks
like listening comprehensions with candidate synthetic voices and comparing task
completion rates across listener populations using each voice. Another possibility is
integration of competing TTS systems in real world dialog systems and comparing
ease of use and end-user experience for each system. There may be psycholinguistic
and sociolinguistic factors in the design of the latter experiments that are themselves
worth investigating.

For the listening tests reported here, we synthesized a random 45 sentences
from the test set. This set was synthesized by each of the candidate intonation
models, all other TTS components remaining the same. The listening tests were
carried out via crowd-sourcing on the Amazon Mechanical Turk [Parlikar, 2013],
where listeners were asked to select the stimulus they prefer to hear. They can also
choose a ‘both sound similar’ option. Each pair of stimuli was rated by 10 different
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listeners, making the following preferences reliable.

Even as these results are encouraging, the user studies also revealed more
qualitative feedback about the nature of the generated speech. Since we are now
able to model natural intonation, listeners are more aware of higher level aspects
of laying emphasis on a wrong word or sounding like an accented speaker in the
language. Interestingly, the American English we tried to model was characterized
as mildly Scottish or Irish because of particular patterns generated by the model.
Similarly for Tamil, it was perceived as sounding like a Sri Lankan speaker and
Portuguese sounding like a particular dialect from the Alentejo region of Portugal.

It is necessary to understand here that by modeling Accent Groups, which are rel-
atively few (only an order times more than number of words) in any given database,
we are learning from insufficient data, causing bad clustering and averaging, which
in turn manifests as an accidental modeling of another dialect. To address this
problem of data scarcity, we propose an optimal additive strategy for F0 in the next
chapter.

3.5 Summary

This chapter presented an investigation into the optimal phonological level to model
Pitch accents. A new data-derived phonological unit referred to as the Accent
Group is proposed along with procedures for automatic extraction modelling as an
intonation modelling unit. This is integrated into the Festival prosodic structure
to enable TTS with the new intonation model. Thorough objective and subjective
evaluation is conducted to show the superiority of the model compared to alternative
modeling strategies.
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Figure 3.8: Subjective Results: Listener Preferences for TTS with Accent Groups Vs
other phonological units as the F0 modeling unit
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Chapter 4

A Multi-tier Phonological Model of
Intonation

Chapter 3 proposed methods for improving F0 modelling in SPSS by using a data-
derived phonological unit, the Accent Group. In this chapter, we further improve
intonation modelling by incorporating a multi-level additive strategy in F0 gener-
ation. We motivate the idea of an additive architecture for optimal usage of the
training data and propose computational techniques for automatically decomposing
pitch contours into their respective components and appropriately modelling them.
Objective and subjective evaluations are carried out for calibrating the performance
of the approach.

4.1 Motivation for Additive Modeling

The perceptual improvements reported through the use of Accent Group are largely
due to a more appropriate handling of pitch accents, that add the right prominence
patterns to the underlying word sequence. Recalling Chapter 2, the two important
aspects in F0 are the pitch accents and boundary tones. In the framework detailed
in the previous chapter, though the features about the phrase boundaries are
incorporated into the decision tree training, they are not explicitly handled. It is
also noted that higher level linguistic questions are not usually selected in favor
of those within a shorter scope, causing the phrase level aspects to have minimal
contribution into the model. So any aspects related to the boundary tones are only
modelled by accident, and not design.

45
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We have seen from the speech production paradigms (sec. 2.3.2) that there is an
underlying long term trend to pitch, across the phrase and that the pitch accents are
the local excursions that can be understood as being strung on top of the long term
trend. This is seemingly advantageous from an intonation modelling perspective for
multiple reasons, some of them listed here —

• Explicit handling of boundary events : Boundary tones are qualitatively and
functionally very different from phrase-medial pitch accents. Through explicit
modeling, it is expected that aspects like phrase final rises in interrogative
utterances and declinations in a declarative or neutral statements can be
formally induced into the model.

• Improved explanation of variance: None of the phonological units discussed in
the previous chapter could preserve the variance of the natural intonation con-
tours, as seen in the reduced dynamic ranges of synthetic contours (Table 3.5).
This is perhaps because the statistical averaging is causing over-smoothing of
the pitch accents, there by failing to effectively model the variance. Through a
multi-level model, it is possible that the source of variance is more precisely
modelled, by essentially distributing across different levels. This is also ad-
vantageous because appropriate richer linguistic and semantic features can
be used for the higher order components, there by bringing them to effect
the generated contour. The contribution of such features was noted to be
only tenuous by pooling all the features together due to skewed nature of the
distribution towards locally scoped features.

• Optimal data usage : A more practical modelling problem in the use of Accent
Groups, is the reduced number of instances to train from (lesser than even the
number of words available in training data, Table 3.4). Through the notion of
additive modelling, it is likely that more data is available for the pitch accents
to train from. To illustrate this strategy, Figure 4.1 identifies two excursions
on the F0 contour, that are qualitatively very similar, except for being at
different levels of the contour. If the phrase component were subtracted, it
is likely that the two accents are clustered together, than otherwise. This
procedure increases the number of similar instances for the Accent Group
clustering. This is beneficial both in i) providing more data for each cluster,
and (ii) reducing the number of discrete shapes that phonetically characterize
a speaker’s intonation.
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Figure 4.1: Equivalent pitch accents from two different phrases, similar in all respects but
the peak amplitude, a baseline is marked for the two phrases using dotted lines.

4.1.1 What are the components ?

Under the hypothesis that the additive approach does offer a lot more to intonation
modelling, the question then is what are the different components that must be
considered as contributing to F0. Starting with the Fujisaki model there have
been several approaches within this paradigm. Earlier approaches have employed
strategies to model pitch as a sum of multiple elementary contours that each serve
a perceptual function (emphasis, attitude etc. [Bailly and Holm, 2005]); or additive
contours from different phonological levels [Sun, 2002, Wu and Soong, 2012] or
even completely agnostic to any underlying segmental structure [Sakai et al., 2009].
These strategies are only mildly successful because the representations of F0 in these
approaches isn’t amenable to the notion of superposition.

We believe that Accent Groups as introduced in the last chapter are elegant in
their representation of a pitch accent and are hence more suited to superposition.
The second component is of course the long term trend, that is often modelled at
the phrase level. These two conceptual levels apart, there is one other aspect to
F0, the microprosody, that is so far not properly dealt with in the current work.
Microprosody refers to the jitter, the (random) segmental fluctuations in the contour
that are shown to add a certain naturalness to speech. It may, hence also be
considered another component.

Given these (complementary) sources, that aim to additively explain the F0

contour, there are three issues to address for an intonation model. These are (i)
Extracting these components automatically from speech data and (ii) Appropriately
model these components, including prediction methods from text, and (iii) integra-
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tion within the SPSS paradigm for real testing in TTS. These are elaborated in the
following sections.

4.2 Data-driven Component extraction

This section presents a fully data-driven approach to component extraction from
speech data. By ‘component’, we refer to each of the additive levels, phrase or the
accent. A constrained, iterative procedure is employed to decompose pitch contours
presented in the training data into their optimal estimates of individual long term
trend (hereafter referred to as phrase) and short term excursion (referred to as the
accent) components. The optimality criterion is chosen to be the objective RMSE
and correlation errors of synthetic F0 contours against reference test contours using
intermediate estimates of the component models.

The iterative algorithm begins with an initialization of a phrase component.
The residual after subtracting the phrase from the ln(F0) is modelled as the accent
component. As an initial estimate of phrase command, the minimum value of
ln(F0) over each Accent Group may be used. For each Accent Group, the residual
(i.e., ln(F0)− phrase) is parameterized. At this stage, to generalize over the entire
training data, the following constraints are applied

• For the phrase components, at each iteration a CART tree is built to regress
only from long range features, like phrase number, word number within
phrase, syllable position in word etc., to the mean value of the phrase at each
phoneme segment (done at the segment level for a sharper resolution and to
capture microprosody, hence the multi-tier).

• For the accent components, the constraint is that the final codebook of pitch
accents should be limited in number. A k-means clustering is performed to
identify the representative shapes of accents over all Accent Groups. Also
these are forced to be predicted only from the local short range features at the
level of the Accent Group.

Since the components are trained over the entire training data, they are also
robust to utterance specific artifacts of the speaker or pitch detection routines.
Also, these constraints are chosen to be minimally assuming and are generic across
languages, speakers or speaking styles, giving the model more degrees of freedom.
After the intermediate models are built (phrase CART tree and accent codebook), a
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new estimate of l̂n(F0) is reconstructed. The reconstruction error is added to the
previous baseline and residuals are recomputed. This procedure is repeated till an
objective criterion is met, here it is the minimum F0 prediction error on an unseen
set of sentences. The parameters that give the least error across the iterations are
chosen as the optimal phrase and accent components. The exact procedure of this
method is provided as Algorithm 2.

Algorithm 2: Constrained Component Extraction
1: for all utterances do
2: for all AccentGroups do
3: set phrase to min {F0}
4: set accent to tilt(F0 − phrase)
5: end for
6: end for
7: while error ≥ ε do
8: train an accent codebook of size k over all accents groups
9: train a codebook CART tree using local features

10: train a phrase CART tree using long range features
11: for all utterances do
12: Generate F̂0 using phrase & accent codebook
13: for all AccentGroups do
14: accumulate error (F̂0 − F0)
15: update phrase to (phrase+ error)
16: update accent to tilt(F0 − phrase)
17: end for
18: end for
19: end while

For illustrating the process, one hour of speech in the Radio news genre is used
and the described training algorithm is applied. Figure 4.2 presents the Root mean
squared error measure of over the training utterances over the training (50 minutes)
data and over an unseen development set (10 minutes).

It can be seen that the RMSE decreases over the iterations, reaching an optimum
around iteration 8 for this database. The performance on an unseen development
set is also consistent with the trend, suggesting the generalization of the phrase and
accent models built. The same also holds for the correlation measures as shown in
Figure 4.2.
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Figure 4.2: RMSE on Training and Development sets over iterations

The correlations improve over iterations during the training and similar patterns
are observed over the unseen development set. These results show that over the
iterations, the intermediate models improve the predictability of the respective
phrase and accent components only from textual features. Figure 4.2 shows the
best splits of the components on an example F0 contour in the training data. The
phrase component is set to minimum over each accent group, so that there are no
discontinuities after superposition with the accent components.

Note that the model for phrase components generates a falling trend along the
length of the phrase. This is consistent with established notions of declination of the
contour, rooted in the physiology of speech production (Section 2.3.2). However, in
the procedure described, such trends are not explicitly enforced but only emerged
as a result of the described training procedure. This is quite valuable for discovering
patterns within data in arbitrary tasks and languages, with minimal to no prior task
knowledge.

4.3 Multi-tier F0 modelling

As an output of the training process described in the earlier section, optimal phrase
and accent models are available that can predict these components only from textual
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Figure 4.3: Correlation on Training and Development sets over iterations

(syntactic and contextual) features. These are integrated as the intonation modeling
component in an SPSS system using a similar similar architecture described in
Section 3.2.6.

The first stage in F0 prediction is parsing an underlying syllable sequence into
Accent Groups. The phrase component model is traversed for each phoneme
segment to predict the long term trend over each phrase. The minimum over each
accent group is assigned to avoid any audible discontinuities. The Accent Model is
used over each accent group to predict a pitch accent appropriate for that context
of the sentence. These two components are then added to synthesize the final F0 for
the sentence.

4.4 Evaluation

The evaluation of the proposed approach is carried out both objectively and subjec-
tively. For an unseen set of test sentences from the same speaker in the radio news
corpus, these are the same sentences used in the objective evaluations in Chapter 3
to allow direct comparison. The first test is of the mean and dynamic range of the
synthesized contours, which is one of the motivations for the proposed multi-tier
approach.
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Figure 4.4: Best component splits after training

The comparable numbers for the modeling units discussed in the previous
chapters are also provided. The table shows that the proposed Multi-tier approach
generates contours that are most similar to the original smooth contours presented
in the training data. This therefore confirms the hypothesis that the two-level
modelling approach does preserve the rich variance in original intonation contours
presented in the training data. Figure 4.5 shows an example synthesized contour
using the described multi-tier modelling technique.

Note that the synthesized contour is indeed more varied over the speaker’s pitch
range compared to the strategies presented in the earlier chapter. This is without
any external application of strategies like imposing global variance on synthetic
contours [Toda and Tokuda, 2007]. The point-wise RMSE and correlation metrics
for the synthesized contours over unseen sentences are presented for two settings
in Table 4.2. The first, where intonation is completely predicted using the two-
stage approach of accent group prediction followed by the application of multi-tier
intonation model. The second is the case where true Accent Group boundaries from
these sentences are provided.

Note that in both cases, the metrics are better than all modeling units for this
database in Table 3.6. The oracle case again confirms that better accent grouping
does improve the synthetic intonation significantly. Perceptual tests confirm the
improvements by improved listener preferences (over 80%) to the synthesized
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Table 4.1: Comparing Accent Group against other Modeling units for synthetic F0

Modeling unit F0

Mean Standard Deviation
Original 167.852 30.276

Frame Predicted 168.673 18.549
Syllable Predicted 175.254 16.484
Word Predicted 177.003 18.950
Accent Group 173.079 21.236

Multi-tier Accent Group 168.77 26.41
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Figure 4.5: Prediction of F0 on an unseen sentence

Table 4.2: Objective comparison of synthetic F0 on speaker F2B against references
Model RMSE CORR

Multi-tier Accent Group 32.0649 0.398776
Accent Group Oracle 28.9552 0.453386

contours using the Multi-tier intonation model.
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4.5 Summary

This chapter presented a multi-tier strategy to improve the intonation models
presented in the earlier chapter. By effectively modeling F0 in two different layers,
the variance of pitch contours is preserved in the modelling. We are also able to
show improved objective measures, bringing the synthetic contours closer to the
original. These improvements are also translated to perceptual preferences over a
variety of tasks and speakers.
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Chapter 5

Audiobook Synthesis

In this chapter, we will briefly look at aspects of prosody for Audiobook synthesis.
We begin with a perceptual experiment to motivate the need for higher levels of
processing for Audiobook synthesis. We later discuss the applicability of the SPAM
intonation modelling framework for generation of high quality expressive voices
from Audiobooks.

5.1 Empirical analysis of prosody in context

It is widely acknowledged that the factors that effect the prosody of an utterance
exist in its entire context, even those beyond the sentence [Riester and Baumann,
2011]. We describe here a perceptual experiment, conducted in [Hovy et al.,
2013] to study the effect of context in speech. Within the scope of this controlled
experiment, we consider one previous sentence as the context of the target stimulus
sentence.

We designed a sentence set that consists of about 100 sentence pairs: (i) a target
sentence, and (ii) the previous sentence as its context. The source of this text is the
Brown corpus [Francis and Kucera, 1971]. The sentences are balanced for genre
and are selected randomly. The text is processed, tokenized, and sentences were
chosen to be between 10 and 15 words.

Figure 5.1 shows an example of three sentences, a stimulus in isolation I, the
context sentence C, and the stimulus in context of its previous sentence, denoted as
C. The expected ‘focus’ word is underlined in the stimulus as the word likely to be
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perceived salient in its context.

I: “ What is your experience with autistic children ? ”

C: I try to give him as many normal experiences as possible.
S: “ What is your experience with autistic children ? ”

Figure 5.1: Example context (C) and stimulus sentence (S), both in isolation and in
context. Expected prominent word underlined

Speech recordings of this set of 100 sentence pairs are collected from a voice
talent. The sentences were recorded by a female graduate student who speaks
standard American English. She was made aware of the purpose of the recordings
as being the study of the phenomenon of prosodic focus, but was asked to deliver
the sentences naturally. Recordings were performed in two settings. In the first
session, we presented the sentence pair and recorded both the context sentence as
well as the intended stimulus sentence together as a single utterance. The speaker
was allowed to read the sentence pair ahead of the recording to make her aware of
its context and allow her to plan accordingly. In a second session (after a few days),
the speaker was presented only the stimulus sentence to record.

To study the difference between the recordings of the same sentence, spoken
within context and in isolation, we conducted analysis on the pitch contours of the
in recordings C, I and S.

To study the explicit effect of context on F0, we measure the following global
parameters: i) maximum value of F0, ii) mean value of F0, iii) mean F0 of first
content word, iv) mean F0 of final content word, and v) dynamic range of F0. All of
these over the duration of the sentence.

Table 5.1 compares the Pearson’s correlations among various recording condi-
tions. ‘isolated’ and ‘stimulus’ respectively correspond to the same sentence spoken
without and with context; ‘context’ denotes the context sentence provided. The
mean and range (standard deviation) of the F0 for these conditions are shown.

The numbers show that the F0 statistics are more correlated between the previous
sentence and the stimulus recorded in context, as opposed to the previous sentence
and the isolated recording. This implies the speaker employs systematic linear
changes to the F0 statistics when speaking in context. For the statistics corresponding
to starting F0, ending F0 and maximum value of F0, the averages of these values
across all the utterances are shown in Figure 5.2.
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Table 5.1: Correlations of F0 mean/range for various conditions
Utterance pair Correlation

compared F0mean F0range
isolated–stimulus 0.45 0.23
context–stimulus 0.23 0.22
context–isolated 0.13 0.13

Start Max End

200

250
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er

tz

Isolated
In-Context

Context

Figure 5.2: Analysis of mean starting/max/ending F0 across for different utterances

It is clear that these F0 statistics are consistently lower for sentences spoken in
context than their counterparts spoken in isolation. These changes are likely in
adjustment to the context of the previous sentence.

5.2 Audiobooks for creating TTS systems

The analyses presented in the previous section suggests that there is significant
changes to the intonation based on the context of the sentence. These aspects are
important for analysis and generation of multi-paragraph text, like Audiobooks.

Speech synthesis has traditionally used recordings of isolated sentences for
creation of synthetic voices. With the availability of techniques for processing Multi-
paragraph audio [Prahallad and Black, 2011], there is now access to prosodically
richer Audiobooks. These are usually recorded by professionals or interested volun-
teers who read out the text of an entire story. Well recorded audiobooks are quite
clean and provide an expressive narration of the story.

Since the recordings are done continuously, each sentence has substantial context
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provided for the speaker thereby adding more variety to intonation. This is both a
benefit and a challenge, because while the richness in the data can help improve
synthetic voices, none of existing algorithms are designed for optimally handle such
high prosodic variance.

The other advantage Audiobooks offer is in the amount of speech provided from
a single speaker. Commonly used TTS databases provide about one hour of speech
from a single speaker, whereas a single Audiobook recording could provide over 10
hours of speech, depending on the length of the story.

5.3 Linguistic and Contextual Features

For the goal of generating natural and expressive speech output from text input,
seemingly there should be a lot of sophisticated NLP that should go into building
TTS systems. But, in practice, only rudimentary knowledge about the language goes
into building TTS systems. Syntactic information (e.g., Parts of Speech) is about the
most informative NLP feature that goes into the models. Table 5.2 lists some of the
features (no sub-word features are listed) used in the CART tree clustering.

Table 5.2: Text & speech features used in CART training.

lexical acoustic
word : content ? word duration
word POS position in phrase
#content words in left context all above for neighboring words
#content words in right context
#words in left context
#words in right context
#syllables in word

5.3.1 Richer Semantic Features

As current TTS research efforts have moved from sentence level synthesis towards
synthesis from audiobooks, there is a greater role for discourse level and pragmatic
features, and generally richer NLP features into voice building process. Due to the
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availability of substantially more data through the use of Audiobooks, these features
are more likely to be useful.

Current TTS systems use only syntactic information in context clustering. We’ve
reiterated that one of the reasons for the lack of naturalness in current TTS voices
is the lack of discriminative textual features causing semantically different speech
regions to average out the model. There is a lot of current work in both supervised
and unsupervised techniques for dependency parsing in several languages, that
aim to provide semantic relations between words in a sentence. Fig 5.3 shows
an example output of the Stanford dependency parser [De Marneffe et al., 2006],
marking all semantic relations on the words.

I never liked long walks especially on chilly afternoons

nsubj

neg

amod

ccomp

advmod

prep_on

amod

pobj

Figure 5.3: Output of a semantic parser, marking all the dependency relations on the words

It is non-trivial, however, to integrate these structures into the TTS architecture.
We do this by designing features on such semantic graphs that can be used in
building the SPSS models. Table 5.3 lists the features we employ to encode such
information into the utterances.

Table 5.3: Dependency features on words for SPSS model training.

relation with head word distance from root
relation with root word number of siblings
relation with left word number of daughters
relation with right word boolean descriptors of the above features
distance from head

These features are incorporated onto the words within the TTS’s utterance
structure, which can then be accessed at training and test time. Categorical and
continuous valued questions on these features are included into the CART decision
tree training for the spectral and SPAM intonation modeling.
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5.4 Synthesizing from Audiobooks

Using the richer features described in the previous sections, we evaluate here the
effect of providing more training data to the SPAM intonation model. The data used
is an Audiobook for the story Jane Eyre, spoken by an American English female pro-
fessional voice talent. The data is about 13 hours of speech. We train the intonation
model as described in the last chapter. The evaluation is objectively carried out to
using the Root Mean Squared Error and Correlation measures. Figures 5.4 and 5.5
show the measures on predicted intonation contours on unseen test sentences for
each voice, similar in all respects except the amount of data provided for training.

 0.3

 0.31

 0.32

 0.33

 0.34

 0.35

 0.36

 0.37

 0  2  4  6  8  10  12  14

C
or

re
la

tio
n

Training data (in hours)

Correlation of Synthetic Vs. Reference contours

Figure 5.4: Correlation on test set using increasing amounts of training data

It can be seen that the spam intonation model improves as more training data is
provided both on the error and correlation metrics, suggesting the optimal modelling
of both the phrase and accent models respectively.

5.5 Summary

This chapter has presented motivation to use Audiobooks for building SPSS voices. A
strategy is provided for incorporating semantic features into Text-to-Speech systems,
which have only used syntactic features till date. The benefits of using increasingly
more training data are presented by objective gains on predicted intonation within
the SPAM framework.
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Chapter 6

A Style Capturing Approach to Voice
Conversion

As an application of the proposed SPAM framework for intonation, this chapter
presents an approach for improving voice conversion between speakers within a
language by capturing the target speaker’s speaking style. After a brief description
of the state-of-the art in voice conversion, we motivate the proposed 2-level F0

transformation technique [Anumanchipalli et al., 2013] for improved prosody
conversion between the speakers.

6.1 F0 Transformation in Voice Conversion

Voice conversion aims to convert the speech from one speaker and make it sound like
another speaker. The implications of the technology are numerous — for masking
a speaker’s identity for privacy [Jin et al., 2009]; for creation of synthetic voices
where only a little data from a target speaker [Toda et al., 2007] or language is
available [Anumanchipalli and Black, 2010].

Voice conversion has been an active research topic for over two decades with
focus on source modification (energy, pitch etc.) and filter modifications (for the
vocal tract). Between these, spectral transformation is more researched than source
transformation [Abe et al., 1990, Stylianou and Cappé, 1998, Kain and Macon, 1998,
Toda et al., 2007, Stylianou, 2009]. Many of these approaches worked on low level
representations of the signal ignoring higher level aspects that are otherwise shown
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to be important cues to speaking style. [Zetterholm, 2006] finds that professional
impersonators capture aspects of speaking style, particularly the rhythm, intonation
and stress patterns across words and phrases. However, this aspect of speaking
style capture has received little attention in voice conversion [Bänziger and Scherer,
2005]. [Stylianou, 2009] notes that the biggest challenge at this stage for voice
conversion algorithms is the control (modeling, mapping and modification) of the
speaking style of a speaker. In this chapter, we propose some directions to address
this aspect of voice conversion within the SPAM framework.

Acoustically, the correlates of speaking style exist in the duration, phrasing,
lexical stress patterns in words, prominence patterns, average pitch and overall
pitch range. Each of these aspects is unique to a speaker, style or dialect, and
intonation contributes primarily to these categorizations. Table 6.1 compares the F0

statistics for different speakers of the Arctic read speech databases [Kominek and
Black, 2003].

Table 6.1: F0 statistics in speakers of CMU Arctic databases
Speaker F0 statistics

ID mean std/dev
awb 132 25
bdl 128 36
ksp 133 23
rms 99 24
slt 172 27

Figure 6.1 illustrates the above by comparing the F0 contours of 5 speakers
within the ARCTIC databases for the same sentence. Since speakers employ their
own durations [Toth and Black, 2008] in saying the phrase, there are differences in
the time axes among the speakers. It still is valid to talk about the stylistic aspects
of intonation for these speakers. It can be seen that no two contours look identical
(even if the times were to be normalized). The mean pitch is different for all the
speakers and slt, the only female speaker notably has the highest F0 values. The
number of peaks and the shapes of the tones are quite different for each speaker.
Additionally, the contours of speakers awb and ksp are the most different from the
rest of the speakers in their overall shape, and pitch accent patterns. These speakers
also happen to be the only non-American English speakers within this set (awb is a
Scottish English speaker and ksp is an Indian English speaker).

This illustration throws some light on the problem of intonation transformation
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Figure 6.1: F0 contours of 5 arctic speakers for the phrase “Will we ever forget it.”

and the challenges associated with such an attempt. Note that the example given is
an excerpt from a read speech task. It can be expected that the style and range of
expression through intonation is much higher for prosodically more complex tasks,
like broadcast news, conversational speech or audiobooks.

Usually the problem setting of voice conversion is such that there is a large
database of the source speaker’s speech and a smaller set of speech recordings from
a target speaker. This smaller set of target speaker’s speech forms the adaptation
data from which a conversion function from the source speaker’s intonation patterns
is derived to match the target speakers intonation patterns.

6.2 Related Work

Most voice conversion techniques, in practice, address F0 transformation as opti-
mizing these statistics towards the target speaker. The transformation itself is done
on frame level representations of F0 (in the order of 5-10 milliseconds) that are
ill-equipped to capture prosodic phenomena that are spread over longer ranges,
that of syllables, and beyond. Usually a variant of pitch range adaptation [Toda
et al., 2007] is employed where the source F0 is transformed to the target speaker
by employing the z-score transformation as follows –
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F0tgt
(t) =

σtgt

σsrc

(
F0src

(t) − µsrc
)

+ µtgt (6.1)

where F0(t) is the fundamental frequency at time instant t, and µ, σ denote the
mean and standard deviation of F0’s from the training and adaptation data for the
source (src) and target (tgt) speakers respectively.

Therefore, while the mean and range averages are mapped to the target speaker,
the transformation is blind to the aspects of identity and style that are spread over
much larger contexts than the frame. For example, lexical stress is at the level of the
syllables and prominence patterns can be explained at the level of Accent Groups.
Recalling Figure 6.1, it can be easily seen that, while the above technique can only
approximate the mean and range to the target speaker, it can not “move” the pitch
accent. The problem is especially non-trivial when dealing with target speakers of a
very different dialect as illustrated by the Indian male speaker ksp.

There are also approaches like multi-stage z-score transforms for the mean,
baseline and topline over the F0 contours [Gillett and King, 2003] for a higher
resolution; Other interesting attempts for F0 conversion include [Helander and
Nurminen, 2007], where syllable level codebooks are trained and CART trees are
built to train a mapping from the source to the target speaker codebooks based
on linguistic context. Inanoglu [2003] employed an utterance level codebook
of intonation contours and used dynamic-time warping based “transplantation”
of appropriate contours on a target utterance. Raux and Black [2003] impose
intonation contours from a unit selection database for simulating emphasis. There
are related techniques in the area of emotion conversion including rule-based
techniques mentioned in [Schröder, 2001]; and unit-selection like data-driven
techniques [Inanoglu and Young, 2009]. However emotion conversion is different
from speaking style conversion in that, in the former, there is no requirement to
match a target speaker, which poses more challenges. In the following sections,
we present some approaches to transform a speaker’s F0 characteristics to match
another, which requires that the range, shape and peak positions of the target
speaker are predicted only given the intonation of the original speaker.

Given the close relation between the definition of Accent Groups to pitch accents
on F0 contours (Chapter 3), the techniques in this chapter use these as the anchor
units over which F0 is analyzed for two speakers. This is rooted in the phonological
hypothesis that the F0 is structured for conveying linguistic meaning of the underly-
ing text. Our goal here is to convert an unseen F0 contour of the source speaker
and predict the likely contour (with the appropriate pitch accents) that the target
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speaker may have employed in delivering the same sentence.

6.3 Analysis of Pitch Accents accross speakers

Using the accent group discovery procedure described in Section 3.2.2, pitch accents
are analyzed for the speakers. The output of the algorithm for each utterance is a
sequence of Tilt-parametrized Accent Groups that is detected on the contour.

This representation of F0 is suitable for voice conversion in that it can parame-
terize the salient peaks and the overall cadence without significant loss in error and
correlation, while removing unnecessary fluctuations within the contour that may
not be as important in signifying speaking style.

Table 6.2 presents the mean error and correlations for natural and resynthesized
contours of the speakers in the arctic database. It is rewarding that the same contour
can be represented in about half or lesser number of parameters with minimal
reconstruction loss, going from syllable to Accent Group level representations, in
addition to giving a simple parametrization of the speaker style.

Table 6.2: Errors and correlations on resynthesized contours using different representa-
tional levels

Speaker Syllable Accent Group
label RMSE CORR RMSE CORR
awb 0.13 0.77 0.14 0.73
bdl 0.09 0.82 0.12 0.76
ksp 0.08 0.79 0.11 0.73
rms 0.10 0.80 0.14 0.72
slt 0.07 0.73 0.09 0.69

For the current purpose of voice conversion, the main idea is to model any
systematic way in which the nuclear accent (the peak) moves about from the source
to the target and how the shape of the accent transforms over the Accent Group.
The Accent Group discovery algorithm 3.2.2 is employed on the source speaker
and the intonationally atomic units are detected. It should be noted that different
speakers may have a different set of Accent Groups they choose to employ. For
the arctic speakers, on an average, there is only about 38% of the Accent Groups
matching per utterance for a random speaker pair. So, it is not easy to get parallel
data with this setting. We deal with this problem by ‘force aligning’ the source
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speaker’s Accent Groups on the target speaker, so an analysis is carried out on target
speaker’s speech within the same linguistic context, so that there is an alignment of
the number of Accent Groups analyzed in each utterance pair. The contours over
each Accent Group are then parameterized using the Tilt representation, which
stores the peak, the total length over the contour, duration and the tilt shape
parameter of the accent for both the source and target speakers. The corresponding
Tilt parameterized vectors of each foot form the parallel data, from which to model a
transformation. Table 6.3 shows the correlation matrix for the shape parameter(tilt)
of corresponding Accent Groups in each speaker pair. Note that this matrix is not
symmetric because the Accent Group boundaries vary as a different speaker is
chosen as the source. It still is satisfying that there is a small but positive correlation
between almost all speaker pairs on the shape parameter.

Table 6.3: Correlation matrix for the tilt shape parameter among speakers for corre-
sponding Accent Groups

awb bdl ksp rms slt

awb 1 0.139 0.333 0.293 0.254
bdl 0.155 1 0.290 0.244 0.250
ksp 0.336 0.218 1 0.301 0.260
rms 0.256 0.202 -0.01 1 0.213
slt 0.230 0.162 0.137 0.158 1

6.4 Style Capturing Voice Conversion

Chapter 3 has argued for Accent Grouping as being a speaker specific trait which
is confirmed by the better objective performance in the oracle tests. Given this,
a style-sensitive voice conversion technique must comprise 2 parts — i) Accent
Group conversion, where the goal is to learn the systematic way in which the target
speaker chunks an underlying syllable sequence to lay pitch accents on and ii) F0

conversion, the conversion of the pitch accents of the source speaker to the target
speaker.

The SPAM intonation model represents ln(F0) as a sum of the phrase, that
models the long term trend of the contour and accents that model the local detours.
Being the long term trend, the phrase component, by design, is comparable across
speakers within a language. The interesting detail is in the Pitch accents that needs
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Figure 6.2: Proposed 2-stage F0 transformation in Voice Conversion

to be handled more appropriately. Figure 6.4 illustrates the proposed F0 conversion
framework within the SPAM model.

We use the z-score transformation technique as shown in Equation 6.1 on the
phrase contour because the mean pitch is roughly determined in the phrases and
an affine transformation is sufficient to approximate the target speaker’s phrase
components. Accents are however complex since they are described by many aspects
like the peak position, shape etc., that manifest as the speaker style. To transform
accents, we train a mapping function between the two speakers’ accent vectors
using parallel data as described below.

The goal of the mapping that we learn from the parallel data of accent vectors
is to apply it to accent shapes of an unseen utterance of the source speaker, and
predict corresponding shapes of the target speaker. To accomplish this, we use the
Gaussian mixture model(GMM) Joint density modelling technique, often used for
spectral conversion [Stylianou et al., 1995]. The conversion can be realized by a
continuous mapping based on soft clustering of the parallel accent features [Kain,
2001] for the source and target speakers.

Let xt and yt be the TILT accent vectors for corresponding Accent Groups in the
source and target speakers. The joint probability density of the source and target
vectors is modelled as the following GMM —
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, where each partial covariance matrix is set to

be a full matrix, because some Tilt parameters (duration and tilt amplitude) have
positive correlation between themselves Taylor [2000b].

At test time, given an accent shape xt of the source speaker, the goal is to predict
the corresponding corresponding yt of the target speaker as follows –

ŷt =
M∑
i=1

p(mi|x(t), λ(z))E(yt|xt,mi, λ
(z)), (6.3)

E(yt|xt,mi, λ
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(6.5)

6.5 Evaluation

To evaluate the proposed transformation, we select speakers awb, ksp, slt and

rms of the Arctic databases. SPAM intonation models were trained on the training
data (90%) for each speaker. For each selected speaker pair, a transformation data
of 200 sentences (about 12 minutes of speech) is randomly selected. The source
speaker’s intonation is analyzed as described in Sec 6.4. Since the transformation
data is relatively small, a phrase CART tree cannot be trained for the target speaker,
so the phrase model of the source speaker is used on the target speaker’s utterance
to predict a possible phrase contour. The phrase contour is shifted along the log(f0)
axis such that the residuals are all non-negative with a minimum at 0. For each
Accent Group, the accent residual of the target speaker is also analyzed within
the same linguistic context, to obtain a parallel set of accents for the speaker
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pair. GMM Joint densities are trained and the mapping function described in the
previous section is computed. Also the means and standard deviations of the
phrase components are computed to learn a z-score transformation for the phrase
components of the two speakers.

For a test set of 100 sentences, the source speech is analyzed, the Accent Groups
extracted and parameterized. The durations are modified in the parameterization
to match those of the reference speech of the target speaker. This is done so as to
be able to objectively compute the root mean squared error (rmse) and correlation
(corr) metrics for each utterance. The phrase model of the source speaker’s SPAM
intonation model is used to predict a phrase curve over the source speaker, and the
phrase level z-score transform is applied to estimate an approximate phrase contour
for the target speaker. GMM transform is applied on the Tilt parameterizations of
the accents over each Accent Group, to predict the possible accent shapes of the
target speaker. Resynthesis of the transformed parameters is done and added with
the transformed phrase contour to predict the F0 contour for the target speaker for
the durations he employed. As a baseline to compare against, we use the traditional
z-score mapping directly on the ln(f0) contour – the resynthesized parameters of
the source speaker for the durations of the target and the result mapped to the
mean and range of the target speakers ln(f0).

The predicted contours of the baseline and the proposed approaches are eval-
uated against the reference target speaker ln(f0)s, using RMSE and correlation
measures. Table 6.4 compares the averages of these measures over the test set for
several speaker pairs. All statistically significant differences in correlation are shown
in bold font. It can be seen that the correlation of the transformed contours of
the proposed approach are consistently improved compared to the baseline z-score
mapping on the F0 contour.

6.6 Summary

In this chapter, we have successfully demonstrated the usefulness of the SPAM
framework for Voice Conversion. A phonologically sensitive approach for F0 trans-
formation is proposed. Corresponding Pitch accents of two speakers speaking
the same underlying text are extracted and parameterized using the SPAM into-
nation model. A Gaussian mixture model based mapping is trained between the
parametrized accent vectors. This mapping is used to convert unseen contours of
utterances of the source speaker to predict the likely contour of the target speaker.
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Table 6.4: Objective comparison of frame level z-score transformation and GMM transfor-
mation of Accent Group vectors

Speaker Z-score transform Foot based
pair RMSE CORR RMSE CORR

bdl-slt 0.494 0.377 0.466 0.521
bdl-ksp 0.264 0.450 0.289 0.526
bdl-awb 0.305 0.528 0.310 0.647
bdl-rms 0.593 0.461 0.421 0.405
ksp-bdl 0.324 0.557 0.312 0.556
ksp-slt 0.470 0.423 0.438 0.505
ksp-rms 0.493 0.339 0.697 0.513
ksp-awb 0.334 0.561 0.304 0.631
rms-bdl 0.216 0.565 0.238 0.590
rms-slt 0.628 0.247 0.443 0.487
slt-bdl 0.638 0.465 0.350 0.491
slt-rms 0.915 0.531 0.475 0.307

Objective evaluations show that the method is better than the baseline frame-level
z-score mapping technique for F0 conversion.
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Intent Transfer in Speech Translation

We have so far seen methods to model and transform intonation. We have noted
that intonation cannot be entirely predicted from text or completely transformed to
a target speaker is due to the lack of sufficient input information and the inherent
variance in human speech. Speakers have a large variability and freedom to
emphasize any concept they choose to, for which there are no cues in text. These
form the ‘augmentative’ and ‘affective’ parts of prosody, the extra information
conveyed through intonation to ensure that the intended message is decoded by
listeners [Taylor, 2009, Chapter 6]. In the rest of this chapter, we use the term
‘intent’ to broadly refer to such aspects of speech.

While intent in its true sense is represented in the brain, likely in a language and
speaker generic form, humans effectively use speech as the mode of communicating
their intent to a listener. Intent manifests in all aspects of speech production right
from the word choice, word ordering and also includes the the non-linguistic content
in the speech signal through which the speaker employs prosodic devices like focus.
Such aspects of speech intent are not merely stylistic choices, but also disambiguate
between different semantic interpretations of a sentence. Prominence, for example,
helps prioritize the concepts presented in the sentence by laying different levels of
emphasis on each content word. For a TTS system to generate speech as good as
a human, it needs to perform sophisticated analysis of the text to ‘understand’ the
intent to then predict and impose the desired attributes in the generated speech
signal. There is not enough richness in text, nor are NLP methods advanced enough
to completely recover intent from it.

There are, however, certain domains where information about intent may be
accessible to the speech synthesizer like speech translation. In this chapter, we
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propose to apply the SPAM framework and transformation techniques for the task
of speech-to-speech machine translation (S2SMT). The goal of S2SMT systems is to
take speech in one language as input and generate as output, the same sentence
spoken in another language. Since the speech in the original language is available,
intent may be analyzed and appropriately laid onto the target language synthesis.

7.1 Speech-to-Speech Machine Translation

Traditional approaches to S2SMT use the pipeline architecture where speech from
a source language is passed through an automatic speech recognizer (ASR). The
ASR output is translated to a target language using a statistical machine translation
(SMT) system. The translation output is passed on to the TTS system to synthesize
the translated text in a target language. Since all the component technologies are
very much under development and are fragile in the real world, S2SMT systems
have not yet become commonplace. This is partly due to the errors that each system
contributes but also due to the cumulative loss of information along the pipeline. In
this chapter, we propose tighter integration of the TTS system with the ASR and
SMT components to improve the information sharing and overall performance of
S2SMT.

While there has been considerable work in the ASR, SMT components and
tightening the interface between the two to improve speech translation [Al-Onaizan
and Mangu, 2007, Bertoldi et al., 2008, Wolfel et al., 2008], issues for speech
synthesis within this framework remain to be studied ([Aguero et al., 2006, Parlikar
et al., 2010]). Previously prosody in the source side has been used to improve the
performance of the ASR system for verifying different linguistic hypotheses [Noth
et al., 2000]. There is also work in cross-lingual conversion of spectral information
that can be exploited to match the original speaker’s voice after translation [Wu
et al., 2009, Anumanchipalli and Black, 2010, Kurimo et al., 2010].

In this chapter, the goal is to further exploit the source prosodic information
by imposing it appropriately on the target side after translation, in essence trans-
ferring the intent across in S2SMT. Transferring the word prominence from the
source language utterances to the synthesized utterances in the target language is
a formidable challenge requiring integration of several techniques within speech
analysis, speech recognition, machine translation and speech synthesis frameworks.
Figure 7.1 situates the current problem within the framework of speech translation.
We address this problem by learning how prosodic correlates of prominence patterns
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Figure 7.1: Schematic illustration of the proposed prominence transfer within the spoken
language translation framework.

change across languages, considering the case of English↔Portuguese translation in
this work. For this, We have created a database of parallel speech in these languages.
Automatic word alignment information and accent prediction techniques are used
to map the prominence patterns across this language pair.

While beyond the scope of this work, Fig. 7.1 also shows other outstanding prob-
lems at the source-target interface, i.e., speaker identity and sentence boundaries
(relevant for better audio-visual synchronization in automatically dubbed videos).
In this chapter, we only deal with transfer of speaker intent as conveyed through F0.
We address this problem by learning how the intonational correlates of focus change
across languages, considering the case of two language pairs for translation in this
work. Our results show that the approach effectively transfers the word prominence
patterns cross-lingually.

We reiterate that correlates of focus also exist in the energy, duration and
phrasing patterns around the associated concepts. In this work however, we deal
only with the intonational aspects, manifested as appropriate pitch accents to convey
word focus.
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7.2 Parallel Speech Corpora

In order to learn the right mapping from the source language intonation to the target
language, the requirement is the availability of parallel speech corpora. This is
similar, in spirit to parallel text that is used in statistical machine translation [Koehn
et al., 2007]. In the case of speech however, the term “parallel” needs to be
elaborated. Within the scope of this thesis, we consider speech recordings of
semantically identical sentences spoken with the same intent and level of expression.
Such resources are not readily available in speech. It is also challenging to setup
control for the requirement of similar prosodic expression in both languages. In this
section, we describe the data and the process to build such a parallel speech corpus
for the English-Portuguese language pair.

As the text corpus from which to record, we use UP, the in-flight magazine
of Portugal’s national carrier, TAP airlines. The magazine has parallel articles,
parallel at the paragraph and sentence levels, on a variety of topics including
travel, cuisine, art and culture. This ensures a good coverage of proper nouns and
syntactic constructions in the recording prompts, suited for training high-quality
natural-sounding TTS systems. From a vast collection of articles, an optimal set
of paragraphs (optimized for phonetic coverage) is chosen to be recorded by a
native Portuguese speaker fluent in both English and in Portuguese The choice of
recording at the paragraph level was deliberately made to give the speaker enough
linguistic context for employing natural prosody, which is otherwise difficult to elicit
in sentence level read speech recordings. The recordings were done alternatively
for each paragraph, first in Portuguese and then in English, so that the speaker is
likely to employ the same intent in the two languages. However the speaker is not
given explicit instructions to maintain the same focus/prominence patterns in the
two instances of recordings.

These paragraph level utterances are automatically chunked at the sentence
level and are phonetically segmented using the islice module [Prahallad and
Black, 2011] within Festvox voice building suite. The duration of the speech is
approximately 1 hour in each language. The corpus statistics are as presented in
the Table 7.1.

Additionally, we also present results of automatic focus analysis on an English-
German (en-de) parallel speech database generously provided by the EMIME
project [Kurimo et al., 2010]. The statistics of this corpus is presented in Table 7.2.

The EMIME databases are read speech recordings at the sentence level. Note
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Table 7.1: Statistics of the English-Portuguese parallel speech corpora
Language English Portuguese

#Paragraphs 84 84
#Sentences 420 420

#Tokens 8184 8211
#Words 2934 3283

#Tokens/Sentence 19.49 19.55
Duration(in mins) 60.36 59.47

Table 7.2: The EMIME English-German parallel speech corpus
Language English German

Speaker ID GM1 GM1
#Paragraphs — —
#Sentences 145 145

#Tokens 1301 1198
#Words 763 697

#Tokens/Sentence 8.97 8.26
Duration(in mins) 11.68 11.87

that the #Tokens are higher in number and more comparable in the en-pt language
pair since it is more free style magazine content, and due to the fact that German
is agglutinative. Also note that the en-de corpus is much smaller in data size per
speaker.

7.2.1 Word Alignment through Statistical Machine Translation

In comparing intonation of two speakers within a language, prosody is studied across
the same linguistic entities (words/ phrases etc). On similar lines, it is necessary to
determine comparable linguistic anchors for comparing prosody across languages.
To study the correspondence in intonation, we obtain the mapping between the
words in the source and target language sentences. We use GIZA++ [Och and Ney,
2000] tool to align the sentences within each language pair. A word alignment
model trained on the parallel text in these databases, seeded with the respective
Europarl data [Koehn, 2005] in these languages is used to obtain the word mappings
between the languages. This word alignment information is necessary both in the
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analysis and synthesis phases. Note that we use word as the anchor unit for
which the parallel speech analysis is carried out because word is the generic unit
comparable across languages, accent group for instance is language dependent.

7.3 Cross-lingual Analysis of Intent

To empirically investigate the relevance of the current problem of cross-lingual
intent transfer, in this section we report analysis on a subset of data from the en-pt

parallel speech corpus.

7.3.1 Manual Analysis of Cross-lingual Focus

A random set of 75 sentences (about 10 minutes of speech) is chosen from the
TAP-UP corpus and annotated for focus by a trained linguist, fluent in both the
languages. The annotator was asked to mark all the focussed word(s) in each
sentence. The annotations for each language were carried out in different sessions
so as to limit the influence on perception of language stimuli on one another. These
annotations are of explicit focus, hence could also include perceived emphasis
through energy and duration cues. Table 7.3 summarizes the focus annotations in
both the languages.

Table 7.3: Results of manual annotation of focus in parallel speech
Total focussed non-focussed #focussed/

Language #words words words sentence
English 1569 298 1271 3.97

Portuguese 1585 285 1300 3.8

It is no surprise that the expert annotator marked comparable number of words
as focussed in either language. To further analyze how much agreement there is,
in focussed words across languages, we use SMT alignments between the parallel
sentences. Of the 75 sentence subset, alignments were generated only for 1110
en-pt word pairs. These also include many-to-one and one-to-many mappings
between the words. Among the 1110 word pairs, 336 were marked with focus in
the English word and 303 were marked as focussed on the Portuguese word. The
intersection between the marked focussed words (focus on both words in pair) is
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found to be in 145 word pairs (about 48% match). This result is worse than, yet
comparable to inter-annotator agreement of prominence on the same set of speech
stimuli within a language [Mo et al., 2008].

It is therefore clear that there is a substantial overlap in the relative prominence
across the two languages in the en-pt task. This number is still an underestimate,
given the mis-alignments from SMT output and the tough nature of the task (para-
graph level recordings, without explicit instruction to maintain similar prosody).
This analysis reinforces our conjecture that word focus is similar across languages
for the semantically same sentence. Hence this information, if available, must be
exploited to improve S2SMT.

7.4 Learning Intonation Transformation from Bi-lingual
Speech Corpora

In this section we present an approach for conversion of intonation from one
language to another. Given a natural utterance in the source language, the goal
here is to predict an appropriate intonation contour for the TTS system to synthesis
the translated sentence in the target language.

We use the same framework described in Chapter 6, but rather than parametriz-
ing Pitch accents over accent groups, here we use word level analysis which is
more appropriate in the cross-lingual setting. Word level TILT vectors are used
as the features, and word alignment information from SMT is used to create the
parallel data. However, since word focus is primarily on content words, the parallel
data is constructed only from the accents over content words. Also, a threshold is
determined on accent probability to remove non-accented words from the parallel
data. This data is used for training the conversion function between the accent
vectors of the source and target language. Joint density of the source and target
accents of the corresponding words are modelled as a Gaussian mixture model
(described in Sec 6.4).

The trained function can be used on an novel source utterance word accents
along with the translation and the word alignment information to predict an intona-
tion contour with appropriate prominence patterns as used in the original speech.
At synthesis time in the target language, the default word-level intonation models
predict a Tilt vector for each word of the translated sentence. For the content words
translated, the associated Tilt vector of the original utterance x(t) are converted
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to ŷt, using the trained conversion function, overriding the default predicted word
TILT vectors.

7.5 Evaluation

Clustergen synthetic voices are built for all the databases within the en-pt and en-de

parallel speech data. Each voice has CART tree models for spectral and duration
information. The word-level TILT intonation models are used as the intonation
models. These voices are used as the baselines to compare the proposed method
against. Essentially, the baselines are standard state-of-the-art TTS systems that
only use the text input of the translated sentences.

As the test data, we set aside 10% of the sentences in the target language. We
try to objectively measure the distance between the predicted intonation contours
for the translated sentences from the reference intonation contours of the test set.
We use the conventionally used root mean squared error (rmse) and correlation
(corr). To enable this, the same durations as employed in the reference sentence
are employed in synthesis of the test set.

As the proposed intonation model, we use a fusion of the predicted word level
intonation model and the transformation model using the joint density GMM on
the source utterance accent vectors. For all the function words in the translated
sentence, the default predicted word level contour is retained. For the content
words, the default is contour linearly interpolated with the transformed intonation
contour with a simple mixing weight as given by,

F0fused = (φ)F0wordtilt + (1− φ)F0GMMvc

where F0wordtilt is the default word level predicted intonation contour, F0GMMvc

is the contour after applying the conversion function on the source utterance’s
accent vectors and 0 ≤ φ ≤ is the interpolation weight. This was empirically
determined to be 0.6 on a development set across language pairs. The fusion is done
to improve the coherence of intonational accents, that could otherwise get effected
if the conversion method is directly used, since the technique context insensitive.
Table 7.4 compares the proposed and the baseline intonation contours using the
rmse and corr measures.

It can be seen that the proposed method generates intonation contours much
closer (lesser rmse and higher corr) to the reference than the baseline prediction
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Table 7.4: Objective comparison of synthesized F0 contours
Lang Pair Frame-based SPAM-based

rmse corr rmse corr

en-pt 17.60 0.51 16.59 0.54
pt-en 15.90 0.47 15.30 0.49
en-de 11.93 0.54 10.98 0.51
de-en 10.27 0.46 10.17 0.46

that doesn’t exploit the source language prosody. It is also consistently effective in
all language pairs, although the degree of improvement is understandably different.
To further illustrate the performance of method proposed, Figure 7.2 shows the
predicted intonation contours for three differently emphasized input Portuguese
utterances of the sentence ‘A lanterna é uma boa invenção’. The three utterances are
varied in which word, the emphasis is laid from among the three content words. In
this illustration, the same durations of the baseline system are used across the three
utterances for better visualization.
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Figure 7.2: Synthesized F0’s for differently focussed inputs of the Portuguese sentence ‘A
lanterna é uma boa invenção’

It can be seen that the synthesized intonation contours in English are also varied
to reflect the same prominence patterns as the input. This is quite elegant compared
to default TTS systems that invariably produce the same intonation contours for all
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intents of the underlying text.

7.6 Summary

We have seen in this chapter an approach to transfer prosodic aspects accross
languages within the SPAM framework. Starting with an analysis to motivate the
need for Intent transfer, we have shown that there is enough correlation of prosodic
aspects accross languages when semantically the same sentence is being uttered
in two languages. The transfer itself uses a transformation function trained on a
parallel speech corpus recorded by a bilingual speaker, exploiting automatically
obtained word alignment information. The approach is evaluated objectively on
unseen target language sentences, given their natural speech productions in the
source language. It is clear that synthesis for an expected intent of the sentence is
better when the same utterance in a source language is made available at synthesis
time.
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Chapter 8

Conclusion and Future Work

This thesis has explored a computational framework for modelling and transforming
intonation. A statistical phrase/accent model is proposed for describing F0 contours,
consolidating complementary views of intonation into a unified model that can be
automatically trained from speech data, and is also rooted in theoretical paradigms
like intonational phonology.

The applicability of the framework is demonstrated for improved performance of
Text-to-Speech synthesis within the framework of Statistical Parametric Speech Syn-
thesis and in voice conversion applications for F0 transformation between speakers
and languages.

8.1 Contributions of this thesis

The techniques described in this thesis advance the state-of-the-art in Text-to-speech
synthesis and Voice Conversion in the following ways —

• Data-driven Accent Groups: This thesis has argued for an optimal phonological
unit appropriate to statistically model intonation, which we propose as the
Accent Group. Through subjective and objective evaluations, we establish
the superiority of the Accent Group compared to other levels like the frame,
phoneme, syllable or word. Data-driven methods are proposed to automati-
cally discover the accent groups, only using the speech data and an underlying
segmental sequence.

87
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Methods are also proposed to automatically parse an unseen sentence into its
constituent accent groups. Accent Group is integrated into the Festival speech
synthesis system for synthesis of intonation for improved speech outputs of
Statistical Parametric Speech Synthesis voices.

• Statistical Phrase/Accent Model: A language-independent, multi-tier architec-
ture is proposed with associated training and runtime algorithms for improving
the naturalness of synthetic speech through appropriate modeling of variance
in natural intonation contours. The method is shown to bring higher levels of
contexts to bear on synthesized speech due to the appropriate decomposition
of F0 into constituent components.

The method is shown to be optimal to for a range of prosodically diverse tasks
including Radio news and Audiobooks; and for languages, reported here for
English and Portuguese.

• F0 transformation in Voice Conversion: As an application of the SPAM frame-
work, we propose a more detailed method for F0 transformation in voice
conversion. The approach is shown to be objectively better at generating con-
tours that are more correlated to those of the target speaker, than conventional
techniques

• Speech Translation: We motivate the need for transferring speaker prosody
from the source language to the target language for synthesis to ”completely”
translate the speaker’s intent. We describe methods for tighter integration
of the TTS system to the source language analysis and Machine Translation
components, that have so far been neglected in speech translation.

A conversion method trained on parallel speech data in the language pair is
described for generation of F0 contours in a target language, that takes into
account the intonation in the source language.

8.2 Future Directions

While the framework and methods presented in this thesis demonstrate success in
their respective tasks, these results are only an under-estimate of the real potential
of what’s presented. This thesis only barely scratches the surface of slowly emerging
paradigm of “Computational Prosody”. The following are viable lines of research
that can improve or further exploit the contributions of this thesis —
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• Alternative design choices : All design choices in this thesis, Classification
and Regression Trees (CART) as the Machine Learning Model, Tilt for quan-
titative encoding of Pitch Accents, and GMM-Joint density estimation for
transformation are only chosen for the practical ease and availability at the
time of conducting this research. There is however potential in improving
each of these choices, exclusively with a view to modelling and transforming
intonation.

• Synthesizing Audiobooks : This thesis has only begun to address the issue of
Synthesis for the Audiobooks task. We demonstrate improved performance
of TTS systems by using more data as available from audiobooks. But the
synthesis itself is, in spirit, at the level of isolated sentences. While we show
the importance of beyond the sentence context for prosody, we haven’t really
addressed the issue of synthesizing multi-paragraph text input, like a story.
This gaping void in the Audiobook synthesis can be filled by integrating the
proposed techniques in this thesis with latest findings in discourse information
structure and pragmatics that deal with contexts beyond the sentence.

These are certainly logical extensions to the proposals in this thesis, where
richer features can be used at the appropriate levels in the model to build
synthesizers that are more context-aware.

• Speaker and Task Characterization : There is a need for a more comprehensive
study of the models trained in the proposed SPAM framework. This can be
potentially useful for characterizing the speakers and languages. For example,
a boring or monotonous speaker may be described only by fewer shapes in the
Pitch Accent codebook and an enthusiastic speaker may employ many more
shapes. It is valuable to automatically categorize speakers depending on the
model components. Additional analysis may include the nature of the shapes
themselves and identifying what are the intonational aspects and what are
merely idiosyncratic to a given speaker or speaking style.

There are immediate applications for this in speaker verification, emotion
detection and studying intonation of contact languages/creoles.

• Transformations of all aspects of Prosody : This thesis addressed only aspects of
F0 in voice conversion which constitutes only a part of speaking style. There is
only limited work in addressing the other prosodic components like duration
and rhythm etc. Conversion of Accent Grouping strategies is yet another
dimension to this, immediately extending the work in the current thesis.
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• Improving Automatic Dubbing : The prosody transfer methods described in
this thesis are only a proof-of-concept for the idea of tighter integration of TTS
with other components of the Speech Translation pipeline. These methods
can be integrated to automatically dub videos from one language to another.
There is however the practical requirement for time alignment of the video
and the translated audio at some phonological level (sentence ?). There is
more benefit in more closely integrating the TTS with the SMT systems so
that an optimal translation hypothesis can be output (from among the n-best
paraphrases) depending on the duration of the video and expected duration
of each translation alternative.

Another dimension to speech translation is to develop techniques for graceful
degradation of the strategies in the face of ASR and SMT errors.

• Transfer of Para-linguistic Aspects in Speech Translation : The assumption in
this thesis has been that spoken language is the same as written language,
hence the assumption of sentence level synthesis in speech translation, and
expectation of fluent language from the SMT output. This is, however, not true
because spoken language has many para-linguistic aspects like revisions, repe-
titions, speech fillers and pauses, some of them functional to communication
and some that are redundant. These aspects need to be further explored and
appropriate translation techniques must be researched for all these aspects for
making speech translation seamless on a variety of natural spoken language
inputs.

• Integration in Other Speech Applications : While we have demonstrated the
techniques on a few applications, there are still a host of others that can
exploit the findings of this thesis. These include context-aware TTS in spoken
dialog systems where the synthesizer adapts to the dialog state and responds
accordingly. Another application is for virtual agents where an agent can
entrain itself with respect to the speaking style and attitude of a user.

• Psycholinguistic Evaluation : Given the level of naturalness and expressivity
reached by SPSS systems in this thesis, there is an immediate need for a full
scale psycholinguistic evaluation comparing human responses to natural and
synthetic speech stimuli. These include evaluation of Audiobooks that are
naturally spoken and automatically synthesized to that of voice conversion
and dubbing techniques presented here.
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