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Abstract

Whether its consumers comparing all the available options on Amazon, novice
learners synthesizing information scattered across many online tutorials and discus-
sion boards, or data scientists analyzing datasets to find patterns and themes, users
often need to explore large quantities of unstructured information beyond an individ-
ual’s capacity to process them fully. Typically, users reduce task uncertainty by learn-
ing the unknown unknowns as they process individual pieces of information to gain
deep qualitative insights. However, the cost of evaluating learned insights (known
unknowns) under the global context can be high, prohibiting users to evaluate their
generalizability and whether they lead to high-yield information patches [176]. For
example, a consumer who encountered a product recommendation on one webpage
may need to search across the Web and consider many other sources to figure out
if it is worth adding it to their shortlist for deeper comparisons. As they read online
reviews they often discover new criteria that fit their personal context and interests,
but it can be difficult for them to figure out how well new criteria can differentiate all
the different products on their shortlist. Similarly, a team of scientists who observed
an interesting phenomenon on a subset of data also needed to spend a lot of effort
figuring out whether it generalizes to the rest of the dataset [51]. Most existing ap-
proaches either focused on aggregation techniques of unstructured data (e.g., topic
modeling, review summarization and aspect extraction) or interaction techniques for
exploring structured data (e.g., faceted navigation and multivariate visualizations),
and do not support this process of bottom-up exploration and interpretation of un-
structured online data.

This thesis explores systems and interaction techniques that support users in ex-
ploring large and unstructured data by allowing them to both examine each piece of
information to gain local insights and at the same time evaluate them under the global
context. I identify and focus on two domains in which addressing this issue can lead
to high impact. The first half of the thesis focuses on the domain of crowdsourced
sensemaking, in which an individual’s capacity for understanding large datasets is
scaled up by segmenting data into microtasks to be processed by a group of crowd-
workers. I describe two approaches that allowed crowdworkers who each saw a small
subset of data to generate categories that were more globally coherent compared to
existing crowd-based and computation-based approaches (Chapters 3 and 4). The
second part of the thesis focuses on supporting individual sensemaking, in which
an individual explores and synthesizes online information scattered across different
webpages for their own personal tasks, such as product comparison or trip planning.
I describe three systems that allow users to discover important options and criteria
from one source and evaluate them across information sources and different options
to gain a deeper global understanding with lowered interaction costs (Chapters 5
to 7). Through lab and field deployment user studies, I investigated the costs and
benefits of the systems for supporting personal online sensemaking.
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Chapter 1: Introduction and Thesis Statement

Whether it is a consumer reading reviews to compare products, a learner reading different tu-
torial and forum posts, or a data scientist analyzing a large dataset, users are often faced with
large quantities of unstructured information beyond an individual’s capacity to process them fully.
Typically, users reduce task uncertainty (unknown unknowns) by processing individual pieces of
information in order to learn deep qualitative insights. This process of learning the unknown
unknowns in the dataset allows users to iteratively refine their goals and interests, which can
both potentially invalidate prior decisions and opens new research directions [154]. However,
the cost of evaluating learned insights (known unknowns) under the global context can be high,
prohibiting users to evaluate their generalizability and whether they lead to high-yield information
patches [176]. For example, a consumer who encountered a product recommendation on one
webpage may need to search across the Web and consider many other sources to figure out if it
is worth adding it to their shortlist for deeper comparisons. As they read online reviews they often
discover new criteria that fit their personal interests, but it can be difficult for them to figure out
how well new criteria can differentiate all the different products on their shortlist. Similarly, a data
scientist who observed an interesting phenomenon on a subset of data also needed to spend
a lot of effort in order to figure out whether it generalizes to the rest of the dataset [51]. Most
existing approaches either focused on aggregation techniques of unstructured data (e.g., topic
modeling, review summarization, and aspect extraction) or interaction techniques for structured
data (e.g., faceted navigation and multivariate visualizations), and do not support this process of
bottom-up exploration and interpretation of unstructured online data. This thesis explores sys-
tems and interaction techniques that support exploring unstructured datasets by allowing users
to both gain deep insights from each piece of information and at the same time evaluate such
local phenomena under global context. I investigated this approach under the following two
domains of crowdsourced sensemaking and individual online sensemaking.

1.1 Global Context and Crowdsourced Sensemaking
Crowdsourcing markets, such as Amazon Mechanical Turk, offer a new paradigm for on-demand
data processing at scale, allowing researchers and machine learning practitioners who do not
have the capacity or resources to process a dataset themselves and request a group of crowd-
workers to process them. This typically involves the task requester who examines a small part
of the data to design the microtask instructions and divides the dataset into smaller chunks to be
distributed across different crowdworkers. Traditionally, crowdsourcing had focused on collecting
simple human judgments such as extracting contact information from a webpage [84] or recog-
nizing characters on an image that automatic optical character recognition (OCR) algorithms
were unable to process [221]. However, many real-world sensemaking tasks are often more
complex and interdependent, requiring each crowdworker who only received a small subset of
data to evaluate them with a better understanding of the global context.

Considering the task of organizing a collection of text snippets by their common themes. Since
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each crowdworker only saw an arbitrary subset of the entire dataset, it can be difficult for them
to come up with categories that are coherent and comprehensive under the global context. For
example, if all the items in the sample were closely related, a crowdworker might generate
overly fine-grained categories; conversely, if all the items in the sample were dissimilar, the
crowdworker might not be able to identify common patterns to generate useful categories.

Further, even in classification tasks where a requester provided predefined categories to the
crowdworkers, it can be prohibitively effortful for requesters to explore enough data in order to
generate clear and comprehensive guidelines (i.e., label definitions) that can eliminate ambiguity
in data that allowed for subjective interpretations by the crowdworkers. This is due to the fact that
prior work has shown even in expert labeling scenarios where machine learning practitioners
labeled all items in a dataset using predefined categories, their own mental definition of the
categories will typically evolve throughout the process as they examine more items [138]. For
example, a requester developing labeling guidelines for a seemingly simple task of labeling
images as either about “cats” or “not cats” might not be aware of the long tail of edge cases in
the dataset. These edge cases can then be interpreted differently by different crowdworkers,
leading to inconsistent labels for images about cartoon cats or tigers. Fundamentally, the main
challenges here are firstly each crowdworker can only see a small subset of data due to the
scope of microtasks that typically range from a few seconds to a few minutes. Secondly, the
requesters who relied on crowdsourcing to scale up their capability to process larger quantities
of information also may not have enough global context to generate comprehensive guidelines
for the crowdworkers. Failure to address these challenges can lead to incoherent structures and
inconsistent labels.

In the first part of this dissertation, I explore novel crowdsourcing approaches for generating
globally coherent structures. For this, I built two systems that introduced a new framework for
crowd categorization (clustering) and classification, respectively, that can provide better support
for global context :

• Alloy: A novel crowdsourcing workflow that focuses on organizing a collection of textual
snippets into globally coherent categories by combining crowdsourcing and computation
(Chapter 3). Instead of showing a fixed subset of data to each crowdworkers, Alloy intro-
duced a novel interaction technique that allowed each crowdworkers to repeatedly sample
from the entire dataset until they build up a better understanding of the global context to
generate coherent categories.

• Revolt: A novel paradigm for collecting classification labels for training machine learning
models (Chapter 4). Instead of requiring requesters to generate comprehensive guidelines
beforehand, which can potentially require them to explore a large portion of the datasets,
Revolt uses crowdworkers to identify ambiguous items in data and generate categories for
post hoc decisions made by the requesters.

The two systems were evaluated against state-of-the-art crowdsourcing and machine learn-
ing approaches on a wide variety of data types including web snippets extracted from Google
search results, research paper abstracts, Web images that were a subset of ImageNet [70] and
Webpage classification datasets from a prior work [138]. We found evidence that the proposed
techniques can provide a better global context, either to crowdworkers or the requesters, leading
to more coherent structures and consistent labels.
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The main focus of the Alloy system was to categorize web snippets extracted from webpages
in a Google search results list using queries such as how do I grow better tomatoes or What
does a planet need to support life. To further investigate the usefulness of the Alloy structures
for end-users, I built a third crowdsourcing system, Knowledge Accelerator (Section 3.4), that
synthesized the categories of web snippets into sections of overview articles. We were surprised
to find that the Alloy structure led to crowd-generated articles that outperform top Google search
results published by experts. These results revealed that end-users valued information that
was synthesized from across many different online sources, especially when an authoritative
information source was not available. This led to the second part of this dissertation that explores
novel systems that support individuals when foraging and learning from online information and
evaluating discoverings from reading information pieces of information under the global context
of many information sources.

1.2 Global Context and Individual Online Sensemaking
Whether planning a trip to a new city or deciding which product to purchase, consuming and for-
aging information online through exploratory search has become how people make sense of the
world. People now have instant access to an enormous online bazaar of information produced
by experts and novices with different personal preferences, backgrounds, and assumptions.
Consider purchasing a desk lamp at an office supply store versus online, and the differences
in scale of available options and evidence. Amazon lists over 4,000 different options and up to
thousands of reviews for each option; Google returns hundreds of “best desk lamps” listicles;
and Reddit1 lists thousands of discussions on desk lamps. While this rich repository of diverse
perspectives has the potentials to empower consumers and learners to explore and understand
available options thoroughly and make better decisions [66], the seemingly infinite number of
options and evidence scattered across numerous information sources are often well beyond an
individual’s capacity to process them [201]. While existing research largely focused top-down
approaches to support this process, such as presenting average review ratings, summarizing
reviews [104, 145] or making recommendations directly [29], prior studies have instead shown
that consumers often take a bottom-up approach of deeply examining each piece of informa-
tion to gain insights and gradually build up a personal understanding of the information space
[86, 170].

One explanation for the bottom-up approach is that online evidence, such as reviews, can be
messy, subjective, potentially biased, and scattered across online sources [52, 101, 182, 238].
This required users to both interpret each piece of evidence to determine how well it fits their
personal context, as well as using multiple information sources in order to verify them [181].
Another factor could be the exploratory, dynamic and opportunistic nature of online exploratory
search [155] – as users develop a personalized framework for comparing options, they might
discover new criteria and iteratively refine their goals and preferences, potentially invalidates
prior decisions and opens new research directions [176, 177]. Fundamentally, users have a
need to deeply explore and interpret each piece of evidence to discover options and criteria
that align with their own personal goals and needs, but the overwhelming amount of available
evidence, options and information sources can be prohibitive for them to evaluate such local
insights under the global context.

1http://reddit.com
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In the second half of this dissertation, I explore three novel systems and interaction techniques
that can better support providing global context in this bottom-up qualitative process and scaffold
users’ online exploration and decision-making process:

• SearchLens: an interactive restaurant review search interface that enabled users to ex-
plore reviews to discover and build up a set of structured queries (i.e., sets of weighted
keywords) that reflected their different nuanced interests to search for restaurants. This en-
abled users to maintain their evolving interests throughout exploration. Using the queries,
the system generated personalized visual explanations for each restaurant in the search
results, allowing users to interpret and explore new options based on their current interests.
(Chapter 5)

• Weaver: a browser extension that enabled the browser to identify common entities (i.e.,
restaurants and destinations) mentioned across open tabs to support travel planning.
Weaver’s interface allowed users to both evaluate a new option they encountered on one
webpage using evidence about it extracted across information sources, as well as allow-
ing them to efficiently forage, accumulate, and re-access evidence about different options
across their browser tabs throughout the process. (Chapter 6)

• Mesh: an interface that scaffolds users in exploring online evidence (reviews and web-
pages) about products and progressively builds up a comparison table that reflects their
personalized criteria and evaluation of online evidence. Allowing them to both evaluate
how useful a newly discovered criteria was for differentiating the options to prioritize their
effort, as well as keeping track of their own interpretation and summarization of evidence
as they explore. (Chapter 7)

The three systems were evaluated using controlled lab studies and field deployment studies.
I found evidence that by providing better global context across multiple information sources to
individuals can lead to higher incentives for externalizing user interests (Chapter 5), gather and
accumulate evidence across information sources with lowered effort (Chapter 6) and discovering
deeper insights from data (Chapter 7).

Two high-level models for providing global context during individual online sensemaking emerged
from the benefits provided in the three systems for providing global context tasks. My first insight
is that users can not confidently make decisions based on a single piece of evidence, whether it
is a product recommendation or important criteria mentioned in a review. In this case, providing
them with a better global landscape of using other information sources as confirmation can lower
both the interaction costs of cross-referencing and also the mental costs of evaluating many
pieces of evidence. My second insight is that individuals often have evolving goals throughout
the process, encountering both new criteria or interesting soft preferences as they explore more
evidence. Allowing them to keep track of their changing interests and using them to interpret
new and existing options can provide a scaffold that leads to better decision-making.

1.3 Thesis Statement and Overview
In many sensemaking scenarios, users often face large quantities of unstructured data and take
a bottom-up approach to explore them in order to gain deep insights from data. However, indi-
viduals with limited capacity often can not process all the data to see a complete landscape of
information. With only a local view of the whole picture, users can risk generating incoherent
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structures when organizing data or be overwhelmed by the number of choices and evidence
leading to high interaction and mental effort. To investigate methods that can better support
learning the global context in such scenarios, I consider the following as the thesis of this disser-
tation:

Using interaction and visualization techniques, we can dynamically provide global con-
text that matches users’ evolving intentions throughout their exploration of large unstruc-
tured datasets. Supporting this will allow users to gain deeper insights from data and
make better decisions with lowered efforts. Specifically, this dissertation first investigates
this thesis in the domain of crowdsourced sensemaking where both the requesters and crowd-
workers each only saw a small portion of data but needed to create globally coherent and consis-
tent structures. This dissertation also investigates the domain of individual online sensemaking
where the number of available choices and evidence is often well beyond an individual’s capacity
to process them.

Concretely, this thesis makes the following contributions:

1. An interaction pattern of allowing users to explore large quantities of information that sup-
ports qualitative knowledge discovery from individual pieces of information and evaluating
them under the global context.

2. Five novel system designs and interaction techniques that can better support this new
model in two domains – crowdsourced and individual online sensemaking.

3. The implementation of the systems and extensive lab and field evaluation that investigated
their costs and benefits to the users.
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Chapter 2: Background

2.1 Evolving User Intention when Exploring Large Data
Users often need to explore individual pieces of information in large and unfamiliar datasets. As
they gradually examine more data, they build up a better mental landscape of the space of infor-
mation, potentially adjusting their goals in the exploration process. One instance of this process
is online exploratory search tasks where users start out with a high level, sometimes vague,
ideas about their goals and criteria. Consider a user starting out with a search query for finding
“the best laptop for college.” Being unfamiliar with the topic, the user must first explore online
reviews and articles in order to figure out what were the common options recommended in these
sources, what were the important criteria these recommendations were based on, and which of
these criteria fits the user’s personal preferences and context. This process is often exploratory,
dynamic, and opportunistic in nature, requiring users to learn from the individual webpages and
reviews to iteratively refine their goals and preferences based on a better understanding of the
global context [155]. However, prior studies have shown that this process can incur high mental
and interaction efforts as new discoveries can potentially invalidate prior decisions, lead to better
query terms [15, 193], and open new research directions to pursuit [176, 177] requiring users
to use a combination of external tools to keep track of all their decisions and progress made
throughout these mental changes [37].

There have been several decades of research that have explored ways of getting users to more
deeply externalize their intents and goals beyond short search queries in order to provide better
support for this process [116]. For example, using prompt and text field designs that promote
longer query terms [15, 85], asking for relevance feedback on the results provided [175, 190,
193], explicitly asking users to build up sets of query terms of different topics [100, 102], or
providing in-situ interfaces for note-taking [217]. However, research also found that it is very
difficult to get users to put in the work to externalize and maintain their evolving interests tasks
due to its volatile nature during an exploratory search. In addition, interactions such as eliciting
longer query terms or explicit relevance feedback, can have the perception that the work will not
be sufficiently paid off in the future or not understanding how their work will affect their results.
In this thesis, I introduced two mechanisms for providing immediate and sufficient benefits to
exploratory searchers: 1) generating personalized and interactive visualizations for explaining
items in a search results list based on users’ current interest profile (Chapter 5); and 2) allowing
users to keep track of their interpretation of online evidence about their different criteria and
options to build a product comparison table (Chapter 7). I tested these mechanisms in two
systems in controlled lab studies and field deployment studies and found that users expressed
significantly more to the system, and valued the benefits they provided.
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2.2 Structuring Information with Crowdsourcing
Human computation approaches present new opportunities to harness deep semantic knowl-
edge for exploring and organizing complex and unstructured data. For example, Cascade
[32, 60] generated hierarchical categories from online forum discussions but suffers from cat-
egories at the same level having varying specificity due to the limited context of each crowd-
workers. Crowd Synthesis [8] showed that simply showing more items to each crowdworker can
lead to significant improvements, suggesting a global context is a key element for crowd struc-
turing. Fundamentally, most prior systems provide context by showing a small sample of items,
hoping that they capture the distribution of information in the larger dataset. A complementary
set of approaches has focused on the scaling through computation, applying approaches such
as partial clustering [232], learning similarity metrics [212], or matrix completion [233]. While
these have shown to be powerful on simple information such as visual patterns or colors using
large numbers of split-second judgments, structuring complex exploratory search information
can be difficult without providing novice crowdworkers with richer context or opportunities to
learn from data. In chapter 3, I propose an alternative approach that builds up workers’ mental
models by allowing them to actively request for more context, identify discriminative keywords,
and search the dataset for similar items, taking advantage of people’s capacity of information
foraging [176]. The resulting structures were found to be more coherent than a state-of-the-art
crowd and machine learning-based systems and at a lowered monetary cost compared to other
crowd-based approaches.

2.3 Exploratory Search Interfaces
Due to the ubiquity and high costs of exploratory search tasks to the users [155], a major thread
of work includes novel personalized search interfaces such as semantic web interfaces [226],
or computational approaches such as automatic or interactive result clustering [65]. Several ex-
ploratory search interfaces have been developed in order to help searchers orient themselves in
the information space, review and explore the different subtopics, and keep track of their overall
progress [98, 156, 169, 173, 216]. Two closely related studies include Topic-Relevance Map and
Exploration Wall, which explored ways to provide overviews of search results of academic pa-
pers using document keywords and entities and easily choose keywords to build up subsequent
queries [131, 174].

Past studies have shown users rely on aggregating from multiple sources in order to verify online
information as credible and make decisions [64, 83, 182], but the process can be “tedious and
cumbersome” leading to “opening several tabs ... and then manually switch[ing] between them
while trying to remember information on different pages” [22, 88]. Another domain of research
focused on the aggregation of information scattered across sources. For example, summarizing
search results for complex exploratory search tasks has been an area of high research interest.
Early threads of research include search results clustering [236, 237], review summarization
[151, 234], and identifying criteria about products from reviews [104, 145]. While these top-
down approaches have shown great benefits in helping people get an initial overview of the
space of information with many making their way into commercial e-commerce websites, prior
studies on consumer behavior have also shown that consumers often also rely on bottom-up
approaches of deeply examining each piece of information to gain insights and gradually build
up a personal understanding of the information space [86, 170]. In the second half of this dis-
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sertation, I presented three systems for supporting global context by allowing users to express
personal interests and use them to interpret multiple options (Chapter 5), cross-reference infor-
mation about entity options scattered across webpages (Chapter 6), and keeping track of how
users interpret individual pieces of evidence to gradually build up a global understanding of their
options and criteria during online shopping research (Chapter 7). Through controlled lab studies
and field deployment studies, I examine the costs and benefits of dynamically providing global
context based on users’ current interests.
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Chapter 3: Alloy

Coherent Categorization with Crowds and Computation

This work was previously published in ACM SIGCHI 2016 ([44] and[92]) and has been adapted
for this document.

This chapter describe the first of the two crowd systems in this dissertation that explored ways to
provide global context in crowdsourcing. This first system focused on the task of data clustering,
a common approach to data analysis. In the domain of crowdsourcing, this typically involves
assigning sets of items to different crowdworkers and using human judgements to both creat-
ing categories and assigning items under them. Crowdsourced clustering approaches present a
promising way to harness deep semantic knowledge of human computation for identifying coher-
ent categories and clustering complex information. However, existing approaches have difficul-
ties supporting the global context needed for workers to generate meaningful categories, and are
costly because all items require human judgments. We introduce Alloy, a hybrid approach that
combines the richness of human judgments with the power of machine algorithms. Alloy sup-
ports greater global context through a new “sample and search” crowd pattern which changes
the crowd’s task from classifying a fixed subset of items to actively sampling and querying the
entire dataset. It also improves efficiency through a two phase process in which crowds provide
examples to help a machine cluster the head of the distribution, then classify low-confidence
examples in the tail. To accomplish this, Alloy introduces a modular “cast and gather ” approach
which leverages a machine learning backbone to stitch together different types of judgment
tasks. In an application-oriented evaluation, Alloy clustered were further synthesized into com-
prehensive overview articles using a workflow described in [92]. Results show that Alloy struc-
tures can lead to coherent and comprehensive overviews that out performed top Google search
results published by experts in scenarios where there are a lack of authoritative sources.

3.1 Introduction
Clustering, or pulling out the patterns or themes among documents, is a fundamental way of
organizing information and is widely applicable to contexts ranging from web search (cluster-
ing pages) to academic research (clustering articles) to consumer decision making (clustering
product reviews) [114]. For example, a researcher may try to pull out the key research topics
in a field for a literature review, or a Wikipedia editor may try to understand the common topics
of discussion about a page in order to avoid or address previous conflicts. Doing so involves
complex cognitive processing requiring an understanding of how concepts are related to each
other and learning the meaningful differences among them [16, 134, 162].

Computational tools such as machine learning have made great strides in automating the clus-
tering process [28, 41, 62]. However, a lack of semantic understanding to recognize the impor-
tant differences between clusters leaves the difficult task of identifying meaningful concepts to
the human analyst [63]. This reflects an inherent advantage for humans over machines for the
complex problem of understanding unstructured data beyond merely measuring surface sim-
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Figure 3.1: A conceptual overview of the system. In the first phase, crowd workers identify seed
clips to train a machine learning model, which is used to classify the “head” of the distribution.
In the second phase, crowd workers classify the more difficult items in the “tail”. A machine
learning backbone provides a consistent way to connect worker judgments in different phases.

ilarity, and a corresponding opportunity for research in combining human and computational
judgments to process complex information [81, 106, 137].

One such promising avenue of research harnesses the power of crowds to identify categories
and cluster rich textual data. Crowdsourcing approaches such as Cascade, Deluge, and Crowd
Synthesis [8, 32, 60] have demonstrated the power of splitting up rich, complex datasets into
small chunks which can be distributed across many human coders. However, all of these ap-
proaches must grapple with a fundamental problem: since each human coder is seeing only a
small part of the whole dataset, a lack of global context can lead to incoherent results. For ex-
ample, if the items sampled are too similar, the worker might create overly fine-grained clusters.
On the other hand, if the items sampled are too dissimilar, the worker might create overly broad
clusters. Clusters found in many worker segmentation sets may give rise to redundant clusters,
while clusters whose items are sparsely split among segmentation sets may never be realized at
all. As an example, [8] cite redundancies in Cascade’s top level clusters having both “green” and
“seafoam green”, “blue" and “aqua”, as well as the encompassing category of “pastels”. While
Crowd Synthesis used an iterative approach to address these redundancy problems, it trades
this off with lowered robustness as issues with early workers’ categories can cascade through-
out subsequent workers’ judgments. This suggests the design space of approaches for crowd
clustering may be being critically limited by the assumption of splitting up the dataset into small,
fixed pieces that prevent workers from gaining a more global context.

Another challenge with current crowd clustering approaches is that using human judgments to
label each piece of data is costly and inefficient. Deluge addresses some issues with efficiency,
improving on Cascade by reducing the number of human judgments elicited as the rate of new
category generation slows [60]. However, these crowd clustering algorithms still require human
judgments for every item, which is costly. In the real world data often follows a long-tailed
distribution in which much of the data is captured by a small number of categories in the head of
the distribution [224]. For such data in which many items in the head of the distribution are likely
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to be highly similar, once humans have identified the meaningful categories and representative
examples it would be more efficient if a machine could classify the remaining items in those
categories. A danger with such an approach is that the sparse categories in the tail of the
distribution with few examples may be difficult to train a machine to recognize, and so human
judgments may have another important role in “cleaning up” low frequency categories.

This chapter describes Alloy, a hybrid approach to text clustering that combines the richness of
human semantic judgments with the power of machine algorithms. Alloy improves on previous
crowd clustering approaches in two ways. First, it supports better global context through a new
“sample and search” crowd pattern which changes the crowd’s task from classifying a fixed sub-
set of items to actively sampling and querying the entire dataset. Second, it improves efficiency
using initial crowd judgments to help a machine learning algorithm cluster high-confidence un-
labeled items in the head of the distribution (prominent categories), and then uses later crowd
judgments to improve the quality of machine clustering by covering the tail of the distribution
(edge cases and smaller categories). To achieve these benefits, Alloy introduces a novel mod-
ular approach we call “cast and gather ” which employs a machine learning backbone to stitch
together different types of crowd judgment tasks. While we provide a particular instantiation of
the cast and gather approach here (with a hierarchical clustering backbone which gathers three
types of crowd tasks, or “casts”), the general framework for modularizing multiple types of human
judgments with a common machine-based backbone may inspire application to other contexts
as well.

3.1.1 Related Work

Document and short text classification are well researched topics in natural language processing
and machine learning. With enough labeled training data, state-of-the-art algorithms can often
produce good results that are useful in real world applications. Yet building such systems often
requires expert analysis of specific datasets both to manually design an organization scheme
and to manually label a large set of documents as training data. Unsupervised approaches,
or clustering, aim to discover structures on-demand and without expert preparation [96, 115,
207]. While these data mining approaches may discover dimensions (features) that provide a
good separation of the dataset, the inferred categories can be difficult for a human to interpret,
and many of them may not capture the most meaningful or useful structure in a domain due
to high dimensionality or sparseness in the word vector space [16, 134]. To deal with these
issues, researchers have explored ways to automatically discover topical keywords that can help
identify useful categories in unstructured data such as TF-IDF, latent semanic analysis, and
latent Dirichlet allocation [28, 68, 118, 152]. However, even with these improvements, automatic
methods often still perform poorly, especially when the number of document is small, the lengths
of the documents are short, or when the information is sparse.

More recently, researchers have begun to use crowds to organize datasets without predefined
categories. Cascade [60] attempts to address abstraction and sampling problems by first having
multiple workers generate categories for each item and then later having workers choose be-
tween them. By providing limited context to each worker (8 items or 1 item with 5 categories), it
suffers from categories that can have varying levels of specificity. As a follow up study, Deluge
[32] produces comparable results, but with significantly lower cost by optimizing its workflow us-
ing machine algorithms. In another line of research, Crowd Synthesis [8] showed that providing
more context by simply showing more items can lead to significant better categories, suggesting
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that global context is one of the key elements for crowd clustering algorithms. In general, most
current systems provide context by showing a small sample of items, hoping that they captures
the distribution of information in the larger dataset. We propose an alternative approach that
builds up workers’ mental models by asking them to repeatedly sample for new items, identify
discriminative keywords, and search the dataset for similar items, taking advantage of people’s
capacity of information foraging [176].

A complementary set of approaches to crowd clustering research has focused on addressing
the scaling problem through computation, applying approaches such as partial clustering [232],
learning similarity metrics through triad-wise comparisons [212], or using matrix completion to
reduce the number of labels needed from workers [233]. While these approaches have shown
to be powerful on simple information such as images or travel tips, synthesizing more complex
information can be difficult without providing novice crowdworkers with richer context or oppor-
tunities to deeply process the data.

3.2 System Design
The Alloy system clusters a collection of clips, or short text descriptions (Figure 3.3), using a
machine learning backbone that gathers various judgments from human workers. In our termi-
nology, each human task is a “Cast” for human judgements which are then “Gathered” together
with the machine learning backbone. Alloy enables Casts (here, crowdworker tasks) of different
types and in different orders to be fused together by calling a Gather after each one. In each
Cast stages, arbitrary number of workers can be hired for better robustness or lower cost. In this
chapter, we present three types of Casts with different purposes as well as one type of Gather.
At a high level, the “Head Cast” is aimed at finding common categories in the head of the dis-
tribution, while the “Tail Cast” is aimed at classifying categories in the tail of the distribution for
which machine clustering has low confidence. The “Merge Cast” aims to clean up existing cate-
gories by combining highly similar categories. We also describe a Gather Backbone that fuses
the judgements from multiple crowdworkers, and connects multiple casts to form complete work-
flows. For ease of exposition we introduce each component in the context of a typical workflow:
the Head Cast, the Gather, the Merge Cast, and the Tail Cast.

3.2.1 The Head Cast

The Head Cast aims to identify salient keywords to uncover the most common categories in
the head of the distribution. Doing so involves challenges in providing workers sufficient context
to know what a good category is, and also in how to structure their work process in order to
train a machine learning algorithm to take over the classification of categories based on human-
identified seeds and keywords. Previous studies show that presenting multiple items from a
collection can help provide context to human workers [74], increasing the likelihood of obtaining
better clusters. However, it can be difficult to determine how much context is sufficient and how
to produce a good sample that captures the distribution of information of the whole dataset.
Therefore, we introduce a new crowd-pattern we call “sample and search” for providing global
context through active sampling and searching with keywords. We ask crowdworkers to identify
coherent categories by presenting with four random items, but allowing them to replace each
item by random sampling from the entire dataset until they are confident that the items will be
in different categories in the final output. This requirement gives them the motivation to build up
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Figure 3.2: The interface and steps of the Head Cast HIT.

better global understanding of the dataset through repeated sampling. After obtaining the four
seed items, we ask crowdworkers to identify keywords in each clips to search for related items
in the dataset. This process takes advantage of people’s capacity of finding new information
[176]. To create a familiar experience, we allow the workers to freely change their query terms
and update the search results in real time. This way they can refine their searches based on the
results, the same way as when conducting online information foraging tasks [117]. As shown in
Figure 3.2, the Head Cast HIT interface consists of three steps:

1. Finding seeds: Four random seed clips are presented to each crowdworker. Over each
clip, there is a button that allows them to replace the clip with another random clip from the
dataset. They are then asked to replace any clips that are too similar to the other seed
clips. The workers repeatedly replace the seed clips until the four clips at hand belong to
four different answer categories.

2. Highlighting keywords: The crowdworker is then instructed to highlight one to three
unique keywords from each of the four seed clips that best identify their topics.

3. Search and label: For each seed clip, we automatically search for similar clips from the
entire corpus based on the highlighted keywords and TF-IDF cosine similarity. The crowd-
worker is asked to label the top nine search results as similar to or different from their seed
clips.

In Step 1, the crowdworkers need some understanding of the global context before they can
confidently judge that the seeds belong to different categories in the final output. Previous work
usually address this problem by presenting multiple items to each crowdworker, in hopes of
sampling both similar and dissimilar items to give some sense of the global context. In reality
it could be difficult to judge how many items is sufficient for different datasets, and overly small
size could lead to bad samples that are unrepresentative of the global distribution. We took a
different approach by presenting fewer items at first, but allowing workers to replace the seeds
with random clips from the dataset. This provide them both the mechanism and motivation to
explore the dataset until they have enough context to find good seed clips.
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Tomato seedlings will need either strong, direct sunlight or 14-18 hours under grow lights . Place the
young plants only a couple of inches from florescent grow lights. Plant your tomatoes outside in the
sunniest part of your vegetable plot.

In its astrobiology roadmap, NASA has defined the principal habitability criteria as "extended regions of
liquid water , conditions favourable for the assembly of complex organic molecules, and energy sources to

sustain metabolism

Figure 3.3: Example clips from two datasets with crowd keywords.

The intuition behind Step 2 is that people are already familiar with picking out good keywords
for searching documents related to a concept via their online information seeking experiences.
In addition, requiring them to highlight unique keywords in the seeds first, further ensures that
they are familiar with the concepts in the seed clips, before they search for similar items. In Step
3, the crowdworkers can still change and refine their highlights from Step 2, and the system
will refresh the search results in realtime. This gives the crowdworkers both the motivation and
mechanism to extract better keywords that lead to better search results to label. In Figure 3.3,
we show two example clips from the datasets collected using the two questions: How do I get
my tomato plants to produce more tomatoes? and What does a planet need to support life? The
highlighted words in each clips are the keywords selected by one of the crowdworkers, showing
that workers are finding useful words for classification.

To learn a similarity function between clips, we use the crowd labels and keywords to train a
classifier that predict how likely two clips to be labeled as similar. Although the judgments from
workers via the HIT interface about which clips go together provide valuable training information,
we need to leverage these judgments to bootstrap similarity judgments for the clips that they did
not label and to resolve potentially conflicting or partial category judgments. To do so we trained
an SVM classifier in real-time to identify the set of keywords that are most indicative of categories
and predict whether two clips in the dataset belonged to the same cluster. The training events
are all possible pairwise combinations of clips in the clusters obtained with the HIT interface,
which may include both positive (similar) and negative (different). The feature dimensions are all
the keywords highlighted by the crowdworkers, and the value of each dimension is the product of
the number of times that keyword occurred in the two clips. In general, the keywords labeled by
the crowdworkers contain little irrelevant information compared to all words in the clips, but there
could still be some highlighted words that are not indicative of a category. For example, one
crowdworker worked on the dataset for “How do I unclog my bathtub drain?” labeled “use”, “a”,
and “plunger ” as three keywords. Even though plunger is a very indicative feature for clustering
this dataset, the first two highlighted words seem too general to be useful. Using a linear kernel
to estimate the weights for the different dimensions (i.e., keywords) seems well suited for our
purpose [42, 228]. Further, if the same keyword is used by different crowdworkers but lead to
very different labels, the linear SVM model will give lower weight to the corresponding dimention
and thus lower the effects of keywords that are less indicative of the categories. We use LIBSVM
which implements a variant of Platt scaling to estimate probability [146, 179]. The overall intuition
is that the SVM classifier is doing a form of feature selection, weighting those words in clips that
could maximally distinguish clips amongst clusters.

In a preliminary experiment, we tested using all words in the clips as features to train the SVM
model. The intuition is machine algorithms might do a better job at identifying keywords that can
outperform keywords identified by crowdworkers. However, the results show that using all words
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Figure 3.4: The HITs for Merge Cast: Naming and merging existing clusters and Tail Cast:
Clustering remaining clips.

as features did not yield better results, and having much higher feature dimensions increases
the training time significantly.

Finally, with the probability output of the SVM model as a similarity function between clips and
a stopping threshold of 0.5 probability, we use a hierarchical clustering algorithm that serves as
the Gather Backbone to capture head clusters.

3.2.2 Gather Backbone: Hierarchical Clustering

Using a multiple-stage approach with different types of microtasks can make it difficult to fuse
together the different crowd judgements to form a coherent result. A key element to our approach
in casting for category judgments in different ways is that we have a unifying mechanism to
gather them back together. For example, throughout our process we cast for human category
judgments in very different ways, including having people identify seed clusters (the Head Cast),
merge duplicated categories (the Merge Cast), and classify the tail of the distribution (the Tail
Cast). Instead of creating ad-hoc links between these judgments we propose using a unifying
gathering mechanism composed of a machine learning backbone which translates the different
casted judgments into similarity strengths used as the basis of clustering. We believe this Cast
and Gather pattern may be useful as a way to conceptualize the relationship between machine
algorithms and crowd judgments for a variety of tasks.

To build a complete clustering workflow with multiple casts, we use a hierarchical clustering al-
gorithm as the backbone that connects different casts. More specifically, the backbone algorithm
fuses the judgements from different crowdworkers working on the same cast into clusters, which,
in turn, become the shared context transferred to the next cast of the workflow.

With a clip similarity function from the prior cast and a stopping threshold, the hierarchical clus-
tering method initially treats each clip as a cluster by itself, and iteratively merges the two most
similar clusters until a threshold is reached. The result is a partially clustered dataset with clus-
ters and singletons. When the backbone is used after the last cast in the workflow, each singleton
is then merged into the most similar cluster. The similarity between two clusters is defined as:
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ClusterSim(ω1, ω2) = 1
|ω1||ω2|

∑
tj∈ω1

∑
tk∈ω2

ClipSim(tj , tk) (3.1)

where ω1 and ω2 are the two clusters, tj and tk are each of the clips in ω1 and ω2, respectively,
and the ClipSim() function is the given similarity function between clips.

3.2.3 The Merge Cast

While the Head Cast is designed to find the large clusters in the head of the distribution, since
each crowdworker works independently, some of those clusters may actually be different subsets
of the same larger category or the same categories based on different keywords (e.g., sunlight
vs natural lighting). The Merge Cast is designed to consolidate existing clusters by merging
duplicated categories. The input to this cast is a set of clusters that may or may not cover the
entire dataset, and the output is fewer or equal number of clusters each with a list of ranked
short descriptions. The challenge with detecting duplicate categories is that people need to
understand what is in each category first. We start by presenting a set of existing clusters,
and asking crowdworkers to name each of them. This acts as a defensive design[127] that
ensures the crowdworkers understand the current context (scope and abstraction level), and
also to obtain short descriptions for each of the clusters. Crowdworkers are then asked to merge
identical categories by dragging them into the placeholders on the right (Figure 3.4).

If there are too many head clusters to fit into a microtask, the Merge Cast can be run recursively
by first running on disjoint sets of existing clusters to consolidate them independently. Then,
run another sets of Merge Cast on the output of each initial Merge Casts, and recurse until the
output reduces to a set of clusters that could be presented in a global Merge Cast to ensure
consistency. The assumption here is that the set of clusters in the final output of Alloy should
be manageable by a single person to be useful. We also wanted to point out that the number of
clusters is likely to scale much slower than the size of the dataset for many real-world data.

With the labels from the crowdworkers, we will again use the Gather Backbone to combine the
judgements. The goal is to merge existing clusters if more than half of the crowdworkers also
merged them in their solutions. Since in the Merge Cast workers can not break up existing
clusters or reassign clips, we can formulate the clip similarity function as:

ClipSim(t1, t2) = 1
N
|{ω : t1, t2 ∈ ω and ω ∈ Ω}| (3.2)

where t1, t2 are the two clips, N is the total number of crowdworkers, Ω is the set of all clusters
created by all crowdworkers, and ω is any cluster that contains both clips. This function is robust
against a few workers doing a poor job. For example, if one crowdworker assigned every clip in
the dataset to a single, general cluster (e.g., answers), the effect to the similarity function would
be equivalent to having one less crowdworker and applying Laplacian smoothing. It is a common
concern for crowd-based clustering methods that novice workers may create overly abstract
categories (e.g., solutions or tips), that covers all items in the datasets. With our approach, it
would require more than half of the workers to merge all items into a single cluster to generate
a single cluster in the output.

From the output of the Gather Backbone, we rank the short descriptions associated with each
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Dataset sources workers clips bad clusters
Q1:How do I unclog my bathtub drain? 7 16 75 25% 8
Q2:How do I get my tomato plants to produce more tomatoes? 18 13 100 10% 8
Q3:What does a planet need to support life? 19 19 88 31% 7
Q4:What are the best day trips possible from Barcelona, Spain? 12 12 90 18% 16
Q5:How to reduce your carbon footprint? 20 11 160 14% 11
Q6:How do I unclog my bathtub drain? 17 23 159 14% 11
Wiki: Talk page sections for the Wikipedia Hummus article N/A N/A 126 0% 13
CSCW: Abstract sections of CSCW 2015 accepted papers N/A N/A 135 0% 45

Table 3.1: Datasets used for evaluation

cluster. Since clips are labeled by multiple crowdworkers, each cluster is associated with multiple
descriptions via its clips. We use the F1 metric to rank these names to find the most representa-
tive description for each cluster, where the precision of a name label is defined as the number of
clips in the cluster that it associates with divided by the size of the cluster, and recall as divided
by the total number of clips associated with it.

3.2.4 The Tail Cast

The Tail Cast is designed to clean up the remaining singleton clips by classifying them into
existing clusters or creating new clusters. The intuition is that even though machine learning
techniques can produce high performance output, sometimes it is achieved at the expense of
sacrificing the border cases. Human-guided “clean up” is often necessary for data produced by
a machine learning model. The input of this cast is a set of existing clusters (with or without short
descriptions) and a set of remaining clips. The output is a set of clusters with short descriptions.

We use an interface similar to the Merge Cast (Figure 3.4), and asked crowdworkers to review or
name each of the existing clusters first, so that they build up better global understanding of the
dataset before they organize the remaining clips. If Merge Cast was performed previously, their
names are presented to lower cognitive load. The crowdworkers are then instructed to cluster
the unorganized clips shown on the right by assigning them into existing clusters, creating new
clusters, or removing uninformative clips. If there are too many remaining clips to fit into a single
microtask, they are partitioned into groups of 20 items. Even though we may be dividing the
remaining clips into partitions, all workers in the Tail Cast starts with learning the same global
context that is the set of existing clusters from the Head Cast.

Finally, we use the Backbone Gather again to combine the multiple solutions from the crowd-
workers. The goal is analogous to the goal of the Merge Cast: if two clips are assigned to the
same category by more than half of the crowdworkers, they should be in the same cluster in the
combined solution. For the similarity function, we simply replace the variable N in Equation 2 by
the degree of redundancy.

3.3 Evaluation

3.3.1 Evaluation Metric and Datasets

Unlike evaluating a classification task, which would typically be based on the precision and recall
of pre-defined classes, evaluating clusters is not as straightforward due to the potentially different
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number of classes in the gold-standard and the system output. For example, high precision can
be achieved by simply having more clusters in the output and the mapping between them. To
address this, we use the normalized mutual information metric (NMI), which is a symmetric mea-
surement sensitive to both the number of clusters, and the precision of each cluster. Specifically,
it compares all possible cluster mappings to calculate the mutual information, and normalizes by
the mean entropy so that the numbers are comparable between different datasets:

NMI(Ω, C) = I(Ω, C)
0.5 ∗ [H(Ω) +H(C)] (3.3)

where Ω is the output clusters and C is the gold-standard clusters. The mutual information I is
defined as:

I(Ω, C) =
∑
k

∑
j

P (ωk ∩ cj)log
P (ωk ∩ cj)
P (ωk)P (cj) (3.4)

where ωk and cj denotes each of the clusters in Ω and C, respectively. The probability P (ω)
of item set ω is defined as |ω|/N , where N is the number of total items. Finally, the mutual
information is normalized by the mean entropy of Ω and C, so that the scores are comparable
across datasets. To give some intuition, given w that maps to a gold-standard cluster c, we can
calculate the precision by P (w ∩ c)/P (w) and recall by P (w ∩ c)/P (c), and the metric considers
both with P (w∩c)/P (w)P (c). However, in reality it may be difficult to obtain such mappings, and
the metric simply sums up scores of all possible mappings weighted by probability P (w ∩ c).

We use NMI for it is widely found in the literature for clustering evaluation. A more recent study
found that it might favor datasets with more clusters, and proposed a variant that adjusts for ran-
domness (AMI, [220]). We acknowledge this is a potential limitation, but found that the number of
clusters Alloy produced were quite close to the gold-standard (average 10.3 vs 10.2), suggesting
the concerns may be minimized. To be on the safe side, we also measured Alloy’s performance
using AMI on two datasets and found similar results.

In order to evaluate Alloy, we compared it to other machine learning and crowdsourcing clus-
tering approaches in three different contexts: information seeking, Wikipedia discussions, and
research papers. These contexts all involve rich, complex data that pose challenges for au-
tomated or existing crowd approaches. Below we describe each dataset and how we either
generated or collected gold-standards.

3.3.2 Information Seeking Datasets

We picked five questions asked on popular Q&A forums (e.g., Quora, reddit, and Yahoo! An-
swers) that covered a diverse range of information needs. We then posted these questions to
Amazon Mechanical Turk (AMT), and asked each crowdworker to find 5 webpages that best
answered the questions in Table 3.1. The top sources were sent to workers to highlight clips that
would help answer the question via an interface similar to that described in [130]. The first four
datasets (Q1 to Q4) collected consist of 75 to 100 clips, extracted from 7 to 19 webpages using
12 to 19 crowdworkers. In addition, we also collected two datasets with more than 150 clips (Q5
and Q6) by gathering more clips from the sources.

To generate gold standards, two graduate students clustered each dataset independently. Raters
were blind to Alloy’s clusters, and no discussion on clustering strategies nor predefined cate-
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gories were made prior to the process. Raters initially read every item in the dataset to build
global understanding before they started organizing. Conflicts between raters were resolved
though discussion. The first author participated in labeling two (out of the seven) datasets, but
was always paired with another annotator outside of the research group. To measure inter-
annotator agreement, we used the symmetric NMI metric as described in the previous section.

The agreements between raters are shown in Table 3.2. The datasets for “How do I unclog my
bathtub drain?”, “How do I get my tomato plants to produce more tomatoes?” and “What are
the best day trips possible from Barcelona?” had high agreement between the two annotators
of 0.7 to 0.75 NMI. For the “What does a planet need to support life?” dataset, the agreement
was significantly lower (0.48). We kept this dataset to show the limitations of the proposed
method, and we will discuss further in later sections. For the two larger datasets Q5 and Q6, the
agreement scores were around 0.6.

3.3.3 Research Papers

Since some of the questions in the above dataset were about common daily life problems, an
open question is whether crowd judgements were based on workers’ prior knowledge or the
context we provided them. To evaluate the system using more complex data where workers
would likely have little prior knowledge we turned to research papers from the 2015 CSCW
conference. For this dataset we used the official conference sessions as the gold standard for
evaluation. The intuition is that conference organizers would place similar papers together in
the same session. We acknowledge that the objectives of organizing conference sessions are
not entirely the same as Alloy; most notably, conference session planning requires schedule
conflict resolution and fixed size sessions. However, session co-occurrence represents valuable
judgments from experts in the community about which papers belong to a common topic, and
even though each cluster is smaller in size (e.g., 3-4 papers per session) we can look at whether
papers put together by experts are also put together by Alloy and the other baselines [61].

3.3.4 Wikipedia Editor Discussion Threads

Wikipedia relies on its editors to coordinate effectively, but making sense of the archives of editor
discussions can be challenging as the archives for a single article can consist of hundreds or
thousands of pages of text. We use as a dataset the discussion archives of the Hummus article,
a popular yet controversial article, and use the discussion threads as the set of documents. The
talk page consists of 126 discussion threads about various issues of the main articles that spans
over the past 10 years (Table 3.1). Two annotators read the main article and the full talk threads
before they started the labeling process. The NMI score between the two annotators was .604,
which is comparable to the two other large datasets Q5 and Q6.

Wikipedia data can be more difficult to organize than previously mentioned datasets, because
it can be organized in very different ways, such as topics, relations to the main article sections,
and mention of Wikipedia guidelines [8]. The annotators also had a hard time coming up with
a gold standard through discussion, and found both their categorization solutions to be valid.
Therefore, instead of creating a single gold standard, we report the NMI scores between Alloy’s
output and each of the annotators.
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DS InterAnnot. Workflow1 Workflow2 TFIDF Keywords LSA LDA #clusters
Alloy exp

Q1 .734 .759* σ=.033 .550* σ=.093 .510 .647 .512 .478 7 8
Q2 .693 .687* σ=.016 .467* σ=.046 .534 .562 .537 .506 8 8
Q3 .477 .468 .425 .390 .440 .467 .442 7 7
Q4 .750 .727 .633 .673 .676 .704 .603 14 16
Q5 .630 .576 - .568 .508 .582 .551 16 11
Q6 .588 .588 - .462 .492 .497 .456 10 11
AVG .645 .634 - .523 .554 .550 .503 10.3 10.2
CSCW - .748 - .584 .652 .691 .725 23 45

Table 3.2: Evaluation Results. * indicates mean of 11 runs using different workers.1

3.3.5 External Validation, Robustness, and Generalizability

In the following sections, we will describe three experiments and their results followed by an
application-oriented evaluation. For the three experiments, two workflows that uses the Gather
to connect the different Casts are tested. The first experiment is an external evaluation that
compares Alloy with other approaches. We use the full workflow that consists of the Head
Cast, the Merge Cast, and the Tail Cast to cluster the six information seeking datasets (Q1-
Q6), and compare with previous crowd-based methods and four machine algorithm baselines.
The second experiment is an internal evaluation that tests the robustness of Alloy by using
different number of workers in the Head Cast and the Tail Cast. Finally, in our last experiment,
we test Alloy’s performance on two different types of datasets: Wikipedia editor discussions
and research papers. Finally, to investigate the usefulness of the structures produced by Alloy,
we used a prototype system called Knowledge Accelerator [92] to synthesize Alloy clusters for
the information seeking datasets into report-styled articles and compare the articles against top
Google search results.

3.3.6 Experiment 1: External Validation

We first look at how Alloy compares with machine algorithms, other crowd algorithms, and inter-
expert agreements. In the Head Cast, crowdworkers highlight keyword and cluster similar clips
via searching, and in the Tail Cast another set of crowdworkers organizes all remaining clips.

We compare this Workflow 1 to three baselines that are commonly used in the clustering lit-
erature: latent Dirichlet Allocation (LDA) [28], latent semantic analysis (LSA) [68], and TF-IDF
[118, 152]. We also compare against a hybrid baseline that uses human-identified keyword
vectors from the Head Cast. This aims to test the value of the approach beyond the human
identification of keywords by trying to cluster using only the keywords. In addition to compar-
ing against automatic methods, we also compare Alloy to a popular crowd based method. The
evaluation conditions are summarized below:

• Workflow1. The workflow with ten crowdworkers each for the Head Cast and the Tail Cast
for Q1-Q4. An additional five workers for the Merge Cast for Q5-Q6. Each HIT costs 1
USD.

• TF-IDF. Weighted cosine similarity as the similarity function for the Gather. No human-
computation was employed.

• Crowd keywords. Cosine similarity based on worker-highlighted keywords from the Head
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Cast as the similarity function for the Gather.
• LSA. The LSA model is used as the similarity function for the Gather. No human-computation

was employed.
• LDA. The LDA topic model is used as the similarity function for the Gather. No human-

computation was employed.
• Cascade. A version of Cascade with only one recursion using the default parameters as

described in the paper.

Results

Alloy introduces a novel approach for providing context in the microtask setting with the sampling
mechanism in the Head Cast. We captured crowdworkers’ behavior during the tasks and found
that nearly all (97.5%) workers used the sampling mechanism to gain context beyond the initial
four items. On average, each worker sampled 15.1 items , and more specifically, 11.3% sampled
more than 25 items, 23.8% sampled 15~24 items and 62.5% sampled 5~14 items.

Comparing with Machine Algorithms

On average, the proposed method performed significantly better and more consistent than all
machine baselines (Table 3.2). In the worst case, Alloy clusters measured 0.058 NMI lower than
the inter-annotator agreement, while the baseline systems measured more than 0.1 NMI lower
in most cases. In a few cases some baselines also performed well (e.g., LSA performed slightly
better on Q5), but none of them produced good results consistently across all datasets. Com-
pared to the gold-standard clusters, Alloy produced clusters about as close to the gold-standard
clusters as the two human annotators were to each other, despite the judges’ advantages of
having a global view of the datasets and multiple rounds of reading, labeling, and discussion. In
addition, worker-identified keywords consistently outperformed TF-IDF, showing that the crowd-
workers are extracting keywords in the Head Cast that are salient for identifying clusters each
dataset. On the two larger datasets (Q5 and Q6), Alloy achieved similar performance as the
four smaller datasets; better and more consistent comparing to the baseline systems, and near
experts agreement comparing to the gold-standard.

Note that for every machine algorithm baseline we explored multiple parameters for each of the
four questions, (hyper-parameters, number of topics, stopping threshold), and report the highest
scores. The results of the baseline algorithms are likely over-fitting to the data, but we wanted
to compare Alloy to these algorithms under their best possible settings [62].

Comparing with Previous Crowd Methods

We compare Alloy with Cascade using datasets Q1-Q4, a popular crowd-based method for
discovering taxonomies in unstructured data based on overlapping crowd clusters [60]. We
implemented a simplified version of Cascade using the parameters described in the paper, but
with only one recursion. We acknowledge that fine tuning and multiple recursion might improve
Cascade’s performance, but the numbers from our evaluation are consistent with the results
reported in the Cascade paper based on the same metric and similar datasets.

On average, 84% of categories generated with Alloy were shared with clusters in the gold stan-
dard, versus 50% for Cascade. Cascade produced soft clusters where child clusters did not
necessarily have all the items included in their parents, which breaks the assumptions of us-
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Figure 3.5: Categories comparison for Q1

ing NMI. To produce a direct comparison, we use the gold standard to greedily extract best
matching, overlapping clusters that cover all items, and evaluated them using the average F1. In
essence, this simulates an omniscient “oracle” that gives Cascade the best possible set of clus-
ter matches, and so is perhaps overly generous but we wanted to err on the conservative side.
The average F1 scores for each questions using Alloy are .72, .54, .48, .52, and using Cascade
are .50, .48, .42, .39, showing a consistent advantage across questions. Furthermore, Alloy
achieved this better performance at a lower cost (average $20 for Alloy vs $71 for Cascade),
suggesting that machine learning can provide valuable scaling properties. We show categories
created by experts and elicited from the two systems in Figure 3.5 to give a better sense of the
datasets and the output.

3.3.7 Experiment 2: Robustness

In this section, we examine the robustness of Alloy by varying the number of crowdworkers
employed in the Head and the Tail Cast on datasets Q1-Q4. We start with having only 1 worker in
the Head Cast, and evaluate performance as we hire more workers until we have 20. To test the
two phase assumption, in a second condition, we switch to the Tail Cast after hiring 10 workers
in the Head Cast, and continue to hire 1 to 10 more workers. This way, we can characterize the
cost/benefit trade-offs in hiring different amount of human judgments. Further, by omitting the

1We also evaluated Q1 and Q2 using the AMI metric that accounts for randomness. The inter-annotator
agreements are .674 and .643, respectively, and Alloy performed .674 and .609, respectively. See the Evaluation
Metric Section for detail.
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Figure 3.6: Performance comparison of using different number of crowdworkers in the Head Cast
and the Tail Cast.

Tail Cast completely in the first condition, we can verify the two phase assumption by comparing
the performance of a two-phase process (Head Cast and Tail Cast) with a one-phase control
(Head Cast only) while equaling the number of workers:

• Workflow1. The workflow with ten crowdworkers each for the Head Cast and the Tail Cast.
Each HIT costs 1 USD.

• Workflow2. The workflow with twenty crowdworkers and the Head Cast only. Each HIT
costs 1 USD.

In addition, to test how robust Alloy is to the variance of crowdworkers on Amazon Mechanical
Turk, we also hired eleven sets of ten different crowdworkers (a total of 440) for each Head and
Tail Casts for Q1 and Q2.

Results

In Figure 3.6, we show the performance of employing different number of workers in the Head
and the Tail Cast. Initially, increasing the number of workers in the Head Cast shows significant
performance improvements. However, after gathering training data from around 10 workers, the
performance gain from hiring additional crowdworkers decreases notably. Instead, performance
improved significantly even with only a few additional crowdworkers in the Tail Cast to refine
the clusters. Overall, having 10 crowdworkers in each of the Head and Tail Cast consistently
outperformed having all 20 crowdworkers in the Head Cast across all four questions (Table 3.2),
suggesting there is significant value in the Tail Cast.

For Q1 and Q2, we also ran Alloy eleven times using different crowdworkers, and compared
the results against the gold-standard labels and also with each other. Comparing to the gold-
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standards, which have inter-annotator agreements of .734 and .693 for Q1 and Q2 respectively,
Alloy produced an average NMI of .759 (SD=.016) and .687 (SD=.016), respectively. Further,
the average pair-wise NMI score of the 11 runs are .819 (SD=.040), and .783 (SD=.056), re-
spectively, suggesting Alloy produces similar results using different crowdworkers on the same
datasets.

3.3.8 Experiment 3: Other Datasets

In this experiment, we use the same distributed workflow to test Alloy using the Wiki and CSCW
datasets as described in the Dataset Section, in order to test how Alloy generalizes to other
types of data. These datasets contain long academic documents or editorial discourses that are
infeasible to present multiple items to the crowdworker in one HIT. Instead, we show a small
portion of each item in the datasets to the crowdworkers. For each item in the Wiki dataset, we
display the thread-starter post and the first two replies. For the CSCW dataset, we present the
abstract section of each paper, and compare results with the official conference sessions. Ma-
chine baselines were however given access to all of the text of the paper and the full discussion
threads in order to provide a strong test of Alloy’s approach.

Results

For the CSCW dataset, Alloy outperformed all machine baseline systems with .748 NMI score
using conference sessions as the gold standard Table 3.2. The Keyword baseline outperformed
the TF-IDF baseline (.652 vs .584), showing that the crowdworkers are extracting valuable key-
words in the Head Cast, despite that research papers may be difficult or impossible for crowd-
workers to understand. On the other hand, Alloy produced 24 categories out of 135 abstracts,
more than all other datasets. One possible assumption is that it may be more difficult for novice
workers to induce abstract categories when organizing expert dataset, leading to higher number
of more lower level categories in the outcome.

For the Wiki dataset, the NMI score between annotators was .604, which is comparable to the
two other large datasets Q5 and Q6. Comparing to the two sets of expert labels independently,
Alloy’s output measured .528 and .507. Compared to all previous results, Alloy seemed to
perform less favorably on this dataset. As mentioned in the Dataset Section, the raters found the
this dataset the most difficult to organize, as there are many different valid structures that the two
annotators were unable to reach an agreement also hints that the space of valid solutions may be
larger on this dataset. In addition, we only showed the first three comments of each discussion
to the crowdworkers, whereas the annotators and the machine baselines have access to the
full discussion. We acknowledge length of items is a limitation, and will discuss in detail in the
Discussion Section.

3.4 Application: Knowledge Accelerator

This work was previously published in ACM SIGCHI 2016 [92] and has been adapted for this
document.

To evaluate the usefulness of structures generated by Alloy in a more realistic scenarios, we first
used Alloy to clusters a larger set of information seeking datasets (Table 3.3) collected using the
same procedure as described in section 3.3.2. We then developed a prototype system called the
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Figure 3.7: Example report synthesized by the Knowledge Accelerator system. The table of
content on the left listed cluster names generated from Alloy, each corresponded to a different
section in the report.

Figure 3.8: The process of the Knowledge Accelerator (KA). Alloy is used for the Clustering
Stage of the pipeline.
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Question N Score
Q1: How do I unclog my bathtub drain? 116 0.292 *
Q2: How do I get my tomato plants to produce more tomatoes? 177 0.420 *
Q3: What are the best attractions in LA if I have two little kids? 158 -0.044
Q4: What are the best day trips possible from Barcelona, Spain? 98 -0.109
Q5: My Worcester CDi Boiler pressure is low. How can I fix it? 139 0.878 *
Q6: 2003 Dodge Durango has an OBD-II error code of P440. How do I fix it? 138 0.662 *
Q7: 2005 Chevy Silverado has an OBD-II error code of C0327. How do I fix it? 135 0.412 *
Q8: How do I deal with the arthritis in my knee as a 28 year old? 139 0.391 *
Q9: My Playstation 3 has a solid yellow light, how do I fix it? 119 0.380 *
Q10: What are the key arguments for and against Global Warming? 138 0.386 *
Q11: How do I use the VIM text editor? 138 0.180
* = significant at p < 0.01 after Bonferroni correction

Table 3.3: Average difference between the KA output and top websites for the eleven questions
(positive indicates higher ratings for KA, negative indicates higher ratings for the competing
website). Each rating was an aggregate of 6 questions on a 7-point Likert scale.

“Knowledge Accelerator” (KA) to synthesize the output of Alloy into articles. Each of the cluster
produced by Alloy corresponds to a different section in an article. An example of the output of
the system for the target question “How do I get my tomato plants to produce more tomatoes?”
can be found in Figure 3.7.

In addition, the KA system probes how to accomplish a complex information synthesis task
entirely through relatively small contributions. We limited our maximum task payment to $1 US,
aimed at incentivizing a Target task time of approximately 5-10 minutes. Critically, the KA system
accomplishes this process without a core overseer or moderator. Figure 3.8 shows the overview
of the KA System with Alloy being the Clustering Stage. For more details on the KA system refer
to [92].

We evaluated the usefulness and coherence of the articles by comparing them against web-
pages an individual might use if they were to complete the same tasks without KA and Alloy —
Top Google search results that consists of expert-written articles published by trusted sources
such as CDC.gov or the New York Times, as well as popular online forums such as TripAdvisor
and Yahoo Answers.

3.4.1 Experimental Settings

Eleven topics were selected for evaluation by browsing question and answer forums, Reddit.com,
and referencing online browsing habits [38]. For questions Q3 and Q8 we added additional con-
straints (i.e., having kids and age) to test the performance of the system for more personalized
questions. To compare the two conditions, participants were recruited through the Amazon Me-
chanical Turk US-only pool and paid $1.50 for rating two webpages. Each participant was ran-
domly assigned an output article from KA and a top search result webpage for the same topic
(Figure 3.9), and rate both webpages based on six criteria using 7-point Likert scale questions
and provided free-form explanations: comprehensiveness, confidence, helpfulness, trustworthi-
ness, understandability, and writing. We averaged ratings on these dimensions into a single
score representing the overall perceived quality of the page.
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Figure 3.9: Results across questions and websites. Points represent the average aggregate score
difference between the KA answer and an existing site

Phase Task Pay Avg. # of Tasks Avg. Cost
Sourcing $0.25 15 $3.75
Clipping $0.50 21.6 $10.80
Alloy Head Cast $1.00 10 $10.00
Alloy Merge + Tail Cast $1.00 10 $10.00
Integrate $0.50 37.2 $18.60
Edit 1 $0.75 28.8 $21.60
Edit 2 $1.00 28.8 $28.80
Images $0.50 9 $4.50
Total 160.4 $108.05

Table 3.4: Average number of worker tasks and average cost per phase, and overall, to run a
question.
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categories induced during clipping (without Alloy):
Boil Water, use hot water, Plunger, try a snake, How to Remove drain stopper, bleach, Use Drano
Max Gel, baking soda, drain, tips to unclog, problem, tools, research, internet research, ...,
etc.

categories induced by Alloy:
Hot Water, Plunge, Plunger, Snake the Drain, Remove the Drain Cover, Drain Cleaner, Remove Hair
Clusters.

gold-standard categories:
Hot Water, Plunger, Plumbing Snake, Remove Cover, Chemicals, Bent Wire Hanger, Call a Plumber,
Shop Vacuum.

Figure 3.10: Categories induced from different stages for Q1: How do I unclog my bathtub drain?

3.4.2 Results

The costs of running a question through the KA system is shown in Table 3.4. Across the 11
topics we tested, a full run with around 100 short text clips costed an average of $108.50, of
which around $15 is spent on searching and extracting the text clips from webpages, $20.00 is
spent by the Alloy system, and the rest on synthesizing each of the Alloy clusters into a section
in the final article and making sure the different sections are coherent.

Aggregating across all questions, KA output was rated significantly higher than the top 5 Google
results (KA: x̄ = 2.904 vs Alt. Sites: x̄ = 2.545, t(1493) = 13.062, p < 0.001). An analysis of
individual questions corrected for multiple comparisons is shown in Table 3.3.

The strongly positive results found were surprising because some of the websites in the com-
parison set were written by experts and had well-established reputations. Only on the two travel
questions, Barcelona (x̄ = −0.109) and LA (x̄ = −0.044), and the VIM question (x̄ = 0.180) did
the KA output not significantly outperform the comparison pages. A closer examination of these
pages suggests that for the two travel questions, because of the strong internet commodity mar-
ket surrounding travel, a considerable amount of effort has been spent on curating good travel
resources. Even with the slightly more specific LA query, there were still two specialized sites
dedicated to attraction for kids in LA (Mommypoppins.com and ScaryMommy.com). The VIM
question represented a mismatch between our output and the question style. A number of the
sources for the question were tutorials, however in the clipping phase, these ordered tutorials
were broken up into unordered clips, creating an information model breakdown. This points out
an interesting limitation in the KA approach, and suggests that adding support for more struc-
tured answers (e.g., including sequential steps) could be valuable future work.

The strong performance of the system is perhaps surprising given that its output was generated
by many non-expert crowd workers, none of whom saw the big picture of the whole, and Alloy is
a core component that provided useful and coherent structures for producing the final report.
Initially we had workers provide labels to categorize each clip, which we planned to use to
develop a structure for the article. However, the lack of context of the bigger picture made
these labels poorly suited for inducing a good structure. For example, in Figure 3.10 the top box
shows the category structure induced by crowdworkers during clipping and without using Alloy
during clipping, categories induced using Alloy, and gold standard categories developed by two
independent annotators with access to all clips and sources, respectively. Categories induced
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without using Alloy matched poorly with the gold standard categories, and include categories
with very different abstraction levels (e.g., Use Drano Max Gel vs tips). On the other hand, Alloy
produced categories that were more coherent and matched more with gold-standard categories.

While we do not believe that this should be interpreted as a replacement for expert creation
and curation of content, instead, the power of the system may actually be attributable to the
value created by those experts by generating content which the crowd workers could synthesize
and structure into a coherent digest. This explanation suggests that the approach would be
most valuable where experts generate a lot of valuable information that is unstructured and
redundant, such as the automative questions in which advice from car enthusiasts was spread
across many unstructured discussion forums. In contrast, KA’s output did not outperform top
web sources for topics such as travel, where there are heavy incentives for experts to generate
well structured content. We believe its performance is likely due to its aggregation of multiple
expert viewpoints rather than particularly excellent writing or structure per se, never the less, the
KA system showcased that the structures produced by Alloy can be synthesized into coherent
articles that were useful for exploratory searchers.

3.5 Discussion
In this chapter, we took a step towards tackling the problem of clustering high-dimensional, short
text collections by combining techniques from natural language processing and crowdsourc-
ing. By using a two-phase process connected by a machine learning backbone, our proposed
method compensates for the shortcomings of crowdsourcing (e.g., lack of context, noise) and
machine learning (e.g., sparse data, lack of semantic understanding). As part of the system we
introduced an approach aimed at providing greater context to workers by transforming their task
from clustering fixed subsets of data to actively sampling and querying the entire dataset.

We presented three evaluations that suggest Alloy performed better and more consistently than
automatic algorithms and a previous crowd method in accuracy with 28% of the cost (Exp.1), is
robust to poor work with only 20 workers (Exp.2), and is general enough to support different types
of input (Exp.3). Qualitatively, we noticed Alloy often produced better names for categories than
machine algorithms would be capable of, including names not in the text (e.g., a cluster including
items about smart thermostats and solar panels was named “Home Improvements” which was
not in the actual text).

One potential concern might be whether Alloy’s tasks take too long to be considered microtasks.
While Alloy deploys HITs that take more than a few seconds to finish, we think they are still
comparable to other complex microtask systems such as Soylent [19] and CrowdForge [128].
Specifically, based on a total of 281 HITs, the median run-time for the Head Cast HITs is 7.5
minutes (M=8,3, SD=4.1), for Merge Cast 8.3 minutes (M=16.2, SD=15.6), and for Tail Cast 11.4
minutes (M=13.2, SD=6.1). Despite having less workers doing longer tasks, Alloy performed
consistently across different sets of workers on the same datasets.

During development, some assumptions, both explicitly and implicitly, were made about the
input of the system: 1) there are more clips than categories. 2) the categories follow a long-
tailed distribution. 3) clips belong to primarily one cluster. 4) there is a small set of gold-standard
clusters. 5) workers can understand the content enough to cluster it. Note that we do not assume
the crowdworkers can understand the semantics of the content, but just enough to identify ideas
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that are salient and common in the dataset. Thus they may be able to cluster complex topics
such as machine learning without understanding those topics if enough relational context is
embedded in the clips. For example, an abstract of a research paper may say “this paper uses
POMDP machine learning approaches to cluster text”, they might put it in a “clustering” cluster
without knowing what a POMDP is.

One obvious limitation to our approach is clustering long documents. This is a common limitation
for crowd-based systems that rely on workers reviewing multiple items for context (either from
random selection or active sampling). It becomes infeasible to fit multiple items in a single HIT if
the length of each item is long. Another related limitation is organizing documents that describe
multiple topics. Lab studies in a past work [130] showed that individuals are able to decompose
long documents into short clips of single topics during information seeking tasks. One way to
expand the proposed method to overcome the length limitation could be splitting documents into
short snippets, either with the crowds or machine algorithms, and create topical clusters using
Alloy.

Another limitation is organizing datasets that are inherently difficult to structure categorically.
For example, concepts in Q3 (planetary habitability ) have causal relationships without clear
categorical boundaries (e.g., distance to sun, temperature and liquid water ). As a result, all
approaches had significant trouble, including low agreement between human annotators. On the
other hand, some dataset can be organized categorically in multiple ways. In Q4 (Barcelona) we
found that some categories fit a place schema (e.g., Sitges, Girona) while other categories fit
a type schema (e.g., museums, beaches). One approach for addressing this could be trying to
cluster workers to separate the different kinds of schemas; however, upon inspection we found
that individual workers often gave mixtures of schemas. This interesting finding prompts further
research to investigate what cognitive and design features may be causing this, and how to learn
multiple schemas.

Looking forward, we identified a set of patterns that may be useful to system designers aiming
to merge human and machine computation to solve problems that involve rich and complex
sensemaking. The hierarchical clustering backbone we use to integrate judgments from a variety
of crowdworker tasks allows us to cast for different types of crowd judgments and gather them
into a coherent structure that iteratively gets better with more judgments. We also introduce
useful new patterns for improving global context through self-selected sampling and keyword
searching. One important consideration these patterns bring up is that while previous ML-based
approaches to crowd clustering have focused on minimizing the number of judgments, we have
found it is at least as important to support the rich context necessary for doing the task well and
setting up conditions that are conducive for crowdworkers to induce meaningful structure from
the data.

We hope the patterns described in this chapter can help researchers develop systems that make
better use of human computation in different domains and for different purposes. For example,
the sample and search pattern could potentially be adapted to support other tasks such as
image clustering, where crowdworkers could use the sampling mechanism to get a sense of the
variety of images in the dataset, highlight discriminative objects, and label images queried based
on features extracted from the highlighted regions. Furthermore, the cast and gather pattern
may provide a useful framework for combining crowds and computation that is both descriptive
and generative. For example, Zensors [140], a crowd-based real-time video event detector,
could be considered a form of the cast and gather pattern which uses a classification algorithm
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instead of a clustering algorithm as a backbone, and casts for human judgements whenever its
accuracy falls below a threshold (e.g., if an environmental change lowers precision), with the
classifier backbone retrained with the new human labels. While we used a clustering backbone
in this work, future system designers might consider other machine learning backbones (e.g.,
classification or regression algorithms) for different tasks. Overall, we believe this approach
takes a step towards solving complex cognitive tasks by enabling better global context for crowd
workers and providing a flexible but structured framework for combining crowds and computation.
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Chapter 4: Revolt

Exploiting Disagreements For Concept Evolution in Crowd Labeling

This work was previously published in ACM SIGCHI 2017 [46] and has been adapted for this
document.

This chapter describe the second of the two crowd systems in this dissertation that explored
ways to provide global context in crowdsourced data synthesis. Unlike Alloy that focused on
providing global context to the crowdworkers who were constraint by their capacity to process
large amounts of data in microtasks, this second system focused on providing global context to
the requesters who typically turned to crowdsourcing for its ability to scale to large datasets that
they themselves do not have the capacity to process fully. Here I focused on another common
approach of data analysis of labeling items in a dataset with predefined categories, a crucial
process for generating labels for training machine learning models. Crowdsourcing provides a
scalable and efficient way to construct labeled datasets for training machine learning systems.
However, creating comprehensive label guidelines for crowdworkers is often prohibitive even for
seemingly simple concepts. Incomplete or ambiguous label guidelines can then result in differ-
ing interpretations of concepts and inconsistent labels. Existing approaches for improving label
quality, such as worker screening or detection of poor work, are ineffective for this problem and
can lead to rejection of honest work and a missed opportunity to capture rich interpretations
about data. We introduce Revolt, a collaborative approach that brings ideas from expert anno-
tation workflows to crowd-based labeling. Revolt eliminates the burden of creating detailed label
guidelines by harnessing crowd disagreements to identify ambiguous concepts and create rich
structures (groups of semantically related items) for post-hoc label decisions. Experiments com-
paring Revolt to traditional crowdsourced labeling show that Revolt produces high quality labels
without requiring label guidelines in turn for an increase in monetary cost. This up front cost,
however, is mitigated by Revolt’s ability to produce reusable structures that can accommodate
a variety of label boundaries without requiring new data to be collected. Further comparisons
of Revolt’s collaborative and non-collaborative variants show that collaboration reaches higher
label accuracy with lower monetary cost.[46]

4.1 Introduction
From conversational assistants on mobile devices, to facial recognition on digital cameras, to
document classifiers in email clients, machine learning-based systems have became ubiquitous
in our daily lives. Driving these systems are machine learned models that must be trained
on representative datasets labeled according to target concepts (e.g., speech labeled by their
intended commands, faces labeled in images, emails labeled as spam or not spam).

Techniques for collecting labeled data include recruiting experts for manual annotation [214], ex-
tracting relations from readily available sources (e.g., identifying bodies of text in parallel online
translations [50, 185]), and automatically generating labels based on user behaviors (e.g., us-
ing dwell time to implicitly mark search result relevance [1]). Recently, many practitioners have
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Figure 4.1: Revolt creates labels for unanimously labeled “certain” items (e.g., cats and not cats),
and surfaces categories of “uncertain” items enriched with crowd feedback (e.g., cats and dogs and
cartoon cats in the dotted middle region are annotated with crowd explanations). Rich structures
allow label requesters to better understand concepts in the data and make post-hoc decisions on
label boundaries (e.g., assigning cats and dogs to the cats label and cartoon cats to the not cats
label) rather than providing crowd-workers with a priori label guidelines.

also turned to crowdsourcing for creating labeled datasets at low cost [203]. Successful crowd-
sourced data collection typically requires practitioners to communicate their desired definition of
target concepts to crowdworkers through guidelines explaining how instances should be labeled
without leaving room for interpretation. The guideline generation process is similar but often less
rigorous than the process used by expert annotators in behavioral sciences [150, 222] whereby
experts independently examine a sample of data, generate guidelines especially around possi-
bly ambiguous concepts discovered in the data, and then discuss and iterate over the guidelines
based on feedback from others [138]. The guidelines are used as instructions in crowdsourced
labeling tasks given to multiple crowdworkers for redundancy. Label disagreements are com-
monly seen as noise or failure to carefully follow the guidelines, and later corrected through
simple majority voting.

While traditional crowd-based labeling has produced many novel datasets used for training ma-
chine learning systems [70, 136, 180], a common assumption in labeled data collection is that
every task has one correct label which can be recovered by the consensus of the crowd [12].
This assumption, however, rarely holds for every item even for simple concepts (e.g., cat vs. not
cat as illustrated in Figure 4.1) and even experts have been shown to vary their labels signifi-
cantly on the exact same data due to their evolving interpretations of the target concept [138].
Specifying comprehensive guidelines that cover all the nuances and subtleties in a dataset would
require close examination of much of the data which is typically infeasible in the crowdsourcing
settings. Crowdworkers are then often presented with incomplete guidelines and left to make
their own decisions on items open to interpretation. Not only can this lead to poor quality la-
bels and machine learning models with low accuracy, efforts to detect poor quality work (e.g.,
[35, 95, 113]) in these cases can actually be harmful due to rejection of honest work. More

33



fundamentally, limiting crowdworkers to providing feedback only in terms of predefined labels,
failing to capture their confusions and reasoning, presents a lost opportunity to discover and
capture rich structures in the data that the crowdworkers had encountered.

In this chapter, we present Revolt, a collaborative crowdsourcing system that applies ideas from
expert annotation workflows to crowdsourcing (e.g., supporting flagging of ambiguous items and
discussion) for creating high quality training labels for machine learning. Revolt enables groups
of workers to collaboratively label data through three stages: Vote (where crowdworkers label as
in traditional labeling), Explain (where crowdworkers provide justifications for their labels on con-
flicting items), and Categorize (where crowdworkers review explanations from others and then
tag conflicting items with terms describing the newly discovered concepts). The rich information
gathered from the process can then be presented to requesters at various levels of granularity
for post-hoc judgments to define the final label decision boundaries.

Revolt requires no pre-defined label guidelines aside from the top-level concept of interest (e.g.,
faces, spam). As a result, this approach reverses the traditional crowdsourced labeling ap-
proach by shifting label requester efforts from guideline creation to post-hoc analysis. The rich
structures provided by our approach has the additional benefit of enabling label requesters to
experiment with different label decision boundaries without having to re-run label generation
with the wide variety of possible label guidelines. For example, for collecting labels of images
of Cats (Figure 4.1), Revolt produces structures that group together ambiguous sub-concepts
such as cartoon cats, cat food, leopards and lions along with descriptive explanations about the
structures. Requesters can then review these structures and experiment with machine learning
models that are trained to identify leopards and lions as Cats or not.

This chapter makes the following contributions:

• A new approach to crowdsourcing label collection that employs crowds to identify uncertain
aspects of the data and generate rich structures for post-hoc requester judgments, instead
of trying to clearly define target concepts beforehand with comprehensive guidelines.

• Revolt, an implementation of our collaborative crowdsourcing approach that builds struc-
tures containing rich enough information for generating training labels for machine learning.
We present both real-time and asynchronous versions of our approach.

• An experiment comparing Revolt to traditional crowd-based labeling on a variety of labeling
tasks showing Revolt can produce high quality labels without the need for guidelines.

• An experiment comparing Revolt to its non-collaborative variants showing the benefits of
collaboration for reducing cost and increasing quality.

4.2 Related Work

4.2.1 Data Labeling Techniques

Data labeling or annotation is a common practice for many research areas. In social and be-
havioral sciences, researchers annotate (or code) data to build up theories about collected data,
and then analyze the annotated results to discover interesting phenomena [208]. This approach
often involves multiple experts working in iterative and collaborative workflows. For example,
annotators typically first examine and manually label a dataset (or subset of the dataset) inde-
pendently and then compare and discuss their labels to iteratively refine a set of combined label
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guidelines [150, 222]. Multiple iterations of data examination, label discussion, and guideline
refinement may also occur to ensure the quality and coverage of the final guidelines. Once
the guidelines stabilize, annotators can then independently label additional data accordingly to
produce consistent final labels with high agreement.

Similar collaborative and iterative workflows have been reported for creating high-quality labeled
datasets used in natural language processing and machine learning (e.g., [138, 157, 225]). For
example, Kulesza et al. [138] found that annotators often evolved their conceptual definition of a
target concept and their corresponding labels throughout the course of observing more items in
a dataset. Here, allowing annotators to create explicit structures designating ambiguous items
discovered during labeling enabled them to gradually build up a better global understanding of
the data and generate more consistent final labels. Wiebe et al. [225] also proposed an iterative
and collaborative workflow that relies on comparing and discussing conflicting labels amongst
expert annotators to construct and refine shared labeling guidelines for producing training labels
for complex datasets. These iterative and collaborative processes provide expert annotators
systematic ways to learn about and discuss different interpretations of data during labeling.

While expert annotation has been used in creating labeled datasets for machine learning, this
process is often too costly and time consuming to scale to the large datasets required for mod-
ern machine learning algorithms. As an example, the Penn Treebank dataset that is commonly
used in natural language processing for training part-of-speech sequence labelers and syn-
tactic parsers, was built by teams of linguists over the course of eight years [214]. Another
example from a previous work showed labeling 1,000 English sentences took four experts nine
hours each to iteratively refine their guidelines by labeling items independently then discussing
together [225]. Many researchers and practitioners have therefore recently turned to crowd-
sourcing to label data for its scalability and relatively low cost [70, 136, 180]. However, despite
its efficiency, researchers have also reported difficulty obtaining high quality labels using crowd-
sourcing [5, 69]. Multiple factors can contribute to poor quality labels, such as poor work from
inattentive labelers, uncertainty in the task itself (resulting from poorly written guidelines or con-
fusing interfaces), varying worker backgrounds and prior knowledge, or items that are difficult to
understand by novice workers [132].

4.2.2 Improving the Quality of Crowdsourced Labels

While disagreements between expert annotators are typically resolved through discussing and
refining guidelines [157], disagreements in crowdsourcing are commonly seen as labeling errors
to be corrected through majority voting over independent redundant judgments of crowdworkers
[120]. Methods for further improving the quality of crowdsourced labels can be mainly broken
down into two camps [129]: techniques for preventing poor quality work and techniques for
post-hoc detection of poor quality work. Prevention techniques include screening for crowd-
workers capable of different tasks [73, 121], pre-training crowdworkers [77], maintaining quality
while controlling for cost via dynamic task allocation [32, 215], or designing interfaces or pay-
ment structures to motivate good work [95, 168, 187]. Post-hoc identification techniques include
probabilistic modeling based on crowdworker agreements for weighted voting [113], analyzing
crowdworker behaviors during tasks [192], and using additional crowdworkers to review the work
of others [35, 95].

A common assumption in previous work is that every item has one correct label, and conflicts
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among crowdworkers are the result of poor quality work from novice or inattentive workers. How-
ever, constructing comprehensive and clear instructions about how to correctly label a dataset is
often not possible due to the large variety of nuances and subtleties that may exist in the data,
even for seemingly simple topics. For example, requesters wanting to identify cat photos in a
dataset might not be aware that the dataset also contains photos of leopards, and/or that leop-
ards are sometimes referred to as big cats. As a result, crowdworkers often have to label with
incomplete information. Concepts not specified in guidelines are then open to interpretation and
confusion amongst crowdworkers (e.g., “should leopards, lion cubs, or cartoon cats be labeled
as cats?” Figure 4.1), potentially leading to inconsistent labels (e.g., only some leopard items
being labeled as cats). Methods for identifying poor work are ineffective in these cases and
can be harmful to both crowdworker and requester reputations due to rejection of honest work.
More fundamentally, this suggests a lost opportunity for requesters to discover interesting new
concepts already identified by human computation during the labeling process since the crowd-
workers are typically constrained to provide feedback in the form of predefined labels (e.g., cats
or not cats, but not leopards).

Even if requesters attempt to create comprehensive guidelines, they often have to review large
portions of a dataset to do so which can be prohibitively expensive. Moreover, as guidelines
become more complete, they can also become longer and more complicated (e.g., [110] and
[160]), requiring more crowdworker training or resulting in more errors. If the resulting label
quality is inadequate, requesters will typically have to go through the tedious process of reviewing
inconsistencies, identifying sources of confusion, updating the guidelines, and collecting entirely
new labels given the updated guidelines [138], potentially doubling the monetary cost of the
process.

4.2.3 Harnessing the Diversity of Crowdsourcing

Instead of treating crowdworker disagreement as noise introduced by poor work or lack of ex-
pertise, researchers have recently begun exploring methods to harness these disagreements
as valuable signals. For example, researchers have found that disagreements amongst novice
workers in syntactic labeling tasks often mirror disagreements amongst linguists [178] and are
useful signals for identifying poor task designs [112]. In another example, Kairam and Heer [120]
used label agreements to cluster crowdworkers into worker types (e.g., liberal and conservative
labelers that identified different amount of targets in an entity extraction task). Manual analysis
of these clusters were then used to improve future task designs. In contrast to this previous
work, we use crowd disagreements to identify and explain ambiguous concepts in data for the
purpose generating labeled data for machine learning.

Most closely related to our work is the MicroTalk system [79] which used crowd diversity to
collect and present counterarguments to crowdworkers during labeling to improve label quality.
However, this approach still assumes that a single correct label exists for every item and requires
crowdworkers to pass a training stage to learn label guidelines before participating. In our work,
we tackle the problem of labeling with untrained crowdworkers under the assumption that a
single correct label might not exist for every item. Diversity in interpretation is then used to
create rich structures of uncertain items for post-hoc label decisions, avoiding the burden of
creating comprehensive guidelines beforehand and pre-training crowdworkers. We compare our
approach to a condition inspired by MicroTalk called Revote, showing that Revolt can produce
training labels with higher accuracy under the scenario where comprehensive guidelines are not
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available.

4.2.4 Structuring Unlabeled Data with the Crowd

Crowd structuring refers to tasks that make use of crowdsourcing for organizing information with-
out predefined target concepts. For example, categorizing [9, 44] or create taxonomies [59] for a
set of documents. In contrast, our work focuses on the task of crowd labeling which is the task of
assigning predefined target concepts to each item in a dataset. In our approach, crowdworkers
perform structuring within a labeling task, and only to resolve different interpretations of the same
items for post-hoc requester review. Past work in crowd structuring also typically involves multi-
ple stages completed by different crowdworkers working independently, while we took a different
approach by utilizing real-time crowdsourcing to maintain a shared global structure synchronized
across groups of crowdworkers working collaboratively.

4.2.5 Real-time Crowdsourcing

Real-time crowdsourcing has been employed for a variety of purposes including minimizing re-
action time in crowd-powered user interfaces [20, 25, 34, 140, 141], increasing the speed of data
collection [135, 142], and improving data quality by incorporating expert interventions to guide
novice workers [39, 78, 126]. In our work, we use real-time crowd-based collaboration to improve
the quality of labeled data without expert intervention. Workers engage in real-time collaboration
to build rich structures of data that incorporate different crowdworker perspectives and can be
analyzed post-hoc. Moreover, while most previous real-time systems employ multiple crowd-
workers in a single shared workspace, our approach dynamically coordinates crowdworkers to
move synchronously between stages of different subtasks. Within each stage, crowdworkers
make independent judgments to be revealed to others in subsequent stages. In this way, our ap-
proach still benefits from common crowdsourcing mechanisms of verification through redundant
independent judgments, but can also capture and utilize diverse crowd perspectives through
collaboration.

4.3 System Design

Figure 4.2: Overview of Revolt Stages: Synchronized stages requires all crowdworkers in the
group to complete in order to move on.

In this section, we describe Revolt, a collaborative crowdsourcing system for generating labeled
datasets for machine learning. Throughout this section, we use the task of labeling images as
being about “Cats” or “Not Cats” as a running example (Figure 4.1).

At a high level, Revolt divides a dataset into multiple batches and then coordinates crowdworkers
to create labels for certain items (items receiving unanimous labels from multiple crowdworkers)
in each batch and identify uncertain items (items receiving conflicting labels) for further explana-
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tion and processing. In the synchronized version (Revolt), the system coordinates small teams
of three crowdworkers through three synchronized stages: Vote, Explain, and then Categorize
(see Figure 4.2). In the asynchronized version (RevoltAsync), the system elicits different crowd-
workers to work independently in the Vote and Explain stages, maintaining the same redundant
judgement of three crowdworkers per item while eliminating the cost of coordinating crowdwork-
ers in real-time. After collecting crowd judgments and explanations across all batches, both
systems algorithmically produce structures (groups of semantically related items) at various lev-
els of granularity for review by label requesters to determine final label decision boundaries (e.g.,
assigning the “Cartoon Cats” category as “Not Cats”) before training a machine learning model.
To minimize redundant information, the rest of this section describes Revolt in the context of the
synchronized version. We then describe the differences of the RevoltAsync condition.

4.3.1 The Vote Stage

Figure 4.3: Human Intelligence Task (HIT) interface for the Vote Stage. In addition to the
predefined labels, crowdworkers can also select Maybe/NotSure when they were uncertain about
the item.

Revolt initially keeps crowdworkers in a lobby until enough crowdworkers have accepted the task
and can begin as a group (Figure 4.2). The Vote stage then begins by collecting independent
label judgments from multiple crowdworkers using an interface similar to that used in traditional
crowdsourced labeling (see Figure 4.3). In addition to showing predefined labels as options
at this stage (e.g., “Cat” or “Not Cat”), we also include a “Maybe/NotSure” option to ensure
crowdworkers are not forced to make arbitrary decisions for uncertain items that should instead
be explained further in subsequent stages. Through task instructions, crowdworkers at this stage
are informed that others in the same group are also labeling the same items at the same time,
and that they will be asked to compare their labels in subsequent stages. By allowing workers to
express their uncertainty in the data and provide feedback in subsequent stages, Revolt avoids
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unfairly rejecting honest work [161].

Before Revolt can proceed to the next stage, all crowdworkers in a group must finish labeling
all items in their batch. Crowdworkers who finish early are put into a waiting area where they
can see in real-time how many crowdworkers in their group are still labeling items. Once the
group is ready to continue, desktop and audio notifications are sent to all crowdworkers in case
any stepped away while waiting. Once all labels are received, certain items are assigned their
final labels as usual, and uncertain items (including items that received “Maybe/NotSure” labels)
proceed to the Explain stage.

4.3.2 The Explain Stage

Figure 4.4: Human Intelligence Task (HIT) interface for the Explain Stage. Crowdworkers enter a
short description for each item that was labeled differently in the Vote Stage. They were informed
that disagreement occurred, but not the distribution of different labels used.

In the Explain stage, crowdworkers are asked to provide short explanations about their labels
for items flagged as uncertain in the previous stage. Instructions informed each crowdworker
that others in the group disagreed on the labels for these items and therefore their task was to
describe their rationale for each label to the rest of the group (see Figure 4.4).

Note that early prototypes of our system also revealed the individual votes from other crowd-
workers on each item at this stage. However, pilot experiments showed that this resulted in less
descriptive explanations that were more focused on reacting to other crowdworkers. For exam-
ple, people who picked the majority vote labels often simply reaffirmed or expressed confidence
in their original label (e.g., “nothing says to me that this is a cat”) , whereas people who were in
the minority often just yielded to the majority (e.g., “this could be a cat, i might have messed this
one up”). Instead, hiding the labels and only stating that a disagreement had occurred resulted
in more conceptual explanations helpful for the following stage (e.g., “This is not a cat, but rather
one of the big felines. Leopard or Cheetah I think.” and “Although leopards are not domesti-
cated, they are still cats.”). As in the Vote Stage, crowdworkers who finished early were placed
in a waiting area before they could move on together.
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4.3.3 The Categorize Stage

Figure 4.5: Human Intelligence Task (HIT) interface for the Categorize Stage. Crowdworkers
select or create categories for items that were labeled differently in the Vote Stage, based on
explanations from all three crowdworkers in the same group.

In the Categorize stage, crowdworkers were tasked with grouping uncertain items into categories
based on their explanations. In this stage, we present the same uncertain items to each crowd-
worker again, but this time also reveal the explanations from others in the group (Figure 4.5).
Crowdworkers were then instructed to categorize each item based on its explanations. Cate-
gories could either be selected from a list of existing categories presented next to each item or
added manually via a text input field. Whenever a new category was added by a crowdworker,
each list of categories was synchronized and dynamically updated across all items within the
current group, and also across groups working on different parts of the dataset. To encourage
category reuse and reduce redundancy we also implemented two mechanisms: First, the text
field for creating categories also acts as a quick filter of the existing categories so that crowd-
workers may more easily see and select an existing category rather than create a new one
when appropriate. Second, the list of existing categories is sorted by the number of crowdwork-
ers (across all batches of the same dataset) that have used each category, a similar strategy
to that used to filter out low quality crowd categories in [59, 61]. After assigning categories,
crowdworkers could submit their HITs independently without waiting for others to complete.

4.3.4 Post Processing of Crowdworker Responses

After crowdworkers in all groups have gone through all three stages, Revolt collects the crowd
feedback for all batches. Revolt assigns labels to certain items directly, and then creates struc-
tures of uncertain items by applying simple majority voting on the category names suggested by
crowdworkers for each item. In cases where all crowdworkers suggested a different category,
a random crowdworker’s category is used as the final category. At this point, structures can be
presented to label requesters for review and to make final label decisions. For example, after
reviewing structures, a label requester may decide that leopards and lions should be consid-
ered Cats while cartoon cats and cat food should be considered Not Cats. In this way, label
assignments can be applied to the data in each category prior to training a machine learning
system.

Revolt can also expand the crowd-generated categories to different numbers of clusters, sup-
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porting inspection at different levels of granularity. To do this, Revolt performs a hierarchical clus-
tering method that uses the crowd categories as connectivity constraints. This post-processing
approach works as follows: First, a term frequency-inverse document frequency (TF-IDF) vec-
tor is used to represent each uncertain item where each dimension is the count of a term in
its explanations divided by the number of uncertain items with the same term mentioned their
explanations. Then, hierarchical clustering with cosine similarity is applied. That is, initially, each
item is treated as a cluster by itself. Clusters are then iteratively merged with the most similar
clusters, prioritizing clusters with items in the same crowd category, until all items are in the
same cluster.

Generating clusters at various levels of granularity allows label requesters to adjust the amount
of effort they are willing to spend in making labeling decisions, allowing them to manage the
trade-off between effort and accuracy. For example, labeling low level clusters allows for more
expressive label decision boundaries, but at the cost of reviewing more clusters.

4.3.5 RevoltAsync

RevoltAsync removes the real-time nature of Revolt as follows: One set of crowdworkers label
items independently in the Vote stage. RevoltAsync then still uses the results of three crowd-
workers per item to identify uncertain items. Uncertain items are then posted to the crowdsourc-
ing market again for a different set of crowdworkers to explain the labels. That is, in RevoltA-
sync’s Explain stage, crowdworkers are presented with an item and a label given by another
crowdworker and then asked to justify that label given the knowledge that there were discrepan-
cies between how people voted on this item.

RevoltAsync does not include a Categorize stage, which would require synchronization. In-
stead it uses the explanations collected at the Explain stage directly for clustering during post-
processing. Clustering of explanations is still performed using hierarchical clustering, to produce
structures at different levels of granularity, but without connectivity constraints based on the
crowd categories provided by the Categorize Stage.

4.4 Evaluation
In this section, we describe experiments we conducted to investigate the cost-benefit trade-
off of Revolt compared to the traditional crowdsourcing approach for collecting labeled training
data. We also examined several variants of Revolt to better understand the benefits of different
components of the Revolt system and workflow.

To compare these workflows, we ran each condition on a variety of datasets and measured the
accuracy of the resulting labels with respect to requester effort and crowdsourcing cost. To pre-
vent learning effects, we do not reuse crowdworkers across conditions for the same dataset, and
randomize posting order of condition and dataset combinations so that crowdworkers subscribed
to postings from our requester account using third party services1 were distributed across con-
ditions.

1http://www.turkalert.com/
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4.4.1 Baselines and Conditions

Our conditions include Revolt, RevoltAsync, three variants, and two baselines representing tra-
ditional labeling approaches:

• NoGuidelines. A baseline condition where crowdworkers label items without guidelines.
This condition should be considered a lower bound baseline, since in most real world
scenarios requesters are likely to have some knowledge of the data or desired labels to
create some initial guidelines.

• WithGuidelines. A baseline condition where crowdworkers label items according to pro-
vided guidelines. For this condition we endeavored to create comprehensive guidelines
that left no room for subjective assessment as explained in the next Datasets and Guide-
lines section. Since creating comprehensive guidelines is often infeasible in realistic ma-
chine learning tasks, the results from this baseline should be considered an upper bound
for what can be achieved with traditional crowdsourced labeling.

• Revolt. Our proposed Vote-Explain-Categorize workflow with synchronized real-time col-
laboration.

• RevoltAsync. Our Revolt variant with asynchronous collaboration mechanisms.
• Revote. A Revolt variant with similar strategies used in [79] wherein crowdworkers re-

label uncertain items after considering each others’ explanations instead of categorizing
them for post-hoc requester review. This variant replaces Revolt’s Categorize stage with
a Revote stage (without the maybe option) and uses simple majority voting to assign final
labels to all items.

• Solo. A Revolt variant with no collaboration. In this condition, each crowdworker labels
and explains their labels for all items independently. The system still computes uncertain
items from three redundant labels and clusters uncertain items using their explanations.

• SoloClusterAll. A variant of Solo where the system clusters all items based on their expla-
nations. Note that clustering all items (certain and uncertain) is only possible in the Solo
variants where explanations were collected on all items. This approach creates categories
for certain items as well as uncertain, requiring requester review of even items that reached
consensus through crowd labeling.

Note that no post-hoc requester effort is required in the NoGuidelines, WithGuidelines and
Revote conditions and only the WithGuidelines baseline requires requesters to create guide-
lines prior to crowd labeling. We implemented the Revolt, Revote, Solo, and SoloClusterAll
conditions using the TurkServer library [153], which provided the infrastructure for recruiting and
coordinating crowdworkers in real-time. Labels for the RevoltAsync, NoGuidelines, and With-
Guidelines conditions were collected through the Mechanical Turk form builder feature on the
requester interface.

4.4.2 Datasets and Guidelines

We evaluated each of our conditions with eight tasks made up of different data types (images
and webpages) and sizes (around 100 and 600 items, respectively). All of our datasets were
obtained from the publicly available ImageNet [70] or Open Directory Project2 databases, both
commonly used for machine learning research.

2https://www.dmoz.org/

42



Each labeling task asked crowdworkers to label each item in a dataset as belonging or not
belonging to a given concept. We used target concepts of Cars and Cats for our image datasets
and Travel and Gardening for our webpage datasets to show that interpretations can vary for
even seemingly simple and generally familiar concepts (Table 4.1). For our Cars and Cats image
datsets, we collected images from ImageNet [70] by first collecting all images that corresponded
to WordNet [167] concepts containing the keyword “car” or “cat”, and then sub-sampling the
set down to approximately 600 images per dataset while ensuring no sub-concept (such as
sports car or cable car ) was overrepresented (>10%) in the final set. We obtained our Travel
and Gardening webpage datasets from [138] which has approximately 100 webpages for each
concept obtained from the Open Directory Project by selecting half from each category, “travel”
or “gardening”, and then selecting the remainder randomly from the database.

For each dataset, we generated two sets of gold-standard labels and corresponding guidelines
(making eith datasets total) representing two different interpretations of the same concept in the
following way: Independently, each author first manually labeled the datasets using a structured
labeling process [138] where they would categorize items as they examined them and then as-
sign final labels at the end. This resulted in gold-standard labels and guidelines describing those
labels (defined by rules each author would write down describing their categorizations and final
label assignments) for that dataset. These guidelines can be considered comprehensive given
that each item was examined during labeling. In realistic tasks with potentially large or complex
datasets, it is often infeasible for label requesters to manually examine each item in order to
create a set of guidelines (instead they typically examine a subset). Table 4.1 summarizes our
datasets. To give some insights into the level of ambiguity that existed in each datasets, we re-
port the proportions of items that received conflicting labels under the NoGuidelines conditions
as µ. The average proportion of items being assigned the positive labels in each dataset is 0.41
(σ = 0.12).

Dataset Type N µ NoGdlns. W/Gdlns. Revote Revolt Solo SoloAll RVAsync #Cats
Cars1 img 612 .27 .843 .887 .820 .904 .863 .884 .882 32
Cars2 img 612 .27 .756 .804 .775 .827 .794 .807 .820 32
Cats1 img 572 .12 .844 .939 .845 .916 .720 .900 .902 14
Cats2 img 572 .12 .920 .962 .904 .935 .787 .916 .918 14

Travel1 web 108 .24 .759 .870 .787 .880 .815 .806 .870 22
Travel2 web 108 .24 .769 .870 .759 .889 .796 .796 .870 22

Garden1 web 108 .12 .806 .843 .787 .889 .861 .759 .852 8
Garden2 web 108 .12 .778 .833 .787 .843 .815 .787 .787 8

Table 4.1: Accuracy of different labeling conditions. The number of clusters of the Solo, Solo-
ClusterAll, and RevoltAsync conditions were fixed to the number of categories observed under
the Revolt condition. Bold numbers indicate the best performing condition for each dataset.

4.4.3 Results

We present our experimental results in terms of accuracy and cost of labels produced by each
of our conditions. Final labels for the NoGuidelines, WithGuidelines, and Revote condition are
assigned using simple majority voting. The Revolt, RevoltAsync, Solo, and SoloClusterAll condi-
tions produce labels for unanimously voted items and categories (or clusters) for uncertain items.
To simulate post-hoc requester judgments and measure accuracy of these conditions, we assign
each uncertain category the label corresponding to the majority label of its items as defined by
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Category Size Car1GdStdLabel Cars2GdStdLabel
train car 19 95% not car 95% not car

train 19 100% not car 100% not car
military vehicle 16 100% not car 100% not car

car 15 73% car 53% not car
vehicle mirror 14 100% car 100% not car

bumper car 12 100% not car 100% not car
tow truck 11 91% car 91% car

wheel 8 100% car 88% not car
truck 8 100% car 75% car

trolley 7 86% car 86% car
vehicle interior 6 100% car 100% not car

Table 4.2: Revolt categories for the Car datasets and the corresponding gold-standard label
determined with majority voting for each category.

the gold-standards. As an example, in Table 4.2 we show the top eleven categories generated
by Revolt for uncertain items in the Cars datasets and the proportion of the corresponding ma-
jority labels in two sets of gold-standard labels (e.g., 95% of the items in the train car category
were labeled as not car in the gold-standard for both Car1 and Car2). This simulation allows us
to produce final labels for all items which we can then compare directly to the gold-standard to
compute accuracy. It is important to note that the gold-standard labels are only being used to
simulate the post-hoc requester input and none of our approaches use gold-standard labels in
their workflows.

Figure 4.6: Accuracy of different approaches as a function of post-hoc requester effort (i.e., number
of clusters) for the Car1 dataset.

In addition to presenting crowd-generated categories, Revolt (and its variant conditions) can also
algorithmically produce clusters of uncertain items at various levels of granularity for requesters
to review (see the Revolt Section). As a result, requesters can vary the amount of effort they are
willing to provide to produce final label decision boundaries in these conditions. Therefore, for
these conditions, we also report on accuracy achieved at various levels of post-hoc requester ef-
fort. As an example, Figure 4.6 shows how the accuracy of Revolt changes for different amounts
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of requester effort required to assign labels (estimated by number of clusters needing labels)
on the Car1 dataset. For this example, receiving requester input for 32 categories produced
by Revolt (see vertical line in Figure 4.6) achieved an accuracy higher than the upper bound
WithGuidelines baseline, while other conditions did not.

We compare the accuracies of different conditions in two ways. In Table 4.1, we compare condi-
tions at a fixed amount of post-hoc requester effort (i.e., the number of clusters needing exam-
ination by the requester). We fix effort to be the number of categories generated by the crowd
under the Revolt condition for each dataset. For example, for the Cars1 dataset, we compute
accuracy at the point where 32 clusters would need to be examined. The accuracy results pre-
sented in the Cars1 row in Table 4.1 therefore corresponds to a vertical cut of Figure 4.6 at the
32 number of clusters mark. To compare different conditions and baselines, we fit one gener-
alized linear model per baseline, predicting correctness as a function of condition, with dataset
as an additional factor to account for item variation. Both models significantly improve fit over
a simpler model with dataset as the only variable (X2(5)=160.1, p < 0.01, and X2(5)=180.9,
p < 0.01). Using the models, we ran general linear hypothesis tests for pairwise comparisons
between conditions, and used Tukey’s honestly significant difference as the test statistic. The
models showed both Revolt and RevoltAsync to be significantly more accurate than the lower
bound NoGuidelines condition (B=0.56 and 0.38, both p < 0.01) while no significant differences
were found when comparing to the upper bound WithGuidelines condition (B=0.05 and -0.13,
p=0.99 and 0.63).

In addition to using a fixed numbers of clusters, Figure 4.7 shows the of accuracy improve-
ment rate of each condition under different levels of requester effort relative to the NoGuidelines
baseline. Since the smaller datasets only had less than 30 uncertain items, for conditions that
generate rich structures (Revolt, RevoltAsync, Solo, and SoloClusterAll) we show the accuracy
improvement rate for 10, 15, 20, and 25 post-hoc judgments for the smaller webpage datasets,
and 10, 20, 30 for the larger image datasets. We also report the accuracy improvement for the
WithGuidelines and Revote conditions that do not require post-hoc judgments.

In our experiments, $3 were paid to each worker for participating in a batch of Revolt, Revote,
Solo, SoloClusterAll conditions, where $1 was paid as base payment for completing the first
stage, and $2 bonuses were added for completing the rest of the stages. For the RevoltAsync
condition, $1 was paid for each Vote and Explain task. We adjusted the number of items in each
batch so that crowdworkers could finish batches under 20 minutes including time spent waiting
for other crowdworkers. Each batch in the image datasets contained around 60 items while each
batch in the webpage datasets contained around 27 items. For the baseline conditions, we paid
$0.05 for labeling one image, and $0.15 for labeling one webpage.

We also compared cost of each condition in terms of crowdworker work duration (Figure 4.8).
For our Revolt, Revote, Solo and SoloClusterAll, we measure work duration directly by tracking
crowdworker behaviors using our external HIT interface, tracking mouse movements to identify
the exact time crowdworkers started working after accepting the HIT. Our NoGuidelines, With-
Guidelines, and RevoltAsync conditions were implemented via the Mechanical Turk form builder
feature. While Mechanical Turk does report work duration, crowdworkers often do not start work
immediately after accepting a HIT. To correct for this, we approximate the work duration for these
interfaces in the following way. We approximate the work time of the NoGuidelines and With-
Guidelines conditions (our baseline conditions) using the timing statistics collected from the Vote
Stage of the Revolt workflow, as the crowdwork involved in these baselines are of the same na-
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ture as the Vote stage. We similarly approximate the total work duration for the RevoltAsync
condition by using the timestamps from the Solo condition (where crowdworkers provided expla-
nations for each item), and multiplying the average duration with the number of uncertain items
identified for each dataset in this condition.

Figure 4.7: Accuracy improvement of different conditions over the NoGuidelines baseline as a
function of requester effort.

Revolt vs Traditional Crowdsourced Labeling

In both traditional crowd-based labeling and Revolt, requesters examine uncertain items to refine
the label boundaries. However, in Revolt, this is done at the category level in a post-processing
step as opposed to reviewing items, refining instructions, and launching more tasks in a loop.
The latter may lead to wasted work, particularly when refinements require workers to relabel the
same items. In Revolt, structures captured from crowdworkers during labeling allow requestors
to refine label boundaries post-hoc without having to launch more tasks.

When compared against the NoGuidelines condition (the lower bound of traditional crowdsourced
labeling), Revolt was able to produce higher accuracy labels across all eight datasets (Table 4.1).
The generalized linear models also showed both Revolt and RevoltAsync to be significantly more
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accurate than the NoGuidelines condition. The comparison of the NoGuidelines and WithGuide-
lines conditions shows that comprehensive guidelines indeed increase labeling accuracy across
all eight datasets (Figure 4.7), but at the cost of the effort needed to create comprehensive
guidelines in advance. In contrast, Revolt was able to produce comparable accuracy without
any guidelines. In fact, in 6 out of the 8 datasets we tested, Revolt was able to produce la-
beling accuracies slightly higher than the upper bound baseline (Table 4.1). The generalized
linear models also showed that neither Revolt nor RevoltAsync were significantly different than
the upper bound condition (B=0.05 and -0.13, p=0.99 and 0.63). This suggests that Revolt can
outperform current best practices for crowdsourcing training labels where guidelines provided
by the requesters are likely to be less comprehensive than the ones provided in the WithGuide-
lines condition. That is, Revolt shows promise to improve the quality of labeled data collection
while removing the burden of comprehensive guideline generation by making use of collaborative
crowdsourcing approaches.

Figure 4.8: Work duration of each crowdworker under different conditions, normalized by the
number of item in each batch.

Forcing Crowdworkers to Revote

An alternative way of explaining why we see uncertain items with conflicting labels in Revolt’s
Vote Stage is that crowdworkers could converge on true concepts for all items but they are
simply making mistakes while labeling. To test this, the Revote condition allowed crowdworkers
to reconsider their labels after seeing explanations from others, providing the opportunity to
correct mistakes. While previous work has shown accuracy improvement using this strategy
under a scenario where clear guidelines were given to pre-trained crowdworkers [79], results
from our study showed that the Revote condition did not improve labeling accuracy compared
to the NoGuidelines lower bound baseline (B=0.03, p>0.99), with near zero median accuracy
improvement (Figure 4.7). This suggest that in scenarios where it is infeasible to generate
comprehensive guidelines to guide workers towards a single correct answer, accuracy cannot
simply be improved by quality control on individual workers; instead allowing crowdworkers to
inform the requesters about their confusions and discoveries may be a better strategy than
forcing them to make arbitrary decisions and then performing post-hoc quality control.
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Benefits of Collaborative Crowdsourcing

Traditionally, crowdsourcing techniques require independent crowdworker judgments and do not
permit knowledge sharing. In this work, we investigated the benefits of collaborative crowdsourc-
ing by allowing limited and structured communications between crowdworkers. Our collaborative
conditions (Revolt, RevoltAsync, Revote) presented crowdworkers with different combinations
of conflicting judgements, justifications for the conflicting judgements, and proposed structures
(i.e., category names) from other crowdworkers, either synchronously or asynchronously. On
the other hand, in NoGuidelines, WithGuidelines, Solo, and SoloClusterAll conditions, workers
were not presented with any judgments from others.

Comparing Revolt to RevoltAsync, Revolt with synchronous stages performed slightly better
than RevoltAsync at the cost of slightly higher worktime (Figure 4.8), but the difference was not
significant (B=0.18, p=0.28). Comparing collaborative and non-collaborative conditions, results
show that both Revolt and RevoltAsync outperformed the non-collaborative Solo condition for
each dataset we tested (Figure 4.7). Based on the generalized linear models, the real-time
collaborative Revolt condition achieved significantly higher accuracies than the non-collaborative
Solo condition, while the RevoltAsync variant did not (B=0.24 and 0.06, p=0.04 and 0.97).

Interestingly, we initially expected the RevoltAsync condition would yield poorer results compared
to the non-collaborative Solo condition due to cognitive dissonance (i.e., asking one crowdworker
to explain the label of another). However, the results showed no significant difference between
the two conditions. On the other hand, the non-collaborative SoloClusterAll condition, where
explanations were collected for all items to cluster both certain and uncertain items, performed
worse than the lower bound baseline. These results suggest that identifying and presenting
disagreements is an important factor for eliciting meaningful explanations, even when the dis-
agreements were presented to different crowdworkers in an asynchronous setting (Figure 4.7).

Cost Analysis

In general, items in the webpage datasets took longer to label compared to items in the image
datasets. This is to be expected since webpages typically contain both text and images and
therefore often require more effort to comprehend (Figure 4.8). Comparing different conditions,
traditional labeling (WithGuidelines, NoGuidelines) that only required crowdworkers to label each
item had the lowest work times, and the real-time collaborative conditions, Revote and Revolt,
had similar and higher work times. This suggests categorizing or re-labeling items has similar
costs, but creating rich structures for post-hoc requester judgments can lead to better accura-
cies. The RevoltAsync condition showed lower work time compared to the Revolt condition. This
is also to be expected since crowdworkers did not need to wait for others during the task for
progress synchronization. The non-collaborative workflow conditions Solo and SoloClusterAll
has the highest work time since it required explanation of all certain and uncertain items. There-
fore, using the voting stage to identify uncertain items and guide efforts on structure generation
can improve accuracy while also lowering cost.

One concern for synchronous collaborative crowdsourcing is crowdworkers idling or returning
the HIT before the task is competed. This was especially important since we did not include a
method for using labels from groups with missing labels. In sessions with drop-outs, we paid
the crowdworkers and discarded their labels. In fact, the first prototype of Revolt had a high
dropout rate of around 50% (i.e., half of the crowdworkers did not complete the three stages),

48



making it infeasible for practical use. Through an iterative task design process, we observed
the following mechanisms being effective for reducing drop-outs: Explaining the collaborative
nature of the task, providing time estimates in the task instructions, adding example items in
the preview screen so crowdworkers knew what to expect if they accepted the HIT, sending
desktop and audio notifications to help coordinate workers, and giving clear progress indicators
throughout the tasks (e.g., current bonus amount, number of remaining stages, and the amount
of bonus for completing each stage). In the final version of the task with these mechanisms, the
dropout rate was lowered to an average of around 5% for the eight datasets presented in this
chapter.

4.5 Discussion
In this work we focused on designing Revolt’s collaborative crowdsourcing workflow and eval-
uating whether the generated structures contain information with enough richness for label re-
questers to define accurate label decision boundaries. While we believe the proposed mech-
anisms of identifying uncertainty with disagreements and creating structures with explanations
can generalize to multi-class scenarios, the added complexity to both the crowdworkers and
the interfaces should be studied further. Research is also needed to design a requester-facing
interface depicting these structures and to compare requester effort in post-hoc analysis with
guideline creation.

To gain insights into these future directions, we conducted a small follow up experiment where
we ran Revolt on data needed by a group of practitioners from a large technology company
for a real machine learning research problem. This group required 300 items from the publicly
available 20 Newsgroup Dataset [139] to be labeled as being about “Autos” or “Not Autos”. Prior
to our study, the group of three practitioners already spent approximately 2-3 hours each to
browse through some of the data and then about 1-2 hours to generate and iterate over the
guidelines. This is a typical process for guidelines creation analogous to previous work [225],
and should represent a realistic scenario somewhere between our lower bound NoGuidelines
and upper bound WithGuidelines conditions. Because the practitioners already had some idea
of how they wanted the dataset labeled, we ran Revolt with their guidelines.

We presented Revolt’s results to one member of the research group and asked them to exam-
ine the resulting structures. Interestingly, 93 out of the 300 items (31%) were inconsistent even
though we gave crowdworkers guidelines about how to label, underscoring the difficulty of cre-
ating comprehensive guidelines covering the subtleties in a dataset. These items surfaced 23
unique categories and, to the practitioner’s surprise, 70% were not covered in the original guide-
lines (e.g., auto accessories, insurance, intoxication). 7 of the categories were mentioned in the
guidelines with explicit instructions about how to label (e.g., driving, buying/selling, auto repair),
indicating either failure of some workers to learn the guidelines or failure of the guidelines to
capture the complexity of these categories. For example, one of the items categorized as driv-
ing was about which side of the road people should drive on. While this could be considered
about auto driving, it could also be about driving other types of vehicles. Reading crowdworker
explanations helped the practitioner to better understand this ambiguity, and led them to second
guess their original guideline about labeling driving related items as autos. The practitioner we
interviewed also suggested additional ways they wanted to use Revolt’s results, such as remov-
ing ambiguous items or certain categories before training a model, or creating features around
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categories that surfaced. Further research is necessary to examine the potential for Revolt’s rich
structures to support these tasks.

The practitioner also made several suggestions with respect to how one might design the pre-
sentation of Revolt’s structures. First, an indicator of category quality or confidence based on
the distribution of labels assigned by individual workers would have helped the practitioner prior-
itize which categories to look at first and how much to examine each category before making a
decision (e.g., by reading individual explanations or viewing a few of the individual items within a
category). Other suggestions included blacklisting certain items from the category list (e.g., “au-
tos” surfaced as a category), presenting structures within hierarchical categories, and searching
explanations for to find related items under different categories. Future research should consider
these insights in determining how to efficiently present Revolt’s structures to label requesters.

In this chapter, we presented Revolt, a new approach for generating labeled datasets for ma-
chine learning via collaborative crowdsourcing. Our experimental results comparing Revolt to
traditional crowd labeling techniques demonstrates Revolt can shift the efforts of label requesters
from a priori label guideline creation to post-hoc analysis of crowd-generated conceptual struc-
tures. This has several benefits including potentially surfacing new or ambiguous concepts unan-
ticipated by label requesters, reducing the amount of crowdworker training and effort required to
learn label guidelines, and allowing label requesters to change their minds about label decision
boundaries without having to re-collect new data.
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Chapter 5: SearchLens

Capturing and Composing Complex User Interests

This work was previously published in ACM IUI 2019 [48] and has been adapted for this docu-
ment.

While previous chapters focused on providing global context in the domain of crowdsourced
sensemaking, starting with this chapter I shift focus to the domain of building interactive systems
that can better support global context for individual’s conducting online sensemaking tasks, such
as trip planning or product comparison research. This is motivated by the application evalua-
tion of Alloy described in Section 3.4, were we found individuals valued articles synthesized
from clusters generated by Alloy, suggesting that global context (i.e., information gathered and
synthesized across information sources) is also highly valued by individuals conducting online
research.

This chapter explore a novel approach to better support the personalization aspects of data
exploration. Using a restaurant review corpus, I focused on supporting users to learn from
data and iteratively refine and evolve their nuanced interests. Consumer generated reviews are
one of the most important influence in online decision making. To make sense of these rich
repositories of diverse opinions, searchers need to sift through a large number of reviews to
characterize each item based on aspects that they care about. We introduce a novel system,
SearchLens, where searchers build up a collection of “Lenses” that reflect their different latent
interests, and compose the Lenses to find relevant items across different contexts. Based on the
Lenses, SearchLens generates personalized interfaces with visual explanations that promotes
transparency and enables deeper exploration. While prior work found searchers may not wish
to put in effort specifying their goals without immediate and sufficient benefits, results from a
controlled lab study suggest that our approach incentivized participants to express their interests
more richly than in a baseline condition, and a field study showed that participants found benefits
in SearchLens while conducting their own tasks.

5.1 Introduction
People often rely on reading online reviews and forum posts to make predictions about how well
different options might match their personal interests and needs. With the proliferation of online
reviews, people now have instant access to millions of online reviews from people with varying
perspectives and interests. It was estimated that in 2013 Amazon provided shoppers access to
more than one million reviews for just their electronics section [159], and in 2016 Yelp provided
around 250,000 reviews for over 6,000 restaurants for the city of Toronto alone [111]. Having
access to this rich repository of diverse perspectives based on the past experiences of others
has the potential to empower consumers to understand their choices thoroughly and make better
decisions for themselves without being overly influenced by marketing and branding [66].

Unfortunately, it is often difficult for users to be able to quickly and efficiently match their personal
interests to the large amount of information available for each potential option. One problem is
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Figure 5.1: An overview of the SearchLens system. The Query Panel on the left allows users to
specify search topics, or Lenses, by specifying multiple keywords. The keywords for a given Lens
are show in colored cells sized by importance (weight). Lenses can be freely disabled or enabled for
different scenarios. The Results Panel on the right shows a ranked list of search results that best
match the enabled Lenses from the searcher. The same visualization for specifying queries are
then used for explaining how each result matches with user’s interests and mental model, and also
serve as an interactive navigation for filtering mentions of specific keywords. The Overview Panel
at the bottom shows a collapsed version of the cells that allows for quick comparison between
results.
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that simple star ratings are often not sufficient, and recent research has shown reviews often play
an important role in users online purchase decisions [86, 170]. For example, restaurants might
receive negative reviews for its simple decor and lack of good ambiance, but some searchers
might value more the authenticity of the food or whether vegan options were available on the
menu. Subsequently, finding, reading, and evaluating relevant reviews is time-consuming and
challenging. Users have to manually parse through the reviews for each restaurant and match
them to their personal interests (e.g., kid friendly, authentic Indian cuisine). They then have to
track which restaurant meets which criteria, and if they discover and add any additional criteria,
they must back-fill that information and re-evaluate previously seen restaurants. Furthermore,
once a user has finished searching, the work performed discovering and evaluating factors is
lost, resulting in having to start from scratch even if a similar need arises in the future. For exam-
ple, a traveler who has spent a lot of time choosing between ramen restaurants in Los Angeles
must start from scratch evaluating ramen restaurants in Toronto, despite having discovered sev-
eral important factors (e.g., thickness and chewiness of noodle, whether the broth is simmered
for a long time with pork bones) that will be similarly utilized in their decision making.

Getting users to specify these nuanced interests and preferences has been a long standing
challenge. Several decades of research have explored ways of getting users to externalize their
interests [14, 116], for example by: using prompt and text field designs that promote longer query
terms [15, 85], asking for relevance feedback on the results provided [175, 190, 193], or explicitly
asking users to build up sets of query terms of different topics [100, 102]. There are two primary
challenges brought up by this work. First, users have trouble specifying their interests, which
includes challenges with identifying query terms that were neither too general nor too specific;
providing more than a few terms (even when longer queries were more likely to lead to useful
results); and learning terms from the content, rather than knowing them all beforehand [15, 193].
The other main issue found is that it is very difficult to get users to put in the work to externalize
their interests, either as query terms or as explicit feedback, due to perceptions that the work
will not be sufficiently paid off in the future or not understanding how their work will affect their
results.

To tackle this issue of capturing, leveraging and exposing user interests, we introduce Search-
Lense, where users construct externalized representations of their interests as “Lenses”. Lenses
are leveraged as an explanatory tool, providing users with a way to quickly parse, understand
and make judgments based on the vast amount of review data instantaneously. Additionally,
Lenses can be reused in different contexts and combined in different configurations. In the ex-
ample above, imagine a system which could capture the factors that the traveler found important
for ramen in Los Angeles and reuse them to quickly make a confident, personalized decision
about ramen in Toronto. If traveling to Toronto with kids, a “kids” Lens might also be added with
factors such as whether the restaurant typically has long lines and how many seats it has. These
persistent Lenses could be useful in a variety of situations beyond reviews, ranging from aca-
demics keeping track of interesting research topics; travelers deciding which places to visit in an
unfamiliar city; consumers deciding between products; lawyers doing case discovery; or voters
tracking important issues. We explore this problem in the context of restaurant reviews, conduct-
ing a controlled lab study with 29 participants to examine if our visual interface for explanation
and exploration is effective in providing immediate benefits to elicit rich interest expressions from
the users. Additionally, we performed a three day field deployment study with 5 participants to
explore the benefits of Lenses when users were conducting their own tasks. Results suggest
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that our prototype system SearchLens was able to learn richer representations of its users’ inter-
ests when compared to a baseline system by allowing users to fluidly capture, build, and refine
Lenses to reflect their interests and needs, and that the user-generated interfaces can be reused
over time and transfer across contexts.

5.2 Related Work
Past research has proposed a variety of approaches to collecting, modeling and leveraging
users’ interests and intents through both interface design and computation. Our work builds
on this diverse of literature by allowing the system to learn the personal interests of the users
through interaction to retrieve relevant data, and present data based on its understanding of the
different users. This allows us to elicit structures that can be reused across different contexts
and tasks and are more nuanced and personalized to each users when compared to traditional
search structures such as search results clustering or pre-compiled facets.

5.2.1 Eliciting and Modeling Interests and Intents

A significant topic of research has been interfaces that can collect, explicitly or implicitly, the
personal goals and interests of users as they search for information and modify their viewing
of content correspondingly. While there is extensive literature on doing so in the context of
personalized search and re-ranking of search results (e.g., [33, 36, 198, 205]), we focus here
on work that enables more interactivity and transparency of users’ interests to support more
complex searching. One such thread lies in the collection of users’ interests through keywords
or interest vectors into an agent or user interest or intent model. This includes seminal work
such as WebMate [55], which built up an agent composed of sets of TF-IDF [227] vectors to
represent the user’s different interests. Similar to WebMate, we aim to build collections of terms
that represent the user’s interests, but focus on explicit user selection of those sets, and making
them explainable and composable. Interestingly, WebMate’s “Trigger Pair Model” which looked
at co-occurrence of words within a sliding window across a set of documents can be seen as a
precursor to the word vector model that we use for keyword suggestions. More recent work in this
vein includes user modeling of concepts, such as AdaptiveVIBE [2] and Intent Radar [175], which
include two dimensional visualizations of documents and their relation to the user’s inferred
interests. Our work builds upon these but aims at increasing the richness of the structure,
nuance, and specificity of the user’s expression of interests. Specifically, our Lenses, composed
of multiple keywords that can capture multiple levels of specificity, can be themselves composed
into more complex expressions and reused across different contexts and tasks. We also focus
on supporting users in the discovery process of building good terms that are discriminatory and
explanatory.

5.2.2 Concept Discovery and Evolution

Research in interactive machine learning has also explored techniques to support data anno-
tators or searchers in discovering and externalizing useful concepts when working in unfamiliar
domains. For example, Alloy used a sample-and-search technique to categorize textual datasets
with novice crowdworkers where they first explore the space of information through sampling
items in the dataset to discover useful categories, then externalize each category using a set of
query terms and search for other relevant items [44]. Past work has further suggested that the
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working concepts of an annotator may change over time as new items were examined [138]. Dif-
ferent techniques that can better support this concept evolution process were proposed, such as
structured labeling [138], crowd collaboration [46], and interactive visualization [56]. These point
to the importance of providing mechanisms that allow users to not only discover and define con-
cepts based on data, but also to easily evolve their concept representations during the process
of exploring an unfamiliar domain. In a study more closely related to our work, CueFlik allowed
image searchers to define conceptual filters (e.g., listing only action shots when searching for
baseball images) by labeling items in a search result list as positive or negative training exam-
ples [82]. Previously defined filters are persisted and can be applied to future searches (e.g.,
applying the same action shots filter when searching for football images), but evolving existing
conceptual filters would require recreating filters from scratch or re-labeling items in existing
filters. Our work builds this past work to allow exploratory searchers in unfamiliar domains to
discover concepts of interests from data and externalize these concepts in the form of “Lenses”
that can be continually refined. Finally, the Lenses are persisted across different search sessions
similar to [82], and can be modified and composed for different scenarios and goals.

5.3 System Design
The key motivating concept behind SearchLens was providing users with a way to externalize
their complex interest profiles in a way that could be useful for ranking, explanation, and trans-
ference to different contexts. We aimed to make the interface simple and transparent but also
powerful enough to express higher level, abstract concepts and differing levels of specificity. To
do this, we introduce the idea of “Lenses”: reusable collections of weighted keywords that con-
tain “honest signals” of a user’s interests that can be composed in different configurations to
match a user’s current needs. The Lenses that are enabled in a particular configuration drive
various visualization and explanation elements to help the user understand how the information
space meets their needs, and also whether they need to fix or reformulate their Lenses.

A key challenge here is incentivizing users to create rich Lenses by providing sufficient and
immediate benefits. For this, SearchLens provides visual explanation of items in the search
results based on users’ Lenses, which also serves as an interface for deeper exploration. When
a new Lens is created or enabled, its visual representation appears on the interface for each item,
allowing users to understand how well each item matches with the Lens, and how frequently
each keyword is mentioned in its reviews. To further explore each item, users can click on
keywords in each Lens to see relevant reviews.

A typical use case is as follows. A user just moved to Pittsburgh and wants to go out to eat
ramen. She starts by pulling up a restaurant she knows she likes from Toronto and goes through
some of the reviews, noticing that the reviews of her favorite tonkatsu ramen mention interesting
signals such as “bone” and “umami” and adds them to her ramen Lens along with other useful
words such as “tonkatsu”, “ramen”, “bowl”, etc. After checking to see that her Lens is bringing
up other restaurants that serve ramen she likes in Toronto and adding a few of their terms to her
Lens, she switches to Pittsburgh and looks for how her Lens is being used. She also activates
her drinks Lens, which she’s built up over time to incorporate her particular interests in unfiltered
sakes as well as hoppy beers. Using the Lenses, she quickly see which ramen restaurants in the
results list serve unfiltered sakes and/or hoppy beers. To further explore her different options,
she can click on each keyword in her Lenses to filter relevant reviews. For example, “tonkatsu”
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might be often mentioned with “spicy” in one restaurant, and “creamy” in another, allowing her
to further differentiate her options based on aspects that she cares about.

The following subsections describe the designs of the SearchLens system. We will first present
our concept of “Lenses,” and how users can use SearchLens to fluidly express and refine their
different nuanced interests, and freely compose their Lenses for different contexts. We will also
describe how search Lenses can provide immediate benefits once specified, providing users
visual explanation of each item in the search results, and also an interface for deeper exploration.

To test our prototype system in a realistic and manageable setting, we focused on the domain of
restaurant reviews where personalization and searching with multiple goals is especially impor-
tant. We used a subset of the dataset from the Yelp challenge [111] that included local business
in 11 metropolitan areas.1 Restaurants and reviews were selected by string matching on the
city field of each restaurant available as metadata in the Yelp challenge dataset, resulting a sub-
set of 48,485 restaurants and 2,577,298 reviews. This allows us to explore how user-specified
Lenses can be composed and reused for different scenarios, as well as for the same scenario
across different cities. In addition, we also use the same data to train a Word2Vec model [165]
for generating Lens-specific query term suggestions.

5.3.1 Capturing User Interests with Lenses

Our goal was to develop a way to elicit users’ interests which is both highly expressive and
immediately beneficial. To explore the natural discovery and collection of users’ interests we
conducted a preliminary study in which we asked people to read reviews of their favorite restau-
rants on Yelp and see if they could identify terms that were good indications of their interests. We
discovered that people found it intuitive to identify many different terms that matched their inter-
ests. Many of these terms were not simply general descriptors (e.g., “good”, “tasty”) but instead
terms they considered indicative of matching their personal interests (e.g., an authentic ramen
restaurant would include terms talking about the thickness of the noodles; a popular restaurant
might be less favored if it also had very long lines). Terms also fell into different classes of factors
users were interested in (e.g., service vs. food quality vs. parking). Users seemed to focus on
finding reviews that mentioned these terms and use them in their decision making.

Based on these initial findings we developed a system for users to easily collect terms from
reviews into “Lenses” and to use those terms to identify and summarize reviews that mentioned
those terms. Similar to [100], we enable users to search with multiple Lenses at the same
time. However, our Lenses differ from traditional search queries or faceted metadata in several
important ways.

First, our system encourages the iterative development of Lenses as the user explores. A com-
mon activity in online exploratory search involves discovering new and interesting aspects from
data. SearchLens aims to make it easy for users to add new Lenses and improve existing ones
throughout their searching process. Users can create a new Lens by specifying a set of key-
words using the text field in the Query Panel on the left (Figure 5.1). As users browse the results
on the right, they might find some keywords in their Lenses were too general to be useful (e.g.,
“tasty broth”), and find discover more indicative keywords either from prior knowledge or from
the reviews (e.g., “rich and thick broth”). In this case, users can refine their Lenses by adding

1Pittsburgh, Charlotte, Phoenix, Las Vegas, Toronto, Montréal, Mesa, Mississauga, Cleveland, Scottsdale, and
Edinburgh.
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new keywords using three different interactions, each for a different scenario. First, users can
click on the plus icon under each Lenses to enter new keywords in a Lens specific text field.
Second, as users discover more indicative keywords or new topics of interests from the reviews,
they can highlight the keywords and use a context menu to add them to an existing Lens. In ad-
dition, a list of keyword suggestions are also listed under each Lens based on current keywords
(Figure 5.2). Users can hover over each suggestion to see example mentions, and click on the
keyword include it. This allows users to assess the usefulness of the suggestions, such as to
avoid ambiguous terms. The Lens-specific suggestions were computed based a word semantic
model described in the below subsection. To remove a keyword, users can click on its cell and
select remove keyword in the context menu.

Once constructed, Lenses can then be used to visually inspect and adjust their “projections”
onto the data. Lenses are represented visually as boxes subdivided into cells, one for each term
the user added. Initially, all keywords in the same Lens have equal importance (as reflected by
being the same size), but users can click on each cell to select different importance in a context
menu (x1, x2, x4, x10, exclude) to better reflect their personal preferences. The size of the
cells will adjust accordingly to reflect the importance of each keyword (excluded keywords are
represented using fixed size cells with a unique pattern fill). The shade of each cell shows the
overall frequency of each keyword in the top 30 search results (Figure 5.1, Query Panel). This
allows the user to get a sense of how items in the corpus reflect their mental representation of
each topic. For example, a large cell with very light shade represents a concept that the users
deemed as an important feature of the topic, but was rarely found in the results. Surfacing this
information ensures user are aware of how useful each of their keywords are, and can refine
their Lenses to include more indicative keywords.

As Lenses and terms are collected a user can over time build up a repository that reflects her
personal interests. Each Lens can be disabled and re-enabled and are persisted across different
visits to the SearchLens interface, with disabled Lenses are listed at the bottom of the Query
Panel (Figure 5.1). Various combinations of Lenses can be activated depending on the goal
and context. For example, for a date night a user might enable their personalized Lenses for
“cozy and intimate”, and “vegan”, or for a weekday lunch activate their Lenses for “fast casual”,
“vegan”, and “easy parking”. Although our main thrust in this chapter is exploring the viability
of this approach, further work will likely be needed to understand as Lenses accumulate how
to scale them. For example, in the current prototype all disabled Lenses are shown, but future
systems could further contextualize Lenses by inferring the task context (e.g., what type of item
someone is searching for).

Keyword Suggestions

While creating a new Lens, listing all keywords from prior knowledge can be mentally taxing and
have poor recall. To further reduce the required effort for building expressive Lenses, Search-
Lens generates Lens-specific keyword suggestions. As an example, when a user created an
“Outdoor Seating” Lens with only three keywords (“outdoor”, “patio”, and “garden”), SearchLens
automatically suggested relevant keywords including “balcony”, “courtyard”, and “terrace” (Fig-
ure 5.2). To do so, we trained a Word2Vec model [165] with 300 dimensions using the entire
Yelp dataset of 2,577,298 reviews. The trained word model can project words onto a semanti-
cally meaningful vector space, which in turn allows for measuring semantic similarity between
words. Alternatively, it can also be used to find a set of words that are semantically similar to a
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Figure 5.2: SearchLens provides keywords suggestions based on currently Lenses. Hovering shows
a preview panel with mentions of the suggested keyword, allowing users to better understand the
effect of adding the suggested keyword. In this case, SearchLens suggested balcony, terrace,
fenced, and other keywords for the “Outdoor Seating” Lens. However, further inspection showed
that fenced may not be a indicative keyword for the purpose of this Lens.

given term by searching in the vector space of nearby words. To generate Lens-specific keyword
suggestions, we first project all its keywords in a Lens onto the vector space and calculate the
average vector to obtain a list of similar terms around the average vector. To further increase the
chance of presenting useful and discriminatory search terms, we only used terms that appeared
more than 50 times in the corpus, were mentioned in reviews of more than three restaurants,
and were mentioned in less than 40% of all restaurants.

5.3.2 Interest-driven Explanation

Persistent, decoupled user interest models would be beneficial to users the long run by provid-
ing separate reusable and recomposable interests across multiple search sessions. However,
without immediate and perceivable benefits, users typically are not willing to spent extra effort ex-
pressing their separate interests for future tasks. For this, SearchLens uses each user’s Lenses
to provide visual explanation of each item in the search results. This is based on our approach of
allowing users to express their multiple topics of interest separately, which enables SearchLens
to distinguish between keywords of different topics and opens the possibility of visualizing each
result according to users’ interests in easy-to-interpret ways. Explanation is especially important
for supporting searching with multiple interests, as it can be difficult for the users to understand
which interests and keywords were associated with each result. Consider traditional search in-
terfaces that only offer a short snippet for each result as explanation. These short summaries
provide little support for personalized interpretation beyond a few highlighted query terms and
their context. Even if users listed keywords of many different topics at once, the linear result list
also provides little information about each result beyond their overall relevance ranking.

One obvious approach to explaining items in the search results is to surface mentions and sta-
tistical information, such as mention frequencies, at the topic level. For example, [102] visualized
the overall frequency of different search terms in different topics for each search result, and [100]
visualized the mention locations of different topics within each document. Visualizing at the topic
level allowed these systems to provide mechanisms for specifying many topics and keywords,
while at the same time visualized deeper information about each result in a way that matches
the mental model of the searchers. However, visualizing at the topic level can be prohibitive
for keyword-level operations, such as query reformulation and assigning importance levels to
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Figure 5.3: The visual explanation and exploration feature allows comparison of results at dif-
ferent levels of granularity using a familiar interface used for specifying queries - at the levels of
Lenses, keywords, co-occurring terms, and mentions, allowing users to query with multiple Lenses
at the same time, while still being able to comprehend how each result matches their different
Lenses.

different keywords based on their frequencies.

SearchLens supports rich explanation at the topic and keyword level through its user-specified
Lenses. Explanation occurs by showing the each Lens visualization from the Query Panel (Fig-
ure 5.1) on each result and adjusting the term shading to correspond to the frequency of the
term within that search result (Figure 5.3). By using identical colors and layouts of each Lenses,
and showing result-specific keyword frequencies, users can quickly interpret how each result
matches with their different interests at both the topic and at the keyword level using a familiar
visualization. As an example, Figure 5.3 shows how a user might examine two restaurants in
a search result list using her Lenses for “Steak”, “Alcahol”, and “Outdoor Seating”. At the topic
level, both restaurants matched well with her Steak Lens rendered in dark shades that incorpo-
rated her stronger preference for “ribeye” steak, and also also her other interests such as “flank”
steaks. She can also see that the first restaurant matched her Outdoor Seating Lens better than
the second one. Looking at the same Alcohol Lens at the keyword level, she can easily see that
the two restaurants matched differently with her “Alcahol” Lens where the first one has many
mentions of “byob” in the reviews and the second one with many mentions of “beer” and “bar”
instead.

Finally, to provide a more compact, higher-level, topic-centric overview of all restaurants in the
search results, SearchLens collapses the colored cells for each Lens into a single cell similar to
[102]. The size of each cell to shows the overall frequencies of keywords in different Lenses for
each result (Figure 5.1). This allows users to get a quick overview of restaurants in the search
results, and compare different options at the topic level using the Overview Panel at the bottom.

5.3.3 Supporting Deeper Exploration of Items

In addition to acting as a visual explanation for each result, the cells in the visualization also
act as a navigation tool for deep exploration at the keyword level. Users can explore mentions
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of different keywords by clicking on its corresponding cell and the summary will update in real-
time to show a list of its mentions. In addition, the Lens also shows the top co-occurring words
that were frequently mentioned near the selected keyword as overview and deeper navigation,
a strategy found useful in exploratory scenarios by prior work [71, 72, 174]. As an example,
Figure 5.3 shows the how the Lenses allow users to explore and compare options at different
levels of granularity. At the highest level, users can use the shading of different cells to see that
the Outdoor Seating Lens has more mentions in the first restaurant (Figure 5.3). Searchers can
use the shading of individual cells to compare options at the keyword level. For example, the
term “BYOB” was frequently mentioned in reviews for the first restaurant, but did not show up in
reviews for the second restaurant. Finally, clicking on the individual cells allows users to explore
mentions of its corresponding keywords and words that were frequently mentioned together. For
example, when exploring mention of the work “ribeye” for both restaurants, SearchLens shows
that there were many mentions of “sandwich” near the word “ribeye” for the first restaurant, and
many mentions of “bone marrow” near “ribeye” for the second restaurant (Figure 5.3).

5.3.4 Indexing and Ranking

Traditionally, faceted search systems typically combine factors from multiple facets for ranking
using disjunctions (factors within facets, such as brands selected by the user on a shopping
website) and conjuctions (factors between facets, such as brands and price ranges). In an early
iteration of SearchLens, we tested using the Boolean OR operator between keywords within
the same Lens, treating keywords within the same Lens as synonyms while ranking. However,
users reported this approach lead them to restaurants that poorly reflected their Lenses, as
some restaurants may have many mentions of few keywords in a Lens, but very few mentions of
other keywords. Fundamentally, unlike faceted search systems, different keywords in the Lenses
typically describe a criteria as a whole. For example, an authentic ramen Lens might contained
keywords describing creamy bone broth and freshly made noodles. In this case, the different
keywords combined represented what the user considered good ramen restaurants, instead of
as alternate options in a facet (such as a set of preferred brands). In a later iteration, we switched
to Okapi BM25 for ranking that used inverse document frequencies to weight keywords instead of
eliciting importance rating from the users. However, users reported unable to construct Lenses
that reflect their priorities and unable to construct expressive Lenses that lead to useful results.
This lead to the current iteration where we used a modified version of the standard Okapi BM25
ranking function to combine keywords across Lenses [186], which by default considers both term
frequency and document frequency to rank documents similar to TF-IDF ranking function, but
also adjust for the length of each documents.

We modify the Okapi BM25 ranking function to account for the importance levels specified by
users in the following ways. By default, Okapi BM25 uses the inverse document frequencies
to weight each keywords, with the motivation that words appearing in many documents tend to
be less important. Since in SearchLens users can specify keyword importance using the in-
teractive visual explanation, we instead weight each keyword according to their user-specified
importance level. By default, SearchLens assume each Lens is equally important, and normal-
izes the weights of keyword q in a Lenses ` in proportion to the user-specified importance level
of all keywords q́ in search Lens `:
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weight(q) = importance(q)∑
q́∈` importance(q́)

SearchLens then uses the normalized keyword weights in place of the inverse document fre-
quency term in the Okapi BM25 ranking function, and the score of each document d in the
corpus for a set of Lenses L is therefore:

score(d, L) =
∑
`∈L
q∈`

weight(q) ∗ tf(d, q) ∗ (k + 1)
tf(d, q) + k ∗ (1− b+ b ∗ |d|/avgDL)

where ` is the different user-specified Lenses, q is the different keywords in each Lens `, tf(d, q)
is the term frequency of keyword q in document d, |d| is length of the document d, and the con-
stant avgDL is the average document length in the corpus. We used the default parameters
k = 1.2, b = 0.75 for Okapi BM25. Finally, we sum up the score of each Lens weighted by a
coordination factor, which is the proportion of keywords in a Lens that has a non-zero document
frequency. This modified version of the Okapi BM25 function can be easily translated to SQL
queries for standard relational databases, or as a custom ranking function for the popular open
sourced document retrieval engine Apache Lucene. This allows the SearchLens interface to
be easily implemented using readily available tools that were already optimized for scaling and
computational efficiency. Admittedly, more sophisticated ranking approaches may further im-
prove the quality of results, but this simple method allowed us to explore the costs and benefits
of providing reusable, re-composable, explanation-centric Lenses to users.

5.3.5 Implementation Notes

The backend of SearchLens was implemented in Python, using NLTK [26] and gensim [184] for
indexing and word semantic model, respectively. In the indexing phase, text in each review is
lowercased, tokenized, and stemmed using the Word Punkt Tokenizer [119] and Porter Stemmer
[219]. Stop words are filtered out. An inverted index that records the document and the offsets of
the mentions of each word stems is computed and stored in a PostgreSQL relational database.
The Flask Python framework was used for our HTTP server. We implemented front-end of the
SearchLens prototype as a web-based system using Javascript (ES6) and the ReactJS GUI
framework, and the interactive visualizations are implemented using the D3.js library. User-
specified Lenses were stored on client-side using browser cookies, so that they are persistent
for the searchers between multiple visits.

5.4 Evaluation
We evaluated SearchLens in two studies. First, we conducted a usability study in a controlled
lab environment. Using predefined tasks, we tested the usefulness and usability of the system,
as well as whether the visual explanation and exploration features provide enough benefit to
encourage participants to express their rich and multifarious interests. Second, we conducted
a field deployment study where participants use SearchLens for their own tasks. This allowed
us to explore the benefits and limitations of our reusable and re-composable Lenses in real-life
scenarios.
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Figure 5.4: A Baseline system with topic-level visual explanation by collapsing the colored cells
in each Lens and visualizing results only at the topic level.

5.4.1 Usability Study

The main goal of the usability study was to verify in a controlled lab environment the usability of
the interface and whether the visual explanation and exploration features can provide benefits
to encourage users to express their nuanced and multifarious interests. We considered these
the preconditions for conducting a field deployment study to test the real-life benefits of reusable
and re-composable Lenses. Therefore, we focused on the following:

• whether the interface encouraged participants to externalize multiple interests and struc-
ture them using Lenses

• whether participants found the visual explanation and exploration feature to be useful
• whether the added benefits of visual explanation and exploration encouraged participants

to spend more effort to express, iterate, and refine their Lenses

To test the above, we compared SearchLens to a baseline interface as a between subject condi-
tion, where the detailed visual explanation and exploration features were removed by collapsing
the colored cells in each Lens and visualizing results only at the topic level (Figure 5.4), re-
sulting an interface similar to the TileBars and the HotMap systems [100, 102]. Unlike in the
SearchLens condition, users can only explore each restaurants at the topic-level, but not at the
individual keyword level. Since searchers can not assign importance levels for each keyword in
the baseline interface, we used the standard Okapi BM25 ranking function that weights keywords
based on inverted document frequencies [186]. We chose this baseline as a more conserva-
tive test of the interactive explanation features than, for example, a comparison to Yelp or other
search query-driven site (which are the implicit comparisons for the field study below).

The three scenarios for the usability study are listed below. The first scenario was designed
to have both clear criteria (nice decor and good atmosphere and serves beer or wine), and an
exploratory aspect (find a specific type of Japanese restaurant based on your own preferences).
Scenarios 2 and 3 were designed to explore whether users would be able to reuse their Lenses
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Lab Lab Field
Action Baseline SearchLens SearchLens

add terms by typing 3.67 σ=2.82 5.50 σ=4.86 7.00 σ=5.39
add from suggestions n/a 1.57 σ=1.99 3.20 σ=1.79

add from reviews n/a 0.29 σ=0.73 0.40 σ=0.55
total add actions 3.67 σ=2.82 7.36 σ=6.10 10.60 σ=3.71
remove a keyword 4.67 σ=4.27 3.50 σ=2.79 4.20 σ=2.68

adjust weights n/a 8.93 σ=7.54 12.80 σ=7.89
N=15 N=14 N=5

Table 5.1: Mean statistics for number of Lens editing actions performed by participants. Partici-
pants used SearchLens in the lab study more frequently add keywords to refine Lenses compared
to baseline (t(27)=2.12, p<0.05). Participants in the field study conducted their own tasks.

for different contexts and find value in doing so. Scenario 2 had overlapping criteria to Scenario
1 (serves beer, cocktails, or wine), and Scenario 3 involved performing an identical search to
Scenario 1 but in a different city.

• Scenario 1: Stanley is in Pittsburgh, USA visiting some friends and he is in charge of
finding a few good restaurants for the group. They are interested in Japanese restaurants.
They’re not familiar with Japanese food or the different types of Japanese restaurants, so it
is up to you to find Japanese restaurants based on reading the reviews and your personal
preferences. The restaurants should have a nice decor and good atmosphere. Some of
his friends like to have a few drinks with their meal, so if the place has a bar that serves
beer or wine it would also be great. Since its pretty nice out, it would also be nice if the
restaurants has outdoor seating or a patio, too.

• Scenario 2: John is looking for good seafood restaurants in Pittsburgh, USA, particularly
places that serves fresh oysters and has a bar that serves beer, cocktails or wine. Decor
or atmosphere are not important, but big plus if they offer outdoor seating, for example, a
patio. Some of his friends are allergic to seafood, so the place must also have non-seafood
options, preferably steak.

• Scenario 3: (Same as Scenario 1 but for finding restaurants in Montreal, Canada instead
of in Pittsburgh, USA.)

A total 29 participants were recruited from a local participant pool, where 14 participants were
randomly assigned the SearchLens interface with three predefined search tasks (N=14, Age=18-
61, M=28.1, SD=12.7, 7 male, 6 female, and 1 other/not listed), and 15 participants assigned
the baseline interface with the same search tasks (N=15, Age=18-54, M=28.1, SD=10.7, 7 male,
7 female, and 1 other/not listed). Each participant was given 60 minutes to complete the study
and was compensated 10 USD. Before conducting the three tasks, participants watched a five
minute introduction video that described the features in their given interfaces, which is followed
a step-by-step training where participants created two pre-defined Lenses, report the name of
the third restaurant in their search results, and report which keyword is missing from its reviews.
Participants finished the training steps using an average of 5.9 minutes (N=29, SD=3.8). For
the main task, participants were told to spend 10 to 15 minutes on each of the three tasks
listed above in order. Finally, participants answered a short post-survey where we collected their
subjective opinions about the systems using 7-point Likert scales and free-form responses.
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Figure 5.5: Number of Lenses and keywords saved by each participants at the end of the study.
Participants in both conditions created comparable number of search Lenses, but participants in
the SearchLens condition collected significantly more keywords in their Lenses.

Results for the Usability Study

One of our key hypotheses was that the immediate visual explanation provided by Lenses would
encourage participants to express their interests and continually collect and refine those inter-
ests throughout the search process. This hypothesis appears to have been validated by the data.
On average, participants in the SearchLens condition saved 20.43 keywords across their Lenses
(N=14, SD=7.33), significantly more than participants in the baseline condition who saved 11.15
keywords (N=15, SD=3.58; t(27)=4.12, p<0.001). Importantly, this difference is likely not at-
tributable to different perceptions of the task across conditions, as in both the SearchLens and
baseline conditions participants generally created one Lens for each task criteria and combined
multiple Lenses for each task (e.g., decor, drinks) and there was no difference between the to-
tal number of Lenses created between conditions (SearchLens: 7.6, baseline: 6.5; t(27)=0.92,
p=0.36). In other words, the term-based interactive visual affordances supported by SearchLens
seemed to encourage people to collect more terms indicative of their interests.

This pattern appeared to hold true throughout the search process for the iterative refinement
of Lenses as well (Table 5.1). On average, participants using SearchLens added keywords
to existing Lenses 7.4 times (N=14, SD=6.1) while those in the baseline condition did so 3.7
times (N=15, SD=2.8), which was found to be a significant difference (t(27)=2.12, p<0.05). This
suggests that the added benefits from the visual explanation and exploration feature encouraged
participants to iteratively refine their Lenses and allowed them to discover useful keywords more
often.

We also examined whether participants found the added visual exploration features to be use-
ful, and how the added benefits affected their behavior. By examining the behavior logs, we
found participants using SearchLens frequently use the visual exploration feature. On average,
each participant clicked on 25.86 (SD=29.19) keywords to filter reviews that mention a specific
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Figure 5.6: Participants in the SearchLens condition were less likely to read through unfiltered
lists of reviews than the baseline condition, which was accompanied by increased use of the
SearchLens-specific ability to filter reviews relevant to different keywords.

keyword instead of sifting through reviews to find ones that mentioned it (Figure 5.6). In both
conditions, participants can also click on the name of a restaurant to see a list of reviews ranked
by all active Lenses. While there is suggestive evidence that the filtering of reviews led to less
use of the generic review lists, the result was not significant based on the number of participants
in the study (M=6.33, 3.07; SD=5.78, 5.92; t(27)=1.50; p=0.15).

These results suggest SearchLens allowed participants to maintain a broader search goal with
multiple interests, while at the same time explore and compare different options at a finer-grain
level interactively instead of sifting through the reviews of each restaurant.

5.4.2 Field Study

Our field deployment study aimed to test our idea of reusable and re-composable Lenses in
real-world settings. Five participants were recruited from the first study based on their high
self-reported interest in researching restaurants online and in participating in a follow up study
(N=5, Age=18, 20, 22, 23, and 25, 4 male, and 1 others/not listed). The participants were
given access to the SearchLens system via the internet, and were asked to use the system for
at least 60 minutes in total over a three day period. Although they were free to choose from
any of the 11 cities in the dataset for this study, all five participants conducted tasks for their
current city. Afterwards, they return to the lab and were given 45 minutes to finish a survey with
primarily free-form questions, and were interviewed for another 15 minutes. Each participant
was compensated with 40 USD for finishing the study.

Participants created more Lens keywords when conducting their own tasks comparing to par-
ticipants in the lab study (Figure 5.7). On average, participants in the field study created 13.40
(SD=3.65) Lenses, significantly more than participants in the lab study that created 7.64 Lenses
(SD=6.54; t(17)=2.46, p<0.05). They also saved significantly more keywords than participants in
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Figure 5.7: Number of Lenses and keywords specified by participants under different conditions.
In the lab study with predefined search tasks, participants using SearchLens (blue) created a sim-
ilar number of Lenses but used more keywords than the baseline condition (green). Participants
in the field study (red) conducted their own tasks.

the lab study (lab: 20.4, field: 30.0, t(17)=2.50, p<0.05). Admittedly, it can be difficult to measure
how much time participants actually spent using SearchLens in the field, nevertheless, results
suggest that participants were able to accumulate more interests Lenses over a three day period
than participants who spent 60 minutes in the lab study.

All five participants conducted multiple tasks during the study. Many explored different types
of restaurants that they liked in the city using multiple Lenses, using SearchLens to build “an
overview interface for restaurants in the city that I might like” (P1, P3, P4, P5). Participants also
had more specific goals, including to check if there are vegan restaurants she has not discovered
yet (P5), restaurants that serve bubble tea (P2), pizza places that offer Chicago deep dish-styled
pizza (P3), and Mexican restaurants that has vegan options on the menu (P2).

Refining Lenses

While participants reported creating Lenses based primarily on prior knowledge, all five partici-
pants also reported refining their Lenses throughout the process. Several cited that the shaded
cells of the visual explanation helped them quickly noticed some keywords were too uncom-
mon, and that an important concept of interest was missing from the search results (P1, P2,
P5). One also mentioned noticing and removing ambiguous keywords when using the mention
filtering features (P4). Participants also learned about new keywords which they added to their
Lenses, sometimes replacing existing keywords, from both the suggestions (P1, P2, P3, P5) and
from the reviews (P1, P2). Interestingly, the behavioral logs (Table 5.1) suggest they frequently
discovered them from the systems’ suggestions, indicating the value of the word2vec approach
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which we initially were concerned about for being noisy. This also points to potential future work
in auto-suggesting Lenses which we intentionally avoided here due to concerns about agency
and explainability.

Breadth and Depth

Participants created both general, breadth-oriented Lenses and more specific, depth-oriented
Lenses. P4 specifically mentioned that it was useful being able to search for different genre (i.e.,
American, Mexican, or Indian restaurants) and at the same time pay attention to very specific
dishes (i.e., cheese steak sandwich made with chicken), while still being able to see how each
result match with different things, citing that “more specific things are hard to search for on Yelp.”
Alternatively, P3 presented an interesting use case for deeper exploration of a specific genre, by
first creating an more general Indian Food Lens, and then creating multiple more specific Lenses
describing specific dishes from different regions of India, generating an overview of different
styles of Indian restaurants in the city. This suggests that some users may want to create higher
level groups of Lenses

Reusing Lenses: Combinations and Task Resumption

Participants reported their strategies for how they reused their Lenses, which can be broken
down into two non-exclusive categories. The first use case we observed was task resumption
between multiple search sessions (P1, P3, P4). Participants described having the ability to
switch to a different sets of Lenses yet still keep the original Lenses for the future being useful
(P3). One participant (P1) searched with a single Lens most of the time, but still cited that being
able to re-enable Lenses from past sessions and to continue work on previous tasks and refined
restaurants being useful. For the second use case, participants mentioned reusing Lenses in
combination with other Lenses (P2, P3, P5). When asked about which of their Lenses were
used in combination with different other Lenses, participants reported Lenses that concerned
style and environment (Cute and Quirky (P5), Atmosphere and Vibe (P2, P5), Friendly Staff
(P3)), price (Inexpensive (P2, P3), Large Portion (P3)), and some food-related but not for a
general genre (Fresh (P2), Fast Casual (P2), Vegan Options (P2, P5), Strong Beer (P3)).

5.4.3 Overall Usefulness and Other Usecases

Through the lab and the field studies, we found evidence that using user-generated Lenses to
provide visual explanation for deeper exploration was beneficial and effective in incentivizing
users to externalize and iteratively refine their interests using Lenses. This occurred throughout
the search process almost twice as frequently when compared to participants in the baseline
condition which did not include the visual explanation and exploration features (Figure 5.4). As
a result, participants using SearchLens created richer Lenses with nearly double the number
of keywords on average compared to participants in the baseline condition. Participants also
frequently used the visual explanation feature to explore the individual items in their search
results, filtering reviews using different keywords in their Lenses 25.9 times on average. To test
SearchLens in real-world settings, participants in the field study conducted their own tasks, and
provided insights into their strategies in building and refining Lenses, as well as their strategies
of composing and reusing Lenses across context and across search sessions over a three day
period.
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From the field study interviews, three out of the five participants said that they actually found
and saved interesting restaurants during the study, and intend to visit those restaurant in the
near future (P1, P3, P4). P1 in particular went to one of the restaurants he discovered using
SearchLens and was happy about the visit, and P3 used SearchLens to complete a previous
task, saying “I wanted to try deep dish pizza for some time since I moved to US. Finally found
one near the city. Kudos!” All participant expressed that they would be interested in using
SearchLens in the future if available, many also cited other scenario that might benefit from
SearchLens. P2 pointed to scenarios where he needed to “find a place for many people that may
want different things”, and mentioned that SearchLens would be useful when her family visits her
soon for his graduation. These results suggest that SearchLens was effective at helping users
effectively find items that matched their specific interests.

5.5 Discussion
One limitation of the current implementation of SearchLens is its lack of ability to filter restau-
rants using their metadata, such as geographic location. We intentionally did not expose this
information to our participants so we can focus our studies on allowing them to build person-
alized Lenses. However, practical systems would likely combine both paradigms to maximize
efficiency. Utilizing metadata can also augment user-defined Lenses, for example, taking into
account whether the a review that matched a specific Lens was positive or negative and whether
the review poster’s interests matched with the user’s personal interests. However, the interac-
tions between the two paradigms would require further studies. On the other hand, utilizing
existing techniques for query term generalization beyond stemming or lemmatization, such as
synonyms, semantic word models, or query expansion, can potentially improve recall, but their
effects on the visual explanations would also require further studies.

Another obvious limitation of SearchLens it that it required more user effort upfront in order to
receive the benefits provided by the system, such as reuse, explanation, and exploration. On a
7-point Likert scale, most participants from our lab study responded favorably in the post-survey
to this trade-off with 64% agreed or strongly agreed that SearchLens is an improvement to the
traditional search interfaces, and another 21% somewhat agreed with the statement, however,
the long-term effect remained to be seen. One way to extend SearchLens is to combine machine
learning and information retrieval approaches to reduce the effort of building Lenses, such as
building interest profiles automatically, or using collaborative filtering and query expansion for
expanding or inferring Lenses automatically [3, 194, 229], or word-sense disambiguation tech-
niques for resolving ambiguous keywords [231].

Alternatively, we could also explore ways to allow users to share their Lenses with each other
through explicit or implicit collaborations. For example, one participant mentioned “It would be
nice if I can see what Lenses a local person would use if I’m traveling, because I always try to
ask the locals about where I should eat.” Allowing access to Lenses created by previous users
or expert users could potentially enable expertise transfer and accumulation through continuing
refinement of a set of Lenses. For example, locals and past travelers could iteratively curate a set
of Lenses that leads to an interactive and explorable list of local specialties for future travelers.

Another promising direction is to more deeply explore the idea of user-generated interest pro-
files and how they could dynamically influence the different interfaces accessible to the user or
interacting with users in more proactive ways. Since we asked the field study participants to use
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SearchLens for their own tasks, most participants searched for restaurants in the city they lived
in. Some participants that conducted more targeted search tasks (P2, P3, P5) mentioned that
they were already familiar with most of the options in the city that fits their goals, but would still
occasionally search online to see if there were new restaurants that match their interests (P2,
P5). As users continue to use SearchLens, the system will accumulate more understanding of
what the users is interested in, and can potentially detect and notify the users of new information
that might be of interests with high accuracy [230]. Alternatively, existing users may use their
repository of Lenses to explore or curate the restaurants in an unfamiliar city. Participants in
the field study also pointed to the potential of Lenses being useful for other types of information
and domain, including shopping (P2, P3), trip planning (P2, P5), buying a house (P2), and job
hunting (P4).

In this chapter we introduced SearchLens, a novel approach that allows users to specify and
maintain their profile of multifarious and idiosyncratic interests. This enabled them to reuse and
re-compose their different interests across scenarios, as well as maintaining context across mul-
tiple search sessions. To encourage users to put in the up-front effort of curating Lenses, we
explored ways of using Lenses to provide immediate benefits of visual explanation and deeper
exploration of search results. Across a lab and field study we observed that participants ex-
pressed their interests with significantly more query terms, and found benefits in the Search-
Lens approach, including being able to transfer and reuse their Lenses across contexts, being
able to interpret new information that reflects their own personal interests with transparency, and
working at multiple levels of specificity and hierarchy. More fundamentally, being able to visu-
alize and explore new information in ways that promote transparency can potentially empower
users to be more aware of their online information diet. For example, as a way to manipulate
their own social media feeds, and being more aware of how posts were selected or hidden. We
believe SearchLens represents a first step towards a transparent and user-centered approach
to addressing subjective and fragmented nature of information today.
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Chapter 6: Weaver

Entity-Centric Foraging across Webpages in the Browser

The previous chapter explore ways users can express and maintain their different criteria for
selecting restaurants, and use them to visualize a review dataset and compare different search
results. This chapter focus on supporting global context so that users can better evaluate their
different options as they encountered them on different webpages. Unlike in the previous chapter
where the evidence (i.e., reviews) were already recognized by the different restaurant entries on
Yelp, this chapter instead support users’ general browsing of different webpages using their
browsers. This is enabled powering browsers with modern named entity recognition and linking
algorithms, allowing us to identify the same entity mentioend across users’ browser tabs.

As people research online to plan trips or shop for new products, they encounter many entities
(e.g., attractions, products) and collect evidence across webpages to make informed decisions
(e.g., reviews, listicles). Current browsers treat entities on each webpage independently of other
pages, making it difficult for users to keep track of what they are interested in and why. We
introduce Weaver, a novel browser add-on that weaves pages together through common entity
mentions to support sensemaking across browser tabs in the context of trip planning. When
users open a webpage, Weaver “infuses” it with evidence from other information sources rele-
vant to entities on the current page. When users save notes, their notes are “diffused” across
other pages that mentioned the same entity. We compared Weaver to a baseline and found
participants utilized Weaver to gather nearly three times more evidence collected across sig-
nificantly more webpages, and synthesized evidence to support decision making with lowered
interaction costs.

6.1 Introduction
Whether planning a trip to a new city, figuring out which camera to purchase, or researching
the different treatments for a medical issue, learning and searching for information online has
become the most common way that people make sense of the world today [154, 176]. People
spend a significant amount of time exploring available options and gathering evidence about
them that are scattered across multiple webpages in order to make informed decisions. Esti-
mates suggest that up to 33% of the time spent online [125, 154, 189], or, as of 2009, around
24 billion hours per year in the US alone, are spent doing this type of aggregation and synthesis
[7].

We believe this problem of synthesizing information across sources is increasingly relevant as
online information and misinformation (such as fake news and shill reviews) continues to expand.
Past studies have shown users rely on aggregating from multiple sources in order to verify online
information as credible and make decisions [64, 83, 182], but the process can be “tedious and
cumbersome” leading to “opening several tabs ... and then manually switch[ing] between them
while trying to remember information on different pages” [88]. Anecdotal evidence for this can
also be seen in the rise of aggregation-based sites such as Metacritic or Wirecutter, but such ag-
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Figure 6.1: An overview of the Weaver browser add-on. Weaver identifies and highlights entity
mentions on webpages [A,B] to indicate additional information is available. Highlights in red [B]
indicates users had previously interact with the entity. Hovering an mention [B] brings out its
corresponding entity card [E] as an overlay, with relevant information “infused” from other pages
and knowledge bases as mentions. Users can also save notes or selected sentences [F1] to a card
as clips [F2]. Saved clips are then automatically “diffused” to other webpages that mentioned
the same entity. Users can also create categories [D] and drag the card under them. Finally, the
Map view [C] shows its location in context of previously saved entities.
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gregators cannot cover all decision making scenarios nor able to take into account the personal
context and goals of different users. In our own informal interviews on people’s past experiences
with trip planning and examining their notes, we also discovered similar needs and challenges
– they compared a large number of options based on evidence gathered from multiple sources,
but struggled with managing large numbers of options and sources.

In this paper, we focus on the domain of travel planning, because it has a number of charac-
teristics that make it a good task to test new sensemaking and exploratory search approaches.
For example, while it does not require a strong domain knowledge, useful information is often
scattered across many sources; there is a strong degree of contextualization and personaliza-
tion needed (e.g., traveling somewhere with kids is very different than without); and evidence
such as reviews can be noisy and subjective [52, 238]. Consider for example planning a trip
to a new city: there may be hundreds of possible restaurants to dine at, attractions to see, and
places to stay, each with corresponding evidence about its suitability for an individual’s goals and
preferences. Evidence about each of these options is often spread out across multiple search
results, such as Yelp or TripAdvisor reviews, top ten lists, travel blogs, or forum posts. It can be a
challenging process of intense cross-referencing and note taking to synthesize this evidence and
to record how it meets a user’s goals, with little scaffolding or intelligence built into the browser
[23, 158, 172, 213].

Currently, such intelligence primarily takes the form of entity-centric approaches in search re-
sults interfaces [89, 147]. These approaches include showing entity cards with rich attributes for
entity-bearing queries [31, 166], listing related entities as suggestions for subsequent queries
(such as listing actors when searching about a movie) [27, 30, 131], or extracting factual at-
tributes about or relationships between entities (such as the director of a movie) [13, 57, 90].
While these approaches can efficiently provide factual and structured information about entities
in search interfaces (such as when figuring out the location of a restaurant), they provide little
support for the complex sensemaking situations described above, when there is no single ob-
jective answer that can be surfaced in a search results page (such as figuring out which city to
visit for a vacation).

Instead of using entities as an answer or endpoint to a user’s information needs at the query
and retrieval stages, here we explore the idea that entities can also be useful during the read-
ing and note taking stages by acting as the fabric connecting different information sources and
use them to scaffold the user’s mental model in complex exploratory search tasks. Leveraging
entities has the potential to enable deeper and more fluid interactions with online information
by focusing on meaningful concepts as the units of a user’s externalized mental model rather
than webpages. Furthermore, recent advances in entity linking algorithms have been partic-
ularly promising in bringing the ability to better understand web content to the browser where
users read and learn from individual webpages [163]. For example, leveraging common entities
mentioned across webpages to provide a sensemaking structure for users conducting complex
exploratory searches and foraging across multiple webpages.

Specifically, in this paper, we explore a new paradigm for interacting with unstructured and sub-
jective evidence about entities while reading and foraging from many webpages in exploratory
search tasks. Since the user’s personal evaluation of subjective information and how it meets
their goal is critical in this situation, our design goal was to help the user to see scattered evi-
dence about an entity in one place while also attaching personal notes and web clippings. These
together serve as a way to build up an external mental model and track search progress.
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To investigate our entity-centric approach, we developed a prototype browser add-on called
Weaver. Weaver allows users to keep track of information scattered across multiple sources
by “infusing” evidence about an entity from other information sources (webpages and knowl-
edge bases) to the webpage the user is currently reading. It also “diffuses” users’ thoughts
about different entities across webpages where the same entities are mentioned for future ref-
erence and to accumulate more evidence. In our user study, we tested how participants utilized
our entity-centric approaches while conducting a complex exploratory search task, focusing on
whether Weaver allowed them to explore, gather, reuse, and accumulate evidence about entity
options across multiple webpages. To control for task complexity, the primary domain on which
we aimed to test Weaver was a pre-defined travel planning task (described in the Study De-
sign section). With 24 participants and a baseline interface as a between subject condition, we
found that participants using Weaver collected nearly 3 times more evidence across 60% more
pages while simultaneously being more selective in the options they explored. Furthermore,
we describe qualitative evidence of the value in infusing of evidence from other webpages and
diffusing users’ notes across webpages. Finally, we discuss implications for the design of future
intelligent interfaces that can better understand the information being consumed by their users
by taking advantage of advances in natural language processing to support online sensemaking
in various scenarios.

6.2 Related Work

6.2.1 Sensemaking and the Web

The importance of sensemaking and complex exploratory search on the web has been studied
in depth by many researchers. Past work have identified a persistent challenge that valuable
information for many topics is scattered across many different sources that are independent of
one another and incur a high cost for bringing them together [22, 130, 154, 158]. Theories of
sensemaking suggest several cognitive tasks involved that could be supported through novel
interactive tools, ranging from finding potentially relevant items, to triaging items based on re-
liability and relevance, to collecting evidence relevant to each item and organizing items into
categories or structures [99, 191, 211]. We draw on these theories to select the set of cogni-
tive tasks we are interested in supporting through entity-centric interaction approaches, which
are typically complex and about synthesizing information, rather than simple fact-finding tasks
[154, 223].

6.2.2 Recognizing Entities in Text

Significant research has gone into entity-centric approaches for improving web search results
pages due to the ubiquity of entities in online sensemaking. Researchers have found that entity-
bearing and -category queries accounted for up to 85% of web search traffic [89, 147]. This
has led to significant academic and commercial efforts devoted to building large-scale entity
databases (such as DBPedia [11], Yelp1, and Google Places2), and significant research on ways
to identify entity mentions in plain text [163] and using them to enrich search interfaces. This
involves both recognizing the same entity mentioned in different surface forms (e.g., MoMA and
Museum of Modern Art) and resolving ambiguous surface forms to the right entity based on its

1http://yelp.com
2https://developers.google.com/places/web-service/intro
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surrounding text. Major threads of research that uses entities to improve search interfaces in-
cludes showing entity cards for entity-bearing queries [31, 166], answer factual questions [90],
and showing related entities as query suggestions [27, 30, 131]. We build on these recent ad-
vances in entity recognition and large-scale entity databases, but instead of focusing on the
search interface and simple navigation we investigate the less-explored design space of sup-
porting complex sensemaking across webpages opened in the browser through entity-aware
interactions.

6.2.3 Weaving Together Scattered Information across Sources

Due to the scattered nature of information on the Web [22], research has explored ways to con-
nect relevant information distributed across different webpages. One set of top-down semantic
web approaches involve incentivizing content publishers to provide machine readable annota-
tions, such as using semantic web markups [17, 18, 124]. However, such approaches have
often failed to gain momentum due to issues such as a lack of available end-user tools that can
consume these annotations [123]. Alternatively, researchers have built bottom-up systems that
exploit detecting entity mentions in articles, and used them as anchor points to connect to other
information sources to enhance the reading experience. For example, Wikify identifies entity
keywords in articles and creates hyperlinks to their Wikipedia entries for navigation [164], and
Experience-Infused Browser links entity mentions in articles to past social interactions (such as
emails) for making “serendipitous connections” [94].

Our approach is inspired by these bottom-up approaches in the context of recognizing entities
mentioned in webpages opened in the browser. However, our work differs in several important
ways: 1) instead of surfacing simple facts or links to articles or emails, we focus on provid-
ing context for people to understand complex information spaces; 2) we support the transition
from viewing context to saving information; and 3) we propagate saved information to all other
instances that entity is shown, allowing users to build up an entity-based mental model of the
space.

6.2.4 Note Taking and Saving Information Online

Collecting information online during complex sensemaking tasks can be costly for the users,
requiring them to cross-reference between pages and their notes in order to gather all the ev-
idence. This frequent context switching between different documents and taking notes can be
distracting, and even prohibitive for users to investigate deeper or to take notes in order to avoid
disrupting the flow of reading [23, 158, 172, 213].

On one end of the spectrum, research has focused on allowing users to extract and save struc-
tured information from webpages more efficiently from a single document using end-user pro-
gramming [75, 76, 103, 109] and interaction techniques [24, 209]. Our work is motivated by
these studies highlighting users’ desire to collect information about entities, but instead of focus-
ing on structured and objective attributes we are interested in additionally gathering descriptive
and subjective evidence, such as how a restaurant is described in a top ten list. Furthermore,
many of the approaches above define patterns for extracting multiple entities from a single page,
whereas we are more interested in finding evidence related to entities across multiple pages
where the structure of those pages might differ significantly.

On the other end of the spectrum, researchers have also explored using in situ interfaces, such
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as sidebars or on page annotations, to reduce the costs of switching between reading and note
taking and collecting from multiple information sources [188, 196, 213, 217, 218]. Our work is
also situated in this thread of research on reducing the costs of switching and sensemaking.
However, instead of persisting notes on individual documents, our approach persists notes on
individual entities which may then appear across multiple documents.

6.3 System Design
We introduce Weaver, a novel browser add-on that uses an entity-centric approach to facilitate
sensemaking across webpages in exploratory search tasks. Unlike previous approaches that
focused on either enriching search results pages [166, 210], saving information from individual
documents [103, 213], or providing separate note taking interfaces [76], we focused on support-
ing sensemaking across multiple information sources by weaving them together through com-
mon entity mentions. This allows users to both evaluate potential options with more context and
re-access previously saved information about an option with lowered effort. Figure 6.1 shows
an overview of how an exploratory searcher planning a trip might use Weaver. Weaver pro-
vides users a lightweight overlay interface embedded on and synced across webpages opened
in different browser tabs, allowing users to make quick and lightweight cross-referencing without
switching between tabs, windows, or applications.

The two core components of Weaver scaffold sensemaking through entities in two primary ways,
which we introduce as “Infusion” and “Diffusion.” First, when users open a webpage from their
search results, the system “infuses” the webpage with relevant snippets about mentioned entities
from other webpages in their search results and external knowledge sources to help users cross-
reference and evaluate newly encountered options. Second, when users save notes or extract
content from a webpage, the system “diffuses” them to mentions of the same entities in other
webpages of the same task, allowing them to easily access previously saved information without
having to switch to and search through their notes a separate interface. In the next subsections,
we will first describe in detail both Infusion- and Diffusion-based features, a project overview
interface, and finally describe how entities were automatically identified and linked to external
knowledge bases.

6.3.1 Infusion: Gathering Evidence from other Webpages

One significant challenge in making sense of a given topic on the internet is that relevant infor-
mation is scattered across multiple places, and it is difficult to find those places and to synthesize
what they say. Doing so is valuable in understanding the popularity and prevalence of a given
option (e.g., how often a restaurant is mentioned in lists of top restaurants, what are the various
lists of top restaurants) as well as the context and potential biases in how it is described (e.g.,
is it suitable for a date night, are the pages it is mentioned on reliable). Instead of using them
at only the beginning on search results pages, entities could provide a scaffold for improved in
situ interactions throughout the browsing process to help users more quickly get a sense of the
popularity and context of different options without going to all the different pages on which they
are mentioned, as well as providing “pivot points” to see what other sources mention an option.

For example, in Weaver, a user planning a trip to a new city can open an article from a travel
blog and see all the destination and restaurant mentions highlighted in yellow. Hovering on a
attraction surfaces contextual snippets from other webpages that also mention that attraction, so

75



Figure 6.2: Expanded view for an entity card showing information infused from external knowl-
edge sources (Yelp and Wikipedia), user’s notes, and evidence of the same entity from other
webpages in the exploratory search task. See Figure 6.1 for the non-expanded view of an entity
card.
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Figure 6.3: An project overview page created by one participant after searching for 50 minutes,
containing entities saved under different categories, text clips from multiple webpages, and typed
notes. Custom cards were created, including one for a kayaking tour that was not available on
Yelp and DBpedia. The entity cards were scaled for clarity in this figure.

the user can understand its relevance to their own goals without interrupting their flow of reading
(Figure 6.1, B and E). Other sources of information can be brought in and surfaced at the same
time, such as Yelp review scores and Wikipedia descriptions. By infusing this information using
the entity as a pivot, it is possible that users could both reduce the number of items they need
to keep track of (by filtering out non-matching items earlier) and better understand the context
of the items they do keep. Meanwhile, the number of sources that mention the item provides
implicit feedback as to its popularity within the searches the user has made; their URLs may
provide context as to the reliability of those sources; and they may provide additional sources for
finding information about other restaurants if they mention a restaurant the user knows they like.

Weaver supports this need by “infusing” entities mentioned on a page with context pulled from
other webpages mentioning the same entity or entries in external knowledge sources (in our
current implementation, DBpedia and Yelp). When users open a webpage, entity mentions that
were recognized by Weaver are highlighted with a half-height yellow highlight (Figure 6.1, A) to
indicate they have information from other sources. By hovering over an entity, a user can see an
“entity card” (Figure 6.1, E) which displays those sources and relevant information (e.g., number
of stars on Yelp, paragraphs from other websites in which the entity was mentioned) which a
user can use to gain context about the entity beyond the current webpage [31]. To read the
mentions, the user can click on the icon of each external source to see an extracted snippet.
Alternatively, the user can also expand the Card to see a larger view (Figure 6.2), showing all
mentions, multiple images, and a map of the location using metadata from Yelp and/or DBpedia.

6.3.2 Diffusion: Propagating Notes to other Webpages

After using “infused” context to judge the relevance and suitability of options (i.e., entities), users
often need to keep track of and organize the options they found valuable. At the same time,
users may evaluate newly encountered options against ones they have already saved. Typically,
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this happens by copy-pasting or typing entity names and notes into a separate interface, for
example a separate document or email or note taking software (e.g., Evernote). Researchers
have tried to lower the switching cost involved in this interaction [172, 213], for example, by
adding a sidebar to the browser for taking free-form notes [217]. However, in the cases when the
user encounters additional evidence about an option they already have information about, they
need to re-find it in the external system before being able to continue. This high interaction cost
can be prohibitive as it lead to disruptions of user’s flow of reading [43, 158, 172, 213].

Weaver addresses this challenge by “diffusing” notes that users associate with an entity to all
other webpages in the project that also mentioned the same entity, reducing the need for user-
driven re-finding. Continuing with our running example of trip planning from the previous sub-
section, imagine that after the user reviews the information in a restaurant entity card, he or she
decides to take notes and save the restaurant for future reference. To do so, the user can add
various levels of annotation to the card, including just “hearting” it to save it in the Saved Cards
view as uncategorized (Figure 6.1, top-left corner of E), typing notes about reasons for saving it
(Figure 6.1, yellow region in E), or selecting sentences (Figure 6.1, around B) from the webpage
to add to the entity card as a clip (Figure 6.1, E). When the user moves on to other webpages
in the project, mentions of the same restaurant will be highlighted in half-height light red (Figure
6.1, B), indicating that the user previously interacted with this entity, and upon hovering will see
its entity card with annotations and clips they have previously added.

Using this entity-centric approach, users can save notes of information collected across web-
pages under entity cards without having to switch back and forth between the browser and note-
taking software, and easily re-find and reuse previously saved information when encountering
the same entities on other webpages. To recover from cases where an entity of interest was not
recognized by Weaver automatically, users can manually create entity cards using interactions
as described in the next subsections.

6.3.3 Project Overview and Organizing Entities

As users in exploratory search tasks gradually progress from discovering entities and gathering
evidence to focus more on synthesizing and making decisions, they may also need to organize
and compare the collected entities. For example, in a travel planning task, users may want to
group their entities into categories of restaurants, attractions, and hotels for comparison, and
also to figure out the location and distances between the different entities to plan their trips.

In Weaver, in addition to simply “hearting” an entity card, users can also create categories with
custom names, colors, and icons in the Saved Cards view (Figure 6.1, D). To categorize an
entity card, simply drag and drop it between categories. This allows users to start structuring
any time during their exploratory search process when the need arises. Saved geographic enti-
ties (entities with coordinates metadata from Yelp and/or DBpedia) will also show up in the Map
View (Figure 6.1, C) with their icons and color coded pins. In addition, when users hover over
an unsaved geographic entity on the current webpage, its location is also shown on the Map
view. This allows users to better situate a newly encountered option with previously discovered
entities to make informed decisions. For example, a user could quickly figure out that a hotel
recommendation on the current webpage is not relevant by noticing in the Map view that it is too
far away from most attractions that they have saved previously from other webpages. At later
stages of the exploration process, users might shift their focus from reading and gathering infor-
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Figure 6.4: Weaver links entity mentions from webpages to both open and commercial knowledge
bases.

mation to synthesizing and organizing information. For this, they can open the Project Overview
page by clicking on the expand button in the Saved Cards view to see all their entity cards listed
in multiple columns of each category along with an integrated map view (Figure 6.3).

6.3.4 Linking to Open and Commercial Knowledge Bases

To drive these operations and connect the different webpages, Weaver uses the DBpedia Spot-
light algorithm [163] to automatically identify common entities mentioned in the different web-
pages. In our implementation, we use Yelp and DBpedia as our entity repositories and focus on
travel planning tasks, but other knowledge bases can also be used or added to support other
types of projects. For example, using the Microsoft Academic Graph3 and the Gene Ontology
[10] as knowledge bases to support literature review projects in biology.

As users search on Google, Weaver parses the HTML of the search results pages to obtain the
list of webpages. In the background, Weaver analyzes the content of webpages to identify enti-
ties mentioned using the following methods (Figure 6.4). First, it uses the Spotlight library [163]
to identify entities mentioned in different surface forms (e.g., “San Francisco Museum of Modern
Art” and “SFMoMA”) to DBpedia which contain rich attributes extracted from Wikipedia. Unlike
DBpedia, Yelp is a commercial services in which neither the entity database nor a pre-trained
entity linking model were publically available. In order to identify Yelp entities in webpages, we
use keywords and a location extracted from the original query term users performed on Google
(e.g., “best sushi bars in new york”) to query the Yelp Search API4 for a list of 450 related Yelp
entities. This allows Weaver to retrieve from closed databases for entities that match with users
query intent and information needs. Simple string matching is used to identify mentions of any
Yelp entities on each webpage.

To avoid showing duplicate entities from DBpedia and Yelp and to improve the coverage of
identifying Yelp entities, Weaver use a location-based heuristic to merge entities from the two
sources: two entities are merged if 1) they are from different knowledge bases, 2) have overlap-
ping surface forms listed in the knowledge bases, and 3) have geographic coordinates that are
less than two kilometers from each other. Using simple string matching to identify Yelp entities
on webpages can have limited coverage since Yelp only lists one surface form for each entity
(e.g., the name of a restaurant). However, if a Yelp entity was merged with a DBpedia entity, it
is automatically applied to mentions of different surface forms as identified by the entity linking

3https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
4https://www.yelp.com/Fusion
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Figure 6.5: To create a missing entity, users can select a phrase (here, Japanese Tea Garden)
on the page and see a list of candidates to choose from. In this case, the top 3 candidates were
1) a Custom Card not linked to external knowledge bases, 2) an entity card linked to a specific
Japanese garden on both Yelp and DBpedia, and 3) and entity card linked to the general entity
for Japanese gardens in DBpedia.

algorithm [163]. For example, once the Yelp entity “San Francisco Museum of Modern Art” was
merged with its corresponding DBPedia entity, information from Yelp is automatically linked to
its mentions in different surface forms listed in DBPedia, such as “SFMoMA”. Finally, Weaver
extracts the paragraphs around entity mentions from each webpage as supporting evidence
along with the following structured data from the knowledge bases (Figure 6.2): location on a
map, phone number, Yelp and Wikipedia categories, images, short descriptions from Wikipedia,
average review scores and number of reviews on Yelp, and 3 Yelp reviews.

While the state of entity recognition is continuously improving, a caveat of driving end-user inter-
faces with machine learning is potentially having the model make occasional mistakes that can
degrade the user experience, and it is crucial to provide mechanisms for the users to recover
from them [133, 143, 144]. For example, in a trip planning task, a webpage might miss a popular
destination not recognized by the Spotlight algorithm, not listed on DBpedia, or not covered in
the top 450 results returned from the Yelp API. To recover from cases where an entity of interest
was not recognized by Weaver, the user can still create a custom entity card by first selecting the
entity name on the webpage, and click on the “Create Card” button in Weaver (Figure 6.5). In the
background, Weaver queries the two knowledge sources for candidates, merges the two results
lists using the location-based heuristics described previously, and finally presents the list of can-
didates from which the user can pick. Alternatively, if the entity was not found in the knowledge
bases, the user can still create a custom entity card with no external entity information (Figure
6.5). If a user created an entity card that was linked to DBpedia and/or Yelp entities, all the
information that was associated with them will also appear on the user-created entity card. This
ensures that users can still save and retrieve information to accumulate what they have learned,
even when an entity mention was not automatically recognized by Weaver.

During development, we tested this algorithm on the top 10 Google search results for the query
“Things to do in new orlean”. The average time to analyze each webpage was 1.8s (σ=1.3s,
max 4.3s, ran in parallel). The on-page highlighting of entities utilized MarkJS library5 which has

5https://markjs.io/
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a speed comparable to the in-page search feature of Chrome.

6.4 Evaluation

6.4.1 Study Design

The main goal was to explore the benefits and challenges of our entity-centric approach, and
how it affected the process of reading, cross-referencing, and collecting information during com-
plex exploratory search tasks. For this, we built a baseline system that also had an in situ
interface, but with no on-page entity recognition support nor provided entity cards with rich in-
formation and as a structure for saving evidence. Similar to a prior system introduced in [217],
the baseline system consisted of a sidebar that can be opened on any browser tabs for note
taking. However, instead of allowing participants to create itemized lists of short notes, our im-
plementation allowed participants to type notes and/or copy and paste information into a large
text input field (Figure 6.6). As participants typed or pasted information into the sidebar, it is
automatically saved and synced across browser tabs in real-time where the sidebar was opened
similar to online text editors, such as Google Docs, that are commonly used to supporting online
research.

We are aware that Evernote web clipper and Google Doc are common tools based on our infor-
mal interviews, but we believed our in-situ baseline to be a stronger baseline for what we set out
to measure – whether the Infusion and Diffusion mechanisms can promote gathering and sense-
making across multiple sources: 1) Infusion and Diffusion benefits users when both collecting
and organizing information, the Evernote clipper only supports collecting and would require sig-
nificant effort for organizing – it creates a new document for every clip, and requires managing
and merging multiple documents in a separate interface to organize them. 2) On the other hand,
we think our in-situ baseline closely resembles using a separate plain text document, and the
in-situ design lowers the cost of collecting by removing the need to switch between application
windows. Further, using a separate document as baseline would introduce an additional variable
between the two conditions (in-situ vs separate UIs) when the in-situ design is not part of our
core contribution

A lab study was conducted with 24 participants recruited from a local participant pool. The
participants ranged from the age of 18 to 43 (x̄=25.38, σ=5.53), 63% were female, 33% of were
college students, and 38% had a bachelor’s degree. To control for task complexity, we used a
predefined task to compare Weaver with the baseline system as a between subject condition
with each system assigned to 12 randomly selected participants. The study began with a pre-
survey for demographic information, followed by 50 minutes of exploratory search for the given
task (described below). Finally, participants answered a post-survey and were interviewed about
their experiences. During the study, we recorded the actions participants performed interacting
with the two systems via either event logging (Weaver) or screen recording (baseline) for post-
analysis. Each participant was compensated 15 USD.

The main task of travel planning was designed to test Weaver’s ability to support collecting
evidence from multiple sources to support decision making between many options and had the
following instructions:

You and your friends are going on a trip to New Orleans. Help the group figure out
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Figure 6.6: The notes of one participant using the baseline system at the end of the study. The
sidebar [B] can be opened and closed on any webpages by clicking the extension button [A]. As
participants typed into the sidebar, it is automatically saved and synced across browser tabs in
real-time where the sidebar was opened.

which places you should go and where to eat during the trip.

We also used the following description as a motivator to encourage the participants to put in
more research effort, derived from previous studies of sensemaking:

Imagine after this task you will share you found with your friend(s), along with a
short summarization in an email. To convince your friend(s) of your choices, provide
enough reasons and information about your choices.

6.4.2 Implementation Detail

Both Weaver and the baseline system were built as add-ons for the Google Chrome browser im-
plemented in JavaScript using the ReactJS6 library. The application uses Google’s Firestore
real-time database7 to store mappings between webpages and entities and user-generated
notes and clips. To power the entity cards in Weaver, we utilize the Yelp Search API to fetch
entities from Yelp, and we use the open-sourced DBpedia Spotlight [163] software in a custom

6https://reactjs.org
7https://firebase.com
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Behavior \ Systems (between-subject) Weaver (N=12) Baseline (N=12) Independent-samples t-test
# of webpages the system was accessed from 12.00 σ= 4.81 5.08 σ=3.64 t(22) = +3.97, p < 0.001∗∗∗

# of webpages evidence was collected from 5.33 σ= 2.58 3.40 σ=1.89 t(22) = +2.45, p < 0.05∗

# of evidence (notes&clips) added to an entity 18.42 σ=12.65 6.50 σ=5.38 t(22) = +3.00, p < 0.01∗∗

# of unique entities saved in the system 8.92 σ= 6.49 13.42 σ=5.94 t(22) = −1.77, p = 0.09
# of unique entity cards accessed by hovering 29.33 σ=15.62
# of webpages each entity card was accessed from 4.33 σ= 1.40 entity cards were not available in baseline
# of times entity cards was accessed by hovering 128.75 σ=72.11

Table 6.1: Evaluation results for our primary domain of Travel Planning – Mean statistics of
participant behavior using Weaver and a Baseline system with an in-situ notepad. Results showed
participant who used Weaver collected more evidence and from more information sources.

backend that identifies DBpedia entities [11] in webpages and syncs them with the end-user in-
terface through the Firestore service. The studies were conducted using 12.5 inch Chromebooks
running Chrome version 69, but both extensions were compatible with other operating systems
where the Chrome browser is available.8

6.4.3 Results

Our main goal in designing Weaver is to support online sensemaking across different information
sources. Weaver supports this using two core mechanisms: Infusion that allows users to access
evidence about an entity scattered across other information sources, and Diffusion that allows
users to save supporting evidence about an entity to be resurfaced across other webpages that
also mentioned the same entity. Through the two mechanisms, Weaver provides entity cards
as a foraging structure where users can collect, reuse, and accumulate evidence from multiple
webpages when evaluating a large number of options.

Diffusion: Sensemaking across Webpages

Results from our study in Table 6.1 show participants who used Weaver interacted with the
system more frequently than participants who used the baseline system. In addition, they also
used Weaver to save nearly 3 times more evidences that were collected from significantly more
webpages. On average, participants used Weaver on more than double the number of unique
webpages compared to participants who used the baseline system (12.00 vs 5.08; N=12, 12;
t(22)=3.97, p=0.0006 < 0.001∗∗∗). In addition to accessing the system across more webpages,
participants who used Weaver collected evidence (either by typing notes or copying clips) from
more unique webpages. On average, each participant used Weaver to collect evidence from
5.33 different webpages (σ=2.58), which was significantly more than participants who used the
baseline system who collected evidence from 3.40 different webpages based on an independent-
samples t-test (σ=1.89; t(22)=2.45, p=0.02 < 0.05∗). These results suggest participants used
Weaver to better facilitate sensemaking across multiple webpages in the browser, allowing them
to gather new information and access previously saved information across significantly more
webpages.

Post-survey and interviews provided insights on how participants used the entity cards provided
by Weaver to diffuse and accumulate evidence across webpages and used them to support
decision making:

8The Chrome extension APIs are also currently being standardize by the W3C to be used across other browsers:
https://www.w3.org/community/browserext/
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“The cards were useful because they allowed me to add to things I found on other
pages. I could compound things that I had already said and supplement my knowl-
edge to help me arrive at a decision.”

On the other hand, participants assigned the baseline system pointed to the high interaction
costs associated with saving evidence to their sidebars. Specifically, they described the tension
between manually maintaining a useful organization in the sidebar and capturing all the useful
information they had encountered:

“There were times I wanted to like highlight a passage, or save some text from a
webpage [but didn’t]... I was sort of using my notes as a TO-DO list, and sometimes
I move things around to organize them. But if there are big blocks of text in there it’ll
be harder to do that, or even just to look at the list of things I have collected.”

Conversely, participants who used Weaver described lowered interaction costs when saving
information to the entity cards, as well as lowered interaction costs to remove all evidence related
to an entity that later became irrelevant:

“I liked that I could save entities with notes attached and look back at them all put
together. I used to do this with a word doc and links and it wasn’t nearly as easy.”
“They [the entity cards] were very useful... I could save anything, and if I didn’t need
it later it was simple to erase them.”

These findings suggest that the entity cards in Weaver were not only used as foraging structures
to support sensemaking across multiple webpages, but also allowed participants to collect and
synthesize evidence to support decision making with lowered interaction costs. As a result, we
also found participants who used Weaver on average collected nearly 3 times more evidence
compared to participants who used the baseline system (18.42 vs 6.50; t(22)=3.00, p=0.006 <
0.01∗∗).

Infusion: Engaging with Entities during Browsing

Traditional entity-centric approaches required users to interact with entities only during the re-
trieval stage, such as presenting entity cards in search engine results pages. While this approach
improves efficiency for factual information needs, such as looking up the weather or the address
of a restaurant, for complex exploratory search tasks, users have to consider many more opin-
ions, facets and features about an entity, usually from a number of webpages. Our entity-centric
approach explores the benefits of integrating rich entity information to stages beyond retrieval
when conducting complex exploratory search tasks.

Our results show that Weaver participants were frequently engaged with the entity cards through-
out the study. While participants in both conditions saved multiple entities to keep track of the
different options that they were interested in, Weaver participants were actively evaluating po-
tential options with information infused from other webpages and external knowledge bases.
Participants who used Weaver frequently accessed the entity cards by hovering over highlighted
entity mentions on each webpages. On average, each participant who used Weaver hovered
over entity mentions 128.75 times (Table 6.1; N=12, σ=72.11). We examined the number of en-
tities participants saved in the two conditions. In Weaver, participants save entities by “hearting”
an entity cards which also saves all the entity attributes that was on the card. In the baseline
system, participants typed or copy-pasted the names of different entities into their sidebar, and
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would sometimes manually collect attributes that were readily available for participants who were
using Weaver (such as addresses and Yelp review scores). At the end of the study, each partici-
pant on average saved 8.92 entities to Weaver (σ=6.49), which is slightly lower than participants
who used the baseline system (13.42, σ=5.94), but the difference was only marginally significant
based on an independent-samples t-test (t(22)=-1.77, p=0.09).

Even though participants who used Weaver did not save more entities to their workspace, they
hovered over an average of 29.33 unique entities (σ=15.62) to access their entity cards through-
out the study. In addition, participants used Weaver to access the same entity cards while
browsing different webpages. On average, each unique entity card was accessed from 4.33
different webpages (σ=4.33, N=12). This further indicates that participants who used Weaver
not only collected evidence across multiple information sources for the options that they saved,
they also relied on information from multiple information sources infused to the entity cards to
evaluate many potential options before saving them into their workspaces.

Post-survey and interviews showed that participants in both conditions relied on multiple sources
to decide which entities to save in their workspaces:

“There are like clear definite yeses that I would save immediately, but there’s also a
lot of maybes. For the maybes if I see something multiple times and they might get
added.”

Participants who used Weaver found value in the evidence automatically infused from other
webpages and external knowledge sources. Participants cited using information on the entity
cards to verify uncertain or potentially biased information on the page that they were reading:

“They [the information on entity cards] allowed me to see if the comments on this
page was true”
“The cards were useful because I can know the exact condition other than the ad-
vertisements provided by their own company [referring to content on an official listing
page].”

These results show that entities served as options in the travel planning task, and that entities
mentioned in text represented a useful structure for foraging across webpages. By identifying
them in the browsers, participants were able to use the entity cards to keep track of interesting
options and organize their notes and evidence collected from webpages about them.

Participants who used Weaver also pointed lowered interaction costs for managing additional
browser tabs. They cited that the entity cards allowed them to better evaluate options encoun-
tered on the current webpage without the need to create to additional searches and managing
additional browser tabs:

“I liked seeing similar material for an entity [referring to clips from different webpages]
and being able to continue research without having to do an actual search.”
“They [the entity cards] were very useful when I needed to pull up information on
something I tagged [saved], without the need to use multiple [browser] tabs...”

These responses suggest that information infused in the entity cards can help participants more
confidently evaluate newly encountered options and used the entity cards to validate information
presented on the current webpage. Prior work pointed to the high cost of context switching for
note taking can break the linearity of documents, and be disruptive for reading and consuming
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information [43, 172, 213]. Specifically, [158] found their participants intend to investigate other
articles referenced by the current one, but avoided doing so in order to avoid disrupting their
flow of reading of the current article. The above responses in particular, suggested that the
lightweight cross-referencing powered by the infusion mechanism can potentially address this
issue.

Surprisingly, participants also mentioned discovering and navigating to useful information sources
from examining information on the entity cards, which was not our original design intention:

“[It was useful when] I was taken to mentions on sites I would not have thought of”
“[entity cards] Give you info about other websites that might be useful later on.”

These results showed that participants were actively engaged with the entity cards in the Weaver
system, and that bringing entity support beyond search results pages to support active reading
and note taking can also be beneficial for users using multiple information sources to conducting
online sensemaking. In addition, participants also found value in the mentions of entities infused
from multiple webpages, using them as context to evaluate both their entity options as well as
potentially biased information on the current webpage.

6.5 Discussion

6.5.1 Limitations and Generalization

In this work, entities were used as a proxy for potential options in complex sensemaking tasks.
This allowed us to exploit state-of-the-art entity linking algorithms to automatically identify and
disambiguate entity mentions in plain text across webpages and users’ notes. While we believe
entity-centric search can cover a wide variety of tasks – past work has shown entity focused
queries account for the majority of search traffic [89, 147] – there are still scenarios where
potential options can be topical or descriptive. For example, potential options for “How do I get
my tomato plants to produce more tomatoes?” could include fertilization, pruning, and providing
proper support as shown in [44, 92], which can potentially be supported using micro-interaction
driven structuring approaches [44, 106].

With the ability to recognize options for entity-based tasks, Weaver focused on allowing users
to gather and synthesize evidence across webpages about each of their options. On a higher
level, Weaver provided a simple category structure for organizing multiple saved entity cards,
but participants also pointed to the need for further synthesizing their collections of cards in the
later stages of sensemaking:

“Weaver is helpful in the first stage of information collection, but when it comes to the
final detailed plan of the trip, I still need more place for editing, adding specific time
and so on.”

This suggests that more detailed artifacts that leverage these entity-centric cards, such as a
calendar for itineraries, could be an promising next step.

6.5.2 Conclusion and Future Work

In this paper we introduced Weaver, a novel approach for weaving together information about
entities that were scattered across the Web to support complex sensemaking in the browser. By
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presenting in situ entity cards, users can both verify potentially biased information on the current
webpage with evidence infused from other sources, as well as using the entity cards as foraging
structures that can diffuse their notes across browser tabs and be resurfaced automatically as
they become relevant. In a lab study with 24 participants, we compared Weaver to a baseline
system with no entity support as a between subject condition. We observed that participants us-
ing Weaver gathered nearly 3 times more evidence from 60% more webpages, both significantly
more than participants who used the baseline system. Post-interviews revealed how they utilized
Weaver to verify information they encountered, to accumulate evidence across webpages, and
to synthesize them to support decision making.

We think entity-centric approaches have the potential to support sensemaking in a wide variety
of domains that involve collecting evidence and deciding between options. However, the cost of
adapting the current framework to support different domains is unclear, especially for domains
where high quality knowledge bases are not readily available. In the post-survey, we asked
participants if they could think of other search tasks that may benefit from using Weaver, and
participants pointed to a variety of different tasks, including making a purchasing decision, essay
writing, event planning, literature review, job searching, and deciding on a college major. Here
we describe scenarios to illustrate how the infusion/diffusion framework might work for two of
these tasks.

• A researcher can create a “paper card” (using Microsoft Academic Graph for metadata)
to externalize ideas as she reads a paper and create additional cards for ideas relating
to cited papers, providing a foraging and ideation structure during literature review where
papers may have overlapping citations.

• A consumer can create “product cards” for different cameras (using online shopping APIs
for pricing info and DBPedia for specs) to keep a “short list” as they compare different
options by collecting both objective and subjective info in reviews relevant to her personal
needs. In this case, users can also configure Weaver to focus on only cameras entities to
improve linking and disambiguation performance.

Finally, we also see promise in a number of other research directions. One such direction would
be automatically summarizing evidence gathered across different websites for an entity instead
of simply listing them. This could help Weaver scale to much larger projects with many sources,
while keeping gathered information easy to consume for the users. However, surfacing informa-
tion sources in the summary so users can better evaluate source trustworthiness is still an open
problem. While Weaver supported synthesizing entities and evidence into categories, providing
support for creating different structures (e.g., tables or essays) warrants further investigation.

Our results have implications for the design of future intelligent browser interfaces that can better
understand the information being consumed by their users, and building novel interactive sys-
tems for supporting online sensemaking. While there are already popular commercial browser
add-ons that allowed users to collect information from webpages with lowered efforts (such as
Evernote Web clipper), almost all existing tools require users to switch to a separate workspace
to access saved information. Our findings pointed to benefits in better integration between col-
lecting information from webpages and accessing them. As phenomena such as fake news
and shill reviews have demonstrated, there are significant drawbacks to the easy availability and
generation of online content. Interactive systems that can provide additional context to users in
situ may become increasingly necessary to help navigate the information overload. Anecdotal
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evidence for this need can also be seen in the rise of aggregation-based sites such as Metacritic
or Wirecutter, which act as virtual meta-analyses of evidence and opinions but fail to take into
account the personal context of the user and their goals. We believe that this work presents a
step forward in illustrating a design space for interactive systems which can take advantage of
advances in machine learning and natural language processing to help end users actively gain
context and personalize their online sensemaking experience.
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Chapter 7: Mesh

Scaffolding Comparison Tables for Online Decision Making

This work was previously published in ACM UIST 2020 [49] and has been adapted for this
document.

This chapter describe a third and final system in this dissertation that focus on supporting indi-
vidual online sensemaking tasks. The two previous chapters each focused on providing global
context relating to options (Weaver in Chapter 6) or criteria (SearchLens in Chapter 5), and dis-
covered important insights about users: 1) Users need to keep track of the different options that
they were considering, and evaluate them under the global context (Chapter 6); and 2) Users
often identify criteria from data and need to evaluate their options based on different criteria.
Combining these insights, this chapter focus on a system that can provide holistic support for
product comparison, allowing users to both keep track of their options and criteria, as well as
keeping track of their personal interpretation of data to scaffold their decision making process.

While there is an enormous amount of information online for making decisions such as choos-
ing a product, restaurant, or school, it can be costly for users to synthesize that information
into confident decisions. Information for users’ many different criteria needs to be gathered from
many different sources into a structure where they can be compared and contrasted. The useful-
ness of each criterion for differentiating potential options can be opaque to users, and evidence
such as reviews may be subjective and conflicting, requiring users to interpret each under their
personal context. We introduce Mesh, which scaffolds users in iteratively building up a better
understanding of both their criteria and options by evaluating evidence gathered across sources
in the context of consumer decision making. Mesh bridges the gap between decision support
systems that typically have rigid structures and the fluid and dynamic process of exploratory
search, changing the cost structure to provide increasing payoffs with greater user investment.
Our lab and field deployment studies found evidence that Mesh significantly reduces the costs of
gathering and evaluating evidence and scaffolds decision-making through personalized criteria
enabling users to gain deeper insights from data.

7.1 Introduction
Whether figuring out which products to purchase or where to eat in an unfamiliar city, consumers
today have instant access online to enormous amounts of information on which to base their
decisions. Research in consumer behavior has found online information such reviews to be a
major factor for online research [86, 170], with the potential to help consumers make informed
decisions about how well each option satisfies their various criteria [67]. For example, a coffee
drinker looking to buy a new espresso machine might read reviews aiming to evaluate how easy
it is to use for a novice barista, how well it steams milk, how likely it is to break down, and so on.

However, users can also be overwhelmed by the number of potential options, the criteria they
should use to compare those options, and the number of information sources to collect evidence
from [197, 202]. For example, the electronics section of Amazon alone contained more than 1.3
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Figure 7.1: The Table View. Users can create Option Columns by importing Amazon project
pages opened in their browser tabs, and create Criteria rows to see the average review ratings that
mentioned each criteria across their options (in yellow). To see explore the reviews more deeply,
users can click on the criteria to see the Evidence View (shown in Figure 7.3), where users can
overwrite the default Amazon ratings with their own (in purple) based on their own interpretation
of data. To prioritize the criteria, users can also adjust the weight to see an weighted average
rating across their criteria for each option. This image is an actual project made by P05 in the
field deployment study.
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million reviews in 2013 [159], and Yelp has accumulated more than 200 million reviews [206].
Such online reviews can be conflicting, biased, subjective and scattered across many sources
[52, 101, 182, 238], requiring users to evaluate and interpret each piece of evidence based on
their personal context [199]. The highly bimodal skew of review ratings can lead to compression
of ratings in a narrow band [105], and the increasing number of fake reviews (which now may
be in the majority for some categories such as electronics and beauty [80]) means that solely
relying on automatic aggregation such as averaged ratings or summarization can be inaccurate
or uninformative. Automated approaches to addressing these issues, such as aspect extraction
[151, 234], review summarization [104, 145], and direct recommendation [29], can be insufficient
due to the long tail of usage contexts [21], the need for nuanced contextualization when reading
reviews [47], and the challenge of discovering and learning new criteria along the way [130].

Consumers doing this task manually must go through the various reviews and sources, pulling
together scattered information, learning about what criteria are useful for picking or ruling out
options, evaluating evidence on those criteria, keeping track of their judgments, and weighing
them depending on what’s most important to make a final decision. To assist with the process,
consumers utilize techniques such as building comparison tables with spreadsheets or notepads.
However, transferring information between information sources and spreadsheets or notepads
can be prohibitively time-consuming [6]. Furthermore, as a user encounters and adds new
options, they must gather information for each of their criteria in the table in order to evaluate
that feature. Similarly, encountering and adding new criteria requires gathering information for
all previously added options. This iterative construction is common in unfamiliar domains [155]
and creates an increasing cost the more options and criteria are added to the table.

Instead of fully automated or manual approaches, we introduce Mesh, a hybrid approach aimed
at scaffolding decision making by helping users progressively build up a comparison table that
reflects their personal criteria and evaluation of evidence. Mesh lowers the cost of pulling in
information, organizing it by users’ criteria, and helping users keep track of their judgments
as they evaluate evidence. Importantly, by auto-filling the cells when new criteria or options
are added throughout the process, Mesh makes adding to the table stay at a constant cost
as the table grows, changing the cost structure to provide an increasing payoff with greater
user investment. Finally, Mesh helps keep users on track by prioritizing where to look, which
criteria are most important, and reflecting their current beliefs for each option through an overall
weighted average.

We evaluated Mesh through three user studies. In the first study we found evidence that Mesh
lowered interaction costs and allowed participants to find answers to objective criteria (such as
the size and capacity of coffee machines) significantly faster and more accurately. In the second
study we found similar benefits for subjective criteria (such as ease of use) which required addi-
tional interpretation of online evidence, resulting in learning summaries rated as more insightful
and confident when compared to baseline participants using Google Spreadsheets to conduct
the same task. Finally, a field deployment evaluated real-world usage in a week-long study,
finding that Mesh increased user satisfaction, confidence and efficiency with actual purchasing
decisions.
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7.2 Related Work
Research in consumer behavior has pointed out numerous difficulties users face when using
online evidence to support making purchase decisions. One major challenge is that online
evidence, such as consumer or expert reviews, can be messy, subjective, and biased [80, 170].
Furthermore, users may need to go through each piece of evidence in order to interpret them
based on their own personal context and unique goals. This process is an important factor
in purchase decision making [86, 170], but can incur high cognitive costs as the user tries to
keep track of their interpretation of different pieces of evidence [43]. Another challenge is that
online evidence is often scattered across many sources due to the distributed nature of the
Web. This includes product listing pages on e-commerce platforms, blog and forum posts, and
consumer and expert reviews. On the one hand, having multiple information sources can help
users to determine the credibility of online evidence [45, 52, 91, 101, 182, 238]. However, cross-
referencing multiple sources can be burdensome and costly [23, 93, 158, 172, 213].

Another thread of research has focused on building interactive interfaces that aim to support
decision making under multi-criteria and multi-option scenarios, such as faceted interfaces [97,
195] and table-based decision support and visualization systems [58, 148, 183, 204]. While
these approaches allow consumers to narrow down their options efficiently by navigating to
different subsets of a larger collection or investigate trade-offs through visualizations, the majority
of these approaches rely on pre-compiled metadata or require users to manually clip evidence
for each source. As a result, they do not support criteria that require close examination of a
large amount of subjective evidence (such as reviews) which are not in the form of structured
metadata. For example, to get a sense of how durable an option is a consumer would evaluate
many unstructured reviews describing whether and how an item held up over time. In two studies
closely related to our work, Chen et al. [53, 54] allowed users to build comparison tables for
camera products by allowing them to pick from a list of precompiled common camera criteria and
used sentiment analysis of relevant reviews as summaries across different options. While Mesh
also allows users to build comparison tables with their own options and criteria, it enables users
to use arbitrary search terms as their criteria instead of selecting from a pre-compiled fixed list,
allowing it to support the long tail distribution of user needs [21]. Even more importantly, Mesh
focuses on helping individuals interpret reviews under their own personal context, and overwrite
the summaries generated by the system to better reflect their own views of data. This approach
not only provides better support for personal context but can also allow users to recover from
errors made by automated summarization approaches.

Instead of automating away the role of the user, our approach focuses on helping users scaffold
their decision-making throughout the process, maximizing their ability to apply their personal
context and interpretation to evidence while reducing the costs for doing so. This view unlocks
a design space in which the interface supports the human in discovering and sharpening their
own understanding of what criteria are important to them in the context of the options and evi-
dence available to them; keeping track of their evaluations of that evidence for them; enabling the
human to prioritize their attention to the most discriminative evidence; capturing human percep-
tions of value; and using those perceptions to drive a final decision that integrates values across
their personal criteria. At a high level, our work aims to bridge the gap between decision support
research in the literature above (which helps people make decisions by imposing a high degree
of structure based on metadata or through computation) and the sensemaking process in which
users are learning about unknown unknowns to develop personalized context from unstructured
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Figure 7.2: Many products on Amazon are highly rated with thousands of views and it can be
difficult for users to differentiate them [A]. Users can open them in browser tabs and import them
into Mesh to keep track of them [B]. Mesh automatically fetches reviews relevant to different user
criteria for each option to help characterize them [C]. Users can uncover meaningful discrepancies
between options based on their own criteria. For example, here seeing a larger difference in the
“Steam” criteria, with the first option that lacks this feature returning no reviews that mentioned
“Steam”.

data [43, 47, 130, 155, 191].

7.3 System Design

7.3.1 Exploratory Interviews and Design Goals

To discover common limitations and needs of online product research, we conducted preliminary
interviews to inform our design goals. Thirty participants were recruited (age: 3% 19-24, 20% 25-
34, 33% 35-40, 23% 41-54, 20% 55+; 22 female, 7 male, and 1 not listed) through posts on social
media including Facebook, Twitter and Nextdoor, and interviewed for 60 minutes each. Prior to
the interviews, we generated 10 interface design mock-ups addressing various potential issues
discussed in the previous sections, ranging from managing information sources to collecting
evidence for purchasing decisions (we discuss these design probes in the context of our findings
below). During the interviews, we walked through each of the design mock-ups and used them
as probes to see how strongly participants identified with the issues they tried to address, as
well as how they reacted to the designs. We list below three of the most commonly recurring
themes.

Comparing Options with Scattered Evidence

The most common theme mentioned by all participants was the difficulty of managing an over-
whelming number of information sources and the amount of evidence scattered across them.
Specifically, they pointed to how evidence for options needs to be collected across different web-
pages, leading to a stressful number of opened browser tabs of e-commerce websites (such as
Amazon) and expert review websites (such as CNET reviews). When comparing options, partic-
ipants were especially frustrated by the high interaction cost of switching back and forth between
tabs to compare options on a metric [criteria] and that it is not easy to search for [information
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that mentioned] specific terms across all products.

Need for Personal Interpretation of Evidence

Consistent with prior work, we also found reading reviews to be a major factor when making pur-
chase decisions [86, 170]. While participants felt overwhelmed by the amount of evidence they
needed to process in order to confidently make purchase decisions, they were unenthusiastic
about designs centered around automating the process. For example, one design had users
answer questions about their preferences and provide personalized product recommendations.
Participants were reluctant to trust the output of the automated system, but instead saw it as
a way to get some ideas or guidelines about things they should consider ; in other words, they
saw it as an additional source for collecting potential options to conduct further comparisons.
Participants further emphasized the importance of seeing raw evidence and making their own
judgments such as reading through reviews to generate a summary of their own opinion. Partic-
ipants were enthusiastic about features that would support this process, such as allowing them
to easily rate and tally reviews as positive or negative or making a summary rating from reading
multiple reviews.

Scaffolding Decision Making

Participants pointed to difficulties in keeping track of their overall research, describing their pro-
cess as “erratic” causing them to “go down many rabbit holes” and “get lost in the weeds.”
One central reason cited was the need to constantly make small and personalized judgments
throughout, such as interpreting how relevant a review is to their contexts, summarizing how a
product fits a criterion, or deciding to keep or rule out an option. Participants were frustrated
when “Sometimes I can’t remember why a [product] page was kept opened and had to reread
the content.” For this, participants use spreadsheets, scratchpads, and physical notebooks when
things start to get out of hand, but also pointed to how this process is cumbersome and only used
as a last resort on important purchases. When asked about the types of information they would
typically save, participants described a mix of factual findings (such as product specifications)
and their own interpretation of subjective evidence (such as ease of use as described in the
reviews). Participants were enthusiastic about designs that would scaffold them in working in a
more organized fashion, such as making a comparison table of options they are considering and
and being able to compare options side-by-side and ranking them according to their own criteria.

Based on the above, we formulated the following design goals:

• [D1] Minimize effort of comparing evidence for the same criteria across different options
• [D2] Allow users to make their own interpretation and summaries of data
• [D3] Capture user decisions about options and criteria throughout the process in an orga-

nized way

Motivated by the design goals uncovered by our exploratory interviews, we developed Mesh to
provide a more organized way to conduct research by allowing users to iteratively build up a
product comparison table with their own options and criteria. In a standard spreadsheet, people
have to start with a blank table and switch back and forth between information sources to fill out
everything manually. In contrast, our system provides an increasing payoff for every criterion
and option added by connecting each cell in the table with relevant product information and
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reviews and summarizing them. One challenge here is that automation and auto-summarizing
content go against users’ desire for personal interpretation; instead, we carefully constructed
interactions that allowed users to both deeply explore the raw evidence and adjust their tables
when auto-summarization does not fit their own interpretation of the data. To support this, Mesh
was designed to capture users’ judgments about data throughout their process with little added
effort using light-weight interactions at different levels of granularity. For example, flagging a
review as positive or negative after reading it, rating different options based on the same criterion,
or sorting different options based on the ratings of different criteria. Altogether the system is
designed to feel like scaffolding: helping users gain deeper insights from scattered evidence
more efficiently, and capturing their own judgments on data in a structured way.

7.3.2 Example User Experience

Consider an example in which a user wants to purchase an espresso machine for the first time
to use in her apartment. She starts by searching on Amazon for popular options to consider, but
sees that they all have more than 1000 reviews with average review scores between 4.4 and 4.7,
making it difficult for her to discriminate between them (Figure 7.2 [A]). To understand which is
best for her she needs to deeply explore the reviews to see which are easy to clean, compact,
has great steam for making cappuccinos, and don’t require a lot of cleaning – a process that
would typically take her hours. Using Mesh she creates a new project and imports the options
she had opened from a list Amazon product pages open in her browser tabs (Figure 7.2 [B]). The
system then creates columns for each option and automatically pulls in basic product information
such as prices, images, and titles (Figure 7.2 [C]). She then adds her criteria to the system as
rows by clicking on the “+ New Criteria” button, with the system automatically fetching a sample of
reviews for each product the newly added criterion and displays their average rating (Figure 7.2
[C]).

She sees that despite the overall rating being indistinguishable between her options, there are
large discrepancies in review ratings for “steam”. She clicks on it to see reviews mentioning
“steam” for all her products in the Evidence View (Figure 7.3), including one that had no matching
reviews (Figure 7.2 [C]). Clicking on the image icon of that model to see a full-screen carousel
containing multiple larger images, she realizes it does not support steaming milk, allowing her
to remove it from her project. As she reads reviews of the remaining options and evaluates how
well each meets her goal, it takes her little extra effort to tally that review as positive or negative,
reducing her working memory load. Doing so she quickly builds up her judgment for each option,
and replaces the average Amazon rating with her own when it does not reflect her view. She
iteratively adds her other criteria, the system auto-filling each of them for all her existing options,
and finds and adds more options, the system auto-filling all their criteria as well.

As more criteria and options are added, she can scroll vertically to see her own notes, rat-
ings, and review tallies about different criteria, and scroll horizontally to see her different options
(Figure 7.1). To help her compare and contrast she drag and drops to reorder her criteria and
options and sorts her options based on their values for a criterion to prioritize them. Finally, after
developing a good understanding of what criteria are important to her goals and discriminative
across her options, she changes the weights of her criteria so that the system produces overall
scores that reflect her personal opinions and goals in the Table View (Figure 7.1).
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7.3.3 [D1] Comparing Evidence across Options and Sources

As reflected in the scenario above, our first design goal was to lower the costs of managing many
information sources and examining evidence scattered across them. A fundamental problem we
identified was that users often need to compare evidence for a criterion across their different
options, but the evidence was typically organized by options and scattered across sources. For
example, a user may need to go through multiple Amazon product pages and CNET reviews
to get a sense of how different espresso machines were suitable for novices. One way users
currently deal with this is by switching back and forth between browser tabs and searching for
relevant evidence on each page; another is to focus on one product at a time and try to remem-
ber information from other sources to compare them. Both of these strategies can incur high
interaction and cognitive costs. As a result, our exploratory interviews found participants had
difficulties in keeping track of previous decisions such as which options they were considering,
why they had considered each in the first place, and their criteria for comparing them.

To scaffold this process, Mesh allows users to progressively build out a product comparison table
to keep track of their options, sources, and criteria. To keep track of their options and sources,
a user can import their browser tabs into Mesh and group the sources into Option Columns in
Mesh (See Figure 7.1 for the Table View). For example, a user could create an option column
with an Amazon product page grouped with an expert review article from CNET.com for the same
product and its product specification page from the manufacturer’s website. In the backend,
Mesh populates the header of each column with product names, prices, images, and review
ratings from Amazon. To keep track of their different criteria, a user can create a set of Criteria
Rows (Figure 7.1). When a criterion is added, for each option Mesh fetches 60 Amazon reviews
by via Amazon’s review search end-points as well as sentences in the product description and
imported sources that mention the criteria as evidence. Users can click on each row to see
all the evidence for their options on that criteria side-by-side for comparison in the Evidence
View, reducing the high cost of switching between information sources (Figure 7.1). Longer
reviews are by default collapsed to the three sentences surrounding where the criteria name
was mentioned so users can stay focused on the current criteria, but can be expanded when
needed for additional context.

By default, Mesh shows the average rating of the 60 Amazon reviews as cell values in the
Table View. Our rationale for presenting criteria-specific ratings was to provide users with instant
feedback and benefit for externalizing their criteria, which would enable two novel interactions: 1)
getting a quick overview of how existing options differ or how a new option compares to existing
options and 2) comparing how discriminative their different criteria are for their current options.
These have the potential of allowing participants to better prioritize their investigation efforts.
One major challenge here is that while the reviews did mention the criteria, they can often be
noisy and include comments on things other than the criteria users were focused on.

7.3.4 [D2] Interpreting Evidence based on Personal Context

Both our exploratory interviews and prior work pointed to an important need for users to interpret
evidence based on their own personal context [199]. This personalized interpretation of online
data could also happen frequently throughout the research process – for example, judging how
relevant a review was to user’s personal context, users’ summative perceptions after reading
multiple reviews about a criterion, and how users characterized each option. Mesh addresses
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Figure 7.3: The Evidence View. Users can see evidence that mentioned a criterion side-by-side
for their options. To capture their interpretation of evidence, users can also label reviews to build
a tally or overwrite the average ratings with their own if they do not reflect their views. This is
an actual project made by P5 in the field study.

this by providing a set of light-weight interactions to capture users’ interpretation of data, and
reflect them back onto the Table View. Using the Evidence View, where evidence about a crite-
rion is presented side-by-side for each option, users can externalize their interpretation of data
at different levels of granularity using interactions that require little cognitive effort. For example,
after examining a review, it only requires one click for users to label it as positive or negative
using the buttons at the end of each review. As users rate the reviews, Mesh automatically cre-
ates a tally of positive and negative reviews for each option, providing immediate payoff to the
users for labeling them and reducing working memory load. After examining reviews about a
criterion for an option, users can leave the average Amazon rating alone if it matches their own
perceived rating, or overwrite it with their own rating (color-coded in purple instead of yellow).
This approach aims to reduce the cost of rating to zero when the default ratings generated by the
system matches users’ own judgments. In addition, users can externalize more nuanced mental
context through notes, which are shown in the Table View. Based on user feedback, Mesh also
enables users to use check marks and minuses (Figure 7.1) for criteria that have binary values
(e.g, does the espresso machine come with a steam wand).
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7.3.5 [D3] Scaffolding Decision Making

As a user iteratively builds up a better understanding of their options and criteria, they gradually
progress from investigating and interpreting evidence to making a decision between their op-
tions. However, participants in the exploratory interviews described spending redundant effort
when they lost track of prior judgments about options and had to revisit webpages and reread
their content to remind themselves what they liked and disliked about an option. When using
Mesh, participants can see all their previous judgments in the Table View presented as cell val-
ues in each Option Column, including review tallies and their own ratings and notes about each
criterion. This allows users to have a “bird’s-eye view” of their research, seeing which criteria
and options contain their own ratings and notes, decide what to focus on next, as well as seeing
trade-offs between the options when making purchase decisions.

Participants in the exploratory interviews also described “analysis paralysis” when reaching the
decision stage, in which many of their options looked similar on the surface (i.e., highly rated
based on hundreds of reviews) and that it can be difficult for them to see clear trade-offs on mul-
tiple criteria for their options. Mesh provides several affordances for users to scaffold exploration
of the trade-offs between options towards making purchase decisions. Firstly, Mesh computes
an overall rating for each option by averaging ratings for its criteria. When averaging, Mesh will
use users’ own ratings when available and default to the average Amazon review ratings oth-
erwise. Given that participants in the formative studies mentioned the importance of different
criteria having differing weights in their decision making, the system also enables users to spec-
ify the weight for each criterion which correspondingly alters its impact on the weighted average
(e.g., a 5x weight will be counted 5x towards the weighted average more than the default 1x
weight). 1 We also supported “soft” prioritization by enabling users to freely reorder rows and
columns via drag-and-drop, allowing them to move the most promising options or criteria to the
top or the left without altering the overall score. Finally, users can also sort options based on in-
dividual criteria ratings or the overall ratings when users click on the sort icon next to the criteria
names. This allowed users to quickly explore the best and worst-performing options based on
their criteria.

7.3.6 Design Scope and Limitations

In the current implementation, users can group multiple information sources into an option allow-
ing them to search through not only Amazon reviews and product descriptions but also other web
pages, such as blog posts or in depth reviews from other sources. However, for each option, one
of the sources needs to be an Amazon product page in order for Mesh to auto-fill product names,
prices, images, and overall and criterion-specific review scores. In the future, other e-commerce
platforms could be supported by implementing additional parsers and/or data connectors to their
backend endpoints. In theory, yet outside of the scope of this paper, users could also create op-
tions with only non-Amazon sources and still create criteria to search across their content and
to compare them side-by-side, making Mesh a more general option comparison tool.

Balancing responsiveness and sample size, Mesh makes 3 requests to the Amazon review
search end-point to fetch the top 60 most relevant reviews for each criterion. We were con-
cerned about whether users would not trust the system since the reviews we retrieved were not

1Details of this calculation are explained to users via a hover tooltip. Checks and minuses counted as 5 and 1
stars, respectively.
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Figure 7.4: Mean statistic of how participants performed under different conditions in Study 1.
Participants who used Mesh were finding more correct answers using a shorter period of time. In
addition, they also had lowered perceived workload based on the NASA-TLX survey.

exhaustive (i.e., only the top 60 instead of all reviews that mentioned a criterion) nor perfectly
accurate (which was limited by the accuracy of Amazon’s review search algorithm). We instead
found that people perceived the reviews as a sampling of the distribution about that criteria, and
we did not receive any requests for automated summaries of the rest of the reviews as we ini-
tially expected. We believe this further accentuates the importance of personalized evaluation of
evidence over an exhaustive aggregation, and the value of providing a sample of the distribution
as representative of the whole.

During the design phase we explored an alternative design that use sentiment analysis tech-
niques on sentences that mentioned the criterion instead of using average ratings of the whole
reviews. A preliminary analysis was conducted where we manually labeled 42 reviews of a pop-
ular robot vacuum for the criterion “stuck”. Results suggested that searching reviews based the
criterion name did retrieve mostly useful results and that the average star ratings represented
good overall summaries over the reviews. Specifically, 41 out of the 42 reviews that mentioned
the word “stuck” contained useful information about the criterion. We also used two modern sen-
timent analysis techniques, Vader [108] and Flair [4, 149], on sentences that mentioned “stuck”
and found that the average star ratings had a higher Pearson correlation coefficient with the gold-
standard labels then sentiment analysis scores (average star ratings: .582, Flair: .352, Vader:
.142. N=41). Furthermore, average star ratings can potentially be more transparent and easy
for users to understand. Therefore, we chose to use average star ratings over existing sentiment
analysis techniques.
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7.3.7 Implementation Details

Mesh was implemented in approximately 7,500 lines of TypeScript and 2,500 lines of HTML and
CSS. The React library was used for building UI components and Google FireStore for database
and user authentication. Firebase and its user account management features were used to allow
Mesh users to access their projects across sessions and on different devices. The full version
of the system was implemented as a Chrome extension, and a hosted version was ported for
conducting Amazon Mechanical Turk user studies in our Evaluation Section. Implementing the
system as a Chrome extension was important for use in the field in order for Mesh to make
cross-domain requests for fetching evidence from different information sources. We wrote a
custom parser to extract product information from Amazon product pages and fetch reviews
using Amazon’s review search backend endpoint. Mesh managed a pool of JavaScript Web
Workers to query and parse multiple information sources in parallel for responsiveness. The
size of the Web Worker pool was determined at run-time to match the number of CPU cores
available on users’ computers. Finally, implementing Mesh as a Chrome extension enabled it
to interact with browser tabs, allowing users to import them into Mesh to build a collection of
potential options with lowered effort.

7.4 Evaluation
We conducted three studies that focused on exploring the following research questions:

• Study 1: The usability of our implementation and the benefits of gathering and presenting
evidence across sources

• Study 2: Whether Mesh enable users to gain deeper insights from data compared to a
commonly used baseline (i.e., Google Spreadsheets)

• Study 3: The longer-term effects of deploying Mesh to users conducting their own personal
tasks

The first two studies were controlled studies comparing Mesh to a baseline condition using pre-
defined tasks to control for task complexity. Participants were recruited from Amazon Mechanical
Turk who had more than 100 accepted tasks with above 90% acceptance rate and lived in coun-
tries that primarily spoke English. Due to the limitations of running Mechanical Turk studies, we
could not install Mesh on their computers as a Chrome extension. We therefore deployed it as
a hosted webpage and preloaded and cached necessary Amazon requests for participants to
interact with. The third study was a field deployment in which participants installed Mesh on their
own computers (as a Chrome extension) and conducted their personal tasks over a period of
one to two weeks. Participants for the field study were recruited from the local population primar-
ily by posting to discussion boards on NextDoor, a neighborhood-based social media platform.
We used video conferencing and screen sharing software to assist with the installation process
and to conduct two rounds of interviews.

7.4.1 Study 1 - Usability Test and Interaction Costs

The main goals of our first study were to verify in a controlled environment the usability of the
Mesh and to test if the mechanism of automatically pulling in evidence from different information
sources can allow users to work more efficiently and find more accurate information. For this,
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Mesh was compared to a baseline variant as a within-subject condition where evidence was not
automatically pulled in. Objective criteria that had gold-standard answers was utilized in order
to measure the accuracy of participants’ responses. During the baseline condition, participants
could use any strategies based on their own product research experiences, such as searching
for keywords on Amazon product pages and/or use search engines to find more sources. In
order to measure how effective participants were in finding the right answers, fixed product
options (i.e., 5 popular espresso machines on Amazon) and objective criteria were used.2 One
of the authors compiled the gold-standard answers before running the study. Almost all answers
were obtained from the manufacturer’s website (such as in specification tables and downloading
PDF user manuals), with a few resorting to using expert reviews (namely photos or videos that
showed a measurement of the portafilters).

The goal of the main task was to find the correct answer for each criterion for the given options.
The criteria cells for the first options were filled out to serve as an example. At the beginning of
the study, participants were instructed to read through a brief tutorial to learn the Mesh interface
(7 sentences and 4 screenshots). No additional training sessions were performed. The rest
of the study was broken down into two segments, and participants worked on two of the four
remaining options during each segment with a different condition (counterbalanced for order).
During the Mesh condition, evidence was gathered from Amazon reviews and product descrip-
tions, as well as the top two product review webpages, returned from Google when searching
with the product names appended with the term “reviews”. Links to the same sources were also
presented during the baseline condition. During the study, the time each participant spent in the
two conditions was recorded as well as their responses. After the study, the NASA-TLX survey
was used to collect their perceived workload for each of the two conditions. A total of 24 par-
ticipants were recruited from Amazon Mechanical Turk (age 21-68 M=36.8; SD=10.5; 15 males
and 9 females). Each participant was compensated 3 US dollars for an average of 24.9 minutes
(median=22.7, SD=8.3).

Results

Results suggest that the 24 participants performed the given task more efficiently when in the
system condition than when they were in the baseline condition. Comparing Mesh with the
baseline, participants completed their tasks faster when using Mesh that gathered evidence
automatically across multiple sources (7.2 vs 10.8 minutes; t(23)=2.6, *p=0.017<0.05 based on
a paired T-test). At the same time, they found information that was more accurate based on
gold-standard answers (mean 8.50/10 vs 5.83/10; median: 7/10 vs 9/10; ***p=4.46e-09<0.001,
Z=5.87 based on a Asymptotic Wilcoxon Signed-Rank Test). Combining the two metrics we
estimated an x2.30 increase in efficiency, where participants were finding 2.23 correct answers
on average each minute when using the full Mesh system, compared only 0.97 correct answers
per minute on average when using the baseline variant (based on a paired T-test: t(23)=4.18,
***p=0.00036<0.001).

In addition to speed and accuracy, participants also perceived the process to have lowered
workload when using the full system across effort, frustration, mental, physical and temporal
demands based on the NASA-TLX survey (Figure 7.4, combined: 25.0/100.0 vs 48.6/100.0;
t(23)=7.25 ***p=2.25e-7<0.001 based on a paired T-test) as well as increased perceived perfor-
mance (17.5/20.0 vs 13.4/20.0; t(23)=-4.02, ***p=0.0005<0.001 based on a paired T-test). This

2Dimension, Does it have a built-in grinder, Water tank size, Does it use a solenoid valve and Portafilter size
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Figure 7.5: Participants in Study 2 generated learning summaries after 20 minutes of product
research. The summaries were rated on 4 statements using 7-point Likert-scales for agreement
(7 indicated strong agreement and 4 indicated neutral agreement). A MANOVA was used to
correct for multiple comparisons and found a statistically significant difference (F(4, 43)=2.64,
*p=0.047<0.05) between the conditions on the combined dependent variables (relevance, confi-
dence, insightful and usefulness).

suggests the interface of Mesh can reduce interaction costs when dealing with objective criteria
when compared to the baseline where participants relied on their current process, even when
they had to learn a new interface.

7.4.2 Study 2 - Interpreting Subjective Evidence

While the first study tested the usability and interaction costs of Mesh when working with objec-
tive criteria with gold-standard answers, Study 2 focused on how Mesh can support users when
investigating criteria that required subjective and potentially messy and conflicting evidence such
as consumer reviews[101]. Unlike looking up the product dimensions in the product description
for a coffee machine, investigating its ease of use may require users to read through multiple
relevant reviews to get a sense of how previous consumers agreed or disagreed on the criteria
while considering how each review fits their personal context. For example, a user buying a
robot vacuum who lived in an apartment with wooden floors might down-weight reviews from
people who lived in a big house with high pile carpets. For this, we carried out a second study
that focused on whether Mesh can provide benefits when researching these types of subjective
criteria.

To compare Mesh with people’s existing approach, Google Spreadsheets was used as a between-
subject baseline. This baseline was chosen because it is a common tool for consumers building
product comparison tables and that it is an easily accessible hosted service with APIs that allows
us to dynamically create a spreadsheet for each crowdworker. To control for task complexity and
the personal preferences of participants, the following persona and task description were used
for researching 5 robot vacuum cleaners with the 3 subjective criteria in bold:

John is looking to buy a robot vacuum for his house. The most important thing for
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Figure 7.6: The initial spreadsheet for the baseline condition.

him is that the robot vacuum doesn’t get stuck too often. It is also important that it
is not too loud. He also has a dog, so it would be nice if it’s also effective cleaning
up dog hair.
John already narrowed down to 5 final options. Spend around 20 minutes to build up
a comparison table to help John research the best option and explain to him why you
think it is the best option.

The five options were all popular models on Amazon that had more than 1,000 reviews and
above 4 average review ratings (as of April 15, 2020). In both conditions, their tables were
populated with the predefined options and criteria to maximize the time participants spent on
exploring and learning from data instead of copying and pasting information from the persona
(see Figure 7.6 for the baseline template).

A total of 48 unique participants were recruited from Mechanical Turk for the main study. In
which 22 (age 31-58, M=38.7, SD=9.6) were randomly assigned to use Mesh and the remaining
26 participants (age 30-70, M=34.7, SD=11.3) used Google Spreadsheet. Each participant
was instructed to conduct the above task for 20 minutes using their assigned systems. It was
assumed that participants in the baseline condition were already familiar with a spreadsheet
interface and instructed Mesh participants to read through a brief tutorial to learn the interface
(13 sentences and 6 screenshots). No additional training sessions were performed. To capture
what participants had learned during 20 minutes of research, they were asked to pick one of the
options that they recommend and write a short summary for John explaining their choices. This
design allowed us to capture the mental models of participants under different conditions through
mentions of detailed evidence and how they reasoned and compared the different options, and
has shown to be effective for evaluating sensemaking support systems in prior work [122, 171].
Workers who participated in the previous study were excluded from this study to prevent learning
effects. Each participant was compensated 3 US dollars.

To compare summaries collected from the two conditions, each summary was rated by 5 ad-
ditional crowdworkers. Crowdworkers who participated in the Study were excluded to ensure
summaries were not rated by the participants who wrote them. In each rating task, crowdwork-
ers first read the same persona used in the study and one of the summaries. Crowdworkers then
rated the following statement using 7-point Likert scales for agreement (a score of 7 indicated
a strong agreement, a score of 1 indicated a strong disagreement), and the ratings across 5
workers were averaged as the final ratings:

• I find the summary to be useful.
• The summary is relevant to the scenario.
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• The summary is insightful, containing details that may be hard to find.
• I feel confident after reading the summary.

The four statements were designed to compare the summaries across conditions on the fol-
lowing aspects: The first statement of usefulness aimed to measure their quality to account
for collecting qualitative responses on crowdsourcing platforms [127]. The second statement
measured whether participants who used Mesh were able to focus on criteria described in the
persona and generate summaries that were more relevant. This is due to the fact that partici-
pants in our fact-finding study described their current process as “a rabbit hole” and how it can
be difficult to “focus on criteria that really mattered.” The third statement measured how detailed
and insightful the summaries were, an important aspect of consumer review helpfulness identi-
fied in a prior work [170]. Finally, the fourth statement aimed to explore whether the information
in the summaries can support decision making by measuring if they induce confidence.

Workers were paid 0.25 cents for reading the persona and rating summary based on the four
statements above. 3

Results

Figure 7.5 shows the differences between the 22 summaries written by participants using Mesh
and the 26 summaries written by participants using Google Spreadsheets for the same task.
Averaging across the four aspects, participants who used Mesh generated summaries that were
rated higher than participants in the baseline condition (Figure 7.5, mean 5.40 vs 4.66). A
MANOVA was used to correct for multiple comparisons and found a statistically significant dif-
ference (F(4, 43)=2.64, *p=0.047<0.05) between the conditions on the combined dependent
variables (relevance, confidence, insightful and usefulness). Below are two typical summaries
from each of the conditions collected after 20 minutes of product research:

Baseline example: I would pick the Roborock S4 after considering the 3 categories
[criteria] that are important to him: how often it gets stuck, noise, and ability to pick up
hair. Unfortunately, all of the models he picked do have a tendency to get stuck, which
makes it difficult to choose when just using the three factors [criteria]. However, the
Roborock was the only model I found, where there weren’t many complaints about
it being too loud. Additionally, the Roborock is able to pick up dog hair, according to
the product description and user reviews.
Mesh example: It seems that while all options do tend to get stuck from time to time,
the reviews that the Roomba 675 does somewhat better in that regard. Additionally,
many reviews for the Roomba 675 stated how well it picks up pet hair, which was
another important consideration that differentiated the Roomba 675 from other op-
tions. The Roomba 960 may be marginally better but it costs $200 more and so I
didn’t think it was worth the extra expense. Lastly, there were reviews that found the
noise of the Roomba 675 to be acceptable.

While many participants who used Google Sheets mentioned the similarity between options and
the difficulty of the task, people who used Mesh point out how they differentiated the options on

3Workers read an average of 124.0 words for each task (range: 50.0-220.0, SD=44.4) and the estimated reading
speed of English speakers is 200-300 words per minute [200]. Assuming the lower-bound reading speed of 200 words
per minute and 15 seconds was required to answer each of the four Likert-scales. Similar to approach in [107], the
estimated the average hourly pay rate was around 9.26 USD.
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ID Tasks Minutes Spent # of Sessions
P01 Snow boots. Gourmet cat food. 70 3
P02 Backpacks. Pajamas as a gift for his/her sister. 134 3
P03 Bread machine. Hair cutting kit. 150 4
P04 Running shoes. Printer for learning material for kids. 82 6
P05 Entryway light fixture. Toy play-set for kids. 131 5

Table 7.1: Usage statistics about participants in the field deployment study based on the activity
logs. This includes the tasks they conducted using Mesh, as well as the total number minutes
they spent using the system and the number of sessions over the deployment period.

the given criteria based on multiple pieces of evidence.

7.4.3 Study 3 - Field Deployment Study

While the first two studies provided quantitative measures on how Mesh affected learning, ef-
ficiency, accuracy, and perceived workload when participants were given predefined tasks, we
conducted a field deployment to further investigate the longer-term effects of Mesh when par-
ticipants performed their personal tasks in the wild. Five participants (age: four 25-34 and one
35-40; two females, two males and one non-binary) were recruited by posting to 5 local neigh-
borhood discussion boards on NextDoor (a neighborhood-based social media website). The
posts contained a link to an online screener survey, and the responses were used to recruit peo-
ple who have used a spreadsheet for online research in the past (49.4%, N=89) and prioritized
people who had any Chrome extensions installed (49.4 N=89).

Participants were interviewed for one hour at both the beginning and the end of the deployment.
Before the initial interview, participant were asked to email us 1 to 3 upcoming online purchases
to ensure they have a real task to work on during the initial interview. At the start of the first
interview, their demographic information was collected and they were assisted with installing
Mesh as a Chrome extension on their computers via screen sharing. Each participant then
proceeded to perform a think-aloud session for around 30 minutes using Mesh to conduct one of
the tasks they had proposed. After the first interview, participants continued to use Mesh on their
own for the same tasks and/or create new tasks. Based on their availability, each participant was
interviewed again after 1-2 weeks. Participants shared their screens and retrospectively walked
through their projects while they were probed on their experiences, strategies, and issues they
had encountered during the deployment. All 5 participants completed the study and were each
compensated an Amazon gift card worth 50 US dollars. The interviews were video recorded and
transcribed for analysis.

Results

Table 7.1 shows the tasks each participant conducted using Mesh based on log data. The first
tasks in the table were ones created during the initial interview and the rest created during de-
ployment. There was a wide verity of different tasks such as clothing (P1, P2, P4), appliances
(P3, P4), pet supplies (P1) and toys (P5). During the deployment, participants interacted with
the Mesh system for 70 to 150 minutes based on the behavior logs (Table 7.2), and all of them
used Mesh in three to six sessions (M=4.2, SD=1.3). Participants saved multiple options and
used multiple criteria to compare them. They were also actively removing options and criteria
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Action Count P1 P2 P3 P4 P5 M SD

O
pt
io
ns

Add 7 16 22 27 11 16.6 8.1
Remove 3 9 12 2 2 5.6 4.6
Drag to reorder 13 1 4 3 17 7.6 7.0
Sort by criteria 9 16 4 7 16 10.4 5.4

C
ri
te
ri
a Add 9 16 21 29 14 17.8 7.6

Remove 2 5 5 6 4 4.4 1.5
Change weight 2 4 4 1 2 2.6 1.3
Drag to reorder 2 2 5 4 10 4.6 3.3

C
el
ls

Change rating 5 9 8 0 44 13.2 17.6
Add notes 4 0 7 38 48 19.4 22.0
Label review 10 54 8 0 32 20.8 22.0
Total changes 19 63 23 38 124 53.4 43.1
# Uniq cells 3 12 9 12 41 15.4 14.8

Total minutes spent 70 134 150 82 131 113.4 35.2
Number of sessions 3 3 4 6 5 4.2 1.3

Table 7.2: Usage statistics about participants in the field deployment study based on the activ-
ity logs. Participants utilized a wide range of features provided by Mesh during the 1-2 week
deployment.

suggesting Mesh allowed them to dynamically decide on which options to consider and based on
which criteria. Based on their interpretation of evidence, on average, each participant changed
the default values of the cells in their tables 53.4 times (SD=43.1) with different participants pre-
ferring different features (i.e., change ratings, type notes and label reviews). Finally, participants
also used different Mesh features to help them prioritize information they collected. This included
reordering options and criteria via drag-and-drop, and sorting options based on how they were
rated on a criterion.

Qualitative findings based on pre- and post- interviews provided deeper insights to how these
action benefited the participants. Following an open coding approach based on grounded theory,
the first author went through the 10 hours of recordings and transcriptions in three passes, and
iteratively generated potential categories from the dialogue until clear themes emerged [51].
Throughout the iterations, inputs from the rest of the research team were also incorporated,
including other researchers who also conducted interviews. Our key findings are presented
below.

Efficient and Organized

In general, participants responded favorably to using Mesh in the field for their personal tasks,
preferring Mesh when asked to compare it against their current online product research process
(i.e., using spreadsheets and/or notepads). Specifically, all participants pointed to lowered in-
teraction costs when using the Evidence View to access evidence gathered across information
sources to compare their options, as well as lowered cognitive costs from being able to rule out
options confidently based on evidence.

It is much better than a spreadsheet... I like that I can really quickly add something
and it just pulls in all the information, the picture, the price, and [evidence for] all of
these different criteria and presents it in a way that is really easy to do comparison
across products. I’m able to delete things easily so that I can reduce my cognitive
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load as I go through my decision-making process. - P3

All participants described how Mesh allowed them to take a more organized and structured
approach when managing multiple information sources and collecting evidence. Specifically,
P1 and P2 noted that the linear structure of browser tabs can be inefficient when trying to find
evidence for a specific criterion across browser tabs for different options. Participants pointed out
that while the mechanisms provided by Mesh could be performed manually, the interaction costs
of managing many browser tabs and filtering for relevant information to support their criteria
amongst them would be prohibitively high in practice.

In theory, I could do all this myself but it would take 10 times [as] long so I would never
do it well. I would say is it technically possible? Yes. But would any person ever do
this [manually] for themselves? ... It’s nice to have a more organized and systematic
approach. . . Instead of something that right now is very linear. If I pulled up a bunch
of boots in different tabs and searched [in] each of them for reviews with the word
boar. It’s really boring and not a particularly efficient way to look at information. - P1

One participant (P3) described Mesh as providing a more organized scaffold for their process,
enabling better support for task resumption and allowing them to make progress on their overall
tasks even in shorter sessions.

I loved being able to come back to this [referring to one project]. It’s something we
hadn’t done in our initial sessions that became so much better when I was using it
on my own. I couldn’t say, hey, I’ve got 15 minutes to kill. Let me do some more
searching, and then I could say, okay, gotta go to my next meeting. - P3

Analysis of activity logs suggested that participants could effectively use Mesh to suspend and
resume tasks, with all participants conducting their product research in three to six separate
sessions (M=4.2, SD=1.3) (Table 7.1).

Prioritizing Effort on Discriminative Criteria

Participants found criteria useful for discriminating between options. All participants saw imme-
diate value when the average Amazon ratings populated automatically for their options when
they added a new criterion, allowing them to get an initial overview of how evidence differed be-
tween options. Specifically, participants described trying out different criteria as a way to surface
meaningful differences (i.e., based on their own criteria) amongst their options. Since partic-
ipants typically only considered options that were popular and highly rated on Amazon, they
described these options as virtually indistinguishable without Mesh:

Having never purchased it before I literally have no idea what to buy. And so this
[task] is what I tried to do [with Mesh ] and it’s actually like super helpful because
[otherwise] every single stupid cat food on Amazon just like looks identical. . . So, it
was really helpful especially [with] this picky criterion. - P1

Conversely, when participants added a new option to a project that had existing criteria, Mesh
automatically populated Amazon average review ratings across those different criteria for the
new option. Participants used this mechanism to quickly characterize new options and see how
they fit with existing options based on their own criteria:

This new one is pricey, and yet anybody that mentioned cost [a criterion] has given
it the full rating. They’re more durable [referring to discrepancy between options on
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the criteria] You know, I could see tangible evidence now. And that makes me want
to go – Maybe that’s the pair. - P4

Seeing discrepancies between options also influenced participants’ process by prompting them
to prioritize their effort on investigating criteria that were more discriminative between their op-
tions:

Okay, there wasn’t a great difference here in terms of ink [a criterion]. Let me go
into what I weighted as more important, and it’s this air printing [another criterion]
capability. . . for this middle one [referring to one option], rated pretty poorly. . . These
two have pretty good ratings. So then I went in and started looking [at the evidence]
- P4

By focusing first on criteria that were more discriminative amongst the options, participants could
rule out options that compared less favorably earlier to shorten their process. All participants
described prioritizing their options in the system, either by reordering their options via drag-and-
drop or ruling out options completely by removing them.

Scaffolding Decision Making

Participants also described how Mesh supported deep exploration of individual pieces of evi-
dence in the Evidence View that laid out the evidence for specific criteria across their options.

The second thing that I think is really great for me was the ability to dive into the
reviews for specific criteria. It’s really nice to be able to open this [the Evidence View]
up and have it filter out for all of the products, so I can make this comparison across
products. - P3

One participant, in particular, described a sense of relief and progress when removing options
in Mesh.

I don’t feel like I would delete things [options] in a spreadsheet. Whereas here it
actually feels good to delete it [an option], because I’m like, Great! I’ve decided that
I’m not going to deal with it. - P3

When we introduced the system, we explicitly explained to participants that the average ratings
were based on review scores and could be influenced by parts of a review not relevant to their
criteria even though the reviews mentioned the criteria. Participants were able to work with this
limitation, and replaced the Amazon ratings with their own when they did not reflect how they
wished to characterize the evidence. In addition, participants also described creating ratings as
a way to keep track of and aggregate how they personally interpreted evidence and saw benefits
in how changing criteria ratings were reflected in the overall weight score of each option.

I would say in the event that I was going to differ from what’s in front of me, I would
rate [the criteria]. - P4

Once I start to make decisions on things like I put my thing [own ratings and notes] in
there and say: Okay, this is what my rating is. And now it starts to change the overall
ratings, so it would help me make a better decision based on what I think. . . . like, the
tool thinks this is a really good value, but maybe I think this value is not enough for
me and it’s a two because I just think it’s two - P3
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Four of the participants (P1-P4) also made actual purchases during the deployment based on
research they performed with Mesh and expressed how they felt confident in their resulting de-
cisions. P5 wanted to use the project to discuss with a partner and make the purchase decision
together. This suggests that their tasks represented real-world user needs, and our participants
were able to use Mesh to conduct research for a prolonged period of time and use it to support
making their final purchase decisions.

7.5 Discussion
While all participants’ initial responses were positive when adding options and criteria to the
Table View, some of them found their first impressions of the Evidence View to be overwhelming.
While this suggested a higher learning curve for the Evidence View, all participants were able to
complete research with it for their own tasks during the deployment.

So initially it was like, Whoa, there’s a lot going on here. It’s a lot of text but I’m kind
of over it once I understood what was going on. Now I’m like, Okay, cool. Let’s take
a look at this [referring to the criteria] across the things [referring to the options] - P3

More commonly, participants expressed a desire to extract evidence from online sources other
than Amazon. While the current implementation supports extracting evidence from other sources
(by pasting their URLs into the appropriate option), participants pointed to two limitations: 1)
extracting and tracking price changes across e-commerce platforms other than Amazon and be
notified, and 2) extracting from listicles and forum posts that discussed multiple products:

Running shoes are kind of discipline-specific. There are other sites solely for this
[type of] product that I would go to. [To add a webpage and] track the options to use
globally would be cool. But like robot vacuum there’s nowhere else [but Amazon] I’m
going. Unless I’m tipped off that Target or Bed Bath and Beyond happened to have
an incredible sale. - P4

While price tracking could be implemented within Mesh, there are multiple commercial solutions
available 4 and we considered it outside the scope of this work. On the other hand, extracting
information from sources containing evidence about multiple options presents an interesting re-
search challenge of computationally identifying mentions of products and extracting descriptions
about them from the text.

We introduced Mesh, a novel sensemaking system where users build up comparison tables by
discovering options and criteria as they explore online information. As options and criteria are
added to their tables, evidence about them is automatically gathered across information sources
for users to review. When needed, users can also externalize their personal interpretation of
data as cell values to keep track of their research progress. This design is novel because it
introduces a new process that scaffolds the iterative building up of context, and changes the
cost structure from increasing cost to increasing payoffs as the number of criteria and options
grow.

Through three rounds of lab and field deployment studies, we uncovered deep insights into
how Mesh can benefit online sensemaking in the context of product comparison research. In
Study 1, we found evidence that Mesh not only lowered interaction costs (i.e., shorter time spent

4https://camelcamelcamel.com/ and https://www.joinhoney.com/
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and lowered perceived effort), but also led to participants finding more accurate information
when working with objective criteria (e.g., water tank capacities for espresso machines). In
Study 2, when dealing with subjective criteria (e.g., ease of use for espresso machines) we
found evidence that participants who used Mesh were more insightful and confident about their
choices compared to participants who used a Google Spreadsheet baseline. Finally, in Study 3
we tested Mesh in the wild with participants conducting their own tasks over a longer period of
time and found that Mesh allowed participants to better prioritize their effort on criteria that were
more discriminative, and was able to capture their interpretations of data to keep track of their
progress.

Fundamentally, online evidence can be messy, biased, subjective and conflicting. This requires
users to consider many information sources in order to better evaluate both their options and the
evidence itself. Providing better scaffolding support when users explore, compare, and interpret
online evidence can empower users to gain deeper insights with lowered interaction and cogni-
tive efforts. While Mesh explored this in the context of online product research, we believe the
designs introduced here may generalize to other domains where users need to compare options
based on online information. For example, travelers could use Mesh to compare different des-
tinations and restaurants, voters could use Mesh to compare different policies and candidates,
and patients could use Mesh to compare different hospitals and treatment plans. We believe
Mesh represents a first step towards a user-centered sensemaking approach to addressing the
subjective and distributed nature of online information today.
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Chapter 8: Conclusion

At the beginning of this document, I set out to explore the following thesis:

Using interaction and visualization techniques, we can dynamically provide global con-
text that matches users’ evolving intentions throughout their exploration of large unstruc-
tured datasets. Supporting this will allow users to gain deeper insights from data and
make better decisions with lowered efforts.

In the first half of the dissertation, I investigated this thesis in the domain of crowdsourced sense-
making, where both the requesters and crowdworkers each only saw a small portion of data but
needed to create globally coherent and consistent structures. In the second half, I extended
insights from providing global context to crowdworkers and requesters to support individual on-
line sensemaking where the number of available choices and evidence is often well beyond an
individual’s capacity to process them. Five systems were described in this dissertation including
crowd-based systems that were able to produce coherent and consistent categories and labels
for complex datasets, as well as systems for supporting individuals in online sensemaking tasks
allowing them to gain deeper insights from data with lowered efforts. By evaluating the five sys-
tems described in this dissertation, I explored the effects of different novel interaction techniques
and paradigms had on users as discussed below. Finally, I present evidence supporting the
above thesis statement listed below as take-aways.

8.1 Discussion
The five systems described in this dissertation each contained a rich set of features and inter-
actions. The decision to implement a full-featured system is so that we can conduct holistic
evaluations with users performing tasks under more realistic scenarios such as in field deploy-
ment settings. Implementing complete systems also allowed for comparison against commercial
software such as Google Spreadsheets. Below I discuss the primary mechanism of each system
that contributed to their performance in the evaluations:

The primary mechanism of Alloy was the sampling stage where crowdworkers iteratively learn
the global context. This was an improvement over the traditional approach of showing fixed sets
of items because it allowed workers to dynamically adjust the amount of effort spent on learn-
ing global context – if the dataset is complex with many categories crowdworkers can sample
more items. Important secondary mechanisms included the searching stage where crowdworker
evaluate and refine their categories, and training an SVM model to reduce the monetary costs.

The main contribution of Revolt was a novel paradigm for crowdsourced label collection that
shifted the task of schema creation (i.e., labeling guidelines) from the requesters to the crowd-
workers. The intuition behind this was that requesters may not have the capacity to fully un-
derstand the dataset to create comprehensive guidelines, and we instead employ crowdworkers
who collectively examined all items in the datasets to capture uncertain cases while labeling
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them. The primary mechanisms were both using disagreements between crowdworkers to iden-
tify uncertain items, and allowing them to exchange viewpoints to structure them as global con-
text for the requesters to make post hoc decisions.

The main findings from evaluating SearchLens were quantitative evidence showing that access
to the global context provided strong incentives for users to externalize and maintain their evolv-
ing interests, and qualitative evidence showing that capturing user interests lead to long term
benefits of composing and reusing interests expressions across sessions and scenarios. The
primary mechanism was the interactive visual explanations that allowed users to compare op-
tions and explore each more deeply. Specifically, results showed key-word level explanations
were crucial for incentivizing users to externalize their interests with significantly more keywords
and refining them more frequently, and that the interaction logs showed that participants were
constantly interacting with the visual explanation by filtering reviews to see mentions of their
different keywords.

The main assumption behind Weaver was that users rely on multiple information sources to
evaluate the options they encountered throughout their exploration, but doing so in the browser
can incur high interaction costs. The primary mechanism for supporting this process was pre-
senting entity cards about options mentioned across webpages which served as both portals for
accessing evidence across information sources about entities (infusion), and as placeholders
for users to externalize their own opinion about data (diffusion). This allowed users to con-
sider more sources when evaluating options, as well as accumulate evidence across information
sources to build up a better understanding of their options. Secondary features such as maps
and categories were designed to further reduce interaction costs.

Mesh took a holistic approach by introducing a rich set of features addressing three major design
goals uncovered by the need-finding interviews. Post interviews from the field deployment study
revealed features that were valued by the participants. Most prominently, participants valued
the criteria-specific ratings that automatically populate once a criterion was added to the table.
Participants used this feature to differentiate options that had similar overall ratings by seeing
discrepancies between them when the ratings were broken down by their different criteria. This
suggests that providing global context without considering users’ intents may not be sufficient.
Especially in cases where options can have many criteria but only a subset of them was relevant
to the user. Uses for secondary features that focused on externalization, such as changing the
default criteria scores or assigning weights to criteria, had varying degrees of usages across
different participants, with some who externalized extensively to keep track of their research
progress and others who preferred to keep most of their progress in their heads.

8.2 Take-aways

8.2.1 Users Expressed Intents to Explore Global Context

Instead of taking a top-down approach such as aggregation or summarization, this dissertation
explored ways to support users in the bottom-up exploration of individual items to iteratively
refine their goals and evaluate them under the global context. One of the core challenges here
is the extra interaction costs for users to express their evolving goals to the systems. For this,
one common interaction pattern used in this dissertation was allowing users’ to discover and
externalize key concepts from data by picking out keywords from data. This allowed the systems
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a way to provide immediate payoff via searching and summarizing relevant items in the dataset
and presenting them to users as context about the concepts.

One instance of such interaction was the sample and search pattern in Alloy (Chapter 3) where
crowdworkers first identified key categories in the sampling phase, and then highlighted key-
words in the text snippets to further externalize their categories to the system. The system in
turn presented search results of other items in the dataset that mentioned the keywords, al-
lowing crowdworkers to evaluate both their categories and keywords under the global context.
Evaluation results suggest that through sample and search, crowdworkers were able to identify
coherent categories at the right abstraction levels, as well as picking out discriminative keywords
to group items under them. In the second half of this dissertation, I explored how this pattern can
be used to benefit individuals conducting online sensemaking tasks, and found direct evidence
that it can incentivize users to express their intents more richly to the system. Specifically, in
Chapter 5, SearchLens allowed users to collect sets of weighted keywords from reading reviews
to represent their different interests. The system in turn generated visual explanations in the
search results to provide context based on users’ current interests. I found direct evidence that
participants expressed their interests in SearchLens using significantly more keywords when
compared to a baseline variant that does not support the visual explanations. Less directly, in
Chapter 7, one of the most valued features from the Mesh field deployment study was that it
allowed participants to discover criteria from reading reviews and externalize them to see the
average ratings of reviews that mentioned the criteria across their different options.

In sum, while traditional information retrieval studies have shown difficulties in getting users to
express search goals more richly, these results support the thesis statement of this dissertation
by showing that accessing global context is important when trying to make sense of large and
unstructured datasets, and can be used to incentivize users to externalize their evolving interests
for their own benefits.

8.2.2 Harnessing User’s Ability to Identify Good Keywords

One core assumption made by Alloy (Chapter 3) was that crowdworkers are able to identify
useful keywords from data during sample and search so the system can search for other items
to put under the same categories. This interaction was designed in a way to harness crowd-
workers’ existing proficiency in figuring out good query keywords from data based on their past
experiences with online exploratory searches. For example, allowing crowdworkers to freely
change their highlighted keywords and update the search results in real-time to create a familiar
experience of query reformulation based on search results [117]. I found direct evidence for the
above assumption by comparing two of the baseline conditions in Chapter 3 – clustering the
text snippets using all words as features versus using the same clustering algorithms but using
only keywords highlighted by the crowdworkers as features. Results showed that crowdwork-
ers were highlighting discriminative keywords that lead to clusters that better matched with the
gold-standard categories. I extended these insights in two of the individual sensemaking support
tools introduced later – SearchLens (Chapter 5) and Mesh (Chapter 7), where users identified
keywords in the reviews that were representative of their different interests and externalize them
to the systems to see immediate feedback. This allowed users to evaluate their findings under
the global context and also quickly refine their keywords representation. In sum, since users
were already proficient in figuring out good search keywords from data based on their past ex-
periences, we can leverage this ability to both capture their current intents as well as search
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across the datasets for evidence about their intents to support global context.

8.2.3 In-Situ Global Context Promotes Learning Deep Insights from Data

Based on an observation from the exploratory interviews in Chapter 7, many of the system de-
signs in Chapters 5 to 7 were influenced by how individuals often have two separate structures
that they needed to maintain when conducting complex search tasks. The first is their foraging
structure consisting of their different searches and webpages opened in their browser tabs. The
second structure is their evolving mental structure that they either kept in their minds or exter-
nalized to a separate interface, such as a notepad or a spreadsheet consisting of options they
were considering, criteria they use to compare them, and their evaluation of these options based
on how they interpreted data. However, maintaining the two structures and transferring informa-
tion between them can be cumbersome for users involving cross-referencing information across
browser tabs, copying- and pasting information, and re-finding previously saved information.

To bridge this gap, one common approach used in this dissertation is an in-situ design that al-
lows global context to be presented on-demand and embedded into users’ exploration process.
Specifically, users in Waver can access relevant information across their different browser tabs
as new options are discovered; and, users in Mesh can group sets of tabs together into options
and compare relevant evidence across different options when a new criterion is discovered. Re-
sults presented in Chapter 6 and Chapter 7 showed that these in-situ designs supported the the-
sis that by providing global context based on users’ interests can lead to users learning deeper
insights from data. Most directly, in Chapter 6, we found quantitative results that participants
assigned to used Weaver collected evidence from 60

In sum, online sensemaking support tools that are available today largely treat the two struc-
tures independently – Tab management browser add-ons focused on helping users in managing
information sources more efficiently, and personal information management interfaces focused
on supporting users in organizing the collected information. However, the process of gathering
and cross-referencing evidence across information sources in the foraging structure and transi-
tioning them into the sensemaking structure is poorly supported. This dissertation explored a
design space that bridges the foraging structure, where information is divided by their sources,
and the sensemaking structure, where scattered information needs to be synthesized. Evidence
showed that this allowed the systems to provide context around key concepts (i.e, options and
criteria) as they were discovered by the users, allowing them to gain deeper insights from data
with lowered interaction costs (Chapter 7).

8.2.4 Providing Global Context in Microtasks for Crowdworkers

Providing global context is a fundamental issue for complex crowdsourcing tasks because each
crowdworker is limited by the scope of microtasks and therefore typically only sees a small
portion of the entire datasets. This lack of global context could lead to crowdworkers creating
incoherent categories under the global context based on their local views of data. In Chapter 3 I
focused on this core problem in the task of creating globally coherent categories (i.e., clustering)
by introducing the sample and search interaction. Unlike prior work that tried to provide global
context with larger but still fixed sets of items to each crowdworker, Alloy instead instructed
crowdworkers to repeatedly sampled from the entire dataset until they were confident that they
had found four items that belong to different categories to build up global context. The trade-off

114



made here was that each crowdworkers in Alloy actually started with fewer items compared to
previous systems in order to offset the additional effort of learning global context through sam-
pling (4 items in Alloy vs 10 in [9] and 8-10 in [59]). Evaluation results suggested this to be a
favorable trade-off that led to structures that were more coherent when compared to a prior sys-
tem [59] and with around a third of the monetary costs. While we picked four samples empirically
to control for microtasks complexity, the optimal number of samples will likely depend on both the
complexity of the individual data as well as the distribution of categories overall. For example,
increasing the number of samples each crowdworker needed to find will increase the chance
of capturing long-tail categories with few items but at the cost of increased workload. While I
evidence showed sample and search can effectively provide global context when categorizing
collections of text snippets, expanding sample and search to create more complex structures in
microtasks remained an interesting future research direction. For example, expanding Alloy to
create topic models for longer articles that contain sections that are of different categories, or
taking a step further and identifying relationships between identified categories.

8.2.5 Structuring Global Context with Crowdworkers for Requesters

This dissertation also explored a second fundamental issue of complex crowdsourcing tasks that
were less discussed in the literature: Requesters also need support for global context since they
typically turn to crowdsourcing for its ability to scale to large datasets in the first place and do not
have the capacity to examine the data fully. For complex data, this lack of global context could
lead to microtasks that were not well defined to cover the long tail of edge cases in data leading
to incoherent labels.

The second system, Revolt (Chapter 4), focused on this problem in the context of labeling items
using predefined categories but without comprehensive guidelines from the requesters. Revolt
introduced the interaction pattern of vote-explain-categorize that shifts the effort of requesters
trying to generate comprehensive labeling guidelines based on a limited understanding of data
to the crowdworkers who distributedly explored all items in the datasets. This is achieved by har-
nessing disagreement between crowdworkers to identify items that were ambiguous under an
incomprehensive guideline, and allowing crowdworkers to create new categories to capture the
ambiguous cases. This process is analogous to the representational shift loops in the sense-
making framework for individuals proposed in [191] but does so in a distributed fashion. Here
the requesters generated the initial schema (i.e., the predefined class labels) which is handed
off to the crowdworkers to explore the individual items to identify residues that does not fit the
initial schema and expand the working schema by categorizing the residues.

Fundamentally this distributed sensemaking process can allow crowdsourcing to not only scale
and process large numbers of items but also use crowdworkers to scale to more complex
datasets by distributedly exploring the dataset to capture and report back cases unknown to the
requesters who had limited global understanding of data. Evaluation results suggested that the
crowd can generate consistent structures through vote-explain-categorize that can lead to more
consistent training labels while eliminating the need for requesters to create comprehensive
guidelines. In addition, while traditional crowdsourcing systems typically treated disagreements
as noise from crowdworkers doing a poor job, Revolt instead showed that it can be valuable
signals for capturing ambiguity in microtasks and structuring them.
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8.3 Design Pattern

Figure 8.1: A general system design pattern.

In general, the systems described in this dissertation followed the above sensemaking design
pattern that aimed to provide better support for global context during bottom-up exploration of
large and unstructured data. The framework starts with users exploring individual pieces of
information in the dataset. For individuals, this is typically the initial queries when conducting
online exploratory searches with Yelp, Google, or Amazon as in Chapters 5 to 7, respectively.
Similarly, the crowd system Alloy (Chapter 3) simulated this process by allowing workers to re-
peatedly sample from the datasets to iteratively build up a better understanding of the space of
information. As users process the individual pieces of evidence, they discover concepts that
were important to their task. In the case of Alloy, this would be crowdworkers identifying cate-
gories to for organizing items in the dataset; in the case of SearchLens and Mesh, this would be
individuals identifying criteria from a restaurant or product review that fits users’ personal inter-
ests; and in the case of Weaver, this would be users identifying a restaurant or travel destination
on a webpage.

Since the users often discovered useful concepts from examining a single piece of information,
it can be difficult for them to evaluate such concepts under the global context without spending
significant effort. For example, a consumer comparing products may find a recommendation on
one webpage but wonder whether other websites also recommend it. Reading the review she
might discover useful criteria about the type of product she is researching, but figuring out how
all the different options performed for that specific criteria can be very high costs, requiring her to
go through many reviews for each option. Motivated by this need, users then externalize newly
identified concepts to the systems to access relevant information across the entire dataset. In
the case of Alloy, crowdworkers highlighted keywords in the sampled items to search for other
items across the dataset to group them into the same categories; in the cases of SearchLens
and Mesh, users used keywords they identified in reviews as criteria to search for reviews across
different restaurants on Yelp or products on Amazon; and in the case of Weaver, users simply
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hover over an entity mention to express interests to the system.

The system, in turn, used the keywords or entity mentions to search across the entire dataset
(i.e., text items in a dataset in Alloy, reviews of different options in SearchLens and Mesh, or
text snippets across different browser tabs in Weaver), and summarizes the search results
to provide concept-specific global context to the users. In the systems presented in this dis-
sertation, this included directly showing a list of search results in Alloy, showing the average
ratings of reviews that mentioned specific criteria in Mesh, and presenting visual explanations
for each search result in SearchLens. In addition to the summarizations, all systems also al-
lowed its users to drill-down and explore each item in the search results which often leads to
new iterations of discovering and externalizing new concepts for further investigation forming a
discovery-exploration loop.

Evaluation results presented in Chapter 3 showed that the same clustering algorithm performed
better when only using keywords selected by the crowdworkers when compared to using all
words as features. This showed that crowdworkers were capable of selecting discriminatory
keywords to represent the categories. Based on this insight, I continued to use this strategy
of allowing users to externalize their mental concepts (i.e., criteria) in systems that supported
individual online sensemaking later in this document. Admittedly, document search algorithms
still make occasional mistakes, and it is important to provide mechanisms to the users to recover
from system errors. For this, users can update the summaries generated by the systems to
better reflect their own interpretation of data. In the case of Alloy, crowdworkers labeled each
item in the search results to indicate whether they should be in the same category or not; in
the case of Mesh, individuals can change the average rating based on their own judgment after
reading the reviews. This pattern is especially important when the summaries themselves are
the final artifacts for users such as in Alloy (labeling items with categories) and Mesh (generating
a personalized product comparison table).

8.4 Future Directions
While I have shown evidence that eliciting search keywords from users can be an effective and
easy-to-understand interaction for capturing user intents, supporting scenarios where user in-
tents cannot be expressed in sets of keywords still require further exploration. One such scenario
could be when user intents require deeper semantic representations. For example, researchers
or product designers exploring analogical ideas between paper abstracts or design descriptions
[40, 235]. Keywords in these cases can be less effective since people in different fields might use
different terminologies to describe semantically similar concepts. Further, analogies can often
consist of multiple concepts with complex relationships between them. Another scenario could
be to support non-textual data. For example, how can Alloy be extended to structure sets of
images if we want to explore and understand online memes and their underlying culture and dis-
course [87]? Similarly, images (such as memes) can also contain multiple concepts and complex
logic such as to express humor or insults. Supporting these will likely involve novel crowdsourc-
ing mechanisms for capturing deep human semantic understanding of data and computation
techniques for scale and generalization.

From inducing the general design pattern described in the previous section, I see two promising
directions for future research. Firstly, can we extend this framework to also help users evaluate
the information sources? For example, providing global context around a reviewer by summariz-
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ing past reviews might help users better evaluate how well the current review fits their personal
context; providing context around a website could help users determine the credibility of the
information being consumed. With the rise of shill reviews and online misinformation, enabling
end-users to better evaluate information sources will likely be increasingly important. Secondly,
the design pattern also revealed opportunities for incorporating machine learning techniques
to provide better support. In the front-end, many existing machine learning techniques can be
incorporated to improve performance. For example, query expansion and relevance feedback
techniques could provide an alternative process for users to express and refine their intent ex-
pressions beyond selecting keywords; text summarization and visualization techniques can be
used to aggregate the search results to provide easy-to-consume global context; recommender
systems and aspect extraction algorithms could bootstrap users to focus on promising options
and common criteria. On the back-end, enabling users to interact with information in a more
structured and organized way could also allow for capturing fine-grained user judgments for
training models that can consider the nuanced preferences of different users. For example,
recommending products not only based on overlapping purchase histories, but also taking into
account the criteria past users considered.

8.5 Concluding Remarks
Bottom-up exploration of large quantities of unstructured information is ubiquitous, but it can
also be challenging to users due to the individual’s limited capacity to understand global context
throughout the exploration. Crowdsourcing is one example of this where each crowdworker’s
capacity to process data is further limited by the scope of microscopes, and the requesters often
turn to crowdsourcing for scale and do not have the capacity to understand their own datasets
fully. Another example is consumer research, where users are faced with making decisions
based on their personal interpretation of an enormous amount of online evidence about many
different choices.

In this dissertation, I investigated the core thesis of providing global context during bottom-up
data exploration by designing and building five novel systems and interaction techniques. The
key insight is that users need global context that reflects their evolving interests to support sense-
making throughout their exploration. Through extensive lab and field studies, I demonstrated
benefits to users over existing approaches, including allowing users to identify patterns in data
and propose categories at the right abstraction level under the global context (Chapter 3), iden-
tify residue and improve current schema Chapter 4, evaluate new concepts based on current
interests under global context Chapters 5 and 6, and evaluate newly discovered criteria to priori-
tize research efforts Chapter 7. Better support for bottom-up data exploration is likely to become
increasingly important these two scenarios explored in this document: For crowdsourcing, mod-
ern machine learning models demand increasingly large amounts of high-quality training labels;
and for individual online research, the rise of online misinformation and shill reviews makes tra-
ditional automated aggregation techniques that increasingly vulnerable. This thesis introduced
novel interaction paradigms and insights about how users can benefit from them, as well as a
general design pattern that can inform the building of future systems that can support global
context during bottom-up data exploration.
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