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ABSTRACT 

 

Recent advances in brain imaging and machine learning technologies offer a 

significant new approach to studying language processing in humans. For the first time, 

theories regarding how linguistic concepts are processed can be directly validated and 

grounded by the patterns of brain activity while people comprehend words and phrases. 

In this dissertation, we used functional magnetic resonance imaging (fMRI) to study the 

cortical systems that underpin semantic processing of various linguistic concepts, 

including nouns of concrete object (e.g. dog), adjective-noun phrases (e.g. strong dog), 

and noun-noun concept combinations (e.g. corn coat). 

The thesis of this research is that the distributed pattern of brain activity encodes 

the meanings of linguistic concepts and an intermediate semantic representation can be 

used to model how brain represents and processes conceptual knowledge in terms of 

more primitive semantic features. Our effort in multivariate analysis shifts the focus of 

fMRI analysis from characterizing the location of brain activity (traditional univariate 

approaches) toward understanding how patterns of brain activity differentially encode 

information in a way that distinguishes among different stimuli. By postulating that the 

brain activity is based on an intermediate semantic level of representation and 

subsequently learning the correspondence between semantic features and observed brain 

activity, this work provides a neural account of some existing linguistic theories and 

furthermore enables a predictive theory that is capable of extrapolating the model of the 

brain activity to previously unseen words and phrases.  



MAIN RESULTS 

 

1. By postulating that the brain activity is based on an intermediate semantic level of 

representation (derived from word co-occurrence statistics or feature norming 

studies), this work enables a computational model that can help predict brain 

activity for a new stimulus, based on its relation to the semantic level of 

representation. 

2. The difference in brain activity when contemplating an isolated noun (e.g. dog) 

vs. the same noun modified by an adjective (e.g. strong dog) can be detected by 

machine learning classifiers and modeled by vector-based semantic composition 

model to provide a neural account of how people use adjectives to modify the 

meaning of the noun. 

3. The distributed pattern of brain activity contains sufficient signal to decode 

between a property-based interpretation (e.g. a coat that is bright yellow) and a 

relation-based interpretation (e.g. a coat that is used to protect corn) of the 

identical visual stimuli (e.g. corn coat), and furthermore, provides a neural 

account of how relation-based interpretation are more accessible to humans. 

4. Bayesian probabilistic analysis offers a new approach to characterize semantic 

representation by inferring the most likely feature structure directly from the 

patterns of brain activity.  The neurally-inspired semantic representation is 

consistent with some existing conjectures regarding the role of different brain 

areas in processing different psycholinguistics features. 
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1 INTRODUCTION 

We are at an especially opportune time in the history of the study of human cognition. 

Brain imaging technology allows us to directly observe and model brain activity associated with 

cognitive processes. Techniques from statistics and machine learning allow us to construct 

quantitative computational models that describe these cognitive brain processes. Furthermore, 

they allow us to construct mental state decoders that accurately predict certain aspects of thought 

from measured brain activity. In addition to the scientific impact of better understanding the 

representation and processing of human cognition, this research will lead to many applications 

and broad impacts. For example, a brain-computer interface (BCI) device that could decode 

internal speech may enable locked-in patients to communicate. Pattern classifiers can be used to 

identify processing abnormalities in autism or detect neuropsychiatric illnesses such as 

schizophrenia. 

Computational neurolinguistics is an emerging research area which integrates recent 

advances in computational linguistics and cognitive neuroscience, with the objective of 

developing cognitively plausible models of language and gaining a better understanding of the 

human language system. It builds on research in decoding cognitive states from recordings of 

neural activity, and computational models of lexical representations and sentence processing. 

Advances in computational neurolinguistics require close collaboration between neuroscience, 

language technology, cognitive psychology, and machine learning. To this end, my thesis work 

helps advance existing work and initiates new research. 

How humans represent meanings of individual words and how lexical semantic 

knowledge is combined to form concepts, phrases, or sentences are issues fundamental to the 

study of human language. Recent advances in functional magnetic resonance imaging (fMRI) 
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provide a significant new approach to studying semantic representations in humans by making it 

possible to directly observe brain activity while people comprehend words and sentences. fMRI 

measures the hemodynamic response (changes in blood flow and blood oxygenation) related to 

brain activity in the human brain. Images can be acquired at good spatial resolution and 

reasonable temporal resolution – the activity level of 15,000 - 20,000 brain volume elements 

(voxels) of about 50 mm3 each can be measured every second. Studies have shown that the fMRI 

signal is proportional to the local average neuronal activity, although the relationship is 

modulated by many factors (Heeger & Ress, 2002; Logothetis et al., 2001; Bandettini & 

Ungerleider, 2001). 

Traditional analysis of fMRI data uses the General Linear Model (GLM) (Friston, 2005) 

to find voxels whose activation time-series reflect alternations between experimental conditions 

of interest (e.g. periods when a task is being performed versus a rest period). The GLM analysis 

is often referred to as mass univariate analysis since significance tests are typically performed at 

every voxel in the brain. Mass univariate analysis has identified the cortical activation associated 

with language processing to be strongly lateralized in the left cerebral hemisphere and involving 

a network of regions in the frontal, temporal, and parietal lobe. Bookheimer (2002), summarizing 

contemporary fMRI analyses, identified the role of the left inferior frontal lobe (Broca’s area) in 

semantic processing, the role of the temporal robe (Wernicke’s area) in organization of 

categories of objects and concepts, and the role of the right hemisphere in comprehending 

contextual and figurative meaning, although left temporoparietal activation outside the classical 

“Wernicke area” and left prefrontal activation outside the classical “Broca’s area” were also 

reported (Binder et al., 1996). Most of the fMRI studies in language processing utilize  mass-

univariate approaches to contrast regions of brain areas in processing conditions like ambiguity 
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(Rodd, Davis, & Johnsrude, 2005), novelty (Saykin et al., 1999), syntax (Dapretto & 

Bookheimer, 1999), metaphor (Mashal et al., 2007), and sentence comprehension (Just et al., 

1996). 

Haxby et al. (2001) was one of the first studies to apply multivariate analysis to study the 

distributed patterns of fMRI activity. They showed a distinct pattern of response in ventral 

temporal cortex could be found while participants viewed faces and objects, and furthermore, 

that machine learning classifiers could be used to decode what stimuli the participants were 

viewing. Their results supported a distributed and overlapping representation of faces and 

objects. Since then, multivariate analyses of fMRI activity have shown that classifiers can be 

trained to decode which of several visually presented objects or object categories a person is 

contemplating, given the person’s fMRI-measured brain activity (Cox & Savoy, 2003; O'Toole 

et al., 2005; Haynes & Rees, 2006; Mitchell et al., 2004). Moreover, multivariate analyses of 

fMRI activity have shown that classifiers can be trained to decode the visual and subjective 

contents of the human brain (Kamitani & Tong, 2005), the orientation of invisible stimuli 

(Haynes & Rees, 2005), lie detection (Davatzikos, 2005), stream of consciousness (Haynes & 

Rees, 2005), speech content and speaker identity (Formisano et al., 2008). 

1.1 Problem Statement 

Given these succesess in multivariate analysis of fMRI  activity, it is interesting to ask 

whether a similar approach can be used to study the representation of linguistic concepts like 

nouns and phrases. Thus, the first question we ask is: 

 

1. Does the distribution of neural activity encode sufficient signal to decode 

linguistic concepts like nouns and phrases? 
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One research direction is to investigate the granularity that the distributed patterns of 

activity encodes. For instance, how many different semantic categories (e.g. tools, dwellings) or 

objects (e.g. hammer, house) can machine learning classifiers decode? Can classifiers 

discriminate the subtle difference of a noun (e.g. dog) from an adjective-noun phrase (e.g. strong 

dog), where the adjectives are expected to emphasize certain semantic properties of the nouns 

(e.g. the physical attribute of the dog)? Moreover, most of the current mental state decoding 

research focuses on stimuli that are rich in visual input or brain activities in early visual areas 

(Ishai et al., 2000; Cox & Savoy, 2003; Kay et al., 2008; Thirion et al., 2006; Harrison & Tong, 

2009; Haynes & Rees, 2005). Do classifiers obtain their discriminative power from 

distinguishing the brain activity of low-level visual perceptions, or are they capable of decoding 

the higher-level characterization of semantic differences? Does the distributed pattern of brain 

activity contain sufficient signal to decode the differences in different interpretations (e.g. a coat 

that is bright yellow vs. a coat that is used to protect corn) of the same visual stimuli (e.g. corn 

coat)? Finally, what is the effect of different stimuli (e.g. pictures vs. text-labels) on classifier 

performance? 

Despite the early success of mental state decoding research, discriminative classification 

provides a characterization of only a particular dataset, and does not reveal the underlying 

principles that would allow for generalization to other stimuli. One way to obtain this 

extensibility is to construct a model which postulates that the brain activity is based on an 

intermediate semantic level of representation. Then the model can predict the activation for a 

new stimulus, based on its relation to the semantic level of representation. In effect, this is how 

regression models typically generate predicted values. A regression model that successfully 
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models the intermediate semantic factors underpinning object knowledge would have this 

generative capability. Thus, the second question we ask is: 

 

2. Can intermediate semantic representation be used to model how the brain 

composes the meaning of words or phrases in terms of more primitive semantic 

features? 

 

There have been a variety of approaches from different scientific communities trying to 

capture the intermediate semantic attributes and organization underlying object- and word-

representation. Linguists have tried to characterize the meaning of a word with feature-based 

approaches, such as semantic roles (Kipper, Dang, & Palmer, 2000), as well as word-relation 

approaches, such as WordNet (Miller, 1995). Computational linguists have demonstrated that a 

word’s meaning is captured to some extent by the distribution of words and phrases with which it 

commonly co-occurs (Church & Hanks, 1990). Psychologists have studied word meaning in 

many ways, one of which is through norming studies (Cree & McRae, 2003) in which human 

participants are asked to list the features they associate with various words. There are also 

approaches that treat the intermediate semantic representation as hidden (or latent) variables and 

use techniques like the traditional principle component analysis (PCA) and factor analysis, or the 

more recent hyperspace analogue to language model (HAL; Lund & Burgess, 1996), latent 

semantic analysis (LSA: Landauer & Dumais, 1997) and topic models (Blei, Ng, & Jordan, 2003) 

to recover these latent structures from text corpora. Kemp et al. (2007) have also presented a 

Bayesian model of inductive reasoning that incorporates both knowledge about relationships 

between objects, and knowledge about relationships between object properties. The model is 
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useful to infer some properties of previously unseen stimuli, based on the learned relationships 

between objects. Finally, connectionists have long employed hidden layers in their neural 

networks to mediate non-linear correspondences between input and output. Hanson, Matsuka, & 

Haxby (2004) proposed a neural network classifier with hidden units to account for brain 

activation patterns, but the learned hidden units are difficult to interpret in terms of an 

intermediate semantic representation. For the cognitive scientists and linguists, the primary 

question is “how" and "why" the patterns of neural activity encode the meaning of words or 

concepts. In this study, we first use semantic representation derived from norming studies or 

corpus statistics that enable cognitive interpretation. We then use an infinite latent feature model 

(ILFM) with an Indian Buffet Process (IBP) (Griffiths & Ghahramani, 2005) to derive a 

semantic representation directly from brain activity and further show that such data-driven 

semantic representation is consistent with human ratings of the words. 

Notice that in this work we distinguish between semantic representation and semantic 

processing. Whereas the former describes how the meaning of a concept is represented (e.g. is 

the semantic content of a word atomic or compounded?), the latter describes how processing of a 

concept is distributed spatially (e.g. does processing of a concept involve brain activity localized 

in a few voxels or distributed across a number of brain regions?). Both representation and 

processing can either be localized or distributed – the two need not be mutually exclusive. To 

foreshadow our results, we have shown distributed accounts for both semantic representation and 

semantic processing. 



 Neural representation of nouns and phrases  29 

1.2 Thesis Statement 

The thesis of this research is that the distributed pattern of brain activity encodes the 

meanings of linguistic concepts and an intermediate semantic representation can be used to 

model how brain represents and processes conceptual knowledge in terms of more primitive 

semantic features. Our goal is to build a computational model of the brain activity when people 

contemplate nouns and phrases. More specifically, machine learning classifiers can be trained to 

decode which linguistic concepts a person is contemplating. By postulating that the brain activity 

is based on an intermediate semantic level of representation, and subsequently learning the 

correspondence between semantic features and observed brain activity, this work provides a 

neural grounding of some existing linguistic theories and furthermore enables a predictive theory 

that is capable of extrapolating the model of the brain activity to previously unseen words and 

phrases. 

1.3 Approach 

To answer the questions proposed in this thesis, we designed a series of brain imaging 

experiments. In an object-contemplation task, participants were presented with line drawings 

and/or text labels of objects and were instructed to think of the same properties of the stimulus 

object consistently during multiple presentations of each item. fMRI recorded  brain activation 

while people contemplated various linguistic concepts, including concrete objects (e.g. dog), 

adjective-noun phrases (e.g. strong dog), and noun-noun concept combinations (e.g. corn coat). 

In this section, we will discuss the general experimental paradigm and modeling methodology 

used throughout our brain imaging studies. 



 Neural representation of nouns and phrases  30 

1.3.1 Brain Imaging Experiments 

In an object-contemplation task, participants were presented with line drawings and/or 

text labels of objects and were instructed to think about the same properties of the stimulus 

object consistently during six presentations of each item. To ensure that participants had a 

consistent set of properties to think about, they were each asked to generate and write a set of 

properties for each exemplar in a session prior to the scanning session (such as “4 legs, house 

pet, fed by me” for dog), however, nothing was done to elicit consistency across participants. 

Each item was presented six times during the scanning session, in a different random order each 

time. Participants silently viewed the stimuli and were asked to think about the same item 

properties consistently across the six presentations of the items. 

Each stimulus was presented for 3s, followed by a 7s rest period, during which the 

participants were instructed to fixate on an X displayed in the center of the screen. There were 

two additional presentations of fixation, 30s each, at the beginning and end of each session, to 

provide a baseline measure of activity. A schematic representation of the design used in the 60 

concrete objects experiment is shown in Figure 1.1. 

 

 
Figure 1.1 Schematic representation of the experimental design for the object-contemplating brain 

imaging experiment. 
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1.3.2 Data Acquisition and Processing 

Functional images were acquired on a Siemens Allegra 3.0T scanner (Siemens, Erlangen, 

Germany) at the Brain Imaging Research Center of Carnegie Mellon University and the 

University of Pittsburgh using a gradient echo EPI pulse sequence with TR = 1000 ms, TE = 30 

ms, and a 60° flip angle. Seventeen 5-mm thick oblique-axial slices were imaged with a gap of 1-

mm between slices. The acquisition matrix was 64 x 64 with 3.125 x 3.125 x 5-mm voxels. The 

parameters have been chosen to accentuate the spatial (as opposed to temporal) distribution of 

neural activity. Data processing were performed with Statistical Parametric Mapping software 

(SPM2, Wellcome Department of Cognitive Neurology, London, UK; Friston, 2005). The data 

were corrected for slice timing, motion, and linear trend, and were temporally smoothed with a 

high-pass filter using a 190s cutoff. The data were normalized to the MNI template brain image 

using a 12-parameter affine transformation and resampled to 3 x 3 x 6-mm3 voxels. 

The percent signal change (PSC) relative to the fixation condition was computed for each 

item presentation at each voxel. The mean of the four images (mean PSC) acquired within a 4s 

window, offset 4s from the stimulus onset (to account for the delay in hemodynamic response), 

provided the main input measure for subsequent analysis. The mean PSC data for each word 

presentation were further normalized to have mean zero and variance one to equate the variation 

between participants over exemplars. Due to the inherent limitations in the temporal properties of 

fMRI data, we consider only the spatial distribution of the neural activity after the stimuli are 

comprehended, and do not attempt to model the cognitive process of comprehension. 
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1.3.3 Decoding mental states 

To find out if the distribution of neural activity encode sufficient signal to decode 

linguistic concepts like nouns and phrases, classifiers were trained to identify cognitive states 

associated with viewing stimuli from the evoked pattern of functional activity (mean PSC). 

Classifiers were functions f of the form: f: mean_PSC → Yi, i=1,…n, where Yi were the sixty 

exemplars, and mean_PSC was a vector of mean PSC voxel activation level, as described above.  

Since fMRI acquires the neural activity at 15,000 – 20,000 distinct voxel locations, many 

of which might not exhibit neural activity that encodes word or phrase meaning, the classifier 

analysis selected the voxels whose responses to the different items were most stable across 

presentations. Voxel stability was computed as the average pair-wise correlation between all 

stimuli across presentations, using only the training set within each fold in the cross-validation 

paradigm. The focus on the most stable voxels effectively increased the signal-to-noise ratio in 

the data and facilitated further analysis by classifiers. 

To evaluate classification performance, data were divided into training and test sets. A 

classifier was built from the training set and evaluated on the left-out test set. Classification 

results were evaluated using six-fold cross validation, where one of the six repetitions was left 

out for each fold. The voxel selection procedure was performed separately inside each fold, using 

only the training data. Since multiple classes were involved, rank accuracy was used (Mitchell et 

al., 2004) to evaluate the classifier. Given a new fMRI image to classify, the classifier outputs a 

rank-ordered list of possible class labels from most to least likely. The rank accuracy is defined 

as the percentile rank of the correct class in this ordered output list. Rank accuracy ranges from 0 

to 1. Classification analysis was performed separately for each participant, and the mean rank 

accuracy was computed over the participants. 
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1.3.4 Modeling intermediate semantics 

To find out if models of semantic representation can be used to model how the brain 

composes the meaning of words or phrases in terms of more primitive semantic features, 

regression analysis was performed to explain the systematic variances in neural activity with 

semantic features. There are two steps in this modeling framework. First, we represent word 

meaning with a vector of primitive features. Then, by learning the mapping between feature and 

neural activation, the generative model is capable of predicting neural activity for previously 

unseen words. For multi-words phrases, there is an additional step that models the semantic 

composition rule that governs how words are combined to form phrases. Figure 1.2 depicts the 

modeling framework for multi-words phrases.  In this work, we use semantic feature 

representations derived from norming studies and corpus statistics. The details of semantic 

representations and semantic composition rules used in the three experiments are reported in the 

Method sections of the respective chapters.  In the following section, we will discuss the 

regression model that is used in all three experiments to learn the mapping between feature and 

neural activation.
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Figure 1.2 Modeling framework of the intermediate semantic representation. Each concept (e.g. corn, 
dress) is represented with a vector of features. By learning the mapping between feature and neural 

activation, the generative model is capable of predicting neural activity for previously unseen words. For 
multi-words phrases (e.g. corn dress) , there is an additional step that models the semantic composition rule 

that governs how words are combined to form phrases.  

 

1.3.5 Learn feature-voxel mapping with regression models 

In order for the generative model to make predictions for neural activity, we learn the 

feature-voxel mapping by training a regression model to fit the activation profile for the stimuli. 

The regression model examined to what extent the semantic feature vectors (explanatory 

variables) can account for the variation in neural activity (response variable) across the different 

stimuli. All explanatory variables were entered into the regression model simultaneously. More 

precisely, the predicted activity av at voxel v in the brain for word w is given by 
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where fi(w) is the value of the ith intermediate semantic feature for word w, βvi is the 

regression coefficient that specifies the degree to which the ith intermediate semantic feature 

activates voxel v, and εv is the model’s error term that represents the unexplained variation in the 

response variable. Least squares estimates of βvi were obtained to minimize the sum of squared 

errors in reconstructing the training fMRI images. An L2 regularization with lambda = 1.0 was 

added to prevent overfitting given the high parameter-to-data-points ratios. A regression model 

was trained for each of the 120 voxels and the reported R2 is the average across the 120 voxels. 

R2 measures the amount of systematic variance explained by the model. Regression results were 

evaluated using six-fold cross validation, where one of the six repetitions was left out for each 

fold.  

Linear regression assumes a linear dependency among the variables and compares the 

variance due to the independent variables against the variance due to the residual errors. While 

the linearity assumption may be overly simplistic, it reflects the assumption that fMRI activity 

often reflects a superposition of contributions from different sources, and has provided a useful 

first order approximation in the field (Mitchell et al., 2008). Neural networks may be used to 

learn non-linear correspondences between semantic features and neural activity. However, the 

high parameter-to-data-points ratios will make non-linear methods more prone to overfitting. 

Thus, the choice of linear methods over non-linear methods is prompted by the amount of data 

points and not that one is more realistic than the other. 
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2 QUANTITATIVE MODELING OF THE NEURAL REPRESENTATIONS OF 

OBJECTS: HOW SEMANTIC FEATURE NORMS CAN ACCOUNT FOR FMRI 

ACTIVATION 

2.1 Introduction 

Recent multivariate analyses of fMRI activities have shown that discriminative classifiers, 

such as Support Vector Machines (SVM), are capable of decoding mental states associated with 

the visual presentation of categories of various objects, given the corresponding neural activity  

signature (Cox & Savoy, 2003; O'Toole et al., 2005; Norman et al., 2006; Haynes & Rees, 2006; 

Mitchell et al., 2004; Shinkareva et al., 2008). This shifts the focus of brain activation analysis 

from characterizing the location of neural activity (traditional univariate approaches) toward 

understanding how patterns of neural activity differentially encode information in a way that 

distinguishes among different stimuli. However, discriminative classification provides a 

characterization of only a particular set of training stimuli, and does not reveal the underlying 

principles that would allow for extensibility to other stimuli. One way to obtain this extensibility 

is to construct a model which postulates that the brain activity is based on a hidden intermediate 

semantic level of representation. Here we develop and study a model that achieves this 

extensibility through its ability to predict the activation for a new stimulus, based on its relation 

to the semantic level of representation. 

In the present work, functional Magnetic Resonance Imaging (fMRI) data is used to study 

the hidden factors that underpin the semantic representation of object knowledge. In an object-

contemplation task, participants were presented with 60 line drawings of objects with text labels 

and were instructed to think of the same properties of the stimulus object consistently during 

each presentation. Given the neural activity signatures evoked by this visual presentation, a 
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multivariate multiple linear regression model is estimated, which explains a significant portion of 

systematic variance in the observed neural activities. In terms of semantic attributes of the 

stimulus objects, our previous work (Mitchell et al., 2008) showed that semantic features 

computed from the occurrences of stimulus words within a trillion-token text corpus that 

captures the typical use of words in English text can predict brain activity associated with the 

meaning of these words. The advantage of using word co-occurrence data is that semantic 

features can be computed for any word in the corpus – effectively any word in existence. 

Nonetheless, these semantic features were assessed implicitly through word usage and may not 

capture what people retrieve when explicitly recalling features of a word. Moreover, despite the 

success of this model, which uses co-occurrences with 25 sensorimotor verbs as the feature set, it 

is hard to determine the optimal set of features. In this paper, we draw our attention to the 

intermediate semantic knowledge representation and experiment with semantic features 

motivated by other scientific communities.  

Here we model the intermediate semantic knowledge with features from an 

independently performed feature norming study (Cree & McRae, 2003), where participants were 

explicitly asked to list features of 541 words. Our results suggest that 1) object features derived 

from a behavioral feature norming study can explain a significant portion of the systematic 

variance in the neural activity observed in our object-contemplation task. Moreover, we 

demonstrate how a generative classifiera that includes an intermediate semantic representation 2) 

                                                 

a We use the term generative classifier to refer to a classifier that bases its prediction on a generative theory 

through some intermediate semantic representation. It is not the same as the typical usage of a generative model in 

Bayesian community, although one can adopt a fully Bayesian approach that models the intermediate semantic 

representation as latent variables. 
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generalizes better across participants, compared to a discriminative classifier that does not utilize 

such an intermediate semantic representation, and 3) enables a predictive theory that is capable 

of predicting fMRI neural activity well enough that it can successfully match words it has not yet 

encountered to their previously unseen fMRI images with accuracies far above chance levels, 

which simply cannot be done with a discriminative classifier. 

2.2 Material and Methods 

Participants. Nine right-handed adults (5 female, age between 18 and 32) from the 

Carnegie Mellon community participated and gave informed consent approved by the University 

of Pittsburgh and Carnegie Mellon Institutional Review Boards. Two additional participants 

were excluded from the analysis due to head motion greater than 2.5 mm. 

Experimental paradigm. The stimuli were line drawings and noun labels of 60 concrete 

objects from 12 semantic categories with 5 exemplars per category. Most of the line drawings 

were taken or adapted from the Snodgrass and Vanderwart (1980) set and others were added 

using a similar drawing style. Table 2.1 lists the 60 stimuli. Stimuli that were not part of Cree 

and McRae’s (2003) feature norming study (discussed later) are marked with asterisks. 
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Table 2.1 List of 60 Words. Stimuli that are not part of Cree and McRae’s (2003) feature norming 
study are marked with asterisks.  

Categories Exemplars 
Animal Bear, cat, cow, dog, horse 
Body part Arm*, eye*, foot*, hand*, leg* 
Building Apartment, barn, church, house, igloo* 
Building part Arch*, chimney*, closet, door, window* 
Clothing Coat, dress, pants, shirt, skirt 
Furniture Bed, chair, desk, dresser, table 
Insect Ant, bee*, beetle, butterfly, fly* 
Kitchen Bottle, cup, glass*, knife, spoon 
Man-made objects Bell*, key, refrigerator*, telephone, watch* 
Tool Chisel, hammer, pliers, saw*, screwdriver 
Vegetable Carrot, celery, corn, lettuce, tomato 
Vehicle Airplane, bicycle*, car, train, truck 

 

To ensure that each participant had a consistent set of properties to think about, they were 

asked to generate and write a set of properties for each exemplar in a separate session prior to the 

scanning session (such as cold, knights, stone for castle). However, nothing was done to elicit 

consistency across participants. 

The entire set of 60 stimuli was presented 6 times during the scanning session, in a 

different random order each time. Participants silently viewed the stimuli and were asked to 

think of the same item properties consistently across the 6 presentations. Each stimulus was 

presented for 3s, followed by a 7s rest period, during which the participants were instructed to 

fixate on an X displayed in the center of the screen. There were two additional presentations of 

the fixation, 31s each, at the beginning and at the end of each session, to provide a baseline 

measure of activity. A schematic representation of the design is shown in Figure 2.1. 
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Figure 2.1 Schematic representation of experimental design for the 60 word experiment. 

 

Data acquisition. Functional images were acquired on a Siemens Allegra 3.0T scanner 

(Siemens, Erlangen, Germany) at the Brain Imaging Research Center of Carnegie Mellon 

University and the University of Pittsburgh using a gradient echo EPI pulse sequence with TR = 

1000 ms, TE = 30 ms and a 60° flip angle. Seventeen 5-mm thick oblique-axial slices were 

imaged with a gap of 1-mm between slices. The acquisition matrix was 64 x 64 with 3.125 x 

3.125 x 5-mm voxels. 

Data processing and analysis. Data processing and statistical analysis were performed 

with Statistical Parametric Mapping software (SPM2, Wellcome Department of Cognitive 

Neurology, London, UK; Friston, 2005). The data were corrected for slice timing, motion, linear 

trend, and were temporally smoothed with a high-pass filter using 190s cutoff. The data were 

normalized to the MNI template brain image using 12-parameter affine transformation. 

The data were prepared for regression and classification analysis by being spatially 

normalized into MNI space and resampled to 3x3x6 mm3 voxels. We try to keep approximately 

the same acquisition voxel size which has been used in many of our previous studies and is 
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adequate for a list of different cognitive tasks. Voxels outside the brain or absent from at least 

one participant were excluded from further analysis. The percent signal change (PSC) relative to 

the fixation condition was computed for each object presentation at each voxel. The mean of the 

four images (mean PSC) acquired within a 4s window, offset 4s from the stimulus onset (to 

account for the delay in hemodynamic response) provided the main input measure for subsequent 

analysis. The mean PSC data for each word or picture presentation were further normalized to 

have mean zero and variance one to equate the variation between participants over exemplars.  

Furthermore, our theoretical framework does not take a position on whether the neural 

activation encoding meaning is localized in particular cortical regions. Shinkareva et al. (2007) 

identified single brain regions that consistently contained voxels used in identification of object 

categories across participants. The brain locations that were important for category identification 

were similar across participants and were distributed throughout the cortex where various object 

properties might be neurally represented. Thus, we consider all cortical voxels and allow the 

training data to determine which locations are systematically modulated by which aspects of 

word meanings. The main analysis selected the 120 voxels whose responses to the 60 different 

items were most stable across presentations (many previous analyses had indicated that 120 was 

a useful set size for our purposes). Voxel stability was computed as the average pairwise 

correlation between 60-item vectors across presentations. 

The stable voxels were located in multiple areas of the brain. Figure 2.2 shows voxel 

clusters from the union of stable voxels from all nine participants. As shown, many of these 

locations are in occipital, occipital-temporal, and occipital-parietal areas, with more voxels in the 

left hemisphere. Table 2.2 lists the distribution of the 120 voxels selected by the stability 

measure for each participant, sorted by major brain structures and size of clusters. 
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Figure 2.2 Voxel clusters from the union of stable voxels from all nine participants. Many of these 

locations are in occipital, occipital-temporal, and occipital-parietal areas, with more voxels in the left 
hemisphere. 

 

Table 2.2 Locations (MNI centroid coordinates) and sizes of the voxel clusters selected by the 
stability measure. 

Participant Label X Y Z Voxelsb Radius 
P1 Occipital           
  R Fusiform Gyrus 31.5 -50.4 -10 24 7.02 
  L Fusiform Gyrus -26.9 -50.9 -11.7 21 6.13 
  L Occipital Middle -20.1 -98.7 6 21 6.03 
  L Occipital Inferior -15.1 -91.1 -10.2 13 5.22 
  R Occipital Middle 34.9 -76 13 6 4.72 
  R Calcarine 6.2 -91.1 4 6 4.17 
       
P2 Medial Temporal           
  L Parahippocampal Gyrus -25 -42.2 -15 6 3.79 
  Occipital           
  R Calcarine 15.5 -96 -0.9 70 9.73 
  L Calcarine -16.6 -98.6 -4.1 22 7.1 
  L Cuneus -20.6 -60 15.6 5 3.51 
       

                                                 

b The number of voxels per participant is less than 120 because of a cluster size threshold 

of 5 voxels used in this table. 
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Participant Label X Y Z Voxels Radius 
P3 Parietal           
  L Precuneus -5.6 -57.5 24 5 2.65 
  Occipital           
  R Calcarine 18.2 -93.5 2.8 75 11.26 
  L Occipital Middle -17.1 -98.3 -1.5 28 7.73 
       
P4 Temporal           
  R Fusiform Gyrus 36.5 -40.1 -23 6 5.72 
  Parietal           
  L Supramarginal Gyrus -53.8 -33.1 33 10 4.56 
  L Parietal Inferior -35.4 -39.6 43 6 3.31 
  R Parietal Superior 19.4 -63.7 56.4 5 3.51 
  Occipital           
  L Fusiform -28.6 -53.1 -14 12 6.59 
  R Occipital Middle 32 -86.7 19.5 12 5.36 
  L Occipital Superior -13.2 -84.7 40 9 5.69 
  L Occipital Middle -31.6 -87.5 24 9 5.4 
  R Lingual 13.3 -101.2 -7.5 8 4.02 
       
P5 Temporal           
  L Fusiform Gyrus -31.5 -42.9 -18.8 15 5.3 
  R Fusiform Gyrus 34.4 -41.6 -16.2 13 4.51 
  Occipital           
  L Lingual -14.9 -89.7 -2.3 44 7.75 
  R Calcarine 20.5 -94.6 -2.9 35 8.45 
       
P6 Medial Temporal           
  R Parahippocampal Gyrus 25.9 -47.5 -13.2 10 6.47 
  Occipital           
  R Calcarine 17.3 -96.6 -1.1 51 10.92 
  L Occipital Middle -19.4 -97.8 -3.1 23 8.56 
  L Fusiform Gyrus -23.8 -49.5 -9.2 13 5.68 
  R Fusiform Gyrus 30 -71.9 -9.6 5 3.76 
       
P7 Temporal           
  L Fusiform Gyrus -28.8 -46.1 -16.5 20 5.96 
  Occipital           
  R Calcarine 8.8 -96.1 -2.1 35 7.93 
  R Fusiform Gyrus 31.2 -49.9 -14.9 21 5.65 
  L Calcarine -16 -98.8 -5.2 8 3.97 
  L Lingual -9.8 -88.8 -11.1 7 4.17 
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Participant Label X Y Z Voxels Radius 
P8 Temporal           
  L Temporal Inferior -45.5 -67.2 -7.7 14 5.09 
  Occipital           
       
  R Lingual 7.7 -87.9 -6.4 43 9.64 
  L Occipital Middle -18.2 -97.4 -1.9 28 8.48 
  R Calcarine 11.9 -100.3 -0.6 10 6.9 
       
P9 Temporal           
  L Fusiform Gyrus -31.8 -39.8 -21.3 11 5.04 
  R Temporal Inferior 45 -64.4 -3.6 5 3.61 
  Medial Temporal           
  R Parahippocampal Gyrus 23.8 -42 -15 16 5.05 
  Occipital           
  R Calcarine 20.6 -98 -2.5 19 5.42 
  L Occipital Middle -16.4 -102 4.5 8 5.61 
  L Occipital Middle -26.8 -88.4 35.1 7 4.15 
  L Lingual -20.3 -44.8 -10 6 4.16 
  R Occipital Middle 37.5 -78.8 38.4 5 3.68 

 

For classifier analysis, voxel stability was computed using only the training set within 

each fold in the cross-validation paradigm. For within-participants analysis, where the training 

data consist of 5 of the 6 presentations and the testing data consist of the remaining presentation, 

the voxel stability was computed using only the training data for that particular participant. For 

between-participants analysis, where the training data consists of 8 of the 9 participants and the 

testing data consist of the remaining participant, the voxel stability was computed using only the 

training data for the 8 participants. The focus on the most stable voxels effectively increased the 

signal-to-noise ratio in the data and also served as a dimensionality reduction tool that facilitated 

further analysis by classifiers. 

2.3 Approach 

In this study, we model hidden factors that underpin semantic representation of object 

knowledge with a multivariate multiple linear regression model. We adopt a feature-based 
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representation of semantic knowledge, in which a word’s meaning is determined by a vector of 

features. Two competing models based on Cree and McRae (2003)’s feature norming study were 

developed and evaluated using three types of criteria. The three types of evaluation criteria are a 

regression fit to the fMRI data, the ability to decode mental states given a neural activation 

pattern, and the ability to distinguish between the activation of two previously unseen objects. 

Figure 2.3 depicts the flow chart of our approach. 

 

 
Figure 2.3 The flow chart of the generative model. First, the feature norming features associated with 

the word are retrieved from Cree & McRae (2003). Secondly, the feature norming features are encoded into 
BR or DT knowledge types, which constitute the semantic representation. Then, a linear regression model 

learns the mapping between the semantic representation and fMRI neural activity. Finally, a nearest 
neighbor classifier uses the predicted neural activity generated by the regression model to decode the mental 

state (word) associated with an observed neural activity. 

 

2.3.1 Feature norming study 

One way to characterize an object is to ask people what features an object brings to mind. 

Cree and McRae’s (2003) semantic feature norming studies asked participants to list the features 

of 541 words. Fortunately, 43 of these words were included in our fMRI study. The words were 

derived from five domains that include living creatures, nonliving objects, fruits, and vegetables. 

The features that participants produced were a verbalization of actively recalled semantic 

knowledge. For example, given the stimulus word house, participants might report features such 
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as used for living, made of brick, made by humans, etc. Such feature norming studies have 

proven to be useful in accounting for performance in many semantic tasks (Hampton, 1997; 

McRae et al., 1999; Rosch & Mervis, 1975). 

Because participants in the feature norming study were free to recall any feature that 

came to mind, the norms had to be coded to enable further analysis. Two encoding schemes, 

Cree and McRae’s (2003) brain region (BR) scheme and Wu and Barsalou’s (2009) detailed 

taxonomic (DT) encodings, were compared. BR encoding was based on a knowledge taxonomy 

that adopts a modality-specific view of semantic knowledge. That is, the semantic representation 

of an object is assumed to be distributed across several cortical processing regions known to 

process related sensory input and motor output. BR encoding therefore groups features into 

knowledge types according to their relations to some sensory/perceptual or functional processing 

regions of the brain. For example, features for cow like eats grass would be encoded as visual-

motion, is eaten as beef as function, and is animal as taxonomic in this scheme. By contrast, DT 

encoding captures features from four major perspectives: entity, situation, introspective, and 

taxonomic, which are further categorized into 37 hierarchically-nested specific categories. For 

example, features for cow like eats grass would be encoded as entity-behavior, is eaten as beef 

as function, and is an animal as superordinate. Adapted from Cree and McRae (2003), Table 2.3 

lists the features and the corresponding BR and DT encodings for the words house and cow. 

Also, Table 2.4 and Table 2.5 list all the classes and knowledge types in BR and DT encodings 

that are relevant to our stimulus set. 

The analyses below are applied only to those 43 of the 60 words in our study that also 

occurred in Cree and McRae’s study. The missing stimuli are marked with asterisks in Table 2.1. 

A matrix was thus constructed for each of the two types of encodings of the feature norms, of 



 Neural representation of nouns and phrases  47 

size 43 exemplars by the number of knowledge types (10 for BR encoding and 27 for DT 

encoding, which have non-zero entries). A row in the matrix corresponds to the semantic 

representation for an exemplar, where elements in the row correspond to the number of features 

(for that exemplar) categorized as particular knowledge types. Normalization consists of scaling 

the row vector of feature values to unit length. Consequently, these matrix representations 

encoded the meaning of each exemplar in terms of the pattern distributed across different 

knowledge types. For example, the word house would have a higher value in the visual form and 

surface properties knowledge type, as opposed to sound or smell, because people tended to recall 

more features that described the appearance of a house rather than its sound or smell. 
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Table 2.3 Example of Concepts from Feature Norms 

Concept Feature BR Encoding DT Encoding 
House Made by humans Encyclopedic Origin 

Is expensive Encyclopedic Systemic property 
Used for living in Function Function 
Used for shelter Function Function 
Is warm Tactile Internal surface property 
A house Taxonomic Superordinate 
Is large Visual-form and surface properties External surface property 
Made of brick Visual-form and surface properties Made of 
Has rooms Visual-form and surface properties Internal component 
Has bedrooms Visual-form and surface properties Internal component 
Has bathrooms Visual-form and surface properties Internal component 
Is small Visual-form and surface properties External surface property 
Has doors Visual-form and surface properties External component 
Has windows Visual-form and surface properties External component 
Made of wood Visual-form and surface properties Made of 
Has a roof Visual-form and surface properties External component 

Cow Lives on farms Encyclopedic Location 
Is stupid Encyclopedic Evaluation 
Is domestic Encyclopedic Systemic property 
Eaten as meat Function Function 
Eaten as beef Function Function 
Used for producing 
milk 

Function Function 

Is smelly Smell External surface property 
Moos Sound Entity behavior 
An animal Taxonomic Superordinate 
An mammal Taxonomic Superordinate 
Is white Visual-color External surface property 
Is black Visual-color External surface property 
Is brown Visual-color External surface property 
Has 4 legs Visual-form and surface properties External component 
Has an udder Visual-form and surface properties External component 
Is large Visual-form and surface properties External surface property 
Has legs Visual-form and surface properties External component 
Has eyes Visual-form and surface properties External component 
Produces milk Visual-motion Entity behavior 
Eats grass Visual-motion Entity behavior 
Produces manure Visual-motion Entity behavior 
Eats Visual-motion Entity behavior 
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Table 2.4 Cree and McRae (2003)'s Brain Region (BR) Encoding Scheme 

Class Knowledge Type Frequency Example 
Visual Visual color 32 Celery <is green> 

Visual form and 
surface properties 

252 House <is made of bricks> 

Visual motion 22 Cow <eat grass> 
Other primary 
sensory-
processing 

Smell 2 Barn <is smelly> 
Sound 7 Cat <behavior – meows> 
Tactile 20 Bed <is soft> 
Taste 3 Corn <tastes sweet> 

Functional Function 142 Hammer <used for pounding> 
Miscellaneous Taxonomic 62 Skirt <clothing> 

Encyclopedic 132 Car <requires gasoline> 
 

Table 2.5 Wu and Barsalou (2009)’s Detailed Taxonomic (DT) Encoding Scheme 

Class Knowledge type Frequency Example 
Entity Associated abstract entity 1 Church <associated with religion> 

Entity behavior 26 Cat <behavior – meows> 
External component 139 Chair <has 4 legs> 
External surface property 85 Celery <is green> 
Internal Component 24 Airplane <has engines> 
Internal surface property 12 Corn <tastes sweet> 
Larger whole 3 Spoon <part of table setting> 
Made-of 47 House <is made of bricks> 
Quantity 3 Butterfly <different types> 
Systemic property 36 Knife <is dangerous> 

Situation Action 9 Screwdriver <is hand held> 
Associated entity 24 Shirt <worn with ties> 
Function 116 Hammer <used for pounding> 
Location 38 Keys <found on chains> 
Origin 5 Tomato <grows on vines> 
Participant 17 Desk <used by students> 
Time 5 Coat <worn for winter> 

Taxonomic Coordinate 1 Cup <a mug> 
Individual 0 N/A 
Subordinate 9 Pants <e.g. jeans> 
Superordinate 52 Skirt <clothing> 
Synonym 0 N/A 

Introspective Affect emotion 0 N/A 
Cognitive operation 0 N/A 
Contingency 12 Car <requires gasoline> 
Evaluation 10 Dog <is friendly> 
Negation 0 N/A 
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2.3.2 Regression model 

Our generative model attempts to predict the neural activity (mean PSC), by learning the 

correspondence between neural activation and object features. Given a stimulus word, w, the first 

step (deterministically) encoded the meaning of w as a vector of intermediate semantic features, 

using BR or DT. The second step predicted the neural activity level of the 120 most stable voxels 

in the brain with a multivariate multiple linear regression model. The regression model examined 

to what extent the semantic feature vectors (explanatory variables) can account for the variation 

in neural activity (response variable) across the 43 words. R2 measures the amount systematic 

variances explained in the neural activation data. All explanatory variables were entered into the 

regression model simultaneously. More precisely, the predicted activity av at voxel v in the brain 

for word w is given by 
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where fi(w) is the value of the ith intermediate semantic feature for word w, βvi is the 

regression coefficient that specifies the degree to which the ith intermediate semantic feature 

activates voxel v, and εv is the model’s error term that represents the unexplained variation in the 

response variable. Least squares estimates of βvi were obtained to minimize the sum of squared 

errors in reconstructing the training fMRI images. This least squares estimate of the βvi yields the 

maximum likelihood estimate under the assumption that εv follows a Normal distribution with 

zero mean. A small L2 regularization with lambda = 0.5 was added to avoid rank deficiency. 

The use of a linear regression model to model the hidden factors is not new to analysis of 

neural activity. Indeed, both linear regression analysis and Statistical Parametric Mapping (SPM) 
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- the most commonly used technique for fMRI data analysis - belong to the more general 

mathematical paradigm called Generalized Linearized Models (GLM). GLM is a statistical 

inference procedure that models the data to partition the observed neural response into 

components of interest, confounds, and error (Friston, 2005). Specifically, GLM assumes a linear 

dependency among the variables and compares the variance due to the independent variables 

against the variance due to the residual errors. While the linearity assumption underlying the 

general linearized model may be overly simplistic, it reflects the assumption that fMRI activity 

often reflects a superposition of contributions from different sources, and has provided a useful 

first order approximation in the field. 

The intermediate semantic features associated with each word are therefore regarded as 

the hidden factors or sources contributing to the object knowledge. The trained regression model 

then weights the influence of each source and linearly combines the contribution of each factor 

to produce an estimate of the resulting neural activity. For instance, the neural activity image of 

the word house may be different from that of cow in that the contribution from the factor 

corresponding to the item’s function (what it is used for) plays a more significant part for house 

and that the contribution from the sensory factor plays a more significant part for cow, as 

depicted in the sensory/functional theory. 

2.3.3 Classifier model 

Classifiers were trained to identify cognitive states associated with viewing stimuli from 

the evoked pattern of functional activity (mean PSC). Classifiers were functions f of the form: f: 

mean_PSC → Yi, i=1,…n, where Yi were the sixty exemplars, and mean_PSC was a vector of 

mean PSC voxel activation level, as described above. To evaluate classification performance, 



 Neural representation of nouns and phrases  52 

data were divided into training and test sets. A classifier was built from the training set and 

evaluated on the left-out test set. 

In this study, two classifiers were compared: a Support Vector Machine (SVM) classifier 

that does not utilize a hidden layer representation and a nearest neighbor classifier that utilizes a 

hidden layer representation learned in the regression analysis. The SVM classifier (Guyon, 

Boser, & Vapnik, 1993) is a widely-used discriminative classifier that maximizes the margin 

between exemplar classes. The SVM classifier is implemented in a software package called 

SVM-light, which is an efficient implementation of SVM by Thorsten Joachims and can be 

obtained from http://svmlight.joachims.org. On the other hand, the nearest neighbor classifier 

proposed here uses the estimated regression weights to generate predicted activity for each word. 

The regression model first estimates a predicted activation vector for each of the 60 objects. 

Then, a previously unseen observed neural activation vector is identified with the class of the 

predicted activation that had the highest correlation with the given observed neural activation 

vector. 

Our approach is analogous in some ways to research that focuses on lower-level visual 

features of picture stimuli to analyze fMRI activation associated with viewing the picture 

(O'Toole et al., 2005; Hardoon et al., 2007; Kay et al., 2008). A similar generative classifier is 

used by Kay et al. (2008) where they estimate a receptive-field model for each voxel and classify 

an activation pattern in terms of its similarity to the predicted brain activity. Our work differs 

from these efforts, in that we focus on encodings of more abstract semantic features signified by 

words and predict brain activity based on these semantic features, rather than on visual features 

that encode visual properties. 

http://svmlight.joachims.org/
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2.4 Results 

Using feature norms to explain the variance in neural activity. The regression models 

were assessed in terms of their ability to explain the variance in neural activity patterns. A 

multivariate multiple linear regression was run for each participant, using either BR or DT 

encoding as explanatory variables, and average neural activity (mean PSC) across 120 most 

stable voxels as response variables. Specifically, DT encoding (with its 27 independent 

variables) accounted for an average of 58% of the variance in neural activity, whereas BR 

encoding (with its 10 independent variables) accounted for an average of 35% of the variance. R2 

is higher for DT than for BR for all 9 of the participants, as shown in Table 2.6. Notice that DT 

encoding outperforms BR encoding in explaining the variance in neural activity pattern, even 

though Cree and McRae (2003) found that the two encodings produce similar results in their 

hierarchical clustering analysis of behavioral data and that they both can be used to explain the 

tripartite impairment pattern in category-specific deficit studies. This difference may, however, 

simply be due to the different number of parameters (explanatory variables) that the two 

regression models use. Akaike information criterion (AIC) is a measure of the goodness of fit 

that accounts for the tradeoff between the accuracy and complexity of different models and is 

invariant to the number of parameters. The relative values of AIC scores are used for model 

selection among a class of parametric models with different numbers of parameters, with the 

model with lowest AIC being preferred. The BR decoding yields an average AIC score of -37.18, 

whereas the DT encoding yields an average AIC score of -23.93. Thus, it appears that the 

difference in regression fit may be due to the different number of parameters that the two 

regression models use. We further explore this issue in the discussion section. 
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Table 2.6 Regression Analysis R2 

Model Mean SD Participants 
P1 P2 P3 P4 P5 P6 P7 P8 P9 

BR 0.35 0.07 0.47 0.30 0.29 0.43 0.31 0.29 0.36 0.29 0.39 
DT 0.58 0.04 0.61 0.56 0.53 0.62 0.59 0.59 0.64 0.52 0.58 

 

The regression models produce a predicted neural activity pattern for each word, which 

can be compared to the observed pattern. For example, Figure 2.4 shows one slice of both the 

observed and the predicted neural activity pattern for the words house and cow. In each case, the 

predicted activity is more similar to the observed activity of the target word than to the other 

word. 

 Observed Predicted 

House 

  

Cow 

  
Figure 2.4 Observed vs. predicted neural activities at left parahippocampal gyrus (Brodmann area 

37, coordinates -28.125, -43.75, -12) for the stimulus words house and cow. The observed neural activity 
vector is taken from participant P1, whereas the predicted neural activity vector is estimated by the 

regression model with BR encoding as explanatory variables and 120 most stable voxels as response variables. 
In each case, the predicted activity is more similar to the observed activity of the target word than to the 

other word, suggesting that the predicted activity may be useful to classify words. 
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Classifying mental states. Given that the semantic feature vectors can account for a 

significant portion of the variation in neural activity, the predictions from the regression model 

can be used to decode mental states of individual participants. This was effectively a 43-way 

word classification task, where the attributes were neural activity vectors and the classes were 43 

stimulus items. This analysis can be performed both within participants (by training the classifier 

on a subset of the participant’s own data and then testing on an independent, held-out subset) and 

between-participants (training on all-but-one participants’ data and testing on the left-out one). 

For the within-participants analysis, a regression model was developed from the data 

from 4 out of 6 presentations of a participant and applied to the average activation of the two 

remaining presentations of the same participant, using a nearest neighbor classifier to classify the 

neural activity pattern. A regression model using BR or DT encoding classified the items from 

the held-out presentations with an average of 72% and 78% rank accuracy, respectively. Since 

multiple classes were involved, rank accuracies are reported, which measure the percentile rank 

of the correct word within a list of predictions made by the classifier (Mitchell et al., 2004). The 

rank accuracy for each participant, along with the 95% confidence interval, is reported in Figure 

2.5. The confidence interval is estimated by random sampling of the dataset 10,000 times with 

replacement and subsequently computes the classifier performance. All classification accuracies 

were significantly (p < 0.05) different from a chance level of 50% determined by permutation 

testing of class labels. DT encoding performed significantly better (p < 0.05) than BR encoding 

for 7 out of 9 participants. Furthermore, the generative classifiers were compared with the SVM 

classifier which does not utilize a hidden layer representation. The SVM classifier, which 

achieved an average of 84% rank accuracy, performed significantly (p < 0.05) better than the two 

generative classifiers for 7 out of 9 participants. 
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For the between-participants analysis, a regression model was developed from the data 

from 8 out of 9 participants and applied to the average activation of all possible pairs of 

presentations in the remaining participant, using a nearest neighbor classifier to classify the 

neural activity pattern. A regression model using BR or DT encoding classified the items from 

the held-out subject with an average of 68% and 70% rank accuracy, respectively. The rank 

accuracy for each participant, along with the 95% confidence interval, is reported in Figure 2.5. 

The confidence interval is estimated by random sampling of the dataset 10,000 times with 

replacement and subsequently computes the classifier performance. All classification accuracies 

were significantly (p < 0.05) different from a chance level of 50% determined by permutation 

testing of class labels. For 7 out of 9 participants, the difference between BR and DT encoding 

was not significantly (p < 0.05) different. Furthermore, the generative classifiers were compared 

with the SVM classifier which does not utilize a hidden layer representation. Unlike in the 

within-participants classification, the SVM here performed poorly, achieving a mean rank 

accuracy of only 63%, and obtaining a significantly (p < 0.05) lower rank accuracy than the two 

generative classifiers for 5 out of 9 participants. 
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Figure 2.5 Decoding mental states given neural activation pattern. A discriminative SVM classifier, 

which utilizes no hidden layer representation, is compared to two generative nearest neighbor classifiers 
which extend the regression model, with BR or DT as the explanatory variables. The dashed line indicates 

chance level at 50%. Participants are sorted according to rank accuracy of the BR model. a) Within-
participants analysis, b) Between-participants analysis. Whereas the discriminative SVM classifier performs 
the best in the within-participants classification, the generative classifiers generalize better in the between-

participants classification. 
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Distinguishing between the activation of two unseen stimuli. Can the predictions from 

the regression model be used to classify the mental states of participants on words that were 

never seen before by the model? In other words, can the regression model generalize to make 

predictions for a previously unseen word, given the values of the independent variables (the 

semantic features) for that word? To test this possibility, all possible pairs of the 43 words were 

held out (one pair at a time) from the analysis, and a multivariate multiple linear regression 

model was developed from the data of the remaining 41 words, with semantic feature vectors 

(either the BR or DT encoding) as the explanatory variables, and observed neural activity vectors 

(mean PSC across 120 most stable voxels) as the response variables. The estimated regression 

weights were then used to generate the predicted activation vector for the two unseen words, 

based on the feature encodings of those two words. Then, the observed neural activation vector 

for the two unseen words was identified with the class of the predicted activation vector with 

which it had the higher correlation. 

A regression model using BR or DT encoding correctly classified an average of 65% and 

68% of the unseen words, respectively. The classification accuracy for each participant, along 

with the 95% confidence interval estimated by 10,000 bootstrapped samples, is reported in 

Figure 2.6. All classification accuracies were significantly (p < 0.05) higher than a chance level 

of 50% determined by permutation testing of class labels. Unlike the case in the regression 

analysis and word classification, there is no clear difference in the ability of the two encoding 

schemes to distinguish between two unseen words. For 1 participant, the BR encoding performed 

significantly better than the DT encoding, but for 2 other participants, the DT performed 

significantly better. There are no significant differences between BR and DT encoding for the 

remaining 6 participants. 
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Figure 2.6 Distinguishing between two unseen words. Two generative nearest neighbor classifiers 
which extend the regression model, with BR or DT encoding as explanatory variables, are shown. The dashed 

line indicates chance level at 50%. Participants are sorted according to accuracy of BR encoding.  

 

2.5 Discussion 

The results indicate that the features from an independent feature norming study can be 

used in a regression model to explain a significant portion of the variance in neural activity in 

this 43-item word-picture stimulus set. Moreover, the resulting regression model is useful for 

both decoding mental states associated with the visual presentation of 43 items and 

distinguishing between two unseen items. Although the proposed generative nearest neighbor 

classifier that utilizes a hidden layer does not outperform a discriminative SVM classifier in the 

within-participants classification, it does outperform the SVM classifier in between-participants 

classification, suggesting that the hidden, semantic features do provide a mediating 

representation that generalizes better across participants. Furthermore, the hidden factors allow 
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us to extrapolate the neural activity for unseen words, which simply cannot be done in a 

discriminative classifier. 

Comparing the generative classifier and discriminative classifier. There appears to be a 

double dissociation between the two classifier approaches and within- versus between- 

participants generalization. Whereas an SVM-based discriminative classifier achieves the best 

classification accuracy in within-participants analysis, the generative classifier outperforms an 

SVM-based model which does not utilize such intermediate representations in a between-

participants analysis. In fact, there is a strong negative correlation (p = -0.79) between the 

within-participants difference and the between-participants difference between the models. That 

is, the better SVM is, relative to DT, at decoding brain activity within participants, the worse 

SVM is, again relative to DT, at decoding brain activity across participants. This pattern of 

results suggests the SVM-based classifier may be picking up some idiosyncratic patterns that do 

not generalize well across participants and that good generalization across participants may 

require broad, large-scale patterns that are used in our set of intermediate semantic features. 

A discriminative SVM classifier attempts to learn the function that maximizes the margin 

between exemplar classes across all presentations/subjects. While this strategy is the current 

state-of-the-art classification technique and indeed yields the best performance in within-

participants classification, it works less well in between-participants classification when there is 

not sufficient data to learn complex functions that would capture individual differences (or when 

that the function is too complicated to learn). On the contrary, the regression model does not 

attempt to model the differences in neural activity across presentations/subjects. Instead, the 

regression model averages out the differences across presentation/subjects and learns to estimate 

the average of the neural activity that is available in the training data. Specifically, the regression 
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model learns the correspondence between neural activation and object features that accounts for 

the most systematic variance in neural activity across the 43 words. The advantage is two-fold. 

First, sample mean is the uniformly minimum-variance unbiased estimator of population mean of 

neural activity. Thus, to predict the neural activity of a previously unseen presentation or 

individual, one of the best unbiased estimators is the average of the neural activity of the same 

word available in the training data. But simply taking the sample mean does not allow prediction 

of a previously unseen word – there is no data for it. Thus, by learning the correspondence 

between neural activation and object features, the regression model has the second advantage 

that it can extrapolate to predict the neural activity for unseen words, as long as there is access to 

the object features of the unseen words, which can be assumed given access to the large scale 

feature-norming studies and the various linguistic corpora. 

Encoding feature norming features into knowledge types. In our analysis, we encode the 

feature norming features into knowledge types. The generative models work with knowledge 

types, not with knowledge content. For instance, it would matter for the models whether a house 

is associated more often with surface property, but not the exact property like is large or is small. 

As another example, it matters that a cow is associated more often with entity behavior, but it 

does not matter what type of behavior the cow executes (e.g. eat grass or produce milk). The 

model discriminates between a house and a cow by the pattern distributed across different 

knowledge types (e.g. a house is described with more surface properties and a cow is described 

with more entity behaviors), but not the actual features listed (e.g. a house is large and a cow 

eats grass). Thus, our intermediate semantic representation encodes word meaning at the level of 

knowledge types. From this viewpoint it is less surprising that this type of intermediate 

representation generalizes well across participants. Good generalization across participants may 
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require broad, large-scale patterns, while idiosyncratic patterns may be related to more fine-scale 

patterns of activity that do not survive the inter-participants differences in anatomy. 

Comparing BR and DT encoding. Different encodings (e.g. BR or DT) on the same 

feature norming set, however, led to different regression fits and classification accuracies. The 

DT encoding outperformed BR encoding in the regression analysis and in within-participants 

mental state classification, but the phenomenon diminishes in between-participants mental state 

classification and when distinguishing between two unseen stimuli. The former finding is 

surprising at first, since Cree and McRae (2003) reported that the two encodings performed 

similarly in their hierarchical clustering analysis in explaining seven behavioral trends in 

category deficits. The difference obtained between the two types of feature norm encodings in 

their account of brain activation data could have arisen because one encoding is truly superior to 

the other, but there are also technical differences between the models that merit consideration. 

Specifically, the phenomenon called overfitting refers to a regression model with more predictor 

variables being able to better tune to the data and as a result overfit. Consequently, the DT 

regression model with its encoding of 27 knowledge types (independent variables) would overfit 

more easily to data than a BR regression model that utilizes 10 knowledge types.  

The overfitting phenomenon can be considered more precisely by examining each 

model’s performance under the three evaluation criteria, which, though correlated, measure 

different constructs and have different profiles. First, the regression fit measures the amount of 

systematic variance explained by the regressor variables, and their ability to re-construct the 

neural images. Second, the word classification accuracy measures the degree to which the 

predicted neural image is useful for discriminating among stimuli. Third, classification on novel 

stimuli measures how well the model generalizes to previously unseen words. Whereas 
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regression analysis is performed on all available data, classification analysis (especially 

classification of novel stimuli, in our case distinguishing between two unseen words) is cross 

validated (train and test on different data set) and is less prone to overfitting.  

To compare the two encoding schemes while equating the number of independent 

variables, a step-wise analysis was performed to gradually enter additional variables in the 

regression model, instead of entering all of them simultaneously. As the number of knowledge 

types included in the DT encoding increases, the regression fit keeps increasing, as shown in 

Figure 2.7a, but the classification accuracy on novel stimuli, shown in Figure 2.7b, increases at 

first but peaks and gradually decreases – clear evidence of overfitting. With fewer knowledge 

types, the BR encoding overfits less to the data and generalizes better to unseen words. Moreover, 

the performance of the BR encoding peaks when about 6 knowledge types are entered into the 

regression model, reaching an average accuracy of 68%, whereas the performance of the DT 

encoding peaks when about 8 knowledge types are used, reaching an average accuracy of 77%. 

Notice that, although the BR and DT encodings are constructed subject to different criteria, the 

features of the two encoding schemes that are found to be the most important in the step-wise 

analysis are similar. The underlying semantic features that provide the best account of the neural 

activation data consist of taxonomic and visual features (e.g. visual color, visual motion, and 

function for the BR encoding and internal component, entity behavior, and associated entity for 

the DT encoding). Table 2.7 and Table 2.8 show the ranked order list of each of the BR 

knowledge type and each of the DT knowledge type’s ability to classify mental state (within-

participants analysis, averaged over participants), respectively. To test whether a classifier was 

significantly better than chance, we first computed its overall accuracy for each subject, yielding 

a distribution of N accuracies, where N is the number of subjects.  Treating this distribution as a 
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random value, we performed a two-tailed T-test of whether its mean exceeds chance 

performance of 0.5.  Our significance criterion was p < 0.01, without correction for multiple 

comparisons. Thus the superficial differences between BR and DT feature encoding schemes 

lessen or disappear in the light of more sensitive assessments, and the modeling converges on 

some core encoding features that provide a good converging account of the data. 

 

 
Figure 2.7 Step-wise analysis. a) Step-wise regression analysis, b) step-wise distinguishing between 

two unseen stimuli. With finer distinction of knowledge types, DT encoding is more prone to overfitting than 
BR encoding. As the number of knowledge types in DT encoding is increased, the regression fit keeps 

increasing, but classification accuracy on unseen stimuli increases at first but peaks and gradually decreases – 
clear evidence of overfitting. With fewer knowledge types, BR overfits to a lesser extent. 
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Table 2.7 Each BR knowledge type's ability to classify mental states. Asterisks mark classifiers whose 
performance is significant better than a chance level of 0.5 (p < 0.01).  

Knowledge Type Accuracy 
Visual-color 0.58* 
Visual-motion 0.58* 
Function 0.53* 
Sound 0.53* 
Taxonomic 0.52* 
Tactile 0.52* 
Encyclopedic 0.51* 
Smell 0.51 
Taste 0.51 
Visual-form and surface properties 0.50 
  

Table 2.8 Each DT knowledge type's ability to classify mental state. Asterisks mark classifiers whose 
performance is significant better than a chance level of 0.5 (p < 0.01). 

Knowledge Type Accuracy 
Internal component 0.59* 
Entity behavior 0.58* 
Associated entity 0.56* 
Made of 0.56* 
Location 0.56* 
Contingency 0.55* 
Function 0.55* 
Subordinate 0.54* 
Systemic property 0.54* 
Evaluation 0.53* 
Participant 0.53* 
External component 0.53* 
Action 0.53* 
External surface property 0.53* 
Superordinate 0.52* 
Larger whole 0.52* 
Time 0.52* 
Internal surface property 0.52* 
Origin 0.52* 
Quantity 0.51 
Associated abstract entity 0.51* 
Coordinate 0.51 
Affect emotion 0.50 
Cognitive operation 0.50 
Individual 0.50 
Negation 0.50 
Synonym 0.50 
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Comparing feature norming features and word-co-occurrence features. The various 

models described here were compared to a similar analysis that used features derived from word 

co-occurrence in a text corpus (Mitchell et al., 2008). In that model, the features of each word 

were its co-occurrence frequencies with each of 25 verbs of sensorimotor interaction with 

physical objects, such as push and see. Co-occurrence features produced an average R2 of 0.71 

when accounting for the systematic variance in neural activity, an average rank accuracy of 0.82 

when classifying mental states within-participants, an average rank accuracy of 0.75 when 

classifying mental states across-participants, and an average accuracy of 0.79 when 

distinguishing between two previously unseen stimuli. While the performance in rank accuracy 

when classifying mental states is not statistically different (p < 0.05) from that of DT encoding, 

the advantage of the co-occurrence model in distinguishing between two unseen stimuli is 

statistically significant (p < 0.05). One explanation may be that the encoded object-by-

knowledge-type matrices are sparse and heavily weighted in a handful of knowledge types (e.g. 

visual knowledge types). Feature norming may have fared better if the features corresponded 

more closely to the types of interactions with objects that are suggested by the 25 sensorimotor 

verbs. The shortcoming of feature norming in accounting for participants’ thoughts when they 

think about an object is that participants may fail to retrieve a characteristic but psychologically 

unavailable feature of an object. For example, for an item like celery, the attribute of taste may 

be highly characteristic but relatively unavailable. By contrast, using a fixed set of 25 verbs 

ensures that all 25 will play a role in the encoding. One way to bring the two approaches together 

is to ask participants in a feature norming study to assess 25 features of an object that correspond 

to the verbs. 
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Regardless of whether one uses feature norms or text co-occurrences, choosing the best 

set of semantic features is a challenging problem. For example, it is not clear from the analyses 

above whether a different set of 25 verbs might not provide a better account. To address these 

issues, additional modeling was done with corpus co-occurrence features using the 485 most 

frequent verbs in the corpus (including the 25 sensorimotor verbs reported in Mitchell et al., 

2008). A greedy algorithm was used to determine the 25 verbs among the 485 that optimize the 

regression fit. The greedy algorithm easily overfitted the training data and generalized less well 

to unseen words. Mitchell et al. (2008) hand-picked their 25 verbs according to some conjectures 

concerning neural representations of objects. Similarly, it might be worthwhile to consider some 

conjectures revealed in behavioral feature norming studies when picking the set of co-occurrence 

semantic features. Further study is required. 

Voxel selection method. One property of this study is that it focused on only the most 

stable voxels, which may have biased the findings in favor of encodings of visual attributes of 

the items. The voxel selection procedure increases the signal-to-noise ratio and serves as an 

effective dimensionality reduction tool that empirically derives regions of interest by assuming 

that the most informative voxels are those that have activation patterns that are stable across 

multiple presentations of the set of stimuli. The ability of our models to perform classification 

across previously unseen words suggests we have, to some extent, successfully captured this 

intermediate semantic representation. Whether the voxels extracted by this procedure correspond 

to the human semantic system may be task-dependent. For instance, in our task where the 

stimulus presentations consist of line drawings with text labels, the voxels extracted by this 

procedure are mostly in the posterior and occipital regions, since our stimuli consist of easily 

depicted objects and the visual properties of the stimuli are the most invariant part of the stimuli. 
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Indeed, visual features are among the most important features that account for our neural 

activation data. If the stimulus presentation consists of only line drawings or text labels, different 

sets of voxels might be selected. Shinkareva et al. (2007) studied the exact question of the neural 

representation of pictures versus words. They applied similar machine learning methods on fMRI 

data to identify the cognitive state associated with viewings of 10 words (5 tools and 5 

dwellings) and, separately, with viewings of 10 pictures (line drawings) of the objects named by 

the words. In addition to selecting voxels from the whole brain, they also identified single brain 

regions that consistently contained voxels used in identification of object categories across 

participants. We performed a similar analysis to restrict the analysis space to some 

predetermined regions of interests.  That is, instead of selecting 120 voxels from the whole brain, 

the voxel selection is applied separately to the frontal lobe, temporal lobe, parietal lobe, occipital 

lobe, fusiform gyrus, and hippocampus. When only a single region of interest is considered, the 

highest category identification in the within-participant mental state decoding task is achieved 

when analysis space is restricted within the occipital lobe, as shown in Table 2.9. However, other 

regions of interests like the parietal lobe and the fusiform gyrus also carry important information 

to decode mental state between participants and to distinguish between the activation of two 

previously unseen words. Indeed, selecting voxels from the whole brain yields the best category 

identification in the classifier analysis. 
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Table 2.9 Restricting analysis space through ROIs 

a) Regression fit to the fMRI data (R2) 

Model All Frontal Temporal Parietal Occipital Fusiform Hippocampus 
BR 0.35 0.27 0.27 0.32 0.30 0.38 0.24 
DT 0.58 0.55 0.55 0.58 0.56 0.61 0.52 

 

b) Ability to decode mental states, within participants (rank accuracy) 

Model All Frontal Temporal Parietal Occipital Fusiform Hippocampus 
BR 0.72 0.57 0.60 0.64 0.70 0.67 0.52 
DT 0.78 0.58 0.62 0.66 0.77 0.69 0.53 

 

c) Ability to decode mental states, within participants (rank accuracy) 

Model All Frontal Temporal Parietal Occipital Fusiform Hippocampus 
BR 0.68 0.47 0.47 0.57 0.59 0.61 0.50 
DT 0.70 0.46 0.47 0.56 0.60 0.60 0.49 

 

d) Ability to distinguish between the activation of two previously unseen words (accuracy) 

Model All Frontal Temporal Parietal Occipital Fusiform Hippocampus 
BR 0.65 0.60 0.57 0.66 0.62 0.69 0.49 
DT 0.68 0.61 0.60 0.69 0.64 0.70 0.51 

 

2.6 Conclusions and Contributions 

The results indicate that features from an independently performed feature norming study 

or word co-occurrence in web corpus can explain a significant portion of the variance in neural 

activity in this task, suggesting that the features transfer well across tasks, and hence appear to 

correspond to enduring properties of the word representations. Moreover, the resulting regression 

model is useful for decoding mental states from their neural activation pattern. The ability to 

perform this classification task is remarkable, suggesting that the distributed pattern of neural 

activity encodes sufficient signal to discriminate differences among stimuli. 
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Our major contribution is to shift the focus to the hidden factors that underpin semantic 

representation of object knowledge. Functional neuroimaging research has been focused on 

attempting to identify of the functions of cortical regions. Here we present one of the first studies 

to investigate some intermediate cortex-wide representations of semantic knowledge and further 

apply it in a classification task. Akin to the recent multivariate fMRI analysis which shifted the 

focus from localizing brain activity toward understanding how patterns of neural activity encode 

information in an intermediate semantic representation, we take one further step and ask 1) what 

intermediate semantic representation might be encoded to enable such discrimination and 2) 

what is the nature of this representation? 

There are several advantages to work with an intermediate semantic representation. In 

this study, we have demonstrated how learning the mapping between feature and neural 

activation enables a predictive theory that is capable of extrapolating the model of the neural 

activity to previously unseen words, which cannot be done with a discriminative classifier. 

Another advantage of working with an intermediate semantic representation is that features in 

the intermediate semantic representation are more likely to be shared across experiments. For 

example, in one experiment, the participant may be presented the word dog, while the word cat 

is shown in another experiment. Even though the individual category differs, there are many 

features that are shared (e.g. is a pet, has 4 legs, etc.) between the two words. Learning the 

mapping between features and voxel activation instead of the mapping between categories and 

voxel activation may facilitate data to be shared across experiments. This is especially important 

when brain imaging data are relatively more expensive to acquire and that many classifier 

techniques would perform significantly better if more training data were available. 
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Although we propose a specific implementation of the hidden layer representation with a 

multivariate multiple linear regression model estimated from features of a feature norming study, 

we do not necessarily commit to this specific implementation. We look forward to future 

research to extend the intermediate representation and experiment with different modeling 

methodologies. For instance, the intermediate semantic representation can be derived from 

research done in other related scientific characterizations of meaning, such as WordNet, LSA, or 

topic models. Another direction is to experiment with different modeling methodologies, such as 

neural networks which model non-linear functions or generative models of neural activities from 

a fully probabilistic, Bayesian perspective. 
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3 QUANTITATIVE MODELING OF THE NEURAL REPRESENTATION OF 

ADJECTIVE-NOUN PHRASES TO ACCOUNT FOR FMRI ACTIVATION 

3.1 Introduction 

Given these early succesess in using fMRI to discriminate categorial information and to 

model lexical semantic representations of individual words, it is interesting to ask whether a 

similar approach can be used to study the combinatorial aspects of human language. How is 

lexical semantic knowledge combined to form complex concepts? Does the distributed pattern of 

brain activity differ when a person is thinking about a dog versus when a person is thinking 

about a particular dog that is strong and muscular? To address these questions, we designed an 

object-contemplation task, where human participants were presented with 12 text labels of 

unmodified objects (e.g. dog) and modified objects (e.g. strong dog). They were instructed to 

think of the properties of the stimulus object, while their brain activities were recorded by fMRI.  

Mitchell and Lapata (2008) presented a framework for representing the meaning of 

phrases and sentences in vector space. They discussed how an additive model, a multiplicative 

model, a weighted additive model, a Kintsch (2001) model, and a model which combines 

multiplication and addition can be used to model human behavior in similiarity judgments when 

human participants were presented with a reference containing a subject-verb phrase (e.g., horse 

ran) and two landmarks (e.g., galloped, dissolved) and asked to choose which landmark was 

most similiar to the reference (in this case, galloped). They compared the composition models to 

human similarity ratings and found that all models were statistically significantly correlated with 

human judgements. Moreover, the multiplicative and combined model performed signficantlly 

better than the non-compositional models. In this study, vector-based models of semantic 

composition were used to model neural activation patterns obtained while subjects 
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comprehended adjective-noun phrases. Our approach is similar to that of Mitchell and Lapata 

(2008) in that we compared additive and multiplicative models to non-compositional models in 

terms of their ability to model human data. Our work differs from these efforts because we focus 

on modeling neural activity while people comprehend adjective-noun phrases. 

In section 2, we describe the experiment and how functional brain images were acquired. 

In section 3, we perform group-level analysis to determine brain regions that are activated in 

different experimental conditions. In section 4, we apply classifier analysis to see if the 

distributed pattern of neural activity contains sufficient signal to discriminate among phrases. In 

section 5, we discuss a vector-based approach to modeling the lexical semantic knowledge using 

word occurrence measures in a text corpus. Two composition models, namely the additive and 

the multiplicative models, along with two non-composition models, namely the adjective and the 

noun models, are used to explain the systematic variance in neural activation. Section 6 

distinguishes between two types of adjectives that are used in our stimuli: attribute-specifying 

adjectives and object-changing adjectives. Classifier analysis suggests people interpret the two 

types of adjectives differently. Finally, we discuss some of the implications of our work and 

suggest some future studies. 

3.2 Methods 

Participants. Nineteen right-handed adults (aged 18 - 32) from the Carnegie Mellon 

community participated and gave informed consent approved by the University of Pittsburgh and 

Carnegie Mellon Institutional Review Boards. Four additional participants were excluded from 

the analysis due to head motion greater than 2.5 mm. 

Experimental Paradigm. The stimuli were text labels of 12 concrete nouns from 4 

semantic categories with 3 exemplars per category. The 12 nouns were bear, cat, dog (animal); 
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bottle, cup, knife (utensil); carrot, corn, tomato (vegetable); airplane, train, and truck (vehicle; 

see Table 3.1). The fMRI neural signatures of these objects have been found in previous studies 

to elicit differentiable neural activity. The participants were also shown each of the 12 nouns 

paired with an adjective, where the adjectives are expected to emphasize certain semantic 

properties of the nouns. For instance, in the case of strong dog, the adjective is used to 

emphasize the visual or physical aspect (e.g. muscular) of a dog, as opposed to the behavioral 

aspects (e.g. playable, shy). 

 

Table 3.1 Word stimuli. Asterisks mark the object-changing adjectives, as opposed to the ordinary 
attribute-specifying adjectives. 

Adjective Noun Category 
Soft Bear Animal 
Large Cat Animal 
Strong Dog Animal 
Plastic Bottle Utensil 
Small Cup Utensil 
Sharp Knife Utensil 
Hard Carrot Vegetable 
Cut Corn Vegetable 
Firm Tomato Vegetable 
Paper* Airplane Vehicle 
Model* Train Vehicle 
Toy* Truck Vehicle 

 

Notice that the last three adjectives in Table 3.1 are marked by asterisks to denote they 

are object-changing adjectives. These adjectives appear to behave differently from the ordinary 

attribute-specifying adjectives. Section 6 discusses the different adjective types in more detail. 

To ensure that participants had a consistent set of properties to think about, they were 

asked to generate and write a set of properties for each stimulus item in a session prior to the 
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scanning session (such as “4 legs, house pet, fed by me” for dog). However, nothing was done to 

elicit consistency across participants. 

The entire set of 24 stimuli was presented 6 times during the scanning session, in a 

different random order each time. Participants silently viewed the stimuli and were asked to 

think of the same item properties consistently across the 6 presentations of the items. Each 

stimulus was presented for 3s, followed by a 7s rest period, during which the participants were 

instructed to fixate on an X displayed in the center of the screen. There were two additional 

presentations of fixation, 31s each, at the beginning and end of each session, to provide a 

baseline measure of activity. A b representation of the design is shown in Figure 3.1. 

 

 
Figure 3.1 Schematic representation of experimental design for the adjective-noun experiment. 
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Data acquisition. Functional images were acquired on a Siemens Allegra 3.0T scanner 

(Siemens, Erlangen, Germany) at the Brain Imaging Research Center of Carnegie Mellon 

University and the University of Pittsburgh using a gradient echo EPI pulse sequence with TR = 

1000 ms, TE = 30 ms, and a 60° flip angle. Seventeen 5-mm thick oblique-axial slices were 

imaged with a gap of 1-mm between slices. The acquisition matrix was 64 x 64 with 3.125 x 

3.125 x 5-mm voxels. 

Data processsing and analysis. Data processing and statistical analysis were performed 

with Statistical Parametric Mapping software (SPM2, Wellcome Department of Cognitive 

Neurology, London, UK; Friston, 2005). The data were corrected for slice timing, motion, and 

linear trend, and were temporally smoothed with a high-pass filter using a 190s cutoff. The data 

were normalized to the MNI template brain image using a 12-parameter affine transformation. 

The data were prepared for classification analysis by being spatially normalized into MNI 

space and resampled to 3 x 3 x 6-mm3 voxels. We try to keep approximately the same acquisition 

voxel size which has been used in many of our previous studies and is adequate for a list of 

different cognitive tasks. Voxels outside the brain were excluded from further analysis. The 

percent signal change (PSC) relative to the fixation condition was computed for each item 

presentation at each voxel. The mean of the four images (mean PSC) acquired within a 4s 

window, offset 4s from the stimulus onset (to account for the delay in hemodynamic response), 

provided the main input measure for subsequent analysis. The mean PSC data for each word 

presentation were further normalized to have mean zero and variance one to equate the variation 

between participants over exemplars. Due to the inherent limitations in the temporal properties of 

fMRI data, we consider here only the spatial distribution of the neural activity.  
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3.3 fMRI Analyses for SPM Group Contrasts 

To compare the distribution of activation across experimental conditions, group t-test 

analyses were performed using a random-effects model (Friston et al., 2005). All t-maps in each 

contrast were calculated across the entire cortical volume, thresholded at an uncorrected height 

threshold of p < .001 and an extent threshold of 5 voxels. Statistical maps were superimposed on 

the high-resolution, normalized, T1-weighted, SPM2 individual template image for viewing. 

Labels for coordinates of activation were confirmed in MNI space (Tzourio-Mazoyer et al., 

2002). 

The brain activation for stimulus minus fixation was mostly left-lateralized, and included 

the areas of the inferior frontal gyrus, supplementary motor area, fusiform, middle temporal, 

hippocampus, inferior parietal, inferior occipital areas, as well as right middle frontal, insula, 

angular gyrus and Calcarine (Figure 3.2; Table 3.2). 

 

 
Figure 3.2 Brain activation for all stimuli contrasted with fixation, p<0.001 uncorrected; T=3.61; 

extent threshold voxels=5. The brain activation for stimulus minus fixation was mostly left-lateralized, and 
included the areas of the inferior frontal gyrus, supplementary motor area, fusiform, middle temporal, 

hippocampus, inferior parietal and inferior occipital areas. 
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Table 3.2 Locations (MNI centroid coordinates) and sizes of the voxel clusters of activation for all 
stimuli contrasted with fixation, p<0.001 uncorrected; T=3.61; extent threshold voxels=5. 

Label X Y Z Voxels Radius 
Frontal      
L Frontal Inf Oper -43.9 15.9 21.3 354 22.2 
L Supp Motor Area -1.1 18.6 48 198 13.98 
R Frontal Mid 47.1 43 21 12 7.37 
      
Temporal      
L Fusiform -46.7 -55.8 -18.9 76 10.87 
R Insula 42.3 17.6 -6 33 7.42 
L Temporal Mid -53.1 -39.1 -8 6 3.96 
L Hippocampus -17.5 -33.8 -2.4 5 4.35 
      
Parietal      
L Parietal Inf -35.1 -52.5 44.5 158 12.6 
R Angular 34.9 -61.2 45 22 6.29 
      
Occipital      
R Calcarine 20.6 -97.6 -4.6 69 8.66 
L Occipital Inf -22.6 -96.9 -6.2 60 10.95 
      
Subcortical      
R Cerebelum Crus1 32.2 -70.7 -33.5 44 8.61 
R Caudate 19 8.9 11.1 35 8.84 
R Cingulum Mid 0.5 -27.4 28.9 32 6.91 
R Cerebelum Crus2 10.9 -83.6 -28.4 19 6.3 
L Putamen -15.6 -0.8 12.4 16 5.82 
L Cerebelum Crus1 -44.1 -65.3 -36 10 3.84 
L Putamen -19.1 10.2 -3 8 4.29 

  

The isolated noun contrast minus adjective-noun phrase reveals brain activation at left 

insula (Figure 3.3). There was no activation for the adjective-noun phrase minus isolated noun 

contrast. Subsequently, we perform this contrast separately for each of the four categories: 

animal, utensil, vegetable and vehicles. Notice that because a threshold of p < .001 yields no 

positive activation, we hereby relax the threshold to p < .01. The brain activation for animal 

phrases minus animals and utensil phrases minus utensils was mostly bi-lateralized in the 

occipital lobe, and included the areas of the middle occipital gyrus, lingual and Cuneus (Figure 



 Neural representation of nouns and phrases  79 

3.4; Table 3.3). This pattern is consistent with the fact that most of the adjectives in animal and 

utensil phrases are used to emphasize the visual or physical aspect of the noun (e.g. strong dog 

has a muscular appearance). Though, the occipital activation may also be a consequence of the 

difference in word length (adjective-noun phrases are always longer than isolated nouns in word 

length). Moreover, the brain activation for vegetable phrases minus vegetables is left-lateralized 

in the inferior and middle occipital gyrus, as well as the left supra marginal gyrus in the parietal 

lobe. This pattern is consistent with the fact that most of the adjectives in vegetable phrase are 

used to emphasize the tactile aspects of the noun (e.g. hard carrot is a dense or firm carrot). 

Finally, the brain activation for vehicle phrase minus vehicles include left-lateralized activity in 

the middle occipital area, Cuneus, and supra marginal gyrus in the parietal lobe and right-

lateralized activity in the superior temporal gyrus. Notice that adjectives used in vehicle phrase 

tend to change the meaning of the noun. The activation in the Wernicke’s area may correspond 

to the cognitive process of experiencing concept combinations. 

 

 
Figure 3.3 Brain activation for isolated noun stimuli contrasted with adjective-noun phrase stimuli, 

p<0.001 uncorrected; T=3.61; extent threshold voxels=5. The isolated noun contrast minus adjective-noun 
phrase reveals brain activation at left insula. 
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Figure 3.4 Brain activation for adjective-noun phrase stimuli contrasted with isolated-noun stimuli, 

for each of the four categories: a) animal; b) utensil; c) vegetable; d) vehicle, p<0.01 uncorrected T=2.55; 
extent threshold voxels=5. The brain activation for animal phrases minus animals and utensil phrases minus 

utensils was mostly bi-lateralized in the occipital lobe, suggesting an emphasis on the visual aspects. The brain 
activation for vegetable phrases minus vegetables is left-lateralized and include activation in the left supra 
marginal gyrus in the parietal lobe, suggesting an emphasis on the tactile aspects. The brain activation for 

vehicle phrase minus vehicles include right-lateralized activity in the superior temporal gyrus, suggesting the 
participants may be experiencing concept combination. 

a) 

b) 

c) 

d) 
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Table 3.3 Locations (MNI centroid coordinates) and sizes of the voxel clusters of activation for 
phrase stimuli contrasted with isolated word stimuli, p<0.01 uncorrected; T=2.55; extent threshold voxels=5. 

Category Label X Y Z Voxels Radius 
Animal Occipital      
 L Occipital Mid -17.7 -96 -3.7 18 7.33 
 R Lingual 18.8 -92.4 -6.3 18 6.36 
 R Cuneus 19.8 -101 9 6 3.65 
 R Occipital Mid 29.4 -89.4 18 5 3.24 
       
 Subcortical      
 L Caudate -11.6 20.1 16.3 7 5.43 
       
Utensil Occipital      
 R Lingual 17.5 -90.6 -12 5 3.37 
 L Occipital Mid -16.9 -98.4 5.4 10 5.51 
 R Cuneus 19.8 -101 9 6 3.65 
       
Vegetable Parietal      
 L SupraMarginal -61.3 -29.3 33 8 6.26 
       
 Occipital      
 L Occipital Inf -21.2 -88.1 -6 5 4.11 
 L Occipital Mid -16.7 -97.5 3 14 5.29 
       
Vehicle Temporal      
 R Temporal Sup 40 -41.2 3.6 5 4.33 
 R Temporal Sup 58.3 -22.9 11 6 5.82 
       
 Parietal      
 L SupraMarginal -62.5 -30 34.8 5 4.28 
       
 Occipital      
 L Occipital Mid -18.8 -96.9 1.8 10 7.07 
 L Occipital Mid -24.1 -80.8 -2.6 7 4.44 
 R Cuneus 20 -100.6 8.4 5 3.51 

 

In short, the contrast of phrase versus word revealed occipital activation for modifiers 

that emphasizes visual aspects, parietal activation for modifiers that emphasizes tactile aspects, 

right superior temporal activation for modifiers that changes the meaning of noun. 



 Neural representation of nouns and phrases  82 

3.4 Does the distribution of neural activity encode sufficient signal to classify adjective-

noun phrases? 

Given the observed neural activity when participants processed the adjective-noun 

phrases, Gaussian Naïve Bayes classifiers were trained to identify cognitive states associated 

with processing nouns and phrases from the evoked patterns of functional activity (mean PSC). 

For instance, the classifier would predict which of the 24 exemplars the participant was viewing 

and thinking about. Separate classifiers were also trained for classifying the isolated nouns, the 

phrases, and the 4 semantic categories. 

3.4.1 Classifier Model 

Classifiers were trained to identify cognitive states associated with viewing stimuli from 

the evoked pattern of functional activity (mean PSC). Classifiers were functions f of the form: f: 

mean_PSC → Yi, i=1,…n, where Yi were the sixty exemplars, and mean_PSC was a vector of 

mean PSC voxel activation level, as described above. The Gaussian Naïve Bayes (GNB) pooled 

variance classifier was used (Mitchell 1997). It is a generative classifier that models the joint 

distribution of a class Y (exemplar or category) and attributes X (voxels), and assumes the 

attributes X1,…,Xn  are conditionally independent given Y. The classification rule is: 
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Classification results were evaluated using 6-fold cross validation, where one of the 6 

repetitions was left out for each fold. The voxel selection procedure (described below) was 

performed separately inside each fold, using only the training data. Since multiple classes were 
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involved, rank accuracy was used (Mitchell et al., 2004) to evaluate the classifier. Given a new 

fMRI image to classify, the classifier outputs a rank-ordered list of possible class labels from 

most to least likely. The rank accuracy is defined as the percentile rank of the correct class in this 

ordered output list. Rank accuracy ranges from 0 to 1. Classification analysis was performed 

separately for each participant, and the mean rank accuracy was computed over the participants. 

3.4.2 Voxel Selection 

Since fMRI acquires the neural activity in the entire brain (15,000 – 20,000 distinct voxel 

locations, in our parcellation), many locations might not exhibit neural activity that encodes 

word or phrase meaning. Thus, the classifier analysis selected the voxels whose responses to the 

different items were most stable across presentations. Voxel stability was computed as the 

average pairwise correlation between 24 item vectors across presentations, using only the 

training set within each fold in the cross-validation paradigm. The focus on the most stable 

voxels effectively increased the signal-to-noise ratio in the data and also served as a 

dimensionality reduction tool that facilitated further analysis by classifiers. Many of our previous 

analyses have indicated that 120 voxels is a set size suitable for our purposes (Just et al., 2010). 

Our theoretical framework considers all cortical voxels and allows the training data to determine 

which locations are systematically modulated by which aspects of word meanings. 

3.4.3 Results and Discussion 

Table 3.4 shows the results of the exemplar-level classification analysis. All classification 

accuracies were significantly higher than chance (p < 0.05), where the chance level for each 

classification is determined based on the empirical distribution of rank accuracies for randomly 

generated null models. One hundred null models were generated by permuting the class labels. 
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The classifier was able to distinguish among the 24 exemplars with mean rank accuracies close 

to 70%. The classification accuracies were also determined separately for nouns only and phrases 

only. Distinct classifiers were trained. Classification accuracies were significantly higher (p < 

0.05) for the nouns than the phrases, calculated with a paired t-test. For 3 participants, the 

classifier did not achieve reliable classification accuracies for the phrase stimuli. Moreover, the 

classification accuracies were determined separately for each semantic category of stimuli. There 

were no significant differences in accuracy across categories, except for the difference between 

vegetables and vehicles. 

 

Table 3.4 Rank accuracies for classifiers. Distinct classifiers were trained to distinguish all 24 
examples, nouns only, phrases only, and only words within each of the 4 semantic categories. 

Categories of concepts to train the classifier Rank accuracy 
All 24 exemplars 0.69 
Nouns 0.71 
Phrases 0.64 
Animals 0.67 
Tools 0.66 
Vegetables 0.65 
Vehicles 0.69 

 

High classification accuracies indicate that the distributed pattern of neural activity does 

encode sufficient signal to discriminate differences among stimuli. The classification accuracy 

for the nouns was comparable to previous research, providing a replication of previous findings 

(Mitchell et al, 2004). The classifiers performed better on the nouns than the phrases, consistent 

with the expectation. It is easier for participants to recall properties associated with a familiar 

object than to comprehend a noun whose meaning is further modified by an adjective. The 

classification analysis also helps to identify participants whose mental representations for 
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phrases are consistent across phrase presentations. Subsequent regression analysis on phrase 

activation was based on subjects who performed the phrase task well. 

3.5 Using vector-based models of semantic representation to account for the systematic 

variances in neural activity 

3.5.1 Lexical Semantic Representation 

Computational linguistics has demonstrated that a word’s meaning is captured to some 

extent by the distribution of words and phrases with which it commonly co-occurs (Church and 

Hanks, 1990). Consequently, Mitchell et al. (2008) coded the meaning of a word as a vector of 

intermediate semantic features computed from the co-occurrences with stimulus words within 

the Google trillion-token text corpus that captures the typical use of words in English text. 

Motivated by existing conjectures regarding the centrality of sensory-motor features in neural 

representations of objects (e.g. Caramazza and Shelton, 1998), they selected a set of 25 semantic 

features defined by co-occurrence with 25 verbs: see, hear, listen, taste, smell, eat, touch, rub, 

lift, manipulate, run, push, fill, move, ride, say, fear, open, approach, near, enter, drive, wear, 

break, and clean. These verbs generally correspond to basic sensory and motor activities, actions 

performed on objects, and actions involving changes in spatial relationships. 

Because there are only 12 stimuli in our experiment, we consider only 5 sensory verbs 

(see hear, smell, eat and touch) to avoid overfitting with the full set of 25 verbs. Following the 

work of Bullinaria and Levy (2007), we consider the “basic semantic vector” which normalizes 

n(c,t), the count of times context word c occurs within a window of 5 words around the target 

word t. The basic semantic vector is thus the vector of conditional probabilities, 
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where all components are positive and sum to one. Table 3.5 shows the semantic 

representation for strong and dog. Notice that strong is heavily loaded on see and smell, whereas 

dog is heavily loaded on eat and see, consistent with the intuitive interpretation of these two 

words. 

 

Table 3.5 The lexical semantic representation for strong and dog. 

Concept See Hear Smell Eat Touch 
Strong 0.63 0.06 0.26 0.03 0.03 
Dog 0.34 0.06 0.05 0.54 0.02 

 

3.5.2 Semantic Composition 

We adopt the vector-based semantic composition models discussed in Mitchell and 

Lapata (2008). Let u and v denote the meaning of the adjective and noun, respectively, and let p 

denote the composition of the two words in vector space. We consider two non-composition 

models, the adjective model and the noun model, as well as two composition models, the 

additive model and the multplicative model. 

The adjective model assumes that the meaning of the composition is the same as the 

adjective: 

 

up =  
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The noun model assumes that the meaning of the composition is the same as the noun: 

 

vp =  

 

The adjective model and the noun model correspond to the assumption that when people 

comprehend phrases, they focus exclusively on one of the two words. This serves as a baseline 

for comparison to other models. 

The additive model assumes the meaning of the composition is a linear combination of 

the adjective and noun vector: 

 

vBuAp ⋅+⋅=  

 

where A and B are scalars of weighting coefficients. 

The multiplicative model assumes the meaning of the composition is the element-wise 

product of the two vectors: 

 

vuCp ⋅⋅=  

 

Mitchell and Lapata (2008) fitted the parameters of the weighting vectors A, B, and C, 

though we assume A = B = C = 1, since we are interested in the model comparison. Also, there 

are no model complexity issues, since the number of parameters in the four models is the same. 

More critically, the additive model and multiplicative model correspond to different 

cognitive processes. On one hand, the additive model assumes that people concatenate the 
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meanings of the two words when comprehending phrases. On the other hand, the multiplicative 

model assumes that the contribution of u is scaled to its relevance to v, or vice versa. The 

assumption of the multiplicative model corresponds to the modifier-head interpretation where 

adjectives are used to modify the meaning of nouns. Notice that as a result of a symmetric 

operator, the multiplicative model is insensitive to word order. Yet, the modifier-head 

relationship is not symmetric. For instance, reversing the word order of a phrase (e.g. dog strong) 

may result in a different syntactic structure (e.g. adverb-adjective), and can mean something very 

different (e.g. strong like a dog). Although Mitchell and Lapata (2008) described how these 

composition models may be extended to relax the symmetric assumption, the simplified models 

suffice for our purposes since we only consider adjective-noun phrases and not other syntactic 

structures. To foreshadow the results, the modifier-head interpretation of the multiplicative 

model provided the best account for the neural activity observed in adjective-noun phrase data. 

Table 3.6 shows the semantic representation for strong dog under each of the four 

models. Although the multiplicative model appears to have small loadings on all features, the 

relative distribution of loadings still encodes sufficient information, as our later analysis will 

show. Notice how the additive model concatenates the meaning of two words and is heavily 

loaded on see, eat, and smell, whereas the multiplicative model zeros out unshared features like 

eat and smell. As a result, the multiplicative model predicts that the visual aspects will be 

emphasized when a participant is thinking about strong dog, while the additive model predicts 

that, in addition, the behavioral aspects (e.g., eat, smell, and hear) of dog will be emphasized. 
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Table 3.6 The semantic representation for strong dog under the adjective, noun, additive, and 
multiplicative models. 

Semantic Composion See Hear Smell Eat Touch 
Adjective model 0.63 0.06 0.26 0.03 0.03 
Noun model 0.34 0.06 0.05 0.54 0.02 
Additive model 0.96 0.12 0.31 0.57 0.04 
Multiplicative model 0.21 0.00 0.01 0.01 0.00 

 

Notice that these 4 vector-based semantic composition models ignore word order. This 

corresponds to the bag-of-words assumption, such that the representation for strong dog will be 

the same as that of dog strong. The bag-of-words model is used as a simplifying assumption in 

several semantic models, including LSA (Landauer & Dumais, 1997) and topic models (Blei, 

Ng, & Jordan, 2003). 

There were two main hypotheses that we have tested. First, people usually regard the 

noun in the adjective-noun pair as the linguistic head. Therefore, meaning associated with the 

noun should be more evoked. Thus, we predicted that the noun model would outperform the 

adjective model. Second, people make more interpretations that use adjectives to modify the 

meaning of the noun, rather than disjunctive interpretations that add together or take the union of 

the semantic features of the two words. Thus, we predicted that the multiplicative model would 

outperform the additive model.  

3.5.3 Regression Fit 

In this analysis, we train a regression model to fit the activation profile for the 12 phrase 

stimuli. We focused on subjects for whom the classifier established reliable classification 

accuracies for the phrase stimuli. The regression model examined to what extent the semantic 

feature vectors (explanatory variables) can account for the variation in neural activity (response 

variable) across the 12 stimuli. All explanatory variables were entered into the regression model 
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simultaneously. More precisely, the predicted activity av at voxel v in the brain for word w is 

given by 

 

( )∑
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+=
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1
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where fi(w) is the value of the ith intermediate semantic feature for word w, βvi is the 

regression coefficient that specifies the degree to which the ith intermediate semantic feature 

activates voxel v, and εv is the model’s error term that represents the unexplained variation in the 

response variable. Least squares estimates of βvi were obtained to minimize the sum of squared 

errors in reconstructing the training fMRI images. An L2 regularization with lambda = 1.0 was 

added to prevent overfitting given the high parameter-to-data-points ratios. A regression model 

was trained for each of the 120 voxels and the reported R2 is the average across the 120 voxels. 

R2 measures the amount of systematic variance explained by the model. Regression results were 

evaluated using 6-fold cross validation, where one of the 6 repetitions was left out for each fold.  

Linear regression assumes a linear dependency among the variables and compares the 

variance due to the independent variables against the variance due to the residual errors. While 

the linearity assumption may be overly simplistic, it reflects the assumption that fMRI activity 

often reflects a superposition of contributions from different sources, and has provided a useful 

first order approximation in the field (Mitchell et al., 2008). 

3.5.4 Results and Discussion 

The second column of Table 3.7 shows the R2 regression fit (averaged across 120 voxels) 

of the adjective, noun, additive, and multiplicative model to the neural activity observed in 
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adjective-noun phrase data. The noun model significantly (p < 0.05) outperformed the adjective 

model, estimated with a paired t-test. Moreover, the difference between the additive and 

adjective models was not significant, whereas the difference between the additive and noun 

models was significant (p < 0.05). The multiplicative model significantly (p < 0.05) 

outperformed both of the non-compositional models, as well as the additive model. 

More importantly, the two hypotheses that we were testing were both verified. Notice 

Table 3.7 supports the hypothesis that the noun model should outperform the adjective model 

based on the assumption that the noun is generally more central to the phrase meaning than is the 

adjective. Table 3.7 also supports our hypothesis that the multiplicative model should outperform 

the additive model, based on the assumption that adjectives are used to emphasize particular 

semantic features that will already be represented in the semantic feature vector of the noun. Our 

findings here are largely consistent with Mitchell and Lapata (2008). 

 

Table 3.7 Regression fit and regression-based classification rank accuracy of the adjective, noun, 
additive, and multiplicative models for phrase stimuli. 

Semantic Composition R2 Rank accuracy 
Adjective model 0.34 0.57 
Noun model 0.36 0.61 
Additive model 0.35 0.60 
Multiplicative model 0.42 0.62 

 

Following Mitchell et al. (2008), the regression model can be used to decode mental 

states. Specifically, for each regression model, the estimated regression weights can be used to 

generate the predicted activity for each word. Then, a previously unseen neural activation vector 

is identified with the class of the predicted activation that had the highest correlation with the 

given observed neural activation vector. Notice that, unlike Mitchell et al. (2008), where the 
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regression model was used to make predictions for items outside the training set, here we are just 

showing that the regression model can be used for classification purposes. 

The third column of Table 3.7 shows the rank accuracies classifying concepts using the 

predicted activation from the adjective, noun, additive, and multiplicative models. All rank 

accuracies were significantly higher (p < 0.05) than chance, where the chance level for each 

classification is again determined by permutation testing. More importantly, here we observe a 

ranking of these four models similar to that observed for the regression analysis. Namely, the 

noun model performs significantly better (p < 0.05) than the adjective model, and the 

multiplicative model performs significantly better (p < 0.05) than the additive model. However, 

the difference between the multiplicative model and the noun model is not statistically 

significant in this case. 

3.6 Comparing the attribute-specifying adjectives with the object-changing adjectives 

Some of the phrases contained adjectives that changed the meaning of the noun. In the 

case of vehicle nouns, adjectives were chosen to modify the manipulability of the nouns (e.g., to 

make an airplane more manipulable, paper was chosen as the modifier). This type of modifier 

raises two issues. First, these modifiers (e.g. paper, model, toy) more typically assume the part of 

speech (POS) tag of nouns, unlike our other modifiers (e.g., soft, large, strong) whose typical 

POS tag is adjective. Second, these modifiers combine with the noun to denote a very different 

object from the noun in isolation (e.g. paper airplane, model train, toy truck), in comparison to 

other cases where the adjective simply specifies an attribute of the noun (e.g. large cat, strong 

dog). In order to study this difference, we performed classification analysis separately for the 

attribute-specifying adjectives and the object-changing adjectives. 
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Our hypothesis is that the phrases with attribute-specifying adjectives will be much more 

difficult to distinguish from the original nouns than the adjectives that change the referent. For 

instance, we hypothesize that it is much more difficult to distinguish the neural representation for 

strong dog versus dog than it is to distinguish the neural representation for paper airplane versus 

airplane. To verify this, Gaussian Naïve Bayes classifiers were trained to discriminate between 

each of the 12 pairs of nouns and adjective-noun phrases. The average classification for phrases 

with object-changing adjectives is 0.76, whereas classification accuracies for phrases with 

attribute-specifying adjectives are 0.68. The difference is statistically significant at p < 0.05. This 

result supports our hypothesis. 

Furthermore, we performed regression-based classification separately for the two types of 

adjectives. Notice that the number of phrases with object-changing adjectives is much less than 

the number of phrases with attribute-specifying adjectives (3 vs. 9). This affects the parameter-

to-data-points ratio in our regression model. Consequently, an L2 regularization with lambda = 

10.0 was used to prevent overfitting. Table 3.8 shows a pattern similar to that seen in section 4 is 

observed for the attribute-specifying adjectives. That is, the noun model outperformed the 

adjective model and the multiplicative model outperformed the additive model when using 

attribute-specifying adjectives. However, for the object-changing adjectives, the noun model no 

longer outperformed the adjective model. Moreover, the additive model performed better than 

the noun model. Although neither difference is statistically significant, this clearly shows a 

pattern different from the attribute-specifying adjectives. This result suggests that when 

interpreting phrases like paper airplane, it is more important to consider contributions from the 

adjectives, compared to when interpreting phrases like strong dog, where the contribution from 
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the adjective is simply to specify a property of the item typically referred to by the noun in 

isolation. 

 

 Table 3.8 Separate regression-based classification rank accuracy for phrases with attribute-
specifying or object-changing adjectives. 

Semantic Composion Attribute-specifying adjective Object-changing adjective 
Adjective model 0.57 0.65 
Noun model 0.62 0.64 
Additive model 0.61 0.65 
Multiplicative model 0.63 0.67 

 

3.7 Contribution and Conclusion 

Experimental results have shown that the distributed pattern of neural activity while 

people are comprehending adjective-noun phrases does contain sufficient information to decode 

the stimuli with accuracies significantly above chance. Furthermore, vector-based semantic 

models can explain a significant portion of systematic variance in observed neural activity. 

Multiplicative composition models outperform additive models, a trend that is consistent with 

the assumption that people use adjectives to modify the meaning of the noun, rather than 

conjoining the meaning of the adjective and noun. 

In this study, we represented the meaning of both adjectives and nouns in terms of their 

co-occurrences with 5 sensory verbs. While this type of representation might be justified for 

concrete nouns (hypothesizing that their neural representations are largely grounded in sensory-

motor features), it might be that a different representation is needed for adjectives. Further 

research is needed to investigate alternative representations for both nouns and adjectives. 

Moreover, the composition models that we presented here are overly simplistic in a number of 
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ways. We look forward to future research to extend the intermediate representation and to 

experiment with different modeling methodologies. 

Due to the inherent limitations in the temporal properties of fMRI data, in most of this 

thesis work we consider only the spatial distribution of the brain activity after the stimuli are 

comprehended and do not attempt to model the cognitive process of comprehension. One 

extension is to see if the temporal resolution of fMRI encodes sufficient signal to model the 

process of combination and not just the comprehended concepts. 
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4 QUANTITATIVE MODELING OF THE NEURAL REPRESENTATION OF NOUN-

NOUN CONCEPT COMBINATION 

4.1 Introduction 

Conceptual combination is the process in which complex concepts (e.g. coffee shop) are 

constructed from basic concepts (e.g. coffee and shop). An improved understanding of semantic 

composition in multi-word phrases is an important step toward accounts of sentence processing. 

There has been extensive study of the two different types of combination rules that people used 

when interpreting noun-noun concept combination, namely the property-based interpretation and 

relation-based interpretations. On one hand, in property-based interpretation, one property (e.g., 

shape, color, size) of the modifier object is applied to modify the head object. For example, the 

interpretation that corn coat is a coat that is bright yellow is a type of property-based 

interpretation. On the other hand, in relation-based interpretation, the modifier object is realized 

in its entirety and related to the head object as a whole. For example, the interpretation that corn 

coat is a coat that is used to protect corn is a type of relation-based interpretation. 

Baron et al. (in press) used a categorization task to evoke patterns of neural activiation for 

complex concepts (e.g. young man) as well as the constituents (e.g. young, man). They found 

that the superimposition of activity for constituents at left anterolateral temporal lobe reliably 

predicted activation pattern for the complex concepts. Though, they used computer generated 

faces to represent the combined concepts, which could potentially reflect attention to distinctive 

visual features rather than true conceptual meaning. Graves et al. (2010) studied familiar, highly 

meaningful phrases (e.g. lake house) and unfamiliar, minimally meaningful phrases created by 

reversing the word order of the familiar phrases (e.g. house lake). They found a hemispheric 

dissociation between levels of semantic representation: lexical processing is more correlated with 
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activation in the left hemisphere, whereas combinatorial semantic processing is more correlated 

with activation in the right hemisphere. 

In the present work, fMRI data is used to study the brain activity when people 

comprehend noun-noun concept combinations with a property-based or a relation-based 

interpretation. In an object-contemplation task, participants were shown the 10 noun-noun 

phrases with accompanying contexts that either bias toward property-based or relation-based 

interpretations. That is, the participant was expected to contemplate a property-based 

interpretation in one context, but a relation-based interpretation when the same noun-noun phrase 

was presented in another context. They were instructed to think of the same properties of the 

stimulus object consistently during each presentation. Given the brain activity signatures evoked 

by this visual presentation, multivariate machine learning classifier is estimated to decode 

whether a participant is thinking about a property-based interpretation or a relation-based 

interpretation. The setup of the experiment poses a challenge for classifiers that obtain its 

discriminative power from distinguishing the brain activity of low-level visual perceptions. Since 

the visual stimuli are identical, the discrimination must be made on the semantic differences 

between the two types of interpretations. 

In section 2, we describe the experiment and how functional brain images were acquired. 

In section 3, we show that the distributed pattern of brain activity encodes sufficient signal to 

discriminate among different interpretations of the same phrase. In section 4, we perform group-

level analysis to determine brain regions that are activated in different experimental conditions. 

In section 5, we compare the brain activation of isolated concepts and concept combinations to 

study the neural underpinning of the semantic composition. Finally, we discuss some of the 

implications of our work and suggest some future studies. 
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4.2 Material and Methods 

Participants. Ten right-handed adults (5 female, age between 18 and 32) from the 

Carnegie Mellon community participated and gave informed consent approved by the University 

of Pittsburgh and Carnegie Mellon Institutional Review Boards. 

Experimental paradigm. The stimuli were text labels of 10 noun-noun phrases: window 

cup, cow chair, corn coat, bell dress, bee, airplane, pliers hand, dog beetle, refrigerator house, 

celery table, and tomato ant. The objects in these phrases were chosen from Mitchell et al. 

(2008) where the fMRI neural signatures of these objects have been found to elicit different brain 

activity. The participants were shown the noun phrases with accompanying contexts that either 

bias toward property-based or relation-based interpretations. For example, a context like “Sally 

was known for always choosing clothes that matched her light blond hair, like that eye-catching 

...” will lead the participant to interpret a corn coat as a coat that is bright yellow (a property-

based interpretation where the color of a corn is mapped to a coat). On the other hand, a context 

like “A severe thunderstorm was expected, so the farmer protected each of his crops with their 

own ...” will lead the participant to interpret a corn coat as a coat that is used to protect corn (a 

relation-based interpretation where the modifier object is realized in its entirety and related to the 

head object as a whole). Table 4.1 and Table 4.2 show the contextual passages that were used to 

induce property and relation-based interpretations, respectively. The length of the contextual 

sentence is controlled and has an average of 17.5 words in contexts that bias toward property-

based interpretations and 17.9 words in contexts that bias toward relation-based interpretations. 

 

Table 4.1 Contextual passage to induce property-based interpretations 

Property-based Context Phrase 
The mug has panels of clear glass that allow light to pass through; it is called a window cup 
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...                          
The furniture store was successful in selling all of its animal-print pieces, 
except for one last ...           cow chair 
Sally was known for always choosing clothes that matched her light blond 
hair, like that eye-catching ...       corn coat 
The little girl admired the wedding gown, with its dramatic, puffy skirt that 
she called a ...                  bell dress 
The villagers could hear the buzzing engine before they saw the black and 
yellow wings of the ...               bee airplane 
Mark is so strong that he can saw through a copper pipe while grasping it with 
his bare ...                     pliers hand 
After discovering a new insect, Ann thought that due to its wagging tail, she 
would name it the ...             dog beetle 
Molly's parents keep the thermostat set to such a low temperature that Jerry 
calls it a ...                     refrigerator house 
Her living room was decorated with modern pieces, in green colors with long, 
straight lines, especially her ... celery table 
Ricky screamed and got goosebumps when he found, crawling on his arm, a 
big, fat, red ... tomato ant 

 

Table 4.2 Contextual passage to induce relation-based interpretation 

Relation-based Context Phrase 
John often wakes up thirsty, and since he doesn't have a bedside table, he 
keeps water in a ...      window cup 
The rancher was notorious for lavishly pampering his herd, going so far as to 
build a ...            cow chair 
A severe thunderstorm was expected, so the farmer protected each of his 
plants with their own ...    corn coat 
The church's call to services was not as loud as usual due to the muffling 
effect of the ...         bell dress 
When Sara had to move her honey farm across the country, she needed to rent 
a ...                    bee airplane 
Mark makes his living as a plumber, so he is very careful not to injure his ...                      pliers hand 
Fido has been sad lately because of the many itchy bites that he got from the ...                    dog beetle 
Before being sent to the store to be purchased, the large electrical appliances 
are kept in a ...    refrigerator house 
Ralph's kitchen is so orderly because every food has its own place, like the 
fruit bowl and the ...  celery table 
The gardener got angry when he saw that his prize-winning plants were 
overrun by a nasty kind of ...  tomato ant 
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To ensure that participants had a consistent set of properties to think about, they were 

each asked to generate and write a set of properties for each exemplar in a session prior to the 

scanning session. They were asked to describe the object in the given context in one sentence 

and also answer three questions: what does it look like (appearance), how do you physically 

interact with it (interaction), and for what purpose is it used (purpose)? However, nothing was 

done to elicit consistency across participants. The entire set of 10 stimuli was presented 6 times 

under each context during the scanning session, in a different random order each time. The 

contextual sentence is presented for 4s, followed by a 3s rest. Then, the participant is presented 

with the noun-noun phrase for 4s. Participants silently viewed the stimuli and were asked to 

think about the object in the given context and mentally go over the same set of properties 

(appearance, interaction, purpose) consistently across the 6 presentations of the items. There is a 

7s rest period before the next stimulus item is presented, during which the participants were 

instructed to fixate on an X displayed in the center of the screen. We also record the brain 

activity when each noun in the noun-noun phrases is presented in isolation, which we call the 

“word” condition. There were two additional presentations of fixation, 31s each, at the beginning 

and end of each session, to provide a baseline measure of activity. A schematic representation of 

the design is shown in Figure 4.1. 
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Figure 4.1 Schematic representation of experimental design for the noun-noun concept combination 

experiment. 

 

Data acquisition. Functional images were acquired on a Siemens Allegra 3.0T scanner 

(Siemens, Erlangen, Germany) at the Brain Imaging Research Center of Carnegie Mellon 

University and the University of Pittsburgh using a gradient echo EPI pulse sequence with TR = 

1000 ms, TE = 30 ms and a 60° flip angle. Seventeen 5-mm thick oblique-axial slices were 

imaged with a gap of 1-mm between slices. The acquisition matrix was 64 x 64 with 3.125 x 

3.125 x 5-mm voxels. 

Data processing and analysis. Data processing and statistical analysis were performed 

with Statistical Parametric Mapping software (SPM2, Wellcome Department of Cognitive 
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Neurology, London, UK; Friston, 2005). The data were corrected for slice timing, motion, linear 

trend, and were temporally smoothed with a high-pass filter using 190s cutoff. The data were 

normalized to the MNI template brain image using 12-parameter affine transformation. 

The data were prepared for classification analysis by being spatially normalized into MNI 

space and resampled to 3x3x6 mm3 voxels. We try to keep approximately the same acquisition 

voxel size which has been used in many of our previous studies and is adequate for a list of 

different cognitive tasks. Voxels outside the brain or absent from at least one participant were 

excluded from further analysis. The percent signal change (PSC) relative to the fixation 

condition was computed for each object presentation at each voxel. The mean of the four images 

(mean PSC) acquired within a 4s window, offset 4s from the stimulus onset (to account for the 

delay in hemodynamic response) provided the main input measure for subsequent analysis. The 

mean PSC data for each word or picture presentation were further normalized to have mean zero 

and variance one to equate the variation between participants over exemplars. 

4.3 Does the distribution of neural activity encode sufficient signal to classify noun-noun 

concept combination? 

We are interested in whether the distribution of brain activity encodes sufficient signal to 

decode the mental state associated with viewing and contemplating about the object. Given the 

observed brain activity when participants contemplated one of the 40 presented objects, 

classifiers were trained to identify cognitive states associated with viewing stimuli from the 

evoked patterns of functional activity. The classification analysis can be performed to decode 

exemplars or categories. In exemplar classification, the classifiers are trained to decode which of 

the 40 exemplars a participant is thinking about. In category classification, binary classifiers are 
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trained to decode which of the property-based or relation-based interpretation a participant is 

thinking about. 

4.3.1 Classifier Model 

Classifiers were trained to identify cognitive states associated with viewing stimuli from 

the evoked pattern of functional activity (mean PSC). Classifiers were functions f of the form: f: 

mean_PSC → Yi, i=1,…n, where Yi were the sixty exemplars, and mean_PSC was a vector of 

mean PSC voxel activation level, as described above. The Gaussian Naïve Bayes (GNB) pooled 

variance classifier was used (Mitchell 1997). It is a generative classifier that models the joint 

distribution of a class Y (exemplar or category) and attributes X (voxels), and assumes the 

attributes X1,…,Xn  are conditionally independent given Y. The classification rule is: 
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Classification results were evaluated using 6-fold cross validation, where one of the 6 

repetitions was left out for each fold. The voxel selection procedure (described below) was 

performed separately inside each fold, using only the training data. Since multiple classes were 

involved, rank accuracy was used Mitchell et al. (2004) to evaluate the classifier. Given a new 

fMRI image to classify, the classifier outputs a rank-ordered list of possible class labels from 

most to least likely. The rank accuracy is defined as the percentile rank of the correct class in this 

ordered output list. Rank accuracy ranges from 0 to 1. Classification analysis was performed 

separately for each participant, and the mean rank accuracy was computed over the participants. 
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4.3.2 Voxel Selection 

Since fMRI acquires the neural activity in the entire brain (15,000 – 20,000 distinct voxel 

locations, in our parcellation), many locations might not exhibit neural activity that encodes 

word or phrase meaning. Thus, the classifier analysis selected the voxels whose responses to the 

different stimuli were most stable across presentations. Voxel stability was computed as the 

average pair wise correlation between 40-item vectors across presentations, using only the 

training set within each fold in the cross-validation paradigm. The focus on the most stable 

voxels effectively increased the signal-to-noise ratio in the data and also served as a 

dimensionality reduction tool that facilitated further analysis by classifiers. Many of our previous 

analyses have indicated that 120 voxels is a set size suitable for our purposes (Just et al., 2010). 

The locations of stable voxels for the pattern-based classification of brain activity within 

participants are reported in Figure 4.2. Table 4.4 and Table 4.4 list the stable voxels collected 

from all stimuli and only noun-noun stimuli, resepectively. The stable voxels were located in 

multiple areas of the brain that are consistent with the group-level activation. The overall 

characteristics of stable voxel locations were: (1) inferior and middle frontal gyri, inferior and 

middle temporal gyri, the Fusiform areas, inferior parietal gyrus, the Precuneus area in the 

parietal lobe, the Lingual area in the occipital lobe; (2) bi-lateral; and (3) primarily located in the 

frontal and temporal lobes.  
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Figure 4.2 Voxel clusters from the union of stable voxels from all nine participants for a) all isolated 

noun and noun-noun concept combination stimuli, b) noun-noun concept combination stimuli only; extent 
threshold voxels=5. The overall characteristics of stable voxel locations were: (1) inferior and middle frontal 

gyri, inferior and middle temporal gyri, the Fusiform areas, inferior parietal gyrus, the Precuneus area in the 
parietal lobe, the Lingual area in the occipital lobe; (2) bi-lateral; and (3) primarily located in the frontal and 

temporal lobes.  

 

Table 4.3 Locations (MNI centroid coordinates) and sizes of the voxel clusters selected by the 
stability measure of all noun and phrase stimuli. 

Label X Y Z Voxels Radius 
Temporal      
L Temporal Inf -46.2 -67.2 -8.4 27 8.81 
L Fusiform -32.4 -43.8 -13.6 11 6.15 
R Fusiform 32.3 -39.6 -16 6 4.85 
L Fusiform -23.1 -48.1 -13.2 5 4.57 
L Temporal Mid -54.4 -40.6 4.8 5 3.87 
      
Frontal      
L Frontal Inf Oper -52.4 7.5 19.3 18 6.82 
      
Parietal      
L Precentral -39.4 -2.5 48 27 10.67 
L SupraMarginal -54.9 -24.9 34.3 21 9.64 
L Parietal Inf -36.6 -43.4 48.4 17 6.75 
      
Occipital      
L Calcarine -3.9 -86.9 2.4 729 24.98 

  

a) 

b) 
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Table 4.4 Locations (MNI centroid coordinates) and sizes of the voxel clusters selected by the 
stability measure of property and relation phrases. 

Label X Y Z Voxels Radius 
Temporal      
L Fusiform -32 -42.8 -18.9 20 6.23 
L Occipital Mid -39.6 -76.7 27.2 15 8.94 
R Fusiform 31.9 -39.3 -18 14 6.2 
L Temporal Inf -58.3 -55.6 -6.7 9 5.36 
R Temporal Inf 56.2 -60.4 -5 6 4.3 
L Insula -44.4 13.1 -6 5 5.04 
      
Frontal      
L Frontal Mid -38.4 48.7 10.3 7 5.06 
R Frontal Inf Oper 44.8 10.4 27 6 4.41 
R Frontal Inf Oper 53.8 13.8 27.6 5 3.51 
      
Parietal      
R Precuneus 8.9 -46.9 52 6 5.66 
L Parietal Inf -43.1 -48.1 45.6 5 4.31 
R Precuneus 3.1 -60 55.2 5 3.62 
      
Occipital      
L Lingual -6.2 -73.1 -4.8 5 4.61 
R Lingual 13.8 -69.4 -3.6 5 5.75 
      
Subcortical      
L Calcarine -13.5 -60.4 13.6 15 6.16 
L Pallidum -19.4 3.8 -4.8 5 3.79 
R Cerebelum Crus2 11.2 -83.1 -31.2 5 4.66 

 

Our theoretical framework considers all cortical voxels and allows the training data to 

determine which locations are systematically modulated by which aspects of word meanings. In 

addition to selecting voxel from the whole brain, we perform the voxel selection separately for 

each brain region. Distinct classifiers were trained for the frontal, temporal, parietal, and 

occipital lobe. 
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4.3.3 Results 

Which of the 40 exemplars was the participant thinking about? The first and second row 

in Table 4.5 shows the results of the exemplar classification analysis. All classification 

accuracies were significantly higher than chance (p < 0.05), where the chance level for each 

classification is determined based on the empirical distribution of rank accuracies for randomly 

generated null models. One hundred null models were generated by permuting the class labels. 

The classifier was able to distinguish among the 40 exemplars and 20 nouns with mean rank 

accuracies close to 77%, and 67% respectively. We also determined the classification accuracies 

separately for each brain region. Distinct classifiers were trained for the frontal, temporal, 

parietal, and occipital lobe. Occipital lobe yields the best exemplar classification at 74% and 

64%, respectively. 

Was the participant thinking of a property or relation-based interpretation? The third 

and fourth row in Table 4.5 shows the results of the category classification analysis. All 

classification accuracies were significantly higher than chance (p < 0.05), where the chance level 

for each classification is determined based on the empirical distribution of rank accuracies for 

randomly generated null models. One hundred null models were generated by permuting the 

class labels. The classifier was able to distinguish between the two types of interpretations with 

mean rank accuracies close to 66%. More importantly, the discriminability is not due to the 

differences in contextual prime as the classifier was not able to distinguish between the 

contextual primes that are used to induce property-based and relation-based interpretations 

(mean rank accuracies at 53%, which is not statistically different from chance). We also 

determined the classification accuracies separately for each brain region. Unlike exemplar 



 Neural representation of nouns and phrases 108 

classification, the parietal lobe and frontal lobe yields the best category classification at 0.66 and 

0.63%, respectively. 

 

Table 4.5 Classification analysis 

 Stimuli All Frontal Temporal Parietal Occipital Non-
Occipital 

Exemplar All 0.77 0.67 0.69 0.71 0.74 0.76 
 Noun 0.67 0.58 0.59 0.62 0.64 0.64 
Category Context 0.53 0.52 0.50 0.54 0.60 0.50 
 Phrase 0.66 0.63 0.62 0.66 0.59 0.66 

 

4.4 fMRI Analyses for SPM Group Contrasts 

To compare the distribution of activation across experimental conditions, group t-test 

analyses were performed using a random-effects model (Friston et al., 1995). All t-maps in each 

contrast were calculated across the entire cortical volume, thresholded at an uncorrected height 

threshold of p < .001 and an extent threshold of 5 voxels. Statistical maps were superimposed on 

the high-resolution, normalized, T1-weighted, SPM2 individual template image for viewing. 

Labels for coordinates of activation were confirmed in MNI space (Tzourio-Mazoyer et al., 

2002). 

On one hand, the brain activation for isolated noun stimuli contrasted with noun-noun 

concept combination stimuli was mostly left-lateralized, and included the cortical areas that are 

part of the language network of the brain (inferior and superior frontal gyrus), in additions to the 

occipital areas (Calcarine, the middle and superior occipital areas). There was also right-

lateralized activation in Cuneus and Precuneus areas. On the other hand, the brain activation for 

noun-noun concept combination stimuli contrasted with isolated noun stimuli included left-
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lateralized activation in the middle temporal gyrus, the angular gyrus, as well as right-lateralized 

activation in the fusiform gyrus and Precuneus. (Figure 4.3; Table 4.6). 

 

 
Figure 4.3 Brain activation for a) isolated word stimuli contrasted with noun-noun concept 

combination stimuli, b) noun-noun concept combination stimuli contrasted with isolated word stimuli, 
p<0.001 uncorrected; T=4.30; extent threshold voxels=5. The brain activation for isolated noun stimuli 

contrasted with noun-noun concept combination stimuli was mostly left-lateralized in inferior and superior 
frontal gyrus. The brain activation for noun-noun concept combination stimuli contrasted with isolated noun 

stimuli included left-lateralized activation in the middle temporal gyrus. 

 

a) 

b) 
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Table 4.6 Locations (MNI centroid coordinates) and sizes of the voxel clusters of activation for 
isolated noun stimuli contrasted with noun-noun concept combination stimuli, p<0.001 uncorrected; T=4.30; 

extent threshold voxels=5. 

Contrast Label X Y Z Voxels Radius 
Word - Phrase Frontal      
 L Frontal Inf Orb -34 23.4 -9.5 50 6.94 
 L Frontal Sup Orb -15.5 40.6 -13.2 23 3.05 
 R Frontal Inf Orb 29 30 -9 8 1.93 
       
 Occipital      
 L Calcarine -2.1 -85 1.3 113 8.19 
 L Occipital Sup -9 -83.4 46.6 29 2.97 
 R Cuneus 10.3 -92.7 13.6 23 2.99 
 L Cuneus -7.2 -95.9 22.4 17 2.9 
 L Occipital Mid -9.7 -106 3.7 6 1.82 
       
 Parietal      
 R Precuneus 15 -78 47 8 1.93 
       
Phrase - Word Temporal      
 L Temporal Mid -63 -44.7 -9.3 21 3.08 
 R Fusiform 35.6 -37.2 -25.6 5 2.16 
       
 Parietal      
 R Precuneus 21 -39.6 13.8 72 4 
 L Angular -32.4 -53.2 23.9 63 4.27 

 

The brain activation for property minus relation was mostly bi-lateralized, and included 

the Broca’s areas (inferior frontal gyrus), the inferior and middle temporal gyrus, the fusiform 

area, as well as the sensorimotor areas in the parietal lobe (precentral and postcentral gyri). There 

was no positive activity for relation minus property contrast (Figure 4.4; Table 4.7). 

 



 Neural representation of nouns and phrases 111 

 
Figure 4.4 Brain activation for property-based interpretation of the concept combination stimuli 

contrasted with relation-based interpretation of the isolated word stimuli, p<0.001 uncorrected; T=4.30; 
extent threshold voxels=5. The brain activation for property minus relation was mostly bi-lateralized, and 

included the Broca’s areas (inferior frontal gyrus), the inferior and middle temporal gyrus, the fusiform area, 
as well as the sensorimotor areas in the parietal lobe. 

 

Table 4.7 Locations (MNI centroid coordinates) and sizes of the voxel clusters of activation for 
property-based interpretation of the concept combination stimuli contrasted with related-based 

interpretation of the concept combination stimuli, p<0.001 uncorrected; T=4.30; extent threshold voxels=5. 

Label X Y Z Voxels Radius 
Temporal      
L Occipital Mid -38.6 -68.7 -1.4 140 5.54 
R Temporal Inf 46.2 -61.9 -6.2 78 4.75 
R Temporal Inf 49.3 -48.9 -19.3 11 2.14 
      
Frontal      
R Frontal Inf Tri 41.4 38.9 4.6 63 3.84 
L Frontal Inf Oper -44.7 6.5 18.7 12 2.3 
      
Parietal      
R Postcentral 52.8 -16.2 34.6 133 8.14 
L Postcentral -40.3 -30.6 48.6 37 3.41 
R Postcentral 55.2 -17.5 49 8 1.87 

 

4.5 Neural Composition of noun-noun concept combination 

We now study the neural composition of noun-noun concept combination. In our 

experiment, we have recorded the brain activity for noun-noun phrases, as well as the 

corresponding nouns in isolation. One direct way of assessing compositionality is to compare the 

brain activity for phrases to individual words. Our hypothesis is the brain activity for property-
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based interpretation should be more similar to the head word (since only one property of the 

modifier word is extracted to modify the head word), whereas the brain activity for relation-

based interpretation should be similar to both the modifier and head word (since the modifier 

object is realized in its entirety to the head object as a whole). 

Figure 4.5 and rows 1 and 2 in Table 4.8 show the correlation analysis for all stimuli. 

Each of the 40 stimulus items is represented by a vector of brain activity measured at the 120 

most stable voxels whose responses to the 20 different nouns were most stable across 

presentations. Unlike our hypothesis, brain activity for property-based interpretation is more 

similar to the modifier word than the head word (r = 0.24 > 0.13), whereas brain activity for 

relation-based interpretation is more similar to the head word than the modifier word (r = 0.19 > 

0.16). The difference in correlation with the modifier and head word is statistically significant (p 

= 0.05) for the property-based interpretations, but not for relation-based interpretations. One 

possible explanation is that property-based interpretations are less accessible / intuitive to people; 

as a result, people think more about the modifier word to find a fitting property. This pattern of 

result occurs despite the fact that the noun-noun concept combinations were shown during a pre-

training phase. Although people were not struggling to make sense of the combination for the 

first time, property-based interpretations require people to pay more attention to the modifier 

words. On the other hand, relation-based interpretations are made more easily and people can 

move on to focus on the head word (linguistic head). 
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Figure 4.5 Correlation between noun-noun concept combination and isolated noun in the brain 

space. Brain activity for property-based interpretation is more similar to the modifier word than the head 
word (r = 0.24 > 0.13), whereas brain activity for relation-based interpretation is more similar to the head 

word than the modifier word (r = 0.19 > 0.16). 

 

Table 4.8 Correlations between noun-noun concept combination and isolated noun 

Space Type Mod Head Property Relation 
Brain activity Property 0.24 0.13 1.00 0.35 

Relation 0.16 0.19 0.35 1.00 
Data-driven 
(ILFM) 

Property 0.23 0.16 1.00 0.26 
Relation 0.18 0.20 0.36 1.00 
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Figure 4.6 shows the brain activation for corn, coat, the property-based interpretation of 

corn coat, and the relation-based interpretation of corn coat at postcentral and parahippocampal 

gyrus. As seen in Figure 4.6, 

1. A property-based interpretation is more similar to the modifier word: both corn 

and a property-based interpretation of corn coat have activation in the postcentral 

gyrus. 

2. A relation-based interpretation is more similar to the head word: both coat and a 

relation-based interpretation of corn coat have activation at the parahippocampal 

gyrus. 

3. A relation-based interpretation is also similar to the modifier word: both corn and 

a relation-based interpretation of corn coat have activation in the postcentral 

gyrus. 

 

 Corn Coat Property-based 
interpretation 
of corn coat 

Relation-based 
interpretation 
of corn coat 

Postcentral 
gyrus 

    
Parahippocamp

al gyrus 

    
Figure 4.6 The image colors codes brain activity at 500 most stable voxels, only clusters of size 5 

voxels or up. Red circles indicate there are brain activities at the postcentral gryus ((MNI -62.29, -20.14, 
21.73) . Blue circles indicate there are brain activities at the parahippocampal gryus (MNI (MNI -31.25, -

43.75, -6.00).  
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4.6 Discussion 

The locations of the stable voxels indicate that the fMRI data used for discriminating 

property-based vs. relation-based interpretations may be reflecting cognitive process – novelty, 

ambiguity, syntax, semantic, compositionality. The right hemisphere activation may reflect 

selective attention to meaning (Dapretto & Bookheimer, 1999), the use of linguistic context to 

disambiguate particular interpretation, or prosody. 

To test the hypothesis that relation-based interpretations are more easily accessible, a 

step-wise analysis was performed to gradually enter stable voxels in the correlation analysis, 

instead of entering all of them simultaneously. As seen in Figure 4.7, for both property and 

relation-based interpretations, the initial stable voxels correlate more with the head word than the 

modifier word. As the number of voxels included increases, the property-based interpretations 

started to correlate more with the modifier word, whereas the relation-based interpretations 

continued to correlate more with the head word.  

 

 
Figure 4.7 Correlation between phrase and word by number of voxels. For both property and 

relation-based interpretations, the initial stable voxels correlate more with the head word than the modifier 
word. As the number of voxels included increases, the property-based interpretations started to correlate 

more with the modifier word, whereas the relation-based interpretations continued to correlate more with the 
head word. 
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To examine the temporal sequence when people pay more attention to the modifier or the 

head word, we performed the correlation analysis with a moving window. As seen in Figure 4.8, 

for both property and relation-based interpretations, the brain activity for the phrase correlate 

more with the modifier word earlier in time – likely to reflect the fact that modifier words are 

read first. However, as time moves on, the property-based interpretations continue to correlate 

more with the modifier word, whereas the relation-based interpretations started to correlate more 

with the head word. The pattern for the property and relation-based interpretations are clearly 

different. 

 

 
 

Figure 4.8 Correlation between phrase and words by offset. For both property and relation-based 
interpretations, the brain activity for the phrase correlate more with the modifier word earlier in time. As 
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time moves on, the property-based interpretations continue to correlate more with the modifier word, 
whereas the relation-based interpretations started to correlate more with the head word 

 

4.7 Conclusions and Contributions 

In this study, we use contextual prime to induce one of the two interpretations and record 

fMRI-measured brain activity while people think about properties associated with the stimulus. 

Classification analysis shows that the distributed pattern of brain activity contains sufficient 

signal to decode the semantic differences between property-based vs. relation-based 

interpretations despite the identical visual stimuli. More importantly, by employing contextual 

primes to induce different interpretations of the same visual stimuli, we were able to train 

classifiers that discriminate semantic distinctions, instead of differences in visual perception. 

This is evident from the observations that parietal and temporal lobe yield better classification 

than the occipital lobe for decoding different interpretations of the same visual stimuli. 

Moreover, we study the compositionality in the meaning of phrases. An improved 

understanding of semantic composition in multi-word phrases is an important building step 

toward neural accounts of sentence processing. We find that brain activity for property-based 

interpretation is more similar to the modifier word, whereas brain activity for relation-based 

interpretation is more similar to the head word. One possible explanation is that property-based 

interpretations are less accessible / intuitive to people; as a result, people think more about the 

modifier word to find a fitting property. 

Some of the future directions include investigating how context dependent conceptual 

combinations are. In this study, we assume interpretations of conceptual combinations are 

strongly conditioned by the situations and communicative task at hand. Thus, we used contextual 

conditions to induce either relation- or property-based interpretation. We did not include control 
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stimuli where the compound phrases are presented in the absence of contextual primes, which 

would allow us to study to what extent do conceptual representations have a "default" and/or 

context-independent form. We also did not include frequently encountered compound phrases 

(e.g. coffee shop), that may be lexicalized and involved a different cognitive process. 

Furthermore, in this work we considered the brain activity after the stimuli are 

comprehended and did not attempt to model how the combinations are derived. For instance, 

some relational interpretations may be derived by deductive reasoning (e.g. a knowing that a coat 

is used to guard against cold weather, one can deduct that a corn coat is a coat used to protect 

corn from thunderstorm), whereas some may emerge spontaneously from regularities in the 

world (e.g., knowing that animals are often named after their appearances, like sword fish, one 

can derive that a dog beetle is named after the beetle’s wigging tails). One future direction is to 

implement a computational model that both derives the meaning of compound noun and models 

the observed brain activity. For instance, we could implement PUNC (Costello and Keane, 

1997), a computational model that is based on the constraint theory of conceptual combination 

and the C3 model. PUNC assumes that meaning of a compound noun can be derived from all 

possible combinations of the modifier and head noun, where the acceptability of the each 

interpretation is subsequently ranked by three constraints of diagnosticity, plausibility, and 

informativeness. PUNC has been shown to be capable of deriving the meaning of familiar, 

similar, and novel word combinations that mirror human behavior. 
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5 A LATENT FEATURE ANALYSIS OF THE NEURAL REPRESENTATION OF 

OBJECT KNOWLEDGE 

5.1 Introduction 

Mitchell et al. (2008) showed that word features computed from the occurrences of 

stimulus words (within a trillion-token Google text corpus that captures the typical use of words 

in English text) can predict the brain activity associated with the meaning of these words. The 

advantage of using word co-occurrence data is that semantic features can be computed for any 

word in the corpus – in principle any word in existence. Nonetheless, despite the success of this 

model, the work leaves open the question about how to determine the optimal set of semantic 

features. Mitchell et al. (2008) hand-picked a set of 25 semantic features defined by 25 verbs: 

see, hear, listen, taste, smell, eat, touch, rub, lift, manipulate, run, push, fill, move, ride, say, 

fear, open, approach, near, enter, drive, wear, break, and clean. This selection process was 

motivated by existing conjectures regarding the centrality of sensory-motor features in neural 

representations of objects (Caramazza & Shelton, 1998). However, are there other sets of 

semantic features that better characterize the brain activity? Is 25 a sufficient or more than 

necessary number of features to characterize the semantic representation? One can exhaustively 

search for the optimal set of features, but such an approach is computationally intractable and 

certainly not a satisfying approach. 

In this study, we address the question by taking a bottom-up approach. Instead of 

searching for the optimal set of features that can account for the brain activity, we try to infer the 

most likely feature structure directly from the patterns of brain activity. We take a generative 

approach and model the semantic representation as some hidden variables in the probabilistic 

Bayesian framework. A generative process is used to describe how brain activity is generated 
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from this latent semantic representationc. The basic proposition of the model is that the human 

semantic knowledge system is capable of producing an unbounded number of features associated 

with a concept; however, only a subset of them are actively recalled and reflected in brain 

activity during any given task. Moreover, the same set of features is not recalled by a group of 

people. There may be an overlap of features that people commonly recall and people may come 

up with features that no one has thought of before. 

Thus, a set of latent indicator variables is introduced to indicate whether a feature is 

actively recalled. By describing the prior distribution of these latent indicator variables and the 

distribution of the observed brain activity given the assignment of these latent variables, standard 

Bayesian inference procedure can be used to infer the recalled features. More specifically, we 

used the infinite latent feature model (ILFM) with an Indian Buffet Process (IBP) prior (Griffiths 

& Ghahramani, 2005) to derive a binary feature representation of object knowledge from the 

brain activity. ILFM is especially suited for our task because it automatically determines the 

number of features that are manifested in the data. This data-driven feature representation is 

neurologically-informed and may better capture what people were thinking. To foreshadow our 

results, the ILFM is able to capture a latent semantic representation that is consistent with human 

ratings of three semantic factors recovered by factor analysis. Furthermore, we show that the 

recovered latent features are consistent with some existing conjectures regarding the role of 

different brain areas in processing different psycholinguistics features. 

                                                 

c We use the term latent semantic to refer to some intermediate semantic representations that are modeled 

by with hidden variables in a probabilistic Bayesian framework. It is not to be confused with latent semantic analysis 

(LSA), although LSA can also be casted in the same Bayesian framework (Hofmann, 1999). 
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In the study, we used the data from the two experiments in Chapter 2 and 4, where 

participants were asked to think about properties associated with a visually-presented object or 

noun-noun phrase, respectively. The fMRI data acquisition data and signal processing methods 

were reported in previous chapters. In section 2, we discuss the infinite latent feature model and 

show how it can be used to recover the latent semantic representation encoded by brain activity. 

In section 3, we try to interpret the recovered latent features by correlating the latent features 

with the human ratings of the shelter, manipulation, and eating factors, as well as some 

psycholinguistic word features. Finally, we discuss some of the implications of our work and 

suggest some future studies. 

5.2 Latent Feature Analysis 

To characterize the semantic content that is encoded in the brain activity, we take a 

generative approach and model the semantic representation as some hidden variables in a 

probabilistic Bayesian framework. A generative process is used to describe how brain activity is 

generated from this latent semantic representation. Given the brain activity associated with 

people viewing and contemplating different objects, we then apply Bayesian inference 

procedures to infer the most likely latent structure that gives rise to the observed brain activity 

pattern. 

Griffiths & Ghahramani (2005) described a non-parametric Bayesian approach to latent 

variable modeling in which the number of latent variables is unbounded. They defined a 

probability distribution over equivalence classes of binary matrices and derived a generative 

process called Indian buffet process that results in the same distribution. The distribution can be 

used to define probabilistic models that represent objects with an unbounded number of binary 

features. They further derive an infinite latent feature model (ILFM) with an IBP prior on the 
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latent semantic structure. The ILFM is an appealing approach to model the semantic content that 

is encoded in the brain activity. The basic proposition of the model is that the human semantic 

knowledge system is capable of producing an unbounded number of features associated with a 

concept; however, only a subset is actively recalled during any given task. Thus, a set of latent 

indicator variables is introduced to indicate whether a feature is actively recalled at any given 

task. 

Let X denotes the brain activity recorded in our object-contemplating task and Z denotes 

the latent semantic representation that underlies the brain activity pattern, the infinite latent 

feature model is specified by 1) a prior over the feature vectors P(Z), and 2) a  distribution over 

the brain activity matrices conditioned on the feature assignments, p(X|Z). 

In a linear-Gaussian infinite latent feature model, the distribution of Z is modeled with an 

IBP prior, and the distribution of X|Z is assumed to be matrix Gaussian with mean ZA and 

variance σXI. The following equations summarize the linear-Gaussian infinite latent feature 

model. For more details regarding the derivation of P(Z) and p(X|Z), please see Griffiths & 

Ghahramani (2005). 
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In the context of the 60-words experiment, X is a matrix of size N × V, where xnv is the 

brain activity for object n at voxel v. N = 60 and V = 120 since our stimulus set consists of 60 

objects and the voxel selection procedure selects the 120 most stable voxels. Notice that each 

object was presented 6 times in our experiment; a representative fMRI image for each object was 
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created by computing the mean fMRI response over the 6 presentations, and the mean of all 60 

of these representative images was then subtracted from each brain activity vector. 

Z is a matrix of size N × K, where znk is a binary value indicating if the feature is actively 

recalled. By assuming an IBP prior on the distribution of Z, the number of K is unbounded. The 

hyper parameters α and β for the IBP controls the number of features per object and the total 

number of features in the matrix, respectively. 

A is matrix of size K × V, where akv denote the feature-to-brain activity mapping, such 

that X = Z × A. By assuming that the distribution of A is matrix Gaussian with mean 0 and 

variance σAI, we can easily integrate out A when computing the full distribution of P(Z) · p(X|Z). 

We used Gibbs Sampling (Geman & Geman, 1984) to inference Z. The Gibbs sampler 

was initialized with K+ = 1, with a random assignment to the first column by setting zi1 = 1 with 

probability 0.5. The model parameters, α, β , σA, and σX  were all initially set to 0.5, and then 

sampled by adding Metropolis-Hastings (Metropolis et al., 1953) steps to the MCMC algorithm. 

A separate ILFM is estimated for each participant and each brain region. Figure 5.1 shows the 

trace plots for the 1000 iterations of MCMC for the temporal lobe of the first participant. The 

parameters converge after approximately 100 iterations. 
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Figure 5.1 Trace plots for the MCMC simulation for the temporal lobe of the first participant. The 

parameters converge after approximately 100 iterations. 

 

Figure 5.2 shows the Z matrix inferred from the temporal lobe of the first participant. As 

can be seen in the figure, the Z matrix is quite dense. Each latent feature is possessed by a 

number of different objects. Conversely, the meaning of each word is distributed across many 

latent features. 
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Figure 5.2 The Z matrix inferred from the temporal lobe of the first participant. The meaning of 

each word is distributed across many latent features. 

 

5.2.1 Independent Human Rating 

Just et al. (2010) used factor analysis to identify three semantic factors: manipulation, 

eating, and shelter that provide a good basis for the representation of the 60 objects. The 

manipulation factor assigns high scores to objects that are held and manipulated with one's hands 

(e.g. pliers, screwdriver). The eating factor assigns high scores to objects that are edible (e.g. 

vegetables) or are instruments for eating or drinking (e.g. glass, cup). The shelter factor assigns 

high scores to objects that provide shelter (e.g. house, apartment) or entry to a sheltering 

enclosure (e.g. airplane). They collected an independent set of ratings of each word with respect 
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to each of the three semantic factors from a separate set of 14 participants. For example, for the 

eating-related factor, participants were asked to rate each word on a scale from 1 (completely 

unrelated to eating) to 7 (very strongly related). Table 5.1 shows the collected ratings for 10 

participants in the experiment. 

 

Table 5.1 Independent human rating of the 60 words 

Category Words Shelter Manipulation Eating Length 
animal bear 1.1 1.3 1.6 4 
animal cat 1.1 2.4 1.8 3 
animal cow 1.1 1.9 4.9 3 
animal dog 1.4 2.1 2.3 3 
animal horse 1.2 2.9 2.4 5 
bodypart arm 2.2 3.1 3.3 3 
bodypart eye 1.3 2.2 2.6 3 
bodypart foot 1.3 1.6 1.3 4 
bodypart hand 1.8 5.6 4.2 4 
bodypart leg 1.4 1.6 1.4 3 
building apartment 6.9 2.7 3 9 
building barn 6.6 1.7 2.3 4 
building church 6.1 1.6 1.7 6 
building house 6.9 2.9 3.5 5 
building igloo 6.6 2.6 2.9 5 
buildpart arch 4.2 1.5 1 4 
buildpart chimney 3.1 1.3 1.1 7 
buildpart closet 4.5 2.4 1.2 6 
buildpart door 4.9 4.3 1.2 4 
buildpart window 3.6 3.6 1.1 6 
clothing coat 2.9 3.9 1.1 4 
clothing dress 1.9 3.4 1.1 5 
clothing pants 2.1 3.4 1.1 5 
clothing shirt 1.8 3.6 1.3 5 
clothing skirt 1.5 3.1 1.1 5 
furniture bed 3.3 2.2 1.3 3 
furniture chair 2.6 3.1 2.8 5 
furniture desk 3.1 2.9 1.9 4 
furniture dresser 2.4 3.1 1 7 
furniture table 3.2 2.8 4.9 5 
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Category Words Shelter Manipulation Eating Length 
insect ant 1.1 1.6 3 3 
insect bee 1.1 1.5 2.9 3 
insect beetle 1 1.7 2.6 6 
insect butterfly 1.1 1.4 1.4 9 
insect fly 1.1 1.4 1.4 3 
kitchen bottle 1.1 4.5 4.5 6 
kitchen cup 1.1 6.1 4.7 3 
kitchen glass 1.7 3 3.6 5 
kitchen knife 1.5 6.9 4.5 5 
kitchen spoon 1.1 6.6 5 5 
manmade bell 1.7 6.2 1.4 4 
manmade key 2.9 6.4 1.1 3 
manmade refrigerator 2.7 3.9 5.5 12 
manmade telephone 1.8 5.5 2.4 9 
manmade watch 1.1 4.6 1.1 5 
tool chisel 1.7 6.4 1 6 
tool hammer 1.9 6.7 1 6 
tool pliers 1.6 6.8 1 6 
tool saw 1.7 6.3 1.1 3 
tool screwdriver 1.8 6.7 1.1 11 
vegetables carrot 1.1 3.9 6.6 6 
vegetables celery 1 4.1 7 6 
vegetables corn 1.1 3.5 7 4 
vegetables lettuce 1 2.6 6.6 7 
vegetables tomato 1 3.9 7 6 
vehicles airplane 4.6 3.9 1.5 8 
vehicles bicycle 1.3 5.1 1.2 7 
vehicles car 4 5.3 1.6 3 
vehicles train 5 2.1 1.8 5 
vehicles truck 4.4 4.5 1.2 5 

 

We also collect human ratings of the three semantic factors on the 40 exemplars in the 

noun-noun experiment. Table 5.2 shows the collected ratings for 5 participants in the experiment. 
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Table 5.2 Independent human rating of stimuli in the noun-noun experiment 

Type Stimuli Shelter Manipulation Eating 
noun bee 1.1 1.5 2.9 
noun bell 1.7 6.2 1.4 
noun celery 1 4.1 7 
noun corn 1.1 3.5 7 
noun cow 1.1 1.9 4.9 
noun dog 1.4 2.1 2.3 
noun pliers 1.6 6.8 1 
noun refrigerator 2.7 3.9 5.5 
noun tomato 1 3.9 7 
noun window 3.6 3.6 1.1 
noun airplane 4.6 3.9 1.5 
noun dress 1.9 3.4 1.1 
noun table 3.2 2.8 4.9 
noun coat 2.9 3.9 1.1 
noun chair 2.6 3.1 2.8 
noun beetle 1 1.7 2.6 
noun hand 1.8 5.6 4.2 
noun house 6.9 2.9 3.5 
noun ant 1.1 1.6 3 
noun cup 1.1 6.1 4.7 
property Bee airplane 3.6 2.4 2 
property Bell dress 2 2.8 1 
property Celery table 3.4 2 3.6 
property Corn coat 2.2 2.4 1.4 
property Cow chair 2.2 1.4 1.2 
property Dog beetle 1 1.8 1 
property Pliers hand 1.2 7 1.4 
property Refrigerator house 6.8 1.4 1.8 
property Tomato ant 1 3 2.8 
property Window cup 1.8 5 4 
relation Bee airplane 4.8 2.6 3.2 
relation Bell dress 2.8 3 1 
relation Celery table 3 3.2 5.2 
relation Corn coat 4.4 4 3.8 
relation Cow chair 2.2 1.8 1.4 
relation Dog beetle 1 2.2 1.8 
relation Pliers hand 1.2 6.8 1.4 
relation Refrigerator house 6 1.4 3 
relation Tomato ant 1 2.2 3.8 
relation Window cup 2 5 4.6 
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5.2.2 MRC Psycholinguistics Database 

The MRC Psycholinguistic Database (Coltheart, 1981) is a dictionary that contains 

150837 words with up to 26 linguistic and psycholinguistic attributes for each word. While 

linguistic measures are defined for most of the words, psychological measures are recorded for 

only about 2500 words. Some of the psycholinguistic measures that are of interest to us include 

meaningfulness (cmean), familiarity (fam), concreteness (cnc), imaginability (img), number of 

letters (nlet), number of phonemes (nphn), and frequency (t-lfrq). 

5.3 Results 

5.3.1 60 Word picture study 

Table 5.3 shows the amount of systematic variance (R2) accounted by the latent semantic 

structure and the average number of latent features (K+) inferred from the brain activity in each 

brain region. The amount of variance explained correlates almost perfectly (r = 0.98) with the 

classification rank accuracy. Moreover, there is a strong negative correlation (r = -0.78) between 

the number of latent features and classification rank accuracy. One possible explanation is that 

the more number of features a participant is contemplating about an object, the more variance 

there is to the word representation and the worse classification performance.  

 

Table 5.3 Classification and infinite latent feature analysis 

Metric All Frontal Temporal Parietal Occipital 
Rank accuracy 0.81 0.58 0.70 0.66 0.80 
R2 0.77 0.66 0.69 0.69 0.76 
K+ 14.44±3.09 16.67±4.47 14.22±3.67 15.44±6.13 14.89±4.81 
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The question now is what does each latent feature mean? Do different brain areas encode 

different types of word features? In the following sections, we try to interpret the recovered 

latent features with human ratings of the shelter, manipulation, and eating factors that are 

recovered by factor analysis, as well as some psycholinguistics features. 

We show that the latent features recovered by ILFM are consistent with the human 

ratings of the shelter, manipulation, and eating factors that are recovered by the factor analysis. 

For each latent feature inferred, we correlate the latent feature vector (column vector describing 

which objects possess this feature) with human ratings of the three semantic factors (column 

vector describing how human rate the relatedness between the 60 objects and the specified 

factor). For each brain region and each of the three semantic factors, we identify the maximum 

correlation between the semantic factors with any one of the latent semantic feature. Figure 5.3 

shows the maximum correlation between the latent feature vector and human rating vector, 

averaged across subjects. The error bar indicates 95% confidence interval, where the distribution 

of statistic is estimated from the 900 Gibbs samples (excluding the first 100 burn in samples). 

Different brain regions infer different latent features: the frontal lobes tend to infer latent features 

that correlate with human ratings of manipulation vector, whereas temporal and parietal lobes 

tend to infer latent features that correlate with human ratings of shelter and eating factor, 

respectively. This pattern of result is consistent with contemporary conjecture that the precentral 

area in the frontal lobe is involved with motor planning, the fusiform and parahippocampal place 

areas that are included in our temporal lobe are involved with thought about places, and parietal 

area is involved in aggregation of sensory input.  
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Figure 5.3 Correlating the latent features with human ratings of shelter, manipulation, and eating 

factor. Different brain regions infer different latent features: the frontal lobes tend to infer latent features 
that correlate with human ratings of manipulation vector, whereas temporal and parietal lobes tend to infer 

latent features that correlate with human ratings of shelter and eating factor, respectively. 

 

For each latent feature inferred, we also correlate the latent feature vector (column vector 

describing which objects possess this feature) with each of the MRC psycholinguistic measure 

(column vector describing the psycholinguistic score of the 60 objects). Figure 5.4 shows the 

maximum correlation between the latent feature vector and MRC feature vector, averaged across 

subjects. The error bar indicates 95% confidence interval, where the distribution of statistic is 

estimated from the 900 Gibbs samples (excluding the first 100 burn in samples). Again, different 

brain regions infer different latent features: the frontal lobes tend to encode features that correlate 

with meaningfulness, although the correlation is not significantly different from that of the 
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temporal and parietal lobe. The parietal lobe tends to encode features that correlate with 

concreteness and imaginability feature, compared to the other brain regions. The temporal lobe 

tends to encode features that correlate with number of phonemes in a word, consistent with the 

existing conjecture that the temporal lobe is involved in speech production. Notice that the 

occipital lobe tends to encode features that correlate with the number of letters, but not the 

number of phonemes. 

 

 
Figure 5.4 Correlating the latent features with MRC psycholinguistics features. Different brain 

regions infer different latent features: the frontal lobes tend to encode features that correlate with 
meaningfulness. The parietal lobe tends to encode features that correlate with concreteness and imaginability 

feature. The temporal lobe tends to encode features that correlate with number of phonemes in a word. 
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5.3.2 Noun-noun Concept Combination 

We now study the neural composition of noun-noun concept combination. In our 

experiment, we have recorded the brain activity for noun-noun phrases, as well as the 

corresponding nouns in isolation. One direct way of assessing compositionality is to compare the 

brain activity for phrases to individual words. Our hypothesis is the brain activity for property-

based interpretation should be more similar to the head word (since only one property of the 

modifier word is extracted to modify the head word), whereas the brain activity for relation-

based interpretation should be similar to both the modifier and head word (since the modifier 

object is realized in its entirety to the head object as a whole). 

In this analysis, we measure the similarity between the brain activity for the phrases and 

the corresponding modifier noun and the head noun. We used correlation as our similarity 

measure. Each of the 40 stimulus items is represented a vector of brain activity measured at 120 

most stable voxels whose responses to the 20 different nouns were most stable across 

presentations. Rows 1 and 2 in Table 5.4 show the correlation analysis. Unlike our hypothesis, 

brain activity for property-based interpretation is more similar to the modifier word than the head 

word (r = 0.24 > 0.13), whereas brain activity for relation-based interpretation is more similar to 

the head word than the modifier word (r = 0.19 > 0.16). The difference in correlation with the 

modifier and head word is statistically significant (p = 0.05) for the property-based 

interpretations, but not for relation-based interpretations. One possible explanation is that 

property-based interpretations are less intuitive; as a result, people think more about the modifier 

word to find a fitting property. 
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In addition, we also measure the similarity between the human ratings for the phrases and 

the corresponding modifier noun and the head noun. Each of the 40 stimulus items is represented 

by a vector of human ratings on the three semantic factors. Rows 3 and 4 in Table 5.4 show the 

correlation analysis. The human ratings for both property-based and relation-based 

interpretations correlate highly with the head word (p = 0.62, 0.67, respectively). Human ratings 

for relation-based interpretations correlates weakly with the modifier word (p = 0.10), whereas 

there is almost no correlation between human ratings for property-based interpretation and the 

modifier word (p = -0.04). This pattern is clearly different from the brain activity. This may be a 

result of high correlation between the human ratings of property-based and relation-based 

interpretation.  

Finally, we measure the similarity between the latent semantic feature vector for the 

phrases and the corresponding modifier noun and the head noun. Each of the 40 stimulus items is 

represented by a vector of latent semantic features. Latent semantic feature vector for relation-

based interpretations correlates. Rows 5 and 6 in Table 5.4 show the correlation analysis. The 

data-driven feature representation preserves the pattern in brain activity. Namely, the data-driven 

features for property-based interpretation are more similar to the modifier word (p = 0.24), 

whereas the data-driven features for relation-based interpretations are more similar to the head 

word (p = 0.21). The difference in correlation with the modifier and head word is statistically 

significant for the property-based interpretations, but not for relation-based interpretations. 
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Table 5.4 Correlations between phrases and nouns 

Space Type Mod Head Property Relation 
Brain activity Property 0.24 0.13 1.00 0.35 

Relation 0.16 0.19 0.35 1.00 
Human rating Property 0.03 0.62 1.00 0.83 

Relation 0.10 0.66 0.83 1.00 
Data-driven (ILFM) Property 0.23 0.16 1.00 0.26 

Relation 0.18 0.20 0.36 1.00 
 

5.4 Discussion and Conclusion 

In this study we use a generative probabilistic model to describe how fMRI-measured 

brain activity is generated from some latent semantic representation. More specifically, a linear-

Gaussian infinite latent feature model with an Indian Buffet Process prior can be used to derive a 

binary feature representation of object knowledge from the brain activity recorded when people 

view and contemplate about properties associated with an object. 

Compared to the more traditional factor analysis or multi-dimensional scaling, there are 

several advantages of using ILFM to model the semantic representation that underlie brain 

activity: ILFM 1) offers a formal probabilistic account of the brain activity, 2) automatically 

determines the number of features that are manifested in the data, and 3) allows different number 

of features to be inferred per words. In this study, we use a binary representation of the feature 

matrices, but it can be easily extended to a continuous representation. Griffiths & Ghahramani 

(2005) showed that the binary matrix Z can be combined with a continuous matrix V to define a 

richer representation. 

There are several extensions of this work. First, in this study we try to interpret the 

learned latent semantic features by comparing the vectors to human ratings of three semantic 

factors and MRC psycholinguistic word features, but one shouldn't stop here. One obvious 
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direction is to compare the feature vector with other word feature vectors, such as behavior 

feature-norming features Cree & McRae (2003) and word co-occurrence statistics (Church & 

Hanks, 1990). Second, ILFM can be used to find an optimal set of features in word co-

occurrence based representation. For instance, we can find the word features that have the 

highest correlation with the data-driven features recoverd by ILFM and use these features as the 

basis set for the word co-occurrence based feature representation. We can compare the 

performance of a biologically-informed word representation and the manually selected 25 verbs 

in the leave-two-words-out classification task Mitchell et al., (2008) and see if a biologically-

informed model of semantic representation yield better classification. 
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6 THESIS CONTRIBUTION AND FUTURE WORK 

6.1 From mass univariate analysis to multivariate analysis 

One of our major contribution is to shift the focus of fMRI analysis from characterizing 

the location of brain activity (traditional univariate approaches) toward understanding how 

patterns of brain activity differentially encode information in a way that distinguishes among 

different stimuli. Functional neuroimaging research has been mostly focused on attempting to 

identify the functions of cortical regions. In particular, language-related brain imaging research 

has been limited to relatively coarse analyses (e.g. high-level features such as animacy or part-of-

speech). Here we present one of the first studies to investigate cortex-wide representations of 

semantic knowledge and further apply it in a finer classification task (e.g. identifying a concept 

among other concepts). Machine learning classifiers were trained to decode which linguistic 

concepts a person is contemplating. The distributed pattern of brain activity encodes the 

meanings of linguistic concepts. 

The debate of localist vs. distributed processing can be directly verified and grounded by 

the observed patterns of brain activity. Contemporary leaders in computational models of reading 

are divided over whether a localist or distributed processing account is more appropriate. The 

former assumes processing the meaning of a concept to be localized in isolated voxels, whereas 

the latter assumes such to be a pattern of activation distributed over a number of brain regions. 

Whereas mass univariate analysis aims to reveal focal areas that are responsible for processing, 

multivariate analysis aims to reveal a network of units that are responsible for processing. The 

advantage of multivariate analysis is that it can detect cases where a cognitive process involves 

simultaneous activation in multiple voxels / areas, which simply cannot be done with a mass 

univariate analysis. For instance, mental state decoders of multiple classes can only be 
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constructed from the distributed pattern of brain activity that encodes the meanings of linguistic 

concepts, but not from brain activity in isolated voxels, which is often limited to one or two 

classes. The success of multivariate classifiers supports a distributed processing account. 

Nonetheless, voxel-scale activities and neuro-scale activities do inform multivariate 

analysis. For instance, various mass univariate studies show that parahippocampus place areas 

are involved in the processing of places; in-depth neuronal studies show how pre-motor areas are 

involved in processing motion planning. Indeed, in the sixty-words experiment, activities at 

parahippocampus place and motor areas yield the best discrimination of buildings and vehicles, 

respectively. Activation at the parahippocampus place area may correspond to thoughts about 

location of the buildings, whereas activation at the pre-motor areas may correspond to thoughts 

about operating a vehicle or movement of a vehicle. 

6.2 From classifier analysis to intermediate semantic analysis 

By postulating that brain activity is based on an intermediate semantic level of 

representation (derived from word co-occurrence statistics or feature norming studies), this work 

enables a computational model that can help predict brain activity for a new stimulus, based on 

its relation to the semantic level of representation. Compared to a discriminative classifier like 

SVM, a generative model that utilizes an intermediate semantic representation generalizes better 

across people. The intermediate representation allows us to extrapolate the neural activity for 

previously unseen words. Akin to the recent multivariate fMRI analysis, which shifted the focus 

from localizing brain activity toward understanding how patterns of brain activity encode 

information in an intermediate semantic representation, we take one  step further and ask 1) what 

information might be encoded to enable such discrimination? and 2) what is the nature of this 

semantic representation? 
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In this work, we have utilized word co-occurrence statistics and feature norming features 

as the intermediate semantic representation. An extension of this work is to utilize different 

sources of linguistic knowledge or different linguistic corpuses, like the Brown corpus (Kucera 

& Francis, 1967) or BNC (Burnard, 1995). A comparison of the performance of a feature 

representation derived from one source of linguistic knowledge versus another source in the 

leave-two-words-out classification task (Mitchell et al., 2008) may reveal which model of 

semantic representation better accounts the semantic representation in humans, or if information 

derived from one particular source better reflects the set of features that are recalled at a 

particular task. Palatucci et al. (2009) and Pereira, Botvinick, & Detre (2010) have done this by 

utilizing features derived from norming studies of 20 characteristic questions collected over 

Mechanical Turk, and features derived from definitive articles in Wikipedia, respectively. 

There are several advantages to working with an intermediate semantic representation. In 

this study, we have demonstrated how learning the mapping between feature and neural 

activation enables a predictive theory that is capable of extrapolating the model of neural activity 

to previously unseen words, which cannot be done with a discriminative classifier. Another 

advantage of working with an intermediate semantic representation is that features in the 

intermediate semantic representation are more likely to be shared across experiments. For 

example, in one experiment, the participant may be presented with the word dog, while the word 

cat is shown in another experiment. Even though the individual category differs, there are many 

features that are shared (e.g. is a pet, has 4 legs, etc.) between the two words. Learning the 

mapping between features and voxel activation, instead of the mapping between categories and 

voxel activation, may facilitate data to be shared across experiments. This is especially important 

when brain imaging data are relatively more expensive to acquire and that many classifier 
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techniques would perform significantly better if more training data were available. Rustandi et 

al. (2009) used canonical correlation analysis (CCA) to find the common dimension among 

multiple fMRI datasets. By learning the common dimension (a form of intermediate 

representation), they were able to better predict brain activations than when each subject’s data is 

analyzed separately. Furthermore, by utilizing a knowledge base of semantic properties, 

Palatucci et al. (2009) were able to train classifiers in the zero-shot learning problem, where 

classifiers must learn to predict novel classes that were omitted from the training set. 

Although we propose that brain activity is based on an intermediate semantic level of 

representation and propose a specific implementation of intermediate semantic representation, 

we do not necessarily suggest that these are serious psychological proposals. These semantic 

representations are not intended to reflect the actual representation in the brain. Instead, they are 

capturing some of the same information as the representations in the brain. For instance, even 

though corpus co-occurrence statistics provide a useful semantic representation in our 

classification task, the brain does not necessarily store or represent these statistics. However, the 

patterns of brain activity when contemplating about different concepts do reflect aspects of these 

statistics. Cognitive psychologists are encouraged to extend the intermediate representation and 

experiment with different modeling methodologies.  

6.3 The nature of semantic representation 

Nonetheless, despite the success of this model, the work leaves open the question of how 

to determine the optimal set of semantic features and the nature of semantic representation. 

Bayesian probabilistic analysis offers a new approach to characterize semantic presentation by 

inferring the most likely feature structure directly from the patterns of brain activity. In this 

study, we use an infinite latent feature model to infer a binary representation of the feature 
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matrices. Compared to the more traditional factor analysis or multi-dimensional scaling, there are 

several advantages of using ILFM to model the semantic representation that underlie brain 

activity: ILFM 1) offers a formal probabilistic account of the brain activity, 2) automatically 

determines the number of features that are manifested in the data, and 3) allows different 

numbers of features to be inferred per words. More importantly, the neurally-inspired semantic 

representation is consistent with some existing conjectures regarding the role of different brain 

areas in processing different psycholinguistics features, and suggests a multimodal semantic 

representation. 

One of the open questions regarding the nature of semantic representation is the repertory 

of concepts: are concepts hard-wired due to some genetic/evolutionary constraints, or 

environmentally determined? For instance, to what extent do individual languages/cultures make 

a difference? Pereira (2007) was able to train cross-language classifiers to predict brain activity 

from viewing stimuli that are in one of two different languages, Portuguese or English. His result 

suggested that there are certain aspects of semantic knowledge that can be generalized across 

languages. 

Another question to consider is the characterization of the category and prototypes of 

concepts. Why do we store the particular concepts that we do, and group them into the particular 

categories that we do? In this work, we showed that category classification (identifying the 

category of a concept) is more difficult than exemplard classification (identifying a concept 

among other concepts). Mitchell et al. (2008) also showed that within-category exemplar 

classification (identifying a concept among other concepts in the same category) is much harder 

                                                 

d Notice, the term “instance” is used more often in the prototype theory (Rosch, 1970) to denote a concept 

in a category. In this work we use the term concept, object, exemplar, and instance interchangeably. 
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than between-category exemplar classification (identifying a concept among other concepts in a 

different category). The difficulty in discriminating categorical aspects of concepts may be a 

consequence of the experimental task, where we asked participants to think specifically of the 

stimulus object (the appearance, the purpose of the object, and how one physically interacts with 

the object), and not its relation to other objects or the category of the objects that people may 

normally think of. Future experiments may design tasks to investigate the effect of the category 

and prototypes of objects. For instance, how do people distill many varied instances of a concept 

into some compact aggregate representation? What is the nature of a prototype, and how are 

prototypes realized neurologically? 

Furthermore, is the representation amodal (grounded in symbolic conceptual entries) or 

modal (embodied in different sensory modalities)? Or, do both types of representations use and 

activate selectively depending on the task? If both types of representations are present, do they 

involve different cognitive processes (e.g. dual-route processing), or can they both emerge from 

the same cognitive process (e.g. connectionist account)? Our results from multivariate analysis 

(word meaning encoded in patterns of distributed brain activity) and latent semantic analysis 

(identification of modality-specific word features) suggest a modal representation. However, 

future studies are required to fully address this question. 

Finally, is the representation localized or distributed? ILFM has shown that the meaning 

of each word is distributed across many latent features, supporting a distributed representation 

account. Notice that in this work we distinguish between semantic representation and semantic 

processing. Whereas the former describes how the meaning of a concept is represented (is the 

semantic content of a word atomic or compounded?), the latter describes how the processing of a 

concept is distributed spatially (does the processing of a concept involve brain activity localized 
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in a few voxels or distributed across a range of brain regions?). Both representation and 

processing can be either localized or distributed – the two need not be mutually exclusive. In our 

work, we have shown distributed accounts for both the semantic representation and semantic 

processing. 

6.4 From single nouns to compound phrases 

One of the ultimate goals in computational neurolinguistics is to account for the human 

language that enables communication. The milestones to achieving this goal include a better 

understanding of how the human brain processes single nouns, phrases, and sentences. Each 

chapter in this thesis work fills in a piece of the puzzle. We started with lexical semantics, and 

then proceeded to combinatorial semantics. In particular, our work has shown that the difference 

in brain activity when contemplating an isolated noun (e.g. dog) vs. the same noun modified by 

an adjective (e.g. strong dog) can be detected by machine learning classifiers. The distributed 

pattern of brain activity contains sufficient signal to decode between a property-based 

interpretation (e.g. a coat that is bright yellow) and a relation-based interpretation (e.g. a coat 

that is used to protect corn) of the identical visual stimuli (e.g. corn coat). 

Due to the inherent limitations in the temporal properties of fMRI data, in most of this 

thesis work we consider only the spatial distribution of the brain activity after the stimuli are 

comprehended, and do not attempt to model the cognitive process of comprehension. One 

extension is to model the process of combination and not just the comprehended concepts. Does 

the temporal resolution of fMRI encode sufficient signal? Polyn et al. (2005) analyzed the time-

series data of fMRI to test the contextual reinstatement hypothesis, which postulates that when 

asked to recall memories, people use reinstated activity in a top-down fashion to cue for 

additional details. They showed that category-specific brain activity during a free-recall period 
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correlated more with brain activity of matching categories during a prior study period. We can 

adopt an approach similar to Polyn et al. (2005) and correlate the brain activity of the noun 

phrases to the brain activity of each word in the phrase. For instance, time-series analysis of the 

activity pattern may reveal if participants first recall features associated with each word in the 

phrase and then combine them to interpret the phrase as a whole. Time-series analysis may also 

reveal to what extent do the patterns we see represent processing (dynamic, transitory), and what 

extent representations (static, enduring)? 

Alternatively, there are other types of brain imaging techniques that offer better temporal 

(albeit worse spatial) resolutions than fMRI, such as electroencephalography (EEG), 

magnetoencephalography (MEG), and functional near-infrared spectroscopy (fNIRS). In 

Mostow, Chang, & Nelson (2011), we demonstrated how a single-channel EEG headset can be 

used in schools to measure students’ mental states while reading.  Using its signal from adults 

and children reading text and isolated words, both aloud and silently, we trained and tested 

classifiers to tell easy from hard sentences, and to distinguish among easy words, hard words, 

pseudo-words, and unpronounceable strings.  We also identified which EEG components appear 

sensitive to which lexical features. Better-than-chance performance shows promise for tutors to 

use EEG at school. 

Another extension is to work toward sentence-level analysis and develop neural accounts 

of sentence processing. This will enable many BCI applications, such as thought-to-text systems 

that are akin to speech-to-text systems. The first step toward this goal is to collect broader types 

of concepts, such as abstract words, verbs, and adjectives. Thus, I am motivated to collect brain 

activity for hundreds, if not thousands, of words with different semantic categories and part-of-

speech tags. There will be many research venues that stem out of this effort. For instance, this 
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database will be useful for building a neurologically-informed ontology similar to WordNet. 

Moreover, reliable recordings for some nouns, verbs, and pronouns will help in developing 

neural accounts of sentence processing and enable basic level thought identification. This also 

raises the question of whether our models’ organization/representation of single concepts extends 

to sentence-level analysis? 

6.5 From visual perception to semantic cognition 

In our task, where the stimulus presentations consist of line drawings with text labels, the 

voxels extracted by this procedure are mostly in the posterior and occipital regions, since our 

stimuli consist of easily depicted objects and the visual properties of the stimuli are the most 

invariant part of the stimuli. Indeed, visual features were among the most important features that 

account for our neural activation data. If the stimulus presentation consists of only line drawings 

or text labels, different sets of voxels might be selected. As a result, there is reservation 

regarding the claim of “mental state” decoding. Are classifiers really decoding the mental state 

of the higher-level cognition? Or are the classifiers decoding the brain activity that is the result of 

lower-level perception? The goal of computational neurolinguistics is to get at language, not 

vision. 

We addressed this issue by asking “can we discriminate different interpretations of the 

same stimuli?” In the noun-noun concept combination experiment, the participant was expected 

to contemplate a property-based interpretation in one context, but a relation-based interpretation 

when the same noun-noun phrase was presented in another context. The setup of the experiment 

poses a challenge for classifiers that obtain its discriminative power from distinguishing the brain 

activity of low-level visual perceptions. Since the visual stimuli are identical, the discrimination 

must be made on the semantic differences between the two types of interpretations. An extension 



 Neural representation of nouns and phrases 146 

of this work is to build a mental state decoder that is capable of word-sense disambiguation of 

polysemous words (e.g. bank can be financial bank or river bank). 

6.6 Computational models of language processing 

Marr put forth the idea that one must understand information processing systems at three 

levels of analysis: 1) computational level (what does the system do), 2) algorithmic level (how 

does the system represent and perform its task), and 3) implementational level (how is the system 

physically realized?). Most of the contemporary linguistic or cognitive science research has 

focused either on the computational or algorithmic level of analysis. Recent advances in brain 

imaging and machine learning technologies offer a significant new approach to studying 

language processing in humans. For the first time, theories regarding how linguistic concepts are 

represented and processed can be grounded by the brain activity while people comprehend words 

and phrases – the implementational level of analysis. On one hand, theories from computational 

linguistics can be used to help predict brain activity. For instance, in this work, word co-

occurrence features were used in a regression model to help predict brain activity. Moreover, 

vector-based semantic composition was used to provide a neural account of how people use 

adjectives to modify the meaning of the noun. 

On the other hand, patterns of brain activity can be used to verify linguistic or 

psycholinguistic theories. In computational linguistics, the cognitive plausibility of language 

models has primarily been evaluated against collections of subjective intuitions (e.g. semantic 

feature norms, grammaticality judgments, corpus annotations, dictionaries). Evaluation of the 

large body of computational linguistics work, based on data-driven distributional approaches, has 

also relied on hand-crafted resources such as WordNet or data sets manually tagged with a 

predefined list of categories. Comparison with neural data may provide a more objective 
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yardstick for both models and resources. For instance, in this work, multiplicative semantic 

composition models of the two-word phrase outperform additive models, consistent with the 

assumption that people use adjectives to modify the meaning of the noun, rather than conjoining 

the meaning of the adjective and noun. Moreover, concept combination experiments provide a 

neural account of how relation-based interpretations are more accessible to humans. 

6.7 Contribution to compuational neurolinguistics  

Over recent years, machine learning methods have become a crucial analytical tool in 

cognitive neuroscience. Decoding techniques have dramatically increased the sensitivity of 

experiments, and therefore the subtlety of cognitive questions that can be asked. At the same 

time the mental phenomena being studied are moving beyond lower-level perceptual and motor 

processes which are directly grounded in external measurable realities. However, decoding 

higher cognition and interpreting the learned behavior of the classifiers used pose unique 

challenges, as these psychological states are complex, fast-changing and often ill-defined. 

Furthermore, for the cognitive scientists who use these methods, the primary question is often 

not "how much" but rather "how" and "why" the patterns of neural activity identified by a 

machine learning algorithm encode particular cognitive processes. 

In this work, I have shown how we can leverage theories from computational linguistics 

to help decoding language and interpret the learned behavior of the classifiers. Conversely, 

machine learning methods and brain imaging techniques can also help verify and ground existing 

theories regarding the nature of semantic representation. This interdisciplinary work has 

motivated a new research area, computational neurolinguistics. Computational neurolinguistics is 

an emerging research area which integrates recent advances in computational linguistics and 

cognitive neuroscience, with the objective of developing cognitively plausible models of 
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language and gaining a better understanding of the human language system. It builds on research 

in decoding cognitive states from recordings of neural activity, and computational models of 

lexical representations and sentence processing. Together with Dr. Brian Murphy and Dr. Anna 

Korhonen, I helped pioneer the field of computational neurolinguistics and co-organized  

workshops on Computational Neurolinguistics (NAACL-HLT 2010, NIPS 2011 submitted).  

Though the field is still in its infancy, many simplifying assumptions were made (e.g. 

only focus on spatially-distributed patterns, assume a feature-based semantic representation and 

linearity assumption of feature-voxel mapping, etc.). The field requires techniques that are 

capable of taking advantage of spatially-distributed patterns in the brain that are separated in 

space but coordinated in their activity. Methods should also be sensitive to the fine-grained 

temporal patterns of multiple processes which may proceed in a serial fashion, overlapping or in 

parallel with each-other, or in multiple passes with bidirectional information flows. Different 

recording modalities have distinctive advantages: fMRI provides very fine millimeter-level 

localization in the brain but poor temporal resolution, while EEG and MEG have millisecond 

temporal resolution at the cost of spatial resolution. Ideally machine learning methods would be 

able to meaningfully combine complementary information from these different neuroimaging 

techniques (see e.g. De Martino et al., 2010). Moreover, as the processes underlying higher 

cognition are so complex, methods should be able to disentangle even tightly linked and 

confounded subprocesses. Finally, general use algorithms that could induce latent dimensions 

from neural data, and reveal the "hidden" psychological states, would be a dramatic advance on 

current hypothesis-driven analytical paradigms. 

Advances in computational neurolinguistics require close collaboration between 

neuroscience, language technology, cognitive psychology, and machine learning. To this end, my 
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thesis work helps advance existing work and initiates new research. Here I have listed several 

topics of interests within each subfield that are either connected to my thesis work or are 

motivated by my thesis work. By stimulating discussions among experts in the different fields, I 

hope to help generating novel insights and new directions for research. 

Computational Linguistic Focus 

• Contribution: 

o Describe a framework to ground linguistic theories by the patterns of brain 

activity. 

• Future work: 

o Word-level analyses (e.g. corpus semantic models, lexica, lexical relations 

and ontology, parts-of-speech, word senses, morphology) 

o Phrase-level analyses (e.g. word compounds, meaning composition in 

multi-word expressions) 

Machine Learning Focus 

• Contribution: 

o Distributed patterns of brain activity contain sufficient signal to decode 

differences among nouns and phrases. 

o The generative classifiers that utilize an intermediate semantic 

representation are applicable to many other problems that involve high-

dimensional sparse data. 

• Future work: 

o Decoding of cognitive states from neural activity 
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o Feature selection and data mining techniques for decoding linguistic 

information 

Neural Science Focus 

• Contribution: 

o Present a quantitative model of multiple-word phrases like adjective-noun 

and noun-noun phrases, which is an important building step toward neural 

accounts of sentence processing. 

• Future work: 

o Brain imaging techniques: fMRI, EEG, MEG, NIRS, including cross-

modality analysis (e.g. combining fMRI and EEG) 

o Localizing Regions of Interest (e.g. identify the roles / functions of brain 

regions) 

Cognitive Science Focus 

• Contribution: 

o Describe a framework to study the nature of semantic representation and 

how it is grounded neurologically. 

• Future work: 

o Comparisons with behavioral (e.g. priming experiments, eye-tracking, 

self-paced reading) and elicited data (e.g. semantic feature norms) 

o Biologically plausible connectionist approaches 
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6.8 Conclusion 

To conclude, we are at an especially opportune time in the history of the study of 

language, when machine learning methods allow us to analyze and model the brain activity when 

people view and contemplate different objects. An improved understanding of language 

processing in the brain could yield a more biologically-informed model of semantic 

representation of lexical knowledge. We therefore look forward to further brain imaging studies 

shedding new light on the nature of the human representation of semantic knowledge.  
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