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Abstract
In the universe of audio signals, the notions of syntax, semantics, pragmat-

ics, etc. have been associated with a very limited set of domains, such as speech
and language, and musical analysis, to some extent. However, research efforts
focussing on formalizing general notions of syntactic or semantic structure for
universal audio analysis have been relatively limited. Prior work in analysis of
audio content has largely involved identifying certain sounds in recordings, and
the analysis paradigm has typically relied on a shallow analysis framework that
assumes that observed acoustics map directly to the semantics.

We posit that sound possesses a hierarchical semantic structure, in reality,
and a full understanding of the semantic content of recordings requires inferring
this hierarchical structure. However, modeling this kind of structure in super-
vised settings would require richly annotated datasets, that do not currently
exist and would require a significant annotation effort to develop.

The main hypothesis that drives this dissertation is that sound has its own
language and structure and that the deeper, underlying semantics can be mod-
eled using a hierarchical framework. In this dissertation, we present such a
hierarchical framework and develop formal models, designed for unsupervised
or weakly supervised settings, for the same.

We model the observed sound using sequences of lower level units. While
these units may not carry semantic information individually, the sequences or
distribution of these units should capture semantic information. In this lan-
guage for sounds, the lower level units would be analogous to the alphabet.
Such a representation of sound using a discrete sequence lends itself naturally
to the hierarchical structure, where sequences of these lower level units can be
mapped at higher levels to real events with clear semantic interpretations. Fur-
ther, these event sequences should carry information about the overall semantic
category of the audio. Depending on the restrictions we enforce at various lev-
els of this structure, we can use such structured models to classify audio, detect
sound events, segment files, or predict associated sound classes.

In this dissertation, we present structured models for the various layers in
the hierarchy. We then explore 2 different paradigms for inducing a hierarchy
over the low-level acoustic units. Our proposed methods work unsupervised and
in a task-agnostic manner, and we demonstrate empirically, using standard au-
dio tasks, that semantic analysis of audio using this framework is feasible and
that it outperforms other plausible semantically motivated schemes. Finally,
we discuss some directions for future work, and present some preliminary for-
mulations and experiments toward addressing them. The research pursued in
this dissertation demonstrates that hidden semantic structure can be automat-
ically discovered from weakly-labeled audio data. Further, we believe that the
use of such semantically informed features will enable significant improvements
over the state-of-the-art, for a number of different tasks.
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Chapter 1

Introduction

Sound has a profound effect on our perception of the world around us. It affects our

sense of beauty, level of alertness, ability to focus, and often our mental state. While

various acoustic phenomena, such as speech recognition, language identification, music

classification, have been well studied, a significant portion of the knowledge that would

help advance automatic understanding from audio still elude us. Even though some of the

specific tasks that audio understanding enables such as computer aided music, content-

based retrieval of audio are the subject of significant research efforts, approaches toward

developing a more general understanding of sound– relationships between various sound

types, semantic links between sound events, discovery of sub-event structures– remain

largely unexplored.

The world around us is structured in space and time, and the evolution of naturally

occurring phenomena with time is related to the previous states. Thus, the changes that

occur in any given scene in the real world are sequential by nature and the human brain

can perceive and understand the sequential nature of these changes, as well as the semantic

relationships between the various events; e.g. the movement of traffic and people at an

intersection are governed by the traffic laws and changes in the traffic signals; a driver will

sound his horn to warn another driver or a pedestrian. While the semantic information

linking event sequences exists in both the visual and audio modalities, we believe that

the audio alone carries significant information, and the automatic discovery of semantic

structure from audio is the focus of this dissertation.

1.1 Motivations for this thesis

Automatic analysis of audio content is a key aspect of information retrieval systems [Foote,

1997, Wold et al., 1996] that deal with multimodal files. Specifically, for the purposes
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of indexing and classification, audio content analysis research has focussed on specific

tasks – detection of specific sounds, classification of the audio into categories, retrieval

of documents in response to queries. While state-of-the-art techniques in some of these

tasks perform extremely well (e.g. gunshot detection), these techniques have been largely

developed in a task-driven manner, and do not provide a more general understanding of

how the acoustics evolve with real-world semantic events.

Consider, as an example, processing the acoustics of an action scene from a movie. A

listener might hear a loud crack followed by vocalized, high pitched sounds, some human

speech, a repetitive electronic wailing sound, interspersed with more rapid crack sounds,

and loud, mechanical humming. Based on the context, he would probably infer that the

first crack sound was produced by a character firing a gunshot, the high pitched sounds

those of people shrieking and screaming as a result of the gunshot. This probably led to

police cars arriving, whose sirens created the repetitive electronic wailing sound and the

cars produced the mechanical humming. This was followed by the authorities exchanging

fire with the character(s) who were responsible for the initial gunshot.

Note that, in the absence of the sequence of events, it would be hard to precisely

identify the individual sound and the semantics around it. For instance, a crack sound

could be produced by a gunshot, or a car backfiring, or other chance events, such as a

heavy metallic object falling on another metallic surface. Given the context of siren-like

sounds and people screaming, one is more likely to infer that the source of the sound was a

gunshot. Similarly, the sound of a siren alone does not indicate to a listener that the scene

was an action scene. Sirens may be heard in a regular scene shot in traffic, or even from

ambulances responding to non-action emergencies (e.g. medical emergencies). However, in

conjunction with the gunfire around it, it seems likely that the scene was an action scene.

The example was intended to illustrate that the process of extracting semantic infor-

mation from audio entails a number of inferences made at various levels. The lowest level

involves identifying sources that produce the sound (crack of a gunshot or a car; siren of an

ambulance or police cars; high pitched sounds from people screaming or children playing).

A higher level might involve identifying what the co-occurrence of these sounds implies (in

our example, an action scene), whereas a higher level still might involve identifying the

genre of the movie. We note also that increasingly higher level inferences require being

able to analyze a larger window of data– a gunshot may be inferred from the crack sound

followed by people screaming, whereas the inference of an action scene requires looking at

a wider span including the subsequent arrival of the police and exchange of fire, whereas

the inference of the genre of the movie requires considering a number of such scenes for
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relevant evidence. This leads us naturally to a hierarchical analysis framework, that we

will describe briefly in this chapter, and in more detail in Section 2.1.1 of Chapter 2.

We posit that a truly intelligent listening system should be able to analyze audio content

in a similar manner. Such analysis would then enable it to tackle not only the various

specific audio tasks (such as detection of sounds or objects, scene classification, genre

classification, etc.) but also create a learning framework that would enable it to truly

understand objects, their various acoustic manifestations and how they affect the world

around them. For instance, consecutive gunshots on a firing range are not cause for alarm,

whereas if that were to occur in a public place, a listening system should raise an alarm. The

ability to learn the relationships between various sounds, their sources and the surroundings

would enable the development of intelligent systems that can understand and potentially

respond.

The main hypothesis that drives this dissertation is that sound has its own language

and structure, especially with respect to its semantic content. We would like to be able

to discover such structure automatically from audio streams and exploit it to analyze the

semantics in the audio better.

One of the main challenges of attempting to automatically analyze audio content in the

present setting of rapid technological advancement is that a large proportion of content

that needs to be analyzed is user-generated content, created in less than ideal recording

conditions with limited resources. Thus, the recordings themselves will reflect a significant

amount of real-world entropy, in terms of variations of sound effects, background noise,

similar objects with very different acoustic signatures, etc. This kind of audio is often

referred to as audio in the wild, and the ideas outlined in this thesis have been developed

with primarily the audio in the wild setting in mind.

As mentioned earlier, most of the prior work in automatic semantic content analysis

used task-specific approaches, such as building detectors for specific sounds or sources, and

using the detection results to characterize content. These approaches primarily involved

working individually on small segments of audio using supervised methods to detect pat-

terns of interest. As a result, especially when working with audio in the wild, they face 2

important limitations.

First, the low-level sound or object detectors require supervised training data, and

typically rely on audio concept libraries. Such libraries of concepts have typically been

defined manually, and trained with data captured in clean, low-noise environments. De-

tectors trained from these libraries, therefore, are limited in their ability to represent data

from new domains or deal with the kind of randomness that audio in the wild almost
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certainly contains. Besides this, they depend heavily on the audio concepts in the library

being largely relevant to the kind of data in the corpora being processed. As a result, the

performance of detectors trained from these libraries may suffers when applied to noisy

data, such as user-generated content on Youtube.

Second, such systems rely on the low-level audio concept coverage being sufficient to

bridge the gap between the specific object detectors and a potentially semantic task. As

in the earlier example, if one were to be looking to identify audio files corresponding to

emergency situations, it would require the concepts gunshot and scream to be present in the

audio library, as well as concepts relating to other manifestations of emergency situations.

Instead, a more feasible alternative to using supervised training for specific patterns

would be to learn the various sound concepts from the corpora of interest, and use not only

the low-level sounds but also local patterns of occurrence of the various sounds and their

relationship to other sounds to address semantic tasks. While unsupervised approaches

have been employed in past work, those approaches primarily relied upon frame-level or

fixed frame windows for developing an unsupervised lexicon of low-level sound concepts.

Further, thus far, there has been very limited interest in identifying deeper structure and

using such structure for characterizing audio content for semantic tasks.

This thesis makes significant advances in addressing each of these limitations. We pro-

pose a novel task-agnostic, hierarchical framework that attempts to analyze audio content

for semantic tasks, as described earlier. In Figure 1.1, we present a conceptual representa-

tion of a hierarchical framework that envisions a system to perform increasingly complex

analysis of audio. The grey circles closest to the observed audio represent short-duration

lower-level acoustic units which produce sounds that human ears can perceive, such as the

crack of a gunshot, clink of glass, thump produced by footsteps, etc. These units have

acoustic characteristics, but no clear associated semantics since the semantics may be con-

text dependent. Sequences of these units, however, will have interpretable semantics– we

refer to these as events marked by grey rectangles in Figure 1.1. The annotations in blue

correspond to (usually unavailable) human labels for these events. Further, these events

themselves likely influence future events, shown by the arrows, e.g. the loud cheering in the

audio clip because a hitter hit a home run. Figure 1.2 shows an example of the structure

we envision extracting from audio streams.

This hierarchical analysis structure can be exploited for various common tasks in audio

analysis since the information contained in the different layers correspond to some of the

common audio processing tasks. The root node in Figure 1.2 would typically correspond

to the data genre, while the events layer corresponds to a segmentation of the audio file.
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Figure 1.1: An example of the levels of analysis involved in the proposed hierarchical
framework with increasingly complex semantic analysis. The color blue is used for data or
human annotations, and black for the labels that should be generated by our system.

Each individual event or lower-level sound (or sound source might correspond to a sub-file

level topic of interest, and temporally neighboring event or acoustic unit information can

be used to further refine detection.

Beyond their direct applications in tasks like retrieval and recounting, structured, hi-

erarchical relationships between various sound types, audio events would be interesting to

analyze and understand, and can lead to the development of truly intelligent systems that

can not just detect sounds of interest, but also understand them in a manner that humans

are capable of doing. Such analysis can improve our understanding of the sequential (or

co-occurrence) relationships of various sound types, e.g. music and whether sequences of

audio events (notes, note sequences) can help identify composers, genres, etc.

The primary issue that arises in our setting for semantic analysis of audio is a scarcity

of richly annotated data with information at various hierarchical levels that could be used

in supervised settings, and efforts to obtain annotation for a reasonably sized audio cor-

pus would likely be prohibitively expensive. To address this issue, we propose to use

easily available data that only contain weak or no supervision, and perform learning in

unsupervised or weakly supervised settings. The experiments reported in this dissertation

will demonstrate that sufficient information can be extracted using such methods to allow

semantic analysis of audio data.
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Figure 1.2: An example semantic parse for baseball.

We now proceed to present our thesis statement and contributions.

1.2 Thesis Statement

The main hypothesis that drives this dissertation is that sound has its own language and

structure, especially with respect to its semantic content. In this thesis, we aim to show

that:

“Structured models can be used to obtain increasingly higher-level semantic information

from audio in unsupervised settings, and that such information is useful for semantically

motivated tasks, even though the learning process was task-agnostic.”

To support this statement, we present learning algorithms for the different layers of

our framework shown in Figure 1.1, as well as test performance using the models for the

various layers on the task of audio retrieval from semantic queries. In the audio retrieval

task, we are given a database of recordings, and given a query, we need to retrieve all

documents that are relevant to the query. Our experiments, which are discussed in detail

in subsequent chapters, show that our framework for analyzing and characterizing audio

data performs significantly better than current state-of-the-art techniques.
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1.3 Summary of Thesis Contributions

To the best of our knowledge, this thesis is the first to propose a hierarchical, analysis

paradigm (such as the one shown in Figure 1.1) for semantic analysis of audio content.

The technical contributions of this thesis can be summarized as follows:

1. Proposed a novel hierarchical framework to map the observed acoustics to increas-

ingly higher-level semantics, in a task-agnostic framework.

2. A framework for unsupervised learning of a vocabulary of low-level acoustic units

that capture acoustically consistent phenomenon with no fixed window length-based

assumptions.

3. An unsupervised approach to learning higher levels of the framework as local patterns

over lower-level units, one layer at a time, with a prior that induces a power law

distribution on the higher-level units.

4. An unsupervised approach to learning a full hierarchy jointly, starting with only the

lower level acoustic units.

5. Empirically demonstrate performance improvements on current standard datasets

using our approach.

6. A preliminary approach to learning a vocabulary of atomic, lower level acoustic units

that assumes that the observed sound is a sparse mixture of multiple units.

The work done in this thesis also has an auxiliary contribution that could be very

important for the development of research in this field, but which has not been explored

directly in this thesis. The approach to induction of higher level structure leads naturally

to segmentation of the audio stream that can be leveraged in the future to obtain rich

annotations from human annotators who now only need to label the proposed segment as

opposed to perusing the stream to both identify and label segments. This would provide

a means of obtaining a set of inexpensive annotations, which can then be iteratively used

in a supervised (or semi-supervised learning framework) to refine the structure induction

process.

We would also like to note here that although the work in this thesis has been largely

done in the context of audio, many of the modeling assumptions are general enough that

they could be extended to arbitrary time-series data, where the assumptions hold. For

instance, one could easily envision extending the entire framework to a cognitive framework

that analyzes concurrent information from multiple streams to produce a single vector as

a joint representation.
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1.4 Thesis Layout

The rest of this thesis is organized as follows. In Chapter 2, we will review past work

in audio content analysis as well as work in various other areas of research that relate

closely to the approach that we’ve adopted in this thesis. We then introduce the data sets

that we use for our experiments and present an empirical analysis using standard methods

commonly used in content analysis tasks.

In Chapter 3, we present our approach to learning the low-level acoustic units unsu-

pervised from data. We present experimental results using only these low-level units on a

few different tasks, and investigate the effects of various shallow structure that influence

the design of the learning schemes for the higher layers.

Chapter 4, we present a power-law prior driven approach to learning higher layers, one

layer at a time, incrementally building over the previous layer induced.

Chapter 5 presents our approach to inducing a full hierarchy on top of the low-level

acoustic units, and investigates the tradeoffs with the one-layer-at-a-time approach of

Chapter 4.

In Chapter 6, we present results of our preliminary investigations of approaches to

2 important future extensions of the ideas laid out in this thesis– first, learning atomic

low-level acoustic units, where the observed audio is generated as an additive mixture of

multiple sources; and second, an approach to making the vocabulary learning process for

higher layers non-parametric.

Finally, Chapter 7 concludes by summarizing the work presented in this thesis, and a

discussion of future directions of research.
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Chapter 2

Audio Content Analysis–

Background and Related Work

In Chapter 1, we presented an overview of the content analysis problem as it relates to

audio, and a brief summary of the limitations of current systems that attempt to perform

automatic content analysis in the wild. In Section 2.1 of this chapter, we present a broader

look at some of the relevant work in audio content analysis, and use this context to describe

our framework in greater detail as well as highlight the main similarities and differences with

past work. As mentioned earlier in Chapter 1, hierarchical annotations for the audio of the

kind that our framework attempts to discover are not currently available. Therefore, any

research that attempts to discover any level of semantic structure from audio would need

to be able to work in unsupervised or weakly-supervised settings, since rich annotations

sufficient to learn the kind of semantics we propose would be hard to obtain. We discuss

some of the challenges with respect to good datasets in Section 2.1.3 and present a brief

overview of some weakly supervised learning techniques in Section 2.1.4.

The hierarchical paradigm presented in this thesis is rather novel in the context of audio

content analysis but bears some similarities to a large body of work in text processing. We

review some of the relevant work in text processing in Section 2.2, while pointing out some

of the principal points of difference in the two paradigms.

The current, openly available datasets, however, contain no supervision at all in terms

of semantic structure. Thus, the models we propose in this thesis for hierarchical struc-

ture induction work unsupervised, employing latent variable models. We provide a brief

introduction to latent variable modeling and the Expectation-Maximization technique for

parameter estimation that we use in this work in Section 2.3.

Finally, we present 2 datasets in Section 2.4 of this chapter that we use for experimental
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evaluation of our framework, and present the results of applying a pair of commonly used

approaches to audio content analysis to these datasets, which we shall later compare with

our techniques.

2.1 Automatic Content-based Audio Processing

The rapid increase in popularity of web-based systems that allow users to share data on the

web has resulted in an unprecedented increase of user-generated multimodal content on the

internet. Automatic analysis of the content of these files is essential in order to be able to

index and retrieve relevant files in response to user queries. The analysis of the audio and

video modalities of the content have typically been done separately, with their respective

results then combined to produce a joint characterization of the file. These results could

be feature level analysis results that are fused and then used to train a classifier, or they

may be independently used to train classifiers and the classifier predictions for the two

modalities might be combined to produce a final prediction.

Since the audio in the multimedia files can be expected to provide significant informa-

tion with respect to its semantic content, and potentially complementary information to

what can be obtained from analysis of video (e.g. due to the presence of speech), vari-

ous approaches have been developed to analyzing the audio content. One of the earliest

paradigms of indexing audio content was to annotate it with textual information and then

use traditional IR techniques for searching. This approach works well and has the ad-

vantage of using well-understood techniques for retrieval. On the other hand, obtaining

human annotation of audio is extremely time-consuming and expensive. As a result, there

has been significant research effort attempting to automatically utilize the audio content

for indexing of multimedia files.

Content based audio classification is essentially a 2 step pattern recognition problem–

first, the audio is represented using a set of features. These features are then used for

classification. The earliest efforts [Liu et al., 1997, Wold et al., 1996] sought to match

perceptual features of audio files to an audio query.

As speech recognition systems improved, the task of spoken document retrieval using

text queries on large speech corpora [Garofolo et al., 1997] was studied more closely. The

standard approach used by systems in this setting involve transcribing the speech signal,

and using text-based retrieval techniques on the transcribed text. Systems that could

perform keyword spotting [Szoke et al., 2005] and query by example [Velivelli et al., 2004]

were also developed for retrieval from these large speech databases.
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The task of understanding non-speech sounds, however, is a much harder one. In set-

tings where the domain of sounds is unconstrained (audio in the wild, as it is often called),

one can imagine an infinite number of potential sounds. To avoid having to explicitly

model a very large number of sounds, approaches to audio processing in this area were

task-driven– e.g. detecting specific sounds in audio using detectors that sought to classify

chunks of audio as containing the target sound or not. The most common approach is

to use a vocabulary of sounds, comprising clearly characterizable sounds such as gunshots,

laughter, speech, animal sounds, music, crowd sounds etc. Audio is analyzed by detecting

the presence of sounds from this vocabulary in it and additional analysis builds on top of

such detection. For instance, Chang et al. [2007] identify the presence of sounds from a

vocabulary and combine this information with evidence from video. Slaney [2002] describes

a system that could be used to map between regular vocabulary and sounds by associa-

tion. Friedland et al. [2009] navigates Seinfeld episodes taking advantage of traditional

sitcom artifacts, such as music indicating scene changes and laughter following punchlines.

Other analyses detect repeated sequences in a television broadcast stream [Berrani et al.,

2008], with the intent of identifying jingles, advertisements and so forth. Many of these

methods work well in restricted domains, and based on these techniques, an unconstrained,

completely automatic system for audio understanding can be envisioned.

Semantic analysis of audio has also been explored recently in multimodal settings.

Jiang et al. [2009] utilize the concept of Short-Term Audio Visual Atoms (S-AVA) where

features are extracted from both the video and the audio and are used together to develop

codebooks for various semantic concepts. The codewords in the codebooks are then used

as features to train classifiers to detect the concept. Lee and Ellis [2010] used a set of

25 semantic classes (e.g. dancing, singing, birthday) for classifying consumer video clips

using only audio information. Rui et al. [2000] attempted to generate highlights for baseball

audio using information from the audio track only using energy-based features, as well as

phoneme-level features and prosodic features from the announcers’ speech. Divakaran et al.

[2003] used audio features in conjunction with video features based on motion activity for

news video summarization– they used Hidden Markov Models for modeling various kinds

of audio events such as speech, barking, etc. which were then used to segment the sound

track, as well as detect speakers and speaker changes.

2.1.1 Structured Analysis and Our Proposed Framework

There are 2 principal distinctions between the various threads of past work discussed earlier

in this area, and the approach that we propose.
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First, in all of the above, the basic mechanism involves spotting a set of known sound

types in audio, with a specific task in mind. Higher-level descriptions of audio must be

obtained by further inference or by human supervision, after the sounds are detected.

Especially for semantically motivated tasks, an approach based on a spotting or detection-

based paradigms makes the important latent assumption that the observed acoustics map

directly to the semantics. Naturally, this is not the case for approaches such as Lee and

Ellis [2010] which use a set of pre-defined semantic classes. However, all of them do run the

additional risk of trying to map acoustics across 2 datasets with dissimilar characteristics.

Such dissimilarity may arise from differences in recording devices, conditions, degree of

naturalness, as well as simply from the presence of significantly different concepts, as

might occur when recording a similar concept (e.g. wedding) from different cultures.

Second, the various content analysis techniques that are popular in the literature uti-

lize a shallow analysis of the surface form or representation obtained via the different

paradigms. While some have looked at some degree of structure between these surface

forms, as captured by language models, we will argue in Chapter 3 and 4 that the kind of

structure that exists in semantic audio would be extremely hard to capture with regular

language models due to their high variance.

To understand the intuition behind this, consider 2 plausible manifestations of a crime

scene event as shown in Figure 2.1. Both are very similar in terms of the higher level

semantic content, which involves a crime committed with a gun. However, they manifest

differently enough that a simple language model would not be able to capture the similarity

between the two manifestations. As indicated in the figure, noise may also be added due

to imperfections at the time of decoding of the lower layer introduced by modeling issues,

presence of background noise that distorts the true characteristics of the data, etc. In

either case, however, the system can be robust to the shallow surface form by doing another

higher level of analysis, where it starts to learn that the presence of gunshot and door slam

is sufficient to indicate a crime scene, independent of the presence of speech, water or any

other sounds.

In our work, we take a different approach to address these issues. All our approaches

involve learning from the dataset of interest, in order to avoid domain mismatches, or in-

sufficient concept coverage. Our methods can work unsupervised, and therefore do not the

high cost of obtaining human annotations, As our baseline experiments using prior work

from the literature will show, unsupervised lexicon learning techniques will typically out-

perform supervised, audio concept dictionary-based techniques on user-generated content.

In order to address the issue of how to map the acoustics to the semantics, we employ
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Figure 2.1: An illustrative example to show how the same semantic event might manifest
differently. The difference in manifestation might be the true difference between 2 occur-
rences of the same event, or it may happen because the decoder that identifies the lower
level events is imperfect (denoted by noisy decode).

the hierarchical framework that was introduced in Figure 1.1 and 1.2 in Chapter 1. We

will briefly explain the use of the multiple layers in the hierarchical model of Figure 1.2

here.

A higher layer in our framework corresponds to a higher level of semantic inference.

The lowest level, indexed by ai in Figure 1.2, is the closest to the audio and it captures

more of the acoustic phenomena than semantic meaning. At this level, we model all audio

as being composed of a sequence of a relatively small set of atomic sound units, which

we call acoustic unit descriptors (AUDs, henceforth). Our hypothesis in attempting to

formulate a language for sound is that sound can be modeled with a small number of

lower level units (AUDs, in our case). Since the number of different sound concepts in the

real world can be infinite, we would need some sort of limiting criterion for computational

benefits. Our assumption of a finite set of low-level sound units is motivated by the benefit

of computational tractability as well as 2 other observations. First, even though the full

set of sounds might be infinite, only a limited (although, possibly large) number will occur

in any given dataset. Second, the assumption of a smaller than true number of units will

force multiple different concepts to cluster with the most similar acoustic concepts. As a

result, these unit clusters will not be true, diverse units, but capture acoustically similar

phenomenon.

As a result, individual AUDs do not necessarily capture semantic information, but

sequences or patterns of AUDs should capture semantic information. Every instant of

an audio file is part of one such unit, and the entire audio stream can be transcribed in

terms of these units. However, we do still expect that individual AUDs do capture some

underlying semantics, even though we may not be able to quantify this in terms of generally

understood semantic concepts. As an intuitive example, the crack of a bat might fall into
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the same AUD cluster as the sound of a hammer. While we cannot distinguish between a

baseball tag and a workshop tag, we can use it to say that such sounds are not very likely

in the musical performances class.

Once the acoustics have been mapped to the AUDs layer, we start to look at the higher

events layer. Our expectation is that as we go up the hierarchy, the segment captured by the

span of the node becomes increasingly more semantically informative in nature. To extend

the example from above, as we look at AUDs that appear in temporal proximity to the

one that capture the sound of baseball bats and hammers, if we find AUDs corresponding

to applause or cheering or general merriment, we would predict that the sound was from

the baseball class, since a workshop project using a hammer rarely elicits applause.

As we go higher still, we are better placed to make even higher level inferences. For

instance, even though a short segment in the recording might have been from a baseball

game, the recording may actually be of a birthday party where the camera focussed on a

baseball game on television for a while. Thus, to make an inference about the overall genre

of the audio, we need to combine evidence from multiple segments.

In Chapter 3, we will explain our model for learning the AUDs and how we use them for

audio processing tasks. Chapter 4 explains how we utilize information from local patterns

over AUDs (or similar units) to develop higher layers in the hierarchy, and both Chapter

4 and 5 explore two different approaches to building up a hierarchical structure on top of

the low-level acoustic units.

While techniques for analysis of general audio does not typically pay attention to struc-

ture, there has been a great deal of work on using grammars for generating or analyzing

music. Early approaches to grammar based generation of music employed simple, determin-

istic rule-based techniques [Steedman, 1989]. Researchers have attempted to use various

kinds of grammars for different tasks– tree grammars were used to compute melodic sim-

ilarity computation and melody classification [Bernabeu et al., 2011], analysis of musical

structure to recover the sectional form of a musical piece using MFCC, chroma and rhyth-

mogram features [Paulus and Klapuri, 2009], and using regular grammars to model musical

style for classification [Cruz-Alcazar and Vidal, 2008].

2.1.2 Similarities to Image Processing Approaches

Image processing researchers have attempted to employ grammars to improve the perfor-

mance of computer vision systems. Early efforts to building such systems attempted to

exploit the fact that the evolution of a visual scene is guided by different conventions, such

as the laws of traffic or social conventions (such as expecting people to sit on chairs, or
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expecting to see food on tables). Subsequently, research efforts have sought to generate

conceptual descriptions from sequences of images [Nagel, 1988] using intermediate levels of

description using verbs to describe temporal changes, events and histories in order to go

from frame level understanding to a schematic story.

To the best of our knowledge, Christensen et al. [1996] were the first to suggest using

grammars for the task of describing a scene, using a rule-based grammar for this task.

Subsequently, the problem of object detection has motivated the formulation of grammar

based approaches, where the objects of interest are modeled as being composed of parts

which are objects, as well. Such models [Felzenszwalb and McAllester, 2010] also make

efforts to distinguish between different compositions leading to the same object, which

would potentially provide semantic information, e.g. distinguishing a smiling face from a

frowning face, using the same parts to detect the face. Felzenszwalb et al. [2010] outline a

cascade detection algorithm for a general class of models defined by a grammar formalism.

This class includes tree-structured structures as well as richer models that can represent

each part recursively as a mixture of other parts.

Recently, image processing researchers have proposed the generation of hierarchies from

images using both visual and semantic information. Generative models have been proposed

for the same [Li et al., 2010c], and the success of the models in generating hierarchies using

image information augmented with text was measured on image classification tasks as well

as by human judgment. While low-level image features, such as pixels, have proved to be

strong features for many image tasks such as classification, work by Li et al. [2010b] found

that the use of features based on detected objects in an image provide complementary

information to the low-level features, and can be used to enhance performance.

2.1.3 Enriching current datasets

The most important restriction that would limit the development of techniques exploring

better and more interesting ways to model semantics in the audio (and possibly, video)

modality is the limited amount of annotated data available for such tasks. Ideally, one

would be able to evaluate structure induction techniques directly on the structures, but

this is presently impossible, since there exist no datasets with the kind of rich annotations

that such structure evaluation would require. The closest parallel to the kind of data

one would be looking for would be in the domain of syntactic parsing for text, which we

shall discuss shortly, where treebanks have been developed for that purpose. However, the

development of treebanks required consensus on a number of decisions related to syntactic

structures, something which might be hard to obtain for a semantic task for audio.
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As a result of the above factors, decisions on how to use annotations at various semantic

levels for evaluation would need to be closely monitored. Nonetheless, the importance of

generating such annotations is paramount, so that the community can begin to explore

techniques to leverage them. There are 2 possible ways of obtaining such data.

The first would be to employ annotators, agree upon a minimal set of annotations and

allow them to annotate the tree structure with those labels. This might, however, prove

prohibitively expensive since the task of identifying and labeling boundaries has been found

to be very slow, since it would require identifying boundaries of segments such as the low-

level acoustic units, all the way to the highest genre node. Indeed, for speech, accurate

labeling of utterances is extremely time consuming and requires trained linguists.Zhu [2004]

reports that annotation at the word level can take ten times longer than the actual audio

(e.g., one minute of speech takes ten minutes to label), and annotating phonemes can take

400 times as long (e.g., nearly seven hours).

The second approach would involve the setting up of weakly supervised learning tech-

niques that can use minimal supervision to improve, or ask questions to users to maximally

improve its understanding of certain structural elements, use this information to refine its

structure learning, as well as ask questions to verify the correctness of its knowledge. SIm-

ilar efforts have been undertaken in different communities, with LabelMe, Captcha, etc

being examples of available technology that use human input for such tasks.

Further, such systems need to be robust to various issues. Besides the obvious one

of annotation errors arising out of misclassifications, Tzanetakis and Cook [1999] raise

the issue of subjectivity of the listener in assigning annotations to audio, and suggest an

interactive framework that combines manual and automatic annotations into a flexible,

unified framework. Our framework is equipped to handle such situations, as well. We will

describe in Section 3.2.3 a method that can be adapted to take into account individual

preferences in generating labels for segments of audio that can easily be personalized for

different users.

2.1.4 Weakly-Supervised Learning

We include here a brief summary of some general principles of weakly supervised learning

approaches that we leant on, given that the degree of supervision in our setting was min-

imal. More importantly, we believe that as this area of research develops, being able to

leverage weak supervision meaningfully will prove extremely important.

Traditional classifiers use supervised data with feature and label pairs for each data

point in the training set. However, for a variety of reasons such as human effort and
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time required for labeling, such labels may not be available in all settings. Unsupervised

approaches, on the other hand, make use of large quantities of unlabeled data that is

easily available, but do not require annotated labels for the training data. Semi-supervised

learning is a special learning setting which attempts to leverage the best of both worlds.

It makes use of large amounts of unlabeled data in conjunction with a small amount of

supervised labeled data to build better classifiers [Zhu, 2004]. Semi-supervised approaches

require less human effort and often provides significantly improved performance making

the approach interesting in both theory and practice.

It should be noted here that semi-supervised learning approaches are not guaranteed

to increase performance over unsupervised approaches. For instance, Elworthy [1994] ob-

served that training a Hidden Markov Model [Rabiner and Juang, 1986] can reduce accu-

racy under certain initial conditions.

Various algorithms have been developed for semi-supervised learning– self training

(which has been used successfully in and co-training are two of the most popular ap-

proaches. Self-training uses the labeled data to learn a classifier and then uses this classi-

fier to predict classes on the unlabeled data. The unlabeled data points that this classifier

can make predictions on with the most confidence are added to the labeled training set,

and this process is repeated, with the classifier using its own predictions to teach itself.

Self-training approaches have been used for word sense disambiguation [Yarowsky, 1995]

and for detecting objects in images [Rosenberg et al., 1995].

Co-training [Blum and Mitchell, 1998] assumes that features can be split into two sets

and that each sub-feature set can be used to train a good classifier, provided the two

sets are conditionally independent given the class. Initially, two separate classifiers are

trained with the labeled data, on the two sub-feature sets respectively. Each classifier then

classifies the unlabeled data, and teaches the other with the few unlabeled examples that

they can classify with the most confidence added to the supervised data set. Each classifier

is now retrained with the additional training examples given by the other classifier, and

the process repeats. Thus, the two classifiers must agree on the much larger unlabeled data

as well as the labeled data. Nigam and Ghani [2000] showed empirically that co-training

performs well if the conditional independence assumption indeed holds.

In the case of sound data, semi-supervised learning approaches are important for 2

reasons. First, for the kind of semantic structure we are attempting to discover from

audio, annotated data with rich annotations would be expensive to obtain, and being able

to leverage a small amount of annotations would be important. Second, audio datasets

which provide class labels on the entire files are available. However, especially in the case
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of user-generated content, labels simply refer to the subject that the audio was attempting

to capture; the audio may and does contain significant amounts of content not related

to the topic, due to backgrounds, voice overs and overlaid commentary or music. In

principle, the second issue can be tackled using a learning setting known as multiple-

instance learning [Zhou, 2004], which has been used for various tasks, such as drug activity

prediction [Dietterich et al., 1997], music retrieval [Mandel and Ellis, 2008] and visual

tracking [Babenko et al., 2009]. However, as we shall see in Chapter 6, successfully tackling

this issue with multiple instance learning is likely to be a significant undertaking by itself.

Finally, yet another learning paradigm that may be of interest due to the scarcity

of labeled data for our tasks is that of active learning [Settles, 1995]. The main idea

behind active learning is that a learning algorithm can achieve greater accuracy with fewer

training labels if it is allowed to choose the data from which it learns. An active learner

may pose queries, usually in the form of unlabeled data instances to be labeled by an

oracle (e.g., a human annotator). Active learning is used in a variety of applications,

where unlabeled data may be abundant or easily obtained, but labels are difcult, time-

consuming, or expensive to obtain.

2.2 Relevant Text Processing Paradigms

The various layers in the structure in Figure 1.1 correspond to understanding the semantic

content of the audio at various granularities. Such a structure is quite similar to those

produced when parsing natural language text to understand the syntactic structure of the

text. In addition to this, the task of identifying meaningful segments from streams of the

low-level acoustic units (or even at higher levels) are tasks with analogs in the text analysis

domain. The task bears certain similarities at a high level to approaches in morphology

induction and topic modeling. Section 2.2.1 discusses some of the relevant literature in the

syntactic parsing domain, while Section 2.2.2 discusses relevant topic modeling work.

2.2.1 Syntactic Parsing

The process of parsing enables the identification of the structure of meaningful subse-

quences of any text sentence, including phrase boundaries spanning sets of words and

identification of the parts-of-speech for the individual words, producing a syntactic struc-

ture as shown in Figure 2.2 [Charniak, 1997]. It is generally accepted that the parse

tree obtained in this manner is useful in understanding the sentence automatically, and
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Figure 2.2: Example of a syntactic parse of a sentence (from Charniak [1997])

features derived from such parse trees are used for a variety of applications, including

question-answering, machine translation, textual entailment.

The current state-of-the-art systems for natural language parsing all employ statistical

methods to determine the most likely syntactic structure for any given sentence. From the

parse tree shown in Figure 2.2, one can see that words are first categorized into parts of

speech (POS), and phrase boundaries are obtained over sequences of words (in the Figure,

NP refers to a noun phrase, and VP to a verb phrase). Finally, the sentence is a sequence

of such phrases– note that a phrase can span sub-phrases as well. Consider a sentence such

as ”The dog ate the biscuit”. In the parse for this sentence, ”the biscuit” would have parts

of speech ”det noun”, which would be spanned by an NP. Then the VP would span ”verb

NP”, thus spanning the words ”ate the biscuit”. In some ways, this structure is analogous

to our framework, where the AUDs learning process is independent of the higher structure

induction, just as the POS tagging is done for the different words in a sentence independent

of the syntactic structure prediction.

Openly available part-of-speech taggers include the Stanford POS Tagger [Toutanova

et al., 2003], and the CRF Tagger [Phan, 2006], and implement various methods ranging

from Hidden Markov Model formulations [Rabiner and Juang, 1986] to Maximum Entropy

techniques [Toutanova and Manning, 2000] and Conditional Random Fields [Lafferty et al.,

2001].

As a precursor to full parsing, many researchers worked on the task of chunking [Abney,

1991, Ramshaw and Marcus, 1995], which involved dividing sentences into non-overlapping

segments based on analysis of the words over windows. However, statistical parsing tech-

niques are currently sufficiently developed to generate full parses for sentences of the kind

shown in Figure 2.2. Again, statistical parsers for full parsing of natural language sentences

employ a variety of models including probabilistic context free grammars and maximum
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entropy models and are now openly available [Bikel, 2004, Klein and Manning, 2003].

In Chapter 4, we develop an algorithm for developing higher layers on top of the AUD

sequences. Unlike in text, where the POS tagging is done at the word level, in our case,

the notion of words is ill-defined. As we’ve discussed earlier, we expect the semantics

to be contained in the local patterns over AUDs (just as the true semantic of a word is

only obtained from the local context), and thus AUDs may be considered analogous to

words in text. The algorithm we propose for developing higher layers in Chapter 4 can

then be considered to be performing an analogous function to chunking for text, with the

exception that due to the nature of the audio content, the chunks represent semantically

coherent segments instead of being syntactically bound as in text. Due to the fundamental

differences in what they are trying to accomplish and the different challenges in the different

domains, our learning algorithm is not at all similar to the standard chunking algorithm,

instead bearing more similarity to the semantically driven topic modeling literature, which

we discuss in Section 2.2.2.

Overall, however, the parse tree representation of natural language text is very similar

to the structure shown in Figure 1.1 for analysis of audio content. One of the approaches

to inducing a hierarchy that we describe in detail in Chapter 5 is inspired by work in

unsupervised structure induction for text Klein and Manning [2001].

In conclusion, we can summarize the main difference between the parsing paradigm for

natural languages and the discovery of structure among audio events as follows: the parses

for natural language text are syntactic, and enable analyses of the syntactic relationship

between words, and of the sentence as a whole. Relationships between events in audio are

semantic, and the accuracies of the inferred dependencies are likely to be more sensitive to

the detection of individual events. Further, text used in these settings are usually ground-

truth and noise-free, while the analogous discrete sequence for sound (the Acoustic Unit

Descriptors) are likely to contain significant noise.

2.2.2 Topic Modeling

In Section 2.1.1, we discussed how our modeling assumptions and choices led us to expect

that the individual low-level acoustic units (AUDs) would not contain individual semantic

interpretations; instead, local patterns over these AUDs would contain semantic informa-

tion.

Such an analysis paradigm for semantic inference is analogous to principles used in

word sense disambiguation tasks in text processing. Consider, as an example, the word

bank. It could refer either to the financial institution or the shore of a river. Indeed, it
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could even function as a verb as in the usage banking on, to mean relying upon. While

various different modeling techniques have been used for word sense disambiguation, the

driving principle remains one of exploiting context to determine the true sense of a word.

Our principle in trying to extract semantics from AUDs (or indeed, any layer being

mapped to a higher layer) is to understand not only the semantics, but also the context and

the role it plays in the development of future events and, therefore, acoustic phenomenon.

Thus, in trying to develop a layer that captures scene level information, one would expect to

find that the unit corresponding to a crime scene (to continue the example from Chapter 1)

would often generate AUDs corresponding to gunshots, screams, sirens, etc. Note however

that not all instances of crime scenes will have all of these but (let’s assume here that a gun

is the only way crimes may be committed) they will all contain the gunshot. An intelligent

learning system would be able to learn that a sound like a gunshot becomes more likely

to be a gunshot if screams, sirens, more gunshots, etc are present in temporal proximity

(AUD sense disambiguation), and that the sequence of sound events (gunshots, etc) from

the beginning of the excitement correspond to a crime scene unit.

Thus, at a local event level, we introduce the concept of an event as a distribution over

AUDs, since not all of those elements need to be present. This is analogous to document

understanding approaches using topic modeling, where the documents are distributions

over words, and documents belonging to a particular class are likely to display some simi-

larities in distribution while being different from documents in different classes, although

they may use the same vocabulary. Similarly, different events will likely have different

distributions over AUDs.

We will describe our specific model for inducing higher-level events in Chapter 4. In

this section, we provide a brief overview of relevant topic modeling literature that will be

relevant to understanding our model.

The goal of topic modeling is to find appropriate characterizations of the members of

a collection (such as, documents belonging to a particular class in a corpus) that enable

processing of large collections for tasks such as classication, retrieval, summarization, etc.

The early methodology for such tasks involved reducing each document in the corpus to

a vector of real numbers. In the popular tf-idf scheme [CITE Salton and McGill, 1983], a

vocabulary of words is chosen, and, for each document in the corpus, a feature vector is

created of the size of the vocabulary with the normalized frequency of occurrence of each

word being the feature value. This is then combined with an inverse document frequency

and used as an indicator of saliency.

While this approach was reasonably successful, the feature descriptor was typically
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of high-dimensionality, and the resulting representation was not particularly insightful in

understanding structural aspects of documents. To address these problems, probabilistic

Latent Semantic Indexing (pLSI) using the aspect model was introduced, where documents

were modeled as distributions over topics and topics modeled as distributions over words,

such that the high probability words for any topic would provide insight into how the topic

might be interpreted. This is currently the accepted paradigm for document analysis tasks

in text processing. A number of variants of this approach have been developed since to add

more structure information including the popular Latent Dirichlet Allocation (LDA) Blei

et al. [2003]. pLSI, LDA and its variants have been used successfully for a variety of tasks,

such as document classification and retrieval, conversation modeling, summarization, etc.

Briefly, the aspect model (and LDA) provide a generative schema to generate text

documents probabilistically, where the for each document (document d with Nd words), a

latent topic (z) is selected from a distribution P (z|d) and then a word w is drawn from

the distribution of words for z, P (w|z), and this process is repeated Nd times to generate

a document. The LDA varies in that it doesn’t have a new topic distribution for every

document, instead using a distribution over topic distributions. We use a similar generative

process to model higher layers of the hierarchy with the AUDs being the observed layer, but

with modifications to handle significant differences between the basic domains of text and

audio, as well as modified modeling assumptions to deal with the fact that the observed

low-level AUDs are the result of noisy decodes, whereas the observed words in text are

usually ground truth.

The topic models are a specific instance of latent variable modeling, which we will

briefly discuss in Section 2.3. Finally, unlike in text, where word boundaries are known,

our approach to inducing events requires us to estimate the events as distribution over

AUDs, as well as identify the segment corresponding to the event, jointly. One can think

of an analogous task to this in text processing, where given a stream of space-removed

characters in a strange language, the task is to discover the vocabulary of the language.

Such approaches are, in fact, employed for morphology induction as well as vocabulary

learning in the literature. However, these are not of general interest to this research area,

so we will discuss them in Chapter 4 in the context of our model for performing joint

segmentation and event learning.
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2.3 Latent Variables and Expectation–Maximization

Audio data sets, especially audio in the wild, do not currently contain the kinds of rich

annotation that would be required in order to train fully supervised models to predict the

kind of hierarchical structure we envision in Figure 1.2. Thus, as we shall see later in

Chapters 3, 4 and 5, the various units in the hierarchy are modeled using latent variables,

where the only observed data is the actual sounds and the various levels of the hierarchy

are estimated from that set of observations.

In general, latent variable models are a powerful tool for probabilistic modeling where

the set of observations are augmented with additional hidden variables that attempt to

capture a set of beliefs regarding how the observed data was generated. In our instance

shown in Figure 1.2, one can think of the generative process as one where an underly-

ing latent process first picked a genre from a distribution over genres, and then picked

a sequence of events from the distribution over events conditioned on the chosen genre

(baseball). For each of those events, sequences of sub-events are drawn that then manifest

themselves as a sequence of low-level acoustic units (e.g. crack, thud, clap) which in turn

produce the characteristics of the raw audio. An example of these characteristics would be

Mel-Frequency Cepstral Coefficients (MFCC) that are commonly used to represent audio.

Figure 2.3 shows an example of a simple generative process, using the parameters of

the grammar at each level, with 3 levels instead of the 4 used in the baseball example,

and the lowest level correspond to the Acoustic Unit Descriptors. The actual observed

data is not shown here, but each of the AUDs produce the equivalent of raw audio. The

example also assumes that units in the same level are independent of each other, and the

grey boxes with G denote the distributions from which the units in the different layers are

drawn, conditioned on the unit in the layer above it.

In such latent variable models, a joint distribution is then defined over the latent and

observed variables, and the corresponding distribution of the observed data can be obtained

by marginalizing the latent variables. Typically, a form for the distribution of the latent

variables is chosen and the training process attempts to estimate the parameters of the

graphical model thus formed that can explain the generation of the data, typically either in

a maximum-likelihood or maximum-a-posteriori setting. While the specific learning setup

depends on the choice of the underlying model and the distributions, there are a number

of commonly used examples of latent variable models such as Hidden Markov Models,

Probabilistic Latent Semantic Analysis, Conditional Random Fields and Topic Models

that have been successfully used for a wide range of tasks.

While various techniques have been presented in the literature for training the param-
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Figure 2.3: An example of a simple parse tree over AUDs..

eters of latent variable models, one of the most commonly used ones is the Expectation

Maximization (EM, henceforth) approach, which we will briefly introduce here. The EM

algorithm is an efficient iterative procedure to train the parameters of a latent variable

model. It starts with an initial guess of the parameters that it seeks to estimate better,

and arrives at a more optimal parameter estimate via iterative updates of its current pa-

rameter estimate. The EM algorithm is guaranteed to converge. Each iteration of the

EM algorithm consists of two processes: The E-step, and the M-step. In the expectation,

or E-step, the missing data are estimated given the observed data and current estimate

of the model parameters. This is achieved using the conditional expectation, explaining

the choice of terminology. In the M-step, the likelihood function is maximized under the

assumption that the missing data are known. The estimate of the missing data from the

E-step are used in lieu of the actual missing data.

While for detailed information about the various properties of the EM algorithm, we

refer the reader to Dempster et al. [1977], it can be shown that we can improve the proba-

bility of observing the data when compared to the parameter estimate in the r-th iteration

as follows.

Let us define a model where X are the observed data, Z are the latent random variables,

and Θ are the set of parameters we wish to estimate. One can define an objective function

that is guaranteed to increase when we estimate an updated Θ given our previous estimate

of Θr.
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∆(Θ,Θr) =
∑
Z

P (Z|X ; Θr)log
P (X , Z,Θ)

P (Z,X ,Θr)
(2.1)

= EZ|X ;Θr

[
log

P (X , Z,Θ)

P (Z,X ,Θr)

]
(2.2)

The LHS in this equation is guaranteed to be non-negative since setting Θ to Θr will

result in the RHS evaluating to 0.

Our new estimate of Θ corresponds to the maximization of the function ∆(Θ,Θr), and

can be obtained by differentiating the RHS in Equation 2.2. Note, however, that we can

use a simpler function since the denominator within the logarithm is not a function of Θ.

We can rewrite it as follows, and maximizing the RHS of Equation 2.3 will give us our

optimal estimate of Θ in the following iteration.

∆(Θ,Θr) = EZ|X ;Θr

[
logP (X , Z,Θ)

]
(2.3)

We will use this for our derivation of the update rules in the models we subsequently

present.

2.4 Data and Baselines

In this section, we will first describe the data that will be used for evaluation of the

framework and algorithms developed in this thesis in Section 2.4.1. We will follow with a

brief discussion of a pair of analysis techniques in Section 2.4.2– one supervised and one

unsupervised– that are commonly used for audio content analysis, and establish baseline

performances on the 2 datasets of interest, while explaining how these analysis techniques

are used in a system to perform audio retrieval.

2.4.1 Datasets Used in this Thesis

There are 2 datasets that we will use for our experiments in this dissertation. The first is

the BBC Sound Effects library (BBC, henceforth) which consist of 10 different categories

and 1120 different audio clips [bbc]. This library consists of various conceptual categories

of sound, and audio tracks for the various categories contain complex audio due to the

presence of many different sounds; e.g. a supermarket audio contains voices, sound from

the checkout bell, trolleys and baskets being stacked. Thus, these categories are defined
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Category No. of positive instances Total duration (hh:mm)
Exterior atmospheres 53 03:02
Household 51 00:59
Interior Backgrounds 24 01:05
Transport 135 02:37
Animals 52 01:06
Audiences 47 00:32
Electronic equipment 69 00:47
Water 24 00:34
Birds 43 01:07
Warfare 138 00:47

Table 2.1: The various categories in the BBC dataset and occurrence statistics.

at a higher semantic level than datasets that contain instances of simpler sounds, such as

gunshots, laughter, etc. The BBC Sound Library recordings are of a high and consistent

quality, and allow us to compare compare different systems in a setting where additional

confounding factors are not present, as is often the case in Youtube-style, user-generated

content where different recording conditions and equipment introduce channel variance.

The different categories and the number of files belonging to each of those categories

are listed in Table 2.1. Besides these files, which correspond to positive instances of the

various categories, the other files are considered negatives for each of the 10 categories.

The second is the TRECVID 2011 Multimedia Event Detection (MED11, henceforth)

dataset [MED, 2011]. This dataset consists of a total of 15 semantically defined categories.

This is currently the largest semantic audio dataset available with a total of about 10,000

files and about a 1000 hours of audio (please refer to Table 2.2 for a list of the various

categories). Unlike the BBC sound effects library, the recordings have been made with a

wide array of different recording devices with vastly differing background noise signals, as

well as overlaid music that often has very little to do with the actual content of the file.

In terms of evaluating a novel framework on data, this pair of datasets provides an

interesting contrast on 3 important factors. The MED11 dataset is certainly closer to the

kind of data that one can expect to encounter on large, user-generated platforms such

as Youtube, and therefore, a dataset that can be used to obtain a more realistic evalua-

tion for the development of future technologies dealing with content analysis. However,

the downside is that due to the lack of information about the recording conditions, etc,

under which the MED11 dataset was created, it is hard to gain a better understanding

of techniques being evaluated, since it is harder to get a clear handle on cases where the

technique works well, and where it does not, as a function of the various external factors
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Category No. of positive instances Total duration (hh:mm)
E001– Attempting a board trick 172 03:02
E002– Feeding an animal 166 14:59
E003– Landing a fish 152 12:38
E004– Wedding ceremony 163 18:43
E005– Working on a woodworking project 158 19:06
E006– Birthday party 221 15:32
E007– Changing a vehicle tire 118 11:17
E008– Flash mob gathering 191 11:24
E009– Getting a vehicle unstuck 150 14:32
E010– Grooming an animal 141 11:19
E011– Making a sandwich 183 16:22
E012– Parade 167 17:14
E013– Parkour 130 11:51
E014– Repairing an appliance 136 12:32
E015– Working on a sewing project 120 09:06

Table 2.2: The various categories in the MED11 dataset and occurrence statistics.

such as noise, channel, etc. Alternately, the BBC category allows a better evaluation of

techniques in terms of understanding its strengths and weaknesses, especially in compar-

ison to other techniques. Further, the induced structures and corresponding segments in

the BBC dataset can potentially be exposed to external annotators in order to attempt to

understand how well the system performs at discovering structure. On the other hand, due

to legal restrictions, data from the MED11 set cannot be exposed to external annotators

at all.

Both of these datasets contain some proportion of human speech, but in most of their

occurrences, the speech is hard to recognize since the recordings were not made with the

intent of capturing the speech. They tend to appear because a number of the events have

human involvement, and speech appears either in the natural course of the event or in the

background.

While the 2 datasets described above are the primary datasets used for evaluation using

an audio retrieval setting, in Chapter 3, we will demonstrate effectiveness of our AUDs

learning framework on a pair of different tasks using the TRECVID 2010 Multimedia

Event Detection dataset (MED10, henceforth) – a smaller dataset that is actually a subset

of the MED11 data. MED10 comprises 1746 total clips of training data, totaling about

56 hours in length, and the 1724 clips of test data about 59 hours long. The recordings

are publicly available, user-generated multimedia content uploaded to internet hosts. Each
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video is annotated with one of 4 labels – making a cake, batting in run, assembling shelter

and other, identifying the kind of activity being performed in it. The class other appears

to be a catch-all class consisting of all videos that do not belong to the first 3 classes.

Participants in the NIST MED evaluation were required to retrieve recordings from the

testset that included a queried activity or event, and largely focused on the video features

available. The use of the audio features was usually limited to speech transcriptions [Li

et al., 2010a], and detection of pre-specified sound types in the audio [Hill et al., 2010].

2.4.2 Baseline Performances on Audio Retrieval

As mentioned earlier, we evaluate our framework for content analysis of audio on a seman-

tically defined audio retrieval task. In this section, we first describe the audio retrieval

task and performance measures, and we follow with a description of how content analysis

techniques are used to characterize audio files for the retrieval task.

Audio retrieval task

In the audio retrieval task, the input query to the system is a semantic event (from the list of

events in Section 2.4.1), and the goal of the system is to detect all recordings corresponding

to the query event in a large collection of user-generated Youtube-style recordings. Thus,

for each event, we have a binary one-against-all setting. Since the events in the task are

semantically defined, one might expect that such a task might be addressed by looking

for semantically meaningful acoustic phenomena that correlate well with the events in the

audio.

The training and test data consist of positive instances from the various classes in the

dataset, and a number of files that do not belong to any of those classes. For each class

i, the positive instances for that class are taken along with all the other files (which are

negative instances for that class), and a detector is trained for that class. (We will describe

the detector in more detail in 2.4.2.)

At test time, for each file in the test set, the detector for class i predicts whether or

not the test file belongs to the class i. We evaluate performance using Missed Detection

(MD) and False Alarm (FA) rates, which are defined as follows: suppose there are Nt test

files, of which Ni are labeled as belonging to class i by the detector for the class. However,

the test set contained Ci files belonging to class i, and Di of these were correctly detected.

Then:
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MD =
Ci −Di

Ci
(2.4)

FA =
Ni −Di

Nt − Ci
(2.5)

We evaluate performance using the area under DET curves which measure MD rate

against FA rate. Since both missed detections and false alarms are measures of error, the

lower the Area Under the Curve (AUC), the better the performance of the system.

Baseline System Description

In this section, we will describe 2 baseline systems that are used for audio retrieval following

techniques currently used for audio content analysis. The audio retrieval pipeline, however,

is required to perform a number of additional tasks along with the content analysis in order

to create an audio retrieval system. Figure 2.4 shows a schematic that briefly outlines the

various steps involved in the full audio retrieval pipeline. We briefly discuss the various

steps here, including the different paradigms used for content analysis.

Pre-processing: This stage typically involves the conversion of the raw audio to a

standard representation. The Mel-Frequency Cepstral Coefficients (MFCC) are one such

representation of audio data, which we use in this thesis. The Mel-Frequency Cepstrum

is a representation of the short-term power spectrum of a sound, based on a linear cosine

transform of a log power spectrum on a non-linear mel scale of frequency. Its coefficients are

derived from a cepstral representation of the audio, and may be thought of as a nonlinear

spectrum of a spectrum. The frequency bands used to obtain the coefficients are equally

spaced on the mel scale, and this spacing is expected to approximate the human audi-

tory system’s response. Typically, speech recognition techniques use the first 13 MFCC,

whereas audio processing tasks have used between 13 and 30 MFCC coefficients. For all the

experiments reported in this paper, we use 13-dimensional MFCC, extracted from audio

sampled at 16 KHz. All the audio in our dataset were downsampled to 16KHz, if they

were originally sampled at a higher frequency.

Content Analysis Techniques: Once the audio corpus has been converted into a

standard representation, we can proceed with an analysis of the audio content. In the

first section of this chapter, we discussed various approaches to content analysis, but they

included 2 main paradigms– supervised, audio dictionary-based approaches, and unsuper-
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Figure 2.4: A schematic diagram of the various stages in an audio retrieval system, for a
specific query event.

vised, dictionary learning-based approaches. We use an implementation of both of these

as our baselines.

For the supervised, audio dictionary-based approach, we experimented with 2 baseline

models, one using a speech corpora to train speech phonemes, and the other using a corpus

of various natural sounds to train models for each of those. The speech-based dictionary

was expected to account for the presence of human speech in the event recordings. The

audio dictionary with examples of natural sounds was used since it seemed intuitive that

using semantically meaningful units would be a reasonable way of approaching the task of

detecting semantically defined audio event classes.

The speech units were trained using the HUB4 corpus [Pallett et al., 1996], consisting of

business broadcast news audio, was used to train 40 phoneme models (as well as 5 fillers),

using 40 filters between 50Hz to 6800Hz. Each phoneme was modeled by a 3-state Hidden

Markov Models (HMMs), with the emissions being governed by mixtures of 16 gaussians.

These units were then used in a manner analogous to their usage in a speech recognizer

where the entire audio file was decoded as a sequence of these phonemes.

For the dictionary of natural sounds, we use the Art of Foley Sound Effects Library [Fol,
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2005], which consists of 480 individual audio events. We trained Hidden Markov Models

(HMMs) for each of these events with 5 states Bakis topology and emissions governed by

a mixture of 8 gaussians. MFCC features, used to represent the audio, were generated

with 32 filters between 100Hz and 5200Hz. As before, these models can be thought of as

analogous to phonemes for speech, and we use them to decode the audio recordings as a

sequence of the individual audio events.

Similarly, we set up the content analysis paradigm in the unsupervised case. Current

state-of-the-art results on the MED tasks had been obtained using unsupervised learning

of a lexicon using the Vector Quantization (VQ, henceforth) technique. In this technique,

each frame (or a fixed window of frames) is treated as an individual instance of sound

produced by one of K sources. A K-means clustering is then carried out on the corpus of

frames to identify a set of K clusters and each frame is assigned to the cluster it is most

likely to have been generated by. For a new recording, the set of clusters can again be used

to predict (for each frame in the recording) which unit was most likely to have produced

the frame. Thus, any recording can be represented by the sequence of cluster units, each

corresponding to one frame in the recording.

In each of these cases (both supervised and unsupervised), therefore, for each audio

recording, we obtain a discrete sequence of dictionary elements. This sequence is the

output of the content analysis stage for the supervised setups.

Feature Representation: The process of designing a feature set is often critical to

the task in question. Different feature sets using the same learning framework often yield

different results because one set of features may be more suited to the task, or might

capture more discriminative information than another. Temporal behavior of features has

been shown to be important for audio and music classification, and the use of models of

auditory perception in feature sets have proven to be better than MFCC based feature sets

for the same tasks [McKinney and Breebaart, 2003]. Different feature sets have been shown

to affect performance in other applications as well, such as web document classification [Qi

and Davison, 2009].

Our focus in this thesis is on the content analysis techniques, hence we only perform a

limited amount of experiments on the feature set design to choose a standard feature set

representation that will then be consistently used to compare the various content analysis

techniques. In the audio retrieval domain, the most commonly used technique is the bag-

of-words representation where given a discrete sequence of symbols for a recording (in this

case, the output of the content analysis stage) with K unique symbols, a K-dimensional

feature vector is created where there is one feature for each symbol, and the feature value
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is the relative frequency of the that symbol in the recording.

As an example, if the discrete representation from the content analysis stage of a

recording is: a1 a2 a1 a1 a2 a3 a5, where the vocabulary has K=5 (with a1 a2 a3 a4 a5),

then a feature representation for that recording would be: < 3/7, 2/7, 1/7, 0, 1/7 >

For the supervised, dictionary-based techniques, K = 45 for the speech phoneme dic-

tionary, and K = 480 for the Foley sound effects library. For the unsupervised, VQ-based

techniques, the size of the dictionary K is a hyperparameter that needs to be optimized.

We will consistently use this feature representation for comparison to the baseline with

the results of the novel, hierarchical content analysis algorithms proposed, as well. Note

that in Chapter 3, we will show results of some experiments with alternate feature repre-

sentation that show the bag-of-words approach as superior, as well.

All the various stages in the pipeline thus far– pre-processing, content analysis and

conversion to feature vector for each recording– could be done without considering the

distinctions between train and test data. For the final stage of the pipeline, however, we

need to separate the train and test sets, since the classifier for each query event must be

built on the training set alone.

The Classification Framework: As described earlier, the audio retrieval task has

been cast as a discriminative one-against-all classification task, for each query event type.

The bag of words representation serves as the feature representation for each audio file.

Given this training data with event labels for the audio files in the training corpus, we use

a discriminative classifier that can decide whether a test file belongs to a specific event

type or not.

Again, various discriminative classifiers have been developed in the literature, and could

be used for this task. As mentioned earlier, this thesis focuses on techniques for analyzing

the audio content, and different techniques need to be compared with the rest of the

pipeline held fixed. For the experiments reported in this thesis, we use the Random Forest

classifier [Breiman, 2001].

Random forests are an extension of decision tree classification techniques, where the

training process grows many trees instead of a single one. Given a new test file, each of

the trees in the forest returns a class label, which is used in a weighted vote to determine

the final predicted label.

We chose random forest classifiers as they are resistant to overfitting. Training random

forests is done by sampling with replacement from the training data, with about one-third

of the training data typically held out. This held out data is used to get an estimate of

the error as trees are added to the forest. The trees in the forest are grown as far as
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System Average AUC in BBC Average AUC in MED11
PHONE 0.3011 0.2614
FOLEY 0.2872 0.2921
VQ 0.2143 0.2339

Table 2.3: Performances of the various baseline systems for audio retrieval

possible, and pruning is not used. For details of the training process, the reader is referred

to Breiman [2001].

Once the classifier has been trained, it can then be applied to each file in the test corpus

to decide whether or not that file corresponds to a positive instance of the query class. In

our experiments, since we plot an area under the curve, the classifier returns a probability

of its estimate that the test file belongs to the class. We then use a threshold to decide

whether to label the file as a positive. While this threshold can be tuned to find an optimal

operating point depending on the goals of a user of the system, we iteratively modify the

threshold, thus trading off missed detections and false alarms, to obtain a curve, which we

use to compare the various systems.

Experimental Results

In this section, we will establish baseline performances for the various standard techniques

used in the literature for content analysis of audio on the datasets of interest. Recall that

the metric used for evaluation of performance will be the Area Under the Curve (AUC) of

Missed Detection rate (MD) v/s False Alarm rate, which is a measure of error. Thus, a

lower AUC value signifies better performance.

We will discuss the results on the various classes in the datasets in greater detail in

subsequent chapters. Here, we simply present a table with results on each dataset macro-

averaged over the classes in the dataset. This table will be augmented in each of the next 3

chapters with results of using the proposed content analysis techniques on the data. Table

2.3 shows the average performance on the 2 datasets for the 3 baseline techniques described

earlier.

We refer to the system using the speech data for phoneme modeling as PHONE and the

one using the Foley Sound Library as FOLEY, henceforth. The system using the Vector

Quantization technique is referred to as VQ.

We note that the unsupervised VQ technique significantly outperforms the supervised

library-based techniques in both cases. This is not surprising and corroborates the notion

that supervised, library-based techniques are unlikely to perform well on semantic tasks,
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unless the set of sounds in the library were carefully chosen to be helpful for the specific

task, as well as the audio instances in the library suitable in their characteristics to the

type of audio likely to be found in the corpus of interest.

We note that, of the supervised systems, the PHONE system performs better on the

MED11 dataset whereas the FOLEY system performs better on the BBC dataset. One

possible reason for this may be that the MED11 categories contain significantly more

human involvement in the data, since these are user-generated content, and therefore, the

proportion of human speech, or speech-like sounds are higher in MED11. As a result,

the PHONE models are able to do a better job of capturing the acoustic phenomena

underlying in that dataset than in the BBC dataset where the proportion of human presence

is significantly lower.

Another reason might be that both the FOLEY data and the BBC data are recorded

in studio conditions with an emphasis on non-speech sounds that enable them to be a

better match in terms of acoustic characteristics as well as coverage of concepts. Since

the MED11 data contains a larger representation of the potentially infinite sound concepts

owing to its user-generated characteristics, the coverage of these concepts provided by the

FOLEY library may be far more limited.

In the next few chapters, we will compare the performance of these methods with the

methods proposed in this thesis, as well as attempt to understand their relative strengths

and weaknesses.
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Chapter 3

Acoustic Unit Descriptors

In this chapter, we will discuss our approach to learning the low-level acoustic units of the

hierarchical framework presented in Figure 1.1 in Chapter 1. These low-level acoustic units

(indexed by a in the figure) are the hidden layer in the hierarchical structure that is the

closest to the audio, and higher layers are built on top of this layer. When looking at the

lowest layer only, we see that it consists of a sequence of atomic sound units, which we call

acoustic unit descriptors (AUDs), which in turn, produce the observed audio. As discussed

earlier, we expect that the layers of the hierarchy allow us to make increasingly higher level

semantic inferences about the audio, as we go higher in it. Recall our example of a movie

content analysis task, where in a particular scene, one might hear a loud crack followed by

vocalized, high pitched sounds, some human speech, a repetitive electronic wailing sound,

interspersed with more rapid crack sounds, and loud, mechanical humming.

The crack sound could be produced by different sources (e.g. a gunshot, or a car

backfiring), but given the context of siren-like sounds and people screaming, one is more

likely to infer that the sound was a gunshot. Similarly, the sound of a siren alone does not

indicate to a listener that the scene was an action scene. Sirens may be heard in a regular

scene shot in traffic, or even from ambulances responding to non-action emergencies (e.g.

medical emergencies). However, in conjunction with the gunfire around it, it seems likely

that the scene was an action scene.

In our framework, the lowest-level acoustic units are expected to capture more of the

acoustic characteristics than the semantic characteristics, which are captured in the higher

layers. Thus, in an ideal scenario, we would like to learn low-level sound units that can

capture the crack sound, a unit that when repeated captures screaming, or the repetitions of

the siren, etc. As illustrated by the example, while the semantic import of the individual

units may not be clear, the semantics are expected to be found in the distribution or
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sequences of these units, which are captured by the higher layers.

We note, however, that while clearly interpretable semantics are not present at this

level, they do carry some degree of semantic information. For instance, even though the

semantic space from which sounds may be produced is enormous, hearing a particular

sound (even in the absence of clear associated semantics) constrains use to a subspace of

the full semantic space. Thus, hearing a sharp crack may not tell us the exact semantic

source, but we know that some sources (e.g. musical performances, birthday parties) are

less likely to produce such a sound, while others (e.g. gunfire scene, baseball game) are

more likely, and in this manner, the low-level units are not entirely devoid of semantics.

The primary hypothesis behind this dissertation is that sound has its own language

and structure. In this language for sounds, the AUDs can be considered analogous to

the alphabet. The middle layer in the hierarchical structure is referred to as the event

layer. Here, the term event refers to semantic sub-file level events (distinct from the event

categories in the various datasets) that are expected to span segments of the audio, and

therefore, sequences of AUDs. We note that such a definition may be specific to certain

applications, and that we may require an additional sub-event layer, where sub-events span

AUDs, and events span sub-events, or perhaps one where events can recursively span other

events. The root or highest layer in this hierarchical structure contains information about

the semantic class or topic that generated the sequence of events.

Such a hierarchical structure may have layers whose analysis is treated individually

when inferring the structure, and we will present an approach for the same in Chapters 4.

Alternately, the full set of higher layers may be learnt jointly as well, and we will present

a framework for doing so in Chapter 5. Each of those analysis techniques assumes that

the raw, observed audio has been first analyzed to obtain the AUDs layer, resulting in a

sequence of AUDs, and builds on top of the AUDs layer. In this chapter, we will present

our approach to modeling the AUDs layer, show how any new audio may be analyzed after

models for the AUDs have been learnt, and validate our hypothesis that AUDs capture

underlying semantic information by using AUDs for various semantic audio processing

tasks.

This chapter is organized as follows. In Section 3.1, we discuss AUDs in greater detail,

including the intuition behind the formulation and an unsupervised learning paradigm. In

Section 3.2, we present approaches to using these AUDs (that were learnt in a task-agnostic

manner) for various tasks, and our experimental results demonstrate the efficacy of this

approach on real-world data. We conclude the chapter with a discussion in Section 3.3.
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3.1 Acoustic Unit Descriptors

In the hierarchical structure introduced in Figure 1.1, the latent layer containing the acous-

tic unit descriptors is closest to the observed sounds. Our hypothesis in attempting to

formulate a language for sound is that sound can be modeled with a small number of lower

level units (AUDs, in our case). Individual AUDs do not necessarily capture semantic

information, but sequences or patterns of AUDs should capture semantic information. Ev-

ery instant of an audio file is part of one such unit, and the entire audio stream can be

transcribed in terms of these units. If every AUD were to have distinct semantic identity,

the number of AUDs required to represent all audio would be very large. Instead, we hy-

pothesize that if we used just a small number of AUDs, the patterns in the transcriptions

of audio recordings in terms of these AUDs will still be characteristic of the larger events

in the audio.

Our assumption of a finite set of low-level sound units is motivated by the benefit of

computational tractability as well as 2 other observations. First, even though the full set

of sounds might be infinite, only a limited (although, possibly large) number will occur

in any given dataset. Second, the assumption of a smaller than true number of units will

force multiple different concepts to cluster with the most similar acoustic concepts. As a

result, we expect multiple semantically different but acoustically similar concepts to map

to individual units. Thus, these unit clusters will not be true, diverse atomic units, instead

modeling acoustic saliency shared by multiple concepts.

The transcription of audio in terms of AUDs also results in a mapping from the acoustic

(or acoustically derived) feature space to a discrete symbol space. This has the auxiliary

benefit of allowing us to use the knowledge gleaned from a vast amount of research in

dealing with discrete symbol sequences in text processing and information retrieval, in

terms of developing techniques to use such symbol sequences for modeling higher level

units, using these to characterize files for retrieval, etc.

We can think of AUDs as as an analog in the general sound domain to phones for

speech. However, because audio (in general) is so diverse and variable, we cannot expect

to be able to interpret individual AUDs. Further, due to the assumption of finiteness

of the AUDs vocabulary, the individual units are not necessarily clean representations of

individual audio concepts. In a sense, therefore, the AUDs are a synthetic concept, and

hence, it is not possible to have supervised transcripts of recordings in terms of AUDs. As

a result, the training process for AUDs is fundamentally unsupervised.

Let us illustrate the intuition behind our formulation of the AUDs learning with an

example– consider sounds from a baseball recording. Fig. 3.1 shows three video frames from
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such a recording. The bat makes contact with the ball, producing a sharp metallic sound.

This is followed by footsteps running, and finally, cheering as teammates congratulate

the player. A listener familiar with baseball would be able to infer from the sequence of

sounds that they may be from a baseball game, and that a hit or a run may have occurred.

Although the precise sounds produced and their sequences may vary in nature, the overall

pattern of sounds is still characteristic of the event.

Figure 3.1: Example of a sequence from a baseball video.

The sound of the ball being hit, footsteps, cheering, etc. are all atomic sound events

that characterize the larger event of the run being batted in. Moreover, besides these key

events, there are other individual nondescript atomic events such as rustling, silence, etc.

which occur in the recording. In fact, every instant of the audio may be considered to be a

part of one such atomic event. In our process of training the AUDs layer from a corpus of

such recordings, we would like the learnt AUDs to consistently capture these atomic sound

concepts from the audio.

The overall pattern of occurrence of these atomic events characterizes the larger event,

and our work tries to mine AUD sequences to be able to both identify the larger event as

well as attempt to find structured sub-events that lead to the conclusion, if any, as shown

in Fig 1.1.

[ We briefly digress here to point out an instance where one layer for events (instead of an

event and a sub-event layer) could be expected to be enough. In audio of a baseball game,

the sub-events that constitute events (e.g. plays) are short-duration events– bat hitting

a ball, throwing or catching a ball– and most of these could be expected to be captured

within individual AUDs. In case of events that are more complex and of significantly longer
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duration, such as a car chase in a movie, it may be necessary to have a sub-event layer to

model the events better. ]

The process of learning of the parameters for the AUDs is described in Section 3.1.1.

We propose a maximum-likelihood solution that jointly estimates the parameters of the

HMMs for the AUDs and the (potentially, category-specific) language models of audio

from a training corpus.The solution is analogous to various approaches in the literature for

automatic learning of sub-word units in speech [Bacchiani, 1999, Singh et al., 2002].

3.1.1 Learning AUD Parameters

Our task in modeling the AUDs layer is to represent the data with a sequence of AUDs

that are likely to have generated the data. The concept of AUDs is similar in principle to

that of acoustic segment models (ASM, henceforth) [Lee et al., 1988] and Self-Organizing

Units [Siu et al., 2011]. While these were derived for speech, AUDs make no assumptions

about the nature of sound in general. The ASM also used an acoustically derived lexicon

for word models based on subword segment models, while there is no equivalent available

for AUDs which are learnt completely unsupervised. Further, AUDs do not spot specific

events in the audio stream – the entire audio stream can be transcribed in terms of these

units, i.e. every segment of audio is part of some AUD.

The problems we must address now at training time are twofold: A) Learning of

AUDs: Given a set of training audio recordings, we must learn the set of AUDs, B)

Learning of AUD distributions: We need to learn statistical characterizations of the

patterns of AUD sequences for audio from different categories. The learning process is

inherently unsupervised, since the AUDs are a synthetic concept, and one cannot obtain

ground truth transcriptions of audio in terms of AUDs.

Each individual acoustic unit can be modeled using any structured model– one instance

would be using a Hidden Markov Model (HMM) formalism, as described in Chaudhuri et al.

[2011]. We represent the audio signal as a sequence of mel-frequency cepstral vectors, as

is the practice in speech and audio processing and model each AUD with a left-to-right

Bakis-topology HMM with Gaussian-mixture state-output densities. Since we are primarily

interested in characterizing the AUDs, rather than interpreting their semantics, learning

the AUDs is equivalent to learning the parameters of the HMMs for the AUDs. We model

the distribution of the AUD sequences as language models over the vocabulary of AUDs.

In our initial treatment of the learning process, in order to avoid loss of generality, the

formulation we present can use any N -gram language model. Further, one can choose to

adopt class-specific language models for certain tasks, where class labels for the recordings
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Figure 3.2: Graphical model for the generation of a recording data point D. Circles repre-
sent random variables and rectangles represent parameters. Note that D is observed, while
the transcript T is not.

in the training data are provided as supervision. As we shall see later, using only one class-

independent unigram language model works as well as class-specific, higher order language

models. Besides, for large datasets, it provides significant improvement in the time required

for decoding, due to avoiding having to decode with each of the class-specific language

models. Nonetheless, we will first discuss the case where class-specific language models are

trained, since the case where there is only one class-independent model is a special case

of this. Since the AUDs have been conceptualized as a task-agnostic vocabulary of audio

concepts, the set of AUDs is shared by all classes in the dataset.

We cast the learning problem as one of maximum likelihood estimation. We are given

a collection of audio recordings D. Assigned to each recording Di in D is a class label

Ci ∈ C, where C represents the set of all classes. Although not necessary, we will assume

that each recording is entirely assigned to only one class. Each audio recording Di has

an unknown transcription Ti as a sequence of AUDs. The AUDs are modelled by HMMs,

whose parameters we collectively represent as Λ. The transcriptions of all recordings

belonging to a class C are assumed drawn from an N -gram language model H(C). The

HMM parameters Λ and the set of language models for all classes H = {H(C) ∀C} are

unknown and must be estimated from the data. We assume that the total number of AUDs

K is known. In reality, K is a hyperparameter that may be optimized.

We assume the dependencies shown by the graphical model in Fig 3.2: the acoustic

realization of any recording depends on its transcription and not directly on the language

model for the class. So also, the transcriptions only govern the acoustic realization and do

not directly relate to HMM parameters.

The maximum likelihood estimate for Λ and H is given by:

Λ∗,H∗ = argmaxΛ,HP (D|C(D); Λ,H) (3.1)

Here C(D) represents the classes assigned to each D in D. In the notation above terms to
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Algorithm 1 Iterative algorithm for learning AUDs and LMs

T r+1
i = argmaxTP (T |Di;H(Ci)

r; Λr) (3.3)

λr+1 = argmaxλ
∏
Di

P (Di|T r+1
i ; Λ) (3.4)

H(C)r+1 = argmaxH
∏

Di:Ci=C

P (T r+1
i ;H) (3.5)

the right of the semicolon are parameters, while remaining terms are random variables.

In principle, the above estimator must consider all possible transcriptions for any D.

Instead we will approximate it by only considering the most likely transcription for any

D. Also, assuming that individual recordings D are independent, and that the class is

represented primarily through the language model for the class, the estimator changes to:

argmaxΛ,H

∏
C

∏
Di:Ci=C

max
T

P (Di, T ; Λ, H(C)) (3.2)

We obtain the above estimate using the iterative algorithm in Algorithm 1. In the

algorithm, superscripts appearing against the parameters indicate the iteration in which

the estimate for the parameter was obtained.

It is simple to show that Algorithm 1 is a hill-climbing procedure that results in ever

increasing likelihood for the data: Equation 3.3 ensures that

P (Di, T
r+1; Λr, H(C)r) ≥ P (Di, T

r; Λr, H(C)r) (3.6)

and Equations 3.4 and 3.5 ensure that

P (Di, T
r+1; Λr+1, H(C)r+1) ≥ P (Di, T

r+1; Λr, H(C)r) (3.7)

Equation 3.3 simply represents the automatic recognition of Di using HMMs with

parameters Λr and can be performed with the Viterbi decoder of a speech recognizer.

Equation 3.4 is the learning procedure for HMM parameters Λ, given the recordings Di

and their transcriptions T r+1
i , and can be performed using the Baum-Welch training module

of any recognizer. Equation 3.5 represents the procedure for learning an N -gram language

model H(C) from the set of all transcriptions T r+1
i of all recordings belonging to class C.

Algorithm 1, however, requires an initial transcription for all recordings. We obtain this

by segmenting all recordings by merging adjacent analysis frames, and finally clustering the
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Figure 3.3: The process of initialization of the AUDs setup for training displayed in 3 steps.
(Top) Segmentation of the audio based on agglomerative clustering of consecutive frames.
(Middle) Clustering of the segments. (Bottom) Setting AUD ids to the segments to create
AUD transcript

obtained segments into K clusters. The sequence of cluster identities corresponding to the

segments composing any recording form the initial transcription for that recording. The

steps used to obtain this initial segmentation in terms of AUDs beginning with features

from the raw audio are shown in Figure 3.3.

In the first step, when the raw audio is segmented, this is done by converting the raw

audio to MFCC frames, and the comparing the distance between consecutive frames using

Euclidean distance. If the distance is above a threshold, then the two frames are merged

to belong to the same segment, else a new segment is started at that boundary. Segments

are constrained to be no fewer than 3 frames long at the time of initialization.

The mapping between the AUDs and the observed acoustic data is stochastic. Given

models for these AUDs, we can decode new audio in terms of the AUDs in a manner similar

42



Figure 3.4: Instances of log-spectra for 2 AUDs, with all occurrences across files concate-
nated. (Top) Predominantly music; (Bottom) Predominantly speech. The y-axis corre-
spond to frequency bins

to the one used in a speech recognition system to decode continuous speech in terms

of phonemes, followed by selecting the highest scoring AUDs path through the lattice

of AUDs. We recognize that such decodes are likely to be noisy, since the presence of

channel artifacts and background noise can affect the local estimation resulting in a different

concept taking precedence over the concept that should have been estimated by a perfect

system. As we shall see in Chapter 4, our modeling of higher layers attempts to recover

from some of the errors introduced at this stage.

The iterations of Algorithm 1 lead to progressively improved joint AUD and language

models, as shown by the increasing likelihood of the data through the iterations. We present

two examples of log-spectra of all frames spanned by an AUD in the dataset extracted and

concatenated together in Figure 3.4. In both cases, one can see structural consistency,

showing that the AUDs find acoustically similar segments as desired. While the AUDs are

not required to have clear semantic interpretations, listening to the concatenated instances
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Figure 3.5: A plot of occurrence counts sorted
AUDs from our initialization, which appears
to follow a power law. (No. of occurrences of
AUDs v/s AUD-id)

Figure 3.6: A plot of the occurrence count
sorted AUDs at different points in the learn-
ing process for AUDs. (No. of occurrences of
AUDs v/s AUD-id)

(converted to audio from the log-spectra) shows that the AUD on the left primarily spans

music segments while the right consists primarily of speech– speech formant structures are

visible in the image.

In addition to this, however, following the training process of the AUDs on the MED11

data resulted in some interesting observations.

First, we look at the distribution of AUD counts as we proceed with the learning.

Our initialization of the AUDs used similarity between consecutive frames in the audio

to decide whether or not they belonged to the same segment, and then clustered these

segments together. Each of these clusters is a distinct AUD, and all segments belonging to

a cluster were transcribed with this cluster identity. We first investigated the distribution

of these segments and how they change with learning iterations.

Figure 3.5 shows the histogram where the Y-axis is the occurrence counts of the AUDs.

The AUDs are sorted using occurrence counts along the X-axis. As the plot shows, the

occurrence counts of the AUDs appear to follow a power law [Zipf, 1932]. Various naturally

occurring phenomenon have been shown to follow such power laws [Gabaix, 1999, Li, 1992],

but it does indicate that our initialization does produce something that should be expected.

Figure 3.6 shows the sorted occurrence counts of the AUDs at intervals in the learning

process, where the blue line is the same as the one in Figure 3.5, immediately after initial-

ization. Notice that the distribution of AUDs continues to follow a power law throughout,

even though no explicit measures were taken to ensure this.

We also noticed that besides the fact that the sorted AUD counts appears to follow

a power law at various stages of training, we find that the counts of the AUDs have

approximately tripled at the end of the training process. We plot the counts after 10 and

44



Figure 3.7: Changes in the unigram distribution of AUDs over time

Figure 3.8: Changes in the bigram distribution of AUDs

20 iterations in the figure. We note that this change is linked to the durations spanned

by the AUDs. When they were initialized on the MED11 dataset, each AUD on average

captured 0.84 seconds of audio. At the end of the training process, the average length of

audio spanned by the AUDs was 0.29 seconds.

Anecdotally, we note two other points about the distribution of the AUDs in the learn-

ing process, although their implications are not clear to us at this point. First, the unigram

distribution of the AUDs changes significantly over time, as shown in Figure 3.7. Second,

the bigram distribution of the AUDs shown in Figure 3.8 also changes significantly over

time, although most of the probability mass appears to concentrate along the main diag-

onal, which implies that states are most likely to transition to themselves. The transition

matrix also appears to get more sparse over time, implying that AUDs are most likely

to occur in a small number of contexts. This should imply that bigram or higher order

n-gram characterizations should provide stronger information than unigram about the se-

mantic content. However, as we shall see from experiments in subsequent sections, this

does not appear to be the case.
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In Section 3.2, we will describe our approach to applying the AUDs layer to various

tasks. The experimental results we describe also show that our models of the AUDs do,

in fact, capture some underlying semantics and can be utilized in semantic audio tasks,

by themselves to produce state-of-the-art results even in the absence of the hierarchical

structure. Recall, as discussed earlier, that current techniques in content analysis research

do not use hierarchical analysis techniques using the kind of deep analysis that we proposed,

and thus the AUDs layer is the one that is most directly comparable to currently used

techniques, in terms of depth of analysis.

Further during the course of our experiments, we used both a class-specific language

model setting as well as a class-independent language model setting, as well as different

degree language models, and we shall discuss insights and lessons learned from those, as

well.

3.2 Applications of AUDs to Audio Processing Tasks

As noted in earlier sections, the ideal evaluation of the hierarchy, or even any single layer

learnt, would be by comparing it to a ground truth baseline, such that the process of

discovery of the hierarchy or the units themselves could be appropriately evaluated. Un-

fortunately, since audio datasets do not have nearly the kinds of annotation that would be

required to evaluate the units of individual layers, we are compelled to evaluate the degree

of semantic information captured by the units and layers on semantic audio tasks.

In this section, we describe our experiments with using the vocabulary of AUDs to

perform 3 audio processing tasks. We describe our experiments and results on the task of

audio retrieval in Section 3.2.1, on the task of audio classification in Section 3.2.2, and in

an event detection-like setting in Section 3.2.3.

3.2.1 Audio Retrieval

We described the audio retrieval task and the datasets that we report results on in detail

in Chapter 2, Sections 2.4.1 and 2.4.2, respectively. To briefly summarize the task, we

attempt to detect all recordings of a specific semantic event type in a large collection of

user-generated Youtube-style recordings– thus, for each event type, we have a binary one-

against-all setting. We use 2 datasets for this task– the 15 category Multimedia Event

Detection task, 2011 (MED11) dataset and the 10 category BBC Sound Effects Library

(BBC).
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Since the events in the task are semantically defined, one might expect that such a

task might be addressed by looking for semantically meaningful acoustic phenomena that

correlate well with the events in the audio. While we take a different approach, we com-

pare performance with semantically motivated baseline techniques that were described in

Chapter 2 in Section 2.4.2 and their results were summarized in 2.4.2.

We attempt to perform retrieval using the AUDs which have no clear semantic inter-

pretation. The process of using AUD sequences to describe the audio is done according to

Equation 3.3, given the models for the AUDs and their distributions. In order to compare

the AUDs against the baseline systems, we use the pipeline described in 2.4.2 where the

content analysis module is replaced by the AUDs framework, and it outputs a sequence of

AUDs for each recording in the corpus. Similar to the approach mentioned there, we use

a unigram bag of words to characterize the recordings in terms of AUDs. Later, in this

section, we will show results using bag of words characterization but with bigrams and

trigrams. We note here that the unigram characterization typically performs at least as

well as the higher orders, if not better, while providing benefits in terms of model size and

avoiding issues due to dataset size.

Given training data with event labels for audio files, we use a discriminative classifier

that uses features extracted over the AUD transcriptions for the audio files to decide

whether a test file belongs to a specific event type or not. As discussed in 2.4.2, the classifier

we use is a random forest classifier. Our experiments show that the AUDs perform very

well at the task of detecting the events. In fact, retrieval based on AUDs is superior to that

obtained using semantically meaningful units– PHONE and FOLEY. In this section, we

first describe the AUD-based feature sets we use, in addition to the bag of words. We then

describe the classifier used for this task, and finally, we discuss our experimental results.

Features for Audio Retrieval

For this retrieval task, we experiment with various feature sets derived from AUD sequences

in the data. AUDs can be used to transcribe audio as a sequence of discrete symbols. We

expect that different classes of audio data will contain different distributions of the various

acoustic phenomena, resulting in different distributions of AUDs in their recordings. We

extract the frequency of occurrence of each AUD in the transcription for an audio file. The

{AUD, AUDfrequency} pairs thus obtained are used to construct a feature vector for each

data point.

In order to analyze the AUD-based features, we also define two other feature classes–

a binary feature vector that indicates occurrence of each AUD based on the transcription,
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System Average AUC in BBC Average AUC in MED11
PHONE 0.3011 0.2614
FOLEY 0.2872 0.2921
VQ 0.2143 0.2339
AUDs–binary 0.2065 0.2590
AUDs–count 0.1744 0.2273
AUDs–framecount 0.1806 0.2189

Table 3.1: Performances of the AUDs compared to the baseline systems for audio retrieval

and a feature vector where the feature value for an AUD is the total number of frames

spanned by all instances of the AUD in the transcript for the audio.

We model each AUD modeled as a 5-state HMM, with a mixture of 8 gaussians used to

control the emissions and a unigram model over the AUDs to control inter-AUD transitions.

Experimental Results

The task we use to evaluate performance is one of detecting all recordings of a specific event

type from the MED11 dataset. The training and test data consist of positive instances from

the set of 15 classes, and a number of files that do not belong to any of those classes. For

each class i, where i ∈ 1, 2..., 15 , the positive instances for that class are taken along with

all the other files (which are negative instances for that class), and a detector is trained

for that class. The evaluation of retrieval performance is done using the Area Under the

Missed Detection vs False Alarm Rate curves, as explained in Section 2.4.2. Note that

since this is an error curve, lower is better.

We described the various feature sets earlier– binary indicators for AUD presence

(AUDs binary, henceforth), AUD count vectors (AUDs count, henceforth), AUD frame

vector counts (AUDs framecount, henceforth), phoneme count vectors (Phone, henceforth),

audio library sound-type count vectors (Foley, henceforth) and Vector Quantization (VQ,

henceforth).

Table 3.1 updates the table with baseline performances averaged across all categories

of the 2 datasets, with the performance of the various AUD feature sets.

[Note that the number of AUDs used for the results reported in this table are 64, since

we wanted to use the same setting for both datasets in this table at this time, to avoid

confusion. In subsequent chapters, when the table is augmented with results from higher

levels of the hierarchy, we will replace the AUDs–count result on MED11 with the best

result obtained with each dataset, with 64 AUDs for BBC, and 1024 AUDs for MED11.]

While the average numbers hide some of the details of performance in the specific cat-
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egories, a closer look at the category-wise numbers shows that the AUDs–count setting

performs better across the board when compared to any of the 3 baselines or the AUDs–

binary setting. An evaluation on MED11 shows that the biggest difference in performances

of the AUDs compared to the strongest baseline VQ comes in the feeding an animal cate-

gory. Both classifiers perform worse on this class than their average, however. The least

improvement in performance, on the other hand comes from the woodworking project class

where both systems perform above their average, with the rest being in between and fishing

being the class where the AUDs–count achieves median improvement over the VQ baseline.

The respective categories in the BBC dataset were warfare (least improvement), exterior

atmospheres (most improvement) and animals (median improvement).

From a general comparison of category-wise results for the various AUD settings, we

observe the following:

1. The AUDs–binary setting performs reasonably well on this task, and is comparable

overall to the Foley, which was trained using a library. Let us discuss the intuition

behind the binary setting here. The question being asked by this setting is as follows–

if one were to assume that the AUDs learnt the kind of information they were expected

to learn, what information does their mere presence convey? Consider an example

where a crack sound, which is hypothetically confusable between a gunshot sound

and a hammer sound only. In spite of not knowing which specific source produce

it, with the knowledge that humans have, they can look at the list of categories,

and make a good estimate of which categories might contain sounds from either of

those sources. The more likely ones include warfare, woodworking project, repairing

an appliance, while less likely categories include fishing, making a sandwich, animals,

etc. Similarly, applause units are likely to occur in audiences, bike trick, etc and not

in working on a sewing project. Thus, the mere presence of certain sounds can help

us narrow the space of possible candidates, thereby providing significant information

that can be used in making a decision on whether a recording belongs to a given event

type. The good performance of the binary setting in comparison with the baselines

shows that they might be capturing the kind of information we expect.

2. Thus, if the presence information alone gives us insight into the category, then knowl-

edge of how often the various sounds occur should give us even more information.

For instance, a file in which automobile sounds occur often is more likely to belong

to the category transport than one where it occurs once, which may have been due to

the random presence of a car in the background even though it was not the subject

of the recording. This intuition appears correct, since the best performance overall is
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obtained in the AUDs–count setting significantly improving over the AUDs–binary

setting, as well as both Phone and Foley-based classifiers across all categories. The

improvement in performance in the AUDs–count setting over the baselines shows

strong statistical significance (p < 0.01).

3. We note that the AUDs–framecount setting performs very similarly to the AUDs–

count setting, not just as an overall average, but also in the individual categories.

It outperforms the AUDs–count in the MED11 dataset, but the difference is not

statistically significant (p-value of 0.13). Fig 3.9 shows the performance in terms of

Area Under Curve (AUC) when using the different feature sets for the first 5 classes

of data in MED11 (note that lower AUC is better), and we can see that the 2 settings

are almost the same. The AUDs–framecount setting counts the number of frames in

a file that each AUD spans. Intuitively, then, the information contained in it is more

useful if the duration of time spanned by each AUD in a recording is meaningfully

important. This does not, however, appear to be the case, which tells us that the

information contained by the number of frames spanned by the AUDs is no more than

the information contained by its frequency of occurrence. This might be construed

as an implication that the AUDs are successful at isolating atomic units. Consider

the case where there is extended applause– the entire segment could be marked as

the corresponding unit, or individual clap or cheer elements could be identified as an

AUD. In the first case, we would expect the frequency counts to perform worse than

the framecount, since it wouldn’t be able to distinguish between a short, randomly

introduced applause sound from a longer applause segment that was part of the topic

in focus, such as applause from an audience.

Figures 3.10, 3.11, 3.12 show the DET plots for the first 5 classes in the MED11

dataset for the various settings of the AUDs. The red circle in the figures represent the

NIST benchmark operating point of 75% missed detection at 6% false alarm rate.

We note from the results above that a coarse representation using data-driven AUDs

with no guaranteed associated semantics outperform semantic units significantly. A limited

set of semantically-defined acoustic units such as those in the Foley set or the phoneme

list cannot adequately describe all events that occur in even a small collection of audio

recordings. In order to cover even a moderate fraction of all possible phenomena that can

occur, one would require an impossibly large vocabulary of semantic units. Even if such

a set of units were available, confusions in detecting them automatically in a recording

could render them ineffective. Our hypothesis is that this is where data-driven units that

can learn a vocabulary to fit the data without making significant prior assumptions can
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Figure 3.9: AUC for the various feature sets (lower is better)

provide a distinct advantage, and this is borne out by our experiments.

Nevertheless, the AUDs obtained through data-driven discovery are not entirely lacking

in semantic association. As we see from the AUDs–binary setting in the results in Fig 3.9,

merely detecting the presence of AUDs in a recording is sufficient to identify the event type

with a probability that is significantly better than random. This may be interpreted as

an indication that the AUDs do carry characteristic information that can distinguish one

event type from another, which may in turn imply that they do capture some underlying

semantic. Moreover, the AUDs themselves are generatively learnt without any explicit

requirement to be discriminative; yet they perform well on a discriminative task, further

strengthening the notion that they capture some underlying semantic in the data.

In the results shown so far, we only used the unigram bag of words. While n-gram

patterns can be expected to carry more information in general, this does not turn out be

the case when using AUDs. The main reason for this is likely that the decoding of audio

in terms of AUDs is inherently noisy, and we do not get sequences nearly as good as we

would obtain if someone were to provide the ground truth transcription in terms of acoustic

units. Higher order n-gram patterns over the larger universe of sounds would be harder

still because of the even larger set of possible n-grams.

Further, recordings in the same semantic category often vary greatly in how the se-

mantics are conveyed, rendering simple bigram characterizations ineffective. To counter

this, we used flexible n-grams, where for a given AUD, we look at all the AUDs within a

context window, and increment the count of a flexible n-gram, when the context AUDs

all appear in the context window. We expect this to reduce the effect of noisy decodings

51



Figure 3.10: DET curve
with AUDs binary

Figure 3.11: DET curve
with AUDs framecount

Figure 3.12: DET curve
with AUDs count

System Average AUC in BBC Average AUC in MED11
AUDs–count 0.1744 0.2273
AUDs–bigram 0.2003 0.2412
AUDs–trigram 0.2023 0.2539
AUDs–bigram-window3 0.1851 0.2264
AUDs–bigram–window6 0.1922 0.2195

Table 3.2: Performance of various characterizations using the AUDs

and sequence variations. Table 3.2 compares performance of the various characterizations

on the standard datasets, while Figure 3.13 compares performance of the unigram, bigram

and flexible bigram characterizations for using a 64-AUD lexicon, across five categories of

MED11. We find that using flexible bigrams with a window length of 6 performed best.

We note here, however, that not only do the various higher order modeling of local AUD

patterns not result in a significant improvement, but it also suffers from an additional data

issue. As we discussed when we introduced the data, the set of data files in the BBC was

around 1100 files. Thus, using a bigram characterization with 64 AUDs already results

in a feature set of size 4096, which is more than the number of files in the training set.

This should be expected to lead to overfitting, and might be one of the reasons higher

order characterizations perform worse. The same is true for the MED11 dataset, although

performance does seem to improve a little when using higher order models. We cannot,

however, convincingly claim that these improvements would generalize, and they might

simply be an artifact of the specific data involved.

The one-against-all setting used here allowed us to perform audio retrieval. In the next

52



Figure 3.13: AUC for varying characterizations for various MED11 categories (lower is
better)

section, we will also briefly investigate formulations and approaches for performing audio

classification, in a multi-class setting. Finally, while we used AUDs to perform retrieval

of entire audio recordings, one could also envision using them to detect smaller sub-events

within audio recordings, and we will show an example using AUDs based characterization

in Section 3.2.3. Similar approaches could be employed for segmentation as well as co-

occurrence analysis of audio events.

3.2.2 Multi-Class Audio Classification

Earlier in this chapter in Section 3.1.1, we discussed a learning process for the AUDs

and their distributions. In the experiments we describe in this section, we present results

with using an AUDs-based approach to multi-class audio classification using data from the

MED, 2010 task with class-specific language models. As before, the models for the AUDs

are shared by all these classes. We first describe the dataset, followed by a description of

how the AUDs are used to predict a class label, and finally experimental results in Section

3.2.2.

MED10 Dataset

For this task, we worked with the 2010 Multimedia Event Detection (MED) dataset (a

subset of MED11) of TRECVid, provided by NIST, similar in characteristics to the MED11

dataset described in Chapter 2. The TRECVid 2010 Multimedia Event Detection dataset

53



comprises 1746 total clips of training data, totaling about 56 hours in length, and the

1724 clips of test data about 59 hours long. The recordings are publicly available, user-

generated multimedia content uploaded to internet hosts. Each video is annotated with

one of 4 labels – making a cake, batting in run, assembling shelter and other, identifying

the kind of activity being performed in it. The class other appears to be a catch-all class

consisting of all videos that do not belong to the first 3 classes. The use of the audio

features in the actual MED10 evaluation was usually limited to speech transcriptions [Li

et al., 2010a], and detection of pre-specified sound types in the audio [Hill et al., 2010].

Using AUDs for Class Label Prediction in a multi-class setting

Given the HMM parameters Λ for all AUDs, and the set of language models H(C) for

all classes C ∈ C, we can now classify a new audio recording D into one of the classes by

Bayesian classification:

C∗ = argmaxCP (D|C;H(C),Λ)P (C)

To compute P (D|C) we must sum over all possible transcriptions of D, which is generally

computationally intractable. Instead, we can employ the common approximation of only

considering the most likely transcription:

argmaxC logP (C) max
T

logP (D, |T ; Λ) + logP (T ;H(C)) (3.8)

Here maxT logP (D, |T ; Λ) + logP (T ;H(C)) is the log likelihood of the most likely tran-

scription of D for class C for and can be computed by the decoder of a speech recognizer.

logP (D, |T ; Λ) is the acoustic score A(D,C) for class C and logP (T ;H(C)) is the language

score L(D,C) for the class.

However, we do not use the above procedure directly for classifying the recordings.

Instead we employ a second-level classifier that uses the acoustic and language scores for

the class as features. The primary reason for doing this is that even though the decoding

uses a scale factor for the language model with respect to the acoustic model, there is no

notion of discriminating between acoustic and language model scores with different classes.

The weights learnt in the second stage of the process enable comparison of the total scores

between classes.

Let F (D,C) = [A(D,C)L(D,C)]> be a feature vector representing the acoustic and

language scores for the data D computed for class C. For each class C we define a two-

dimensional weights vector WC . Classification is performed using the following classifica-
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Algorithm 2 Learning weights for each class
M = maxiter; i = 0; v = 0
wc = (0, 0),∀c ∈ C
w(0) = {w1, w2, ..., w|C|}
for m = 1 to M do

for j = 1 to τ do
w(i+1) = minw ||w − w(i)||
s.t. S(xj, yj) ≥ S(xj, yc),∀yc
v = v + w(i+1)

i = i + 1
w = v/(N × τ)

tion rule:

C∗ = C : WC .F (D,C) > WC′ .F (D,C ′) ∀ C 6= C ′ (3.9)

To train the classifier we learn weights WC for each class as follows: For each training

instance D belonging to class CD we decode D using H(C) to obtain F (D,C) for every

class C. A training instance is correctly classified if:

WCD
.F (D,CD) > WC .F (D,C) ∀ C 6= CD (3.10)

The weights WC can be learned to maximize classification accuracy on the training data.

We optimize an objective function with an iterative algorithm described in Algorithm

2. The algorithm is an online margin learning algorithm adapted from the Margin Infused

Relaxation Algorithm [Crammer and Singer, 2003] (MIRA, henceforth)– it seeks to update

the vector of weights after it encounters each new instance so that the weighted score

using the feature vector generated by the model for the true class label is greater than

the weighted score using models for the other class labels. Let us assume that for each

training instance (D), the features scores (features) have been computed, and the label

(yj) is known, and there are τ such training instances. Instead of simply requiring that

the score using the true model be greater than the score using the other labels, one can

modify this formulation to include a margin by which the score of the true label should

be greater than the score of other labels. This can be done by adding a positive term to

the right hand side of the constraint. This term may be a constant or may be the result

of some loss function.
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System 3-class 4-class
64-symbols 1-gram 24.29% 36.44%
64 symbols 2-gram 23.49% 35.21%
64 symbols 3-gram 25.00% 47.90%
200 symbols 2-gram 58.12% 32.58%
Class-specific HMM 63.12% 56.44%
Random 66.67% 75%

Table 3.3: Classification errors based on Viterbi decoding scores

Experimental Results

We learned models using the data for the 4 classes in the MED10 training data, as described

earlier. The 4-class classification task contains an extremely skewed majority class: the

other class has far more recordings than the other classes. In order to experiment with

a more balanced dataset, we also experimented with 3 class classification, leaving out the

data from the other class.

Table 3.3 reports classification error for the 3 best settings obtained by classifying data

directly using their Viterbi decode scores. (Note that, again, a lower number is better since

the metric used is a measure of error.) We also compare with a simple baseline model,

where we simply model each of the four classes with an ergodic HMM and perform Bayesian

classification. The HMMs and the a priori class probabilities employed were tuned for best

performance in the last case. Table 3.4 reports results using weighted MIRA classifier.

Overall, our experiments indicate that bigram language models outperform both uni-

gram and trigram models on this task. Further, using 64 sound units appears to outper-

form systems that use more sound units on the 3 class classification task (p < 0.05), but

it doesn’t do as well on the 4-class task, where the 200 symbol system performs better

with weak statistical significance (p-value of 0.08). This supports the intuition that more

units better capture a larger set of sounds. The MIRA classifier is generally significantly

superior to classification based on Viterbi scores alone.

Employing our approach on the MED dataset involves significant challenges. For in-

stance, the other class is not consistent in content, and contains a wide array of different

audio and video. Besides the other class, the remaining 3 classes are not all well-structured.

Events in the batting in run class have audio structure to them, as discussed earlier, but

the audio in the assembling shelter and making cake classes are widely varied. Table 3.5

compares the accuracy for each class for the 200 symbol bigram models with the simple

baseline class-specific HMM models on 4 class data.

It is not clear to us why the making cake class is better predicted with class-specific
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System 3-class 4-class
64 symbols 1-gram 18.59% 28.42%
64 symbols 2-gram 18.39% 26.39%
64 symbols 3-gram 19.70% 40.28%
200 symbols 2-gram 44.37% 22.92%

Table 3.4: Classification errors based on the MIRA classifier

Class Class-specific HMM 200 symbol 2-gram
assembling shelter 68.89% 56.00%
batting in run 65.38% 40.38%
making cake 56.14 % 75.86%
other 35.33% 5.3%

Table 3.5: Category specific error for the various classes

HMMs, but we the answer to that may lie in the fact that audio corresponding to this

class appears to contain a considerable amount of speech in most cases. Given the small

number of AUDs used in describing the data, the speech sounds appear to be clustered

with other similar short-term sounds and the distribution of the AUDs are not particularly

informative here.

Qualitatively, on analyzing the transcriptions generated on the training data by the

iterative learning procedure (using MFCC features augmented with ∆ and ∆∆), we find

that it does a consistent job in identifying some sounds, such as the sound of a baseball bat

hitting the ball or clapping, while the AUDs for speech segments, for instance, appear to be

more inconsistent, instead being distributed among various units. To improve performance

in such scenarios, one could identify speech segments as a processing step before sound unit

learning to help the system focus on non-speech acoustic events. An alternative approach

to consider might be starting with a small amount of supervision in the form of data for

specific class-specific characteristic sounds to help the system converge to a better solution

instead of building a sound dictionary completely unsupervised.

3.2.3 Audio Event Detection at a Sub-File Level

In this section, we present our approach to sub-file level event detection tasks in a super-

vised setting. Here, the term event detection refers to detecting an event or segment of

interest within a larger audio file by identifying the start and end boundaries of the event in

the audio stream. As an example, consider a recording from a sports game– a significant

portion of the file contains non-sporting sequences, such as crowd shots, or commercial
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breaks. Automatically discovering the segments of interest (e.g. highlights from the game)

would provide enhanced navigability to the user looking at the recording.

We describe a large-margin, discriminative training method that uses supervised train-

ing data to learn the importance of various features in capturing the context. We use a

novel feature set for audio, based on acoustic unit descriptors, which are used to describe

the sequence of events in the audio. The AUDs are learnt from the data in an unsuper-

vised manner, as described earlier, although the approach used here is general and one

could use any other method (e.g. sound dictionaries) to obtain the sequence of acoustic

units [Kim et al., 2010]. We use baseball data for our experiments from the MED10 batting

in run class, seeking to create a system that would take a file as input, and remove all

non-baseball-action segments from the data. While our experiments in this paper focus on

baseball data, the approach is generic and can be applied to any dataset with relevance

labels.

This section is organized as follows: we first describe the data used in the experiments.

We then describe the learning framework, including the problem formulation, the feature

set, and the training paradigm. Finally, we discuss our experimental results.

Data

We work on a dataset that is focussed on a specific topic– baseball videos. We use the

batting in run data from the TRECVid 2010 Multimedia Event Detection dataset (MED,

henceforth) [MED, 2010]. The main reason for using the data in this class is that it is

the most structured and deciding on segments of the audio relevant to the topic batting

in run was easiest for this class. For each file, some segments in the audio were marked

as relevant. A section is marked as relevant if it contains baseball action (baseball action

refers to sporting action on the field, as distinct from any similar action in the crowd),

while other portions of the video not related to baseball action are marked as not relevant.

The training data consist of 54 videos and the test data consist of 52 videos. For both

sets of data, the audio is extracted from the mp4 video, and down-sampled to 16KHz,

single-channel. The annotator was allowed to use the audio as well as the video to decide

which segments were relevant, since the audio doesn’t always make it clear whether the

relevant section of the video is over. In the context of the audio for the batting in run

data, examples of sections that are not relevant include cutting to the crowd, or having

conversations with a friend, or voiced-over segments of audio. For each audio file in the

training set, we have a set of segments that are marked as relevant, and the remaining

segments marked as not-relevant. We use this data to extract patterns to help us identify
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segments as relevant or non-relevant.

Learning Framework

We showed earlier, in Section 3.1.1, how one can transcribe audio as a sequence of AUDs

using Equation 3.3. Since we have annotated data that mark segments as relevant, we

can use this information to obtain the sequence of AUDs that appeared in the relevant

sections of the audio. Thus, for every file in the training data, we have a full transcription

in terms of the AUDs, as well as a truncated version, using only the AUDs that appear in

the relevant segments. Let us refer to the original, uncompressed transcription in terms of

AUDs as X (where X = x1x2...xm), and the truncated version using the relevant segments

as Y (where Y = y1y2...yk, and k ≤ m).

Thus, if we have n training audio signals, we use the n pairs {Xi, Yi}, ∀i = 1, 2, 3...n

as the training data. Thus, we need to train a system using {Xi, Yi}n1 , such that at test

time, given a transcription of the test audio file in terms of the AUDs (Xtest), the system

can generate a compressed version of the AUDs (Ytest). In order to generate the audio (or

video, depending on the application) corresponding to the relevant sections, we can simply

synthesize the frames that correspond to the AUDs that were retained.

We would like to note here that the problem setup that we have now is analogous to

the problem of text compression by deleting words from text. The problem of text com-

pression has usually been reduced to one of sentence compression and has been approached

in a number of ways, including noisy channel models [Knight and Marcu, 2000], integer

programming [Clarke and Lapata, 2006] and large margin approaches [McDonald, 2006].

We model our approach to this task as similar to the large margin supervised approaches

used in sentence compression research. Unlike the text-based compression approaches

which use deep syntactic features based on parse trees generated over the text, we have

access only to surface features– AUD identity markers in this case, analogous to the words

in the sentences in sentence compression research. We describe the feature set used in

Section 3.2.3, and the learning algorithm for training parameters in Section 3.2.3.

Feature set

We jointly extract features over the original and compressed transcription pairs in the

training data. First, for every pair of consecutive AUDs in the compressed transcription,

we consider the bigram feature yj−1yj. We then extract the context information for each of

the consecutive AUDs individually in the transcription– both bigram context and trigram

context. We also add an indicator feature that says whether or not any 2 consecutive
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AUDs in the compression were also consecutive in the original sentence. These features

are intended to understand which AUDs are more likely to be relevant to the topic of the

audio, and to understand the contexts in which they are retained.

We also add features for AUDs that were dropped from the original, uncompressed

transcription of AUDs. This is done in the following manner: for every pair of AUDs that

appears in the compressed transcription, we add features corresponding to the identity of

the AUDs dropped from the uncompressed transcription. Further, for every AUD dropped

from the original transcription, we add a feature that identifies the AUDs nearest to it

on either side that were retained; e.g. if the sequence ...a4a7a8a2a4... becomes ...a4a2a4

in the compressed transcription, we add features to indicate that a7 and a8 were dropped

and that they were dropped so that a4 and a2 appeared consecutively in the compressed

transcription. We then add the bigram and trigram contexts of the dropped AUDs as

features. The motivation behind these features is to understand the different contexts that

indicate whether or not an AUD should be deleted.

Training

The training process is a large margin online learning algorithm that involves a decoding

algorithm that can search the space of all possible compressions in an efficient manner.

Given an uncompressed transcription of AUDs X = x1x2...xm, we can see that we can

generate an exponential number of compressions, depending on the location and number

of AUDs dropped.

Thus, for any compression y of an uncompressed transcription X, we need to score the

compression such that the selected compression y∗ = arg maxy Score(X, y). In order to be

able to efficiently compute scores over the entire space of compressions, we need to factor

the function that computes the score. We do this as follows– suppose the compression y

contains k AUDs. Then:

Score(X, y) =
k∑
j=2

g(X, yj−1, yj) (3.11)

The function g(X, yj−1, yj) represents a weighted scoring function that extracts features

on pairs of AUDs that appear consecutively in the compression and the score is obtained

as a weighted sum of the feature values:

g(X, yj−1, yj) = w.f(X, yj−1, yj) (3.12)
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Thus, we can compute the score between every pair of AUDs that could possibly be

present consecutively in the compressed transcriptions. Note that this set of AUDs is the

same as every pair of AUDs in the uncompressed transcription xp, xq, such that p < q.

Thus, we compute the function g, for every pair xp, xq, such that p < q, in the original

uncompressed transcription of AUDs.

Now, we can compute the best compression for the uncompressed AUD sequence X

using dynamic programming over the factored scores. Before we do so, however, we need

to modify X slightly, so that we have a dummy start and end position at the beginning

and end respectively. We can continue to assume without loss of generality that the new

X, with a START symbol at the beginning and an END position at the end is of length

m. (At training time, the START and END symbols are inserted to the compressed AUD

sequences as well, so that they are never dropped.) We define our dynamic programming

table as follows:

T [1] = 0.0 (3.13)

T [i] = max
j<i

T [j] + g(X, xj, xi),∀i > 1 (3.14)

The table T contains entries from i = 1, 2, 3...,m when the uncompressed sequence of

AUDs X is of length m. The entry at position i in the table, T [i], is the score of the

compression that ends at position i. Thus, the score of the best scoring path through the

AUD sequence is given by T [m] = T [END symbol] given the way we factored the scoring,

and the path can be found by keeping backpointers to remember where the best scoring

path at any index came from.

The process described above is the one used to generate compressions at test time, when

we have an input uncompressed sequence of AUDs. However, it is also used at training

time, as we shall now describe. We would like to obtain the set of parameters w, such

that we can generate the compression y for the training instances X with as little error as

possible.

We use an adaptation of the Margin Infused Relaxation Algorithm (MIRA, henceforth)

[Crammer and Singer, 2003], a discriminative large margin online learning algorithm, to

train weights. The algorithm is summarized below in Algorithm 3. In the algorithm,

Yh refers to the hypothesized compression for the training example Xt, using the weights

from the previous iteration. S(Xt, Yt) refers to the score for the true compression Yt in

the training data. L(Yt, Yh) represents a loss function that represents the margin in this

algorithm. The training data is represented as a set of pairs {(Xj, Yj)}N1 .

61



Algorithm 3 Learning weights using MIRA
R = maxiter; i = 0; v = 0; w0 = 0
for r = 1 to R do

for j = 1 to N do
w(i+1) = minw ||w − wi||
s.t. S(Xt, Yt)− S(Xt, Yh) ≥ L(Yt, Yh)
where Yh = best(Xt; w

i)

v = v + w(i+1)

i = i + 1
w = v/(N ×R)

As one can see from the algorithm outlined, each iteration considers only one datapoint

in the training set, and adjusts the weights so the score of the correct compression is better

than the score of the best compression as hypothesized by the previous set of weights by

a margin that is greater than a pre-defined loss function. In our experiments, we define

loss as the Levenshtein distance between the correct sequence in the true compression, and

the hypothesized compression, with a uniform penalty of 1 for each deletion, insertion and

substitution.

Experimental Results

We report our results as precision and recall over whether each frame was classified as

relevant or not relevant. As a baseline for comparison, we use a GMM classifier that

classifies each frame in the test data as relevant or not relevant, based on the models it

learns from the training data. In our setting, suppose we have c1 frames that belong to

class 1, and c2 frames that belong to class 2. Suppose, we have a model that predicts class

1 for pc1 frames, and c of these are correct, then for class 1:

Precision =
c

pc1

;Recall =
c

c1

(3.15)

While the interpretations will vary depending on the task that this method is applied

to, it appears in this case that false negatives are more harmful than false positives, since

if something that is relevant is marked as not relevant, then that segment is removed and

the AUDs corresponding to it cannot be used in subsequent processing for classification

or retrieval. Thus, high recall for the relevant class is a desirable property. Naturally,

precision and recall trade off against each other, but a low precision would imply that
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System Prec-Rel Recall-Rel Accuracy
Compression-64 AUDs 62.6% 63.8% 63.8%

32 gaussian GMM 63.4% 55.8% 62.7%
64 gaussian GMM 58.8% 50.8% 58.6%
128 gaussian GMM 63.0% 41.4% 59.5%

Table 3.6: Results on MED10 test data

either we do a poor job of identifying the relevant segments, or that we are not especially

selective in choosing the relevant segments. As a result, we will report precision and recall

for the relevant class (Prec-Rel and Recall-Rel, respectively) as well as an overall accuracy

for the 2 classes combined. Accuracy considers both relevant and not relevant classes, and

the number represents how many frames were correctly labeled over the entire test data.

Table 3.6 presents the results of our AUD-based compression system, and compares it with

GMM-based classifiers.

The improvement in recall of the relevant class using our approach over the baseline

GMMs is statistically significant. The performance of the AUD-based and GMM-based

approaches are fairly similar in terms of precision, as well as overall accuracy. There is

a common trend we observed from our preliminary experiments using both our AUD-

compression approach, as well as the GMM approach– as the number of AUDs or GMM

components is increased, the recall of the relevant class worsens, which indicates that the

models start to overfit to the data. It is not immediately clear what the reason for this is,

although it could be that the data is coherent enough that a small set of acoustic descriptors

(or Gaussian components for the GMM) suffice to model it fairly well. Alternately, perhaps

improving the initial segmentation in our AUD-based approach will lead to even better

performance.

As described earlier, the key advantage that the AUD-based approach provides in ex-

tracting segments is that contiguous chunks of audio are either retained or dropped. Thus,

on synthesizing the segments described as relevant by the AUD-based compression ap-

proach, the disfluencies are not as apparent as they are in the GMM-classification based

approach, where each frame is separately analyzed for potential retention or deletion. It is

worth noting that the dropped chunks do occasionally include relevant segments resulting

in abrupt, undesirable changes in context. The effect that these errors will have on percep-

tion depend heavily on the application. For instance, in generating a condensed version of

the game, dropping relevant segments is likely to be quite aggravating for a user. However,

if the identification of relevant segments is to be used as a tool to help the user navigate

audio files better, then identifying relevant content within small errors can be acceptable
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as the user can manually change the boundaries to suit himself.

The technique described for detection of audio could be applied to perform domain

specific extraction of relevant segments, useful for generating highlights from sports videos,

or to help users of multimodal search systems navigate through search results. We note

that the concept of relevance as used in this work, even in limited domains, may not be

easy to clearly define since it involves subjective judgments. For instance, users could

have obtained the same set of files by searching for baseball crowd or baseball plays, but

the notion of relevance is almost exactly complementary in the two cases, and there could

be other such conflicting instances. Our intent was to demonstrate that, given certain

accepted definitions of segments of interest, an AUDs–based characterization could be

employed successfully to identify such segments in new recordings.

3.3 Discussion

In the various applications we described in this chapter, we discussed in detail the process

of learning the lowest layer in the hierarchical framework proposed in this dissertation. We

discussed various observations that were made during the learning process for the AUDs.

We would specifically like to draw the reader’s attention to the fact that the learnt AUDs

were distributed in the corpus according to a power law. While this property was not

specifically expected or enforced, it is a property that appears to be a characteristic of

many natural distributions and one that we utilize in our process of learning the higher

order units.

We demonstrated further that these units could be successfully applied to a large-scale

audio retrieval task to outperform state-of-the-art techniques for this task. We note again,

as discussed earlier, that the AUDs are the lowest level of the hierarchy, and the one

that captures the largest amount of acoustic information in the units, since the notion of

semantics when looking over such small spans of audio is very unclear. Our experiments

also showed that using bag of words representations with higher order bags (bigrams,

trigrams, instead of unigrams) were not particularly helpful for our task. We hypothesize

2 reasons that we believe were likely to be responsible for this observation. First, the

decodes of the audio are likely to be rather noisy with errors potentially introduced due to

the presence of background sounds, random channel effects, or simply decoding errors, and

that the sequences obtained by decode were likely to be rather different from the ground

truth sequences if such information were available. Second, for semantic tasks, even though

the distributions contain the semantics, the specific sequences are not very constrained,
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and the same semantic notion may be conveyed with various different orderings of the

individual semantic units. Consider movies from the same genre as an example, where

the specific sequence of events (and therefore, their acoustic manifestation via the low-

level acoustic units) are a manifestation of artistic expression where the director is free to

choose how the characteristic event sequences will unfold. A simple n-gram-based model

is likely to not be powerful enough to capture such variations.

We note here that the AUDs layer is the only layer of our hierarchy that can be directly

compared to the kind of work presented in prior work in the literature, since it analyzes the

observed audio data at a shallow level, similar to the prior work. In subsequent chapters,

we will explore techniques that will attempt to infer semantics via a deeper analysis. While

it is fair to compare the numbers on any specific task (which, in this case, is the audio

retrieval task), we note that the kind of structure the underlying models that we shall

describe are trying to capture a very different kind of information from those that previous

work in this area has attempted to capture.

There are two main directions in which one can proceed with the task of learning higher

layers over the low-level acoustic units layer. The first attempts to build up the hierarchy

one layer at a time, while the second attempts to infer the full hierarchical structure jointly.

Chapter 4 takes the first approach, while Chapter 5 takes the second approach. Each of

these differing approaches do have their own advantages and disadvantages and we shall

describe them in the discussion section of Chapter 5.
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Chapter 4

Layer-wise Training of Higher Levels

In prior chapters, we introduced our hierarchical framework for increasingly higher level

semantic analysis of audio content. We showed, in Chapter 3, an approach to learning

the low level acoustic units automatically from the audio corpus. We discussed, further,

two main paradigms that could be used to induce higher level semantic structure on top

of the low-level acoustic units. The first involved building up the hierarchy one layer at a

time, while the second involved a joint learning of the entire hierarchical structure. In this

chapter, we will present our experiments with the first paradigm, that of building up the

hierarchy one layer at a time.

We note here, again, that the training process for the higher layers (both in this chapter

and the next) employ formulations that can work unsupervised. Unlike the case for AUDs,

where even though ground truth is not available, we can employ various tasks to test how

well the AUDs learning process works, such as detection of sound types in the audio stream,

the units at the higher levels are expected to be far more semantically-oriented. As such,

the importance of being able to test the inferred segments directly is even greater. Unfortu-

nately, since such information is not available in the current datasets, and the development

of such datasets would require a significant undertaking, we continue to test the models

using the task of audio retrieval based on semantic categories. In this context, however,

the process of modeling the higher layers in order to hypothesize semantically coherent

segments has an auxiliary benefit in addition to being useful for semantic audio tasks–

the hypothesized segments can potentially be used for annotations by human annotators,

thus removing the need for the annotator to scan the audio to identify and mark segment

boundaries, making the annotation process much faster.

In Section 4.1, we introduce the problem of modeling higher levels of this hierarchy.

We note that while current approaches in audio analysis have not really worked on this
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problem before, it does bear certain similarities with tasks in text processing, especially

because the modeling of the higher layers uses the AUDs layer as input, which is a discrete

representation of the observed audio. Following this, in Section 4.2, we present a pair

of different models for inducing higher layers in this hierarchy. The first model adopts

an approach very similar to the one used for learning AUDs, but its use in characteriza-

tion of audio for semantic tasks does not prove to be particularly successful. The second

model employs a power-law prior in learning the units at a higher level, and proves more

successful at the audio retrieval task, when used in conjunction with the low-level AUDs

to characterize the recording. We describe our experiments and experimental results in

Section 4.3. We conclude with a discussion in Section 4.4.

Part of the work described in this chapter has been published in Chaudhuri and Raj

[2012].

4.1 Beyond Acoustic Unit Descriptors

In previous chapters, we discussed the different approaches used in the literature to obtain

a dictionary of sound concepts or units (either by supervised or unsupervised approaches),

and use these units to characterize audio recordings. However, characterizing audio data

with elements from an audio dictionary for semantic analysis involves an implicit assump-

tion that the acoustics map directly to semantics. In reality, we expect the mapping to

be more complex, because acoustically similar sounds can be produced by very different

sources. Thus, to accurately identify the underlying semantics, we need to effectively use

more (and perhaps, deeper) structure, such as the sound context, while making inferences.

We present this framework (and our experiments) in the context of audio, but it should

also apply to other modalities (e.g. video), that require semantic analysis of information

sequences.

Traditional detection-based approaches, that assign each frame or a sequence of frames

of pre-specified length to sound categories/clusters, are severely limited in their ability to

account for context. In addition to context, we need to consider the possibility of polysemy

in sounds– semantically different sounds may be acoustically similar; e.g. a dull metallic

sound may be produced by a hammer striking an object, a baseball bat hitting a ball,

or a car collision. The sound alone doesn’t provide us with sufficient information to infer

the semantic context. However, if the sound is followed by applause, we guess the context

to be baseball, screams or sirens suggest an accident, while monotonic repetitions of the

metallic sound suggest someone using a hammer. In order to be able to capture this kind
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Figure 4.1: The proposed hierarchical framework (a) Left: Conceptualizing increasingly
complex semantic analysis; (b) Right: An example semantic parse for baseball .

of temporal context, we need to not only identify the kind of low-level sound events (such

as the dull metallic sounds), but also be able to disambiguate the sounds using an analysis

of the possible relationship of that sound to other temporally neighboring sounds, and its

implication for semantics.

Recall from Chapter 1, our conceptual representation of a hierarchical framework that

envisions a system to perform increasingly complex analysis of audio, shown again In Figure

4.1a. The grey circles closest to the observed audio represent short-duration lower-level

acoustic units (AUDs) which produce sounds that human ears can perceive, such as the

clink of glass, thump produced by footsteps, etc. These units have acoustic characteristics,

but no clear associated semantics since the semantics may be context dependent. Sequences

of these units, however, will have interpretable semantics– we refer to these as events

marked by grey rectangles in Figure 4.1a. The annotations in blue correspond to (usually

unavailable) human labels for these events. Further, these events themselves likely influence

future events, shown by the arrows, e.g. the loud cheering in the audio clip is because a

hitter hit a home run.

Figure 4.1b shows the kind of structured information that we envision parsing from

the audio. The lowest level, indexed by a, correspond to the lower-level units. The event

layer in Figure 4.1b has been further divided into 2, where the lower level (indexed by

v) correspond to observable events (e.g. hit-ball, cheering), whereas the higher level (e)

corresponds to a semantic event (e.g. batting-in-run), and the root node represents the

semantic category (baseball, in this case). The cost of obtaining such hierarchical annota-

tions would be very high due to the complexity of the annotation task. Typically, audio
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datasets contain only a category or genre label for each audio file. As a result, models for

learning such structure must be able to operate in an unsupervised framework. Our focus,

in this chapter, is on developing such models that will allow us to learn models for the

higher order events, shown by the grey rectangles, in an unsupervised framework. Note

that, just like the process of learning models for AUDs, the approach presented here for

modeling higher layers is also task-agnostic, while keeping in mind that the general goal of

this process is to be able to model semantics.

The framework described in this chapter for modeling higher layers for semantic analysis

of audio is the first effort of its kind to extract deeper semantic structure from audio, to

the best of our knowledge. The approach presented in this paper for modeling higher

layers is presented in the context of modeling the layer immediately above the AUDs layer.

Thus, the input to the system is a dataset of discrete sequences (AUD sequences), and the

framework attempts to learn models for units in the layer above it (events layer). As one

can see, such a framework can be iteratively extended. Once we’ve learnt units for a layer

on top of the AUDs layer, we can in turn decode the AUD sequences using those units to

obtain the sequence of units in the higher layer, which can, once again, be an input to the

same system to infer a higher layer still.

In the next section, we will present our formal models for deriving higher level structure

over local patterns over the AUDs. Before we present these models, however, let us briefly

consider the task that we are attempting to accomplish, its relation to prior work in

intelligent systems, and its main differences from such work.

4.1.1 Inferring Higher Level Structure

We expect that audio data are composed of a sequence of semantically meaningful events

which manifest themselves in various acoustic forms, depending on the context. The acous-

tic unit (AUD) lexicon described in Chapter 3 automatically learns the various acoustic

manifestations from a dataset but do not have interpretable semantic meaning. Instead,

we expect to find semantics in the local patterns over the AUDs. Thus, given a sequence

of AUDs as input, we want to identify the elements of a hidden layer on top of the AUDs

layer. These elements can be considered as corresponding to semantically interpretable

acoustic events which generate lower level AUDs (and thus, the observed audio).

Therefore, at training time, only the AUD token sequences are observed. We refer to

the observed AUD tokens as X , the elements in the events layers are modeled as latent

variables Z and the parameters for our processΘ. We would like to estimate the parameters

Θ at training time, so that we can then use these parameters to estimate the latent events
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present in audio based on an observed AUD stream (the AUD stream is obtained by

decoding audio as described in Chapter 3). We will discuss the specifics of the training

and decoding algorithms in Section 4.2.

However, first, let us consider the problem of inducing a higher layer at an intuitive

level. In the generative model, there is a sequence of conceptual units in the layer above

the AUDs. Following the thread of the baseball example, let us imagine that these are

play–level units, such as batting in a run, strikeout, etc. Each of these will manifest in some

way– the batting in a run element might have the sounds of pitches hitting the catcher’s

mitt, followed by a bat hitting the ball, running footsteps and then cheering. Each of these

can be captured by low level AUDs, which in turn produce the observed audio. Similar

sequences exist for the subsequent plays, as well

In such a sequence of AUDs, however, we do not know the play boundaries, nor do we

know a priori which AUDs correspond to which plays. For instance, the sound of the ball

hitting the catcher’s glove and cheering might be present in all the plays but not the sound

of bat hitting the ball or people running. However, this information has to be inferred

from the local patterns over the AUDs. Thus, the task of identifying higher level units,

given only the AUD sequences can be considered as a segmentation task, where each of

the higher level units correspond to a segment. In the next subsection, we will discuss an

intuitive formulation using an example from the text domain, and then explain why the

task is different in the case of semantic audio, which has its own challenges.

A Text Processing Analogy for Audio Event Segmentation

As described in the previous section, one can think of the task as analogous to a case

where sequences of discrete symbols need to be segmented. A relevant analogous task in

the text processing domain would be the identification of a vocabulary of words if the

word boundaries (spaces) were removed from any text. Indeed, algorithms have been

developed in the text processing domain for automatic vocabulary induction from text to

identify tokens of interest, applied to the tasks of discovering the word vocabularies for rare

languages, segmentation in languages where spaces are not used (e.g. traditional Chinese

or Japanese), and morphology induction [Goldwater et al., 2009, Johnson and Goldwater,

2009, Mochihashi et al., 2009, Poon et al., 2009, Schuster and Nakajima, 2012], where a

token stream is input to the system and the various approaches learn models that can

appropriately segment new sequences.

However, in the semantic audio space, the task of obtaining the higher level units does

not correspond to a segmentation task quite as neatly as it does in the text space for
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discovery of words and word-like units. There are 2 main differences between the tasks of

word segmentation for text and the AUD segmentation for semantic structure discovery in

audio– the problem of noisy transcriptions and the problem of a lack of canonical structures.

The Problem of Noisy Transcriptions

When modeling higher layers, the audio is represented using a sequence of AUDs. Al-

though we have mentioned that the mapping between the acoustics of a recording and the

underlying sequence of AUDs is stochastic, we have largely treated the AUDs as known.

The reality of the situation is otherwise. The AUDs themselves are latent – they are not

observed and can only be inferred. The process of decoding of the observed audio into

AUD sequences can be prone to error due to many reasons.

The process of learning of AUDs was unsupervised, since ground truth in terms of AUD

sequences were not provided at the time of learning. As a result, there is no guarantee that

the set of AUDs learnt correspond to the optimal set of sounds one would like to capture.

Further, as discussed earlier, the AUD units likely contain a mixture of sounds from very

different semantic sources, and disambiguation is expected to be handled at higher layers.

For context-based disambiguation to work well, the neighboring units hypothesized by an

AUD decode in any sequence need to be close to the truth. However, AUD decodes can

result in local errors due to a variety of reasons, including channel artifacts, arbitrary

recording conditions, presence of background noise in the form of objects not related to

the semantic subject (e.g. loud car horns in the background in a birthday party), and so

forth.

Thus, the input transcriptions are not always ground truth, which is usually the case

when dealing with the analogous problem in text, where the character sequences with

spaces removed are, in fact, ground truth. [Note: This input setting is, however, similar

to the problem of phoneme transcriptions, where the decoded phoneme sequences may not

be ground truth, but unlike the case of speech, there is no equivalent of a dictionary.]

The Problem of a Lack of canonical structure

In text, where the units that are sought to be discovered are words, the structure of

the words in terms of characters are well defined. Each word is spelled with a canonical

sequence of the lower level units (characters of the alphabet). In the case of semantic

audio, this differs in 2 respects.

First, the AUD sequences decoded from the raw audio are likely to be noisy, as was just

discussed above. Thus, if we assume that the semantic audio events do have a canonical
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structure, that structure is not very likely to be present in the sequence of units that are

input to this layer.

However, secondly, and perhaps more importantly, semantic events simply cannot be

expected to have the kind of canonical structure that words have. Take the example shown

in Figure 2.1 in Chapter 2. Ignoring that the difference in the two manifestations may be

caused by decoding errors, it should be readily obvious that the recording of the same

semantic concepts may manifest very differently due to differences in artistic expression of

the people creating the recording, geographical and cultural differences between locations

where the same concept was recorded, etc. Indeed, considering the large number of different

scene sequences in any movie genre is sufficient to convince the reader that very similar

ideas can be communicated in extremely different ways.

As a result, we cannot simply use methods analogous to those used for text segmen-

tation. In Section 4.1.2, we present an intuitive way of conceptualizing the problem while

using the thread from text segmentation, since the discrete symbol space of the AUDs is

analogous to that of the alphabet in text segmentation.

4.1.2 Modeling Audio Event Segmentation

Given the two main problems discussed, our models for the higher layers will need to

tackle them to be successful. In Section 4.2, we will present a pair of generative models

for segmentation, one which explicitly tackles the problems, and which does not, instead

being based off of a generative model that simply assumes local sequential structure.

Consider the task of segmentation of English text. In the regular text segmentation

setting, one would simply remove the spaces from a stream of words, and each word is

a sequence of characters corresponding to its correct spelling. In our case, due to the

presence of semantic variations as well as noise introduced by decodes, a better analogy

would be that the words themselves are badly spelt. Multiple instances of these semantic

words would contain some of the elements that are truly representative of the semantics,

but some of these elements might be missing due to decoding errors. Thus, in the text

segmentation analogy, a sequence of words is generated, but the words are badly spelt.

Following this, spaces are removed and the sequence of characters is input to the system.

We will refer to this as the Crazy Typist Model (CTM, henceforth) where the crazy typist is

responsible for creating sequence of AUDs by taking the high level semantic events, creating

a misspelling in terms of AUDs, removing the spaces to produce the final sequence that

generates the observed audio.

In Section 4.2, we will present a formal model for the Crazy Typist Model, as well as a
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formulation for training and decoding models. The effectiveness of the various formulations

for inducing higher level structure will depend on the structure employed to govern the

AUD sequences, and potentially, on the task it is being applied to as well. In general, if

we were to impose a higher degree of structure, we can employ simpler formulations, since

the structure would guide the solution to a greater degree.

4.2 Generative Models for Inducing Patterns over AUDs

In this section, we present a pair of approaches to modeling patterns over AUD sequences.

The first, described briefly in Section 4.2.1, follows a process analogous to the process

of learning AUDs from the audio. Due to the problems in modeling the higher, more

semantic layers described in the previous section, this model is very limited in its abilities.

We discuss these limitations as well, before describing an improved framework that can

deal with the Crazy Typist Model in Section 4.2.2.

4.2.1 Structured Sequential Patterns over AUDs

This model is analogous to the model described in Chapter 3 for learning AUDs. Recall the

graphical model for AUDs learning that was presented in Figure 3.2. We can employ exactly

the same model to induce higher layer structure while modifying the data D to consist of

discrete sequences, and our modeling of the parameters so that the output distributions

for each of the states would be a discrete multinomial distribution.

We model the higher layer units as we did for AUDs, with a left-to-right Hidden Markov

Model with a varying number of states, and discrete multinomial output distributions. We

will present results for this framework as well as the Crazy Typist Model in Section 4.3.

We note, however, that this model assumes a similar situation to the regular text

segmentation task that does not need to deal with variances in sequences due to semantics

or noisy transcriptions. Not surprisingly, then, this model performs significantly worse in

capturing higher order structure than the Crazy Typist Model that we will now introduce.

4.2.2 The Crazy Typist and a Power-Law Prior-based Model

We briefly mentioned the Crazy Typist Model in Section 4.1.2. This model is so-called

because we introduced the notion of a Crazy Typist to deal with the modifications that had

to be introduced to the generative model for text segmentation to deal with the specific

differences for semantic audio.

73



Specifically, the crazy typist model can be conceptualized as follows: For the semantic

audio space, there are a number of semantic audio units, each of which contains some true

spelling units in terms of AUDs. The actual sequence of these units in the spelling are

left to the crazy typist’s imagination. In order to generate the audio document, the typist

decides on a sequence of the semantic audio units. For each of these units, he creates

a spelling manifestation including some or all of its true spelling AUD units (modeling

absence of some units). This manifestation may include additional AUDs that are not

part of the true spelling (modeling noise). Each manifestation, therefore, is a sequence

of AUDs. The AUD sequences for each semantic unit are concatenated together with no

further markers to denote where each unit ends. The AUD sequence then produces the

observed audio, using the individual AUD models.

Note that while this generative model is presented in the context of a higher layer over

AUDs, it can be iteratively extended to generate further layers.

For this task, we assume that AUD models have already been learnt and that we are

interested in learning the distribution of AUDs in the various higher level semantic units.

We noted earlier that the effectiveness of the various formulations for inducing higher level

structure will depend on the structure employed to govern the units. We then considered

the question of what kind of structure might be appropriate for this task.

Recall our observation, at the time of AUDs learning, that the distribution of AUDs

followed by a power-law, which was a property that had been observed in a number of

natural distributions. When we applied a method analogous to the AUDs discovery process

to learn higher level units, as described in Section 4.2.1, the distribution of the higher level

units did not turn out to follow the kind of power law we had observed for AUDs learning.

Therefore, we decided to explicitly enforce the power-law prior on the higher level units.

In this section, we will first describe our graphical model using a power law prior that

explains the generative process. Then, we will describe how we can perform learning and

inference using an Expectation-Maximization algorithm for this model. We note that the

model is described using a power-law prior, and the derivation of the learning and inference

assume the same. However, if one so wishes, the power-law prior can be replaced by any

other prior of choice. Naturally, in that case, the update rules will have to be appropriately

modified.

The Generative Crazy Typist Model

We refer to the higher layer units in this section as events, since they correspond to units

in what was called the events layer. Note that these events are different from the query
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event types in the dataset for audio retrieval, and that no task-specific assumption is made

in the development of this model.

We create a generative model corresponding to the Crazy Typist Model, where we

impose a power-law prior on the distribution of events. Events are drawn from this power-

law distribution, and then generate lower level acoustic units (AUDs) corresponding to the

sounds that are to be produced. Because this process is stochastic, different occurrences of

the same event may produce different sequences of AUDs, which are variants of a common

underlying pattern.

Formally, we model this with a generative, latent variable model in the following man-

ner. We assume that we know the size of the vocabulary (of higher level semantic units),

as well as the size of the character set (AUDs). In our model, we also assume that we know

something about the distribution of the unigram probabilities (e.g. that the unigram dis-

tribution follows a power law). For each document d, we first draw a unigram distribution

for the document, based on our beliefs. Then, given the number of higher level semantic

unit tokens present in the document (Nd), we draw Nd tokens from our vocabulary as fol-

lows: sample a word (semantic unit) from the unigram distribution. For this word, we will

generate a character (AUD) sequence as follows: From a negative binomial distribution

for that word, draw the length of the word (n). Now, draw a character from the character

distribution for this word n times to generate a character sequence (cn1 ).

The generative model is shown in Figure 4.2. Our use of notation is as follows:

K: number of words in the vocabulary

M : number of characters in the character set

Nd: number of word tokens in document d

D: number of documents in the corpus

µ: prior beliefs about the unigram distribution

U : the unigram distribution for a document

w: a sampled word

α: Negative binomial distribution with 1 distribution for each word. Each distribution

has 2 parameters, r is the number of allowed failures, while p is the probability of success

n: the length of each word

Φ: Probability distribution table for emissions given words
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Figure 4.2: The unigram based generative model for segmentation. Only cn1 is observed.

Thus, in this model, each audio document is a bag of events and each occurrence of an

event is a bag of AUDs; the events themselves are distributions over AUDs, modeled by Φ.

At training time, only the AUD token sequences are observed. We refer to the observed

AUD tokens as as X , the latent variables as Z and the parameters for our process (µ, α

and Φ) as Θ. We can write the joint probability of all the variables in this model as shown

in Equation 4.1. In the following subsections, we will outline a framework for training the

parameter set for this model. We can then use these parameters to estimate the latent

events present in audio based on an observed AUD stream (the AUD stream is obtained

by decoding audio, which we shall discuss, as well).

P (X ,Z,Θ) =
∏
d

P(Ud;µ)
∏
i

P(wd
i |Ud)P(nd

i |wd
i ;α)P(cn

1 |wd
i ,n

d
i ; Φ) (4.1)

We chose the 2-parameter (r, p) Negative Binomial (Equation 4.2) distribution for

α, which approaches the Poisson distribution as r tends to infinity, and the r controls

deviation from the Poisson.

n ∼ NB(r, p), s.t. P (n = k) =

(
k + r − 1

k

)
pk(1− p)r (4.2)
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The power law prior is imposed by a 1-parameter (s) distribution shown in Equation

4.3 (w(k) represents the k-th most frequent word), where the parameter s is drawn from

N (µ, σ2). For English text, the value of s has been observed to be very close to 1.

P (w(k); s, n) =
1
ks∑i=n
i=1

1
is

(4.3)

Various methods can be used for parameter learning. We present a Hidden Markov

Model based model that is used to estimate the parameters in an Expectation-Maximization

(EM) framework [Dempster et al., 1977]. We now describe the learning framework, and

how the parameter update equations are obtained.

Parameter Updates for our model

We will now describe how to estimate the parameters of this model in order to maximize

the likelihood of the data. The various parameters we want to estimate in this case are

µ, Φ and α. Recall, from Chapter 2, our brief guide on using EM for learning parameters

in a latent variable framework. EM is an iterative framework where we begin with a set

of initial guesses for the set of parameters Θ, and iteratively improve our estimate by

updating the parameters such that the likelihood of observing the data improves. In our

case, since we have priors over some parameters, this is done in an a posteriori setting.

[Note, as discussed earlier, that the use of terminology here is motivated by the text

segmentation problem– word refers to the higher-level semantic units for our purposes, and

character refers to the lower level acoustic units or AUDs.]

Specifically, recall Equation 2.3, which was the starting point for deriving parameter

updates. We will use this equation to derive update rules for the parameters of our system.

We can optimize these parameters individually, using only the terms from Equation 4.1

that contain these parameters since the other terms would not affect the estimation of the

current parameter being optimized.

Optimizing character emission probabilities Φ

Φ∗ = arg max
Φ

EZ|X ;Θr

[
log
∏
d

∏
i

P (c̄|wdi , ndi ; Φ)
]

(4.4)

We can rewrite the term above and rearrange the terms as shown by the sequence of

steps below (ctij(z) represents the count of the number of times character j was emitted

by word i in the latent variable z):
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Φ∗ = arg max
Φ

EZ|X ;Θr

[
log
∏
d

K∏
i=1

M∏
j=1

Φ
ctij(z)
ij

]
(4.5)

= arg max
Φ

EZ|X ;Θr

[∑
d

K∑
i=1

M∑
j=1

ctij(z)logΦij

]
(4.6)

= arg max
Φ

∑
Z

P (Z|X ; Θr)
[∑

d

K∑
i=1

M∑
j=1

ctij(z)logΦij

]
(4.7)

= arg max
Φ

K∑
i=1

M∑
j=1

∑
d

∑
Z

P (Z|X ; Θr)ctij(z)logΦij (4.8)

Now, the character emission probabilities for different words are independent of each

other and the character emission probabilities for a given word sum to 1. So, we can

estimate the probabilities for each word independently. We rearrange and write the terms

in Equation 4.8 as follows:

Φ∗i = arg max
Φ

M∑
j=1

∑
d

[∑
Z

P (Z|X ; Θr)ctij(z)
]
logΦij (4.9)

We can differentiate the equation above to obtain the optimal solution. However, in

this case, we can use Gibbs’ inequality which states that for 2 probability distributions p

and q,
∑

i pilog(qi) ≤
∑

i pilog(pi), and equality holds when p = q. Thus, we can obtain a

solution to Equation 4.9 by setting the following:

q = Φij

p =

∑
d

[∑
Z P (Z|X ; Θr)ctij(z)

]
∑M

j=1

∑
d

[∑
Z P (Z|X ; Θr)ctij(z)

]
Φij =

∑
d

[∑
Z P (Z|X ; Θr)ctij(z)

]
∑M

j=1

∑
d

[∑
Z P (Z|X ; Θr)ctij(z)

] (4.10)

In order to estimate the parameters now, we still need to be able to estimate the

numerator in Equation 4.10.
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∑
Z

P (Z|X ; Θr)ctij(z) = EZ|X ;Θr

[
ctij(z)

]
= EZ|X ;Θr

[ T∑
t=1

ctt(cj|wi)
]

=
T∑
t=1

EZ|X ;Θr

[
ctt(cj|wi)

]
=

T∑
t=1

P (wt = i)I(ct = j) (4.11)

In the above, I(ct = j) represents an indicator function which has value 1 if the

argument is true and 0 if it is not true. Thus, we see that in the E-step we will need to

estimate the P (wt = i), which is the probability of being in word i at timestep t.

Required to estimate in E-step: Probability of being in hidden word i at timestep t

Optimizing length of words parameter α

In our model, we’ve chosen to model the distribution over lengths of words as a negative

binomial distribution. The negative binomial is parameterized by two parameters – r which

is the number of failures after which generation is stopped, and p which is the probability

of success.

P (X = n|r, p) represents a draw from the negative binomial distribution parameterized

by r and p. n, which is the result of the draw is the number of successes observed before

generation was stopped due to r failures. The distribution is represented as follows:

P (X = n|r, p) =

(
n+ r − 1

n

)
pn(1− p)r (4.12)

As before, we begin with the equation obtained in 2.3 and rewrite the joint probability

within the logarithm using the terms from the joint representation of our graphical model

that contain α. Thus, we have:

α∗ = arg max
α

EZ|X ;Θr

[
log
∏
d

∏
i

P (ndi |wdi ;α)
]

(4.13)

We note here that the presence of the word i as a conditioning variable is to indicate

a procedural detail, since it indicates the correct α parameter to be used to generate the

length n since there is an α corresponding to each of the hidden words. Let us also assume
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that word lengths can vary in a range between nlo to nhi. We can rewrite the equation as

before:

α∗ = arg max
α

EZ|X ;Θr

[
log
∏
d

∏
i

k∏
j=1

n=nhi∏
n=nlo

P (ndi |wdi ;α)ctjn(Z)
]

= arg max
α

EZ|X ;Θr

[∑
d

∑
i

k∑
j=1

n=nhi∑
n=nlo

ctjn(Z)logP (ndi |wdi ;α)
]

= arg max
α

k∑
j=1

[∑
d

∑
i

n=nhi∑
n=nlo

∑
Z

P (Z|X ; Θr)ctjn(Z)logP (ndi |wdi ;α)
]

= arg max
α

k∑
j=1

n=nhi∑
n=nlo

∑
d

∑
i

EZ|X ;Θr [ctjn(Z)]logP (ndi |wdi ;α) (4.14)

The term P (ndi |wdi ;α) is the probability of the observed n given the negative binomial

distribution. As shown before in the estimation of character emission probabilities, this

can be solved using the Gibbs’ inequality. In this case, however, the distribution has 2

parameters, and we need an additional step to solve for those parameters. For a given

word, we can obtain the expected count of the word-length n as
∑

d

∑
iEZ|X ;Θr [ctjn(Z)]

from Equation 4.14. Let cti be the count of length i, and let ctn be the sum of the counts

of all lengths.

Thus, if for word i, we have a set of m occurrences in these paths of lengths n1, n2, ..., nm,

we can estimate r and p using Equation 4.15. p has a closed form solution (Eqn 4.16) but

Eqn 4.17 for r needs an iterative numerical solution1. ψ() is the digamma function)

L =
m∏
i=1

NB(x = ni; r, p) (4.15)

p =

∑m
i=1

ni

m

r +
∑m

i=1
ni

m

(4.16)

m∑
i=1

ψ(ni + r)−m× ψ(r) +m× ln(
r

r +
∑m

i=1
ni

m

) = 0 (4.17)

Required to estimate in E-step: Count of word i and length n, ∀n ∈ {nlo, nhi}

1Note that MATLAB provides a function called negbinfit that can be used to obtain solutions for the
equations below
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We note that, for computational tractability, we are forced to limit the lengths of the

words between a range (nlo, nhi).

Optimization of the super-unigram distribution parameter µ

Again, as before, we can obtain the equation for optimizing µ by retaining the terms

in Equation 2.3 that contain it. This results in:

µ∗ = arg max
µ

EZ|X ;Θr

[
log
∏
d

P (Ud;µ)
]

(4.18)

Using the previous method of derivation, with cti(Z) representing the count of the i-th

observation relevant to the unigram distribution drawn, we can obtain an update rule as

follows:

µ∗ = arg max
µ

EZ|X ;Θr

[
log
∏
d

P (Ud;µ)
]

(4.19)

= arg max
µ

EZ|X ;Θr

[
log

|U |∏
i=1

P (Ui;µ)cti(Z)
]

(4.20)

= arg max
µ

EZ|X ;Θr

[
cti(Z)logP (Ui;µ)

]
(4.21)

= arg max
µ

|U |∑
i=1

∑
Z

P (Z|X ; Θr)cti(Z)logP (Ui;µ) (4.22)

As before, using Gibbs’ equation we can obtain:

q = P (Ui;µ) (4.23)

p =

∑
Z P (Z|X ; Θr)cti(Z)∑

j

∑
Z P (Z|X ; Θr)cti(Z)

(4.24)

It’s not clear at this point what the best selection of µ is. If we consider µ to be a

multinomial over unigram distributions, then the implication of Ui is obvious as the ith

element of the multinomial. A multinomial over unigram distributions is not, however, a

very intuitive choice (even though it is a perfectly reasonable choice). In our work, we’ve

used a unigram distribution as following power-law properties with one parameter s drawn

from N (µ, σ2).

To estimate the N (µ, σ2) for the power-law parameter s, we compute expected word
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(event) frequencies Efi
for all events for each AUD stream. This can be done using the

forward-backward table as shown in Equation 4.25 and 4.26. The Zipf parameter is es-

timated as the slope of the best-fit line between the log-expected-frequencies (Y ) and

log-rank (X = [log rank 1]T ). The set of s values in the corpus are used to estimate the

µ and σ2.

E − Step : count(wi) =
T∑
t=1

P (state = Si, t) (4.25)

Efi
=

count(wi)∑
j count(wj)

(4.26)

M − step : sd = (Y X+)0, ∀d ∈ D (4.27)

µ∗, σ2∗ = arg max
µ,σ2

i=D∏
i=1

P (si|N (µ, σ2)) (4.28)

Without loss of generality, we could have imposed any other distribution on s as well.

Required to estimate in E-step: Counts of Efi

Latent Variable Estimation in the Learning Framework

Our discussion so far has wished away the computation of expected counts as a task to be

carried out in the E-step. Based on the derivations of the update rules, we can compile

the list of required counts to be obtained for updation of parameters. These are:

• Probability of being in hidden word i at timestep t

• Count of word i and length n, ∀n ∈ {nlo, nhi}

• Counts of parameter s or relevant terms

Given our parameters from the previous iteration of the EM algorithm, we would like

estimate the above terms. The process of estimation of these required counts actually

turns out to be fairly straightforward due to the modeling choices we make, that allow us

to model the variable length of events in terms of AUDs with an HMM model efficiently.

Once we do this, the process of estimation of the sufficient counts fall into the HMM

paradigm where the Forward-Backward tables can be constructed and used to efficiently

estimate them.

First, we construct an automaton for each of the K events in the higher level unit

vocabulary– an example is shown in Figure 4.3. This example allows a maximum length of

3, and has 4 states for lengths 0 to 3 and a fifth dummy terminal state. The state for length
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Figure 4.3: An example automaton for a word of maximum length 3. a, b, c and d represent
the probabilities of lengths 0 to 3 given the parameters r and p for the negative binomial
distribution.

02behaves as the start state, while F is the terminal state. An AUD is emitted whenever

the automaton enters any non-final state. The transition probabilities in the automaton

are governed by the negative binomial parameters for that event. Based on these, states

can skip to the final state, thus accounting for variable lengths of events in terms of number

of AUDs. We define S as the set of all start states for events, so that Si=start state of

event i. Since we model event occurrences as bags of AUDs, AUD emission probabilities

are shared by all states for a given event.

Each of the states that correspond to a length between the minimum and the maximum

can transition directly to the final state for that event (word), thereby allowing modeling

of the variable length property.

Now, in order to decode an AUD (character) sequence in terms of the events (words),

the automatons for the events are now put together as shown in Figure 4.4– the black circle

represents a dummy start state, and terminal states for each event can transition to this

start state. Pd(wi) represents the probability of the event wi given the unigram distribution

for the document d. Given a sequence of observed tokens, we can use the automaton in

Figure 4.4 to compute a forward table and backward table, in exactly the same manner as

used in HMMs. At training time, we combine the forward and backward tables to obtain

our expected counts, while at test time, we can use the Viterbi algorithm to simply obtain

the most likely decode for the observation sequence in terms of the latent events.

Let us refer to the forward table as α. α is parameterized by 2 arguments, a state i and

a timestep t, where the corresponding entry in the table provides the probability of being

2We do not permit length 0 in our experiments, instead forcing a minimum length nlo.
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Figure 4.4: An automaton with the K word automatons in parallel for decoding a token
stream

in state i at timestep t having seen the observed AUD sequence ct1. Thus:

α(i, t) = P (state = i, t|ct1) (4.29)

Let β refer to the backward table, which is similarly parameterized, and β(i, t) is the

probability of being in state i at timestep t having observed the sequence cnt+1.

β(i, t) = P (state = i, t|cnt+1) (4.30)

We can compute the likelihood of being in state i (and extend that to being in word i)

at time-step t given the entire observation sequence:

P (state = i, t) =
α(i, t)× β(i, t)∑
j α(j, t)× β(j, t)

(4.31)

P (wi, t) =

∑
k∈wi

α(k, t)× β(k, t)∑
j α(j, t)× β(j, t)

(4.32)
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The forward-backward tables are constructed with our current estimates and the suffi-

cient expected counts are obtained using these estimates, which are then used to update

the parameters for the next iteration.

4.3 Experimental Results

In this section, we first present a pair of oracle experiments to verify that the joint seg-

mentation and vocabulary learning model performs as expected. Then, we present results

using the 2-level hierarchical model on the audio retrieval task.

Oracle Experiment 1: We picked five words {the, cat, ate, blue, man} (the sequence

of words in the set is shown in order of their frequency ranks) and used our model to

generate 100 documents (s ∼ N (1.5, 0.2)) with a 100 tokens each, and use this as the data

to learn words unsupervised. After running the learning algorithm over this dataset for 25

iterations, the likelihood appears to not change very much in subsequent iterations. We

terminate the training process after 25 iterations and use the learnt parameters to decode

the training data.

We analyzed the training process based not only on how well the learnt parameters are

able to decode the training data to recover the true word boundaries, but also on how good

the learnt parameters were compared to the true parameters. Figure 4.5 compares the true

distribution of the character emission probabilities to the learned distributions. We note

that the results of learning are sensitive to initialization as is expected with EM-based

algorithms, but end up fairly close to the true parameters. Since the true distributions

are set with awareness of the characters present in the word, the distributions for each

word are sparse. On the other hand, for the learnt distributions, there is a finite, non-zero

probability for each character being emitted by each of the words, so the matrix isn’t nearly

as sparse. However, we do notice that the higher-probability characters in both matrices

are very similar. This shows that our learning process does result in nearly the correct

solution.

The segmentation results are harder to interpret since the segment boundaries are not

always correct, but often missing by one character to either side. It appears that the

initialization is significantly to blame for this, in the general case. This is because if the

most frequent word is “the”, as in our case, but no word is initialized to have relative

probabilities that similar to the characters “e”, “h” and “t” for the true word “the”, then

the correct segmentation will not be retrieved very often. However, in terms of parameter

estimates, on average, the system seems to perform quite well. The average error per
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Figure 4.5: Oracle Experiment 1 character emission distribution for the 5 words (Top)
True distribution; (Bottom) Learnt distribution

parameter of the character emission matrix is 0.03 averaged over 5 random initializations.

Oracle Experiment 2: We performed a similar experiment with web URLs concate-

nated together, since web URLs have a clear structure beginning with “http://” or “www”

and containing “.com”. Again, the learner automatically identified the most frequent word

to be one which had highest emission probabilities for {‘.’, ‘c’, ‘o’, ‘m’} and the second

most frequent word with {‘h’, ‘t’, ‘p’, ‘/’, ‘:’, ‘w’} characters having high probabilities. The

respective segments identified for those words while decoding conforms to our expectations

and usually corresponded to “.com” and “http://www”.

Audio Retrieval Task:

The entire MED11 and BBC data were decoded using the best performing AUDs model,

and the sequences of AUDs were then used to learn models for the higher level semantic

units for each of the datasets. Based on the learnt models, we can decode the data in

terms of these events. Since there are no annotations available at these levels, the dis-

covered events are not assigned any specific semantics, but listening to multiple instances
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System Average AUC in BBC Average AUC in MED11
PHONE 0.3011 0.2614
FOLEY 0.2872 0.2921
VQ 0.2143 0.2339
AUDs 0.1744 0.2174
EVENT 0.1911 0.2297
DISC–AUD–2 0.1961 0.2512
EVENT–COMB 0.1729 0.1842
DISC–AUD–COMB 0.1732 0.2214

Table 4.1: Performance of the events layer, individually, and in combination with the
AUDs, compared to the baseline systems for audio retrieval

concatenated together shows similar phenomena being captured. One such event consists

of sequences of sounds that relate to crowds with loud cheering and a babble of voices in

a party being subsumed within the same event.

We use the decoded AUDs and event sequences for each file to characterize the data

again using the unigram bag of words approach, and evaluate the effect of using the the

event layer individually (EVENT, respectively) as well as when combined with the AUDs

layer (EVENT–COMB). The setting EVENT–COMB simply concatenates the feature vec-

tors from the AUDs layer and the EVENTs layer, and this characterization is used for

training and testing of the category specific retrieval systems.

We also compare these results to the results obtained when using the AUDs-like learning

process to learn the higher layer units, without the use of a power-law prior, as described

in Section 4.2.1. We refer to this setting as DISC–AUD–2, referring to the second layer of

discrete AUD sequences. We also combine the units learned in this layer to the original

AUD units, and refer to that setting as DISC–AUD–COMB.

Table 4.1 augments the performance table with the performance of the various ap-

proaches to learning the events layer and using the events layer for characterization of the

data, individually and in combination with the lower-level AUDs on the datasets of inter-

est (lower AUC is better). The numbers in this table simply represent the best number

obtained for each of the settings– the best numbers for the EVENT setting was obtained

when using 128 events on MED11, and using 32 on BBC. The EVENT–COMB setting im-

proves on the AUDs only or EVENT–only setting on both datasets, but the improvement

on the MED11 dataset is statistically significant (p < 0.05).

While there is considerable improvement when using the information from the events

layer in conjunction with the AUDs layer in both datasets, the effect of the events layer in

improving performance over the AUDs layer alone is far more pronounced on the MED11
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Figure 4.6: Effect of changing the size of the event vocabulary over 1024 AUDs on using
the events layer only for characterization of recordings as well as in combination with the
AUDs layer, on the MED11 dataset. x-axis represents event layer vocabulary size, while
y-axis represents the AUC (lower is better)

dataset as opposed to the BBC dataset. Our initial expectation was that, on the BBC

dataset, this was due to having selected the wrong vocabulary size and that optimizing the

hyperparameter for the size of the vocabulary would lead to a significant improvement at

the right vocabulary size. This, however, turned out to not be the case, and it appeared

that there was very little change with varying the size of the event vocabulary for the

higher layer, although performance degraded really quickly above 128 units. We suspect

that this may be due to the fact that the MED11 dataset contains categories that are

far more strongly semantic that the categories in the BBC dataset. Indeed, looking at the

category-wise performance on the BBC dataset shows that there is almost no change in the

numbers for the categories of animal, warfare and water. These categories, while broadly

semantic, do not contain enough variation in terms of content of individual recordings that

the AUDs, which look for sequential local patterns cannot already characterize well.

On the other hand, performance on the MED11 dataset improves rather significantly

when adding this additional layer. Figure 4.6 shows how changing the size of the event

vocabulary affects the performance on the audio retrieval task for both the events layer

alone used to characterize the file, as well when it is used in conjunction with the AUDs

layer. Note that the performance of the AUDs layer alone would be a line parallel to the

x-axis with y=0.2174. We make 2 observations:

First, we see that for all settings of event layer vocabulary size, performance when

combining the event layer with the AUDs layer improves over the AUDs layer alone. This
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is encouraging in that it suggests that there is additional semantic information to be

captured over what the AUDs capture, and that the power-law driven events layer can

capture it to some degree, even at its weakest. We note that this is not the case for DISC–

AUDs–COMB setting which, even at its best, is worse than the AUDs alone. This shows

that while there is significant structure available to be captured, looking for canonical local

patterns, which is what the left-to-right topology does for the DISC–AUDs settings, is not

a good idea, at all.

Second, we note that the event layer alone never outperforms the AUDs layer alone.

This is a slight cause for disappointment, since there is reason to believe that the right

amount of higher level structure should provide sufficient semantic information to overcome

the more specific acoustically-based semantic information available in the AUDs layer. This

turns out to not be the case, at least when using 1 layer on top of the AUDs.

We mentioned earlier that this formulation would enable us to continue building the

hierarchy iteratively on top of the newly induced units. Our next set of experiments

investigated the benefits of adding additional layers, iteratively. In this description, we

will refer to the higher layers simply by their height above the AUDs, which form layer 0,

since they are the input to the system. The layer that we referred to as the Events layer

will now be referred to as Higher–Semantic–Layer–1 (HSL1, henceforth), and the layer

above it will be referred to as HSL2, and so on.

We note, first, that using HSL4 or above actively hurts both datasets. For the BBC

dataset, the best results were obtained using HSL2 with 32 units over HSL1 with 32 units

over 64 AUDs, whereas for the MED11 dataset, the best results were obtained with using

HSL3 with 32 units over HSL2 with 32 units over HSL1 with 128 units, over 1024 AUDs.

For both datasets, the best performance was obtained when using the characterizations

from all of these layers combined. The improvement in performance on MED11 with HSL3

was 0.0015, which may not be worth the rather expensive training.

We observe, also, that on both datasets, the settings in terms of number of units for the

hidden higher layers for which optimal retrieval performance is attained appears to favor a

rapid narrowing in terms of the number of units in the vocabulary. It is not clear, at this

point, what the specific reason for this is, but there are a few potential reasons that might

be the cause of this.

First, the higher one goes in the semantic hierarchy, the more high-level the inference

becomes. It is possible that the number of concepts at that level drops off quickly as one

goes higher. Consider, for instance, the level at which one thinks of movie scenes. At this

level, the number of different types of scenes can probably be counted on one’s fingers. In
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fact, once we move beyond the 2 lowest levels, it is conceivable that the size of the concept

space is rather small. This is because the lowest level is that of identifying acoustically

consistent sound types, and it is easy to envision there being a large number of different

sounds. Similarly the layer just above this could be considered as one that disambiguates

the specific object that produced the low-level sound (e.g. an ambulance producing a siren

sound unit, or a hammer producing a thwack sound unit). Once we move above this,

however, the space of higher-level concepts could be seen as narrowing much quicker.

Second, as we go higher in the hierarchy, the problem of noisy transcriptions propa-

gates through the levels. The decodes over the noisy AUD transcripts might potentially

propagate the transcription errors higher, and since the length of the sequence as one goes

higher will be shorter for a given recording (each higher level unit will span several lower

level units), the overall training data size decreases quickly. As such, accurately identifying

semantic units in the presence of noise with fewer samples available becomes increasingly

harder.

Finally, it is possible that the patterns that one is looking for are not always tem-

porally neighboring. Due to computational demands, we forced the maximum length of

any Higher–Semantic–Layer to not be greater than 10 units of the lower semantic layer.

Thus, at the lower levels, HSL 1 can, at best, span about 3-4 seconds of audio. While this

may often be enough for low-level semantics, it may not be able to deal with cases where

the semantic (disambiguation) requires longer-range processing. This can be considered

analogous to the case of non-projectivity in natural language parsing of text, when parse

constituents can have crossing brackets. One of the limitations of our algorithmic frame-

work is that it assumes projectivity in the semantic space, and cannot deal with this kind

of potential long-range semantic dependencies.

4.4 Discussion

Although the results above only show gains obtained in objective evaluations on a standard

large-scale retrieval tasks, the “events” discovered by the learning algorithm have deeper

significance– they represent automatically learned characterizations of longer-scale acoustic

phenomena with semantic import. This work presents an initial approach to extracting

such deeper semantic features from audio based on local patterns of low-level acoustic

units, building up the hierarchy incrementally by inducing one layer at a time. While this

approach certainly has benefits (significant reduction in error on a standard task!), it also

appear to saturate quickly (very small gains after about 2 higher layers).
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While the reasons for retrieval performance saturation are not immediately clear, it is

possible that the propagation of errors as each layer is individually learnt is responsible for

this. In Chapter 5, we present an approach to learning the entire hierarchy jointly, that can

be expected to alleviate concerns about error propagations by maximizing likelihood of the

observations given the entire hierarchy. We will then compare the benefits and limitations

of the 2 different paradigms in the discussion section of Chapter 5.

The effect of the development of an algorithm for inducing higher level structure imme-

diately raises a few possible directions of future work to consider. First, since the discovered

latent events and acoustic units do not have true labels, it would be interesting to explore

the process of leveraging the hypothesized segments to generate labels, either via asking

annotators employed explicitly for this purpose, or via crowdsourcing.

Second, the current approach described in this chapter to learning higher units requires

the optimization of a hyperparameter that governs the size of the vocabulary at each level.

While this is the standard approach for parametric systems, it is not quite the natural

process that humans use in learning, in general, where the observation of new data results

in increasing the size of our conceptual vocabulary to explain the new observations. Such

a system is inherently non-parametric, growing its lexicon in a completely data driven

manner, and it would be ideal to develop a framework that can perform non-parametric

learning.
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Chapter 5

A Full Hierarchy Induction Approach

Chapter 4 described our approach to a paradigm for inducing higher level structure over the

low-level acoustic unit descriptors, using a layer-wise training approach where individual

layers of the hierarchy are incrementally learnt one layer at a time. We start with the AUDs

as the lowest layer, and the learn a set of units for the layer above it. In our generative

model, the units in this layer generate the AUDs, which in turn, generate the observed

audio.

The approach presented, however, makes no assumptions about the kinds of units

in the lower or higher layers, except in terms of modeling semantics in general using the

assumption that the higher layer represents a higher semantic abstraction from the observed

sound data. Thus, we can use that approach iteratively to use the higher semantic layer

learnt over the AUDs to now be a discrete sequence input to train an even higher layer, and

so on. However, as noted in the discussion of Chapter 4, this might result in one important

problem. Since each of the individual layers are learnt independently of the other layers,

modeling or decoding errors from the lower levels might propagate as we go higher in the

hierarchy, and recovery from these errors might become increasingly difficult. Similarly,

the discrete symbol sequence that is input to any higher layer learning algorithm is the

best decode obtained from the layer below it. While this is a reasonable assumption, we’ve

noted earlier that in the audio space where there might be a number of different semantic

sources producing sound, it is often the case that a decoder will not pick up on the specific

source that provides the most semantic information about the recording content.

In this chapter, we explore an alternate paradigm for learning the higher layers of our

framework, where each of the higher layers is not learnt individually. Instead, the learning

process is so designed that the entire hierarchy that we seek to induce over the low-level

AUDs are jointly learned. Again, for this work, we assume that the decoding of the low-
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level acoustic units from the audio (in our case, we use the AUDs as the low-level units,

but the approach is general enough to be applied to any discrete unit sequences) is done

as a pre-processing step.

As we shall discuss in the subsequent sections, there are 2 key differences to the learning

process used here, as opposed to the one used in Chapter 4. The first is that the entire

hierarchy is learnt jointly here, as opposed to the approach in Chapter 4, where the hier-

archy was induced layer by layer. The second difference is that some of the assumptions

about the hierarchy and the semantic interpretation of the units are modified slightly in

this work (we shall discuss this in detail, later in this chapter) and the set of semantic units

are shared across layers, whereas in the previous chapter, each layer had its own unique

vocabulary.

The rest of this chapter is organized as follows: in Section 5.1, we introduce our ap-

proach and the guiding principles behind the modeling paradigm chosen. In Section 5.2, we

discuss some prior work to motivate this formulation. We present our learning framework

in Section 5.3, and finally our experimental results in Section 5.4. We conclude with a dis-

cussion in Section 5.5, where we discuss not just the main lessons from this approach, but

also a discussion of the relative strengths and weaknesses of the 2 paradigms for learning

hierarchichal structure presented in this chapter and the previous one.

We note that part of the work described in this chapter has been published in Chaudhuri

and Raj [2013].

5.1 Hierarchical Structure Induction over Acoustic Units

In this section, we introduce the problem of inducing a full hierarchical structure starting

with low-level acoustic units. In our work, we use the acoustic unit descriptors, described

in Chapter 3 as the low level units, but one could instead use any other low-level units, as

long as the audio can be represented with a sequence of such units. While traditional audio

content analysis has relied primarily on shallow analysis of the observed acoustics, based

on detection or single-level latent variable models, in this paper, we present a hierarchical

paradigm for content analysis that can be used for deeper analysis of the audio content. We

note again that this kind of deep structure induction is a novel paradigm for semantic audio

tasks, and that in past work, most approaches have worked directly off of the observed

acoustic unit layers Chang et al. [2007], Chaudhuri et al. [2011], Pancoast and Akbacak

[2011], Slaney [2002], Zhuang et al. [2011]. In that sense, a comparison of performance

with the baselines described earlier (Phone, Foley, VQ, AUDs) are not a directly valid
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comparison since the information that those models seek to capture is largely acoustic

whereas the information the higher level structure attempts to capture is largely semantic.

On the other hand, the goal of all of these models is to capture semantic information, and

using acoustically derived units for semantic tasks assumes that the observed acoustics map

directly to the semantics, whereas our models for deeper analysis claim that the semantic

information available at the acoustic levels is limited and that better information can be

obtained by extracting more semantically focussed units. Thus, it is fair to compare these

models for deeper analysis with the various acoustically derived baselines, since the goal

they seek to accomplish is the same.

In modeling the higher levels of a hierarchical structure, we posit that the audio content

contains a wealth of semantic information in its structure and sequence that can be used

for analysis for various semantic tasks. The analysis of the structure and sequence can be

performed independently of any specific audio processing task, and (as discussed in the

various examples in earlier chapters) we believe that such an analysis process is similar to

the kind of analysis humans perform in understanding audio content. Further, we believe

that this kind of task-independent analysis is necessary for the development of a truly

intelligent system that is able to continuously stay aware of its context, so that it can

make use of this context to respond to any specific situations that may arise.

Recall the kind of analysis that we described in Chapter 1 as being the goal of our frame-

work, as shown in Figure 5.1, using an example from baseball audio. The lowest level of

this tree structure corresponds to low-level, generalized acoustic units (AUDs), which may

not carry discernible semantic information individually, but the sequences or distribution

of the local patterns of these units should capture higher-level semantic information– we

refer to these higher-level patterns as events1. These event units themselves might contain

certain higher-level patterns, corresponding to still more complex events. In most natural

audio, these events themselves do not occur in isolation. They are related to each other in

different ways, and event context provides cues for possible future events (event dependen-

cies are indicated by arrows in the figure). Further, the event sequences themselves should

carry information about the overall semantic content or class of the audio.

The primary issue in estimating such structures for audio is a scarcity of richly anno-

tated data with information at the various hierarchical levels that could be used to provide

supervision for learning the hierarchy in a supervised setting. To address this issue, the

various algorithms proposed in this dissertation all deal with unsupervised models for struc-

1Note that our reference to events refers to higher level units in the hierarchical structure that are
referred to as being part of the events layer, as distinct from query event categories in the BBC and
MED11 datasets.
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Figure 5.1: An instance of hierarchical analysis for audio.

ture induction that can leverage easily available, but unlabeled, data. The work that we

present in this chapter is no different– given simply an audio corpus, we first decode the au-

dio recordings to obtain sequences of AUDs. The algorithmic framework presented in this

chapter for a full hierarchy induction takes these AUD sequences as input and estimates

corresponding, hierarchical tree structures, unsupervised.

Whether the structure induced by such unsupervised models would be consistently

semantically coherent or human-interpretable is unknown, at this point in time, due to the

lack of available annotations to use as ground-truth, or the availability of a framework for

obtaining human annotations quickly to indicate the semantic coherence of the induced

structures. Nonetheless, there are compelling motivations behind such approaches. The

process of building richly annotated, hierarchically labeled data sets would normally be

an expensive and time-consuming one, but the output of unsupervised approaches can

be used both to obtain labels for and verify for coherent semantic units, as well as use

them to seed semi-supervised approaches, thus building up labeled resources. Besides,

while the presented approach makes no claims toward modeling human approaches to

scene understanding, the extracted co-occurrence information and contextual cues provide
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a potential basis for comparisons to human reasoning processes in future work.

While an ideal evaluation framework would directly measure the generated structure

by comparing it with ground truth structures (generated by annotators), such data is

currently unavailable and expensive to obtain. We propose, instead, to use the structured

information generated by our models as features for characterization of audio for a semantic

audio retrieval task, and we use this proxy measure as an estimate of how well the structure

induction process works.

While semantic audio tasks are an obvious application of the deeper analysis obtained

from the techniques described in the previous chapter and this one, we believe that the

hierarchical structures have considerable significance beyond the specific applications and

improvements obtained on standard tasks. These hierarchical analysis structures are im-

portant for automated systems to develop a better understanding of the world around it,

and the information available in the evolution of acoustics about various aspects of the

world, including (but not limited to) understanding the various manifestations of indi-

vidual objects via acoustics, and what the presence of certain objects in specific contexts

might tell us about future events.

An instance of this has been discussed before– consider the various different kinds of

actual acoustics that a gunshot might produce. In fact, there are a number of different

gunshot sounds in the warfare category of the BBC dataset. However, a monitoring system,

for instance, does not need to limit itself to the identification of the gunshot, instead

actively monitoring the acoustics around it to determine if an alarm should be raised.

If the gunshot sound is followed by people screaming, and general sounds of panic, then

it should be able to learn that such scenarios are usually followed by the arrival of law-

enforcement authorities, as evident from the sounds of sirens. Thus, when it encounters a

new instance of a similar situation, it could directly raise an alarm to alert the authorities

to such an incident. On the other hand, gunshot sounds on shooting ranges are likely

to not be a cause for alarm, and an automatic system should be able to learn that from

data as well. Designing intelligent monitoring systems in this manner would be extremely

beneficial in avoiding many hours of domain specific adaptation of such systems.

We note that while the hierarchical structure induction task is novel for audio, anal-

ogous tasks have been tackled by researchers for text parsing. We discuss some of these

approaches in the next section.
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5.2 Related Work

Various models can be developed for the individual higher order layers for the framework in

Figure 5.1, such as the one described in Chapter 4 Chaudhuri and Raj [2012]. Unlike that

approach, which estimates higher levels in the hierarchy one layer at a time, the method

outlined in this chapter estimates the entire tree structure jointly following an approach

similar to one used in text parsing.

As we discussed briefly in Section 2.2.1 of Chapter 2, the task of hierarchical structure

induction for audio bears a number of similarities to the syntactic text parsing task. There

are 2 critical differences, however, between these 2 tasks. First, the task of learning a

syntactic hierarchy for text lends itself to structured models in a simpler manner than the

task of learning a semantic hierarchy for audio, because the low level units for text are

ground truth words, whereas low-level units for audio have to be inferred by a decoding

process, likely leading to noise in the transcripts. In addition, the same semantic theme

might manifest itself using various artistically guided manifestations, whereas linguistic

structure can be expected to be somewhat more strongly governed by the laws of language.

Second, in the present day, large treebank corpora have been constructed for the syntactic

parsing task that are available for supervised training as well as evaluation of the structures

learnt (whether the learning was done in a supervised or unsupervised setting). This

kind of feedback in terms of a quantifiable measure of error of the learning algorithm

is extremely valuable for the training of models, and is not available for semantic audio

structure induction tasks. The specific form of such a corresponding treebank for audio

is certainly unclear, at present, and (we hope) will be a topic of significant debate in the

future. One possible direction would be strongly semantic with labels for individual sound

types at the lower levels (e.g. sounds-like-a hammer, sounds-like-an alarm), and higher

semantic concepts at the higher levels of the hierarchy (e.g. batting in run, baseball game,

horror scene).

There are 2 somewhat disjoint problems in the syntactic parsing domain. (Or, at least,

problems that are tackled independently.) The first is the problem of predicting parts-

of-speech (POS) for the words in the text, followed by the second problem of modeling

of syntactic structure between the various words, including the identification of various

phrases, their boundaries and constituents. This is somewhat analogous to our case, as

well, where the observed audio is first decoded as a sequence of AUDs (analogous to the

parts-of-speech) and this is followed by using the AUDs to infer a higher level structure.

Much like the approach we follow in inducing higher level structure, similar early ap-

proaches for syntactic parsing treated the POS induction problem as solved. Various
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different distributional clustering approaches had been used for part-of-speech induction

Finch and Chater [1994], Schutze [1995] and had resulted in high-quality clusters, though

the clusters did not always accurately resemble what one would expect using their world

knowledge of language and linguistic structure. The decision to treat the POS tagging

problem as solved has the benefit of reducing sparsity issues over the English vocabulary.

On the other hand, the actual word tokens are replaced by their POS, and experimental

results have shown that structure induction even in supervised settings has often performed

poorly.

Grammar induction approaches use the POS sequences as input and attempt to un-

cover tree structures unsupervised. Such early unsupervised approaches typically used the

assumption that the tree was generated by a context-free grammar, and can typically be

grouped into 2 main paradigms. The first typically uses notions of prior linguistic knowl-

edge to attempt to fix the structure of the grammar in advance, Carroll and Charniak

[1992], Lari and Young [1990]. They then attempt to find the set of parameters such

that the likelihood of observing the sentences given those parameters is maximized. The

second, and generally more successful paradigm incorporate a structural search to hypoth-

esize grammar modification favoring shorter analyses and penalizing length of the analysis

result. The primary weakness of the latter approach was that they tend to grow the struc-

tures bottom up (similar to the approach that we adopted in Chapter 4), and how well the

system performed overall depended heavily upon how good a job it did at predicting local

structures in the intermediate steps.

In subsequent work, improved models were developed for generating tree structures,

that were based on the hypothesis that significant chunks of the induced hierarchy corre-

sponded to coherent categories (such as noun or verb phrases) that occurred in distinctive

environments (e.g. a noun phrase occurs typically between the beginning of a sentence

and a verb phrase). The inside-outside algorithm Baker [1979] has been extensively used

to model this intuition for EM estimation of probabilistic context-free grammars and is

used in estimation of discriminative models for context-free parsing. In the inside-outside

algorithm, the product of inside and outside probabilities is the probability of generating

the sentence with a j constituent spanning words p through q: the outside probability

captures the environment, and the inside probability the coherent category. Thus, if the

system has a good idea of what a specific coherent category looks like, and the contexts it

appears in, then if a new manifestation of that category were to occur in a typical context,

the context should guide the learning system to identify this novel manifestation as an

instance of the same category.
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However, in the learning process, especially in the earlier iterations, there is only limited

clarity of the various contexts in which different structural categories occur. Thus, the

context does not force the system enough to correctly identify instances of such local

structure. Since the EM is prone to local optima, if the early iterations lead the learning

algorithm in the wrong direction, it is unlikely to recover from it.

To deal with this kind of setting, the constituent-context model (CCM) was introduced

for unsupervised syntactic parsing of text Klein and Manning [2001, 2002]. We experi-

ment with using this model for audio analysis with some modifications to deal with audio

modality. We will now explain the CCM and its application to the task of semantic audio

structure induction in the next section.

5.3 Proposed Model and Learning Framework

We described the similarities of various aspects of the task of semantic structure induc-

tion for audio to the task of syntactic structure induction for text. In this section, we

describe the adaptation of one of the successful unsupervised syntactic structure induction

algorithms (the constituent context model, Klein and Manning [2001] to our task.

This algorithm proposes to overcome the problem introduced by weak supervision in

the early iterations of the inside-outside algorithm by introducing slight modifications to

the way the environmental context guided the identification of different instances of a

particular category. Before we describe the specific model, however, we remind the reader

of the discussion in Section 4.1.1 of the significant differences between the audio and text

domains, introduced by noisy decodes and a lack of canonical structure. The first is still

a problem in this setting, whereas we note that syntactically coherent categories of text

do not have clear canonical structure either. However, we do believe that the degree of

inherent variation in the semantic task is significantly greater than for the syntactic text

analogue. As a result, our adaptation of the CCM should be able to deal with these

problems.

We begin by first estimating the lowest level acoustic units (indexed by a in Figure

5.1), to convert the continuous audio sequence to a discrete representation. The process

of inducing the higher-level structure works on top of this representation, and we show in

our experiments in Section 5.4 that features derived from this structure prove effective on

the semantic audio retrieval task.

Given the low-level acoustic units for an audio recording, the task of inducing a tree

structure can be divided into two tasks– first, we need to decide constituent identity,
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i.e. which and how many of the consecutive low-level units should belong to the same

higher-level constituent unit; and second, we need to decide the label for the constituent.

This second step is distinct from the challenges that are part of the syntactic text parsing

framework. Since syntactic parses are evaluated on large treebank corpora with sentence

structures with various chunk boundaries (start and end locations are marked in the corpora

for all the various sub-sentence level units of interest), evaluation is done by calculating

the number of units that correspond to the correct start and end markers, as well as error

metrics defined over the degree of error in identifying boundaries.

While the two tasks are correlated, the task of labeling the constituents is the easier of

the two, since the distribution of the lower-level acoustic units within the constituents can

be used to cluster the various constituents. The task of deciding constituent identity is

significantly harder in our case, because the process of estimation the lower-level acoustic

units is typically noisy; unlike text, where the observed surface forms typically correspond

to ground truth, the observed audio can contain noise both in terms of innate variations in

semantic content, as well as additive background noise that can cause errors in estimation

of the lower-level units.

We do not explicitly deal with the problem of noisy decodes in the first stage of our

model which works on estimating constituent boundaries. We assume, instead, that a

sufficient number of constituent cues are present to allow the identification of constituents

over a large enough window, where the window size behaves as an extensible buffer within

which enough of the characteristic AUD units should occur to enable identification of

appropriate boundaries of the constituent. Thus, the process of identification of boundaries

is expected to result in correct, but noisy, constituents, for which we then need to obtain

labels so that we can characterize the recording in terms of the units in the structure for

any task of interest. (Of course, this would not be necessary if we could directly evaluate

the structure using boundaries provided in the ground truth annotations within a corpus.)

This second step of obtaining labels corresponds to a clustering task that we shall shortly

describe, where we present an approach to deal with the presence of noise in the constituent

units to accurately identify constituent sequences that represent the same semantic unit.

As is typically assumed in text parsing applications, our proposed model also relies on

two key assumptions:

1. The assumption of projectivity, i.e. that constituents of a parse do not cross each

other

2. The assumption of strength of contextual cues, i.e. that constituents occur in con-

stituent contexts.
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Figure 5.2: An illustration of constituents and contexts from Klein and Manning [2001]

In the following subsections, we present our approaches to modeling the 2 tasks– first,

we present a log-linear model for identifying constituent boundaries within a tree struc-

ture from the data in Section 5.3.1, followed by a description of how label identities are

associated to these constituents in Section 5.3.2.

5.3.1 Tree induction using the CCM

Let A be a sequence of the estimated lower-level acoustic units (AUDs), such that for any

given recording, A = a1a2...ani
. Every subsequence of Ai occurs in some linear context

c, c(Akj ) = aj−1Akjak+1, where the context elements correspond to the adjacent acoustic

units for the subsequence and the AUD units corresponding to Akj are the constituents. To

understand what is specifically meant by constituents and contexts, we refer to Figure 5.2

from Klein and Manning [2001], which shows the set of various constituents and contexts

for a English sentence.

Unlike the way constituents are modeled in Klein and Manning [2001], we model the

constituents as a bag of units, using only presence information. This is because the hard

sequence based constituent characterization requires one specific sequence in terms of the

AUDs. This is problematic in the semantic audio space for 2 reasons– first, the size of the

vocabulary of the POS tags is fairly small (about 40) whereas the size of the vocabulary of

AUDs is quite large (1024 for MED11). Thus, having a constituent of size 3 would already

imply a constituent feature set size of 1 billion units, which would surely lead to extremely

high variance. Second, the noise in terms of decodes would introduce random AUDs within

the sequence that would add further variance to the process of estimating weights. To avoid

these issues, we model the constituent as a bag instead of a canonical sequence. Note that
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there is still noise present in the form of AUDs introduced in the decode that should not

be part of the sequence; we do not deal with this at this stage, instead leaving that to the

second stage where clusters are induced over the set of constituents.

Thus, we can view any tree t over a sequence A s as a collection of sequences and

contexts. Good trees will include nodes whose yields 2 frequently occur as constituents

and these constituents are frequently surrounded by expected contexts. To formally model

this, we use a log-linear model with the form for the conditional distribution being as

shown below:

P (t|A,Θ) =
exp(

∑
{Ak

j ,c}∈t
λAk

j
fAk

j
+ λcfc)∑

t:yield(t):A exp(
∑
{Ak

j ,c}∈t
λAk

j
fAk

j
+ λcfc)

(5.1)

Thus, for each tree, we have one feature fAk
j

for each constituent subsequence Akj in

the tree, and its value is the number of nodes in t with yield Akj , and one feature fc for

each context c representing the number of times c is the context of the yield of some node

in the tree. Joint features over the context and the yield are not used, and no distinction

is made between the constituent types at this point.

We model the conditional likelihood of a tree t as P (t|A,Θ), where Θ = {λAk
j
, λc},

∀{j, k} that form constituent subsequences. We use an iterative EM-like procedure to find

the best parameter estimate given the observed acoustic unit sequences for the given data.

The parameter set Θ is initialized and each audio recording is initialized with a random

tree structure over the observed acoustic unit sequence for each recording. In alternating

steps, then, we find the the best parameter update Θ∗ and the best guess for the 1-best

tree structure for each of the acoustic unit sequences, given the updated parameters, using

a dynamic program. For any Θ, this produces the set of tree structures T ∗ that maximizes

P (T |{A},Θ). Thus, P (T ∗|{A},Θ) ≥ P (T ′|{A},Θ) (where, T ′ refers to the prior estimate

of the set of trees for the set of audio recordings {A}). The iterative process then fixes

these estimated tree structures to update the parameters. Given the choice of exponential

family in Equation 5.1, we do not have a closed-form update rule for the parameters, and

will need to adopt a numerical solution for updation, such as conjugate gradient.

Due to the varied linear contexts that can occur in the lower-level acoustic unit se-

quences, smoothing plays an important role in determining the quality of the induced tree

structures. The current system can model arbitrarily long yields, which occur infrequently.

The corresponding parameters for these yields may not significantly change from their

2The yield of any non-terminal node in a tree structure refers to the sequence of terminals produced
by the subtree rooted at the non-terminal node.
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initial choices, in spite of multiple learning iterations. Ideally, we would like the weights

for unlikely occurrences to have very little influence, by making them as close to zero as

possible, thus skewing the distribution of values in λAk
j

towards low values.

In the conjugate gradient setting, parameter estimates are slow to converge and difficult

to smooth with desired priors. Thus, we adopted a different approach that proved to work

quite well using the simple smoothed relative frequency estimates, where λk = count(fk)
count(k)+M

.

This estimation process ensures that the parameter values lie between 0 and 1, providing

a bias toward non-constituency for long subsequences using high values for M .

Once the underlying most-likely tree structures have been computed for all the audio

recordings given their representation as sequences of low-level acoustic units, we then

move to the second stage of the process– that of labeling the induced constituents using a

clustering technique. Recall from earlier that we mentioned that the induced constituents

were likely to contain considerable noise due to the presence of noise from the decodes.

We assumed, nonetheless, that in spite of the noise, the constituent boundaries would be

appropriately detected due to our use of bags to represent the constituents. It is in the

next stage that we attempt to deal with any noise that may have been introduced at the

time of decoding or while identifying constituent boundaries.

5.3.2 Identifying Constituent Labels

This section deals with our approach for identifying constituent labels once the process of

inducing a tree structure over the AUD sequences is completed. In syntactic text parsing

tasks, this stage is not necessary since the current corpora for that task already contain

sentences marked with the boundaries for the various structural elements. For the semantic

audio task, however, no such boundaries exist and we need to evaluate the goodness of the

induced structures on an external task. In order to characterize the recordings for any

external task, we need to be able to characterize each of the induced segments structures.

We do so by assigning a label to each segment, where 2 segments that have the same label

can be thought of as belonging to the same (higher-level) semantic concept.

Besides its being an essential component in order to be able to create characterizations

of audio recordings, the task of identifying constituent labels is important on its own for one

specific reason. As discussed earlier, if we assume that the constituent identification process

does a perfect job at identifying constituent boundaries, we note that the constituent

sequences of AUDs are, nonetheless, likely to contain noise due to errors in modeling,

decoding, or simply the presence of background noise. Thus, intuitively, this stage has to

be robust to the noise while clustering the large number of segments into the appropriate
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clusters such that their true semantic identities are retained.

In addition to the tree structures from the previous stage being input to this system,

the only other external input at this stage is the hyperparameter K for the number of

clusters. Unlike our layer-wise training approach in Chapter 4, where each layer had its

own unique set of unit labels, in this work, the set of cluster labels are not dependent on

the layers at all. Thus, the same unit might appear at different levels of the hierarchy, and

its label is only governed by the semantics it contains as can be interpreted by analyzing

its yield, as opposed to an artificial semantic controlled by the layer.

From the tree structures hypothesized by the log-linear model, we obtain a set of

segments corresponding to every node in the tree. Each of this nodes is the root of a

subtree, which in turn, spans a sequence of low-level acoustic units, which are referred to

as the yield of the node. While trying to cluster the entire set of segment nodes in the

training set, the yields are used to compute similarity, as described below.

The clustering procedure on the set of nodes (each of these nodes spans a constituent)

obtained from the set of tree structures, each corresponding to one recording, uses a mod-

ified K-means procedure, where we first select a set of K cluster centers. The distance of

each induced constituent (Akj ) to each of these cluster centers (Ci) were computed using a

combination of 2 factors– temporal sequence of the constituent acoustic units, as well as

distribution of the units in the constituent.

The intuition behind using the temporal sequence is apparent, since we would expect

similar higher order units to contain similarities in their constituent sequences. However,

since the lower level acoustic units are not ground truth, but in fact estimates from noisy

decodes, different manifestations of the same higher-order unit might be quite different

due to insertions, deletions and substitutions in the true sequence. To account for this, we

consider the bag of words distribution of the acoustic units as well, where we compute the

cosine distance between the distributions of the constituent and cluster centers.

We use the Levenshtein edit-distance (L(Akj , Ci)) to compute temporal sequence simi-

larity for each constituent to each cluster center using the actual acoustic unit sequences

that occurs in the constituent and the one for the cluster center to model temporal simi-

larity. For each constituent subsequence, the distances to various centers are normalized

by the maximum distance to lie between 0 and 1. To compute the distance between the

distributions, we compute the cosine divergence between the 2 distributions (Cos(Akj , Ci).
The final computed distance is a product of the 2 individual distances as follows:

D(Akj , Ci) = L(Akj , Ci)× (1− Cos(Akj , Ci)) (5.2)
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The constituent Akj is assigned to the cluster center C∗ chosen as:

C∗ = arg min
Ci
D(Akj , Ci) (5.3)

While the semantic import of the tree structures and the induced constituent labels

cannot be understood directly from this process in the absence of extensive studies us-

ing humans in the loop to understand if the constituents consistently capture human-

interpretable semantics, we hypothesize that these will provide positive improvements on

semantically defined tasks, if they do indeed capture some underlying higher-level seman-

tics. We present results with using characterizations derived from the tree structures on

an audio retrieval task in Section 5.4.

5.4 Experimental Results

Since we do not have labeled data that can be used to directly analyze the accuracy of

the estimation process, we evaluate our framework on the audio retrieval task, described

in Section 2.4. Recall from Section 2.4.2 the pipeline used for audio retrieval. As with all

the previous systems described in this dissertation, the analysis technique described in this

chapter also focuses on content analysis, and the analysis framework is plugged into the

pipeline from Figure 2.4 to work as the content analysis technique. Note that the AUDs

framework is also part of the content analysis technique box, since the hierarchy induction

described in this chapter works on top of the AUDs decodes.

Once a 2-stage tree structure induction process has been completed, including the

clustering and labeling of the segment spans, we can now compute a bag of words feature

vector in the same manner as before, with one difference. In all the previous cases, the

units that were used to compute a bag of words feature vector belonged to the same layer

in the hierarchy. In this case, the bag of words feature vector is computed using the set of

units from the full hierarchical structure derived jointly instead of layer-wise.

As before, we report results using the average Area Under MD-v/s-FA Curves (AUC)

for all the categories for both datasets. Since the curve measures error of the system being

evaluated, the lower the area under the curve, the better the performance.

Our hypothesis in testing the induced tree structures on an audio retrieval task was that

the induced structures over the lower-level units should improve over the performance of

retrieval systems based on the lower-level units alone. We note that there are no restrictions

on what kind of units can be used at the lower level to represent the audio. Thus, we can use

any lower-level unit representation that can represent the audio as a sequence of discrete
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System Average AUC in BBC Average AUC in MED11
PHONE 0.3011 0.2614
FOLEY 0.2872 0.2921
VQ 0.2143 0.2339
VQ–Tree 0.2461 0.2572
VQ–Tree–COMB 0.1943 0.2382
AUDs 0.1744 0.2174
AUD–Tree 0.1810 0.2311
AUD–Tree–COMB 0.1693 0.2226
EVENT 0.1911 0.2297
EVENT–COMB 0.1729 0.1842

Table 5.1: Performance of the full tree structured hierarchy including results of inducing
the hierarchy on top of both AUD and VQ units as the lower level of representation,
compared to the baseline systems for audio retrieval

symbols.

In the experiments reported in this chapter, we actually experiment with using both

the AUDs and the VQ units as the lower level units and tree structures are induced on top

of each of those representations. The results are summarized in Table 5.1.

In this table, the systems with results obtained when using the higher level structure

only induced over the VQ units and the AUD units are referred to as VQ-Trees and AUD-

Trees respectively. Finally, we can create an additional pair of systems that combines the

lower-level units with the structure induction process, by concatenating the pair of feature

vectors (we refer to these as VQ–Tree–Comb and AUD–Tree–Comb respectively).

We also retain the rows corresponding to the EVENT and EVENT–COMB settings from

Chapter 4, where the EVENT setting represents the system with one higher layer induced

over the AUD sequences, and the COMB setting refers to using it in conjunction with the

low level AUDs.

We note that the best results on the BBC data was obtained with 64 cluster centers

used to cluster the constituent blocks of audio units. The best results on the MED11

dataset were obtained with 256 cluster centers. We see from the table of results that the

induced trees over the lower-level acoustic units do not outperform the low level acoustic

units alone on any of the datasets. On the BBC dataset, the combination of the units from

the induced structure along with the low-level units outperforms the low-level units alone

when using both VQ and AUDs as the low-level units (although the improvement is not

statistically significant). However, on the MED11 dataset, for both the VQ and the AUD

setting, the induced structure (alone, or in combination with the low-level units) does not
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outperform the low-level units alone, although the performance of the combination of the

low-level and higher level units are very similar to the low level units alone. (We note that

the EVENT–COMB setting is still statistically significantly better than the other settings,

with a p-value of 0.04, or p < 0.05.)

While we do provide tree-only results for our experiments, we note that retrieval based

on features from the induced tree alone is not expected to be better for 2 reasons. First, tree

structures induced in an unsupervised manner will contain considerable noise. Secondly,

and possibly more importantly, even if ground truth labels were available, the higher a node

is in the tree hierarchy, the longer is its yield, and information available for such nodes in the

training set decreases. The higher level clusters are likely to be broader since we represent

the wide range of possibilities by a mapping onto a limited, finite set of clusters, thus

collapsing a varied set of concepts together and reducing the discriminative properties of

the true higher-level concept. Nonetheless, we do expect that they would provide additional

information, and the results are consistent with this expectation. While the systems using

the induced tree structure information only do not outperform the systems using lower level

units only, the combination of the two systems outperforms both the individual systems

significantly.

We expect that the primary reason that the tree structure based systems have limited

success is due to the fact that they work with the information provided by the lower level

units and any error in the estimation of those units is propagated, resulting in the semantics

captured being weaker than in a model that can jointly utilize both the observed audio and

the estimated units jointly to induce structure. Developing such models remains a focus

of our future work.

We note that estimating the parameters of the constituent-context model with the VQ

units as the lower layer results in a significantly slower training process, since there is one

VQ unit per frame of audio, whereas the AUDs typically span about 30 frames on average.

Further, while for syntactic parsing of short sentences (rarely longer than 20 words), it is

feasible to have as many layers as required to create a full hierarchy till a root node that

spans the entire sentence is reached. On the other hand, a 30 second segment of audio

will contain about a 100 AUD units in the sequence, and therefore, the height of a tree

that has a number of binary nodes can be quite high. To avoid this, our training process

is guided by a rule that requires units at the 2 lowest levels to span at least 8 units of the

level below them.

The fact that the combined systems outperform the individual unit-based or tree-based

systems (with consistent trends for both baseline systems) is promising, and shows that
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Figure 5.3: Effect of changing the size of the tree unit vocabulary over 64 AUDs on using
the events layer only for characterization of recordings as well as in combination with the
AUDs layer, on the BBC dataset. x-axis represents tree unit vocabulary size, while y-axis
represents the AUC (lower is better)

the induced structure does capture additional semantics over the low-level acoustic units.

Figure 5.3 shows the performance on the BBC dataset (which was the dataset on

which the tree structure produced greater improvements over the acoustic units) when

varying the number of cluster units used for clustering the constituents. We observe that

the performance of the COMB setting outperforms the induced structure across the board.

On the other hand, the AUDs– only setting on the BBC dataset results in an AUC of 0.174,

which is better than the COMB setting for all the various higher level unit vocabulary sizes

except when using 64 units.

The performance clearly peaks at 64 units used to represent higher level units in the

tree structure on the BBC dataset, which is the one where a significant performance im-

provement is obtained over using the low-level units alone. One possible reason that the

settings with fewer numbers of units does not perform well is likely that when using 16 or

32 units, these units are quite generalized and the entire vocabulary is not large enough to

be able to capture the unique patterns on a consistent basis. On the other hand, having

a significantly higher number of units may not work because the system tries to be too

specific in capturing local patterns. In addition, due to the noise present, some of the units

that map to any individual cluster may be mapped purely by chance due to the presence

of certain local noisy segments. It is hard to say what vocabulary size would be too small

or too large in general. Our empirical observation is that using 64 units appears to work

the best on the BBC dataset.
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On the MED11 dataset, on the other hand, performance of the COMB setting is worse

than the AUDs only setting across the board, although only slightly worse. We observe,

empirically, that the best performance is obtained when using a vocabulary of 256 units

for the higher level units.

5.5 Discussion

In this chapter, we presented a novel unsupervised approach to inducing tree structures

for modeling higher-level semantic information that can be applied for different tasks. We

presented a unified framework that hypothesizes that the observed acoustics map hierar-

chically to higher-level semantics, and that estimation of these semantics directly from the

audio in a task-agnostic manner could be used to derive characterizations that could be

appropriately utilized for the specific task at hand.

We leveraged previous work in unsupervised text parsing as well as acoustic unit esti-

mation to generate hierarchical structures for audio in an unsupervised setting. Presently,

the semantic import of the derived structures is unclear, since we do not have labeled data

for analysis of the estimated constituent boundaries or parse structures.

The approach presented here is in direct contrast to the one employed in Chapter 4,

where the higher layers of the hierarchy were learnt one layer at a time, whereas in this

work, the entire hierarchical structure was jointly induced. The main points of comparison

between the tree induction approach presented in this chapter and the layer-wise training

approach from Chapter 4 are discussed below.

The total time required for training is typically faster for the layer-wise approach when

using only 1 layer only and 64 or fewer units, but is pretty similar to the tree induction

approach when using 3-4 layers, with parameters learned iteratively. However, as the

number of units in the layers increases, the size of the parameter set being estimated

increases more rapidly for the layer-wise approach than in the tree induction approach.

On MED11, the layer-wise training approach outperforms the tree induction approach

quite comfortably, whereas on the BBC data, the tree induction approach is the best

performing system (using AUDs as the low level unit). Surprisingly, on MED11, the tree

induction approach does not outperform even the acoustic unit only characterization on

the audio retrieval task.

The number of layers that can be used is flexible in case of the layer-wise training

approach, and can be tuned to the specific task at hand, whereas the number of layers is

fixed for the tree induction approach, and is dependent on the length of the audio; a 5 min
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audio clip will typically have 4 or 5 layers when using the tree induction approach.

The variation in performance using different numbers of layers with the layer-wise

structure induction shows that improvements in performance fall off very rapidly with

more than 2 layers. There is, naturally, no direct control over the number of layers when

using the tree induction, although changing the parameter that governs how many lower-

level units can be spanned by a higher-level unit serves as a proxy switch. Changing this

value from a minimum of 4 to a minimum of 12 does not seem to affect overall performance

much at all. This may be because the same semantics that are captured by the system

with a minimum of 12 units are captured by the system with a minimum of 4 units, except

at a higher level, whereas the additional units at the lower level are too noisy to provide

significantly meaningful semantic guidance. However, using a fewer number of minimum

units significantly increases the training time of the framework.

Neither of the 2 approaches, in their present formulations, are capable of dealing with

non-projective semantic dependencies, and assume projectivity.

The evaluation of the semantic units thus obtained is tricky for both cases, since no

easy-to-use framework currently exists for their analysis. However, if such a framework

were to exist, one can imagine that evaluating the consistency in the semantic units for the

layer-wise training might be easier since these units are not shared across layers, and the

length of individual manifestations of the different semantic units do not vary by much.

On the other hand, since the vocabulary of units is shared across all the levels in the tree

induction paradigm, different instances of semantics that map to the same cluster may be

vastly different in length (often, double or triple the length). As a result, comparing the

2 instances to decide if they capture similar semantics requires a greater overhead on the

part of the annotator.

The development of a framework that models the semantics as a concept space that

cannot be completely captured by the low-level acoustically derived units alone is one of the

primary contributions of this dissertation. In this chapter, and the previous Chapter 4, we

described the 2 main paradigms for modeling higher structure over the low-level acoustic

units, and showed empirically using a semantic audio task that using this framework can

help in obtaining improvements on a semantic task, thereby validating the notion that

there exist semantic information in higher level patterns over the acoustic units.

In the next chapter, we will present a few directions of future work that we feel are

particularly important for research in this field. We will also present some preliminary

approaches that we have explored in these directions.
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Chapter 6

Preliminary Approaches Toward

Important Future Directions

In this dissertation so far, we presented our novel, hierarchical framework for mapping the

observed acoustics to semantics with the higher levels of the hierarchy corresponding to a

higher level of semantic inference. We presented an approach to learn low-level acoustic

units (which we refer to as Acoustic Unit Descriptors (AUDs)) unsupervised from the audio

corpora, and then described two main paradigms for the discovery of higher level structure–

one following a layer-wise training approach to build the higher layers iteratively, while the

other attempts to induce a full tree structure directly. Each of these paradigms works on

top of the Acoustic Unit Descriptors layer, instead of working directly on the observed

audio.

Ideally, we would have liked to evaluate the structures obtained at each of these levels

directly by comparing it to ground truth segments, or using some alternate framework

for validation. However, current audio datasets are not annotated with the kind of rich,

hierarchical structure that we would need to be able to evaluate the induced structures

directly. As a result, we evaluated the semantics of the audio segments discovered on a

proxy semantic audio retrieval task.

This dissertation represents (to the best of our knowledge) the first efforts in exploring

the presence of semantic information in general audio via deep analysis of the observed

acoustics, using structured models that work in unsupervised settings. While we’ve at-

tempted to understand as much as possible about what our models are learning, and the

import of the units at the various layers, this understanding is limited largely due to the

scarcity of rich, annotated datasets.

Besides the need for development of such datasets, however, the models employed at the
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various levels of the hierarchy made some assumptions that were necessary for preserving

model simplicity and computational tractability. In this chapter, we will discuss some of

the assumptions made by our models, and some of the limitations of the current modeling

approaches. We’ve also worked on some approaches that address such problems, and we

present our formulations for the same in this chapter.

In Section 6.1, we discuss one of the limitations of current approaches to learning the

low-level acoustic units vocabulary, and present an alternate paradigm for such acoustic

unit learning. In Section 6.2, we discuss the issue of modeling semantic information in audio

recordings where the semantic content itself is noisy and multiple semantic concepts may

be legitimately present. We explore the use of the multiple instance learning paradigm

in this context. In prior chapters, we’ve mentioned that one of the limitations of the

current paradigm for learning of units at the various levels is that the number of units is a

hyperparameter that needs to be optimized for the various tasks, which is computationally

expensive. We would rather design these models so that the learning process of new units

is driven by the data itself, where the model has the ability to add additional units to

explain data that is significantly different from the characteristics of the data captured

by the currently existing vocabulary. To this end, we discuss some recent work in non-

parametric learning, and explore its application to our task in Section 6.3.

We note here that the preliminary approaches to these different tasks explored in our

work in this chapter have met with limited success thus far. However, we believe that these

are directions that ought to be explored by the community, in general, and we present

an initial exploration of these ideas and the models tested on the audio retrieval task

correspond to the establishment of baseline performances when using these approaches.

Finally, we’ve mentioned earlier that the approaches to the learning of units at the

various levels are applied to the audio processing task, but the principle behind the models

are general, such that we can envision applying them to any semantically motivated analysis

modality. In Section 6.4, we attempt to learn units analogous to the AUDs to characterize

video content.

6.1 Block-Sparse Approach to Learning Atomic Low-

level Units

In the past chapters (specifically, Chapter 2 and Chapter 3, we discussed a number of dif-

ferent approaches to learning low-level acoustic units, including the framework for learning

the AUDs used in this dissertation. A number of past approaches to analyzing audio in
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the wild were built around detecting specific sounds in audio streams such as gunshots,

laughter, music, crowd sounds etc. Chang et al. [2007], or mapping words to acoustic

phenomenon Slaney [2002] using known vocabularies of sounds. In unconstrained audio,

the set of such sounds is large, and supervised data is required to build such detectors.

Instead of using audio libraries to build detectors, current approaches attempt to learn

a lexicon of sounds from the audio data Chaudhuri et al. [2011], Zhuang et al. [2011]

in an unsupervised manner. A common paradigm employed in using these lexicons for

characterizing audio data is to decode the recordings using models for the various units in

the lexicon, and represent the recording as a sequence of these lexical units. This process

typically assumes source uniqueness at any given point in time; i.e. it assumes either that

only one lexical unit may be active at any instant (hard quantization) or avoids making

a decision by distributing the uncertainty in its estimate among all the different units

(soft quantization). Hard quantization will select the dominant source alone, while soft

quantization will estimate the likelihood of presence of each of the lexical units or sound

sources independently instead of jointly.

Typically, multiple different sources may produce sound concurrently, which combine

to produce the observed audio. Thus, learning the lexicon from the data would result in

the units modeling mixtures of sources, instead of the atomic sources themselves. When

the number of unique sources present is small, such a method might be reasonably feasible

in adequately capturing the different likely acoustics. However, the number of possible

mixture will grow exponentially with the number of true atomic sources, whereas learning

and estimation techniques can only use limited vocabularies for computational efficiency.

Thus, the very large mixture space will be mapped down to the finite vocabulary of a much

smaller size, collapsing mixtures from different sources together.

In this section, we describe an approach to extend the current assumption of source

uniqueness to its logical next step, and present a framework for explicit estimation of

mixtures of lexical units in such settings. The units learnt in the approach described

here would be analogous in terms of functionality to the AUDs layer of our hierarchical

framework, although they work off of somewhat different underlying assumptions.

In the approach described in this section, we model each concept in the lexicon with a set

of basis vectors– using such a set allows us to account for various acoustic manifestations of

the same concept, by identifying a subspace from which sound is produced for that concept.

Each concept source, when active, produces sound using a weighted combination of its basis

vectors. The observed audio is assumed to be generated by the additive combination of the

sounds produced by the active concepts. We assume, further, that even though there may
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Figure 6.1: Audio analysis (L) Only one unit can be active at any time (R) Proposed
approach, where a sparse subset of possible concepts can be active concurrently.

be many such concepts, only a sparse subset will be active at any given instant. However,

since there are no constraints on the number of concept-specific basis vectors that may be

active when that concept is active, the weight vector at any instant will be block-sparse.

To illustrate the difference, consider an example audio from a birthday party scene

where music is playing and people are talking (Fig. 6.1). Units corresponding to music

(represented by M in the figure) and speech (represented by S) should both be active, but

a hard-quantization-based system might choose the dominant music (left panel, Figure

6.1), while a soft-quantization system would attribute some speech (as well as music)

audio to bases for other concepts. This can lead to loss of discriminative information, and

makes further analysis using the lexical unit-based representation harder. The proposed

framework would be able to recover the co-occurrence of the different units, resulting in a

better interpretation of the audio content, as shown in the right panel of Figure 6.1.

While we would ideally evaluate our proposed framework on the accuracy with which

it estimates source presence, no such datasets currently exist for audio in-the-wild. We

evaluated the proposed analysis on an audio retrieval task, where the learnt lexicon and

the estimated presence of the units is used to characterize the audio file for retrieval,
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and obtained significant improvements over standard baselines. However, we expect such

models to be useful for various other applications (audio recounting, for instance), since

the concurrent estimation of sources allow a finer-level analysis of the audio than current

systems would permit.

We briefly present prior related work in Section 6.1.1, and describe our proposed frame-

work and the various models in Section 6.1.2. In Section 6.1.3, we experiment with this

model on the BBC data, and discuss our findings in Section 6.1.4.

6.1.1 Related Work

Our framework builds on initial past work in estimating concurrent concept presence in

audio content using PLSA Mesaros et al. [2011]. Unlike Mesaros et al. [2011], our approach

does not use annotated concept data, since such data is expensive to obtain for audio-in-the-

wild, and learns the set of concepts unsupervised. It also incorporates the assumption that

only a sparse subset of concepts can be active at any given instant. The ability to estimate

these multiple sources allows us to expect more robust performance from this framework.

One can think of this proposed framework as imposing a layer of signal separation-based

auditory scene analysis Bregman [2004], Cho and Saul [2009], Ellis [1996] with sparsity

constraints on top of any of the standard frameworks for audio content estimation. As

described in Section 6.1.2, the representation of each of the lexical units using a set of

bases means that we need to impose sparsity not directly on the weights for the bases

but on the sets, using techniques for block-sparse weight estimation Ben-Haim and Eldar

[2011], Eldar et al. [2010]. Similar group sparsity-based techniques have been employed for

speaker identification Hurmalainen et al. [2012].

The procedure for estimating the weights of these bases relate to past literature on

sparse recovery techniques Becker et al. [2011], Garg and Khandekar [2009], Needell and

Tropp [2009]. It also relates to dictionary learning techniques Chaudhuri et al. [2011],

Pancoast and Akbacak [2011], Yaghoobi et al. [2009], with the difference that we require

the learned dictionary to permit block-sparse characterization of data. The process of

learning outlined in this paper is similar to techniques used for data decomposition, such

as NMF Lee and Seung [2001] and semi-NMFDing et al. [2010] (where the latter permits

the use of negative data and bases), our proposed approach additionally imposes sparsity

constraints on the estimation process. Unlike sparse variants of the NMF formulation

Hoyer [2004], however, our model requires concept-level sparsity and estimates a block-

sparse weight vector, instead.
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6.1.2 Proposed Block-Sparse Model

The framework proposed in this section is designed to improve upon one of the limitations

of current audio content analysis systems, by allowing multiple sources to be concurrently

active. Our assumption for the underlying process states, however, that only a sparse

subset of all the possible concept sources (dictionary elements) could combine to produce

the audio. In this section, we present a novel framework for representing these sources and

estimating their presence in the audio. We note that the modeling approach presented in

this section does not employ the kind of local structure that was used in the AUDs learning

framework, where each AUD unit was a 5-state left-to-right Hidden Markov Model that

allowed it to model local temporal structure. Instead, the current implementation of this

model works at the level employed in prior approaches, over individual frames or fixed

frame windows. The extension of this paradigm to an AUDs-like structured framework is

left for future work.

Our proposed model is designed to improve upon the existing techniques mentioned

earlier Chaudhuri et al. [2011], Pancoast and Akbacak [2011], Zhuang et al. [2011], and

begins by using a standard K-means algorithm to learn a dictionary of K units. This

dictionary can be used to assign each audio frame to one of the dictionary elements, using

Vector Quantization (VQ). Thus, for each dictionary element, a set of audio frames is

assigned to it from the VQ estimation step. In our framework, we refer to each of the

dictionary elements as an atomic concept and model each concept with a set of basis

vectors (as opposed to a mean vector for K-means). For each concept, its basis vector set

consists of M basis vectors that can be obtained either by randomly sampling exemplar

frames (from the set of frames assigned to that concept) or by using an iterative learning

process that we will shortly describe.

Let us first introduce the notation used in this section. We assume that the observed

data D (N audio frames, of dimensionality F each; thus, an N x F matrix) has been

generated by a non-negative weighted combination of a sparse subset of concepts. We

refer to the set of bases for all concepts collectively as B, and that for each concept as Bi

(i ∈ [1, K], for K concepts). W refers to the weight matrix of size (KM) x N , with a

weight vector for the entire basis set at each time step. The weight for the j-th basis in

the i-th concept bag at the t-th time step is indexed by w
(t)
ij .

We first describe the process of estimation of weights given the set of basis vectors

for each concept, while imposing concept-level sparsity. Typically, algorithms for sparse

estimation apply L0 norm minimization on the vector being estimated. These include

greedy algorithms such as Iterative Hard Thresholding (IHT) Blumensath and Davies
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[2008] and Compressive Sampling Matching Pursuit (CoSaMP) Needell and Tropp [2009].

Alternatively, other approaches relax the NP-hard L0 minimization problem by using an L1

penalty instead on the vector, as in the Lasso algorithm Tibshirani [1994]. In this paper,

we work off of a generalized definition of sparsity for a vector discussed later, which can

be shown to be analogous to the L1 formulation. This generalized definition allows us to

measure sparsity on a bounded scale between 0 and 1.

As mentioned before, our approach enforces sparsity at the concept level instead of

the individual weights for each basis vector, leading to a block-sparse weight estimation

process. To model this, we introduce a coefficient α to measure the activation level of the

individual concepts:

α
(t)
i =

M∑
j=1

w
(t)
ij ,∀i ∈ [1, 2...K] (6.1)

Since the weights are constrained to be non-negative, the activation level is always

non-negative. We measure sparsity at the concept level using α as in Equation 6.2. φ

represents the concept level of sparsity, and lies between 0 and 1. A higher value for φ

indicates higher sparsity; φ is 1 when only one element in α is non-zero, and is 0 when all

elements are equal and non-zero.

φ(α(t)) =

√
K −

P
i α

(t)
iqP

i α
(t)2
i√

K − 1
(6.2)

Given a concept dictionary (which includes the set of basis vectors for the concepts),

we can estimate a concept-sparse set of weights for the data by optimizing the following

objective function (S represents the desired degree of sparsity):

min
W
||D −W TB||2 (6.3)

s.t. φ ≥ S

Wi ≥ 0,∀i

The objective function above does not have a closed-form solution, but a solution can

be obtained using an iterative procedure shown in Algorithm 4. Step 6 in Algorithm 4

requires the projection of the α onto a non-negative space such that the projected vector

meets the desired sparsity constraints Hoyer [2004]. The projection operation is described

in Algorithm 5.
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Algorithm 4 Obtaining an optimal set of weights to satisfy the objective function above,
given a set of basis vector bags

Step 1: Initialize W randomly
Step 2: Compute α for each observation
Step 3:Project each α vector to be non-negative, have unchanged L2 norm with L1 norm
set to achieve desired sparseness
Step 4:W←W. ∗ (BTD)./(BTBW )
Step 5:Recompute α based on the new W
Step 6:Project each α vector to be non-negative, have unchanged L2 norm with L1 norm
set to achieve desired sparseness
Step 7: Go to Step 4, till maximum iterations are reached

Algorithm 5 Projecting a vector (x) onto the non-negative space with desired L1 norm,
and unchanged L2 norm

Step 1: pi ← xi + (L1 −
∑

i xi)/dim(x)
Step 2: Z ← {}
Step 3: If i /∈ Z, mi ← L1/(dim(x)− size(Z))
Step 4: If i ∈ Z, mi ← 0
Step 5: p ← m + γ(p −m), where γ ≥ 0 is selected so the resulting p satisfies the L2

norm constraint
Step 6: If pi ≥ 0, ∀i, return p, end
Step 7: Z ← Z ∪ {i : pi < 0}
Step 8: pi ← 0,∀i ∈ Z
Step 9: c← (

∑
pi − L1)/(dim(x)− size(Z))

Step 10: pi ← pi − c, ∀i /∈ Z
Step 11: Go to Step 3

At training time, the estimated weights can be used to re-estimate the bases. Thus, for

the j-th basis for concept i:

Bij =

∑
tw

(t)
ij ×D(t)∑
tw

(t)
ij

(6.4)

At test time, the weight vector obtained can be used to estimate the occurrence (F ) of

the individual concepts in an audio file with T frames:

Fi =

j=M∑
j=1

t=T∑
t=1

w
(t)
ij (6.5)

While the basis vectors for our experiments should ideally be in the spectral domain, the

high dimensionality (typically, 257-513) often result in poor basis estimation– indeed, using
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exemplar-based spectra as an overcomplete basis set is common Raj et al. [2010], Sainath

et al. [2011]– and the domain of audio in-the-wild exacerbates this problem. Instead, we

work in the dimensionality reduced Mel-Frequency Cepstral Coefficients (MFCC) domain,

which has been used in past work to explain MFCCs for speech recognition Sainath et al.

[2010, 2011], and we empirically find that this representation proves effective.

At this point, we note that the algorithmic solution outlined above holds in principle

for the MFCC coefficients as well. However, the weight update rule in Step 4 of Algorithm

4 has been developed under the assumption that the set of bases consist of non-negative

elements. When using MFCC vectors, this is not the case (as opposed to using spectra,

which are non-negative. Our update rules for weights in this case are derived using a

gradient descent approach obtained by updating the current estimate of the weights with

an offset that is obtained from differentiating the objective function shown in Equation

6.3, scaled with a learning rate.

W (i+1) = max(W (i) + 2ηBT (D −BW (i)), 0) (6.6)

In the above equation, W (i+1) refers to the updated weights in the next iteration, from

W (i), the current estimate of weights in the i-th iteration. The learning rate, η, is typically

quite small (of the order of 10−3) and prevents sharp changes in parameter estimates

that can make the new estimate go past the optimal point. As a result, typically, the

weight estimates do not become negative after being initialized with positive numbers.

However, we do check for negative weights, and negatives that occur are subjected to a

floor introduced by the max in Equation 6.6 and set to 0.

6.1.3 Experiments

In this section, we employ our block-sparse estimation framework on the BBC dataset

on the audio retrieval task, that has been used as the semantic audio task of interest

throughout this dissertation. As noted earlier, we present results of our experiments using

the MFCC characterization for audio frames.

We use the Vector Quantization technique at the frame level to initialize the set of basis

vectors for each concept in our system. The approach presented in Section 6.1.2 was then

used to compute a concept-sparse estimate of the weights for each audio frame. We then

use Equation 6.5 to compute the relative occurrences of each concept (i) as shown below:

Fi =
Fi∑
i Fi

,∀i ∈ [1, 2...K] (6.7)
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Figure 6.2: Comparison of the various systems using average AUC (y-axis) with varying
lexicon size on the audio retrieval task on the BBC dataset (lower is better)

Now, the audio file can be represented as aK-dimensional feature vector for the retrieval

task, with one feature for each concept where the feature value is the relative occurrence (F)

for the concept. We refer to this system using sparse concept representation as SpaCon.

The current state-of-the-art in audio retrieval systems currently use ”bag-of-words”

representations of recordings generated using the Vector Quantization technique Pancoast

and Akbacak [2011], Zhuang et al. [2011]. We use the VQ-based system, described as one

of the baselines in Chapter 2 as the baseline for comparison with our proposed framework.

In the estimation process outlined in Algorithm 4, the projection of the concept acti-

vation vector (α) to the non-negative space with desired sparsity results in some of the

concepts being set to 0 early in the iterative process. The update rule for the weights

in Step 4 can no longer recover non-zero weights for those concepts in further iterations.

To avoid erroneous concept selection at an early stage, we implement a CoSamp-style

approach Needell and Tropp [2009] where the projected vector is augmented with a sup-

port set consisting of the 2s concepts (for an s-sparse projected vector) with the highest

gradient values in each iteration. At the end of the iterations for weight estimation, this

augmented vector is finally projected down to the desired sparsity level to obtain the final

sparse estimate. Again, audio files are represented using the relative occurrence feature

representation, as in the SpaCon system. We refer to this system as SpaCon-CoSaMP.

Figure 6.2 compares areas under the curve (AUC) of Missed Detection vs False Alarm
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Figure 6.3: Effect of changing the desired sparsity on average AUC (y-axis) (lower is
better) in the SpaCon system.

rates for the 3 systems described above for varying sizes of the concept lexicon. Recall that

since the curve plots missed detections against false alarms, a lower AUC is better.

The sparse concept estimation-based systems provide significant improvement over the

VQ baseline. Since the desired degree of sparsity can be modified by the φ parameter,

this improvement is expected, since the sparsity can be relaxed to create the equivalent of

the VQ system. We note that the use of the CoSaMP-style estimation with an augmented

support does not appear to improve performance on this retrieval task, resulting in slightly

deteriorated performance, in terms of AUC. However, we do believe that this direction

needs to be further explored and that such research will improve our understanding of

audio content, and how we can analyze it better.

The degree of sparsity (φ) imposed on the estimation process outlined earlier has a

significant effect on the performance of the system. Figure 6.3 tracks the change in AUC

for the SpaCon system with changing the degree of desired sparsity (φ) for different lexicon

sizes. This plot shows an optimal operating point for φ values between 0.75 and 0.9 for

the different lexicon sizes.

6.1.4 Discussion

In this section, we presented a novel, signal-separation based approach to audio content

analysis, and demonstrated significant improvement in performance over the commonly
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used Vector Quantization based technique for audio retrieval on a dataset containing com-

plex audio tracks. While this improvement is exciting by itself, we believe that the im-

portance of this work lies in the fact that it presents a more natural model for the under-

standing of audio content, due to the assumptions of sparsity among the very large space

of natural audio concepts. The improvements in the audio retrieval task suggest that this

technique recovers a better estimate of the concept occurrences.

The objective function being optimized in Equation 6.3 could be modified in appropriate

settings to add further constraints. For instance, given prior external knowledge about the

relations between the various concepts in the lexicon or about the domain of data, the

estimation process could make use of expected structure in estimating the presence of the

different concepts.

The improved estimate of concept co-occurrence itself could be used in various ways in

the future. Specifically, in the work described earlier, we developed a model for extracting

patterns over the low-level units in order to understand how lower-level acoustics (units)

combine to produce higher-level semantics Chaudhuri and Raj [2012]. The framework

proposed here could be used in conjunction with the one in Chaudhuri and Raj [2012], to

better leverage the concurrent occurrence structure for improved semantic analysis. We

continue to actively explore these directions.

6.2 Multiple Instance Learning for Semantic Analysis

When analyzing semantics in an audio recording, especially reasonably long recordings set

in natural circumstances such as the ones usually contained in user-generated content, one

is faced with legitimate conundrum. In such recordings, while the focus may have been on

capturing a particular semantic event, other events with conflicting semantic imports may

be naturally present. As such, these recordings are rarely semantically pure.

To illustrate this issue, consider a case of a Youtube video of dog barking. As one can

imagine, such audio often consists of other acoustic events (people talking, traffic sounds,

etc) before or after the actual barking. Learning algorithms, however, cannot distinguish

between segments that include and don’t include barking within a single file, and assumes

that the entire audio represents a positive example of barking. This assumption will reduce

the discriminative ability of the model.

The negative class of the dog barking data however contains purely negative samples.

Thus, we have a set of pure data belonging to one class, but a mixed set in the other class.

In the example above, however, we do have the knowledge that the dog barking labeled
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audio must have at least one segment in it that corresponds to a dog barking. Any learning

algorithm employed for this task needs to be suitably modified to take advantage of this

knowledge to train stronger classifiers.

This framework, however, can be generalized to a task of learning from weak supervi-

sion, where the system can deduce finer level information from coarse labels– we have bags

of data, and a few of those bags are labeled as containing data belonging to class c1, and

some as not containing data from c1. We need to learn a model to detect c1, so that we

can detect other bags that contain c1, as well as locate the instances. The ability to do

this would be useful for a variety of tasks since coarse labels are easier to assign for human

annotators, and the system could automatically extract finer level information from them,

by locating segments in the larger bag that correspond to the label class. This paradigm

is known in the literature as multiple-instance learning Dietterich et al. [1997] (MIL).

The ability to infer sub-file level labels or associations from data using only the labels

provided at the file level, as well as understanding the granularities at which such labels

apply automatically, would make audio analysis systems more powerful. Consider an ex-

ample from the MajorMiner dataset Maj [2007]. The dataset contains labels for clips of

music where the labels correspond to various kinds of information relevant to the music,

including genre, mood, tempo, etc. Musical pieces will often capture multiple moods in the

same piece. As a result, the annotations might contain multiple mood labels for the same

piece. Typically, supervised approaches treat the entire audio file as a positive instance

for each mood label associated with the file, resulting in a weakened ability of the learnt

models to discriminate between positive and negative instances. This issue sheds some

light on the level of difficulty in the annotation process– asking human users to navigate

through clips to label individual segments to generate richer annotations results in a harder

annotation task, which is more expensive in terms of time and cognitive effort. On the

other hand, asking them to listen to an entire audio clip and annotating it with keywords

they think apply to the clip is significantly easier.

One way of handling this issue would be to attempt to automatically assign the labels to

their correct granularity, where they are directly applicable. In such a setting, we can treat

the audio file as a bag, and divide the audio into segments of audio. These segments are

treated as individual data points contained in the bag. Let us consider the case of building

a detector for a specific label: various audio files have been annotated with that label and

are positive instances, while the remaining files in the dataset are negative instances. Each

instance can be represented as a bag of data points, where each datapoint is a segment of

the audio.

123



Figure 6.4: An example of a dataset for multi-instance learning

Thus, the training set up will appear to be as shown in Fig 6.4. The quadrilaterals

represent bags of data– red balls represent the audio segments that are negative instances of

the label, and blue balls represent positive instance. Thus, the positive bags are guaranteed

to contain at least one positive data point, while the negative bags contain no positive

data points. Such a learning setting is known as multi-instance learning in the literature

Dietterich et al. [1997]. A standard approach to solving this problem utilizes a mixed-

integer linear program in a Support Vector Machine framework, where the problem can be

represented as follows:

min
yij ,w,b,ξ

1

2
||w||22 + C

∑
ij

ξij (6.8)

subject to

yij(w.xij + b) ≥ 1− ξij (6.9)

yij ∈ {−1, 1} (6.10)

ξij ≥ 0 (6.11)
li∑
j=1

1

2
(yij + 1) ≥ 1,∀i ∈ I+ (6.12)

yij = −1,∀i ∈ I− (6.13)

In the above, i indexes the bags of data, while j indexes the data points in the bag.

I+ indicates the positive bags while I− indicate negative bags. The number of instances

in the i-th bag is assumed to be li.
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The approach described above is one instance of a solution for this learning setting.

Various other frameworks, including logistic regression, boosting, MCMC sampling, etc,

have been developed for multi-instance learning. The advantages of using this approach

is two-fold: first, it would enable us to leverage coarse annotations to automatically infer

their correct segments of applicability. Second, the ability to accurately label segments of

audio pieces provides a natural mechanism for providing enhanced navigability to users.

In the following section, we present some brief initial experiments with using some of

the standard multiple instance learning approaches on the audio retrieval task, and discuss

some of our observations.

6.2.1 Experiments with multiple instance learning

We experimented with multiple instance learning using the SVM formulation (MI-SVM)

described above, as well as with a logistic regression (MILR) formulation. While such

formulations can be used at each level of the hierarchy, in this preliminary work, we only

investigated using them at the level of the low-level acoustic units descriptors (AUDs).

The entire audio data were decoded using the learnt AUDs, as described in Chapter 3.

In order to characterize each of the recordings as a bag of individual exemplars (whether

positive or negative), the audio was split evenly into 10-second chunks (if the audio were

shorter than 10 seconds, the bag had only one exemplar segment within it) and each

bag had multiple such 10 second segment units as the set of exemplars within the bag.

The 2 standard multiple instance learning formulations (MI-SVM and MILR) were then

applied on top of this representation of the dataset. For our experiments, we used the

implementations of MI-SVM and MILR available in the open source, machine learning

software toolkit Weka Hall et al. [2009].

The results of using these formulations for our audio retrieval task are summarized in

Table 6.1. For this preliminary experiment in multiple instance learning, we only compare

performance with the AUDs baselines reported earlier. On these datasets, for the audio

retrieval task, we do not observe a significant benefit from using multiple instance learning

approaches. The logistic regression based approach appears to outperform the SVM based

approach on both datasets, and it is slightly better than the simple AUDs characterization

for the BBC data and slightly worse for the MED11 data.

While our preliminary experiments with using the MIL approach did not produce sig-

nificant improvements for the audio retrieval task, we do believe that it should still be

appropriate for modeling certain audio tasks. Specifically, one of the directions that we

believe should be investigated involves tying the learning of the low-level units directly
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System Average AUC in BBC Average AUC in MED11
AUDs 0.1744 0.2174
MI-SVM 0.1861 0.2211
MILR 0.1733 0.2192

Table 6.1: Performance comparison using AUC of multiple instance learning approaches
over AUDs-based characterizations compared to using simply the AUDs-based characteri-
zation on the audio retrieval datasets. (Lower is better)

with an MIL framework, such that the low-level acoustic unit lexicon learning algorithm

works taking into account the constraint that not all segments of audio relate to the spe-

cific semantic label provided, and the learning process directly makes an effort to identify

semantic-topic-relevant units jointly with the learning process. Further, while our pre-

liminary experiments involved using MIL with the AUDs layer, the assumptions made in

applying MIL are general, and can be applied to any of the layers in the hierarchy.

6.3 Non-parametric Learning for Audio

The various algorithms and learning techniques used in this dissertation all use parametric

techniques. The word parametric implies that the number of parameters used in the

learning system is fixed when the training process begins. The size of the set of parameters

for each of these algorithms is typically governed by a hyperparameter that is input to the

system when the training process is started, e.g. number of AUDs in the lexicon, number

of events in each of the layers built on top of the AUDs.

Such a system has 2 potential drawbacks. First, in order to decide on the optimal value

of the hyperparameter, the learning process has to be repeated a few times for different

values of the hyperparameter, and tested on a held out development set to find the best

value. If the learning process is time-intensive, as is the case for most large-scale datasets

(such as the MED11), this can significantly increase training time. Second, in designing

generative processes that try to explain the process of generation of data, we typically

attempt to mimic the cognitive processing of humans. We believe there is good merit

to the argument that a parametric process where the number of units has been decided

before the data is investigated is not a natural process that humans employ. Instead,

as they encounter more data, the size of the set of units (whatever the specific units

may be) can keep increasing to explain the observed data, especially if the prior units

in the lexicon cannot do a good job of explaining new data. Such a process is referred

to as non-parametric, where the size of the model grows to account for the complexity
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of the data. In these techniques, individual variables are typically assumed to belong to

parametric distributions, and assumptions are often made about the relationships between

the variables.

The concept of applying non-parametric techniques is relevant to the entire hierarchy,

and each of the individual layers, depending on the modeling assumptions being made. In

this section, we will discuss it in the context of the induction of events on top of the AUDs,

analogous to the work presented in Chapter 4, where instead of assuming a finite event

vocabulary size, we grow it using a non-parametric scheme.

In this section, we first describe such a scheme in the context of our task, using prior

work in non-parametric learning. We then present experimental results of using such a

model on the audio retrieval task, with a brief discussion of the results.

6.3.1 Higher-order Non-Parametric Structure Induction

Recall from Chapter 4, our comparison of the task of discovering higher units over the

AUDs with the text segmentation task, where the AUDs can be considered analogous to

the characters of an alphabet, and the events above the AUDs layer as analogous to words.

In this section, we use the same terminology, and discuss the unsupervised word discovery

task over character (AUD) sequences. We employ a word segmentation algorithm which

simultaneously develops a lexicon, i.e., the transcription of a word in terms of an AUD

sequence, learns an n-gram language model describing word sequence probabilities, and

can use this model to perform segmentation on any new AUD sequence. The underlying

statistical model used is referred to in the literature as a Pitman-Yor process, which allows

the learning of a word vocabulary with a priori specification of the vocabulary size.

As discussed in Chapter 4, various approaches have been used for segmentation of

character streams with spaces removed for text processing applications Goldwater et al.

[2009], Johnson and Goldwater [2009], Mochihashi et al. [2009], Poon et al. [2009], Schuster

and Nakajima [2012]. We explore applying one of these systems Mochihashi et al. [2009]

to the audio content analysis task. This system presents a Bayesian approach where both

the lexicon (the transcription of a word as a sequence of characters) and the language

model are simultaneously estimated. The language model is based on the Pitman-Yor

process, which provides a random distribution over discrete probability distributions over

infinite sample spaces (in our case, this corresponds to the event vocabulary, which may

be infinitely large) Teh [2006]. This model has an added advantage in that it focuses on

the temporal sequence information 1.

1As noted in Section 4.1.1 of Chapter 4, modeling of canonical sequences over noisy decodes will lead
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For the event segmentation task, a hierarchical Pitman-Yor process (HPY) is employed,

where the hierarchy represents different values of the history size n of the n-gram language

model. An AUDs-level language model is nested within the event language model such

that the unigram event model backs off to an m-gram model at the AUD level.

The nested Pitman-Yor language model used in Mochihashi et al. [2009] is an extension

to hierarchical Pitman Yor language model, which is based on the Pitman-Yor process

Pitman and Yor [1997]. The Pitman-Yor process provides a random distribution over

discrete probability distributions over innite sample spaces and is a generalization of the

Dirichlet process:

G ∼ PY (d, θ,G0) (6.14)

A draw form the Pitman-Yor process results in a discrete distribution G. The Pitman-

Yor process has three parameters: a base distribution G0, a discount parameter 0 ≤
d < 1 and a strength parameter θ > −d which controls the variability around the base

distribution. The distribution G sampled from the Pitman-Yor process result in a rich-

get-richer effect, thereby simulating a distribution that follows a power law property. In

practice, we cannot observe G directly because it will be an infinite dimensional distribution

over the possible words.

Here, we encounter a significant issue in deciding what we should use for G0, the prior

probabilities over words. If a lexicon is finite, we can use a uniform prior G0(w) = 1
|V |

for every word w in the lexicon. However, with word segmentation every substring is a

candidate to be a word, thus the lexicon is countably infinite. Building an accurate G0 is

crucial for word segmentation, since it determines the set of possible words. Prior work

in text segmentation has used Dirichlet processes with a relatively simple prior of uniform

distributions over characters or a word length dependent Poisson priors. The work in

Mochihashi et al. [2009] uses a nested Pitman Yor language model, where the character

level HPY is embedded within the word-level HPY, and the base measure over the character

level HPY is a uniform distribution over the characters (AUDs). For details of the training

and inference schemes, the reader is referred to Mochihashi et al. [2009] and an adaptation

of this approach for word discovery from phonetic input Walter et al. [2013].

While we do not discuss this work here, Walter et al. [2013] describes an adaptation

of the nested Pitman Yor language model to using phonetic outputs, produced from raw

input speech data processed by an automatic speech recognition system, as analogous to

to issues. We ignore this problem, in this preliminary discussion, using instead a post-processing step to
account for some of the issues introduced.
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Figure 6.5: Example of improvement in segmentation accuracy with character-level context
size

characters and using it to discover words. Such a system can be used in unsupervised

training of an automatic speech recognizer directly from audio recordings, without using

labeled data, i.e., without knowing the text that has been spoken. Such an approach would

allow a significantly reduced investment in the tedious and expensive task of obtaining good

speech transcriptions for a number of languages.

6.3.2 Experiments

While results using this approach on text have already been reported, we wanted to test

our implementation on text data to understand the various aspects of the model. One of

the significant observations of our experiments showed that the character level language

model and the size of the context m that it models has significant influence on the perfor-

mance of the model (on data from the Wall Street Journal corpus). An example showing

how progressively more refined character-level language models improve accuracy of the

discovered words is presented in Figure 6.5.

As discussed earlier, we applied this approach to the task of unsupervised word discovery

from phonetic input, and the reader is referred to Walter et al. [2013] for details of the
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System Average AUC in BBC Average AUC in MED11
AUDs 0.1744 0.2174
EVENT 0.1911 0.2297
EVENT–COMB 0.1729 0.1842
NP–Moc 0.1979 0.2515
AUDs+NP–Moc 0.1792 0.2213
NP–Moc–clust 0.1964 0.2339
AUDs+NP–Moc–clust 0.1794 0.2165

Table 6.2: Performance comparison for the non-parametric system on the audio retrieval
tasks

work, and results. Relevant to the work presented in this dissertation, we applied this

model to the audio retrieval task, and the results relative to the AUDs only and AUDs

and events setting are summarized in Table 6.2. The non parametric setting, based on

Mochihashi et al’s prior work is referred to as NP–Moc. Recall that EVENT refers to the

power-law based induction of higher level units, while EVENT–COMB refers to combining

the information from the event and the AUDs layers.

The results for the non-parametric systems are the best numbers obtained for n = 3,

which is the language model context used. First, we note that this is significantly smaller

than the size 8 that worked best for the text segmentation task as shown in Figure 6.5.

Second, we note that systems using the non-parametric system perform worse than the

corresponding parametric process that we described in Chapter 4, based on a power law

assumption for a fixed number of units, both individually and in combination with the

AUDs layer. This is likely due to the differences in modalities that was discussed in

Chapter 4, since the current implementation of the non-parametric approach looks for

canonical sequences. We can alleviate this problem to some extent, by introducing a

post-processing step, where all unit sequences within a certain edit-distance are clustered

together. This improves the results somewhat for the NP–Moc setting and the results are

shown in the NP–Moc–clust, where best results are obtained using an edit distance of 2.

While we do still believe that a non-parametric process is theoretically a better paradigm

for performing learning of semantic concepts at higher levels, we note that adapting some of

the standard formulations to semantic audio processing tasks is a significant undertaking.

While the edit-distance-based post-processing does improve performance somewhat, we are

skeptical that this improvement can be expected to generalize, since the best edit distance

of 2 appears to be smaller than expected, given the noise likely present in the decodes.

Further, the improvement does not seem to carry over when those units are combined with

the AUDs units. This indicates that even if they do a slightly better job at the events
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layer, they capture very little novel information that the AUDs don’t already capture.

An ideal approach here would be to integrate the ideas incorporated in our higher

unit learning model of Figure 4.2 to tackle the issues of noise and semantic ordering and

non-parametric learning, to learn the parameters of the events layer in a non-parametric

setting, where the number of event units is allowed to grow with the data. We hope to

accomplish the development of such a model in future work.

6.4 Video analysis

While in the experiments reported throughout this dissertation, we focus solely on audio, we

noted that our formulation makes no assumptions that are specific to the audio modality. In

fact, the TRECVID task provides multimodal data, and the various semantically motivated

assumptions that we make are largely applicable to video data as well. In this section, we

present a short description of a preliminary application to video analysis using such a

framework. The efforts that we describe here are applied to the video to discover units

at a level analogous to the AUDs for audio. The further higher level structure induction

approaches that we described for audio in Chapter 4 and Chapter 5 can be applied in the

same manner as over AUDs. The most important piece in being able to port our approach

to video is to find a good way of learning the lower level units, which we refer to as VIsual

Descriptors (VIDs, in short).

The hardest task in being able learn good VIDs is in finding a representation for the

video frames that can compactly represent the semantic content. The main difference

in the case of video, as opposed to audio, is that while the MFCC representation is a

standard way of representing the audio, the semantics in the visual frames lie in two

dimensions from which various different kinds of semantic inference are made. This is, in

fact, a hard challenge that requires careful analysis and design of the low-level feature space

(analogous to the MFCC representations for audio). In this work, we don’t address that

problem. Instead, we adopt the simpler approach of using several different visual concept

detectors to find a representation of each frame using a known set of concepts. The values

corresponding to each of these concepts can be concatenated to create a feature vector

for each frame, where the feature value is the number of times each concept appears in

the image. This 1-dimensional vector is analogous in our system to the MFCC features

for audio, and the VIDs learning is done over these features, where the video has been

processed to a frame rate of 30 frames per second. The features are extracted for each

of the video frames in the data using 8 different object detectors that detect the number
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Algorithm 6 d-dim discrete space –> continuous space

D ← d-dimensional discrete representation (n datapts x d)
P ← PCA(D,n); P represents the d principal components
for i = 1→ n do
Fi ← Component Loadings for Di

for j = 1→ d do
Let continuous distribution of choice be N (µj, σ

2
j )

Gj ← CDF (N (µj, σ
2
j ));

Cj ← CDF (F(:, j))
T ← Function to transform Cj to Gj
F (:, j)← T (F(:, j))
P ← PCA(F, n); P represents the d principal components
for i = 1→ n do
Fi ← Component Loadings for Pi
F ← Continuous representation for further processing

of people, faces, hands, vehicles, tires, crouching poses, wood and fur textures. These are

used to construct the frame-specific feature vector, and then used to learn VIDs.

The algorithm used for learning is exactly the same as the one used for learning the

AUDs, as described in Section 3.1.1 of Chapter 3. Since these features are discrete integer

valued, we transform them to a continuous space, using the process illustrated in Algorithm

6. This is done since continuous spaces are no less expressive than discrete ones, with

the continuous space permitting more operations, if required. We chose to model the

transformed space with gaussians, although any other appropriate density functions may

be employed.

Table 6.3 shows a comparison of using the VIDs learnt in this manner to a baseline

VQ–based system for learning visual units on the audio retrieval task for MED11. As we

did when reporting results with AUDs, we use a characterization of recordings based on

the presence of the VIDs (VIDs–Binary) and a characterization based on the frequency of

occurrence of the VIDs in the recording (VIDs–Count). We obtain the best performance

when using a lexicon size of 256 units for the VQ and VIDs. We observe from the table

that simply presence information over these visual units is sufficient to outperform the VQ

based system which does not used structured information in the learning process. The

VIDs–Count based system is the best performing system for this characterization which

is not surprising, since as discussed in Chapter 3, the actual frequency of occurrence of

a concept in a recording should provide more information about the semantic topic than

simply information about its presence.

We note that the results presented here are simply a proof-of-concept to show that
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System Average AUC in MED11
VQ-Video 0.2832
VIDs–Binary 0.2591
VIDs–Count 0.2447

Table 6.3: Performance comparison using AUC of multiple instance learning approaches
over AUDs-based characterizations compared to using simply the AUDs-based characteri-
zation on the MED11 dataset. (Lower is better)

the iterative learning using structured models can be used to identify improved semantic

information as opposed to simply using a fixed frame-level characterization. These are

not currently competitive with video analysis based results on the same task, since we use

a very simple semantically motivated low-level feature set to characterize audio frames.

These features are themselves the outputs of various detectors designed to detect certain

objects, and therefore already contain some error in the object detection phase, resulting

in noisy features.

Nonetheless, we feel that future research in the video analysis area would benefit from

applying structured models on top of standard low-level feature descriptors to identify

higher level semantics, as well. The models that we presented in this dissertation should

be equally applicable to identifying semantics from a video stream, with low-level mod-

ifications to appropriately incorporate improved low-level feature representations for the

video.

6.5 Discussion of Future Work

In this chapter, we discussed some directions of future work in the area of semantic content

analysis that we believe are important directions for research in the near future. The

various approaches and results presented in this chapter are fairly preliminary and should

be treated as such. Their true importance lies in presenting the community with a concrete

formulation to consider, and debate the benefits and drawbacks of, and use them as an

initial step in these directions. The results reported should serve as early baselines that

future work can build on.

We note that while the area of semantic content analysis for audio has been explored

by researchers for over a decade, it has been only in the past 5 years or so that interest in

this area has really spiked, in part due to the IARPA-sponsored ALADDIN program. As

such, this might be the first phase of a large-scale, significant investment (in terms of time

and money) of concerted research focus in this area, which is a great development for a
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very important research area.

While we discussed a few challenges that we believe research efforts should attempt to

tackle in the near term, there are a large number of potentially interesting directions for

this area, at this stage. In the next chapter, we will conclude this dissertation by discussing

the bigger picture of semantic audio content analysis, where this dissertation fits into the

bigger picture, a discussion of the main lessons learned from our work in this discussion,

and an alternate direction of investigation that will be critical to this area.
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Chapter 7

Conclusions

There has been a recent spike in research interest in semantic analysis of multimedia con-

tent. In our work in this dissertation, we focus on the audio modality only. Whereas most

of the past work in this area so far has approached the analysis task with shallow analysis

techniques, based off of analyzing the acoustics directly, there has been an increased inter-

est in deeper analysis for various audio processing tasks recently Deng et al. [2013], Hamel

and Eck [2011], Lee et al. [2009], Lu et al. [2013]. There appear to be 2 main issues with

deep learning approaches– first, interpretation of the learnt models is not easy. Second,

like a number of approaches in the prior work, the input to the deep networks typically

work off of a pre-specified window of frames.

This dissertation presents an approach to deeper analysis of audio for semantic tasks

that attempts to address the limitations of prior work in this area. We present a framework

that maps acoustics hierarchically to higher level semantics, and the higher layers in the

hierarchy correspond to increasingly higher levels of semantic inference. In this dissertation,

we developed techniques for learning the various layers of this hierarchical framework, and

demonstrated that the units learned at the various levels capture semantic information by

applying characterizations based on these units to a semantic audio retrieval task, which

showed significant improvements over state-of-the-art techniques.

7.1 The need for datasets

When we first considered the various options in terms of directions that we could go in

for this dissertation, we felt that there were 2 principal directions for consideration. The

first was the direction that we actually decided to go in– namely, the development of

a framework and algorithms that would allow the extraction of semantics from audio.
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The second direction was the development of Treebank-style datasets that would establish

commonly agreed upon high-level semantic annotation schema, and would result in the

development of a large annotated semantic dataset that could be used for learning of

semantic units from data in a supervised manner. Alternately, such data could be used for

evaluation of semantic units learnt in unsupervised settings, as well.

As one can see, these two directions are not independent. One of the main reasons

that we chose the former direction was that the latter direction would require a significant

investment of time from the community as a whole in order to converge to an agreed

upon schema for such annotations. Besides, once such a schema has been agreed upon,

the process of development an annotated semantic audio treebank would require significant

investments of time and effort, employment of annotators as well as various other significant

logistical challenges.

In the current age, however, the popularity of crowdsourcing systems provides an al-

ternate paradigm for generating annotations for audio, leading to a somewhat different

challenge of being able to normalize such annotations, since multiple untrained annotators

would likely not organically converge to a small set of keywords. Thus, multiple annotators

capturing similar semantics with different literal annotations would require a subsequent

step of standardization that identifies when they intended to use the same annotations,

and collapse those.

Naturally, annotations generated from crowdsourced scenarios have their own unique

challenges that need to be addressed. Nonetheless, it might turn out to be a relatively

inexpensive way of getting started with small datasets, while the community, as a whole,

converges to a commonly accepted annotation schema.

Another reason that we were drawn to the first approach of developing algorithms that

automatically identify semantically coherent segments in audio (at various levels) was that

such algorithms, by design, provide us with hypothesized semantic segment boundaries.

These segments represent sets of shorter audio segments grouped together in various ways

(learning of a lexicon at the various levels, e.g.) that can be used to catalyze the process

of generation of annotations. Further, a small amount of supervision obtained using these

segments can be used to refine our models for semantic sense extraction from audio using

approaches to learning in weakly supervised settings.

All these various directions of thought lead, however, to the same place, which is our

belief that the next big improvement in performance of systems attempting to analyze

semantics will require richly annotated datasets that can then be used for developing

improved models. Thus, the need for development of such datasets, whether it be done
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iteratively using learning algorithms that can bootstrap from small amounts of data, or by

an organized effort to generate a large Treebank-style dataset, is paramount, and we hope

that such directions will be explored in future work.

The development of even small amounts of hierarchically annotated data would be

tremendously useful. The most important benefit of such data would be that researchers

could now directly compare the induced structure using their models to the structure in

the ground truth annotated dataset. As mentioned earlier, there are significant challenges

to overcome in terms of standardizing the sets of annotations used, etc. Nonetheless,

even though the induced structures by algorithms such as the ones we presented in this

dissertation do not map (at this point, in time) to human interpretable concepts, we can

still use the ground truth annotations to evaluate the accuracy of the induced segmentation,

in a similar manner as is done to evaluate parse trees in text analysis.

7.2 Where might hierarchical analysis help?

In this dissertation, we developed a hierarchical analysis framework for audio semantics. We

believe that this is a natural model for analyzing audio content, and that such approaches

will lead to a better understanding of the semantics and how they relate to acoustics. Such

understanding would likely, in the future, be an important part of systems that perform re-

trieval, classification, event recounting, monitoring and surveillance systems. Nonetheless,

in today’s context, one must ask the question– when can we expect hierarchical analysis

systems, such as the one presented in this dissertation, be expected to help?

In our experiments, we presented experiments on an audio retrieval task, with semantic

queries. The MED11 dataset consisted exclusively of semantic queries, so differences be-

tween different learning approaches are harder to characterize. The data in BBC dataset

are somewhat more varied, and gives us some insight into the differences between the

different approaches using an analysis of the category-specific performance.

The 10 data categories in the BBC dataset can be characterized under 2 larger um-

brellas. The first one can be thought of as object concepts, while the second one can be

thought of as abstract concepts. Examples of the former include water, animals, birds,

transport, while those of the latter include household, exterior atmospheres, interior back-

grounds. By object concepts, we mean that these are tangible, tactile concepts, and while

they may manifest in various acoustically different forms, they are clearly interpretable

and not context-dependent. Abstract concepts, on the other hand, include sounds from a

wide variety of objects, and can only be understood in context. For example, a recording
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from the exterior atmospheres category is described as follows: Open air swimming pool,

with children splashing and shouting. Recording near London. This recording represents

an instance of an abstract concept, which contains sounds from various object concepts,

such as water, children, etc. While individually they are instances of object concepts, the

recording as a whole is an abstract concept (note the hierarchies!).

A category-wise performance of the object concept and abstract concept categories tells

us that the baseline systems, such as the Vector Quantization based systems that map the

acoustics directly to the semantic category associated with a recording do a much better

job on the object concept categories than the abstract concept categories. This is not very

surprising since the individual units are better at capturing acoustics than semantics, and

the acoustics do not always generalize to the semantics. The hierarchical layers induced by

our algorithm specifically attempt to capture information in the higher layers and thus do

a significantly better job than VQ-based systems on the abstract concept categories. Since

the object categories are fairly pure, in terms of the different concept types they contain,

the higher layers do not capture significant meaningful information over what is already

modeled by the lower level acoustic units.

Finally, we ask the question if there might be certain types of categories where such

systems might do better than we expect humans to do. While this is not an easy question

to answer, in the absence of extensive experiments with humans in comparison to learning

algorithms, one can imagine a particular class of categories where this might be the case.

This class would contain various categories or sets of concepts that humans are unfamiliar

with. An example that springs to mind is that of identifying geographical location, given

an audio stream, but not significant amounts of clear, discernible speech (when humans

might be able to use knowledge of accents to perform well at the task), and a small training

dataset. In such settings, automatic systems might be able to pick up on cues from certain

kinds of sounds in the background that might be characteristic of specific geographical

locations that humans do not typically look for. We note that recently published research

has started to look specifically at the geo-tagging task Gottlieb et al. [2012].

7.3 Future Extensions of Semantic Analysis in Audio

Given the success of the various deep neural network approaches for speech recognition

tasks, we expect that they will soon be applied to large-scale audio content analysis tasks.

In accordance with the approach taken in this dissertation work, we expect that the com-

munity will focus not simply on the performance of such models on specific tasks, but also
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on the units learned, their semantic coherence and import, as well, and that they will con-

tinue to focus not just in optimizing performance on standard tasks, but also on the larger

vision of identifying semantics with a view to developing truly intelligent systems that can

not only detect specific patterns of interest but also identify and understand them in con-

text. Such systems would be extremely useful for a variety of tasks not only in web-based

systems such as audio and music retrieval but also tasks in the field such as monitoring and

surveillance of both public and private properties, monitoring health of large mechanical

systems where the audio signal is one of the main indicators of the health of such systems

and many others.

With respect to specific directions of future research, we identified some in Chapter 6

that we believe will be important future directions in developing more refined systems for

semantic analysis of audio content. Each of them represents a significant undertaking in this

research area, and a deeper understanding of any of those approaches should significantly

advance our understanding in this domain.

In this dissertation, while we presented a few approaches to learning higher levels of

the hierarchical framework, we believe that there are significant advances to be made

still in the specific learning approaches employed. The message that we would encourage

readers to take from this dissertation is the idea of mapping acoustics to semantics in

a hierarchical manner. The framework, using the learning approaches presented in this

dissertation, shows a great deal of promise for future research, and the specific models can

be extended in various ways to take other assumptions that may be useful into account.

The techniques presented in this dissertation, working in minimally supervised settings,

show encouraging improvements over the current, commonly used approaches, and we

believe that (along with semantic audio retrieval) they will prove useful in a number of

tasks that could benefit from semantic analysis of audio content.

139



Bibliography

Bbc sound effects library original series, http://www.sound-ideas.com/bbc.html. 2.4.1

http://www.sound-ideas.com/artfoley.html. 2005. 2.4.2

http://majorminer.org/info/intro. 2007. 6.2

TRECVid 2010 Multimedia Event Detection Evaluation, 2010. URL http://www.nist.

gov/itl/iad/mig/med10.cfm,2010. 3.2.3

http://www.nist.gov/itl/iad/mig/med11.cfm, 2011. 2.4.1

S. Abney. Parsing by chunks. Principle-Based Parsing, 1991. 2.2.1

B. Babenko, M. Yang, and S. Belongie. Visual tracking with online multiple instance

learning. In Proceedings of CVPR, 2009. 2.1.4

M. Bacchiani. Speech Recognition System Design Based on Automatically Derived Units.

PhD Thesis, 1999. 3.1

J. Baker. Trainable grammars for speech recognition. Speech communication papers pre-

sented at the 97th meeting of the Acoustical Society of America, pages 547–550, 1979.

5.2

S. Becker, J. Bobin, and E.J. Candes. Nesta: A fast and accurate first-order method for

sparse recovery. SIAM Journal for Imaging Sciences, 4:1–39, 2011. 6.1.1

Z. Ben-Haim and Y. C. Eldar. Near-oracle performance of greedy block-sparse estima-

tion techniques from noisy measurements. IEEE Journal of Selected Topics in Signal

Processing, 5:1032–1047, 2011. 6.1.1

J.F. Bernabeu, J. Calera-Rubio, and J.M. Iesta. Classifying Melodies Using Tree Gram-

mars. In Pattern Recognition and Image Analysis, 2011. 2.1.1

S. Berrani, G. Manson, and P. Lechat. A non-supervised approach for repeated sequence

detection in TV broadcast streams. In Signal Processing: Image Communication, vol-

ume 23, pages 525–537, 2008. 2.1

140

http://www.nist.gov/itl/iad/mig/med10.cfm, 2010
http://www.nist.gov/itl/iad/mig/med10.cfm, 2010


D. Bikel. A Distributional Analysis of a Lexicalized Statistical Parsing Model. In Proceed-

ings of Empirical Methods in Natural Language Processing, 2004. 2.2.1

D.M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet Allocation. Journal of Machine

Learning Research, pages 993–1022, 2003. 2.2.2

A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In

Proceedings of the Workshop on Computational Learning Theory, 1998. 2.1.4

T. Blumensath and M.E. Davies. Iterative thresholding for sparse approximations. Journal

of Fourier Analysis and Applications, 14:629654, 2008. 6.1.2

A.S. Bregman. Auditory scene analysis. International Encyclopedia of the Social and

Behavioral Sciences., 2004. 6.1.1

L. Breiman. Random forests. Machine Learning, 45:5–32, 2001. 2.4.2

G. Carroll and E. Charniak. Two experiments on learning probabilistic dependency gram-

mars from corpora. Working Notes of the Workshop Statistically-Based NLP Techniques,

pages 1–13, 1992. 5.2

S.F. Chang, D. Ellis, W. Jiang, K. Lee, A. Yanagawa, A. Loui, and J. Luo. Large-scale

multimodal semantic concept detection for consumer video. In MIR workshop, ACM-

Multimedia, 2007. 2.1, 5.1, 6.1

E. Charniak. Statistical Techniques for Natural Language Parsing. Artificial Intelligence,

18, 1997. (document), 2.2.1, 2.2

S. Chaudhuri and B. Raj. Unsupervised structure discovery for semantic analysis of audio.

In Neural Information Processing Systems, 2012. 4, 5.2, 6.1.4

S. Chaudhuri and B. Raj. Unsupervised Hierarchical Structure Induction For Deeper

Semantic Analysis of Audio. In Proceedings of ICASSP, 2013. 5

S. Chaudhuri, M. Harvilla, and B. Raj. Unsupervised learning of acoustic unit descriptors

for audio content representation and classification. In Interspeech, pages 717–720, 2011.

3.1.1, 5.1, 6.1, 6.1.1, 6.1.2

Y. Cho and L.K. Saul. Learning dictionaries of stable autoregressive models for audio scene

analysis. In International Conference on Machine Learning, 2009. 6.1.1

H.I. Christensen, J. Matas, and J. Kittler. Using Grammars for Scene Interpretation. In

International Conference on Image Processing, 1996. 2.1.2

J. Clarke and M. Lapata. Constraint-based Sentence Compression: An Integer Program-

ming Approach. In Proceedings of the Coling/ACL, 2006. 3.2.3

141



K. Crammer and Y. Singer. Ultraconservative Online Algorithms for Multiclass Problems.

Journal of Machine Learning Research, 2003. 3.2.2, 3.2.3

P.P. Cruz-Alcazar and E. Vidal. Two Grammatical Inference Applications in Music Pro-

cessing. Applied Artificial Intelligence, 2008. 2.1.1

A. P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data

via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39:1–38, 1977.

2.3, 4.2.2

L. Deng, G.E. Hinton, and B. Kingsbury. New Types of Deep Neural Network Learning for

Speech Recognition and Related Applications: An Overview. In Proceedings of ICASSP,

2013. 7

T.G. Dietterich, R.H. Lathrop, and T. Lozano-Perez. Solving the multiple-instance problem

with axis-parallel rectangles. Artificial Intelligence, 89:31–71, 1997. 2.1.4, 6.2, 6.2

C.H.Q. Ding, T. Li, and M. Jordan. Convex and semi-nonnegative matrix factorizations.

IEEE Transactions on Pattern Analysis and Machine Intelligences, 32:45–55, 2010. 6.1.1

A. Divakaran, K.A. Peker, R. Radharkishnan, Z. Xiong, and R. Cabasson. Video summa-

rization using MPEG-7 motion activity and audio descriptors. Video Mining, 91, 2003.

2.1

Y. C. Eldar, P. Kuppinger, and H. Bolcskei. Block-sparse signals: Uncertainty relations

and efficient recovery. IEEE Transactions on Signal Processing, 58:3042–3054, 2010.

6.1.1

D. Ellis. Predication-driven computational auditory scene analysis. PhD Thesis, 1996.

6.1.1

D. Elworthy. Does Baum-Welch re-estimation help taggers? In Proceedings of the 4th

Conference on Applied Natural Language Processing, 1994. 2.1.4

P.F. Felzenszwalb and D. McAllester. Computer Science Technical Report-2010-02,, 2010.

2.1.2

P.F. Felzenszwalb, R. Girshick, and D. McAllester. Cascade Object Detection with De-

formable Part Models. In Proceedings of Computer Vision and Pattern Recognition

Conference, 2010. 2.1.2

S. Finch and N. Chater. Distributional bootstrapping: From word class to proto-sentence.

In Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society, 1994.

5.2

142



J. Foote. Content-based Retrieval of Music and Audio. In Multimedia Storage and Archiv-

ing Systems, 1997. 1.1

G. Friedland, L. Gottlieb, and A. Janin. Using Artistic Markers and Speaker Identification

for Narrative-Theme Navigation of Seinfeld Episodes. In Workshop on Content-Based

Audio/Video Analysis for Novel TV Services, 11th IEEE International Symposium on

Multimedia, 2009. 2.1

X. Gabaix. Zipf’s Law for Cities: An Explanation. Quarterly Journal of Economics, 114:

739–767, 1999. 3.1.1

R. Garg and R. Khandekar. Gradient descent with sparsification: an iterative algorithm

for sparse recovery with restricted isometry property. In International Conference on

Machine Learning, 2009. 6.1.1

J. S. Garofolo, E. M. Voorhees, V. M. Stanford, and K. S. Jones. TREC-6 1997 Spoken

Document Retrieval Track Overview and Results. In Proceedings of TREC-6 Conference,

1997. 2.1

S. Goldwater, T.L. Griffiths, and M. Johnson. A bayesian framework for word segmenta-

tion: Exploring the effects of context. Cognition, 112:21–54, 2009. 4.1.1, 6.3.1

L. Gottlieb, J. Choi, G. Friedland, P. Kelm, and T. Sikora. Pushing the Limits of Mechan-

ical Turk: Qualifying the Crowd for Video Geo-Location. In Proceedings of the 2012

ACM international workshop on Crowdsourcing for Multimedia, 2012. 7.2

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. The WEKA

Data Mining Software: An Update. SIGKDD Explorations, 11, 2009. 6.2.1

P. Hamel and D. Eck. Learning Features from Music Audio with Deep Belief Networks,

booktitle = Proceedings of the International Society for Music Information Retrieval

conference. pages 339–344, 2011. 7

M. Hill, G. Hua, A. Natsev, J.R. Smith, L. Xie, B. Huang, M. Merler, H. Ouyang, and

M. Zhou. IBM Research TRECVID-2010 Video Copy Detection and Multimedia Event

Detection System. In Proceedings of TRECVID, 2010. 2.4.1, 3.2.2

P. Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of Ma-

chine Learning Research, 5:1457–1469, 2004. 6.1.1, 6.1.2

A. Hurmalainen, R. Saeidi, and T. Virtanen. Group sparsity for speaker identity discrim-

ination in factorisation-based speech recognition. In Proceedings of Interspeech, 2012.

6.1.1

W. Jiang, C. Cotton, S.-F. Chang, D. Ellis, and A. Loui. Short-Term Audio-Visual Atoms

143



for Generic Video Concept Classification. In Proceedings of ACM MultiMedia, 2009. 2.1

M. Johnson and S. Goldwater. Improving nonparametric bayesian inference: Experiments

on unsupervised word segmentation with adaptor grammars. In Proceedings of Human

Language Technologies: North American Chapter of the Association for Computational

Linguistics, 2009. 4.1.1, 6.3.1

S. Kim, P.G. Georgiou, and S. Narayanan. Supervised acoustic topic model for unstruc-

tured audio information retrieval. In Proceedings of Asia Pacific Signal and Information

Processing Association (APSIPA) Annual Summit and Conference, 2010. 3.2.3

D. Klein and C. Manning. Natural language grammar induction using a constituent-context

model. In Advances in Neural Information Processing Systems, 2001. (document), 2.2.1,

5.2, 5.3, 5.2, 5.3.1, 5.3.1

D. Klein and C. Manning. A generative constituentcontext model for improved grammar

induction. In Proceedings of the Association for Computational Linguistics, 2002. 5.2

D. Klein and C.D. Manning. Accurate Unlexicalized Parsing. In Proceedings of the 41st

Meeting of the Association for Computational Linguistics, 2003. 2.2.1

K. Knight and D. Marcu. Statistics-based summarization - step one: Sentence compression.

In Proceedings of AAAI, 2000. 3.2.3

J. Lafferty, A. McCallum, and F. Pereira. Conditional Random Fields: Probabilistic models

for segmenting and labeling sequence data. In Proceedings of International Conference

on Machine Learning, 2001. 2.2.1

K. Lari and S. J. Young. The estimation of stochastic context-free grammars using the

inside-outside algorithm. Computer Speech and Language, pages 35–56, 1990. 5.2

C.H. Lee, F.K. Soong, and B.H. Juang. A segment model based approach to speech

recognition. In Proceedings of ICASSP, 1988. 3.1.1

D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In Neural

Information Processing Systems (NIPS), 2001. 6.1.1

H. Lee, Y. Largman, P. Pham, and A.Y. Ng. Unsupervised feature learning for audio clas-

sication using convolutional deep belief networks. In Proceedings of Neural Information

Processing Systems (NIPS), 2009. 7

K. Lee and D. Ellis. Audio-Based Semantic Concept Classification for Consumer Video.

IEEE Transactions on Audio, Speech and Language Processing, 18:1406–1416, 2010. 2.1,

2.1.1

144



H. Li, L. Bao, Z. Gao, A. Overwijk, W. Liu, L. Zhang, S. Yu, M. Chen, F. Metze, and

A. Hauptmann. Informedia @ TRECVID2010. In Proceedings of TRECVID, 2010a.

2.4.1, 3.2.2

L.J. Li, H. Su, E.P. Xing, and F.F. Li. Object Bank: A High-Level Image Representation

for Scene Classification and Semantic Feature Sparsification. In Proceedings of NIPS,

2010b. 2.1.2

L.J. Li, C. Wang, Y. Lim, D. Blei, and F.F. Li. Building and Using a Semantivisual Image

Hierarchy. In Proceedings of CVPR, 2010c. 2.1.2

W. Li. Random Texts Exhibit Zipf’s-Law-Like Word Frequency Distribution. IEEE Trans-

actions on Information Theory, 38:1842–1845, 1992. 3.1.1

Z. Liu, J. Huang, Y. Wang, and T. Chen. Audio Feature Extraction and Analysis for Scene

Classification. In Workshop on Multimedia Signal Processing, 1997. 2.1

X. Lu, Y. Tsao, S. Matsuda, and C. Hori. Speech Enhancement based on Deep Denoising

Autoencoder. In Proceedings of Interspeech, 2013. 7

M. Mandel and D. Ellis. Multiple-instance learning for music information retrieval. In

Proceedings of ISMIR, 2008. 2.1.4

R. McDonald. Discriminative Sentence Compression with Soft Syntactic Evidence. In

Proceedings of European Association for Computational Linguistics, 2006. 3.2.3

M. McKinney and J. Breebaart. Features for Audio and Music Classification. In Interna-

tional Symposium on Music Information Retrieval, 2003. 2.4.2

A. Mesaros, T. Heittola, and T. Virtanen. Latent semantic analysis in sound event detec-

tion. In Proceedings of the European Signal Processing Conference, 2011. 6.1.1

D. Mochihashi, T. Yamada, and N. Ueda. Bayesian unsupervised word segmentation

with nested pitman-yor language modeling. In Proceedings of the 47th Meeting of the

Association for Computational Linguistics, 2009. 4.1.1, 6.3.1, 6.3.1

H.H. Nagel. From image sequences towards conceptual descriptions. Image and Vision

Computing, 6:59–74, 1988. 2.1.2

D. Needell and J.A. Tropp. Cosamp: Iterative signal recovery from incomplete and in-

accurate samples. Applied and Computational Harmonic Analysis, 2009. 6.1.1, 6.1.2,

6.1.3

K. Nigam and R. Ghani. Analyzing the effectiveness and applicability of co-training. In

Proceedings of 9th International Conference on Information and Knowledge Manage-

145



ment, 2000. 2.1.4

D. Pallett, J. Fiscus, J. Garofolo, and M. Przybocki. Hub-4 ‘dry run’ broadcast materials

benchmark tests. In Speech Recognition Workshop, 1996. 2.4.2

S. Pancoast and M. Akbacak. Bag-of-audio-words approach for multimedia event classifi-

cation. In Interspeech, 2011. 5.1, 6.1.1, 6.1.2, 6.1.3

J. Paulus and A. Klapuri. Music structure analysis using a probabilistic fitness measure

and a greedy search algorithm. IEEE Transactions on Audio, Speech and Language

Processing, 2009. 2.1.1

X.H. Phan. CRFTagger: CRF English POS Tagger, 2006. URL http://crftagger.

sourceforge.net/,2006. 2.2.1

J. Pitman and M. Yor. The two-parameter poisson-dirichlet distribution derived from a

stable subordinator. The Annals of Probability, 25:855–900, 1997. 6.3.1

H. Poon, C. Cherry, and K. Toutanova. Unsupervised morphological segmentation with log-

linear models. In Proceedings of the 47th Meeting of the Association for Computational

Linguistics, 2009. 4.1.1, 6.3.1

X. Qi and B.D. Davison. Web page classification: Features and algorithms. ACM Com-

puting Surveys, 41, 2009. 2.4.2

L. Rabiner and B. Juang. An introduction to hidden Markov models . ASSP Magazine,

IEEE, 3:4–16, 1986. 2.1.4, 2.2.1

B. Raj, T. Virtanen, S. Chaudhuri, and R. Singh. Non-negative matrix factorization based

compensation of music for automatic speech recognition. In Proceedings of Interspeech,

2010. 6.1.2

L. Ramshaw and M. Marcus. Text chunking using transformation based learning. In

Proceedings of the 3rd workshop on very large corpora, 1995. 2.2.1

C. Rosenberg, M. Hebert, and H. Schneiderman. Semi-supervised self-training of object

detection models. In Proceedings of the 7th IEEE Workshop on Applications of Computer

Vision, 1995. 2.1.4

Y. Rui, A. Gupta, and A. Acero. Automatically extracting highlights for tv baseball

programs. In Proceedings of the eighth ACM international conference on Multimedia,

2000. 2.1

T. N. Sainath, B. Ramabhadran, D. Nahamoo, D. Kanevsky, and A. Sethy. Sparse repre-

sentation features for speech recognition. In Proceedings of Interspeech, 2010. 6.1.2

146

http://crftagger.sourceforge.net/, 2006
http://crftagger.sourceforge.net/, 2006


T. N. Sainath, D. Nahamoo, D. Kanevsky, B. Ramabhadran, and P. M. Shah. Exemplar-

based sparse representation phone identification features. In Proceedings of ICASSP,

2011. 6.1.2

M. Schuster and K. Nakajima. Japanese and korean voice search. In Proceedings of

ICASSP, 2012. 4.1.1, 6.3.1

H. Schutze. Distributional part-of-speech tagging. In Proceedings of the European Associ-

ation for Computational Linguistics, 1995. 5.2

B. Settles. Active Learning Literature survey, 1995. 2.1.4

R. Singh, B. Raj, and R. Stern. Automatic Generation of sub-word units for Speech

Recognition Systems. IEEE Transactions on Speech and Audio Processing, 2002. 3.1

M.-h. Siu, H. Gish, S. Lowe, and A. Chan. Unsupervised Audio Patterns Discovery using

HMM-based Self-Organized Units. In Interspeech, pages 2333 – 2336, 2011. 3.1.1

M. Slaney. Mixture of probability experts for audio retrieval and indexing. In ICME, 2002.

2.1, 5.1, 6.1

M.J. Steedman. A Generative Grammar for Jazz Chord Sequences. Music Perception,

1989. 2.1.1

I. Szoke, P. Schwarz, and P. Matejka. Comparison of keyword spotting approaches for

informal continuous speech. In Proceedings of Eurospeech, 2005. 2.1

Y.W. Teh. A hierarchical bayesian language model based on pitmanyor processes. In

Proceedings of the 44th annual meeting of the Association for Computational Linguistics,

2006. 6.3.1

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society, 58:267–288, 1994. 6.1.2

K. Toutanova and C.D. Manning. Enriching the Knowledge Sources Used in a Maximum

Entropy Part-of-Speech Tagger. In Proceedings of Joint SIGDAT Conference on Empir-

ical Methods in Natural Language Processing and Very Large Corpora, 2000. 2.2.1

K. Toutanova, D. Klein, C.D. Manning, and Y. Singer. Feature-Rich Part-of-Speech Tag-

ging with a Cyclic Dependency Network. In Proceedings of HLT-NAACL, 2003. 2.2.1

G. Tzanetakis and P. Cook. MARSYAS: A framework for Audio Analysis. Organised

Sound, 4:169–175, 1999. 2.1.3

A. Velivelli, C. Zhai, and T.S. Huang. Audio segment retrieval using a short duration

example query. In Proceedings of International Conference on Multimedia and Expo,

147



2004. 2.1

O. Walter, R. Haeb-Umbach, S. Chaudhuri, and B. Raj. Unsupervised word discovery

from phonetic input using nested pitman-yor language modeling. In Proceedings of

the Autonomous Learning Workshop, IEEE International Conference on Robotics and

Automation, 2013. 6.3.1, 6.3.2

E. Wold, T. Blum, D. Keislar, and J. Wheaton. Content-based Classification, Search and

Retrieval of Audio. In IEEE Multimedia Magazine, 1996. 1.1, 2.1

M. Yaghoobi, T. Blumensath, and M.E. Davies. Dictionary learning for sparse approx-

imations with the majorization method. IEEE Transactions on Signal Processing, 57:

2178–2191, 2009. 6.1.1

D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In

Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics,

1995. 2.1.4

Z.H. Zhou. Multi-instance learning: A survey, 2004. 2.1.4

X. Zhu. Semi-supervised learning literature survey, 2004. 2.1.3, 2.1.4

X. Zhuang, S. Tsakalidis, S. Wu, P. Natarajan, R. Prasad, and P. Natarajan. Compact

audio representation for event detection in consumer media. In Interspeech, 2011. 5.1,

6.1, 6.1.2, 6.1.3

G. Zipf. Selective Studies and the Principle of Relative Frequency in Language. MIT Press,

1932. 3.1.1

148


	1 Introduction
	1.1 Motivations for this thesis
	1.2 Thesis Statement
	1.3 Summary of Thesis Contributions
	1.4 Thesis Layout

	2 Audio Content Analysis– Background and Related Work
	2.1 Automatic Content-based Audio Processing
	2.1.1 Structured Analysis and Our Proposed Framework
	2.1.2 Similarities to Image Processing Approaches
	2.1.3 Enriching current datasets
	2.1.4 Weakly-Supervised Learning

	2.2 Relevant Text Processing Paradigms
	2.2.1 Syntactic Parsing
	2.2.2 Topic Modeling

	2.3 Latent Variables and Expectation–Maximization
	2.4 Data and Baselines
	2.4.1 Datasets Used in this Thesis
	2.4.2 Baseline Performances on Audio Retrieval


	3 Acoustic Unit Descriptors
	3.1 Acoustic Unit Descriptors
	3.1.1 Learning AUD Parameters

	3.2 Applications of AUDs to Audio Processing Tasks
	3.2.1 Audio Retrieval
	3.2.2 Multi-Class Audio Classification
	3.2.3 Audio Event Detection at a Sub-File Level

	3.3 Discussion

	4 Layer-wise Training of Higher Levels
	4.1 Beyond Acoustic Unit Descriptors
	4.1.1 Inferring Higher Level Structure
	4.1.2 Modeling Audio Event Segmentation

	4.2 Generative Models for Inducing Patterns over AUDs
	4.2.1 Structured Sequential Patterns over AUDs
	4.2.2 The Crazy Typist and a Power-Law Prior-based Model

	4.3 Experimental Results
	4.4 Discussion

	5 A Full Hierarchy Induction Approach
	5.1 Hierarchical Structure Induction over Acoustic Units
	5.2 Related Work
	5.3 Proposed Model and Learning Framework
	5.3.1 Tree induction using the CCM
	5.3.2 Identifying Constituent Labels

	5.4 Experimental Results
	5.5 Discussion

	6 Preliminary Approaches Toward Important Future Directions
	6.1 Block-Sparse Approach to Learning Atomic Low-level Units
	6.1.1 Related Work
	6.1.2 Proposed Block-Sparse Model
	6.1.3 Experiments
	6.1.4 Discussion

	6.2 Multiple Instance Learning for Semantic Analysis
	6.2.1 Experiments with multiple instance learning

	6.3 Non-parametric Learning for Audio
	6.3.1 Higher-order Non-Parametric Structure Induction 
	6.3.2 Experiments

	6.4 Video analysis
	6.5 Discussion of Future Work

	7 Conclusions
	7.1 The need for datasets
	7.2 Where might hierarchical analysis help?
	7.3 Future Extensions of Semantic Analysis in Audio

	Bibliography

