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Abstract 

Acquiring domain-specific knowledge necessary for creating a dialog system in a 

new task-oriented domain is a time consuming task that requires domain expertise. This 

dissertation explores the feasibility of using a machine learning approach to infer the 

required domain-specific information automatically from in-domain conversations. In 

order to achieve this goal, two problems need to be addressed: 1) creating a dialog 

representation that is suitable for representing the required domain-specific information, 

and 2) developing a machine learning approach that uses this representation to capture 

information from a corpus of in-domain conversations. 

In order to solve the first problem, I propose a form-based dialog structure 

representation incorporating a three-level structure of task, sub-task, and concept. These 

components are observable in human dialogs. In terms of representation, tasks and sub-

tasks are represented by forms while concepts are slots in a form. The notion of form is 

generalized as a repository of related pieces of information so that it can be applied to 

various types of task-oriented domains. Dialog structure analysis and an annotation 

experiment are used to demonstrate that the form-based representation has all the 

required properties: sufficiency, generality, and learnability. The proposed representation 

is applied to six disparate task-oriented domains (air travel planning, bus schedule 

inquiry, map reading, UAV flight simulation, meeting, and tutoring). While the form-

based approach shows some limitations, it is sufficient to model important phenomena in 

dissimilar types of task-oriented dialogs, and thus has both sufficiency and generality. 

The annotation experiment shows that the form-based dialog structure representation can 

be applied reliably by novice annotators which implies that the representation is 

unambiguous and learnable.  

For the second problem, inferring the form-based dialog structure representation from 

a corpus of in-domain conversations, I divide this dialog structure acquisition problem 

into two sub-problems, concept identification and form identification, to make the 

problem tractable. In order to identify a set of domain concepts, two unsupervised 

concept clustering approaches are investigated: statistical-based clustering and 

knowledge-based clustering. For most statistical-based clustering algorithms, we are able 

to find automatic stopping criteria that yield close to optimal results. The statistical-based 

approaches, which utilize word co-occurrence statistics such as mutual information and 
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the Kullback-Liebler distance, while able to capture domain-specific usage of concept 

words cannot accurately identify infrequent concept words due to a sparse data problem. 

On the other hand, the knowledge-based approach, which uses semantic information 

stored in the WordNet lexical database, can identify domain concepts very accurately, but 

on the condition that the concepts are present in the knowledge source.  

To determine different types of forms and their associated slots, a dialog is first 

segmented into a sequence of sub-tasks by an unsupervised text segmentation algorithm. 

Then, the bisecting K-mean sub-task clustering algorithm is used to group the sub-tasks 

that represent the same form type into the same cluster. Finally, a set of slots that is 

associated with each form is determined from the concepts present in each cluster. To 

handle fine-grained segments in spoken dialogs, TextTiling and HMM-based 

segmentation algorithms are augmented with a data-driven stop word list and distance 

weights. With these modifications significant improvement is achieved. Even though the 

performance of the bisecting K-mean sub-task clustering algorithm can be affected by 

inaccurate sub-task boundaries, I found that moderate segmentation accuracy is sufficient 

for identifying frequent form types. Similarly, moderate sub-task clustering accuracy is 

sufficient for identifying essential slots in each form. 

The results of both dialog structure acquisition problems, concept identification and 

form identification, show that it is feasible to acquire the domain-specific knowledge 

necessary for creating a task-oriented dialog system automatically from a corpus of in-

domain conversations using unsupervised learning approaches. This data-driven approach 

could potentially reduce human effort in developing a new task-oriented dialog system. 
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Chapter 1 

Introduction 

A spoken dialog system is a computer system that interacts with a user via natural 

spoken language to help the user obtains desired information or resolves a problem. As 

for current technologies, a dialog system is one of many natural language applications 

that operate on a specific domain. For instance, the CMU Communicator system 

(Rudnicky et al., 1999) is a dialog system in an air travel domain that provides 

information about flight, car, and hotel reservations. Another example is the JUPITER 

system (Zue et al., 2000) which is a dialog system in a weather domain that provides 

forecast information for a requested city.  

A dialog system typically is composed of the following components: a speech 

recognizer, a natural language understanding module, a dialog manager, a natural 

language generation module and a speech synthesizer. When developing a dialog system 

in a new domain, we may be able to reuse some components from existing dialog systems 

if they were designed independently of domain-specific information. Examples of such 

domain-independent components include speech recognizer and speech synthesizer 

engines. However, the components that are integrated with domain-specific information 

have to be modified or reconstructed for every new domain. In a task-oriented dialog, 

which is the type of dialog that is focused in this thesis, participants engage in a 

conversation in order to achieve a specific goal (i.e. to accomplish a task that they have in 

mind), for example, to obtain the departure time of a particular bus or to order a product 

from a catalog. Hence in the context of this thesis, domain-specific information refers to 

the knowledge which is specific to a task that a dialog system has to support rather than 

the knowledge about general dialogue mechanisms. The work in this thesis also focuses 

specifically on the domain-specific knowledge that is used by a dialog manager rather 

than the one that might be required by other components in the system. The domain-

specific information used by a dialog manager includes a list of tasks that a dialog system 

has to support, a list of steps that needs to be taken in order to successfully accomplish 

each task, and domain keywords which capture pieces of information that dialog 

participants need to communicate in order to achieve these steps. An example of the 

necessary domain knowledge in an air travel domain is shown in Figure 1.2. 
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Conventionally when developing a dialog system in a new domain, the domain-

specific information is identified manually by a human who is familiar with the domain. 

For common domains, such as an air travel domain or a weather domain, dialog system 

developers usually have enough knowledge to identify the necessary domain-specific 

information. However, for unfamiliar domains, such as a military domain (Bohus and 

Rudnicky, 2002), the necessary expertise may be scarce which makes the knowledge 

engineering process more difficult. Furthermore, a domain expert’s decision can be 

subjective and may not cover all of the possible cases as users’ perspectives of a task may 

not be foreseen by the expert (Yankelovich, 1997). As more dialog data becomes 

available, recent approaches in acquiring the domain knowledge are more data-driven. 

Dialog system developers identify the necessary domain information by analyzing 

conversations between the humans who perform similar tasks as a target dialog system. 

The use of in-domain data can be supplemented for the need of a domain expert. A data-

driven approach is less subjective and also reflects more realistic users’ perspectives of a 

task. However, the main drawback of this approach is that analyzing in-domain 

conversations manually is very time consuming. 

In the past decade, the computational linguistics community has focused on 

developing language processing algorithms that can leverage the vast quantities of corpus 

data that are available. The same idea can also be applied to the problem of acquiring 

domain-specific information. A machine learning technique could potentially reduce 

human effort in the knowledge engineering process and alleviate the bottleneck in 

developing a new dialog system. This thesis investigates the possibility of using a 

machine learning approach to acquire the domain-specific information required to build a 

task-oriented dialog system from in-domain conversations. Figure 1.1 outlines the 

proposed solution to the problem of domain knowledge acquisition. Instead of identifying 

the required domain knowledge from in-domain dialogs manually, the knowledge 

engineering process will be done automatically using a machine learning approach. The 

automatically obtained information, such as the one shown in Figure 1.2, can be revised 

by dialog system developers before being used to build a dialog system. Even though 

some revision might be required, the amount of effort spent on revising the learned 

information should be smaller than the amount of effort spent on manually analyzing in-

domain dialogs. This thesis focuses on the highlighted part, inferring the required domain 

knowledge from in-domain dialogs. 
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Figure 1.1: The proposed domain knowledge acquisition process 

 

Figure 1.2: An example output of the proposed machine learning approach 

In the following sections, I will provide some background knowledge about task-

oriented dialog systems and then outline the proposed solution to the problem of 

acquiring the domain-specific information necessary for creating a task-oriented dialog 

system. The rest of this chapter is organized as follows: Section 1.1 provides background 

knowledge on different types of dialog system architectures. Section 1.2 discusses the 

observable structure of a task-oriented dialog and how it reflects the domain-specific 

information required to build a dialog system. Section 1.3 discusses conventional 

approaches that have been used to develop a dialog system in a task-oriented domain. 

Section 1.4 provides the overview of the proposed solution to the problem of domain 
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knowledge acquisition. The thesis statement is given in Section 1.5. Finally, the outline 

of the remainder of this thesis is provided in Section 1.6. 

1.1 Dialog system architecture 

The architecture of a dialog system governs the interaction between the system and a 

user as it sets up expectation on user input, guides the system actions and controls the 

flow of a dialog. Furthermore, a dialog itself and other related information, such as 

domain and world knowledge, are modeled differently by each type of dialog 

architecture. According to McTear (2002), dialog systems can be classified into three 

main categories based on the architecture of the systems:  a finite state-based system, a 

form-based system and an agent-based system.  

1.1.1 Finite state-based systems 

In a finite state-based system (or a graph-based system), a dialog is modeled as a 

sequence of steps or states. The system takes an initiative and leads a user through a 

dialog graph or a state transition network. At each state, the system produces a specific 

prompt to elicit particular responses from the user. Based on the response, the system 

performs an action and transits to a new state. A set of dialog states and eligible 

transitions among the states are fixed and pre-determined. Domain knowledge and other 

information related to a dialog are modeled implicitly by dialog states and their 

transitions. Examples of finite state-based systems are the automatic book club service of 

Larsen and Baekgaard (1994) and the bus schedule information system of Bennett et al. 

(2002). 

A major advantage of the finite state model is its simplicity. Since the system takes 

control over the interaction and user’s responses at each dialog state are quite 

constrained, technologies required to build each system component are less demanding. 

Restricted input and simple interaction lead to fewer errors as discussed in Section 5.1.2 

of McTear’s article (2002). For those reasons, the finite state-based dialog architecture 

has been adopted in many commercial systems. Nevertheless, its simplicity can become a 

drawback as the model is not flexible enough to handle any deviation from expected 

interaction. The state-based dialog architecture is suitable for a well-structured task that 

has a clearly defined set of information items a dialog system needs to obtain and that the 

order for eliciting those items can be fixed. However, it is not appropriate for a complex 

task whose dialog flow cannot be pre-determined, (e.g. a task that requires negotiation or 

contains unknown constraints) or can be affected by the dependencies between 

information items.  
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1.1.2 Form-based systems 

A form-based system (or a frame-based or a template-based system) models a dialog 

as an information gathering session analogous to a form-filling task. At each turn, the 

system attempts to elicit a piece of necessary information from a user and uses that 

information to fill the corresponding slot in a form. In the form-based dialog system 

architecture, a form is a repository of items of information required to perform a task 

such as acquiring flight information from a database. However, other data structures can 

also be used to represent those items of information as well. Examples of other data 

structures are a product, a collection of forms (Constantinides et al., 1998) and a typed 

feature structure (Denecke and Waibel, 1997). The Philips train timetable information 

system (Aust et al., 1995) and the CMU Communicator system (Rudnicky et al., 1999) 

are examples of real world applications that use the form-based dialog system 

architecture. 

The information gathering process in the form-based system is quite similar to the 

one in the state-based system; however, the form-based architecture allows more flexible 

and more natural interaction. The flow of a dialog is determined dynamically from dialog 

context rather than pre-defined.  An appropriate system action (e.g. which question the 

system should ask next) is chosen by a control algorithm or a dialog strategy based on 

dialog context such as the current content of a form and the user’s previous utterance. 

The form-based system can handles more open input from a user; nevertheless, the 

understanding process focuses primarily on words or phrases that can be filled into a pre-

defined set of lots. The user can take initiative by providing more information in addition 

to the one requested by the system. More flexible interaction makes a dialog more 

efficient but at the same time requires a more complicated control strategy. In the form-

based system, domain-specific information is modeled explicitly by forms and slots and 

is decoupled from a control mechanism. 

Similar to the state-based system, the form-based system is appropriate for a well-

defined task. Even though a dialog flow does not have to be pre-determined as in the 

state-based system, a set of information items the form-based system has to elicit need to 

be specified. The system also utilizes only simple context information to determine 

appropriate actions. Therefore, it is not suitable for a domain that has a dynamic structure 

or requires complex interpretation of dialog context beyond the information represented 

by a form and dialog history. Moreover, since the form-based architecture assumes that a 

dialog is an information gathering interaction where the system acquires necessary 
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information to perform a task from the user, this type of system cannot handle the dialogs 

that deviate from this assumption. 

1.1.3 Agent-based systems 

An agent-based system models a dialog as collaboration between intelligent agents 

and utilizes Artificial Intelligence (AI) techniques to manage the interaction between the 

system and a user. There are many variants of agent-based systems depending on 

intelligent behaviors and discourse theories adopted by the systems. For example, a 

theorem proving approach was used by Smith and Hipp (1994) while a plan-base 

approach and a rational interaction approach were used by Sadek et al.(1997). Generally, 

an agent-based system follows a human reasoning process by taking into account its own 

goals, beliefs and intentions and sometimes those of the user when determining an 

appropriate action. AI approaches mentioned above provide theoretical foundation on 

how those conceptual components influent the interaction between the system and the 

user as they collaborate in order to accomplish a task. Since the conceptual components 

(e.g. beliefs and intention) sometimes are not explicitly expressed in a dialog, a 

sophisticated natural language processing technique together with the knowledge about 

human conversations and a domain are required in order to infer those components from 

dialog context.  

With a complex dialog model, an agent-based system can support a complicated task 

that the flow of a dialog evolves dynamically and the content of the interaction (e.g. the 

topics and key information discussed) cannot be determined in advance. For instance, 

during a tutoring session additional topics may need to be discussed if a tutoring system 

discovers that a student lacks the basic knowledge required to solve the current problem. 

The user can also take initiative by introducing a new topic or shifting from the current 

topic to a different one. Since both the sequence and the content of user input are not pre-

defined, an understanding module needs to be able to handle fairly unrestricted user 

input. Examples of agent-based systems are the TRAINS system, a dialog system that 

helps a manager solve a routing problem in a transportation domain (Allen et al., 1995) 

and the physics tutoring system (Freedman, 2000). 

The agent-based dialog system architecture can support a more complex task than the 

finite state-based and the form-based architectures. However, a more complicated model 

comes with the cost of intensive computation both in terms of dialog control and user’s 

input interpretation. 
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1.1.4 Dialog system architecture comparison 

The agent-based dialog system architecture seems to be more appealing than other 

types of architectures as it can model a more complex dialog and has the closest 

conversational competent to a human participant. However, for a simple and well-

structured task, the finite state-based and the form-based architectures can be more 

efficient as they take less effort to develop. Simpler interaction is also more robust to 

system errors such as speech recognition errors and understanding problems. Table 1.1 

summarizes the comparison among the three dialog system architectures along three 

aspects: user input, dialog flow and domain information. 

 

Features 

Dialog system architecture 

State-based Frame-based Agent-based 

User input  Single words or phrases 

restricted by system prompts 

Natural language with 

concept spotting 

Unrestricted natural 

language 

Dialog flow  Fixed and pre-determined by 

a state transition diagram 

Determined dynamically 

from the current content of a 

form and the user’s previous 

utterance 

Determined dynamically 

from a model of goals, 

beliefs and intentions 

 

Domain 

information 

Represented implicitly in 

terms of dialog states  

 

Represented explicitly by 

forms and their associated 

slots 

Represented explicitly in a 

knowledgebase and a 

domain reasoning module 

Table 1.1: Dialog system architecture comparison 

1.2 Characteristic of task-oriented conversations 

Observations of goal-oriented human-human dialogs from different domains show 

that such dialogs have clear structures that capture domain-specific information. When 

two or more people engage in a conversation that has a specific goal, such as obtaining 

bus schedule information, they organize their conversion so that key ideas are clearly 

communicated and that progress towards the goal is observable by all the parties. If the 

task the dialog participants try to achieve is complicated, they usually divide the task into 

a series of sub-tasks in which they will pursue one at a time. This observation is similar to 

Grosz’s (1978) discussion about dialog structure and task structure. A sub-task is 

accomplished through a domain action and all pieces of information required in order to 

perform the action have to be clearly communicated among the participants. The 

characteristics of task-oriented conversations are reflected in the choice of language, 

which will be instrumental, and will reference the shared representation of a task. This 
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contrasts with the characteristics of non-task-oriented conversations such as the ones in 

the Switchboard corpus (Godfrey et al., 1992) and the CALLHOME corpus (Kingsbury 

et al., 1997). Those corpora are casual social conversations.  

1.3 Conventional approaches in dialog system development 

The development process of a dialog system is similar to development processes of 

other types of computer systems. This process involves specifying system requirements, 

designing and implementing a dialog system that meets all of the requirements, and 

evaluating the implemented system. Establishing system requirements is the first step in 

the process. In this step, dialog system developers need to specify the scope of a target 

dialog system (i.e. the tasks that the system can support and the functionality of the 

system); determine the structure of each task; indicate the desired interaction between the 

system and a user which includes determining the dialog flow and anticipated user input 

and system output; and list other technical constraints such as a user pool (native vs. non-

native) and usage environment. This section focuses on this step, requirement 

specification, as it involves identifying domain-specific information. 

In the current dialog system development process, dialog system requirements are 

specified manually by dialog system developers based on the knowledge that they have 

about the domain. However, the resulting system may not interact with a user in the way 

that he/she expects it to, as the developers’ perspectives of the system could be different 

from the user’ perspectives. To avoid this problem, the analysis of in-domain 

conversations is used to guide the design decisions made by the dialog system 

developers. For example, the dialog processing component in the VERBMOBIL speech-

to-speech translation system was designed based on the analysis of scheduling dialogs 

and the requirements of other components in the system (Alexandersson and Reithinger, 

1995). There are two ways to obtain a collection of in-domain conversations: 1) by 

recoding conversations between humans that perform the same task as a target dialog 

system, or 2) by simulating a target dialog system using a human wizard and recording 

conversations between a user and the simulated system.  

The first method creates a corpus of human-human conversations which provides an 

insight into how human participants interact through a dialog to accomplish a task in a 

given domain. There are two types of human-human conversations the one that occurs in 

a real situation, e.g. a call made to a help desk operator of the Pittsburgh Port Authority 

Transit system (Raux et al., 2003), and the one that based on a prescribed scenario, e.g. 

the TRAINS corpus (Gross et al., 1993). Prescribed scenarios are used when it is not 
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possible to record real human-human conversations due to some issues such as a privacy 

issue, or when there is no existing setting that matches a target dialog system. A scenario-

based conversation is less natural since the goal of the conversation is not the participants 

own goal but is given in the scenario along with other constraints. The participants may 

not have real motivation to accomplish a task. Furthermore, the language used to describe 

the scenario can affect the user’s choice of language which is known as a priming effect 

(Dybkjær et al., 1995). How well scenario-based conversations cover the domain also 

depended on a set of scenarios chosen. Nevertheless, scenario-based conversations still 

provide useful information about the characteristics of a task and the interaction between 

dialog participants. Yankelovich (1997) used pre-design studies to collect human-human 

conversations in four task-oriented domains. Conversations in one of the domains were 

recorded when the participants performed a task in a real situation while in other three 

domains prescribed scenarios were used. In his experiments, the analysis of the 

conversations collected from the pre-design studies, which took place prior to any system 

design, revealed users’ perspectives of a task that might not be foreseen by dialog system 

developers and helped reduce major design problems. The main drawback of the method 

that elicits dialog system requirements from the analysis of human-human conversations 

is that the language used in those conversations is rich and unrestricted while the 

language that a dialog system can support is more limited.  

To observe a conversation between a human and a dialog system before such a 

system is actually created, the simulation of the system is required. A Wizard-of-Oz 

(WOZ) method is commonly used to create simulated human-machine conversations.  In 

this method, a human (a wizard or an experimenter) plays a role of a dialog system and 

responds to a user using a synthesized voice. The user is made to believe that he or she is 

interacting with a computer system. An example of the WOZ method can be found in the 

work by Bangalore, Fabbrizio et al. (2006). In this work, the data collected by the WOZ 

method was analyzed by a user experience engineer to determine dialog system 

specifications and its functionality. However, there are several concerns regarding a 

WOZ procedure (Churcher et al., 1997). For example, it is difficult for a human wizard to 

behave exactly like a dialog system, which has limited communication capability, and 

simulate speech recognition and understanding problems that may occur in a real system. 

The behavior of each wizard may also affect how a user interacts with the simulated 

system. To resolve this problem, a prototype system with limited functionality is used to 

collect real human-machine conversations. The system that has more completed 

functionality is then developed based on the analysis of this initial human-machine data. 
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The prototype of the CMU Communicator system was designed based on the analysis of 

both human-human data and simulated human-machined data (WOZ data) (Eskenazi et 

al., 1999). This prototype system was then used to collect real human-machine dialogs to 

further improve the automatic travel planning system.  

As we can see from the discussion above, the analysis of in-domain conversations 

both human-human and human-machine conversations plays an important role in the 

requirement specification and design of a task-oriented dialog system. However, the 

analysis has been done manually which makes the process expensive, subjective and 

probably inconsistent (Bangalore, Fabbrizio et al., 2006). 

1.4 Overview of the proposed solution 

This thesis aims at exploring the feasibility of using a machine learning approach to 

infer the domain-specific information required to build a task-oriented dialog system 

from in-domain conversations. The machine learning approach could potentially alleviate 

the bottleneck that occurs in the conventional dialog system development process, where 

the domain-specific information is identified manually, and reduce human effort in 

developing a dialog system in a new task-oriented domain. In this section, I will first 

define the scope of this thesis work, and then describe the overview of the proposed 

approach. 

Since the knowledge engineering process occurs before the first prototype system is 

created, a collection of recorded conversations between human participants that perform 

the same task as a target dialog system becomes a main resource. In many task-oriented 

domains, collections of human-human conversations already exist. One example is a 

collection of calls made to a help desk operator of the Pittsburgh Port Authority Transit 

system (Raux et al., 2003). Even if there is not one, in the case where we would like to 

replace one of the participants’ roles with a dialog system, a corpus of human-human 

conversations can be collected quite easily. For instance, human-human conversations in 

a travel-planning domain can be collected by recording the conversations between travel 

agents and their clients (Eskenazi et al., 1999). In addition to a dialog corpus of a target 

domain, I am also interested in incorporating information from other knowledge sources 

that are already available to improve learning accuracy. One example of the existing 

resources is the WordNet lexical database. 

There are some previous studies on the differences between human-human 

conversations and human-machine conversations (Dahlbäck et al., 1993; Hauptmann and 

Rudnicky, 1988; Jönsson and Dahlbäck, 1988). These studies show that the language a 
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human uses to communicate with a computer is more constrained than the one he/she 

uses to communicate with another human participant. For example, the vocabulary size 

and the syntactic variations are smaller when compared to those of human-human 

conversations in the same domain. One explanation of this phenomenon is that humans 

adjust their language to accommodate the machine incomplete communication capability. 

However, the differences are in terms of the language used to communicate information. 

I assume that the structure of a task and domain keywords do not change with the 

communication ability of dialog participants, and that a corpus of human-human 

conversations is still a useful resource for acquiring the domain-specific information that 

will be used to create a dialog system. 

The proposed machine learning approaches for inferring the domain-specific 

information from in-domain conversations are mainly unsupervised. When acquiring the 

domain-specific information for a new task-oriented domain, there is no annotated data 

available for training supervised learning algorithms as the target domain-specific 

information has not been specified and needs to be inferred from in-domain dialogs. For 

that reason, we have to rely on unsupervised learning algorithms. Acquiring the necessary 

domain knowledge from a set of human-human dialogs is considered a knowledge 

acquisition process and is carried out before a dialog system is created. This is contrasted 

with a dialog structure recognition process in which pre-specified dialog structure 

components are recognized as a dialog progresses. Although a supervised learning 

approach usually provides a more accurate result, it comes with the cost of manually 

labeled data. There are also some cases where an unsupervised learning approach 

performs better than a supervised one (Woszczyna and Waibel, 1994). In these cases, the 

unsupervised approach, which doesn’t get any influence from human annotation, better 

reflects the characteristics of the data. Furthermore, it is interesting to see how well an 

unsupervised learning approach can perform on the problem of domain knowledge 

acquisition and what would be its limitations. 

 In order to apply a machine learning approach to the problem of domain knowledge 

acquisition, two research problems have to be addressed: 1) specifying a target 

representation which captures the domain-specific information that a dialog system needs 

to have in order to support a task in that particular domain, and 2) developing a machine 

learning approach that infers the domain information captured by this representation from 

in-domain dialogs. 

For the purpose of this dissertation research, a suitable domain knowledge 

representation should have all of the following properties: 
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● Sufficiency: capturing all domain-specific information required to build a 

dialog system in a new task-oriented domain  

● Generality: being able to describe task-oriented dialogs in dissimilar domains 

and types 

● Learnability: the representation can be identified by a machine learning 

algorithm from observable language behaviors in human-human 

conversations  

In this thesis, I propose a form-based dialog structure representation as a target 

representation of the domain-specific information, which will be inferred from in-domain 

conversations, and claim that it has all of the required properties. The form-based dialog 

structure representation is a three-level structure of task, sub-task and concept. These 

components reflect the observable structure of a task-oriented conversation discussed in 

Section 1.2. Task and sub-task represent the decomposition of a complicated task while 

concepts are items of information (or domain keywords) that dialog participants have to 

communicate in order to achieve the conversation goal. A more formal definition of each 

component and examples of the component in various task-oriented domains are 

discussed in detail in Chapter 3. The proposed representation is based on the notion of 

form, a data representation used in the form-based dialog system architecture. The use of 

forms and a form-filling strategy in dialog systems was first introduced by Ferrieux and 

Sadek  (1994) and has been adopted in many systems built on the form-based dialog 

system architecture. Forms are well understood by practitioners but in an informal way. 

Typically, a form corresponds to a database query form and contains items of information 

that are search criteria. This interpretation is specific to only information-accessing 

domains. In this thesis, a more generalized interpretation of the form representation is 

provided, so that it can be used to represent the structure of dialogs in other types of task-

oriented domains as well.  

In the following parts of this section, I will briefly discuss the properties of the form-

based dialog structure representation and the approaches that are used to verify these 

properties. Since the form-based dialog structure representation is based on the data 

representation used in the form-based dialog system architecture, it captures all of the 

domain information required to build a form-based dialog system. Thus, the form-based 

representation is sufficient for representing task-oriented dialogs, at least in information-

accessing domains, as demonstrated by the success of the systems that were implemented 

based on the form-based architecture. To verify its sufficiency for other types of task-

oriented domains and its generality, six dissimilar task-oriented domains are analyzed. 



Chapter 1: Introduction 

 

 

13 

Those six domains are air travel planning (information-accessing task), bus schedule 

inquiry (information-accessing task), map reading (problem-solving task), UAV flight 

simulation (command-and-control task), meeting and tutoring. These domains are chosen 

to cover dissimilar types of task-oriented domains. The choices of domains are also 

subjected to the availability of human-human data. Dialog coverage, which measures the 

percentage of dialog content that can be accounted for by the proposed dialog structure, is 

also used to verify the sufficiency of the form-based dialog structure representation.  

In terms of learnability, since the components of the form-based dialog structure 

representation can be observed directly from a dialog as they reflect the observable 

structure of a task-oriented conversation discussed in Section 1.2, the form-based 

representation should be learnable through an unsupervised learning algorithm. The 

accuracy of the domain information obtained by the proposed machine learning 

algorithms is used to verify the learnability of the form-based representation. The 

proposed learning algorithms are described below. An additional evaluation, a human 

annotation experiment, is carried out to verify that the proposed form-based dialog 

structure representation can be understood and applied reliably by annotators other than 

the coding scheme developer. This evaluation also verifies the learnability of the form-

based representation in terms of human learnability. High annotation scheme reliability 

suggests that the annotation scheme is concrete and unambiguous which also imply 

learnability. Annotation scheme reliability is assessed along two aspects, reproducibility, 

which measures the level of agreement among novice coders and, and accuracy, which 

measures the correctness of a novice coder’s annotation when compared to an expert’s 

annotation.  

The form-based dialog structure representation also has another desirable property, a 

direct mapping between dialog structure components and dialog system components. By 

using an existing dialog system framework to describe the structure of a task-oriented 

conversation, the connections between the components of the form-based dialog structure 

representation and the components of the system that employs the representation become 

straightforward. This direction is opposite to many other research works that implement a 

dialog system from an existing dialog structure theory. 

To make a dialog structure acquisition problem tractable, I divide the problem into 

two sub-problems: concept identification and form identification (a form is associated 

with a sub-task in the form-based dialog structure representation). Each sub-problem is 

handled separately. However, it should be kept in mind that these individual components 

are parts of the same dialog structure; therefore, information about one component may 
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be useful for inferring another component.  After each component can be acquired with 

acceptable accuracy, interaction between components should also be considered in the 

learning process. The accuracy of the acquired domain information is evaluated by 

comparing the learned dialog structure components to the reference components 

identified by a domain expert. 

To identify a set of domain concepts, a learning algorithm has to identify instances of 

concepts and group the ones that belong to the same concept type together. Since a list of 

concept types in a given domain is not pre-specified but will be explored from data, the 

concept identification problem is different from a classification problem, for example, 

named entity extraction. In the classification problem, a word or a group of words is 

classified as one of the predefined roles such as person and organization. Two concept 

clustering approaches are investigated in this thesis, statistical clustering and knowledge-

based clustering. By assuming that words that have similar meaning tend to occur in 

similar context, a statistical clustering approach groups concept words together based on 

their distributional similarity. Two statistical clustering algorithms, mutual information-

based clustering and Kullback-Liebler-based clustering, are compared. Both algorithms 

are an agglomerative hierarchical clustering approach (or a bottom-up approach); 

however, they use different heuristics to determine the similarity between words or 

groups of words. Automatic stopping criteria based on the measures available during the 

clustering process are also proposed for both approaches. For knowledge-based 

clustering, the proposed approach utilizes semantic information stored in the WordNet 

lexical database and groups concept words together based on their hypernyms.  

The goal of the second learning problem, form identification, is to determine different 

types of forms and their associated slots that a dialog system needs to know in order to 

perform a task. Since a form represents a segment of a dialog that corresponds to a sub-

task, identifying the sub-tasks in a set of in-domain dialogs can help determine a set of 

forms. The proposed solution is as follows: first segment a dialog into a sequence of sub-

tasks, then group the sub-tasks that are associated with the same form type into a cluster. 

By analyzing the concepts contained in each cluster, a set of slots that is associated with 

each form can be obtained. Two unsupervised discourse segmentation approaches are 

investigated: a TextTiling algorithm and a Hidden Markov Model. Both approaches, 

while performing well with expository text, require some modifications when they are 

applied to a fine-grained segmentation problem of spoken dialogs. The proposed 

modifications include: a data-driven stop word list, a distance weight and an appropriate 

context size. After segmenting all dialogs into sequences of sub-tasks, the bisecting K-
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means clustering algorithm is used to group the dialog segments that belong to the same 

type of sub-task together as they represent the same form type. The bisecting K-means 

algorithm is an unsupervised clustering algorithm that utilizes cosine similarity between 

dialog segments in order to assign the segments into clusters. Information from concept 

annotation is included as an optional feature for both dialog segmentation and sub-task 

clustering algorithms to see how information from another dialog structure component 

affects the learning accuracy. 

1.5 Thesis statement 

This thesis investigates how to infer, from a corpus of task-oriented human-human 

conversations, the domain-specific information that a dialog system needs to have in 

order to support a task. The required domain information is clearly reflected in the 

structure of a dialog as dialog participants exchange pieces of information to perform a 

task, and for a complex task, decompose it into a set of sub-tasks which they can pursue 

one at a time. For the domains that exhibit this information-exchanging characteristic, 

when the domain-specific information is clearly expressed in a dialog, it can be 

automatically acquired from the associated language behaviors through unsupervised 

machine learning approaches. 

1.6 Thesis organization 

The following is an outline of the remainder of this thesis. 

● Chapter 2: Literature Review. This chapter summarizes several well-known 

discourse structure representations and prior research works that attempted to 

identify those structures from data. The chapter also discusses the limitations 

of the existing discourse structure representations if they were to be used in 

the context of this dissertation. 

● Chapter 3: Form-based Dialog Structure Representation. This chapter 

describes the proposed form-based dialog structure representation and argues 

that it has all of the required properties. Examples on how to model the 

structure of a dialog with the proposed representation in six disparate types of 

task-oriented domains are given. The chapter also discusses the limitations of 

the proposed structure and compares it to existing dialog structures. 

● Chapter 4: Form-based Dialog Structure Representation Evaluation. This 

chapter describes two evaluation procedures: dialog coverage, which 

measures the percentage of dialog content that can be accounted for by the 
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proposed structure, and annotation scheme reliability, which assesses 

annotation agreement among novice coders to verify that the proposed form-

based dialog structure can be understood and applied by annotators other than 

the coding scheme developer. 

● Chapter 5: Concept Identification and Clustering. In this chapter, approaches 

for identifying a set of domain concepts are described along with their 

evaluations. 

● Chapter 6: Form Identification. This chapter consists of two parts which 

correspond to the two major steps used to identify different form types and 

their associated slots. The first part describes dialog segmentation algorithms. 

The second part describes sub-task clustering algorithms along with the 

analysis of the potential slots for each type of form. A series of experiments 

used to evaluate these learning algorithms are reported. 

● Chapter 7: Conclusion. This chapter summarizes all the findings and discuses 

directions for future research 
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Chapter 2 

Literature Review 

This chapter reviews existing research works in two areas: discourse structure 

representation, and data-driven approach to dialog structure modeling. These two areas 

are related to the two research problems that have to be solved in order to achieve the 

goal of this dissertation which is to infer the domain-specific information required to 

build a task-oriented dialog system from in-domain conversations through a machine 

learning approach. The two research problems that have to be solved are 1) specifying a 

dialog structure representation that is suitable for representing the required domain-

specific information, and 2) developing a machine learning approach that infers the 

domain information captured by this representation from in-domain dialogs. Throughout 

this thesis, the terms discourse and dialog can be used interchangeably. Nevertheless, in 

some specific discussions, the term discourse may have a boarder interpretation that 

includes both monologs and dialogs. 

This chapter is organized as follows: Section 2.1 summarizes well-known discourse 

structure theories and models. Section 2.2 discusses the learning approaches that have 

been used to identify a structure of a dialog from data. 

2.1 Discourse structure representations 

Discourse structure modeling has been a topic of interest for several decades. Many 

theories and models have been proposed to explain a structure of a human-human 

conversation. These dialog structure models (or theories) focus on different aspects of 

dialogs depended on the purpose of the models and the assumptions they made about 

human-human conversations. In addition to linguistics, the ideas behind discourse 

structure theories and models were also influenced by many other fields of study 

including psychology, sociology, philosophy, and computer science.  

In the early days, the research in the area of discourse structure modeling focused 

mainly on developing a theory that facilitates the interpretation of discourse meaning that 

goes beyond the level of an individual utterance. These discourse structure theories were 

derived mainly from linguistic and psychological point of views, and were aimed 

preliminary at describing discourse phenomena in both monologs and dialogs with the 
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proposed structure. Recent works on discourse structure modeling are more engineering-

oriented. Practical issues such as predictability of each structure component and a 

computational model that can represent the proposed dialog structure in an automate 

system have been addressed when developing a discourse structure model. Many of these 

representations are derived from the analysis of recorded human-human conversations, 

and thus receive more influence from real data than linguistic and psychological theories.  

In this section, I will review some of the works that are well known in the field or 

have been applied in dialog system implementation. Additional reviews on discourse 

structure representation can be found in many survey articles including the chapter 6 of 

Cole et al.’s (1997) article, Grosz et al.’s (1989) article which focuses on discourse 

structure for natural language understanding, and  Moore and Wiemer-Hastings’ (2003) 

article which focuses on discourse structure for natural language generation. 

Most discourse structure models agree that a discourse has a compositional structure 

(Grosz et al., 1989; Moore and Wiemer-Hastings, 2003). That is, a discourse can be 

divided into coherent segments. Moreover, these segments also possess some relations 

among one another. Discourse segments and their relations constitute the structure of the 

discourse. However, what discourse segments and their relations represent can be 

different depended on the aspect of a discourse that each model emphasizes. A discourse 

can be viewed from two different perspectives: an informational perspective and an 

intentional perspective. This categorization is similar to the informational-intentional 

distinction discussed in the chapter 6 of Cole et al.’s (1997) article  and also in (Hobbs, 

1996; Moore and Pollack, 1992) 

1. Informational perspective (or content-based perspective) captures the actual 

content being conveyed in a discourse. The content of the discourse can be 

modeled by its surface representation, such as the actual entity that was 

mentioned, or by its semantic representation. 

2. Intentional perspective captures a speaker’s intention behind each utterance 

(i.e. why it was said) and the overall goal of a discourse. 

Some discourse structure representations may capture both the informational and the 

intentional aspects of a discourse, but only one aspect is emphasized. Based on the 

emphasized aspect, discourse structure representations can be broadly categorized into 

two groups: informational-oriented discourse structures and intentional-oriented 

discourse structures. After reviewing each group of discourse structure representations in 

Section 2.1.1 and Section 2.1.2 respectively, all discourse structure representations are 
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compared in Section 2.1.3. In Section 2.1.3, I will also discuss the appropriateness of 

these representations if they were to be used in the context of this dissertation. 

2.1.1 Informational-oriented discourse structures 

2.1.1.1 Discourse Representation Theory (DRT) 

Discourse Representation Theory (DRT) is a formal semantic model which focuses 

on the semantic truth conditions of a discourse and aims primarily for discourse 

understanding. The theory was first introduced by Kamp (1981) and further developed by 

Kamp and Reyle (1993). DRT uses a logical language to represent the meaning of text 

similar to a first-order predicate logic; however, the logical representation in DRT is 

extended from the level of a sentence to the level of a discourse by including the 

representation of the context. The semantic representation of a discourse in DRT is called 

a Discourse Representation Structure (DRS). The meaning of a given text is derived on a 

sentence-by-sentence basis. Semantic interpretation rules are used to transform the 

syntactic structure of each sentence to the semantic one. The interpretation of each 

sentence is made in the context of preceding sentences which is represented by the 

current DRS. The result of this interpretation is then used to update the DRS.  The 

advantage of this approach is that the semantic representation of a discourse is built up 

from the contents of the discourse alone without bringing in external information.  DRT 

provides a computation framework to resolve some linguistic issues, such as anaphora 

resolution and quantifier scoping, through predicate calculus which can be implement 

using LISP or PROLOG. Although, DRT provides a representation for a discourse, it 

focuses more on describing the truth conditions of the discourse rather than its 

compositional structure. Most of DRT mechanisms also focus on sentence level 

processing without taking into account the relationship between sentences. 

2.1.1.2 The Linguistic Discourse Model (LDM) 

The Linguistic Discourse Model (LDM) (Polanyi, 1996) provides a framework for 

discourse interpretation based on the linguistic theory of discourse structure that has been 

developed by Polanyi and her colleagues since 1984. In the LDM framework, both 

structural relations and semantic accessibility relations (relations among contextual 

categories) play important roles in discourse interpretation.  A structural description of a 

discourse is represented by a Discourse Parse Tree (DPT). Each leaf node in the DPT is a 

Discourse Constituent Unit (DCU), a semantically motivated discourse unit that 

expresses a single event or state of affairs in a discourse world. A DCU is equivalent to a 

single clause or a single phonological phrase and is often marked by discourse operators 
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(or discourse markers). These discourse operators also provide information about the 

relations among the DCUs.  

A DPT can be constructed from DCUs using a discourse grammar. Polanyi argued 

that for most of the cases, simple context-free rewrite rules are sufficient to describe the 

structure of a discourse. The discourse is processed on a DCU-by-DCU basis. The 

relation between a new DCU and its immediately preceding DCU determines how the 

new DCU will be attached to the DPT. This relation also determines how the semantic 

interpretation of the new DCU will be combined with the current semantic representation 

of the discourse. A semantic representation in the LDM captures both propositional 

content and discourse contexts, which are modeled by a hierarchy of contextual 

categories (interaction, speech event, genre unit, modality, polarity, and point of view). 

The semantic representation in the LDM is an extension of the discourse representation 

structure (DRS) used in Discourse Representation Theory (DRT) discussed in Section 

2.1.1.1. However, while DRT emphasizes discourse referents, the LDM emphasizes the 

setting and resetting of discourse contexts. 

Similar to DRT, the LDM focuses on a semantic representation of a discourse which 

is described in terms of the truth conditions. The LDM also describes a structural 

representation of a discourse; however, a discourse parse tree is influenced by sentential 

syntax rather than a task structure or discourse goals. 

2.1.1.3 Segmented Discourse Representation Theory (SDRT) 

Segmented Discourse Representation Theory (SDRT) (Asher, 1993) is the extension 

of Discourse Representation Theory (DRT), discussed in Section 2.1.1.1, that takes into 

account the structure of a discourse when combining the semantic representation of a new 

sentence into the overall semantic representation of the discourse. Instead of simply 

merging the sentence-level representation with the current Discourse Representation 

Structure (DRS) and creating a larger DRS as in DRT, SDRT uses a discourse relation 

between the new sentence and its previous sentence to determine how the semantic 

representation of the new sentence should be combined with the analysis of previous 

sentences in the overall structural semantic representation. 

From the influence of DRT and the analysis of anaphora, SDRT views the structure 

of a discourse from a semantic perspective and can be considered as a semantic theory of 

discourse structure. A unit of a discourse (or a discourse segment) is defined at the level 

of proposition and is equivalent to a simplest form of a DRS in DRT. A set of discourse 

segments, namely a set of DRSs, and a set of discourse relations between these DRSs 
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determine the structure of a discourse. This discourse structure, called a Segmented 

Discourse Representation Structure (Segmented DRS or, SDRS), is imposed on the top of 

the semantic representation in DRS. Since SDRS is defined recursively, it many contain 

another SDRS, and thus constitutes a hierarchical discourse structure. 

There are two types of relations: structural relation and non-structural relation (or 

semantic relation). Structural relations specify how a discourse is segmented and how the 

segments are organized. For examples, Continuation indicates that a new sentence and 

its previous sentence are in the same discourse segment while Elaboration indicates that 

a new sentence is in the discourse segment that is dominated by the discourse segment of 

its previous sentence. Nevertheless, structural relations do not affect the semantic truth 

conditions of discourse content. Non-structural relations such as CAUSE, on the other 

hand, have some implications on the semantic truth conditions of the discourse content. 

Satisfaction conditions of these relations impose constraints on the locations in the 

current SDRS that a new sentence can be attached to. A list of discourse relations are 

open; but for one specific set of data, the number of relations should be small.  

The overall structure of a discourse is created on a sentence-by-sentence basis similar 

to DRT. In order to attach the DRS of a new sentence to the current SDRS, both an 

attachment point and the discourse relation between the new DRS and its preceding 

sentence have to be identified. The discourse relation can be inferred from various 

sources of information including cue words, available attachment points, the content of 

the current SDRS and the new DRS, and satisfaction conditions of possible relations. 

SDRS is quite similar to the Linguistic Discourse Model (LDM) discussed in Section 

2.1.1.2. However, SDRS puts more emphasis on the semantic aspect of a discourse 

structure while the LDM puts more emphasis on the syntactic and structural aspects of 

the structure. This difference is reflected in the choices of discourse relations and their 

effects on discourse processing. The relations in LDM mostly affect the structure of a 

discourse while some relations in SDRS also affect the semantic representation of the 

discourse. 

2.1.1.4 Rhetorical Structure Theory (RST) 

Rhetorical Structure Theory (RST) (Mann and Thompson, 1988) was originally 

developed from the analysis of carefully prepared text from various sources. The theory 

explains a structure of a discourse in terms of relations between its parts. The assumption 

behind RST is that every part of coherent text has a reason for its presence. RST provides 

a rich set of coherence relations, yet principally open, that describes a role that one text 
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span (a satellite) has with respect to another text span (a nucleus). These coherence 

relations were defined based on functional and semantic criteria rather than syntactic 

ones. There are two types of relations: a subject matter relation and a presentational 

relation. A subject matter relation (e.g. elaboration and cause) is intended for a reader 

to recognize the relation while a presentational relation (e.g. Motivation and Justify) is 

intended to increase some inclination in the reader. From the two aspects of a discourse 

discussed earlier, a subject matter relation is considered informational as the relation 

itself has to be recognized in order to understand the discourse while a presentational 

relation is considered intentional as it affects the reader’s belief not the meaning of the 

discourse. 

Since a text span is roughly defined as any uninterrupted linear interval of text, one 

can create a hierarchical structure of text by identifying coherence relations between all 

of the compositions of a given discourse (e.g. between sentences, groups of sentences and 

paragraphs). Such a structure is called a rhetorical structure tree or a discourse tree. 

Recently, Taboada and Mann (2006) reviewed and responded to the issues that have been 

addressed on theoretical aspects of RST. In terms of learning, Marcu (1999) proposed a 

rhetorical parsing algorithm that learns to construct a rhetorical structure of text from 

annotated data using a decision tree. 

RST has been used mainly for text generation such as automatic summarization. To 

apply RST to dialogs several modifications are required in order to handle dialog-specific 

behaviors. Stent (2000) captured the collaboration between participants in task-oriented 

dialogs by introducing a new set of relations that describe adjacent pairs such as 

question-response and proposal-accept. However, like other relations, adjacency 

pairs emphasize speakers’ rhetorical goals rather than task goals. To capture task-specific 

structural patterns, the notion of schema (e.g. make-plan and describe-situation) was 

added to the annotation scheme. 

2.1.2 Intentional-oriented discourse structures 

2.1.2.1 Speech act theory 

Speech act theory has its root in the field of philosophy of language from the work of 

a philosopher J. A. Austin and his follower J. R. Searle. This theory focuses on the 

function of language that goes beyond the level of semantics (i.e. the truth value of a 

proposition). Speech act theory analyzes the role of an utterance with respect to the 

intention of a speaker (the illocutionary force) and the effect on a listener (the 

perlocutionary effect), and thus introduces pragmatics to the field of discourse structure 
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modeling. Several categories of speech acts have been proposed; however, the one that 

has the strongest influence on the set of dialog acts
1
 used in many dialog systems is 

Searle’s taxonomy of illocutionary acts (Searle, 1975). Searle argued that a number of 

basic categories of intentions behind the use of language is definite and proposed five 

categories of illocutionary acts which are assertives (a speaker conveys the belief that 

something is being the case), directives (a speaker attempts to get a hearer to do 

something), commissives (a speaker commits to do something in the future), expressives 

(a speaker expresses his/her feelings), and declarations (a speaker changes the state of the 

world by saying the utterance). Each utterance may contain more than one illocutionary 

act. Many researchers have modified the speech act taxonomy to better suite their tasks 

by adding more domain-specific acts. Alexandersson et al. (1995) extended Searle’s 

speech act taxonomy to a set of 17 dialog acts that describes appointment scheduling 

conversations in the VERBMOBIL speech-to-speech translation system. 

Speech act theory does not describe the overall structure of a discourse but focuses 

only on the level of an utterance. Nevertheless, a speaker’s intention captured by a speech 

act is also a key component in many other theories that use an utterance as a discourse 

structure unit including a dialog grammar, a plan-based model and the theory of 

conversation acts. The details of these theories are discussed below. 

2.1.2.2 Dialog Act Markup in Several Layers (DAMSL)  

The DAMSL annotation scheme (Core and Allen, 1997) was developed from speech 

act theory (Searle, 1975) discussed in the previous section. However, instead of using a 

single label to capture an utterance’s purpose as in speech act theory, DAMSL uses 

multiple labels in multiple layers to describe the utterance’s function in various aspects. 

The DAMSL annotation scheme consists of three orthogonal layers: Forward 

Communicative Functions, Backward Communicative Functions, and Utterance 

Features. The Forward Communicative Functions contain a taxonomy similar to the 

actions in speech act theory. The Backward Communicative Functions contain a set of 

labels that indicates the relation between the current utterance and the previous ones such 

as agreement and answer. The Utterance Features describe the content and form of an 

utterance. 

DAMSL was developed by Multiparty Discourse Group as an annotation guideline 

for task-oriented conversations in general. The communicative acts defined in DAMSL 

are primitive communicative actions that are common in various task-oriented domains. 

                                                 
1
 The term dialog act may also be used interchangeably for the term speech act. 
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These communicative acts can be extended to include domain-specific acts as shown in 

Meeting Recorder Dialog Act (MRDA) (Dhillon et al., 2004) and the dialog move 

taxonomy for tutorial dialogs (Tsovaltzi and Karagjosová, 2004). The DAMSL 

annotation scheme can also be augmented with additional layers that describe an 

utterance’s functions in other aspects. To better describe reasoning and problem-solving 

processes in problem-solving conversations, two additional layers were introduced in the 

COCONUT project (Eugenio et al., 1998). The Topic layer describes the content of an 

utterance with domain-specific tags while the SurfaceFeatures capture syntactic features 

of the utterance such as tense and subject. Hardy et al. (2003) added the semantic layer to 

capture domain-related information enclosed in each utterance.  

Since DAMSL was developed from speech act theory, it too does not describe an 

overall structure of a discourse but focuses only on the level of an utterance. Each 

utterance is described in isolation. A relation between utterances is not captured except 

for the link to the antecedent, the previous utterance being responded to by the current 

utterance, provided by Backward Communicative Functions. A structural relation 

between groups of utterances is not specified. Nevertheless, DAMSL is widely used in 

many dialog systems to aid the interpretation of user utterances similar to other 

extensions of speech act theory. Furthermore, it has been shown that the DAMSL tagset 

and its extension can be automatically recognized with acceptable accuracy (Jurafsky et 

al., 1997; Stolcke et al., 2000). 

2.1.2.3 Dialog grammars 

The idea of a dialog grammar is based on the observation that a conversation contains 

regular patterns. The most prominent pattern is known as an adjacency pair such as a 

question/answer pair. In a collaborative conversation, we can assume that the succeeding 

utterance will follow the initiative set by the preceding utterance. For example, we can 

expect that a question will be followed by an answer. Generally, each pattern is a 

sequence of utterances in which the first utterance of the sequence (or an initiation) 

creates a discourse expectation that will be fulfilled by subsequent utterances (or 

responses). These sequences are then built up into larger patterns in a dialog. Regular 

patterns in a dialog are hierarchical and can be expressed by a grammar. Each grammar 

rule specifies how a dialog or a dialog segment is decomposed into smaller units. 

Usually, the smallest unit of a dialog, or a terminal node in a dialog grammar, is 

represented by a dialog act. The next level non-terminal node is an adjacency pair which 

corresponds to a certain sequence of dialog acts. Non-terminal nodes higher up in the 

hierarchy could be motivated by the characteristics of a conversation. For example, in a 
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task-oriented conversation, some non-terminal may correspond to the sub-goals. By 

describing a dialog using a grammar, the structure of a dialog can be obtained by parsing 

the dialog similar to sentence structure parsing. Unlike some other theories that can be 

applied to any type of discourse, this theory is specific to dialogs.  

One well-known dialog grammar model is a five-level structure proposed by Sinclair 

and Coulthard (1975) from the analysis of the language used by teachers and students. 

The five levels are lesson, transaction, exchange, move, and act. The largest unit of a 

classroom discourse is a lesson. A lesson is a collection of transactions; each of them 

corresponds to one segment of a dialog that has a specific purpose and contributes toward 

the goal of the conversation. A transaction is equivalent to a discourse segment in Grosz 

and Sidner’s Theory of discourse structure (Grosz and Sidner, 1986) discussed in Section 

2.1.2.6. A transaction in turn consists of a set of related exchanges, a set of initiation-

response sub-dialogs. An exchange is the most apparent pattern in a dialog and can be 

considered as a more general case of a question-answer pair. It consists of an initiation, a 

response, and a feedback, which are the categories of moves. A move is the smallest free 

unit that composes of the smallest dialog units called acts. These acts are also known as 

dialog acts and usually are an extended set of the original speech acts (Searle, 1975). 

The HCRC dialog structure (Carletta et al., 1996) adopted the structure proposed by 

Sinclair and Coulthard (1975), but used only the three middle levels, to describe the 

phenomena in problem-solving conversations in a map reading domain. At the highest 

level of the HCRC hierarchical structure, a dialog is divided into transactions. Each 

transaction is a sub-dialog that corresponds to a major step of a task. A transaction is 

made of a sequence of conversational games or initiation-response exchanges. Each 

exchange consists of an initiation and a sequence of responses that fulfills a discourse 

expectation set by an initiation. Each initiation or response is called a move and 

corresponds to an utterance or a part of an utterance. Lewin et al. (1993) incorporated 

dialog move recognition in the dialog manager of the automatic route-planning system to 

predict the move of another conversation participant. In addition, the corpora annotated 

with the HCRC dialog structure were used to study various language phenomena such as 

intonation and effects of communication conditions. Please refer to the references in the 

conclusion of Carletta et al.’s (1997) article for more detail.  

In summary, a dialog grammar describes a tree structure of a dialog that has dialog 

acts as terminal nodes and larger dialog segments such as initiation-response exchanges 

as non-terminal nodes. The dialog grammar can be used to prescribe acceptable dialogs in 

a given domain. The grammar rules can also be used to predict the next element in a 
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conversation. The dialog grammar is employed in some dialog systems to predict 

subsequent user utterances and guide a conversation. One example is the rules of 

conversations in SUNDIAL ESPRIT project (Bilange, 1991). The limitation of the dialog 

grammar is that it might be too restrict to describe complicated dialogs. Since the dialog 

grammar uses grammar rules to specify acceptable dialogs, it is quite difficult to generate 

a set of rules that covers all possible variations of conversations in a complex domain. 

2.1.2.4 Plan-based models 

In a plan-based model, a conversation is perceived as a plan that dialog participants 

execute in order to achieve some goals. A plan consists of a sequence of operators that 

transforms an initial world state to a goal state. In a conversation, a speech act is an 

operator that produces an utterance and causes some effect on a hearer and the state of the 

hearer’s world, such as modifying the hearer’s belief. A plan-based model also describes 

how speaker intentions captured by speech acts fit together in the conversation and how 

they relate to the conversation goal. Examples of plan-based models can be found in the 

works of  Carberry (1990), Cohen and Perrault (1979), and Pollack (1992). 

During a conversation, a participant attempts to recognize the plan of another 

participant in order to make an appropriate response. Allen and Perrault (1980) described 

a computational model that infers another participant’s plan from observed actions. An 

action (or an operator) is defined in terms of preconditions, criteria that have to be 

achieved before executing the action, and effects, how the hearer’s world model changes 

after executing the action. The plan inference process can be done by: 1) given expected 

goals, searching for a plan that includes observed actions, or 2) using inference rules to 

infer a goal from observed actions. Partial plans are rated by how well-form the plans are 

in the given context and how well they conform to the expectation. Since a plan-based 

model describes the relations between utterances and a conversation goal, its principle 

can be applied to dialog control or dialog management. The plan-based approach to 

dialog has been implemented in many complex dialog systems such as the VERBMOBIL 

speech-to-speech translation system (Alexandersson, 1995).  

Traditional plan-based models are quite rigid as they make rather strong assumptions 

about the nature of a plan, its elements and the environment in which the plan will be 

executed. For example, they assume that there is no change in the world between the time 

of planning and the time of execution, and that dialog participants’ beliefs persist. 

However, those assumptions are not practical in real situations. Several augmented plan-

based models have been proposed to address these issues. 
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The traditional models work well for a dialog that follows the task structure closely, 

but have a problem accounting for some types of sub-dialogs (e.g. clarification, 

correction, and topic change) since the models only allow an utterance to describe a step 

in a plan. Litman and Allen (1987) introduced discourse plans to describe various ways 

an utterance can relate to a discourse topic and distinguished them from domain plans 

that are actually used to model the topics (plans in a traditional plan-based model). 

Discourse plans explicitly represent discourse intentions and incorporate the knowledge 

about a discourse into a plan-based model in addition to the knowledge a domain 

captured by traditional domain plans. 

A tripartite model (Lambert and Carberry, 1991) further differentiates discourse plans 

into problem-solving plans and communicative plans. The relationships among the three 

types of plans are organized into a hierarchical dialog model with discourse plans 

(communicative plans) at the lowest level, problem-solving plans at the middle level, and 

domain plans at the highest level. The actions in the lower level plans contribute toward 

the actions in the higher level plans. Nevertheless, actions in all levels can be recognized 

incrementally as the tree structure is allowed to grow from both the root and the leaves. A 

tripartite model provides a finer-grained differentiation among different types of user 

intentions and allows a different processing to be applied to each type of plan.  

In a negotiation sub-dialog, dialog participants may change their beliefs as the dialog 

progresses which conflicts with a persistent belief assumption made by the traditional 

plan-based models. To handle the changes in beliefs, a multi-strength belief model and 

acceptance actions, were added to the tripartite plan-based model (Lambert and Carberry, 

1992). An acceptance action, which is included in a discourse plan, addresses the 

understandability, believability, or relevance of a particular proposition communicated by 

the participants. The plan-based model combines multiple knowledge sources including 

linguistic, contextual, and world knowledge to recognize the changes in beliefs.  Rosé 

(1995) extended the tripartite model further in order to capture multi-threads of 

negotiations in the scheduling domain. The changes in beliefs occur in negotiation sub-

dialogs suggest that dialog participants need to have shared beliefs in order to collaborate 

on a task. The notions of mutual belief and shared plan are discussed in a collaborative 

planning model in Section 2.1.2.6. 

Rather than assume that an environment is static as in the traditional plan-based 

models, the BDI (Belief, Desire, and Intention) architecture (Bratman et al., 1988; 

Pollack, 1992) allows a plan to be executed in a dynamic environment where it may 

change in the way that makes the plan invalid. The BDI model, also known as IRMA (the 



Chapter 2: Literature Review 

 

 

28 

Intelligent, Resource-Bounded Machine Architecture), is based on the idea of practical 

reasoning developed by Bratman (1987). Beliefs are uninstantiated plans while desires 

are a participant’s goals. Intentions are steps in the plan that the participant has 

committed but not yet acted on. To handle the change in the environment, the participant 

is allowed to make changes to the plan that he/she has already committed. At each step in 

the plan, the participant can choose to continue with the current intention or adopt one of 

the new options arise from the change in the environment. The new intention may better 

suite the new beliefs and goals that are the results of the change. However, as practical 

reasoning poses the constraint on the amount of resources available for planning, the 

decision at each step can be sub-optimal. The BDI model was adopted in the TRAINS 

system (Ferguson et al., 1996), a dialog system that helps a manager solve a routing 

problem in a transportation domain. A reactive planner, such as the one developed by 

Georgeff and Ingrand (1989), is also implemented on the basis of practical reasoning and 

the BDI model. Even though reactive planning was originally developed for real-time 

control systems, it can also be used in a variety of other domains such as tutoring 

(Freedman, 2000). 

The ability to represent complicated conversations of a plan-based model comes with 

the cost of a complex dialog structure. In order to apply the plan-based model to a 

particular task-oriented domain, the following components have to be specified: beliefs 

and goals of the participants, a plan library, and plan elements (e.g. actions and their 

preconditions and effects). The complex structure also leads to a complicated plan 

recognition process. Other drawbacks of the plan-based model are mentioned in the 

chapter 6 of Cole et al.’s (1997) article. 

2.1.2.5 The theory of conversation acts  

The theory of conversation acts (Traum and Hinkelman, 1992) views a dialog as 

composed of fine-grained actions similar to speech act theory (Searle, 1975) discussed in 

Section 2.1.2.1. However, several extensions were introduced in the theory of 

conversation acts to make it better accounts for the structure of a spoken discourse. The 

theory of conversation acts models the conversation as a collection of joint speaker-

hearer actions instead of single agent actions. This eliminates a mutual understanding 

assumption among conversation participants and makes grounding actions more explicit. 

The extensions include three levels of actions in additional to the core speech act level. 

The theory of conversation acts describes four levels of actions necessary for maintaining 

the coherence and content of the conversation. These four levels are turn-taking acts, 

grounding acts, core speech acts, and argumentation acts. These levels are typically 
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realized by larger segments respectively in a dialog; however, the four-level 

representation of conversation acts is not hierarchical as each dialog act level is 

independent from each other and concerns a distinct aspect of the dialog. Turn-taking acts 

model the participants’ control over a speaking channel while and grounding acts capture 

mutual understanding among the participants. Core speech acts are similar to the 

traditional speech acts and operate at the level of an utterance. The argumentation acts 

level accounts for the structure of the dialog above the level of an utterance. 

Argumentation acts capture the purposes of discourse segments and can be built up into a 

hierarchy of argumentation acts. At the top levels of the hierarchy, argumentation acts 

resemble tasks and sub-tasks in a task structure while, at the lower levels, they are similar 

to rhetorical relations (Mann and Thompson, 1988) and adjacency pairs.  

Since each level of conversation acts captures distinct dialog information, they are 

employed independently from each other in a dialog system. Turn-taking acts may not be 

necessary in two-party conversations, but are more crucial in multi-party conversations 

while argumentation acts are important in a dialog system that involves complex 

planning. The theory of conversation acts emphasizes more on coordinated activities in 

the conversation, such as turn-taking and grounding, rather than the domain information 

communicated. Among the four levels of conversation acts, the argumentation act level is 

the one that captures the overall structure of a conversation similar to the structure of a 

task. Nevertheless, how to recognize argumentation acts and use them in a dialog system 

was only briefly discussed in the theory where the authors suggested the use of cue words 

together with the knowledge about discourse, language, and the domain for 

argumentation act recognition. 

2.1.2.6 Grosz and Sidner’s Theory of discourse structure 

Grosz and Sidner’s Theory of discourse structure (GST) (Grosz and Sidner, 1986) 

provides a framework for interpreting the meaning of an utterance in discourse context 

and for understanding discourse phenomena such as interruption based on the idea that a 

proper account of a discourse structure provides the basis for the interpretation of 

discourse meaning. GST models a structure of a discourse based on the concepts of 

discourse unit and discourse coherence. The proposed structure is composed of three 

components: linguistic structure (the structure of utterances in a discourse), intentional 

structure (the structure of purposes), and attentional state (the state of focus of attention).  

The linguistic structure captures how utterances in a discourse are aggregated into 

discourse units. A discourse unit or a discourse segment is defined as a sequence of 

utterances which fulfills a certain function with respect to the overall goal of the 
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discourse. The intention underlies each discourse segment is called the discourse segment 

purpose. We could also say that a discourse segment is defined based on dialog 

participants’ intention. The second component, the intentional structure, models 

relationships between discourse segment purposes, and thus captures discourse 

coherence. These relationships are structural relations between intentions rather than 

relations between discourse segments as in Rhetorical Structure Theory (Mann and 

Thompson, 1988) discussed in Section 2.1.1.4. Therefore, the number of relations is 

smaller and the relations are also simpler. The last component, the attentional state, 

contains objects, properties, relations, and the purpose of the discourse segment that 

receives the focus of attention from discourse participants at any given point of the 

discourse. The attentional state models the participants’ focus of attention during a 

conversation via focusing structure which uses the information from the intentional 

structure to determine a discourse segment that receives the focus of attention as the 

conversation progresses. The three components together supply contextual information 

necessary for the interpretation of utterances in discourse context.  

GST describes an abstract model of discourse structures. To construct a 

computational model based on this theory the following problems need to be solved: 

discourse segmentation, and the recognition of discourse segment purposes and the 

relationships between them. Grosz and Sidner discussed some of these processing issues 

and suggested the use of cue phrases, utterance-level intention, and the knowledge about 

domain actions and objects to resolve the problems; however, no concrete 

implementation of the structure was proposed. Grosz and Sidner (1990) argued that a 

computational theory for recognizing discourse segment purposes and the intentional 

structure depends on the underlying theory of intention, action and plan and proposed 

SharedPlans, a model of collaborative planning that takes into account mutual beliefs and 

multi-agent actions in addition to a mental state model of a single-agent plan. This model 

also provides a framework for modeling the intentional structure. Lochbaum (1998) 

implemented a computational model that can recognize the intentional structure, and used 

it in discourse processing. The extension of SharedPlans that can handle more 

complicated situations in collaborative planning was proposed by Grosz and Kraus 

(1996). The model of SharedPlans emphasizes discourse-level intentions while a single-

agent plan (Cohen and Perrault, 1979) only concerns with utterance-level intentions. 

Plan-based models are discussed in more detail in Section 2.1.2.4. The SharedPlan 

formalism was adopted in the COLLAGEN framework (Rich et al., 2001) which provides 

an intelligent user interface in various application domains. 
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2.1.3 A comparison of existing discourse structure representations 

In this section, I will first compare all the discourse structure representations 

reviewed in Section 2.1.1 and Section 2.1.2. Then, I will discuss the appropriateness of 

these representations if they were to be used in the context of this dissertation. The 

following table summarizes the characteristics of each discourse structure model along 

the two aspects, informational and intentional, discussed earlier. The forth column of the 

table describes how each discourse structure model describes a compositional structure of 

a discourse. The reference given in the first column refers to the primary work of each 

model. 

The first group of discourse structures in Table 2.1, informational-oriented discourse 

structures, includes Discourse Representation Theory (DRT), the Linguistic Discourse 

Model (LDM), Segmented Discourse Representation Theory (SDRT) and Rhetorical 

Structure Theory (RST). For the informational perspective, DRT, LDM and SDRT 

capture the content of a discourse with a semantic representation (a first-order predicate 

logic) while RST focuses more on the relations between discourse segments rather than 

their content. In terms of the informational perspective, none of DRT, LDM and SDRT 

explicitly models the participant’s intentions. For RST, even though it captures both 

informational perspective and intentional perspective of a discourse through subject 

matter relations and presentational relations respectively, the theory focuses more on the 

informational perspective (Moore and Pollack, 1992). DRT, LDM, and SDRT differ from 

each other mainly in their compositional structures, i.e. how the structure of a discourse 

affects its semantic representation. DRT does not consider discourse relations among 

sentences when creating a discourse-level semantic representation from sentence-level 

semantic representations. In LDM, the discourse relations only affect the compositional 

structure of the discourse-level semantic representation while, in SDRS, the discourse 

relations also affect the content of the semantic representation. 
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Discourse structure model Informational perspective Intentional perspective Compositional structure Remarks 

Informational-oriented 

Discourse Representation 

Theory (DRT)   

(Kamp, 1981) 

Discourse Representation 

Structure or DRS (a semantic 

representation of a discourse 

using a first-order predicate 

logic) 

- A representation of a discourse is 

aggregated from sentence-level 

representations without considered 

the structure of the discourse.   

 

Linguistic Discourse Model 

(LDM)  

(Polanyi, 1996) 

A semantic representation 

similar to the one used in DRT 

but with a slightly different 

representation for discourse 

context. 

- A discourse parse tree (A 

discourse segment is a 

semantically motivated unit which 

is equivalent to a clause while a 

relation is a syntactic or a 

semantic connection between the 

segments) 

 

Segmented Discourse 

Representation Theory (SDRT)   

(Asher, 1993) 

 

A semantic representation 

similar to the one used in DRT. 

- A Segmented Discourse 

Representation Structure or SDRS 

(A discourse segment is a 

proposition which is equivalent to 

a simple DRS in DRT while a 

relation is a semantic or structural 

relation that specifies how the 

semantic representations of the 

segments should be combined) 

 

Rhetorical Structure Theory 

(RST)  

(Mann and Thompson, 1988) 

Subject matter relations such as 

Elaboration and SolutionHood 

Presentational relations such 

as Motivation and Justify  

A rhetorical structure contains 

rhetorical relations between 

utterances and group of utterances 

(focus on the relations between 

segments) 

The theory focuses 

more on the 

informational 

perspective than the 

intentional perspective 

(Moore and Pollack, 

1992) 

Table 2.1: Discourse structure models comparison 
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Discourse structure model Informational perspective Intentional perspective Compositional structure Remarks 

Intentional-oriented 

Speech act theory  

(Searle, 1975) 

- Speech act describes the role 

of each utterance with respect 

to a speaker’s intention and 

its effect on a listener 

A compositional structure of a 

dialog is not described. The theory 

focuses only on the utterance level. 

Domain-specific acts 

can be added. 

Dialog Act Markup in Several 

Layers (DAMSL)  

(Core and Allen, 1997) 

Utterance Features (e.g. the 

content and form of an 

utterance) 

Forward Communicative 

Functions (similar to speech 

acts) 

Backward Communicative 

Functions capture the relations 

between the current utterance and 

the previous ones in the form of a 

link to an antecedent. However, 

these relations only link two 

utterances together. Discourse 

segments and structural relations 

among the segments are not 

specified. 

The model describes the 

role of each utterance 

with multiple labels in 

multiple layers. More 

layers that describe 

other types of utterance 

functions, such as 

domain-specific 

information, can be 

added 

Dialog grammar  

(Sinclair and Coulthard, 1975) 

- Terminal nodes in the 

grammar are dialog acts 

A hierarchical structure of 

recurrent patterns in a dialog 

(focus more on segments than 

relations) 

 

Plan-based models  

(Cohen and Perrault, 1979) 

Conditions, constraints and 

arguments of an action 

A plan describes how speaker 

intentions (speech acts) fit 

together in a dialog in order to 

achieve a dialog goal 

A compositional structure is not 

mentioned directly, but a plan can 

be decomposed into small steps 

(sub-plans). 

 

Table 2.1: Discourse structure models comparison (cont.) 
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Discourse structure model Informational perspective Intentional perspective Compositional structure Remarks 

Intentional-oriented (cont.) 

The theory of conversation acts 

(Traum and Hinkelman, 1992) 

- Core speech act level The level of argumentation acts 

combines core speech acts into a 

hierarchy of higher level discourse 

acts. Some argumentation acts 

resemble the rhetorical relations 

while some argumentation acts 

resemble adjacency pairs. 

Each level represents 

different pieces of 

information. The theory 

also includes turn taking 

acts and grounding acts 

(emphasizes more on 

coordinated activities) 

Grosz and Sidner’s Theory of 

discourse structure (GST)   

(Grosz and Sidner, 1986) 

Entities in the attentional state Discourse Segment Purpose 

or DSP 

The linguistic structure or the 

structure of utterances describes 

coherent segments in a discourse (a 

discourse segment is defined based 

on intention) while the intentional 

structure models the relations 

between the purposes of these 

segments (between DSPs) 

The theory also models 

the attentional structure 

(the structure of the 

focus of attention) 

Table 2.1: Discourse structure models comparison (cont.) 
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The second group of discourse structures in Table 2.1, intentional-oriented discourse 

structures, includes speech act theory, Dialog Act Markup in Several Layers (DAMSL), a 

dialog grammar, a plan-based model, the theory of conversation acts, and Grosz and 

Sidner’s Theory of discourse structure (GST). Among these theories and models, speech 

act theory and its successor, DAMSL, only focus at the level of an individual utterance. 

Both of them model a speaker’s intention in uttering each utterance without describing 

how the intentions fit together in a dialog. In DAMSL, richer information about the 

utterance’s functions is provided. Even though speech act theory does not describe the 

overall structure of a dialog, a speech act, which captures an utterance-level intention, is a 

key component in many other theories that use an utterance as a dialog structure unit 

including a dialog grammar, a plan-based model and the theory of conversation acts. 

These theories model the structure of a dialog from the intentional perspective by 

describing how utterance-level intentions captured by speech acts or dialog acts fit 

together in a dialog. In a dialog grammar, a dialog act is the smallest unit of recurring 

patterns in a dialog. A plan-based model, on the other hand, uses a plan to describe how 

speaker intentions captured by speech acts fit together in a conversation and how they 

relate to the conversation goal. In the theory of conversation acts, the structure of a dialog 

is accounted for by argumentation acts which combine speech acts into a hierarchy of 

higher level discourse acts. GST, on the other hand, uses a larger discourse unit, a 

sequence of utterances. Nevertheless, this discourse segment is also defined based on 

intention and goal. The structure of a discourse is modeled in terms of the relations 

between the purposes of the discourse segments 

Since the discourse structure representations reviewed in the previous sections 

capture different aspects of a dialog, they are applied differently in a dialog system. A 

dialog structure that captures the intentional aspect of a dialog, such as a plan-based 

model and Grosz and Sidner’s Theory of discourse structure, is employed in a natural 

language understanding module to help interpreting user utterances. For instance, the 

TRAINS system (Ferguson et al., 1996) utilizes a plan-based model and a plan 

recognition algorithm in order to guide the interaction between a user and the system. 

The current state of the plan and discourse context are used to interpret the underlying 

intention of a user utterance and determine an appropriate system response. On the other 

hand, a dialog structure model that captures relations between discourse segments, such 

as RST, is utilized in a natural language generation module. In the MATCH system (Stent 

et al., 2004), where an output utterance may contain complex information such as a list of 
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restaurants and a comparison among them, the sentence planner that models the rhetorical 

relations among various pieces of information produces a higher quality output utterance. 

In addition to various dialog structure theories and models discussed in previous 

sections, information state theory (Larsson and Traum, 2000) is another theory that 

describes the structure of a dialog. However, instead of defining a specific dialog 

structure representation, information state theory provides a general dialog modeling 

framework that can be interpreted and implemented in the context of any dialog structure 

theory. Under this general modeling framework, it is possible to directly compare two 

dialog structure modeling approaches when they are used to implement the same dialog 

application. Information state theory centers on the concept of information state, a 

representation which captures relevant information in a dialog that is necessary for 

distinguishing one dialog from the others. This information also includes the 

accumulative information from previous actions and the obligation for future actions. The 

key idea of this theory concerns the representation of the information state, how it is 

updated and how the updating process is controlled. Information state theory consists of: 

informational components (e.g. domain knowledge, intentions, and a user model), formal 

representations of the informational components, dialog moves that trigger the update of 

the information state, update rules which formalize the way that the information state is 

changed as a dialog progresses, and update strategy which selects an appropriate update 

rule. The term dialog move in information state theory is an abstract term for any 

mediating input and not restricted to just a speech act. The architecture and tools that 

facilitate the implementation of the information-state approach is available in TrindiKit, a 

dialog management toolkit developed under the TRINDI project (Larsson and Traum, 

2000). The toolkit has been used to develop many dialog system managers that employ 

different dialog processing techniques. For example, GoDiS (Kruijff-Korbayová et al., 

2003), an information-seeking dialog system in multiple domains, represents the 

information state as a record while MIDAS (Traum et al., 2000), a dialog system in a 

route-planning domain, uses Discourse Representation Structure (DRS) as information 

state representation. 

The goal of this dissertation is to develop a machine learning approach that can infer, 

from a corpus of in-domain conversations, the domain-specific information required to 

build a task-oriented dialog system; therefore, a suitable dialog structure representation 

for this purpose needs to capture all of the necessary domain information. This domain-

specific information includes a list of tasks that a dialog system has to support, and how a 

complicated task should be decomposed into a set of sub-tasks. This information also 
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includes domain keywords which capture pieces of information that dialog participants 

need to communicate in order to achieve each task or sub-task. In a retail domain, for 

instance, a product name and a quantity are domain keywords since they are essential 

information for making a purchase. 

A hierarchical structure of a task and its sub-tasks can be considered as a 

compositional structure of a dialog where a discourse unit is defined based on the 

characteristics of the task. Many of the dialog structures reviewed in the previous sections 

represent a compositional structure of a dialog. However, most of them define a discourse 

unit at the level of a sentence or a clause, which is too small to be a step in a task, except 

for Grosz and Sidner’s Theory of discourse structure (GST) which uses a larger discourse 

unit, a sequence of utterances. For those discourse structures that use a sentence or a 

clause as a basic unit, some discourse segments at the upper levels of the compositional 

structure (such as lessons and transactions in Sinclair and Coulthard’s (1975) dialog 

grammar, the components at the top levels of a rhetorical structure, and the 

argumentation acts at the top levels of the hierarchy in the theory of conversation acts) 

may resemble tasks and sub-tasks. 

A domain keyword, another piece of the required domain-specific information, is an 

actual content of a dialog that the participants have to communicate in order to 

accomplish a task; therefore, a suitable dialog structure representation must capture the 

informational aspect of a dialog. Nevertheless, the informational-oriented discourse 

structures reviewed in Section 2.1.1, such as the Linguistic Discourse Model (LDM), 

Segmented Discourse Representation Theory (SDRT), model the meaning of a discourse 

with a semantic representation instead of the actual entities that were mentioned in the 

discourse.  

There are some intentional-oriented dialog structures that also model the 

informational aspect of a dialog including Dialog Act Markup in Several Layers 

(DAMSL), a plan-based model, and Grosz and Sidner’s Theory of discourse structure 

(GST). In the original DAMSL annotation scheme, the Information Level in the 

Utterance Features layer only captures abstract characteristics of an utterance (e.g. 

whether the utterance addresses a task, a communication process, or other aspects), but 

not the actual information that the utterance carries nor the information that is specific to 

a particular domain (e.g. the type of a task). However, some extensions of the DAMSL 

annotation scheme do capture the actual content of a dialog and some domain-specific 

information. In the COCONUT project (Eugenio et al., 1998), the Topic layer contains 

domain-specific tags such as needItem, haveItem budgetAmount, and 
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budgetRemains that describe the content of an utterance. Nevertheless, some of them 

seem to capture domain-specific intentions rather than domain-specific entities enclosed 

in the utterance. ItemFeature is another set of labels that captures domain-specific 

information. However, only the properties of domain objects (e.g. price and color) are 

annotated, not the objects (e.g. table and chair) themselves.  

Hardy et al.’s (2003) annotation scheme is another extension of DAMSL that captures 

domain-specific information. The semantic layer was added to the original DAMSL 

annotation scheme in order to model domain-related information enclosed in each 

utterance. The information captured by this layer consists of transactions (or 

AccessFrames) which contain attributes (or slots) and attribute modifiers. In a customer 

service domain, AccessFrames correspond to customer-service tasks such as 

ChangeAddress; this task contains an attribute Address and its modifier New, for 

example. While this semantic layer does capture the informational-aspect of a dialog that 

is also domain-specific, it restricts itself to utterance-level information similar to the 

DAMSL annotation scheme that it is based on. For instance, an AccessFrame only 

captures the name of a task that each utterance belongs to rather than the discourse 

segment that corresponds to the entire task. 

In some plan-based models such as (Litman and Allen, 1987) and (Lambert and 

Carberry, 1991), the parameters of the domain plans are quite similar to the notion of 

domain keywords, items of information that dialog participants need to communicate in 

order to achieve a task. Grosz and Sidner’s Theory of discourse structure also mentioned 

objects in a discourse segment when discussing the attentional state but did not provide a 

detail description about these objects. Information state theory is another theory that 

includes informational components as one of the elements in its framework. However, 

since information state theory is a general dialog modeling framework, the choice of the 

informational components depended on the choice of the dialog structure theory that will 

be adopted in the framework. 

In summary, there are several existing discourse structure models which represent a 

compositional structure of a dialog that is similar to a hierarchical structure of a task and 

its sub-tasks. These discourse structure models are Rhetorical Structure Theory (RST), a 

dialog grammar, the theory of conversation acts, and Grosz and Sidner’s Theory of 

discourse structure (GST). Nevertheless, the entire discourse structure in the first three 

models (RST, a dialog grammar, and the theory of conversation acts) does not correspond 

to the task structure as the discourse units that are lower in the discourse structure 

hierarchy are smaller than steps in a task. The intentional structure in GST is the one that 
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is most similar to the task structure; however, GST does not explicitly model domain 

keywords.  

Only a few existing dialog structure representations capture the informational aspect 

of a dialog that resembles domain keywords, items of information that dialog participants 

need to communicate in order to achieve a task. These dialog structure representations 

include some variations of a plan-based model and the extension of the DAMSL 

annotation scheme proposed by Hardy et al. (2003). However, Hardy et al.’s annotation 

scheme only focuses at the level of an individual utterance and does not describe the 

overall structure of a dialog. Although a plan-based model doesn’t address a 

compositional structure of a dialog directly, it allows a plan to be decomposed into 

smaller steps. Thus, a plan-based model appears to be a dialog structure representation 

that captures all of the domain-specific information required to build a dialog system. 

Nevertheless, one difficulty in modeling the required domain-specific information with a 

plan-based model is the complexity of the model. In addition to the required domain-

specific information, a plan-based model includes many intentional components such as 

beliefs and intentions (represented by speech acts). These intentional components, while 

capturing useful information for processing a dialog, do not directly describe the tasks 

that a dialog system has to support or the domain-specific components required to 

achieve the tasks. Moreover, intentional components are rather abstract and may be 

difficult to be identified directly from in-domain conversations through an unsupervised 

machine learning approach. The reason for using an unsupervised learning approach 

rather than a supervised one is discussed in Section 2.2.3. 

Since none of the existing discourse structure representation is suitable for the 

purpose of this dissertation, which is to infer the domain-specific information required to 

build a task-oriented dialog system from in-domain conversations using an unsupervised 

machine learning approach, a new representation, called a form-based dialog structure 

representation, is proposed. The form-based representation captures all the required 

domain-specific information and focuses only on concrete information that can be 

observed directly from in-domain conversations. Chapter 3 describes the proposed form-

based dialog structure representation in detail.  A comparison between the proposed 

dialog structure representation and existing discourse structure representations is also 

discussed. 
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2.2 Data-driven approaches to dialog structure modeling 

In the past decade, the computational linguistics community has focused on 

developing language processing approaches that can leverage the vast quantities of 

corpus data that are available. The same idea has also been applied by dialog system 

researchers and developers. As more dialog data becomes available, techniques for 

building dialog systems have been shifted from hand-crafted approaches toward data-

driven ones. There has been substantial amount of research on applying data-driven 

approaches to several dialog system components. Those works are different in terms of 

the algorithm used, the component to be learned, and how the learning approach is 

integrated with a dialog system. Reinforcement learning is one best-known approach for 

learning a dialog management policy from in-domain dialogs. Singh et al. (2002) is 

among the first groups who successfully applied this technique to find an optimized 

policy from very large policy space as demonstrated in the NJFun system. Karahan et al. 

(2003), who combined two classifiers (the Bayesian classifier and Boosting) in order to 

identify users’ intents (i.e. call-types) in a customer care application, are among many 

other researchers that applied a machine learning technique to the problem of natural 

language understanding in a goal-oriented spoken dialog system. Various approaches to 

this problem are summarized in (Bangalore, Hakkani-Tür et al., 2006). As for natural 

language generation, Stent et al. (2004) trained a sentence ranker to select an appropriate 

sentence plan from a set of possible ones by applying a boosting algorithm on human-

rated sentences.  

Research on a data-driven approach to dialog structure modeling is relatively new and 

focuses mainly on recognizing a structure of a dialog as it progresses. Since a dialog 

structure encapsulates relations between utterances and dialog context (e.g. between user 

intentions and a task being pursued), a dialog system can utilize this information to better 

understand a user’s utterance and generate an appropriate response to the user. Various 

dialog structure recognition approaches will be discussed in more detail in Section 2.2.1.  

A data-driven approach to dialog structure modeling can also be used to reduce the 

amount of human effort spent in the knowledge engineering process when developing a 

dialog system in a new task-oriented domain. Necessary knowledge required to build a 

dialog system could be identified through a machine learning approach rather than hand-

crafted. For example, a task model can be learned with an example-based learning 

algorithm as described in (Garland et al., 2001) and in Section 2.2.2.2. Acquiring the 

necessary knowledge from data is an acquisition process that is carried out before a 

dialog system is created. This is contrasted with a dialog structure recognition process 
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discussed previously where pre-specified dialog structure components are recognized as a 

dialog progresses. Data-driven approaches for a dialog structure acquisition problem have 

only been explored by a handful of researchers. Some of the interesting works in this area 

are reviewed Section 2.2.2. 

Research works on dialog structure learning (both recognition and acquisition) differ 

from each other in two important aspects: the type of the structure to be learned and the 

learning approach. A variety of dialog structure theories are adopted in dialog system 

implementation and in some cases they are modified to better suit the tasks. The choice of 

the learning approach depends heavily on the characteristics of the dialog structure and 

the type of information available for training. For example, a Markov model is suitable 

for sequential structures while a grammar induction approach is suitable for hierarchical 

structures. For a multi-level dialog structure and a hierarchical structure, the components 

of the structure are often identified independently or in a cascaded manner where 

information from one component is being used to identify another component. This 

decomposition helps reduce learning complexity. Related works reviewed in the 

following sections are organized according to the learning approaches. The overview of 

the proposed learning approach for acquiring the form-based dialog structure 

representation is given in Section 2.2.3. 

2.2.1 Dialog structure recognition approaches 

2.2.1.1 Markov models 

A Markov model is suitable for learning the sequential structure of observations. 

Since some dialog structure components, such as dialog acts, seem to have a sequential 

property, the Markov model has been widely used in many dialog structure learning 

approaches. In (Woszczyna and Waibel, 1994), the structure of a conversation in a 

scheduling domain composes of topics, discourse states, speech acts, and common 

phrases. The information captured by the dialog structure can reduce ambiguities in 

natural language understanding. Two components of the structure, dialog state and 

speech act, were focused in the paper. To infer both dialog structure components 

automatically from data, a Markov Model (MM) was used in a supervised scenario and a 

Hidden Markov Model (HMM) was used in an unsupervised scenario. Only word 

sequences were used as features in both models. The Markov model requires training data 

annotated with state labels, which in this case are equivalent to dialog states and speech 

acts. The Hidden Markov model, on the other hand, requires no labeled data; therefore, it 

can utilize all of the data available. The notion of state is obtained automatically from the 
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data given a number of hidden states. The Hidden Markov model performed better than 

the Markov model in terms of perplexity when both models were trained on the same 

amount of data as a pre-defined set of states could be suboptimal for a given set of data. 

The Hidden Markov model could be improved further by adding more training data and 

increasing the number of hidden states; however, the latter came with higher 

computational cost. 

Finke (1998) used a Markov model to both segment and classify speech acts in 

telephone-based conversations in the CALLHOME SPANISH corpus. Speech acts are 

part of the three-level discourse structure consists of speech acts, dialog games (similar to 

the ones described in Section 2.1.2.3), and discourse segments or topic segments. The 

structure was developed under the CLARITY project (Levin et al., 1998) which aimed at 

exploring the use of discourse structure in dialog understanding. The annotation scheme 

for speech acts was extended from the DAMSL annotation scheme in order to handle 

non-task-oriented conversations in this domain. On a speech act segmentation problem, a 

Markov model was trained on word and part of speech features, and achieved a 

comparable performance to a neural network approach. To classify the speech act of each 

segment, a Markov model was trained on prosodic features, word sequences, and speech 

act sequences. The integrated Markov model for both segmentation and classification was 

also investigated. For a topic segmentation problem, Hearst’s TextTiling algorithm 

(Hearst, 1997) was used to determine topical segment boundaries. 

2.2.1.2 Grammar induction approaches 

A grammar induction approach can be used to identify the structure of a dialog if the 

structure can be described by a context-free grammar. The VERBMOBIL system used a 

plan hierarchy to describe a dialog in a meeting scheduling domain (Bub and Schwinn, 

1996). A plan hierarchy is a four-level organization composes of the dialog act level, the 

turn level, the phrase level, and the dialog level. By viewing plan recognition as parsing, 

the plan hierarchy is compiled into a context-free grammar.  Grammar rules (or plan 

operators) for processing the components in the dialog act level, the phrase level, and the 

dialog level can be hand-coded. However, as the number of turn classes is quite large and 

the sequences of dialog acts that correspond to each turn class are rather complex, it is 

difficult to construct plan operators that generalize for all of the data by hand. 

Alexandersson and Reithinger (1997) used a grammar induction approach based on 

Bayesian model merging to derive a stochastic context free grammar that describes the 

structure of each turn class from the corpus of dialog act annotation. The automatically 

derived plan operators were applied in a plan recognition process to identify the 
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intentional structure of user utterances; 66.8% turn class prediction accuracy was 

reported. They also suggested the focus and relations between new utterances, and the 

current foci as additional information sources for improving the performance. 

In recent research, Bangalore, Fabbrizio et al. (2006) attempted to recognize a 

structure of a task-oriented dialog as it progresses in order to guide a dialog manager’s 

decision and construct an appropriate agent response. Other dialog system components 

besides the dialog manager and the natural language generation module could also benefit 

from the information captured by a dialog structure as well. Based on the SharedPlans 

theory (Grosz and Sidner, 1990) adopted in this research, a dialog structure was 

represented as a tree that encapsulates the task structure, the dialog act structure, and the 

linguistic structure of utterances, which contains the inter-clausal relations and predicate 

argument relations within a clause. The paper focused on recognizing the task structure of 

an on-going dialog in a catalog ordering service domain. A top-down incremental parser 

that incorporates bottom up information was used to discover the most likely plan tree 

that encapsulates the dominance relations (or hierarchical relations) between sub-tasks 

from a sequence of utterances. The utterances were first segmented and classified into a 

sequence of sub-tasks with a maximum entropy classifier in order to identify the 

precedence relations (or sequential relations) between sub-tasks. For each utterance, the 

classifier predicted the most likely sub-task label given word n-gram features of local 

context. Since the label not only represents the type of sub-task but also encodes the 

position of the utterance in relative to the sub-task (i.e. begin, middle and end), the 

classifier can segment a dialog into a sequence of sub-tasks and assign a label to each 

sub-task in a single parse. The paper also discussed dialog structure recognition at the 

level of dialog acts. 

2.2.1.3 Categorical classifiers 

Another type of machine learning algorithm that has been extensively used for dialog 

structure recognition when the sequential structure of the components is not fundamental 

is a categorical classifier; a neural network and a decision tree, for example. Vilar et al. 

(Vilar et al., 2003) used both a neural network and a Hidden Markov Model to identify 

the structures of dialogs in the Spanish train information domain.  The structure consists 

of speech acts, frames and cases. Each frame represents a specific type of user message 

and contains a set of cases or slots that associate with pieces of information that are 

related to a query. Both frames and slots are domain-specific components and could be 

used to improve the understanding process of the system. The authors of this paper 

assumed that while the sequential structure of a sentence is useful for segmenting the 
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sentence into a set of slots, the sequential structure is not fundamental for classifying the 

type of frame. For that reason, a neural network was used to classify the frame type of 

each user turn given context word features while a frame-specific HMM trained on 

annotated data was used to segment each turn into a sequence of semantic units.  Each 

semantic unit captures the semantic function of a word or a group of words and 

corresponds to a HMM state. Particular types of semantic units are associated with the 

slots. The proposed techniques achieved 5.2% error rate on frame classification and 

14.4% on semantic unit segmentation.  

In (Hardy et al., 2004), a vector-based approach was used to train both a task 

identification agent and a dialog act classifier in order to identify the customer’s desired 

transaction and the corresponding dialog act of each utterance respectively in the user-

initiative customer service system, Amities. Both a transaction (also task and frame) and 

a dialog act are components of the dialog structure proposed by Hardy et al. (2003) 

discussed in Section 2.1.3. The vector-based approach used a cosine similarity score to 

determine the similarity between the vector that represents an input utterance and the 

vector that represents each task or each dialog act created from training data. 

Speech acts or dialog acts may be used independently in a dialog system without 

specifying the structure of an entire dialog. Many classification algorithms, such as a 

decision tree and a maximum entropy model, have been used to predict a dialog act label 

of a give dialog segment such as an utterance. Related works on dialog act classification 

were summarized in (Stolcke et al., 2000). However, the research in this area is less 

relevant to the work in this dissertation which focuses more on identifying the overall 

structure of a dialog.  

Categorical classifiers require a set of pre-defined categories and, for each category, 

the training data. However, both requirements are not applicable when acquiring domain-

specific information in a new domain, as in the case of this dissertation research, since 

the target representations will be explored from in-domain dialogs instead of being pre-

specified. 

2.2.2 Dialog structure acquisition approaches 

2.2.2.1 Conceptual clustering  

Möller  (1998) developed a dialog modeling toolkit, DIA-MOLE, to help reduce 

human effort in creating a dialog model for a new application. Instead of using a pre-

defined dialog act taxonomy, an unsupervised learning technique was used to infer a set 

of domain-specific dialog acts (DDAs) from a corpus of in-domain conversations. The 
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DDA learner module in DIA-MOLE utilizes a conceptual clustering algorithm,  

CLASSITALL, to create a DDA hierarchy from segmented utterances and their features. 

A set of features for each segment, which consists of prosodic events, recognized words, 

and semantic structure, is extracted from various knowledge sources available to a dialog 

system and is represented by a set of attribute-value pairs. CLASSITALL allows various 

types of features including numeric, symbolic, and structured features to be integrated 

into the clustering framework. Moreover, each feature can be associated with a 

probability value, which expresses the quality of the feature (e.g. a confidence score 

produced by a feature extraction algorithm), or a weight, which specifies the significance 

of the feature. 

Since there is no example from training data to supervise the clustering algorithm, 

CLASSITALL uses a heuristic that reflects the quality of the clusters to guide the 

hierarchy construction. Based on the assumption that a good set of clusters is the one that 

similar objects are assigned to the same class while dissimilar objects are assigned to 

different classes, CLASSITALL defines a cluster quality measure, category utility, as a 

tradeoff between intra-class similarity and inter-class dissimilarity. Both intra-class 

similarity and inter-class dissimilarity are computed from a conditional probability of an 

attribute-value pair and a class.  

DIA-MOLE was applied in VERBMOBIL, a dialog system in an appointment 

scheduling domain, where predicted DDAs could help identify an appropriate language 

model for a speech recognizer or guide a spoken language generation module. The 

learned DAA taxonomy was evaluated against the human-assigned taxonomy; 

comparable dialog act prediction rates were reported. 

2.2.2.2 Example-based learning 

Garland et al. (2001) used an example-based learning algorithm to lessen domain 

expert effort in developing a task model, a declarative representation of a task, for a 

collaborative system. The task model, which based on the SharedPlans theory of 

collaborative discourse (Grosz and Sidner, 1990), captures the structure of actions. The 

task model composes of actions and recipes. There are two types of actions, a primitive 

action, which can be executed directly, and a non-primitive action, which can be achieved 

indirectly by achieving other actions. A recipe describes a set of steps required in order to 

achieve a goal or a sub-goal (a non-primitive action). It also contains constrains on the 

order of actions and the logical relations among action parameters. A collaborative 

system, which helps a user achieves a task goal through a spoken conversation, requires 

domain-specific task models in order to adapt agent utterances according to the task. 
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With an example-based learning approach, a domain expert only needs to generate 

examples of how to accomplish a task which is considered more intuitive than 

constructing a complete task model that generalizes for all possible cases. The learning 

algorithm then infers the target task model by inducing the constraints and generalizing 

the model over a series of annotated examples. The approach was tested on two simulated 

tasks: building graphical user interfaces and cooking, but not on real dialogs. Expert 

examples, which were described in terms of actions and relations among them, were 

generated from the targeted task model. The numbers of examples required to learn the 

correct task models given different kinds of annotations were reported. 

2.2.2.3 Information extraction 

Feng et al. (2003) proposed a framework called WebTalk that aimed at creating a 

specific type of a dialog system, namely a customer care service, automatically from 

information extracted from the company’s website. There are three types of customer 

care dialog systems: 1) an information retrieval aid system (or a question-answering 

system), 2) a form-filling system, which helps a customer fills out an online form, and 3) 

a table-based system, which operates on a table of related information (e.g. product 

details) automatically created from web contents. A corporate website contains rich and 

well-organized information including a web page structure, hyperlinks between related 

web pages, lists, forms, tables, and graphics; hence, it is a useful resource for extracting 

task-specific information. The task-specific knowledge includes a website structure and 

an information unit, a coherent area in a web page according to its content or its 

behaviors such as LIST-ITEMS and QUESTION-ANSWER. A website structure is 

obtained from directory organization and a list of hyperlinks. Information units are 

generated by Webpage Parser which identifies the boundaries and type of each 

information unit using a supervised classifier, a support vector machine (SVM). Some 

types of information units may need further processing to extract more useful 

information. Since the information source is a company’s website rather than a corpus of 

dialogs, the information extracted is not the structure of a dialog or a component in the 

structure. Nevertheless, those extracted pieces of information are included in a task-

specific knowledgebase that will be used by a customer care service system 

2.2.3 The overview of the proposed learning approach 

The goal of this dissertation is to infer the domain-specific information required to 

build a task-oriented dialog system from in-domain conversations through a machine 

learning approach. Acquiring the necessary domain knowledge from a set of human-
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human dialogs is considered a knowledge acquisition process and is carried out before a 

dialog system is created. This is contrasted with a dialog structure recognition process in 

which pre-specified dialog structure components are recognized as a dialog progresses.  

Most data-driven approaches to dialog structure recognition discussed in Section 

2.2.1 rely on supervised learning algorithms since they usually provide more accurate 

results but at the cost of manually labeled data. However, for the dialog structure 

acquisition problem investigated in this thesis, the structure of a dialog in a new task-

oriented domain has not been pre-specified and will be explored from data. Hence, a 

corpus of in-domain dialogs annotated with the target dialog structure is not available for 

training a supervised learning algorithm. The example-based learning algorithm and the 

information extraction algorithm discussed in Section 2.2.2.2 and 2.2.2.3 had to utilize 

annotated data from other information sources, examples described in a specific 

annotation language and a well-organized website, respectively. In this thesis an 

unsupervised learning approach is preferred since the goal is to minimize human effort 

including annotation effort in the domain knowledge engineering process. Since this 

process occurs before the first prototype system is created, a corpus of recorded 

conversations between the humans who perform the same task as the target dialog system 

becomes the main resource. The motivation behind the use of an unsupervised learning 

approach is quite similar to the idea that motivates the work in DIA-MOLE, the only 

approach among the dialog structure acquisition approaches discussed in Section 2.2.2 

that utilizes an unsupervised learning algorithm. Nevertheless, different unsupervised 

learning algorithms that are suitable for the target dialog structure, the form-based dialog 

structure representation, are investigated in this thesis. The detail discussions of those 

algorithms are provided in subsequent chapters. 

To make the problem tractable, I divide a dialog structure acquisition problem into 

two sub-problems: concept identification and clustering, and form identification (a form 

is associated with a sub-task in the form-based dialog structure representation). Each sub-

problem is handled separately and is discussed in more detail in Chapter 5 and Chapter 6 

respectively. However, it should be kept in mind that these individual components are 

parts of the same dialog structure; therefore, information about one component may be 

useful for inferring another component.  After each component can be acquired with 

acceptable accuracy, interaction between components should also be considered in the 

learning process. The decomposition of a dialog structure learning problem for a multi-

level dialog structure and a hierarchical dialog structure was also applied by many 

researchers (Finke et al., 1998; Hardy et al., 2004; Vilar et al., 2003). 
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Chapter 3 

Form-based Dialog Structure Representation 

The goal of this dissertation research is to develop a data-driven approach that can 

infer domain-specific information required to build a task-oriented dialog system from a 

corpus of in-domain conversations. In order to achieve this goal, one would have to first 

specify a suitable domain-specific information representation, and then develop a 

machine learning approach that is able to identify the domain information captured by 

this representation from a corpus of in-domain dialogs. This chapter focuses on the first 

step, describing a suitable domain-specific information representation and demonstrating 

how it can be used to model domain information in various types of task-oriented dialogs. 

A domain-specific information representation that is suitable for the purpose of this 

dissertation should have all of the following properties: sufficiency, generality, and 

learnability. 

● Sufficiency is implied if the representation captures all domain-specific 

information required to build a task-oriented dialog system.  

This domain-specific information includes a list of tasks that a dialog 

system has to support, for a complicated task how it should be decomposed 

into smaller steps or sub-tasks, and domain keywords which capture pieces of 

information that dialog participants need to communicate in order to achieve 

each task or sub-task. For instance, in a retail domain, where a task is to make 

a purchase, the domain keywords are a product name and a quantity. These 

two pieces of information are essential for making a purchase. 

● Generality is implied if the representation can describe task-oriented dialogs 

in dissimilar domains and types. 

Different types of task-oriented domains have different characteristics; for 

instance, some discourse phenomena such as grounding do not occur in every 

domain. Therefore, a desired domain-specific information representation 

should be generalized for various types of task-oriented domains, namely, it 

should be domain-independent. 
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● Learnability is implied if the representation can be identified by a machine 

learning algorithm from observable language behaviors in human-human 

conversations.  

When acquiring the domain-specific information for a new task-oriented 

domain, there is no annotated data available for training a supervised learning 

algorithm as the target domain-specific information has not been specified 

and will be explored from in-domain conversations. Since we have to rely on 

an unsupervised learning approach, the representation of the domain-specific 

information has to be observable from the conversations.  

Existing dialog structure representations do not have all of the three required 

properties. Most of them do not capture all of the domain-specific information required to 

build a dialog system as discussed in Section 2.1.3. Some of these discourse structure 

models and theories describe the compositional structure of a dialog that resembles tasks 

and sub-tasks but do not represent domain keywords, or vice versa. For the one that 

captures all of the required domain-specific information, namely, a plan-based model, its 

discourse structure is quite complex and contains many intentional components, such as 

beliefs and intentions. These abstract components are rather difficult to be observed 

directly from a conversation and, as for the current technology, may not be learnable 

through an unsupervised machine learning approach. Moreover, these additional 

components, while capturing useful information for processing a dialog, do not directly 

describe a task or domain-specific elements required to achieve the task. 

In order to have a domain-specific information representation that has all of the 

desired properties discussed above, we have to either augment an existing dialog 

structure representation or specify a new representation. In this thesis, I propose a new 

representation, called a form-based dialog structure representation, as a target 

representation of the domain-specific information that will be inferred from in-domain 

conversations. This representation is based on the notion of form, a data representation 

used in the form-based dialog system architecture. The form-based dialog system 

architecture is described in detail in section 1.1.2. I choose to develop a new dialog 

structure representation based on the data representation used in a functional dialog 

system architecture rather than augmenting an existing dialog structure theory because 

this data representation already captures the domain-specific information a dialog system 

needs to have in order to support a task. It is quite easy to demonstrate that the 

representation is sufficient for representing task-oriented conversations which is one of 

the three required properties. The sufficiency of the form-based dialog structure 
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representation has been demonstrated by the success of the systems that were 

implemented based on the form-based dialog system architecture. Another advantage of 

using an existing dialog system framework to describe the structure of a task-oriented 

conversation is that the connections between the dialog structure components and the 

components of a dialog system that employs the structure become straightforward. This 

direction is opposite to many other approaches that implement a dialog system from an 

existing dialog structure theory. 

In addition to sufficiency, the form-based dialog structure representation needs to 

have other two properties: generality and learnability. The form-based dialog system 

architecture has been used mainly in information-accessing domains where a form 

corresponds to a database query form while slots in the form represent search criteria. In 

this thesis, a more generalized definition of the form representation is provided, so that it 

can be used to represent the structure of dialogs in other types of task-oriented domains 

as well. In terms of learnability, the form-based dialog structure representation focuses 

only on concrete information that can be observed directly from in-domain conversations; 

hence, it should be learnable through an unsupervised learning approach. In the 

following parts of this section, I will describe the form-based dialog structure 

representation and discuss its properties in more detail. The approaches that are used to 

verify these properties are also described. 

The form-based dialog structure representation is a three-level structure of task, sub-

task, and concept. This representation models the tasks that a dialog system has to 

support, a set of sub-tasks (a decomposition of a task) which corresponds to the steps that 

needs to be taken in order to successfully accomplish the task, and concepts which are the 

items of information (or domain keywords) that dialog participants have to communicate 

in order to achieve a task or a sub-task. The components of the form-based dialog 

structure representation (i.e. task, sub-task, and concept) reflect the observable structure 

of a task-oriented conversation discussed in Section 1.2. A hierarchical structure of a task 

and its sub-tasks represents a compositional structure of a dialog that is defined based on 

the characteristics of the task while a domain concept captures the actual content being 

conveyed in the dialog. Along the two aspects of a discourse (informational and 

intentional) discussed in Section 2.1, the form-based representation focuses more on the 

informational aspect as it represents the actual content of the discourse. The intentional 

aspect is addressed by a conversation goal which is included in the definition of a task. A 

formal definition of each component is provided in Section 3.1. As the name indicates, 

the form-based dialog structure uses a form as a central representation. The concepts that 
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the participants have to communicate in order to achieve a particular sub-task are stored 

together in the same form. Therefore, a task is represented by one or more forms 

depending on the number of its sub-tasks. 

The use of forms and a form-filling strategy in dialog systems was first introduced by 

Ferrieux and Sadek (1994) and has been adopted in many systems that built on the form-

based dialog system architecture. In the form-based dialog system, a form specifies all 

relevant pieces of information (or slots) that must be filled in before a system can take an 

action, such as query a database. All domain-specific information a dialog system needs 

to have in order to support a task is captured by forms; hence, the form-based dialog 

structure representation is sufficient for representing a task-oriented conversation as 

demonstrated by the success of the systems that were implemented based on the form-

based architecture. Examples of these systems are the Philips train timetable information 

system (Aust et al., 1995) and the CMU Communicator system (Rudnicky et al., 1999). 

Dialog coverage, which measures the percentage of dialog content that can be accounted 

for by the proposed dialog structure, is also used to verify the sufficiency of the form-

based dialog structure representation. Dialog coverage is reported in Section 4.1. 

The form-based dialog system architecture has been used mainly in information-

accessing domains where a form corresponds to a database query form while slots in the 

form represent search criteria. To make the form representation generalized for other 

types of task-oriented domains as well, a broader definition of the form representation is 

provided. In this thesis, the notion of form is generalized as a repository of related pieces 

of information. These pieces of information are not restricted to only the search criteria 

so that the form can be applied to various types of task-oriented domains. To verify the 

generality of the form-based dialog structure representation, six dissimilar task-oriented 

domains are analyzed. These six domains are air travel planning (information-accessing 

task), bus schedule inquiry (information-accessing task), map reading (problem-solving 

task), UAV flight simulation (command-and-control task), meeting and tutoring. Dialog 

structure analyses of these six domains are given in Section 3.2 - Section 3.7 respectively. 

These disparate domains are chosen to cover various types of task-oriented conversations. 

The choices of domains are also subjected to the availability of human-human data. The 

corpora of human-human conversations used in the dialog structure analyses are taken 

from various projects conducted by different research institutes. Some of the corpora 

were collected during the development process of a spoken dialog system. However, 

some of the corpora were originally collected for other purposes. 
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In terms of learnability, a dialog structure component that is observable from a 

conversation should be more easily identified by an unsupervised learning algorithm than 

a dialog structure component that cannot be directly observed such as a belief and an 

intention. The components of the form-based dialog structure representation (i.e. task, 

sub-task, and concept) can be observed directly from a dialog as it reflects the observable 

structure of a task-oriented conversation discussed in Section 1.2. Task and sub-task 

represent the decomposition of a complicated task while concept is an item of 

information that dialog participants have to communicate in order to achieve the 

conversation goal. By focusing only on the observable structure of a dialog, the form-

based dialog structure model works well when all of the domain-specific information 

necessary for supporting a task is communicated clearly in a dialog. This occurs when a 

dialog has the following characteristics: 1) the conversation goal is achieved through the 

execution of domain actions, and 2) the dialog participants have to communicate the 

information required to perform these actions through dialog. However, if the goal of a 

dialog is achieved in a different manner or if the necessary domain-specific information 

is not communicated through the dialog, we may not be able to represent this dialog with 

the form-based dialog structure representation. The difficulties in representing various 

types of task-oriented dialogs with the form-based dialog structure representation are 

discussed in Section 3.8. For the type of dialog that the dialog goal is not directly 

reflected in the conversation, a more complex dialog structure which also models 

unobservable aspects of a dialog, such as participants beliefs and intentions, may be 

required. 

Another characteristic of the form-based dialog structure representation that makes it 

possible to be inferred from in-domain conversations through an unsupervised learning 

approach is its simplicity. Compared to other dialog structure representations used in 

other types of dialog system architectures such as a plan-based system, the form-based 

representation is quite a bit simpler. The detailed discussion about different types of 

dialog system architectures and the comparison among them can be found in Section 1.1. 

However, by choosing the representation that is quite simple, we may not be able to 

model a complex task that has a dynamic structure such as a planning task as discussed in 

Section 1.1. Nonetheless, the form-based system has been applied successfully in many 

real world applications. Example of these dialog systems are the Philips train timetable 

information system (Aust et al., 1995), the CMU Communicator system (Rudnicky et al., 

1999), and many other systems built under the RavenClaw framework (Bohus and 

Rudnicky, 2003).  
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The learnability of the form-based dialog structure representation is verified with the 

accuracy of the domain information obtained from the proposed machine learning 

algorithms described in Chapter 5 and Chapter 6. Annotation scheme reliability, which is 

obtained from a human annotation experiment described in Section 4.2, can also verifies 

the learnability of the form-based representation in terms of human learnability. High 

annotation scheme reliability suggests that the annotation scheme is concrete and 

unambiguous which imply learnability. 

The rest of this chapter is organized as follows: Section 3.1 provides a detailed 

description of the form-based dialog structure representation along with the definition of 

each component. A comparison between the form-based representation and existing 

dialog structure representations is discussed at the end of Section 3.1.  Examples on how 

to model the structure of a dialog with the proposed representation in six task-oriented 

domains (air travel planning, bus schedule inquiry, map reading, UAV flight simulation, 

meeting and tutoring) are given in Section 3.2 - Section 3.7 respectively. These dialog 

structure analyses are done manually by the developer of the form-based dialog structure 

representation. The difficulties in applying the form-based dialog structure representation 

to these task-oriented domains are discussed in Section 3.8. Finally, Section 3.9 

summarizes the properties of the proposed dialog structure representation. 

3.1 Components in form-based dialog structure representation 

In task-oriented domains, participants engage in a conversation in order to achieve a 

specific goal such as to obtain the departure time of a particular bus or to order a product 

from a catalog. For simplicity, I will refer to the participants as a client and an operator. 

Typically the client’s goal is to have the operator perform actions that serve his or her 

need. The operator in turn needs specific information from the client in order to perform 

each action. Actions are domain-specific; for instance, in a bus schedule inquiry domain 

an action is looking up information from a bus schedule while in a retail domain an action 

is ordering a product. The action occurs when all necessary information has been 

gathered. For example, in the retail domain, the name of a product and a quantity need to 

be specified before an order can be placed. The purpose of the goal-oriented conversation 

is to communicate this information among the participants and to ensure that the 

information is consistent.  

Different task-oriented domains may have some dissimilar characteristics; for 

instance, some discourse phenomena such as grounding do not occur in every domain. 

Therefore, in order to develop a dialog structure representation that is generalized across 
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these differences, dialogs from different types of task-oriented domains have to be 

analyzed. The initial form-based dialog structure representation was derived from the 

analysis of conversations in information-accessing domains which are the most common 

application domains of form-based dialog systems. Constraints from a backend database 

make it easier to identify the form in this type of task-oriented domain. Then 

conversations from other types of task-oriented domains, namely a problem-solving task 

and a command-and-control task, were analyzed to verify the completeness of the initial 

dialog structure. The form-based dialog structure was modified when necessary to 

account for new discourse phenomena in the new domain. Finally, the definitions of all of 

the components in the form-based dialog structure representation were verified through 

several iterations of pilot annotation experiments (human annotation experiments are 

described in Section 4.2).  

In summary, conversations in various task-oriented domains have the following 

characteristics. In order to achieve a conversation goal, one or more actions must be 

taken, and all of the information required in order to perform these actions has to be 

clearly communicated. The form-based dialog structure representation organizes domain-

specific information necessary for achieving the conversation goal into a three-level 

structure of task, sub-task and concept.  The definition of each component is given below. 

3.1.1 Component definitions and representations 
 

1. A task is a subset of a dialog that has one specific goal.  

A simple dialog usually has only one goal; therefore, the entire dialog 

corresponds to a single task. A complex dialog can have multiple goals. For 

instance, a customer who makes a call to a customer service may have two 

goals, to obtain account balance and to change the address; therefore, this 

dialog consists of two tasks, one for each goal. To decompose a dialog into 

multiple tasks, each sub-dialog, which corresponds to a task, must have a 

clear goal that is distinct from the rest of the dialog and can be considered as 

a separate dialog. 

To accomplish a task goal, one or more actions need to be taken. When 

multiple actions are required, the task is decomposed into a set of sub-tasks, 

one for each action. However, if only one action is required, no further 

decomposition is necessary. 

2. A sub-task is a step in a task that contains sufficient information to execute a 

domain action. 
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Within each sub-task, dialog participants exchange information in order to 

execute the corresponding action. The sub-task ends when the action is 

executed. When there is a discussion about the outcome of the action, such as 

a discussion about the information retrieved from a database, the sub-tasks 

ends at the end of the discussion 

A task can be decomposed into both a sequence of different types of sub-

tasks and a series of the same type of sub-task. For example, to reserve a 

round trip ticket, a client must provide the criteria for a flight in each leg; 

therefore, a task of reserving a round trip ticket can be decomposed into two 

sub-tasks: specifying a departing flight and specifying a return flight. In some 

cases, a sub-task can be further decomposed if it is associated with a complex 

action. This creates a hierarchical structure of a task and sub-tasks. More 

examples of the task structure decomposition are given in the following 

sections. 

3. A concept is a word or a group of words which captures a piece of 

information that is necessary for performing an action. 

A piece of information that describes the outcome of an action is also 

considered a concept. 

Some pieces of information might be complex and contain several 

components. For example, an address is composed of a street, a city, a zip 

code, etc. Street, City or ZipCode can be a concept by itself since it captures 

a distinguishable piece of information that may be used separately. A concept 

that contains other concepts such as Address is called a structured concept.  

It is possible that the same word or group of words belongs to more than 

one concept. For example, “tom@cmu.edu” can be both a SenderEmail and 

a RecipientEmail. It is important to distinguish between similar concepts that 

have different functionalities such as between a sender and a recipient as 

shown in this example. 

Each dialog structure component has two aspects: type and instance. A type is an 

abstraction of similar information items while an instance is a specific value of an 

information item. For example, query_departure_time is a type of task in a bus 

schedule inquiry domain while the dialogs that correspond to this task are instances. For a 

concept, an instance is also called a concept member or a slot value. For example, Color 

is a concept type while “red,” “blue,” and “green” are concept members.  

mailto:tom@cmu.edu
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A dialog structure needs to be generalized over all relevant dialogs in a domain. 

Hence, for the same type of task, some sub-tasks may be optional. Similarly, some 

concepts may not be required in order to perform the same action. For instance, since not 

all of the criteria have to be specified in order to retrieve flight information from a 

database, some concepts, such as Airline and NoOfStop, are optional.  

As the name indicates, the form-based dialog structure uses a form as a central 

representation. Related pieces of information necessary for performing a particular 

action, i.e. concepts, are organized into a form. A dialog structure is associated with a 

form in the following ways. A simple task, which contains only one action, is represented 

by a single form while a complex task is presented by a set of forms; each of its sub-tasks 

is associated with one form. We can also say that each form represents information in a 

subset of a dialog that contributes toward one action. Lastly, a concept is a slot inside a 

form. Even though a structured concept is composed of a set of concepts, it is not 

equivalent to a form because there is no action associated with it. A diagram in Figure 3.1 

shows how a form captures information from a conversation in a retail domain along with 

the action that makes use of the information in the form. 

 
 

 

Figure 3.1: A form representation and its associated action in a retail domain 

As a conversation progresses, the participants gradually fill in a form with pieces of 

information. They may also verify the correctness of the information as they try to fill it 

I want to buy scarves 

How many do 
you want? 

Two please 

client agent 

Form: Order Form 

ProductName: scarves 

Quantity: two 

fill form 

Action: order_a_product 
 (order two scarves) 
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into the form. When the form is complete (when all of the required pieces of information 

are obtained) an action that associates with the form is ready to be executed. The purpose 

of a goal-directed conversation is to fill one or more forms and to ensure that the 

information is consistent. How each utterance affects the form and its content is described 

in the next section. 

3.1.2 Form operators 

In the form-based dialog structure framework, when a participant speaks, his/her 

utterance is considered as an operator (or an operation) that operates on a form and its 

content. At the beginning of a dialog, an utterance fills the corresponding slot in the form 

with the concept enclosed in the utterance. When the form is complete and its associated 

action is ready to be taken, an utterance executes the action that is associated with the 

form or indicates that the action has been executed. After that, the subsequent utterances 

discuss the outcome of the action.  These three basic operations are fill_form, 

execute_form, and report_outcome, and are summarized in Table 3.1. If the 

participants are not satisfied with the outcome of the action, they may fill the form with 

different slot values and then re-execute the action. For example, if a client does not like 

the flights that were retrieved, he/she may change the search criteria and then ask an 

agent to retrieve a new set of flights. The new set of slot values get filled into the form 

through the same fill_form operation as the previous set of slot values. 

Each type of operator is defined based on the effect that the operator has on a form 

and its content, and on the way that the operator uses the information stored in the form. 

Table 3.1 contains, for each operator, a short description that describes the effect of the 

operator on a form along with example expressions that indicate this operator. These 

examples are taken from various task-oriented domains as indicated in the last column of 

the tables. Air Travel is the Air travel planning domain described in Section 3.2; Bus 

Schedule is the Bus schedule inquiry domain described in Section 3.3; Map Reading is 

the Map reading domain described in Section 3.4; UAV is the UAV flight simulation 

domain described in Section 3.5. 

Besides the three basic operations, a dialog participant can also cancel an operation 

that another participant performs if he/she believes that the operation is not appropriate at 

that point of the dialog. An example of a cancel operation illustrated in Table 3.1 is 

taken from the air travel planning domain when an agent canceled a client’s previous 

operation, a fill_form operation which operated on the form of the second leg, in order to 

continue with the form of the first leg (the current sub-task). If a serious 
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misunderstanding occurs the participant can use a start_over operator to clear the 

content of the current form and restart the sub-task all over again. 

Nevertheless, some utterances may not directly manipulate the content of the form, 

but rather manage the flow of the communication and maintain the integrity of the dialog. 

For example, a request_repetition operator repairs a communication problem by 

requesting another dialog participant to repeat the previous utterance again. This operator 

doesn’t modify or use the content of the form. This group of operators can be regarded as 

a discourse-oriented operator while the first group of operators that directly manipulates 

the form and is listed in Table 3.1 is considered a task-oriented operator. Discourse-

oriented operators are listed in Table 3.2.  

Since the form-based dialog structure model uses the same form representation to 

represent domain-specific information in every task-oriented domain, the set of operators 

that can be used to manipulate the form representation is the same across all of the 

domains. Thus, the lists of form operators in Table 3.1 and Table 3.2 are domain-

independent. The consequence of the same operator is the same regardless of the domain. 

For example, a fill_form operator, which fills a specific slot in a form with a given 

concept value, has the same behavior in every domain; only the parameters of the 

operator (the identities of the slot and the form, and the concept value) that are different. 

The effect of the fill_form operator on the corresponding form in the air travel planning 

domain and in the map reading domain are shown in Figure 3.2 and Figure 3.3 

respectively. However, the consequence of an execute_form operator is the only 

exception. Since the execute_form operator executes the domain-specific action that is 

associated with a form, its consequence is domain-dependent. Even though a list of form 

operators and their effects on a form are domain-independent, the expressions that are 

associated with each operator vary according to the characteristic of a task as illustrated 

by example expressions taken from dissimilar task-oriented domains in Table 3.1 and 

Table 3.2. 
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Operator Description Example utterance Domain 

initiate_form Initiate a new form (and a new sub-task) “I also need a car” Air Travel 

fill_form Fill a slot in a form with a specific concept 

value 

 

“I’d like to fly to Houston Texas” Air Travel 

“I'm looking for a 41E leaving downtown Pittsburgh 

around three o'clock” 

Bus Schedule 

 

“To the left for about an inch” Map Reading 

“AVO, radius of H-area is five miles” UAV 

execute_form 

 

Perform a domain-specific action that is 

associated with a form  

“Just make the reservation”  Air Travel 

“We got a good photo for H-area”  UAV 

report_outcome Report the outcome of an execute_form 

operator 

“That round trip fare is four hundred three dollars 

and fifty cents” 

Air Travel 

 

“Currently 7¼ miles out from H-area” UAV 

cancel Cancel the previous operator “I would like to complete this leg first” Air Travel 

start_over Clear the content of a form and restart the 

sub-task all over again 

“Start again” Map Reading 

Table 3.1: A list of task-oriented operators 
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Operator Description Example utterance Domain 

acknowledge Show understanding of another participant’s previous 

utterance. (can be considered as a backchannel 

response) 

“Right” Map Reading 

“Roger” UAV 

request_repetition Request another participant to repeat the previous 

utterance 

“Pardon me” Bus Schedule 

“Please repeat that again one more 

time. F-area?” 

UAV 

greeting A social utterance at the beginning of the 

conversation 

“Thank you for calling port authority 

this is Dalisa how may I help you” 

Bus Schedule 

 

closing A social utterance at the end of the conversation  “Okay thank you”  Air Travel 

Table 3.2: A list of discourse-oriented operators
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Figure 3.2: A fill_form operator and its effect on the corresponding form in the air travel 

planning domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: A fill_form operator and its effect on the corresponding form in the map 

reading domain 

The effect of a task-oriented operator listed in Table 3.1 can be determined directly 

from the utterance that is associated with the operator. However, since dialog participants 

collaborate to achieve a task in a task-oriented dialog, the effects of some utterances on a 

form may depend on a response from another participant. There are three types of 

response-dependent operators: request, suggest and confirm. Any task-oriented 

operator can be transformed into a request operator, a suggest operator, or a confirm 

operator (e.g. request_fill_form, suggest_fill_form, or confirm_fill_form). Examples of 

response-dependent operators are given in Figure 3.4. The names of the operators are 

Client:   (fill_form) i'd like to fly to  houston  texas 

           [ArriveCity] [ArriveState] 

 

 Form: flight query 

DepartCity:  
DepartState: 
DepartDate:   
DepartTime:  
ArriveCity: houston 

ArriveState: texas 

 

GIVER:  (fill_form)  to the left for about an inch. 

   [Direction]         [Distance] 

 

 Form: segment description 

Start Location:  

Direction: left 

Distance: an inch 

Path:  

End Location:  

  

 

 



Chapter 3: Form-based Dialog Structure Representation 

 

62 

enclosed in parentheses. The dialog in Figure 3.4 is taken from the air travel planning 

domain and is the same dialog as the one in Figure 3.12.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Examples of response-dependent operators 

A dialog participant (a speaker) may request another participant (a listener) to 

perform a specific operation. For instance, in the second utterance of the dialog in Figure 

3.4, an agent requested a client to fill_form with an ArriveCity. The client then 

responded by performing a fill_form operator that filled both ArriveCity and 

ArriveState into a flight query form. The request operator by itself doesn’t affect the 

form; nevertheless, it creates an obligation on a listener to perform the requested 

operation. 

When a speaker requests that a listener perform an operation, the speaker doesn’t 

specify all of the parameters of the requested operation; it is up to the listener to choose 

these parameters. However, the speaker can also suggest operation parameters as 

illustrated in the forth utterance of the same dialog. The agent suggested two values of an 

ArriveAirport that could be filled into the flight query form. The suggest_fill_form 

operator by itself didn’t fill any of these values into the form as a response from the client 

Client 1: (greeting) hello 

Agent 2: (request_fill_form) hi people's travel what city would you like to fly to 

Client 3: (fill_form) i'd like to fly to houston texas 

        [ArriveCity] [ArriveState] 

Agent 4: (suggest_fill_form) into intercontinental airport or hobby 

        [ArriveAirport] [ArriveAirport] 

Client 5: (fill_form) at the intercontinental 

                 [ArriveAirport] 

   … 

Agent 12: (report_outcome) the only flight i have before that that's a non-stop  

  would be on continental airlines  that's at   

    FlightInfo:[Airline] 

  six  thirty  a.m.  arrive   houston   at   eight   fifty 

         FlightInfo:[DepartTime] FlightInfo:[ArriveCity] FlightInfo:[ArriveTime] 

Client 13: (fill_form) that's okay i'll take that 

       FlightInfo:[FlightRef] 

Agent 14: (confirm_fill_form) you'll take the continental flight 

          FlightInfo:[Airline] 

Client 15: (respond) yes 
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was required in order to decide which concept value should be used. The flight query 

form actually got filled in the fifth utterance by the fill_form operator which is the client’s 

response to the agent’s suggest_fill_form operator.  

A dialog participant may verify the correctness of an operator and its parameters that 

have been specified earlier in a dialog with a confirmation utterance. To confirm the 

correctness of the fill_form operator that was uttered in utterance 13, the agent verified 

with the client that he/she would like to select the continental flight in the next utterance. 

With an affirmative response in utterance 15, the information of the selected flight got 

filled into a flight reservation form. A confirm operator is usually expressed in the form 

of a yes/no question. An affirmative response carries out the confirmed operation while a 

negative response discards that operation. 

Usually, an utterance or a speaker turn corresponds to one form operator. However, 

an utterance can correspond to more than one operator if the utterance has more than one 

distinguishable effect on a form. For instance, a client’s turn in Figure 3.5 corresponds to 

two operators: respond and init_form. In the first part of the turn the client gave a 

negative response to an agent question about a car reservation while in the second part of 

the turn the client initiated a discussion about a hotel reservation.  
 

 

 

 

 

 

Figure 3.5: An example of a speaker turn that corresponds to more than one operator 

I would like to note that even though a form operator describes the role of an 

utterance in a task-oriented dialog similar to a dialog act, it describes specifically the 

effect of the utterance on the form representation rather than modeling a speaker 

underlying intention. This thesis focuses more on the form-based dialog structure 

representation than on form operators since the form-based representation models 

domain-dependent components which have to be acquired in every new domain while a 

list of form operators is domain-independent and is pre-specified. 

3.1.3 Task and sub-task decomposition 

A list of actions constrains how a task is decomposed into a set of sub-tasks in each 

domain. An action in the form-based dialog structure representation is defined as a 

process that uses the information gathered during the conversation to create an outcome 

 

Agent:  (suggest_init_form)  do you need a car 
Client:  (respond)   no 
              (init_form)  but I do need a hotel 
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that contributes toward the conversation goal. The outcome can be the desired piece of 

information, such as the inquired departure time from a bus schedule, or a new dialog 

state that is closer to the desired goal state. However, a process through which a dialog 

participant acquires each piece of information is not considered as an action. For 

instance, in a retail domain, obtaining a product name or a quantity from a client is not an 

action; it fills a form in preparation for eventual execution of the corresponding action. 

But using the product name and the quantity to make an order is an action since this 

process makes a dialog reaches its goal state.  

Usually, an action is observable from a verbal expression that associates with it (for 

example, “let me look that up for you”) or from a physical action (for example, an 

operator types a query and submits it to a database system). Another indication of an 

action that can be observed is a discussion of the new information obtained from the 

execution of the action. A retrieved departure time in a bus schedule inquiry domain is an 

example. However, there are some cases that actions are less noticeable. One example is 

defining a new term (grounding). A grounding action associates a word with its definition 

or its properties. This knowledge is stored for future reference. If a dialog participant only 

memorizes the knowledge, neither physical action nor verbal expression occurs. 

Nevertheless, the process that discusses the term and the information regarding its 

definition and properties are observable. The grounding process is considered a sub-task 

which corresponds to a grounding action while the term, its definition, and properties are 

concepts. The grounding process is further discussed in Section 3.4 and 3.5 when the 

structures of dialogs in the map reading domain and the UAV flight simulation domain 

are analyzed respectively. 

The definition of an action in the form-based dialog structure representation is 

different from the one in the plan-based model discussed in Section 2.1.2.3. The action in 

the plan-based model is a communicative action expressed by an utterance and is usually 

represented by a speech act. The communicative action is more fine-grained and captures 

a speaker’s intention rather than a physical action while the action in the form-based 

representation occurs at the end of an information-exchanging sub-dialog and is defined 

as a process (usually observable) that uses the exchanged information to create an 

outcome that contributes toward the conversation goal. 

I would like to note that the notions of AccessFrame and attribute proposed by Hardy 

et al. (2003) and reviewed in Section 2.1.3 are fairly similar to the notions of task and 

concept in the proposed form-based dialog structure representation. However, the form-

based representation offers a richer representation by providing a hierarchical structure of 
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tasks and sub-tasks rather than a flat structure. The form-based representation also 

provides a more general definition for each dialog structure component and is, therefore, 

applicable to various types of task-oriented domains. Since Hardy’s dialog structure 

representation is based on the DAMSL annotation scheme, it restricts itself to the 

information available at the level of utterance (e.g. an AccessFrame only describes a task 

that corresponds to each utterance) and does not describe an aggregate structure over 

multiple utterances. The intentional structure in Grosz and Sidner’s Theory of discourse 

structure (Grosz and Sidner, 1986) is also closely related to the structure of tasks and sub-

tasks. However, the intentional structure is influenced by discourse segment purposes and 

their relations rather than domain-specific actions, which capture the characteristics of the 

tasks more directly, as in case of the form-based dialog structure representation. 

To model the structure of a dialog in a new task-oriented domain with the form-based 

dialog structure representation, a list of tasks, sub-tasks, and concepts in that domain has 

to be identified. This list can be considered as a domain-dependent tagset and is not pre-

specified by the form-based representation but will be identified from in-domain dialogs. 

The notions of task, sub-task, and concept defined in this section can be regarded as 

meta-tags and are domain-independent. A summary of task, sub-task, and concept 

definitions are given in Figure 3.6. 

For consistency, I will use the following formatting styles to mark tasks, sub-tasks, 

concepts, and actions in the rest of this thesis document. 

● Task and sub-task types are marked in bold with “_” connects all the words 

together, e.g. create_an_itinerary and grounding. 

● Concept types are marked in bold with all the first letter of each word 

capitalized e.g. ProductName and Quantity. 

● All task, sub-task and concept instances are marked with double quotation 

marks e.g. “blue” and “green”. 

● Actions are marked in bold italic with “_” connects all the words together e.g. 

make_a_flight_reservation. 
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Figure 3.6: The summary of the form-based dialog structure representation 

3.2 Air travel planning domain 

A dialog in an air travel planning domain is a conversation between an experienced 

travel agent and a client arranging a trip that includes plane, hotel and car reservations. A 

plane ticket reservation is mandatory while hotel and car reservations are optional. A trip 

can be either a domestic or an international one. In some conversations, a client may have 

multiple destinations. A corpus of human-human conversations in this domain was 

collected during the development of the CMU Communicator system. The data collection 

process is described in (Eskenazi et al., 1999). Figure 3.7 shows a transcript of a recorded 

conversation in the air travel planning domain. The number that follows the speaker label 

is an utterance ID. The transcript also includes some noises and fillers (e.g. /UH/ and 

*PAUSE*) made by both participants and from the environment. Examples of dialog 

structure analysis discussed in this section are drawn mainly from this dialog. 

 

 

 

Task is a subset of a dialog that has one specific goal 
● A dialog corresponds to one task if it has only one goal 
● A dialog corresponds to a set of tasks if it has multiple goals and each task 

may stand alone as a separate dialog 
● If as a task requires more than one action, it is decomposed into a set of sub-

tasks 
Sub-task is a step in a task that contains sufficient information to execute an action* 

● ends after the action that associates with that sub-task is executed or after the 
outcome of the action has been discussed. 

Concept is a word or a group of words that captures  
● the information necessary for performing an action 
● the information about the outcome of an action 

      It is also important to distinguish between similar concepts that have different 
functionalities. 

*An action is a process that uses related pieces of information stored in a form to 
● create a new piece of information (for example, through computation or 

database retrieval) 
or,  
● move a conversation to a new state that is closer to the desired goal state  

An action is not a process through which a dialog participant acquires individual 
pieces of information. 
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Figure 3.7: An example dialog in the air travel planning domain  

Client 1: HELLO 
Agent 2: /H#/ HI PEOPLE'S TRAVEL WHAT CITY WOULD YOU LIKE TO FLY TO 
Client 3: I'D LIKE TO FLY TO HOUSTON TEXAS 
Agent 4: INTO INTERCONTINENTAL AIRPORT OR HOBBY 
Client 5: AT THE /UH/ INTERCONTINENTAL 
Agent 6: AND DEPARTING PITTSBURGH ON WHAT DATE 
Client 7: DEPARTING ON FEBRUARY TWENTIETH 
Agent 8: WHAT TIME WOULD YOU LIKE TO DEPART PITTSBURGH 
Client 9: /UM/ EARLY MORNING NOT BEFORE SEVEN 
Agent 10: OKAY U.S. AIRWAYS HAS A NON-STOP AT TEN OH FIVE A.M. YOU'LL ARRIVE INTO 

HOUSTON AT TWELVE TWENTY P.M. 
Client 11: IS THERE AN EARLIER FLIGHT 
Agent 12: THE ONLY FLIGHT I HAVE BEFORE THAT THAT'S A NON-STOP WOULD BE ON 

CONTINENTAL AIRLINES THAT'S AT SIX THIRTY A.M. ARRIVE HOUSTON AT EIGHT 
FIFTY 

Client 13: THAT'S OKAY I'LL TAKE THAT 
Agent 14: YOU'LL TAKE THE CONTINENTAL FLIGHT 
Client 15: YES 
Agent 16: AND WHAT DAY WOULD YOU BE RETURNING 
Client 17: ON /UM/ *PAUSE* MONDAY FEBRUARY TWENTY THIRD 
Agent 18: WHAT TIME WOULD YOU LIKE TO DEPART HOUSTON 
Client 19: AROUND FIVE P.M. 
Agent 20: I HAVE A NON-STOP ON CONTINENTAL DEPARTING HOUSTON AT SIX FORTY FIVE 

P.M. ARRIVING INTO PITTSBURGH AT TEN TWENTY THREE P.M. 
Client 21: OKAY 
Agent 22: THAT ROUND TRIP FARE IS FOUR HUNDRED THREE DOLLARS AND FIFTY CENTS 
Client 23: OKAY 
Agent 24: WOULD YOU LIKE ME TO MAKE THE RESERVATION AND DID YOU NEED A CAR 
Client 25: YEAH 
Agent 26: THEY LEAST EXPENSIVE RATE I HAVE WOULD BE WITH THRIFTY RENTAL CAR AT 

THE HOUSTON AIRPORT FOR THE WEEKEND RATE OF TWENTY THREE NINETY A 
DAY 

Client 27: OKAY 
Agent 28: WOULD YOU LIKE ME TO BOOK THAT CAR FOR YOU 
Client 29: YES 
Agent 30: OKAY AND WOULD YOU NEED A HOTEL WHILE YOU'RE IN HOUSTON 
Client 31: YES 
Agent 32: AND WHERE AT IN HOUSTON 
Client 33: /UM/ DOWNTOWN 
Agent 34: OKAY 
Agent 35: DID YOU HAVE A HOTEL PREFERENCE 
Client 36: /UM/ ANYTHING HILTON #NOISE# MARRIOTT 
Agent 37: I HAVE A MARRIOTT IN DOWNTOWN HOUSTON FOR ONE OH NINE A NIGHT 
Client 38: OKAY 
Agent 39: WOULD YOU LIKE ME TO BOOK THAT 
Client 40: YES 
Agent 41: OKAY 
Agent 42: WOULD YOU LIKE TO PURCHASE THE TICKET TODAY OR JUST MAKE THE 

RESERVATION 
Client 43: /H#/ JUST MAKE THE RESERVATION 
Agent 44: I CAN HOLD THAT TICKET FOR YOU UNTIL TOMORROW AT FIVE P.M. IF YOU 

COULD PLEASE CALL US BY THEN 
Client 45: OKAY 
Agent 46: OKAY THANK YOU 
Client 47: THANK YOU #CUT_IN# 
Agent 48: BYE BYE 
Client 49: YEAH BYE 
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A conversation in the air travel domain is an information-accessing task. In this 

domain, a travel agent helps a client arrange an air-travel itinerary by retrieving flight, 

hotel, and car rental information from a backend database. In order to do so, the client has 

to provide the agent with his/her preferences and constraints on the itinerary. Since 1) the 

conversation goal is achieved by performing domain actions (retrieving information from 

the database and making a travel reservation), and 2) the client and the agent have to 

exchange information in order to carry out these actions through dialog, the 

characteristics of a dialog in the air travel domain match all of the assumptions made by 

the form-based dialog structure representation. Thus, a dialog in this domain could be 

modeled by the form-based representation. Detailed analysis of the structure of an air 

travel planning dialog is given below. 

The goal of a conversation in the air travel planning domain is to create an air-travel 

itinerary for a trip. In each conversation, a client usually has only one trip in mind; 

therefore, the entire dialog corresponds to a single task, create_an_itinerary. However, 

in some cases, a client may want to arrange several trips in one conversation. In that case, 

a dialog corresponds to several create_an_itinerary tasks; one for each trip. 

An air-travel itinerary consists of three types of reservations: a plane ticket 

reservation, a hotel reservation, and a car rental reservation. A plane ticket reservation is 

accomplished through a make_a_flight_reservation action. Similarly, a hotel reservation 

and a car rental reservation are achieved by a make_a_hotel_reservation action and a 

make_a_car_reservation respectively. Hence, the create_an_itinerary task is 

decomposed into three sub-tasks, one for each type of reservation (flight, hotel, and car). 

All types of reservations are regarded as sub-tasks instead of tasks even though each of 

them has a clear goal (to make a specific type of reservation) because they belong to the 

same itinerary and there is also some dependency between them as will be discussed later 

in this section. Figure 3.8 shows a decomposition of the task create_an_itinerary into 

three sub-tasks: reserve_flight, reserve_hotel, and reserve_car together with their 

corresponding forms and actions. The detail of each form is omitted and will be discussed 

later on. 

If a trip has multiple destinations, an itinerary may contain more than one plane ticket 

reservation as well as multiple hotel and car reservations. In that case, a dialog may 

contain multiple instances of reserve_flight, reserve_hotel, and reserve_car sub-tasks. 

On the other hand, in some conversations, reserve_hotel, and/or reserve_car sub-tasks 

are optional. Only a reserve_flight sub-task is mandatory in this domain.  
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Figure 3.8: A task, sub-tasks and their corresponding forms and actions in the air travel 

planning domain 

A reserve_flight sub-task can be further decomposed. To make a flight reservation 

for a round trip, an agent needs to know the flight that a client would like to take for each 

leg of the trip (i.e. a departure flight and a return flight). The client must provide criteria 

of the preferred flight for each leg to the agent who then retrieves flight(s) that matches 

the given criteria from a database. Therefore, a reserve_flight sub-task is then 

decomposed into two query_flight_info sub-subtasks, one for each 

retrieve_flight_fromDB action required for each leg of the trip. The criteria for retrieving 

a desired flight include a DepartureCity, an ArrivalCity, a DepartureDate, an 

ArrivalDate, a DepartureTime, an ArrivalTime, an Airline, etc. These are concepts in 

a flight query form associated with a query_flight_info sub-subtask. Since not all of the 

criteria have to be specified in order to retrieve information from a database, some 

concepts in the flight query form may not get filled. 

In the dialog in Figure 3.7, a client would like to reserve a round trip flight from 

Pittsburgh to Houston. Two flight query forms, one for each leg of the round trip 

reservation, are shown in Figure 3.9. Only the slots that are discussed in the dialog are 

presented in the forms. In some examples, detailed representation and annotation are 

omitted for a display purpose. Some concept names may be shortened and structured 

concept components may be excluded. For example, a DepartureDate is a structure 

concept consists of a Month and a Date, but for simplicity we only represent it as 

“DepartDate: February twentieth” instead of “DepartDate: Month: February Date: 

Dialog A 
 
 
 
 
Goal: create 
an air-travel 
itinerary 

Form: flight reservation Sub-task:  
reserve_flight 
 
 
 

: 
  Action:  make_a_flight 

reservation  
 
 

Sub-task:  
reserve_hotel 
 
 
 

Sub-task:  
reserve_car 
 
 
 

: 

: 

Form: hotel reservation 

Form: car reservation 

  Action:  make_a_hotel 
reservation  

 
 

  Action:  make_a_car 
reservation  
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twentieth” in the flight query form. A dialog structure annotation of the conversation in 

Figure 3.7 is given at the end of this section. 

The result of a retrieve_flight_fromDB action is the information of the flight(s) that 

matches the given criteria. “CONTINENTAL AIRLINES THAT'S AT SIX THIRTY A.M. ARRIVE 

HOUSTON AT EIGHT FIFTY” excerpted from Utterance 12 in Figure 3.7 is one example of 

the result. This piece of information can be regarded as a structured concept FlightInfo, 

which composes of an Airline “Continental”, a DepartTime “six thirty a.m.”, an 

ArriveCity “Houston”, and an ArriveTime “eight fifty”. A FlightInfo is a structured 

concept that refers to a particular flight and will be used by a travel agent to make a flight 

reservation.  

 

 

Figure 3.9: Flight query forms, their corresponding actions and the outcomes for a round 

trip reservation 

In many cases, there is more than one flight that matches a client’s criterion. The 

client needs to select only one flight from a list of flights returned by a 

retrieve_flight_fromDB action. After the client select the desired flight, the FlightInfo of 

the selected flight gets filled into a flight reservation form. When all required FlightInfos 

for that trip are obtained, e.g. two for a round trip, an agent will perform a 

make_a_flight_reservation action. Figure 3.10 shows a flight reservation form that 

Form: flight query 

DepartCity: Pittsburgh 
ArriveCity: Houston 
ArriveState: Texas 
ArriveAirport: 

Intercontinental airport 
DepartDate:   
 February twentieth 
DepartTime:  
 early morning  
 not before seven 

: 

Action:  retrieve_flight 
 fromDB  
 
Retrieve a flight that 
matches the criteria in a 
flight query form from a 
database 

FlightInfo: 
 Airline: Continental 
 DepartCity: Houston 
 DepartTime:  
  six forty-five p.m. 
 ArriveCity: Pittsburgh 
 ArriveTime:  
  ten twenty-three p.m. 
 

Form: flight query 

 

DepartCity: Houston 
ArriveCity: Pittsburgh 
DepartDate:  
 Monday February 
   twenty third 
DepartTime: five p.m. 

 

FlightInfo: 
 Airline: Continental 
 DepartTime: six thirty a.m. 
 ArriveCity: Houston 
 ArriveTime: eight fifty 

 

: 

Action:  retrieve_flight 
 fromDB  
 
Retrieve a flight that 
matches the criteria in a 
flight query form from a 
database 

 
 
Sub-subtask:  
query_flight_info 
 

 
 
Sub-subtask:  
query_flight_info 
 



Chapter 3: Form-based Dialog Structure Representation 

 

71 

contains two FlightInfos, one for each leg of the trip, retrieved by two 

retrieve_flight_fromDB actions in Figure 3.9. In some conversations, a flight reservation 

form may contain additional concepts such as a client’s Name and a PaymentMethod. 

These additional concepts may not be discussed in some dialogs such as the one in Figure 

3.7 because an agent may already have that information in a client’s profile.  

Figure 3.10: A reserve_flight sub-task and the corresponding form and action for a round 

trip reservation 

Another action that may occur in a reserve_flight sub-task is a retrieve_flights_fare 

action. A client may want to know the ticket price before making a reservation. Normally 

a ticket fare is based on all of the flights in the itinerary together. For example, a round 

trip fare is usually cheaper than the summation of two one-way fares. Therefore, the 

retrieve_flights_fare action requires information of all of the flights in an itinerary. Since 

a FlightInfo is an outcome of a retrieve_flight_fromDB action, a query_flights_fare 

sub-subtask, which corresponds to a retrieve_flights_fare action, occurs after all 

query_flight_info sub-subtasks. Figure 3.11 shows a fare query form for retrieving a 

ticket fare of a round trip ticket in Figure 3.9. 

Form: flight reservation 

FlightInfo: 
 Airline: Continental 
 DepartTime: six thirty a.m. 
 ArriveCity: Houston 
 ArriveTime: eight fifty 

FlightInfo: 
 Airline: Continental 
 DepartCity: Houston 
 DepartTime: six forty-five p.m. 
 ArriveCity: Pittsburgh 
 ArriveTime: ten twenty-three p.m. 
Name:  
PaymentMethod:  
 

 
 
 
 
 
Sub-task:  
reserve_flight 
 
 
 

: 

Action:  make_a_flight      
reservation  

 
Make a reservation for 
“a Continental flight 
departing at six thirty 
a.m. arriving Houston at 
eight fifty” and “a 
Continental flight 
departing Houston at 
six forty-five p.m. 
arriving Pittsburgh at 
ten twenty-three p.m.” 
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Figure 3.11: A fare query form and its corresponding action. 

Since actions and the corresponding forms for reserve_hotel, and reserve_car sub-

tasks are quite similar, I only discuss a reserve_hotel sub-task in this section. In a 

reserve_hotel sub-task, a client first specifies the criteria of the hotel room that he/she 

would like to reserve such as a HotelName and an Area of a city. These concepts are 

filled into a hotel query form which is then used by an agent to retrieve hotel room(s) that 

matches the given criteria from a database via a retrieve_hotel_info_fromDB action. An 

example of a hotel query form is given in Figure 3.13 (f). query_hotel_info is a sub-

subtask under a reserve_hotel sub-task and is associated with a 

retrieve_hotel_info_fromDB action. Similar to a FlightInfo, a HotelInfo is a structured 

concept that contains information about a particular hotel room retrieved from a database. 

The client has to select only one hotel room from a list of hotel rooms retrieved by a 

retrieve_hotel_info_fromDB action. The selected HotelInfo gets filled into a hotel 

reservation form as illustrated in Figure 3.13  (g).  

A reserve_hotel sub-task is less complex than a reserve_flight sub-task. A hotel for 

each stop in an itinerary can be reserved separately while all of the flights should be 

reserved together as in the case of a round trip. Hence, only one HotelInfo is required in 

each hotel reservation form while a FlightInfo of every leg in the itinerary is required for 

a flight reservation form. Hotel fare is also associated with an individual hotel room; 

therefore, it can be retrieved from a database by the same retrieve_hotel_info_fromDB 

action as other information in a HotelInfo. A separate retrieve_hotel_fare action is not 

necessary. 

 
 
 
 
Sub-subtask:  
query_flights_fare 
 
 
 

: 

Action: retrieve_flights_fare  
 
Retrieve a round trip fare for 
“a Continental flight departing 
at six thirty a.m. arriving 
Houston at eight fifty” and “a 
Continental flight departing 
Houston at six forty-five p.m. 
arriving Pittsburgh at ten 
twenty-three p.m.” 
 

Form: flight reservation 

FlightInfo: 
 Airline: Continental 
 DepartTime: six thirty a.m. 
 ArriveCity: Houston 
 ArriveTime: eight fifty 

FlightInfo: 
 Airline: Continental 
 DepartCity: Houston 
 DepartTime: six forty-five p.m. 
 ArriveCity: Pittsburgh 

 ArriveTime: ten twenty-three p.m. 
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Table 3.3 summarizes the structure of a dialog in the air travel planning domain. The 

hierarchical structure of tasks and sub-tasks is indicated by the numbering in the first 

column. Examples of related concepts for each task or sub-task are presented in the last 

column. 

 

ID Name Associated action Related concepts 

Task 1 create_an_itinerar

y 

  

Sub-task 1.1 reserve_flight make_a_flight_reservation FlightInfos, Name, 

PaymentMethod 

Sub-subtask 1.1.1 query_flight_info retrieve_flight_fromDB DepartCity, ArriveCity, 

DepartTime, DepartDate 

Sub- subtask 1.1.2 query_flights_fare retrieve_flights_fare FlightInfos 

Sub-task 1.2 reserve_hotel make_a_hotel_reservation HotelInfo, Name, 

PaymentMethod 

Sub- subtask 1.2.1 query_hotel_info retrieve_hotel_info_fromD

B 

HotelName, Area 

Sub-task 1.3 reserve_car make_a_car_reservation CarInfo, Name, 

PaymentMethod 

Sub- subtask 1.3.1 query_car_info retrieve_car_info_fromDB RentalCompany, 

CarSize 

Table 3.3: Task, sub-tasks and their corresponding actions and concepts in the air travel 

planning domain 

Figure 3.12 illustrates a dialog structure annotation for the conversation in Figure 3.7. 

In this example, the entire dialog corresponds to one task create_an_itinerary; therefore, 

only sub-task and sub-subtask boundaries are illustrated. 

The following notions are used to illustrate the structure of a dialog. 

● The bracket on the left shows the boundaries of a sub-task while the bracket 

on the right shows the boundaries of a sub-subtasks 

● An instance of a concept is underlined and the concept name is enclosed in a 

square bracket underneath it.  

● The name of the structured concept is placed on the left-handed side next to 

its component names. For simplicity the annotation of some structured 

concept components are excluded. For example, the full annotation for 

“february twentieth” is DepartDate:[[Month][Date]]. 

● (action: …) indicates approximately when an action occurs in a conversation  
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This dialog consists of three sub-tasks: reserve_flight (round trip), reserve_car, and 

reserve_hotel. The criteria for an out-bound flight and an in-bound flight are captured in 

the flight query forms in Figure 3.13 (a) and (b) respectively. The flights that a client 

selected are presented in a flight reservation form in Figure 3.13  (c) under FlightInfo 

concepts. Both concepts were used to retrieve a Fare in a query_flights_fare sub-

subtask.  A separate fare query form is not presented. The make reservation part of the 

flight reservation was interrupted by the discussion of the car reservation. It was resumed 

at the end of the conversation. Information about a client’s name and a payment method 

were omitted in this dialog. 

There are a lot of dependencies among a flight reservation, a car reservation, and a 

hotel reservation. An agent did not need more information about a rental car from the 

client as all of the concepts required in a car query form. For instance, PickUpDate and 

PickUpTime could be inferred from the information of the selected flights. These 

implicit concepts are marked in italic in the car query form in Figure 3.13  (d). The 

information of the car that the client reserved is shown in Figure 3.13  (e). For the hotel 

reservation, the agent inquired a preferred Area and HotelName from the client in 

addition to a CheckInDate and a CheckOutDate that can be inferred from the selected 

flights. The hotel query form and the hotel reservation form are shown in Figure 3.13  (f) 

and (g) respectively. Implication of implicit concepts and interrupted sub-tasks on dialog 

structure learning is discussed in Section 3.8. 
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Figure 3.12: An example of dialog structure annotation in the air travel domain  

Client 1: hello 

Agent 2: hi people's travel what city would you like to fly to 

Client 3: i'd like to fly to houston texas 

        [ArriveCity] [ArriveState] 

Agent 4: into intercontinental airport or hobby 

       [ArriveAirport] [ArriveAirport] 

Client 5: at the intercontinental 

           [ArriveAirport] 

Agent 6: and departing pittsburgh on what date 

               [DepartCity] 

Client 7: departing on february twentieth 

          [DepartDate] 

Agent 8: what time would you like to depart pittsburgh 

                [DepartCity] 

Client 9:  early morning not before seven 

   [DepartTime] 

Agent 10: okay (action: retrieve_flight_fromDB) 

 u.s. airways has a non-stop at ten oh five a.m.  

 FlightInfo:[Airline] FlightInfo:[DepartTime] 

 you'll arrive into houston at twelve twenty p.m. 

   FlightInfo:[ArriveCity]   FlightInfo:[ArriveTime] 

Client 11: is there an earlier flight 

Agent 12: the only flight i have before that that's a non-stop would be on continental  

         FlightInfo:[Airline] 

 airlines  that's at  six  thirty  a.m.  arrive   houston   at   eight   fifty 

    FlightInfo:[DepartTime] FlightInfo:[ArriveCity] FlightInfo:[ArriveTime] 

Client 13: that's okay i'll take that 

       FlightInfo:[FlightRef] 

Agent 14: you'll take the continental flight 

        FlightInfo:[Airline] 

Client 15: yes 

Agent 16: and what day would you be returning 

Client 17: on monday february twenty third 

   [DepartDate] 

Agent 18: what time would you like to depart houston 

            [DepartCity] 

Client 19: around five p.m. 

          [DepartTime] 
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Figure 3.12: An example of dialog structure annotation in the air travel domain (cont.) 

Agent 20: (action: retrieve_flight_fromDB) 

 i have a non-stop on continental departing houston at six forty five p.m.  

                        FlightInfo:[DepartCity] FlightInfo:[DepartTime]  

 arriving into pittsburgh at ten twenty three p.m. 

 FlightInfo:[ArriveCity] FlightInfo:[ArriveTime] 

Client 21: okay 

Agent 22: (action: retrieve_flights_fare) 

 that round trip fare is four hundred three dollars and fifty cents 

       [Fare] 
Client 23: okay 

Agent 24: would you like me to make the reservation and do you need a car 

Client 25: yeah 

Agent 26: (action: retrieve_car_info_fromDB) 

 the least expensive rate i have would be with thrifty rental car  

      CarInfo:[RentalCompany] 

 at the houston airport for the weekend rate of twenty three ninety a day 

    CarInfo:[PickUpLoc]     CarInfo:[Fare] 

Client 27: okay 

Agent 28: would you like me to book that car for you 

Client 29: yes (action: make_a_car_reservation) 

Agent 30: okay and would you need a hotel while you're in houston 

                [City] 
Client 31: yes 

Agent 32: and where at in houston 

         [City] 
Client 33:  downtown 

  [Area] 

Agent 34: okay 

Agent 35: did you have a hotel preference 

Client 36: anything hilton   marriott 

   [HotelName]   [HotelName] 

Agent 37: (action: retrieve_hotel_info_fromDB) 

 i  have  a   marriott   in   downtown   houston   for one oh nine a night 

       HotelInfo:[HotelName]  HotelInfo:[Area] HotelInfo:[City] HotelInfo:[Fare] 

Client 38: okay 

Agent 39: would you like me to book that 

Client 40: yes 

Agent 41: okay (action: make_a_hotel_reservation) 

Agent 42: would you like to purchase the ticket today or just make the reservation 

Client 43: just make the reservation (action: make_a_flight_reservation) 

Agent 44: i can hold that ticket for you until tomorrow at five p.m. if you could please call us by then 
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Figure 3.13: All of the forms that correspond to the dialog structure annotation in the air 

travel domain presented in Figure 3.12  

Form: flight query 

DepartCity: Houston 
ArriveCity: Pittsburgh 
DepartDate: Monday February  
                      twenty third 

DepartTime: five p.m. 

Form: flight reservation 

FlightInfo: 
 Airline: Continental 
 DepartTime: six thirty a.m. 
 ArriveCity: Houston 
 ArriveTime: eight fifty 

FlightInfo: 
 Airline: Continental 
 DepartCity: Houston 
 DepartTime: six forty-five p.m. 
 ArriveCity: Pittsburgh 
 ArriveTime: ten twenty-three p.m. 

Fare: four hundred three dollars  

        and fifty cents 

Name: 

PaymentMethod: 

Form: hotel reservation 

HotelInfo: 
 City: Houston 
 Area: downtown 
 HotelName: Marriott 
 Fare: one oh nine a night 
Name: 
PaymentMethod: 
 
 
 
 
 
 
 
 
 

Form: hotel query 

City: Houston 
Area: downtown  
HotelName: Hilton, Marriott 
CheckInDate: February twentieth   

CheckOutDate: February twenty third 

Form: car query 

PickUpLoc: Houston 
PickUpDate: February twentieth 
PickUpTime: after eight fifty 
DropOffLoc: Houston 
DropOffDate: February twenty third 
DropOffTime: before six forty-five p.m. 

 

Form: flight query 

DepartCity: Pittsburgh 
ArriveCity: Houston 
ArriveState: Texas 
ArriveAirport: Intercontinental 

   airport 
DepartDate:  February twentieth 
DepartTime: early morning  

                      not before seven 

Form: car reservation 

CarInfo: 
 PickUpLoc: Houston airport 
 RentalCompany: Thrifty 
 Fare: twenty three ninety a day 
Name: 
PaymentMethod: 
 
 
 
 
 
 
 
 
 

(a) 

(b) (c) 

(d) (e) 

(f) (g) 
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3.3 Bus schedule inquiry domain 

Conversations in the bus schedule inquiry domain are taken from the Let’s Go corpus 

(Raux et al., 2003). This corpus is a collection of calls to the Pittsburgh Port Authority 

Transit system enquiring about the bus schedule and other related issues such as lost-and-

found and driver behavior complaint. Each conversation is a telephone conversation 

between a help desk operator and a client. We selected those conversations that involved 

enquiries about the bus schedule for the analysis. An example of dialogs in this domain is 

shown in Figure 3.14. The number that follows the speaker label is an utterance ID. The 

transcript also includes some noises and fillers (e.g. /um/ and /feed/) made by both 

participants and from the environment. 
 

Figure 3.14: An example dialog in the bus schedule enquiry domain 

A conversation in the bus schedule inquiry domain is considered an information-

accessing task similar to a conversation in the air travel planning domain discussed in the 

previous section. In this domain, an operator helps a client find the desired bus 

information by looking up the information from the bus schedule. In order to do so, the 

client has to provide enough criteria to do the search. Since 1) the conversation goal is 

achieved through the execution of a domain action (looking up the information from the 

bus schedule), and 2) the client and the operator have to exchange information required to 

perform this action through dialog, the characteristics of a dialog in the bus schedule 

inquiry domain match all of the assumptions made by the form-based dialog structure 

representation. Therefore, a dialog in this domain could be modeled by the form-based 

representation. Detailed analysis of the structure of a bus schedule inquiry dialog is given 

below. 

The goal of a conversation in this domain is to obtain information about the bus 

schedule. However, unlike a conversation in the air travel planning domain, a client’s 

specific goal may vary from dialog to dialog depending on the specific piece of 

information that the client would like to obtain from the bus schedule (e.g., the time that a 

specific bus leaves a given bus stop location, or the numbers of the buses that run 

between two locations).   

Operator 1:  thank you for calling port authority this is dalisa how may i help you 
Client  2:  yeah /feed/ i'm looking for a 41E leaving downtown pittsburgh /um/ 

around three o'clock 
Operator 3:   there would be one due at two_forty_five three_seventeen or 

three_forty_five 
Client 4: ok thank you 
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To answer a client’s question, an operator looks up the inquired pieces of information 

from the bus schedule. In order to do so, the operator needs to gather enough information 

about the question from the client. For example, to answer a client’s question about a 

departure time, an operator needs a BusNumber and a DepartureLocation from the 

client. These pieces of information are slots in a query form as shown in Figure 3.15. 

After getting all of the necessary information, the operator retrieves the departure time 

from a database and then informs the retrieved information to the client. The outcome of 

the action retrieve_dept_time_fromDB, which is a DepartureTime, is also a concept. 

Only one simple action, “retrieve information from the database”, is required to 

accomplish a conversation goal; therefore, in this domain there is no need to decompose a 

task into sub-tasks. 

If a dialog has a different goal, the corresponding action and form will be different. 

Dialog B shows another goal, “get bus numbers”; therefore, the corresponding form 

contains different slot items. 
 

Figure 3.15: Actions and the associated forms in the bus schedule inquiry domain 

There are several types of tasks in this domain depending on the type of information 

that a client would like to obtain from the bus schedule. Two types of tasks are shown in 

Table 3.4. The concepts shown in the query forms in Figure 3.15 and in Table 3.4 are a 

minimal set of concepts required for each action. Human-human conversations are more 

flexible than a query language; therefore, for the same type of task a slightly different set 

of concepts may be used. A client may specify additional information to constraint the 

search as shown in the next example. On the other hand, the concept that is commonly 

: 

Dialog A 
 
Goal: get departure 

time 

Form: Query Departure Time  

BusNumber: A 

DepartureLocation: B 

 

: 

Action: retrieve_depart_time_fromDB 

Retrieve DepartureTime from the 
schedule database where BusNumber = 

“A” and DepartureLocation = “B” 

Form: Query Bus Number  

DepartureLocation: X 

ArrivalLocation: Y 

 

Action: retrieve_bus_number_fromDB 

Retrieve BusNumber from the schedule 
database where DepartureLocation = “X” 

and ArrivalLocation = “Y” 

Dialog B 
 
Goal: get bus 

numbers 
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known by both participants can be omitted; for instance, the departure date can be 

assumed to be the current date. 

 

ID Name Associated action Related concepts 

Task 1 query_departure_time retrieve_dept_time_fromDB BusNumber, 

DepartureLocation 

Task 2 query_bus_number retrieve_bus_number_fromDB DepartureLocation, 

ArrivalLocation 

Table 3.4: Examples of tasks and the corresponding actions and concepts in the bus 

schedule inquiry domain 

Figure 3.16 illustrates a dialog structure annotation for the conversation shown in 

Figure 3.14. The goal of this conversation it to get the departure time for the bus of 

interest. The client also specified an approximated DepartureTime that he was interested 

in to reduce the scope of the search. This concept is an optional concept and is not listed 

in Table 3.4. The corresponding form of this conversation is shown in Figure 3.17. 

The following notions are used to illustrate the structure of a dialog. Theses notions 

are similar to the ones used in Figure 3.12. 

● The curly bracket on the right shows the boundaries of a task.  

● An instance of a concept is underlined and the concept name is enclosed in a 

square bracket underneath it.  

● The name of the structured concept is placed on the left-handed side next to 

its component names. A DeptTime (a shorten form of a DepartureTime) is a 

structured concept consists of an Hour and a Min (minute). 

● (action: …) indicates approximately when an action occurs in a conversation . 
 



Chapter 3: Form-based Dialog Structure Representation 

 

81 

Figure 3.16: An example of dialog structure annotation in the bus schedule inquiry 

domain 

 

Figure 3.17: A form query_departure_time in the bus schedule inquiry domain 

Most of the dialogs in this domain have only one goal; therefore, the entire dialog 

corresponds to one task as illustrated in Figure 3.16. However, if a client would like to 

ask several questions about the bus schedule, that dialog has multiple goals, one for each 

question, and hence corresponds to multiple tasks. Unlike all sub-tasks in the air travel 

planning domain, each bus schedule query in this domain is independent from each other 

as all required information is independent; therefore, it can be a separate task. In the 

following conversation, a client would like to know a DepartureTime of two different 

buses. So, this dialog corresponds to two query_departure_time tasks as illustrated by 

the annotation in Figure 3.18.  
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Operator 1:  thank you for calling port authority this is dalisa how may i help you 

Client 2:  yeah i'm looking for a 41E leaving downtown pittsburgh  

               [BusNumber]     [DepartureLocation]     

  around three o'clock 

               DepartTime:[[Hour]] 

Operator  3:  (action: retrieve_depart_time_fromDB) 

  there would be one due at   two  forty-five     three  seventeen 

               DepartTime:[[Hour][Min]] DepartTime:[[Hour][Min]] 
  or three  forty-five 

            DepartTime:[[Hour][Min]] 

Client 4:  ok thank you 
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Form: Query Departure Time  

BusNumber: 41E 

DepartureLocation: downtown pittsburgh 

DepartureTime: Hour: three (approximated) 
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Figure 3.18: An example of dialog structure annotation for a dialog that contains two 

tasks 

3.4 Map reading domain 

Dialogs in the map reading domain are taken from the HCRC Map Task corpus 

(Anderson et al., 1991), collected at University of Edinburgh and University of Glasgow. 

Each dialog is a conversation between two participants: a route giver and a route 

follower. Both of them have maps of artificial places; however, only the route giver’s map 

has a route printed on it while the route follower’s one does not. The goal of the 

conversation is to have the follower reproduce the route on the giver’s map solely through a 

dialog. The maps may have differences that complicate the task. The task in this domain can be 

considered as a problem-solving task. In order for the follower to reproduce the route on 

his/her map, the giver has to describe how to draw it to the follower. Since 1) the 

conversation goal is achieved by performing a domain action, drawing a route, and 2) the 

Operator 1: thank you for calling the port authority this jenny may i help you 

Client 2: yes i'd like to know what time the 1A comes to the clark building in town  

           [BusNumber]     [DepartureLocation] 

  between the hours of three and four o'clock 

                     DepartTime:[[Hour]]  DepartTime:[[Hour]] 

Operator  3: (action: retrieve_depart_time_fromDB) 

  three    oh-nine          three    fifty      and      four   oh-nine 

 DepartTime:[[Hour][Min]] DepartTime:[[Hour][Min]] DepartTime:[[Hour][Min]] 

Client 4: how bout the 91A  butler street  outbound  

          [BusNumber]     [Direction] 

  what time does it come to the clark building 

      [DepartureLocation] 

Operator 5: (action: retrieve_depart_time_fromDB) 

  there's a three   twenty-eight   a   three   fifty-eight  

  DepartTime:[[Hour][Min]] DepartTime:[[Hour][Min]]  

  and a  four   twenty 

            DepartTime:[[Hour][Min]] 

Client 6: thank you very much 

Operator 7: you're welcome 
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route giver and the route follower have to communicate the description of the route in 

order to draw it through dialog, the characteristics of a dialog in the map reading domain 

match all of the assumptions made by the form-based dialog structure representation. 

Thus, a dialog in this domain could be modeled by the form-based representation. The 

remainder of this section provides detailed analysis of the structure of a map reading 

dialog. 

A transcript of a conversation in the map reading domain is shown in Figure 3.19 and 

the corresponding maps are shown in Figure 3.20 with a route giver’s map on the left and 

a route follower’s map on the right. Since conversations in this domain are usually long, 

around 150 utterances in average, only the first part of the conversation is presented. The 

utterances labeled with “GIVER” belong to the route giver while the utterances labeled 

with “FOLLOWER” belong to the route follower. The number that follows the speaker 

label is an utterance ID. The transcript also includes additional markers such as “--” for 

disfluency and “…” for discontinuity in the recorded speech. A dialog structure 

annotation of this conversation is given at the end of this section. For the purpose of 

illustration, some examples of dialog structure analysis discussed in this section are taken 

from other sources. 

The goal of a conversation in the map reading domain is to reproduce the giver’s 

route on the follower’s map. Since drawing an entire route is a complicated action, a 

draw_a_route task can be divided into a series of similar sub-tasks; each of them focuses 

on a small segment of the route. Each draw_a_segment sub-task corresponds to one 

draw_a_segment action which draws a small segment of the route on the follower’s map. 

To draw a segment of the route on his/her map, the follower needs a detailed 

description of the segment from the route giver. Information in the description may 

include a StartLocation, a Direction, a Distance, and an EndLocation. These items of 

information are concepts in a draw_a_segment sub-task. To describe a rather complex 

route segment, the route giver may also include the landmarks found along the way in a 

segment description. Information about locations in a segment description that are not a 

StartLocation and an EndLocation is capture by a concept Path. All location types 

(StartLocation, EndLocation and Path) can be described in terms of an absolute 

position on the map such as “at the left corner of the page” or in relative to a known 

landmark on the map such as “above the waterfall”. A relative location can be considered 

a structure concept which consists of a Relation and a Landmark. In the previous 

example “above” is a Relation while “waterfall” is a Landmark. For simplicity, 

components of structure concepts are omitted from the examples. 
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Figure 3.19: An example dialog (partial) in the map reading domain 

GIVER 1: okay ... ehm ... right, you have the start? 
FOLLOWER 2: yeah. 
GIVER 3: right, below the start do you have ... er like a missionary camp? 
FOLLOWER 4: yeah. 
GIVER 5: okay, well ... ... if you take it from the start just run ... ... 

horizontally. 
FOLLOWER 6: uh-huh. 
GIVER 7: eh to the left for about an inch. 
FOLLOWER 8: right. 
GIVER 9: and then go down along the side of the missionary camp. 
FOLLOWER 10: uh-huh. 
GIVER 11: 'til you're about an inch ... above the bottom of the map. 
FOLLOWER 12: right. 
GIVER 13: then you need to go straight along for about 'til about ... you're 

about an inch and a half away from the edge of the map. 
FOLLOWER 14: the banana tree? 
GIVER 15: okay? 
FOLLOWER 16: do you have a banana tree? 
GIVER 17: i have gorillas that's probably the. 
FOLLOWER 18: right okay, i'll go round the banana tree. 
GIVER 19: yeah, so you're at where are you now you're at the bottom? 
FOLLOWER 20: i'm at the bottom. 
GIVER 21: okay, now you ... you need to go parallel to the side of the map. 
FOLLOWER 22: uh-huh. 
GIVER 23: ehm about ... four inches. 
FOLLOWER 24: right. 
GIVER 25: so you're just ab-- ... ... y-- ... ... you're now about two inches 

above the gorillas ... or the banana tree. 
FOLLOWER 26: yeah. 
… 
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Figure 3.20: A route giver’s map and a route follower’s map in the HCRC Map Task 

corpus 

There is more than one alternative to describe a route segment. One route giver may 

use only a StartLocation and an EndLocation (for instance, go from “A” to “B”) to 

describe the segment while another route giver may use a StartLocation, a Direction, 

and a Distance (for instance, from “A” go toward “the right” for “3 centimeters”) to 

describe the same segment. Figure 3.21 illustrates two draw_a_segment sub-tasks: the 

first one has only two concepts as shown in the corresponding segment description form 

while the second one has all five concepts. Since dialog participants usually discuss route 

segments in order (from start to finish), the start locations of most segments are omitted. 

The StartLocation of the current segment is assumed to have the same value as the 

EndLocation of the previous segment. Omitted concepts are discussed in more detail in 

Section 3.8.1. After a route follower gathers enough information about a route segment 

from a route giver, he/she then draws a line that represented the segment on his/her map. 

This line is an outcome of a draw_a_segment action. 
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Figure 3.21: A task, sub-tasks and their corresponding forms and actions in the map 

reading domain 

Since there are many ways to describe a route segment, and there is no database 

backend constraint as in the air travel planning domain and the bus schedule query 

domain discussed in the previous sections, there is no hard constraint on how a route 

should be divided into smaller segments . The length and complexity of each segment can 

be varied depending on a route giver’s decision. To identify a boundary between two 

consecutive draw_a_segment sub-tasks, one possibility is to use an occurrence of a 

draw_a_segment action since an occurrence of an action usually signals the end of its 

corresponding sub-task. However, a draw_a_segment action may not be observed 

directly from a conversation as there is usually no explicit expression like “I’m drawing a 

line” that marks the action. Moreover, the outcome of the draw_a_segment action, which 

is a route segment drawn on a follower’s map, is also not observable from the 

conversation. 

Nevertheless, there is still evidence found within the conversation that indicates the 

boundaries of a draw_a_segment sub-task. I observe a route giver and a route follower 

usually discuss back and forth on the description of a route segment until the follower has 

enough information to draw the route segment on the map. A set of concept instances that 

are used to describe the route segment are repeated within this dialog segment. This set of 

concept instances is different from the ones used to describe adjacent route segments. 

Therefore, we can say that a set of concept instances are coherence within a sub-task. 

Dialog A 
 
 
 
 
Goal:  
draw a route 

Form: segment description 

StartLocation: A 
Direction: 
Distance: 
Path: 

EndLocation: B 

Sub-task:  
draw_a_segment 
(1) 
 
 
 

: 

Action: draw_a_segment  
 
Draw a line from “A” to “B” 

Action: draw_a_segment 
 
Draw a line “up” from “X” 
for “5 centimeters” pass 
“Y” to “Z” 
 

Sub-task:  
draw_a_segment 
(n) 
 

. 

. 

. 
 

: 

Form: segment description 

StartLocation: X 
Direction: up 
Distance: 5 centimeters 
Path: Y 

EndLocation: Z 
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This coherence set of information items can help us identify the boundaries of a 

draw_a_segment sub-task. 

The maps of both participants may have some differences, thus some landmarks may 

be missing from one of the map. The participants have to define the location of a missing 

landmark before using it in a segment description. This part of a conversation can be 

considered as grounding because it creates mutual understanding on the location of a 

particular landmark between the participants.  

Grounding is a sub-subtask under a draw_a_segment sub-task. Figure 3.22 shows a 

grounding sub-subtask and its corresponding form and action. A define_a_landmark 

action associates a LandmarkName with its Location (these are concepts in a 

grounding sub-subtask). The define_a_landmark action can only be observed when a 

participant explicitly marks a missing landmark on his/her map. Even though the action 

may not be observed, the knowledge about the location of the missing landmark is 

constructed and can be used for future reference by both participants. The 

define_a_landmark action occurs when the participants agree on the location of the 

landmark and storing the information for future use (either by marking the landmark on a 

map or memorizing it). A grounding sub-subtask may occur more than once in one 

draw_a_segment sub-task, or may not occur at all if no landmark needs to be grounded. 

The grounding sub-subtask is an example of an optional sub-task. 

In order to know which landmark is missing, the participants check with each other 

on the existence of a particular landmark on their maps. If the landmark occurs on both 

maps, they can assume that the location of the landmark is the same and does not have to 

be explicitly defined. The landmark is implicitly grounded and a define_a_landmark 

action also occurs (define the location of the landmark to be the same on both maps). If 

the landmark is missing from one of the participants’ maps, the participant who has that 

landmark on his/her map describes its location relative to known landmarks. Both types 

of a define_a_landmark action (implicit and explicit) are illustrated in Figure 3.23. There 

is also the case that even though a landmark is missing from one map, the participants do 

not explicitly ground the landmark. They just avoid using that landmark in a segment 

description. In this case, a define_a_landmark action does not occur and the landmark is 

left ungrounded. Table 3.5 summarizes the structure of a dialog in the map reading 

domain. 
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Figure 3.22:  A grounding sub-subtask and its associated form and action. 

 

ID Name Associated action Related concepts 

Task 1 draw_a_route   

Sub-task 1.1 draw_a_segment  draw_a_segment StartLocation, Direction, 

Distance, Path, EndLocation 

Sub-subtask 1.1.1 grounding define_a_landmark LandmarkName, Location 

Table 3.5: Task, sub-tasks and their corresponding actions and concepts in the map 

reading domain 

Figure 3.23 illustrates a dialog structure annotation of the first part of the 

conversation shown in Figure 3.19. The corresponding maps are presented in Figure 3.20. 

Similar notions as in Figure 3.12 and Figure 3.16 are used to mark dialog structure 

components in the dialog. Since the boundaries of a task go beyond the sub-set of the 

conversation presented in Figure 3.23 (the entire dialog corresponds to a draw_a_route 

task) only sub-task and sub-subtask boundaries are illustrated. Figure 3.24 shows the 

forms that correspond to all three sub-tasks annotated in Figure 3.23. In the first 

grounding sub-subtask, “the start” is implicitly grounded since both participants have it 

on their maps.  

 

 

 

 

 

 

 

Sub-task:  
draw_a_route_ 
segment (1) 
 Form: grounding 

LandmarkName: A 
Location: B 
 

: 

Action: define_a_landmark 
 
A landmark “A” is located at 
location “B” 

Sub-subtask: 
grounding 
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Figure 3.23: An example of dialog structure annotation in the map reading domain 

Figure 3.24: The corresponding form of each sub-task in the map reading domain 

annotated in Figure 3.23 

GIVER 1: okay ... ehm ... right, you have the start? 

      [LandmarkName] 

FOLLOWER  2: yeah.  
   (action: (implicit) define_a_landmark) 

GIVER 3: right, below the start do you have ... er like a missionary camp? 

            [Location]          [LandmarkName] 

FOLLOWER 4: yeah. 
   (action: define_a_landmark) 

GIVER 5: okay, well ... ... if you take it from the start just run ... ... horizontally. 

       [StartLocation] 

FOLLOWER 6: uh-huh. 
GIVER 7: eh to the left for about an inch. 

       [Direction]          [Distance] 

FOLLOWER 8: right. 
GIVER 9: and then go down along the side of the missionary camp. 

    [Direction]   [Path] 

FOLLOWER 10: uh-huh. 
GIVER 11: 'til you're about an inch ... above the bottom of the map. 

      [EndLocation] 

FOLLOWER 12: right. 
   (action: draw_a_segment) 

GIVER 13: then you need to go straight along for about 'til about ... you're about 
an inch and a half away from the edge of the map. 

FOLLOWER 14: the banana tree? 
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Form: segment description 

Start Location: the start 

Direction: left, down 

Distance: an inch 

Path: the side of the missionary camp 

End Location: an inch above the bottom  

of the map 

  

 

 

Form: Grounding 

LandmarkName: the start 

Location: (same on both maps) 

Form: Grounding 

LandmarkName: missionary camp 

Location: below the start (a) 

(b) 

(c) 
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There are other researchers who applied an alternate representation to the same 

HCRC Map Task corpus for dissimilar purposes. The dialog structure representation 

proposed by Carletta et al. (1997) describes the compositional structure of a dialog in the 

map reading domain with a three level hierarchical structure of transaction, 

conversational game and move. This dialog structure representation is based on the idea 

of dialog grammar which attempts to model regular patterns in a dialog. A detail 

discussion about a dialog grammar and dialog structure representations that are based on 

this idea is provided in Section 2.1.2.3. A transaction in Carletta et al.’s representation, 

which is a sub-dialog that accomplishes one major step in dialog participants’ plan for 

achieving a task, is quite similar to a sub-task in the form-based dialog structure 

representation. However, a conversational game and a move are not a decomposition of a 

task structure as a dialog segment that corresponds to a game or a move is smaller than a 

step in the task (a sub-set of a conversation that corresponds to one domain action). Both 

components focus more at the level of intention. A move captures a speaker’s intention 

while a game represents a sequence of intentions (or an initiation-response exchange). 

Carletta et al.’s dialog structure also does not capture the domain concepts that the 

participants have to communicate in order to achieve the task goal.  

3.5 UAV flight simulation domain 

Conversations in the UAV flight simulation domain are taken form the CERTT UAV 

corpus collected by Cognitive Engineering Research on Team Tasks (CERTT) 

Laboratory, New Mexico State University (Gorman et al., 2003). A conversation in this 

domain is an interaction among a pilot, a navigator, and a payload operator, tasked to fly 

a simulation of an Unmanned Air Vehicle (UAV) on a mission to get photographs of 

specified targets. The participants had to control the simulated airplane according to 

various restrictions that were imposed on a route. From the pilot point of view, the 

conversation in this domain can be considered as a command-and-control task. 

 Information transfer in a multi-party conversation is more complicated than when 

there are only two participants in a conversation. In this domain, each participant has 

different pieces of information that have to be put together in order to perform domain 

actions. For example, a payload operator has a list of targets while both a payload 

operator and a navigator know about speed and altitude restrictions. A pilot, on the other 

hand, does not have any of this information. Therefore, more collaboration, such as 

volunteering information, is necessary.  
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Figure 3.25: An example conversation (partial) in the UAV flight simulation domain 

PLO -> DEMPC  1: DEMPC, we have SSTE... 
DEMPC -> PLO  2: Please stand by, PLO. 
DEMPC -> all  3: AVO, I've just sent the route.  PLO, go ahead and start naming the 

targets. 
PLO -> DEMPC  4: Targets are SSTE, Farea, Harea, MSTE, RSTE. 
DEMPC -> PLO  5: Please repeat that again one more time.  Farea? 
PLO -> DEMPC  6: Um, it's SSTE, Farea, Harea, MSTE, RSTE, SEN1. 
DEMPC -> PLO  7: That's a roger. 
DEMPC -> AVO  8: AVO, go ahead and proceed to waypoint LVN. 
AVO -> DEMPC  9: We were about 2 miles within there already.  I changed course to 

Harea. 
DEMPC -> all  10: AVO, radius of Harea is five miles.  PLO, five miles. 
AVO -> DEMPC  11: Roger. 
AVO -> all  12: That is target area, correct? 
PLO -> AVO  13: Yes.  AVO, I need an altitude of greater than 3000. 
DEMPC -> AVO  14: AVO, this is DEMPC.  You have to maintain a speed above 50 

knots, and stay below 200 knots. 
AVO -> all  15: Roger.  Speed changing to 181  altitude climbing to 3300.  Currently 

71/4 miles out from Harea. 
AVO -> DEMPC  16: Is our next waypoint or target after Harea Farea? 
DEMPC -> AVO  17: Roger. 
AVO -> all  18: How close do we need to get to Farea? 
DEMPC -> AVO  19: Radius is five miles. 
AVO -> DEMPC  20: Roger. 
PLO -> all  21: We got a good photo for Harea. 
PLO -> AVO  22: Uh, AVO recommended altitude lower than 3000, or equal to 3000. 
AVO -> all  23: Changing altitude to 2700, speed 181  151/2 miles from Farea. 
DEMPC -> PLO  24: PLO, this is DEMPC.  I need a list again of those targets, another list 

please.  Thank you. 
PLO -> DEMPC  25: DEMPC, this is PLO.  I have SSTE, SEN1, and MSTE as well as 

RSTE. 
DEMPC -> PLO  26: Roger. 
AVO -> DEMPC  27: DEMPC, this is AVO.  When you get a chance, can you send me the 

next waypoint after Farea? 
DEMPC -> AVO  28: Roger, that's a go. 
AVO -> PLO  29: PLO, do I have any speed restrictions right now? 
PLO -> AVO  30: No, not at all. 
AVO -> all  31: Roger, increasing speed to 250. 
AVO -> PLO  32: PLO, is OAK a target? 
PLO -> AVO  33: Negative. 
AVO -> PLO  34: Roger. 
DEMPC -> AVO  35: AVO, this is DEMPC.  OAK is our exiting waypoint. 
AVO -> DEMPC  36: Exiting waypoint need to be within five miles, after that is LMR? 
DEMPC -> AVO  37: That is correct.  That is the target. 
AVO -> DEMPC  38: Roger. 
DEMPC -> AVO  39: AVO, this is DEMPC.  I wanted to say that's not a target.  I'm sorry. 
AVO -> DEMPC  40: LMR is not a target. 
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Since 1) the goal a dialog in this domain is achieved by performing domain actions 

(controlling a simulated airplane and taking photographs of specified targets), and 2) the 

dialog participants have to exchange different pieces of information that they have in 

order to perform these actions through dialog, the characteristics of a dialog in the UAV 

flight simulation domain match all of the assumptions made by the form-based dialog 

structure representation. Thus, a dialog in this domain could be modeled by the form-

based representation. Detailed analysis of the structure of a dialog in this domain is given 

below. 

A transcript of a conversation in the UAV flight simulation domain is shown in 

Figure 3.25. Since a conversation in this domain is quite long, only the first part of the 

conversation is presented. An utterance label indicates both the speaker and the 

addressees of the utterance. “PLO” represents a payload operator; “DEMPC” represents a 

navigator, and “AVO” represents a pilot. Since the interaction is among three 

participants, a speaker may address other two participants together in one utterance as 

indicated by “ALL”. The number that follows the addressees label is an utterance ID. The 

part of the conversation that is highlighted in blue (utterance 8-21) will be used as an 

example during dialog structure analysis. 

The goal of a conversation in this domain is to take photographs of all specified 

targets in a given area. There are dependencies among different parts of the conversation 

as all of the targets are on the same map; therefore, the entire conversation corresponds to 

only one task, take_photos rather than a set of tasks. In order to accomplish the goal, 

several photos have to be taken, one for each target. A take_a_photo sub-task 

corresponds to a subset of the conversation that contributes toward one take_a_photo 

action. The sub-task begins when a particular target is selected as a focused target and 

ends when a photograph of that target is taken. In order to take a photograph of a target, a 

plane has to be at a specific distance from the target (an essential radius). Both a Target 

(target name) and a Radius are concepts in a target form which associates with a 

take_a_photo action. Figure 3.26 shows the decomposition of a task into sub-tasks and 

their corresponding forms and actions. The first sub-task corresponds to utterance 8 – 21 

in Figure 3.25. Only the first part of the second sub-task is included in the example 

conversation while other sub-tasks are not presented. A detailed annotation of this 

conversation is given at the end of this section. 
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Figure 3.26: A task, sub-tasks and their corresponding forms and actions in the UAV 

flight simulation domain 

In order to take a photograph of a specific target, the participants have to “control a 

plane” toward the target and “define the type of a landmark” that may appear on a route. 

These two actions (control_a_plane and define_a_landmark) need to be achieved in 

order to perform a take_a_photo action. Therefore, subsets of a conversation that 

correspond to these actions are sub-subtasks under a take_a_photo sub-task. These sub-

tasks and actions are described in detail below. 

A pilot controls a plane by directing the plane toward a destination, and adjusting its 

speed and altitude according to the restrictions imposed on a route. A control_a_plane 

action involves three concepts that are airplane parameters: Speed, Altitude, and 

Destination. A control_a_plane sub-subtask is a subset of a conversation that discusses 

these parameters. One or more parameters may be discussed in one control_a_plane sub-

subtask. The action occurs when the pilot directs the plane toward a new destination (or is 

ordered to do so) and/or changes the speed or the altitude of the plane. This action 

changes the position and/or the condition of the plane which the participants may discuss 

in terms of the new Speed and Altitude, and a distance from the current destination. A 

Distance is a concept that describes the result of the control_a_plane action. The 

control_a_plane action may occur more than once in one take_a_photo sub-task if the 

airplane parameters have to be adjusted repeatedly with respected to the plane route. 
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Figure 3.27 shows two control_a_plane sub-subtasks that are embedded in the first 

take_a_photo sub-task in Figure 3.26 together with their corresponding forms and 

actions. The first control_a_plane sub-subtask corresponds to utterance 9 in Figure 3.25 

and discusses only one concept, Destination. The second control_a_plane sub-subtask 

corresponds to utterance 14 – 16 and discusses other two plane’s parameters: Altitude 

and Speed. 

All of the locations mentioned in a conversation are landmarks. There are two types 

of landmarks: a “target” or a “waypoint” (a point between major points on a route). The 

participants need to know the type of a landmark in order to plan the route appropriately. 

A define_a_landmark action occurs when the type of a particular landmark is discussed 

in the conversation. The form that associates with this action requires two slots, a 

LandmarkName and its Type. The result of the define_a_landmark action is the 

knowledge of the type of the landmark that can be used to plan the route. This action 

might be difficult to observe if no physical action, such as taking note on the landmark 

type, is performed. 

The part of the conversation that associates with a define_a_landmark action is 

considered a grounding sub-subtask because it creates mutual understanding among the 

participants about the type of a particular landmark. A grounding sub-subtask may occur 

more than once in one take_a_photo sub-task, or may not occur at all if the participants 

are familiar with all of the landmarks involve in that take_a_photo sub-task. The 

grounding sub-subtask is an example of an optional sub-task. A grounding sub- subtask 

and a define_a_landmark action in this domain are similar to a grounding sub- subtask 

and a define_a_landmark action in the map reading domain described in Section 3.4. 

The only difference is the concept that will be associated with a LandmarkName. The 

define_a_landmark action in the UAV flight simulation domain defines the Type of a 

landmark while the define_a_landmark action in the map reading domain defines the 

Location of a landmark. Figure 3.27 also shows a grounding sub-subtask that is 

embedded in the first take_a_photo sub-task in Figure 3.26 together with its 

corresponding form and action. This grounding sub-subtask corresponds to utterance 12 

-13 in Figure 3.25 

Unlike a define_a_landmark action which can be completed instantaneously, a 

control_a_plane action may take some time to finish since it might take several minutes 

before a plane reaches the current destination in the simulation. During that time the 

participants may occasionally discuss the progress of the plane (the result of the 

control_a_plane action) in terms of the Distance from the Destination, and the current 
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Speed and Altitude. The participants may also plan the next part of the route or discuss 

about a new target. When this occurs the current take_a_photo sub-task is interrupted by 

the new take_a_photo sub-task that corresponds to the new target, and is resumed when 

the plane approaches the current target and the participants discuss about its 

corresponding take_a_photo action. The issues related to the time and physical 

constraints that cause some actions to be delayed until these constraints are met which are 

specific to this domain is discussed in more detail in Section 3.8.2. Table 3.6 summarizes 

the structure of a dialog in the UAV flight simulation domain. 

 
 

Figure 3.27: A grounding sub-subtask and a control_a_plane sub-subtask in the first 

take_a_photo sub-task 

 

ID Name Associated action Related concepts 

Task 1 take_photos   

Sub-task 1.1 take_a_photo  take_a_photo  Target, Radius 

Sub-subtask 1.1.1 grounding define_a_landmark LandmarkName, Type 

Sub-subtask 1.1.2 control_a_plane control_a_plane Altitude, Speed, 

Destination 

Table 3.6: Task, sub-tasks and their corresponding actions and concepts in the UAV 

flight simulation domain 

Sub-task:  
take_a_photo  (1) 
 

Form: Control_a_plane 

Altitude:  greater than 3000 
Speed:  above 50 knots, 

below 200 knots 
Destination:  
 

: 

Form: Grounding 

LandmarkName: H-area 
Type: target 
 

: 

Action: control_a_plane 
 
Fly a plane at Altitude = 
“greater than 3000”, Speed 
= “above 50 knots, below 
200 knots” 
 

Action: define_a_landmark 
 
Define a landmark “H-area” 
to be a “target” 
 

Sub-subtask: 
grounding 

Sub-subtask: 
control-a-plan 

Form: Control_a_plane 

Altitude:  
Speed:  
Destination: H-area 
 

Action: control_a_plane 
 
Fly a plane “toward a 
Destination “H-area” 
 

Sub-subtask: 
control-a-plan 

: 
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Figure 3.28 illustrates a dialog structure annotation of a subset of a conversation in 

this domain. This subset of a conversation is the same as the one highlighted in blue 

(utterance 8-21) in Figure 3.25. For simplicity, the subset of the conversation that 

discusses the next target while the plane is still heading for the current target is excluded 

from the analysis. Since the boundaries of a task go beyond the sub-set of the 

conversation presented in Figure 3.28 (the entire conversation corresponds to a 

take_photos task) only sub-task and sub-subtask boundaries are illustrated. The 

following notions are used to illustrate the structure of a dialog. Theses notions are 

similar to the ones used in other dialog structure annotation examples. 

● DEMPC is a navigator, AVO is a pilot and PLO is a payload operator.  

● The curly bracket on the right shows the boundaries of a sub-task  

● An instance of a concept is underlined and the concept name is enclosed in a 

square bracket underneath it.  

● The same word “H-area” is a concept member of 3 different concepts: a 

Target, a LandmarkName, and a Destination depended on which sub-task 

it is a part of and its function in that sub-task. 

● A Radius, a Distance, and a Speed are structured concepts which compose 

of two concepts: an Amount and a Unit. The name of the structured concept 

is placed on the left-handed side next to its component names. 

● (action: …) indicates approximately when an action occurs in a conversation.  

● “Roger” means “yes” or “okay”. 

Figure 3.29 shows the forms that are associated with all five actions in Figure 3.28; a 

take_a_photo action (a), a define_a_landmark action (b) and three control_a_plane 

actions (c - e). For simplicity, the labels of the components in structured concepts are 

excluded. The part of the conversation that plans the new target before a take_a_photo 

action occurs is also omitted.  
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Figure 3.28: An example of dialog structure annotation in the UAV flight simulation 

domain 

 

 … 

DEMPC -> AVO  8: AVO, go ahead and proceed to waypoint LVN. 

                                 [Destination] 

  (action: control_a_plane) 

AVO -> DEMPC  9: We were about  2   miles within there already.   

  Distance:[[Amount][Unit]] [Destination (LVN) ] 

  I changed course to H-area. 

     [Destination] 

  (action: control_a_plane) 

DEMPC to all 10 :  AVO, radius  of  H-area    is    five   miles.   

            [Target]  Radius:[[Amount][Unit]] 

AVO to DEMPC  11: Roger. 

AVO to all 12: H-area is target area, correct? 

                        [LandmarkName]  [Type] 

PLO to AVO 13:  Yes.  (action: define_a_landmark) 

PLO to AVO  14: AVO, I need an altitude of greater than 3000.  

          [Altitude] 

DEMPC to AVO  15: AVO, this is DEMPC.  You have to maintain a speed 

above 50  knots, and stay below 200  knots. 

                               Speed:[[Amount][Unit]]    Speed:[[Amount][Unit]] 

AVO to all  16: Roger.  (action: control_a_plane) 

  Speed changing to 181 altitude climbing to 3300. 

     Speed:[[Amount] (new)]  [Altitude (new)] 

  Currently    7 1/4   miles  out from H-area. 

                           Distance:[[Amount][Unit]]      [Destination] 

 … 

PLO to all  21: We got a good photo for H-area. (action: take_a_photo) 

           [Target] 
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Figure 3.29: The corresponding form of each sub-task in the UAV flight simulation 

domain annotated in Figure 3.28  

3.6 Meeting domain 

Conversations in this domain are taken from the CMU CALO
1
 Meeting corpus which 

is the same set of data as the Y2 meeting scenario data described in (Banerjee and 

Rudnicky, 2006). This corpus contains a collection of multi-party conversations recorded 

from the meetings in equipment and personnel resource management scenarios. The goal 

of each scenario is to purchase computers and allocate office spaces to newly hired 

employees. Each scenario is a series of five meetings; each meeting was being held one 

week apart. The discussions in subsequence meetings were built up on the decision made 

in the previous meetings and the progress that was occurred during the one week period. 

There are three participants in each meeting; each of them takes a role as a manager, a 

hardware acquisition expert, or a building facility expert. The same set of participants 

took part in all of the meetings in the sequence. At the end of each meeting, the 

participants produce a Gantt chart that summarizes all of the decisions made during the 

meeting. The corpus provides rich information about each meeting including recorded 

speech from a close-talking microphone and the corresponding transcription, video clips 

from a long shot video camera and a CAMEO (Camera Assisted Meeting Event 

Observer), which captures a panoramic view of the meeting, the meeting agenda and 

notes that all participants took during the meeting. The agenda provides a list of goals 

                                                 
1
 The Cognitive Assistant that Learns and Organizes project http://www.ai.sri.com/project/CALO 

Form: Target  

Target: H-area 

Radius: five miles 

Form: Grounding  

LandmarkName: H-area 

Type: target 

(a) (b) (c) 

Form: Control a Plane  

Altitude: greater than 3000 
Speed:   above 50 knots,  
 below 200 knots 

Destination:  

Form: Control a Plane  

Altitude:  
Speed:    

Destination: H-area 

Form: Control a Plane  

Altitude:  
Speed:    

Destination: LVN 

(d) (e) 
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that the participants attempted to achieve form the meeting; however, the goals could be 

adjusted due to dynamic nature of a meeting. The data collection process is described in 

(Banerjee et al., 2004).  

Figure 3.30 shows a transcript of a recorded conversation in the meeting domain. 

Since a conversation in this domain is quite long, only the first part of the conversation is 

presented. The nature of this domain is very spontaneous; meeting participants can speak 

at any time during collaborative discussions.  Therefore, a conversation usually contains 

many interruptions, overlapping speech, and self corrections which cause one speaker 

turn to be fragmented into several utterances. The marker on the left-handed side 

indicates the speaker of each utterance (Hardware Expert is a hardware acquisition 

expert; Building Expert is a building facility expert). The number that follows the speaker 

label is an utterance ID. The transcript also includes additional markups for noises and 

fillers (e.g. /noise/, /uh/, and #begin_background#) made by the participants or occurred 

in the environment. A dialog structure annotation of the conversation in Figure 3.30 is 

given at the end of this section. For the purpose of illustration, some examples of dialog 

structure analysis discussed in this section are taken from other sources. 

Purchasing a computer can be viewed as an information-accessing task where a 

hardware expert searches for computers that match specified criteria from available 

resources, then presents the result of the search to meeting participants to decide which 

one they would like to purchase. Similarly, to allocate space to a newly hired employee, a 

building facility expert searches for available rooms that match specified criteria, then 

informs the result to the group to decide on the preferred location. Since 1) the 

conversation goal is achieved by performing domain actions (searching for computers 

and spaces, and making decisions), and 2) the information that is required to do the 

search (e.g. computer specification) and to make a decision is discussed through a 

meeting conversation, the parts of the conversation that discuss the specifications of the 

desired computer and space, and the parts of the conversations that make the 

corresponding decisions can be represented by the form-based dialog structure 

representation similar to the cases of other information-accessing tasks. 
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Figure 3.30: An example conversation in the meeting domain 

Manager 1: we've got a new student coming his name's joe_browning 
Manager 2: /uh/ i've got funding for him and i need to get him a computer and some 

office space 
Building Expert 3: /uh/ huh 
Manager 4: /uh/ he'll be here on the twenty_first of december 
Manager 5: so let's figure out space first where's he going 
Building Expert 6: well we should get something 
Building Expert 7: /uh/ one space freed on the fourteenth of december 
Manager 8: okay 
Building Expert 9: /uh/ by paul_smith so i guess if one week is enough for you that should do it 
Manager 10: i think that's dependent on a lot of other things 
Manager 11: you're the expert on [h(how)] on getting people in 
Manager 12: how do we do it 
Building Expert 13: well if he just need to i mean the the desk is there if you just need to put the 

computer if you have the computer one week 
Building Expert 14: in advance then 
Manager 15: okay 
Building Expert 16: i mean one week is more than enough to set up the desk so 
Manager 17: okay so if that's we'll plan then 
Manager 18: let's get up and write this up 
Manager 19: really need to get the facilities people to get us working markers 
Manager 20: otherwise it gets pretty hard to do this 
Building Expert 21: yeah 
Manager 22: alright so what's today the twenty_third 
Building Expert 23: yeah twenty_third of november 
Manager 24: alright 
Manager 25: alright so you said on the twenty_first or rather i said on the twenty_first 

joe's going to arrive 
Building Expert 26: yeah 
Manager 27: okay and you said on the fourteenth you'd have space 
Building Expert 28: yeah 
Manager 29: okay 
Manager 30: alright so then we need a computer by then 
Manager 31: can we do it 
Hardware Expert 32: okay so you need the computer before the fourteenth right 
Manager 33: yes 
Hardware Expert 34: so that means that we have like about three weeks from now to get 
Hardware Expert 35: so you have like any idea what kind of computer do you like to get 
Manager 36: well he's going to be working on speech so it needs to be able to do 
Manager 37: audio processing for the most part 
Hardware Expert 38: yeah and you are looking for like the desktop computer and like what type of 

operating system do you want him to select there 
Manager 39: /uh/ i think for right now we'll work with a desktop /uh/ decent amount of disk 

space so that he can 
Hardware Expert 40: /uh/ huh 
Manager 41: you know there's plenty of space to store audio files 
   … 

  
Manager 44: /um/ obviously it'll have to have working audio out and in 
Manager 45: beyond that i'm not really sure what it'll what it'll need 
Hardware Expert 46: yeah 
Hardware Expert 47: so you looking at like just a what machine or the workstation or 
Manager 48: and 
Manager 49: pretty much a workstation probably windows maybe linux also 
Hardware Expert 50: /hm/ let's see if we have only three weeks from now and wait because 

now it's like 
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The goal of purchasing computers and allocating office spaces to newly hired 

employees discussed above is specific to this meeting scenario. A meeting also has 

another goal, to delegate a specific work to an appropriate person. This goal is common 

to a meeting conversation in general. To achieve this goal, a manager assigns a specific 

work to a person who has the matched expertise. In some cases, a meeting participant 

may volunteer to do the work. In order to do a work assignment, the description of the 

work has to be clearly communicated in a conversation along with possible constraints 

such as the due date. Since the part of the conversation that discusses the work 

assignment has the characteristics that match all of the assumptions made by the form-

based dialog structure representation, this part of conversation can also be modeled by the 

form-based representation. 

Some discussions in a meeting may not contribute directly toward the conversation 

goals that have been discussed previously.  For example, a subset of a conversation 

highlighted in grey (utterance 9-26) in Figure 3.30, the first part (utterance 9 – 17) 

contains an additional discussion about the arrangement for a tentatively available room; 

the second part (utterance 18 – 21) is out of scope of this meeting; the last part (utterance 

22 – 26) contains a discussion about the time that a newly hired person would arrive. The 

discussions in the first part and the last part, while related to the topic of the meeting, do 

not contribute directly toward the conversation goals. Thus, they are not modeled by the 

form-based dialog structure representation. This type of sub-dialog is further discussed in 

Section 3.8.3. Segments of a conversation that do not contribute directly toward the 

conversation goals are not included in dialog structure analysis described below. 

Since each conversation in this domain is a meeting in a sequence of related 

meetings, discourse structure analysis is done based on the entire sequence rather than on 

each individual meeting. The ultimate goal of each meeting sequence is to purchase 

computers and allocate office spaces to newly hired employees. Since all of the meetings 

in the sequence are based on the same scenario, the entire sequence corresponds to a 

single task manage_resource. In order to achieve the goal, at least two actions are 

required purchase_computer and reserve_space. These actions may occur more than 

once in the sequence if there are several new employees. The manage_resource task is 

decomposed into two types of sub-tasks: get_computer and get_space. Even though 

both sub-tasks seem to have a clear goal (i.e. to purchase a computer and to find an office 

space respectively), they are regarded as sub-tasks instead of tasks because they belong to 

the same scenario; the decision made in one sub-task may affect the decision made in 

another sub-task. For instance, a budget constraint may affect the choices of both a 
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computer and an office space. Figure 3.31 shows a decomposition of a manage_resource 

task into two sub-tasks together with the corresponding forms and actions of both sub-

tasks. The detail of each form is omitted and will be discussed later on. 

 

Figure 3.31: A task, sub-tasks and their corresponding forms and actions in the meeting 

domain 

In order to purchase a computer, the meeting participants have to first discuss the 

specification of the computer that would be suitable for a new employee then check for 

the price and availability. Based on the information obtained the group decides which 

computer they will purchase. The computer specification which includes, for example, a 

Processor, an operating system (OS), and a DiskSpace is a set of concepts in a computer 

query form. A hardware acquisition expert uses this information to perform a 

search_computer action which searches for the computer(s) that matches the criteria 

from various sources such as internet and a computer store. The result of this action is the 

information of the computer(s) that has the required specification along with the Price, 

Store and Availability. This information is regarded as a structured concept, 

ComputerInfo, which contains information about a particular computer. A 

search_computer_info sub-task is the discourse segment that contributes toward the 

execution of the search_computer action and discusses its result. The illustration of a 

search_computer_info sub-task, its associated form and action is given in Figure 3.32. 

 

Dialog A 
 
 
Goal: 
purchase 
computers 
and allocate 
office space 

Form: computer order Sub-task:  
get_computer 
 
 
 

: 
  Action:  purchase_ 

computer  
 
 

Sub-task:  
get_space 
 
 
 

: 
Form: space reservation   Action:  reserve_space  
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Figure 3.32: A computer query form and its corresponding action and outcome 

After the hardware acquisition expert informs all the meeting participants the possible 

choices of computers that have the required specification, the group selects the preferred 

one from the list which makes its corresponding ComputerInfo get filled into a 

computer order form as illustrated in Figure 3.33. The computer order form also contains 

other concepts that are necessary for purchasing a computer such as an Owner and a 

PaymentMethod. 
 

Figure 3.33: A get_computer sub-task and the corresponding form and action 

The process for acquiring an office space is quite similar to the process for purchasing 

a computer. The meeting participants first discuss the criteria of the desired space which 

include a Building and a RoomLoc. A building facility expert then uses these criteria, 

which are concepts in a space query form, to perform a search_space action which 

Form: computer order 

ComputerInfo: 
 Type: Desktop 
 Processor: Pentium 4, 3 GHz 
 OS:  
 DiskSpace: 100 GB 
 RAM: 2 GB 
 Brand: Dell 
 Other: audio processing 
 Store: dell.com 
 Price: $1000 

  Availability: next week 
Quantity: 1 
Owner: John Smith 
PaymentMethod: credit card 
 

 
 
 
Sub-task:  
get_computer 
 
 
 

: 

Action:  purchase_computer  
 
Purchase one Pentium 4, 3 
GHz Dell desktop with 100 
GB hard disk, 2 GB RAM 
and audio processing from 
dell.com 

Form: computer query 

Type: desktop 
Processor: Pentium 4 
OS:  
DiskSpace: 100 GB 
RAM: at least 1 GB 
Brand:

 

Other: audio processing 
 

 

: 

Action:  search_ 
computer 

 
Search for a computer 
that matches the 
criteria in a computer 
query form  
 

ComputerInfo: 
Type: desktop 
Processor: Pentium4, 3 

GHz 
OS:  
DiskSpace: 100 GB 
RAM: 2 GB 
Brand: Dell 
Other: audio processing 
Store: dell.com 
Price: $1000 
Availability: next week 

 

 
 
Sub-subtask:  
search_ 
computer_info 
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searches for an office space that matches the criteria. The result of this action is the 

information of the available space(s) along with its Cost, Capacity and Availability 

time. The result is represented in terms of a structured concept, SpaceInfo, which 

contains information about one particular office space. A search_space_info sub-task is 

the discourse segment that contributes toward the execution of the search_space action 

and discusses its result. After the building facility expert informs the participants all of 

the available spaces, the group then decides on the preferred location which makes its 

corresponding SpaceInfo get filled into a room reservation form. This form also contains 

other concepts that are necessary for reserving an office space such as an Owner and a 

MoveInDate. 

All of the task and sub-tasks mentioned earlier corresponds to the ultimate goal and 

sub-goals of the entire meeting sequence. Since each meeting is a collaborative decision 

making process, it also produces a set of group decisions. One common form of the 

decisions is a work assignment, a decision to delegate a specific work to an appropriate 

person. This type of group decision is also known as an action item (or a to-do item) 

(Purver et al., 2006). Segments of a meeting conversation that discuss action items are 

usually observable. In this meeting domain, the participants have to produce a Gantt chart 

that summarizes the action items discussed during each meeting. Information in each 

action item includes a Description of the work, a Person in charge, a StartDate and an 

EndDate. These pieces of information are concepts in an action item form as illustrated 

in Figure 3.34.  A segment of a conversation that discusses an action item is considered a 

create_action_item sub-task and the corresponding action is a commit_on_action_item 

action which occurs when the person that is responsible for the action item commits to 

the work either by accepting the assignment or volunteering to take charge. The 

create_action_item sub-task shown in Figure 3.34 corresponds to utterance 27 – 29 in 

Figure 3.30. The slot values that are marked in italic are implicit concepts, which have to 

be inferred from dialog context. Implicit concepts are discussed in more detail below. 

 

Figure 3.34: A create_action_item sub-task and the corresponding form and action 

Form: Action Item 

Description: have space 
Person: you (building facility expert) 
StartDate: today 
EndDate: the fourteenth 
 

 
 
Sub-task:  
create_action
_item 
 
 
 

: 

Action:  commit_on_ 
action_item 

 
“building facility expert” 
commits to “have space” 
by “the fourteenth” 
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Table 3.7 summarizes the structure of a dialog in the meeting domain. While the task 

and most of the sub-tasks are specific to this equipment and personnel resource 

management scenario, a create_action_item sub-task is quite general in many types of 

meetings. 

 

ID Name Associated action Related concepts 

Task 1 manage_resource   

Sub-task 1.1 get_computer purchase_computer  ComputerInfo, Quantity, 

Owner, PaymentMethod 

Sub- subtask 1.1.1 search_computer_inf

o 

search_computer Type, Processor, 

DiskSpace, RAM, etc. 

Sub-task 1.2 get_space reserve_space SpaceInfo, Owner, 

MoveInDate 

Sub- subtask 1.2.1 search_space_info search_space Building, RoomLoc 

Sub-task 1.3 create_action_item commit_on_action_item Description, Person, 

StartDate, EndDate 

Table 3.7: Task, sub-tasks and their corresponding actions and concepts in the meeting 

domain 

Figure 3.35 illustrates a dialog structure annotation of the first meeting in the 

sequence of five meetings. Only sub-task and sub-subtask boundaries are illustrated as a 

manage_resource task corresponds to the entire meeting sequence. For illustration 

purpose, some parts of the conversation are removed from the annotation. The following 

notions are used to illustrate the structure of a dialog. Theses notions are similar to the 

ones used in other dialog structure annotation examples. 

● Hardware Expert is a hardware acquisition expert and Building Expert is a 

building facility expert 

● The bracket on the right shows the boundaries of a sub-tasks or a sub-subtask.  

● An instance of a concept is underlined and the concept name is enclosed in a 

square bracket underneath it. For a structured concept, its name is placed on 

the left-handed side next to its component names. 

●  (action: …) indicates approximately when an action occurs in a conversation.  

One characteristic of the actions in the meeting domain which is different from those 

in other domains discussed earlier is that some actions are done outside the meeting. In 

the example conversation, a hardware acquisition expert only provided a tentative and 

partial result of a search_computer action using partial information that he/she had at 

hand. The actual search action was done after the meeting was over and the result of the 
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action, the information of the computer(s) that matches the criteria, was reported in the 

next meeting (not show in the example). A computer query form, such as the one in 

Figure 3.36 (a), got filled during the first meeting when all of the participants discussed 

and agreed on the computer specification. However, since the corresponding 

search_computer action was executed later by the hardware acquisition expert, it could 

not be observed during the meeting.  ComputerInfos which are the results of the action 

were reported in the next meeting and one of them was selected and filled into a 

computer order form. The actual a search_space action also occurred outside the 

meeting. A building facility expert only provided a tentative result which he/she had to 

confirm after the meeting was done. A search_computer_info sub-task, a get_computer 

sub-task, a search_space_info, sub-task and a get_space sub-task may span across 

multiple meetings. The issues related to fragmented sub-tasks are discussed in more 

detail in Section 3.8.2. 

Some concepts in an action item form may not be observed directly from a 

conversation and have to be inferred from the context. The participants usually discuss an 

EndDate explicitly but not a StartDate. The value of a StartDate usually be “today” 

when it is not mentioned explicitly which is the cases for all action times in Figure 3.36. 

The StartDate of one action item may also depend on the EndDate of another action 

items. For example, an action item “set up a computer” can only start after an action item 

“get a computer” is finished. Sometimes the participants may not explicitly state the 

StartDate of the succeeding action item as it can be inferred from the EndDate of the 

preceding action item. For an EndDate, if its value is omitted from the discussion, the 

default value should be “next meeting” as shown in Figure 3.36 (g). 

For a Person in charge, it is usually referred to by a pronoun such as “you” (when the 

person is assigned the work) or “me” (when the person volunteers to do the work) as 

shown in Figure 3.36 (e) and Figure 3.36 (g) respectively. When the value of a Person is 

omitted entirely, it could be inferred from the context using a role detection algorithm 

which predicts the participant whose expertise matches the description of the action item 

as the person in charge (Banerjee and Rudnicky, 2006). The implicit concepts are marked 

in italic in Figure 3.36. Implication of implicit concepts on dialog structure learning is 

discussed in Section 3.8.1. 
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Figure 3.35: An example of dialog structure annotation in the meeting domain 

Manager 1: we've got a new student coming his name's joe browning 

Manager 2: i've got funding for him and i need to get him a computer and some 
office space 

SPACE 3: huh 

Manager 4: he'll be here on the twenty first of december 

Manager 5: so let's figure out space first where's he going 

SPACE 6: well we should get something  

SPACE 7: one space freed on the fourteenth of december 

  SpaceInfo:[Capacity]  SpaceInfo: [Availability] 
  … 

Manager 27: okay and you said on the fourteenth you'd have space 

     [Person]      [EndDate]         [Description] 

SPACE 28: yeah (action: commit_on_action_item)  

Manager 29: okay 

Manager 30: alright so then we need a computer by then 

Manager 31: can we do it 

Hardware Expert 32: okay so you need the computer before the fourteenth right 

      [Description]  [EndDate]         

Manager 33: yes 

Hardware Expert 34: so that means that we have like about three weeks from now to get 

  (action: commit_on_action_item) 

Hardware Expert 35: so you have like any idea what kind of computer do you like to get 

Manager 36: well he's going to be working on speech so it needs to be able to do 

Manager 37: audio processing for the most part 

  [OtherSpec] 

Hardware Expert 38: yeah and you are looking for like the desktop computer and like  

                      [Type] 

  what type of operating system do you want him to select there 

Manager 39: i think for right now we'll work with a desktop decent amount of  

         [Type]    [DiskSpace] 
  disk space so that he can 

Hardware Expert 40: huh 

Manager 41: you know there's plenty of space to store audio files 

Hardware Expert 42: huh 

Manager 43: obviously it'll have to have working audio out and in 

                    [OtherSpec] 

Manager 44: beyond that i'm not really sure what it'll what it'll need 

Hardware Expert 45: yeah 

Hardware Expert 46: so you looking at like just a regular machine or the workstation or 

                   [Type]       [Type] 
Manager 47: and 

 

S
u

b
-ta

s
k

: g
e

t_
s

p
a

c
e
 

S
u

b
-s

u
b

ta
s
k

: 

s
e
a

rc
h

_
s
p

a
c
e
_

in
fo

 

 

Sub-task: 

create_action_item 

S
u

b
-ta

s
k

: 

c
re

a
te

_
a
c

tio
n

_
ite

m
 

 

S
u

b
-ta

s
k

: g
e
t_

c
o

m
p

u
te

r 

S
u

b
-ta

s
k
: s

e
a

rc
h

_
c
o

m
p

u
te

r_
in

fo
 



Chapter 3: Form-based Dialog Structure Representation 

 

108 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.35: An example of dialog structure annotation in the meeting domain (cont.) 

Manager 48: pretty much a workstation probably windows maybe linux also 

             [Type]       [OS]               [OS] 
  … 
Hardware Expert 66: yeah let let me check on a couple option that we have like  

Hardware Expert 67: either like buying it from computer store which is i i'm pretty sure  

             CompInfo:[Store]  
  that we can get it 

Hardware Expert 68: like within a week but that might be a little expensive because like 

  CompInfo:[Availability]            CompInfo:[Price] 

Manager 69: okay 

Hardware Expert 70: and we might have to go for either like ibm or dell is that okay with you 

                 CompInfo:[Brand]   CompInfo: [Brand] 

Manager 71: yeah as long as it as long as it's capable of doing the speech work he  

  needs that's that's all that matters to me 

Hardware Expert 72: and 

Hardware Expert 73: okay so that but i just like to be concerned about the the budget  

  let me check with them and get 

               [Person] [Description]  

Hardware Expert 74: back to you on that otherwise we i'm i might check with the 

        [Description]  

Hardware Expert 75: their my manager to see like how fast that we can do with like the normal  

      [Description]  

  ordering process (action: commit_on_action_item) 

Manager 76: okay 

Hardware Expert 77: with that we might be able to get something that is like cheaper and if it's 

Hardware Expert 78: we'll be in time for a two week it might be better to go for that to save your 
budget 

Manager 79: okay 

Manager 80: alright then 

  … 
SPACE 131: you don't have any constraints on where you want him put right 

Manager 132: preferably as close to me as possible in wean  

                [RoomLoc]         [Building] 
SPACE 133: okay  

SPACE 134: right so so yeah the one i was thinking of is is in wean  

             SpaceInfo:[Building] 
  fifty fifty three oh three so 

  SpaceInfo:[RoomNo] 

Manager 135: okay good good good which floor 

SPACE 136: five fifths 

Manager 137: five okay yeah that should be okay 
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Figure 3.36: All of the forms that correspond to the dialog structure annotation in the 

meeting domain presented in Figure 3.35 

Form: computer query 

Type: desktop, workstation 
Processor:  
OS: windows, linux 
DiskSpace: decent amount 
RAM:  
Brand:

 

Other: audio processing, working audio 
out and in 

 
 

 

(c) (d) 

Form: space query 

Building: wean 

RoomLoc: as close to me as possible 

(a) (b) 

SpaceInfo: 
 Building: wean 
 RoomNo: fifty three oh three 
 Capacity: one 
 Cost:  

  Availability: the fourteenth of december 

 

ComputerInfo: 
Type:  
Processor:  
OS:  
DiskSpace:  
RAM:  
Brand: ibm, dell 
Other:  
Store: computer store 
Price: a little expensive 
Availability: within a week 

 

Form: Action Item 

Description: have space 
Person: you (building facility expert) 
StartDate: today 
EndDate: the fourteenth 
 

Form: Action Item 

Description: need the computer 
Person: hardware acquisition expert 
StartDate: today 
EndDate: before the fourteenth 
 

Form: Action Item 

Description: check with them (computer store), check with my manager to see how fast that we 
can do with the normal ordering process 

Person: me (hardware acquisition expert) 
StartDate: today 
EndDate: next meeting 
 

(e) (f) 

(g) 
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3.7 Tutoring domain 

Conversations in this domain are taken from the WHY Human Tutoring corpus (Rosé 

et al., 2003), a collection of human-human typed dialogs in a physics tutoring domain. 

Each dialog is an interaction between a tutor and a student during an essay writing 

process in response to qualitative physics questions. For each problem, the student first 

types a short essay to answer the question. A good essay should cover all expected 

propositions and does not contain any misconception. Based on the analysis of the initial 

essay, the tutor then engages the student in a tutoring dialog to address misconceptions 

and help the student learns the correct physics concepts. At the end of the conversation, 

the tutor asks the student to revise the essay. The rewriting process iterates until the tutor 

satisfies with the essay and then presents the student with a correct essay. Figure 3.37 

presents a typed conversation captured from a tutoring session. Since a tutoring dialog for 

each problem is quite long, only the first part is presented. A typed dialog may include 

some typos that both participants introduced. Figure 3.37 also shows a question, a 

student’s initial essay before a tutoring conversation starts and a student’s revised essay 

at the end of the conversation.  

The ultimate goal of a tutoring session is to help a student learn physics concepts 

through qualitative explanations. However, only an interactive part (a tutoring dialog) is 

focused in this analysis. This part is highlighted in blue in Figure 3.37 (sentence 1 – 46). 

The goal of the tutoring dialog is to help the student improve the quality of an initial 

essay. However, a tutor cannot simply give away a correct answer but rather helps the 

student constructs the required knowledge by himself through a knowledge formation 

process. In this process, the tutor asks the student a series of questions that helps the 

student learn a specific physics concept such as objects’ acceleration or forces acting on 

objects. If the student gives an incorrect answer to one of the questions, another 

knowledge formation process will be evoked to help the student develop the underlying 

physics concept required to answer that question. 

In each tutoring dialog, a tutor takes initiative as he/she guides a student through a 

series of questions that helps the student construct necessary physics knowledge. In order 

to do so, a list of questions and a correct answer for each question must be specified. This 

domain information is specific to each physics concept. After analyzing tutoring dialogs 

in this domain, I found that the proposed form-based dialog structure representation may 

not be suitable for representing the domain information in the tutoring domain because of 

the following reasons. 
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Figure 3.37: An example dialog (partial) in the tutoring domain 

 

Problem 38.  If a lightweight car and a massive truck have a head-on collision, upon which 
vehicle is the impact force greater? Which vehicle undergoes the greater 
change in its motion? Defend your answers. 

 

Essay:   The lightweight vehicle wll undergo the greater change in its motion because 
the massive truck has more power and more weight than the lightweight 
vehicle.  The lightweight vehicle might flip over and it would get more 
damaged the the truck. 

 

Tutor  1: Let us think systematically.Consider any one of the vehicles, what factor 
determines the change in its motion? 

Student  2: velocity 

Tutor  3: Velocity describes the motion. What will describe change in motion 

Student  4: the weight, i dont know 

Tutor  5: What term relates to  change in velocity? 

Student  6: acceleration 

Tutor  7: Right. What determines the acceleration of an object? 

Student  8: the speed 

Tutor  9: Speed is magnitude of velocity. What is it that causes acceleration? 

Student  10: the force on gravity, im not sure 

Tutor  11: Yes, force. The force could be due to earth's gravity or due to something else. 
For example, if an object is sitting on the table(,i.e. it has zero velocity) you 
want to change its velocity. Tha tis you want it to move. What would you do? 

Student  12: I would push the object. so basically what your trying to say is that in this 
problem we are not sure what kind of force they have so we cant determine 
which vehicle will have greater change. 

Tutor  13: No. I am not saying that. I am trying to show that a force is necessary to 
cause an acceleration. Nature of force does not matter. In this case the car 
and the truck collide and each exerts the force of impact on the other. What is 
the relation between the force experienced by each? 

Student  14: they are equal 

Tutor  15: Yes, equal in magnitude. How about the dircetion? 

  … 
 

Tutor 46:  Right but some what indeirect. Newton's law uses mass not weight so it 
should be made clear that less weight means less mass. Secondly, the law 
gives you acceleration, you should state that larger acceleration means 
greater change in motion. it is better to be explicit about statements. Can yoiu 
revise the essay now. 

 

Essay:   According to Newton's third law of motion, the two objects interacting to exert 
a force on each other and the force on each is equal in magnitude and 
opposite in direction. To determine which vehicle has the greater change in 
motion during the impact, Newton's second law covers that and it states that 
an object mass times acceleration is equal to the net force acting on it.  Now, 
less weight means less mass and the larger acceleration means greate 
change in motion so the lightweight vehilcle will undergo the greater change 
in its motion due to all of theses arguments. 

 

Tutor 47:  Ok. Below is the ideal essay. Indicate when you have read it. 
  … 
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1. The form-based dialog structure representation does not capture a relation 

between objects. 

Concepts in the form-based representation are originally designed to 

capture domain entities, as such location (CityName), organization 

(RentalCompany) and dates (StartDate), rather than relations between 

entities. However, in the tutoring domain, relations between entities are also 

essential for determining the correctness of each student answer. For 

example, in sentence 14, “equal” is a relation between the force experienced 

by the car and the force experienced by  the truck and was inquired by the 

tutor in the previous sentence. 

2. The form-based dialog structure representation models types of information 

rather than specific values. 

As described in Section 3.1, each form-based dialog structure component 

has two aspects: type and instance. A type is an abstraction of similar 

information items (for example, CityName) while an instance is a specific 

value of an information item (for example, “pittsburgh”). The form-based 

dialog structure representation models pieces of domain information by their 

types rather than instances. A slot in a form corresponds to a concept type; 

therefore, it represents any instance of that concept not just one specific 

instance. For example, a slot CityName represents any city name not only 

one specific city name “pittsburgh”. However, in the tutoring domain, some 

domain entities and relations do not require the types. For example, physics 

terms such as “velocity” and “force” must be represented by the terms 

themselves. There is no notion of type abstraction for such terms. Moreover, 

for each question, certain values of domain entities and relations must be 

specified in the answer to be considered as correct. Hence, the abstract 

representations of forms and slots may not be suitable for representing 

domain information in this domain. 

3. The characteristic of a tutoring dialog does not match the assumption made by 

the form-based dialog structure representation. 

The form-based dialog structure representation is developed based on the 

assumption that a conversation goal is achieved through the execution of 

domain actions and dialog participants gather pieces of information required 

to perform these actions through dialog. However, in a tutoring dialog, the 
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conversation goal, which is to help a student improve the quality of an initial 

essay, is achieved through a knowledge formation process rather than through 

the execution of particular domain actions. Even though, a tutor asks the 

student a series of questions in the knowledge formation process, both the 

student and the tutor do not gather pieces of information to perform any 

domain action through these questions. Each question helps the student 

formulate the underlying physics concept while helps the tutor discover gaps 

in the student’s knowledge. By answering the questions, the student gradually 

learns the target physics concept as the dialog progresses. 

Furthermore, a tutoring dialog is quite complex since the structure of a 

dialog can change dynamically depended on the student’s answers. For 

example, the tutor may change the teaching strategy if the student seems to 

have a lot of problem understanding the target physics concept. The target 

concept may also need to be changed to address a more crucial 

misconception. The form-based dialog structure representation, which models 

a dialog with a rather simple representation, is not suitable for modeling a 

complex dialog that has a dynamic structure as discussed at the beginning of 

this chapter. 

To resolve the first problem, the form-based representation also needs to model 

relations between domain entities. Even though a concept may be extended to represent a 

relation, a representation that is designed specifically for describing complex relations 

between objects should be more effective. Rosé and Hall (2004) used a predicate 

language representation to describe complex properties of objects and their relationships 

in the same physics tutoring domain. The predicate language representation also 

facilitates deep semantic analysis of student utterances which is essential for determining 

the correctness of student answers and providing appropriate feedback. For the second 

problem, a constant concept can be added to the form-based dialog structure to represent 

a domain entity that does not require type abstraction.  For example, physics terms such 

as “force” can be modeled as a constant concept Force. Solving the third problem 

requires modification to the assumption made by the form-based dialog structure 

representation. 

Since extensive modification is required in order to represent a tutoring dialog with 

the form-based dialog structure representation, we can conclude that the form-based 

dialog structure representation is not suitable for representing domain information 

required to build a dialog system in the tutoring domain. 
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3.8 Difficulties in applying the form-based dialog structure 

representation 

It has been shown in the previous sections that the proposed form-based dialog 

structure representation can be used to model domain-specific information in various 

types of task-oriented domains except for the tutoring domain as discussed in Section 3.7. 

However, among the five domains that it can be applied, air travel planning (information-

accessing), bus schedule inquiry (information-accessing), map reading (problem-solving), 

UAV flight simulation (command-and-control), and meeting, there are some cases that 

are quite difficult to model with the proposed form-based representation. These 

complicated cases are implicit concept values, fragmented sub-tasks, and non-task dialog 

segments. Detailed discussions of these cases are provided in Section 3.8.1 - 3.8.3 

respectively. Section 3.8.4 discusses potential difficulties that one might encounter when 

applying the form-based dialog structure representation to other task-oriented domains 

besides the ones discussed in this chapter. 

3.8.1 Implicit concept values 

In some dialogs, dialog participants may not express the values of some concepts 

explicitly. In some cases, indirect expressions are used while in other cases the values are 

omitted entirely. The former are considered indirect concepts while the latter are 

considered omitted concepts. The following table shows examples of indirect concept 

values from various task-oriented domains.  

 

Indirect concept value Concept type Domain 

“I have a five forty flight” ArriveTime bus schedule inquiry 

“the top of it” Location map reading 

“as close to me as possible” RoomLoc meeting 

“before the new person arrive” EndDate meeting 

Table 3.8: Examples of indirect concept values 

Indirect concept values are rarely used in information-accessing domains (air travel 

domain and bus schedule inquiry domain). A client in these domains usually expresses 

the criteria for the desired flight or bus clearly, so that an agent does not misunderstand 

the information. The first example in Table 3.8 occurred when a client used the departure 

time of his flight as an implicit arrival time of the desired bus instead of the actual time 

that he would like to arrive at the airport. In the UAV flight simulation domain, due to the 

characteristic of a command-and-control task, indirect concept values are also rarely 
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used. Moreover, some concept values are specified in a scenario that is not shared among 

dialog participants; hence, they have to explicitly communicate these concepts. In the 

map reading domain indirect concept values, mostly pronouns that refer to landmarks, are 

used occasionally.  

However, indirect concept values are used quite often in the meeting domain. 

Meeting participants are usually familiar with each other and share some common 

domain knowledge; therefore, some concept values do not have to be mentioned 

explicitly in a conversation. For example, “as close to me as possible” was used as an 

implicit value for a RoomLoc in a space query from shown in Figure 3.36 (c) instead of 

an explicit value such as “close to the room 5324”. Furthermore, a meeting conversation 

is not self-contained. The participants often refer to the information that occurs outside 

the meeting. Examples of this information are the e-mail sent out before the meeting and 

the information discussed in the previous meeting. Within the same meeting, there are 

some discussions that do not contribute directly toward any domain action by themselves 

but have influence on the values of the concepts. The participants may refer to the 

information in those discussions as concept values instead of using explicit expressions as 

shown in the last example in Table 3.8. The exact EndDate of an action item “get office 

space” has to be inferred from the arrival date of a newly hired employee which was 

discussed in another part of the meeting. Many pronouns are also used as indirect concept 

values in the meeting domain as discussed in Section 3.6. 

Indirect concept values are ambiguous; for instance, a pronoun can refer to any kind 

of noun. To determine an actual value of an indirect concept, additional information 

besides the indirect expression itself is required. For some indirect concept values, 

contextual information from within a dialog is sufficient for determining their actual 

values while other indirect concept values require additional domain and world 

knowledge that are not presented in a dialog in order to interpret the indirect expressions. 

Examples of the first type of indirect concept value are pronouns and indirect temporal 

expressions (e.g. “before the new person arrive”).  For this type of indirect concept value, 

additional understanding processes, such as anaphora resolution and temporal reasoning, 

can be used to infer the actual concept value from dialog context. Examples of the second 

type of indirect concept value are the first and the third examples in Table 3.8. To 

determine the exact value of the ArriveTime in the first example, the relation between 

the departure time of the flight (an indirect value) and the time that a client needs to 

arrive at the airport (an exact value) has to be provided. For the third example, the 

location of a manager’s office is needed in order to resolve the exact value of the 
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RoomLoc. These pieces of information are shared among dialog participants, so they are 

not mentioned in a dialog. An understanding module that interprets this type of indirect 

concept value has to model the necessary information separately such as in a 

knowledgebase.  

An actual value of an indirect concept is necessary in order to understand a dialog. 

However, for domain knowledge acquisition, as in the case of this thesis, an actual value 

of an indirect concept may not be as crucial. In this thesis, the components of the form-

based dialog structure representation, such as a list of concepts, are inferred from a set of 

in-domain conversations. Therefore, if only a few instances of a particular concept type 

have indirect values, a machine learning algorithm can still utilize evidences from other 

instances to identify that concept. On the other hand, if many instances of a particular 

concept type have indirect values, it might be difficult to identify that concept without 

determining the actual values of those indirect concept instances. 

Some concepts are omitted from a conversation even though they are required in 

order to perform domain actions. These concepts are commonly known by all of the 

participants, so they do not have to mention them again in the conversation. The 

participants infer the omitted concepts from the following information: 

● Common knowledge about the world or the domain 

In the bus schedule query domain, the date of travel is usually omitted and 

is assumed to be “today”. In the map reading domain, a location of a 

landmark may be omitted from a grounding form.  If both participants 

discover that they have the same landmark name on their maps, they can 

assume that the location of the landmark is the same on both maps and does 

not have to be explicitly defined. In the meeting domain, a StartDate of an 

action item is rarely specified and is assumed to be “today”. 

● Dependencies with other concepts 

In the air travel planning domain, many concepts in a car query form and 

a hotel query form are not explicitly specified. These pieces of information 

can be inferred from related concepts in a flight reservation form since there 

are a lot of dependencies among a flight reservation, a car reservation and a 

hotel reservation as discussed in Section 3.2. In the map reading domain, 

since a route giver and a route follower usually discuss route segments in 

order (from start to finish), the start locations of most segments are omitted. 

They are assumed to have the same values as the end locations of the 

previous segments. In the meeting domain, meeting participants may not 
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explicitly state the StartDate of the succeeding action item as it can be 

inferred from the EndDate of the preceding action item. 

Similar to the case of indirect concepts, omitted concepts occur more often in the 

meeting domain than in the other domains due to the characteristic of the meeting domain 

discussed above. To process a dialog that contains an omitted concept, additional 

knowledge, such as a user profile and a default concept value, is required in order to 

determine the value of the omitted concept. For domain knowledge acquisition, an 

omitted concept is more problematic than an indirect concept value. If many instances of 

a particular concept are omitted, it may not be possible to identify that concept using only 

information from in-domain conversations. 

3.8.2 Fragmented sub-tasks 

When dialog participants divide a complicated task into a series of sub-tasks, they 

usually pursue the sub-tasks one at a time, completing one sub-task first before moving 

on to another one. For example, in the air travel planning domain, a travel agent and a 

client usually discuss the first leg of an itinerary until the client selects the desired flight 

before moving on to discuss the second leg. Nevertheless, in some dialogs, a sub-task 

may be interrupted by another sub-task before dialog participants can gather enough 

information to execute the associated action or finish the discussion about the outcome of 

the action. The participants may resume the interrupted sub-task later in the conversation. 

When a sub-task is interrupted we can say that it is fragmented since the entire sub-task is 

not represented by one continuous segment of conversation. 

Fragmented sub-tasks occur more often in some domains than other domains due to 

different characteristics of task-oriented domains. In the bus schedule inquiry domain, 

each task is quite simple and does not have to be decomposed into sub-tasks. Hence, 

there is no fragmented sub-task problem. In the map reading domain, since drawing a 

route on a map has a sequential characteristic, the draw_a_segment sub-tasks are 

discussed in order from the start of the route to the end of the route. Only one route 

segment is discussed at a time until both a route giver and a route follower agree on the 

segment description and the route segment is drawn on the follower’s map. Then they 

move on to the next segment of the route. Therefore, there is also no fragmented sub-task 

problem in the map reading domain. If there is a serious understanding problem on a 

segment description, the participants may restart that sub-task again. In the air travel 

domain, a make reservation part of a reserve_flight sub-task may be interrupted by a 

reserve_car subtask or a reserve_hotel sub-task as shown in Figure 3.12. The 
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reserve_flight sub-task is usually resumed at the end of the conversation. Since a plane 

ticket reservation is mandatory in this domain while car and hotel reservations are 

optional, a travel agent may want to focus on the purchase options of the ticket when all 

other optional discussions about car and hotel have been done. 

Some actions in the UAV flight simulation domain cannot be executed or completed 

immediately after all required concepts have been gathered. Physical and time constraints 

cause these actions to be delayed until all constraints are met. For example, a 

take_a_photo action cannot take place until a plane reaches a target. The interval 

between the time that all of the required slots have been filled, and the time that all 

physical and time constraints are met and the action is ready to be executed (or 

completed) may take several minutes. During this time dialog participants may discuss in 

preparation for a new sub-task which cause the current sub-task to be fragmented. For 

example, if the participants discuss about a new target while waiting for the plane to 

reach the current target in order to execute a take_a_photo action, the current 

take_a_photo sub-task is interrupted by another take_a_photo sub-task. A 

control_a_plane sub-task may also be fragmented if the participants start planning the 

next destination while the plane is still heading toward the current destination. 

In the meeting domain, some actions are executed outside the meeting. This makes 

the part of a sub-task that fills the corresponding form and the part of a sub-task that 

discusses the outcome of an action take place in different meetings. For instance, a space 

query form may be filled during the first meeting when the meeting participants discuss 

and agree on the criteria of a desired office space. The search_space action actually 

occurs after the meeting is done and its result, the office spaces that match the criteria, is 

discussed in the next meeting. Since a sub-task can span across meetings, it is likely to be 

interrupted by other discussions that occur in those meetings. Within the same meeting, 

the participants may revisit the sub-task in order to add or change the values of the slots 

in the corresponding form as the form is not yet be executed. The dialog structure 

annotation in Figure 3.35 shows that a get_space sub-task and a search_space_info sub-

task are revisited again at the end of the conversation as the participants specified 

additional criteria for a desired office space. Other sub-tasks that may span across 

multiple meetings are a search_computer_info sub-task, a get_computer sub-task. The 

characteristics of the meeting domain make the sub-tasks more likely to be fragmented 

than other domains. 

Depending on how the sub-tasks are fragmented and how often they occur, 

fragmented sub-task instances could make it more difficult to learn the form and slots that 
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are associated with that type of sub-task. In most of the cases discussed above a sub-task 

gets interrupted after all of the concepts that are necessary for performing an action are 

discussed but before the action can be executed or completed. This type of fragmented 

sub-task is less problematic as the slots in the corresponding form are presented in one 

continuous dialog segment. However, when a sub-task is interrupted before all of the 

necessary slots in the corresponding form are filled, as in the case of sub-task revisiting in 

the meeting domain, it may be difficult to identify all of the relevant slots for that type of 

sub-task if many of it instances have this kind of fragmentation. 

For other kinds of dialog structure analysis, fragmented sub-tasks can become more 

problematic. For example, interrupting sub-tasks make it more difficult to recognizing 

participants’ focus of attention at run time as there are multiple active sub-tasks that 

could receive the focus of attention. Interruption in a form-based dialog system can be 

handled by a stack as described in (Constantinides et al., 1998); nevertheless, this issue is 

not the main focus of this thesis. 

3.8.3 Non-task dialog segments 

The form-based dialog structure representation focuses on modeling domain-specific 

information necessary for performing domain actions that contribute directly toward a 

conversation goal. Since human-human conversations are rich in nature, there might be 

some segments of a dialog that are not directly related to the domain actions and the 

dialog goal. These non-task dialog segments cannot be explained with the proposed 

dialog structure representation. Examples of non-task segments are a client’s comment on 

the price of a car rental in the air travel planning domain (utterance 16 -19 in Figure 

3.38), and a discussion about a direction from a bus stop to a client’s actual destination in 

the bus schedule inquiry domain (utterance 25 – 30 in Figure 3.38). A non-task segment 

may have some influence on the interpretation of an indirect concept value as discussed 

in Section 3.8.1. However, the content of the non-task segment itself does not contain 

domain-specific information or have any effect on the form. 
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Figure 3.38: An example of a non-task dialog segment in the air travel planning domain 

 

 

Figure 3.39: An example of a non-task dialog segment in the bus schedule inquiry 

domain 

Among five task-oriented domains that can be represented with the form-based dialog 

structure, real-world applications (air travel planning, bus schedule enquiry and meeting) 

have more non-task segments than simulated tasks (map reading and UAV flight 

simulation) because the real-world applications are embedded in the world where a 

domain boundary is not clearly defined while the simulated tasks have a more limited 

scope that is well-defined. Since a meeting usually contains a lot of discussions, a 

conversation in the meeting domain contains more non-task segments than other types of 

  … 
AGENT 13: WITH THE DISCOUNT NUMBER FROM C.M.U. IT COMES TO 

FIFTY FOUR NINETY NINE FOR HERTZ  
CLIENT 14: FIFTY FOUR NINETY NINE 
AGENT 15: /MM/ /UM/ 
CLIENT 16: OKAY THAT SOUNDS ABOUT RIGHT PRICES ARE GOING UP  
AGENT 17: THEY ARE HERTZ IS A LITTLE BIT MORE EXPENSIVE THAN 

SOME OF THE OTHER COMPANIES 
CLIENT 18: BUT YOU GET TO DRIVE FORDS 
AGENT 19: /LG/ OKAY  
  … 
 

  … 
AGENT 21: get a 71C 
CLIENT 22: ok yeah and which stop do i get off at  
AGENT 23: get off at /um/ forbes downtown forbes_and_stanwick down by the 

mcdonald's  
CLIENT 24: yeah ok  
AGENT 25: you will cross  
CLIENT 26: yeah  
AGENT 27: stanwick_street and you will see on your right after you pass the 

subway station /feed/ on the right on the left side will be the state 
office building and on the other side of the street will be the hilton 
hotel so just so you have your bearings so you know where you're 
goin  

CLIENT 28: yeah #begin_feed# ok #end_feed#  
AGENT 29: just walk straight up liberty_avenue and it should be right there on 

your left  
CLIENT 30: ok   
  … 
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task-oriented domains. Examples of non-task segments in the meeting domain are given 

in Section 3.6.  

To verify that the form-based dialog structure can account for most parts of task-

oriented dialogs on average, a dialog structure experiment (see Section 4.1) which 

determines the percentage of dialog content that can be accounted for by the proposed 

form-based dialog structure was conducted.  

3.8.4 Potential difficulties in other task-oriented domains 

The form-based dialog structure representation could be applied to other task-oriented 

domains besides the ones discussed in this chapter as well if the characteristics of dialogs 

in those domains match all of the assumptions made by the form-based representation. 

The form-based dialog structure framework assumes that 1) a goal of a dialog is achieved 

through the execution of domain actions, and 2) dialog participants have to communicate 

the information required to perform these actions through dialog. However, the form-

based dialog structure representation may not be able to describe all the phenomena 

occurring in those task-oriented domains because it only captures the observable structure 

of a dialog using a simple model.  

In addition to the difficulties discussed in the previous sections, a negotiation sub-

dialog is another complicated case that is difficult to handle using the form-based 

representation. In the domains analyzed in this chapter, a negotiation only occurs at a 

concept level where dialog participants discuss alternative values for a particular concept 

rather than at a form level where the participants discuss alternative ways of performing 

one particular action. For example, in the air travel planning domain, a client may ask for 

an alternative flight, such as an earlier flight, from a set of flights that match the specified 

criteria as shown in utterance 10 -15 in Figure 3.12. This sub-dialog only discusses 

alternative values of a particular FlightInfo slot in a flight reservation form not 

alternative flight reservation forms. In all five domains analyzed (air travel planning, bus 

schedule inquiry, map reading, UAV flight simulation, and meeting), dialog participants 

help each other fill one particular form rather than proposing alternative forms since each 

participant has different pieces of information that need to be put together in order to 

perform a domain action or there is only one person who is responsible for making a 

decision on how to perform the action. 

Nevertheless, in some domains, dialog participants may have similar pieces of 

information and help each other find the best way to perform an action. For example, in a 

scheduling domain, dialog participants have to find a meeting date and time that fit with 
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all of the participants’ schedules. They may discuss several alternatives; each of them 

corresponds to a form rather than one specific slot. Even though the participants will 

choose only one alternative at the end, during a negotiation sub-dialog we may need 

multiple instances of the same form to represent all the options that are discussed. The 

proposed form-based dialog structure representation which assumes that there is only one 

instance of a form in each sub-task, while sufficient for modeling a negotiation at a 

concept level, is not adequate for modeling a negotiation at a form level where multiple 

form instances are required in each sub-task to represent alternative ways to perform the 

action that is associated with the sub-task. 

We could extend the form-based representation to allow multiple instances of a form 

in each sub-task. However, the implication of this extension on domain-specific 

information acquisition and dialog processing should also be considered. For domain-

specific information acquisition as in the case of this thesis, since there are multiple sets 

of concepts discussed in one sub-task (one set for each form instance), it is more difficult 

to identify a set of slots that is associated with one form especially if the concepts that 

belong to the same form instance are not discussed together in one segment. For dialog 

processing, an understanding module has to be able to identity the instance of a form that 

a dialog participant refers to in each utterance. This problem is more complicated than 

recognizing the participant’ focus of attention when a sub-task is interrupted since in a 

negotiation sub-dialog the focus of attention shifts within the same sub-task rather than 

between sub-tasks. For a more subtle shift in the focus of attention, usually there is less 

evidence that indicates the shift. Rosé et al. (1995) proposed an extension to a plan-based 

model that is able to capture multi-threads of negotiations in the scheduling domain. 

Nevertheless, dialog processing is not the main focus of this thesis. 

3.9 Conclusion 

In this chapter, I proposed a form-based dialog structure representation as a suitable 

representation for representing the domain-specific information required to build a task-

oriented dialog system. The form-based dialog structure representation models the tasks 

that a dialog system has to support, a set of sub-tasks (a decomposition of a task) which 

corresponds to the steps that needs to be taken in order to successfully accomplish the 

task, and concepts which are the items of information (or domain keywords) that dialog 

participants have to communicate in order to achieve a task or a sub-task. In this 

framework, the domain-specific information in each dialog (i.e. tasks, sub-tasks, and 
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concepts) is represented by forms and their slots while each utterance in the dialog is 

considered as an operator that operates on the forms and their content.  

This form-based dialog structure representation is conjectured to have all of the 

required properties, sufficiency, generality, and learnability, discussed at the beginning of 

this chapter. The form-based representation is sufficient for representing the domain-

specific information required to build a task-oriented dialog system since it is already 

used in the dialog systems that are implemented based on the form-based dialog system 

architecture, for example, the Philips train timetable information system (Aust et al., 

1995) and the CMU Communicator system (Rudnicky et al., 1999). In this thesis, the 

notion of form in the form-based dialog structure representation is generalized beyond a 

database query form, so that it can be used to represent other types of task-oriented 

domains besides the information-accessing domains. The form-based dialog structure 

representation focuses only on concrete information that can be observed directly from 

in-domain conversations and models this information with a rather simple representation. 

These characteristics of the form-based representation (observable and simple) make it 

possible to be learned through an unsupervised learning approach. 

Dialog structure analysis of six different types of task-oriented conversations 

described in this chapter demonstrates that the proposed form-based representation 

fulfills two of the required properties: sufficiency and generality. Interesting findings 

from the analysis are summarized below. The learnability of the form-based 

representation can be verified by the accuracy of its components obtained from the 

proposed machine learning algorithms described in Chapter 5 and Chapter 6. 

By focusing only on observable aspects of a task-oriented dialog, the form-based 

dialog structure representation requires that all of the domain-specific information 

necessary for supporting a task is communicated clearly in a conversation. This occurs 

when a dialog has the following characteristics: 1) the dialog goal is achieved through the 

execution of domain actions, and 2) dialog participants have to communicate the 

information required to perform these actions through dialog. From dialog structure 

analysis of six task-oriented domains discussed in Section 3.2 - Section 3.7, I found that 

dialogs from five domains have the required characteristics and can be modeled by the 

form-based representation. These domains are air travel planning (information-

accessing), bus schedule inquiry (information-accessing), map reading (problem-solving), 

UAV flight simulation (command-and-control), and meeting. However, the proposed 

dialog structure is not suitable for representing dialogs in the tutoring domain since their 

characteristics do not match the assumptions made by the form-based dialog structure 
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representation. Furthermore, the simplicity of the form-based representation makes it not 

suitable for representing a complex dialog that has a dynamic structure as in the case of a 

tutor dialog. 

Since human-human conversations are rich in nature and the form-based dialog 

structure representation only captures the observable structure of a dialog using a simple 

model, the form-based representation is not able to describe all of the phenomena 

occurring in those five task-oriented domains that it can be applied. The problematic 

cases include implicit concept values, fragmented sub-tasks, and non-task dialog 

segments.  Nevertheless, the form-based dialog structure is sufficient enough to model 

important phenomena that occur regularly in dissimilar types of task-oriented dialogs, 

and thus has both sufficiency and generality properties. Even though a dialog system built 

from imperfect domain-specific information will have limited functionalities when 

compared to a human participant, it still be able to carry out the required tasks as 

demonstrated by the success of the systems that were implemented based on the form-

based architecture. Dialog coverage, which measures the percentage of dialog content 

that can be accounted for by the proposed dialog structure and is reported in Section 4.1, 

is additional evidence that supports the sufficiency of the form-based dialog structure 

representation. 

The form-based dialog structure representation also has another desirable property, a 

straightforward connection between its components and the components of a dialog 

system that employs the representation. Since we take a different approach using an 

existing dialog system framework to describe the structure of a task-oriented 

conversation rather than adapting an existing dialog structure theory to the existing dialog 

system architecture, configuring a dialog system from the acquired representation is less 

complicated as a mapping between form-based dialog structure components and the 

components of a form-based dialog system is straightforward. For instance, the learned 

domain-specific information can be used as a task specification in the RavenClaw 

framework (Bohus and Rudnicky, 2003). 

The learnability of the form-based dialog structure representation can be verified by 

the accuracy of the tasks, sub-tasks, and concepts obtained from the learning algorithms 

proposed in Chapter 5 and Chapter 6. Implicit concept values and fragmented sub-tasks 

discussed in Section 3.8 may complicate a dialog structure acquisition process. However, 

if these complex cases only occur occasionally, the acquisition process should not be 

affected since the learning approaches which will be used to infer the components of the 

form-based dialog structure are based on the generalization of recurring patterns. If there 
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are enough instances that clearly represent a particular dialog structure component, we 

should be able to learn the underlying concept or sub-task. Experiment results confirm 

this hypothesis; the learning accuracies of frequent concepts and sub-tasks are usually 

higher than the learning accuracies of infrequent components. The overall accuracy is 

acceptable for all learning problems: concept identification (see Chapter 5), and sub-task 

boundary detection and sub-task clustering (see Section 6.1 and 6.2 respectively) which 

are two main steps in form identification. 

Learnability is also suggested if the structure of task-oriented dialogs can be marked 

up reliably with the proposed scheme. Section 4.2 describes a human annotation 

experiment that was carried out to evaluate the reliability of the proposed form-based 

dialog structure representation along two aspects: reproducibility and accuracy. 

Reproducibility measures the level of agreement among non-expert coders and verifies 

that the proposed dialog structure can be understood and applied by the annotators other 

than a coding scheme developer while accuracy ensures that the agreement between the 

coders conforms to the expert’s judgment. Experiment results show that the form-based 

dialog structure annotation scheme can be understood and applied reliably by non-expert 

users producing high level of reproducibility and acceptability. High annotation scheme 

reliability suggests that the annotation scheme is concrete and unambiguous which imply 

learnability
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Chapter 4 

Form-based Dialog Structure Representation 

Evaluation 

The previous chapter showed that the form-based dialog structure representation can 

be used to model the structure of dialogs in a variety of task-oriented domains. 

Nevertheless, to be useful for automatic acquisition of domain-specific information 

which is the goal of this thesis, the representation should also provide good coverage of 

dialogs, and, more importantly, it should be clear and unambiguous in its application. 

This chapter describes two annotation experiments that were carried out to validate these 

properties of the proposed form-based dialog structure representation. 

To verify that the form-based dialog structure representation can account for most 

parts of task-oriented dialogs on average, a dialog structure experiment which determines 

dialog coverage, the percentage of dialog content that can be accounted for by a given 

dialog representation, was conducted. This experiment, which will be described in 

Section 4.1, also identifies those pieces of human-human conversation that the proposed 

dialog structure fails to account for. This evaluation procedure verifies two required 

properties of a domain-specific information representation (sufficiency and generality) 

discussed in Chapter 3. If the proposed representation achieves high dialog coverage in 

various types of task-oriented domains, we can say that the representation fulfills both the 

sufficiency and generality requirements. 

In addition to being able to model important phenomena in dissimilar types of task-

oriented dialogs, a domain-specific information representation has to be concrete and 

unambiguous, so that it can be identified reliably from in-domain dialogs. Learnability, 

which is another desired property, is implied if the structure of task-oriented dialogs can 

be marked up reliably by annotators other than coding scheme developers using the 

proposed dialog structure annotation scheme. A dialog structure annotation experiment 

described in Section 4.2 was conducted in order to evaluate the form-based dialog 

structure representation along two aspects of annotation scheme reliability: 

reproducibility, which requires different annotators to produce similar annotations, and 
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accuracy, which requires an annotator to produce a similar annotation as a known 

standard (e.g. a coding scheme expert’s annotation). 

4.1 Dialog coverage 

Dialog coverage is defined as the percentage of dialog content that can be accounted 

for by a specific dialog structure. In the form-based dialog structure framework, domain-

specific information in each dialog is represented by forms. Each utterance in the dialog 

is regarded as an operator that operates on the forms and their content. Therefore, an 

utterance that can be classified as one of the form operators discussed in Section 0 is an 

utterance that can be described by the form-based dialog structure representation. Dialog 

coverage for the form-base representation is computed by the following equation. 

 

100*
utterances of number total

 structuretheby   described be can that  utterances of number
 eragecovlogdia  (4.1) 

To measure the dialog coverage of the proposed form-based dialog structure 

representation, four task-oriented domains: air travel planning, bus schedule enquiry, map 

reading and UAV flight simulation were analyzed on an utterance-by-utterance basis. 

Table 4.1 shows the number of dialogs that were available during the time of the 

evaluation as well as those used in the analysis.  

 

Domain 

Available Analyzed 

Number of 

dialogs 

Number of 

dialogs 

Number of 

utterances 

Air travel planning 43 4 273 

Bus schedule enquiry 12 5 90 

Map reading 128 4 498 

UAV flight simulation 2 1 224 

Table 4.1: The amount of data used in the analysis 

On average, 93% of the utterances that were analyzed could be accounted for by the 

form-based dialog structure representation. Utterances that could not be described by the 

proposed framework are classified into four categories: out of domain (OOD), out of 

scope (OOS), indirect and task management (TM).   
 

1. Out of domain (OOD) utterances contain information that does not relate to 

the domain (and thus would not need to be accounted for). 
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2. Out of scope (OOS) utterances contain information that while related to the 

domain, falls outside the scope of the defined conversation goal, or does not 

contribute directly toward an execution of any domain action. For example, in 

the bus schedule inquiry domain, a dialog goal is to obtain information about a 

bus schedule; therefore, the utterances that contain an additional discussion 

about how to get to a client’s actual destination from a bus stop are out of 

scope. More discussion about this type of utterance can be found in Section 

3.8.3. 

3. Indirect utterances are utterances that require additional domain and world 

knowledge that are not presented in a dialog in order to interpret and act upon. 

For example, in the bus schedule enquiry domain, instead of specifying the 

actual time that he would like to arrive at the airport, a client may provide the 

departure time of his flight as an implicit arrival time of the desired bus. 

Additional knowledge representation and interpretation process are required in 

order to represent this type of utterance with the form-based dialog structure 

representation. However, this type of utterance does not include the utterances 

that contain indirect expressions which can be resolved using contextual 

information from within a dialog such pronouns and indirect temporal 

expressions. Indirect expressions are discussed in more detail in Section 3.8.1. 

4. Task management (TM) utterances are utterances that manage the overall state 

of a dialog (e.g. suspending or resuming a task) rather than manipulate a 

particular form. This type of utterance occurs when a sub-task is interrupted 

by another sub-task. “Can you hold one second please” is one example of TM 

utterances. While a task management utterance contain information that is 

necessary for run time dialog processing such as determining a speaker’s 

focus of attention, it does not contain information that is necessary for 

performing any domain action. The form-based dialog structure representation 

focuses on modeling domain-specific information required in order to execute 

domain actions that contribute directly toward a dialog goal rather than the 

information that may be required to process the dialog at run time as discussed 

at the end of Section 3.8.2. 
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Domain 
Rejected utterances (%) 

OOD OOS Indirect TM Total 

Air travel planning 4.4 4.4 6.7 0.0 15.6 

Bus schedule enquiry 1.8 4.4 0.4 2.6 9.2 

Map reading 0.0 0.0 2.2 0.0 2.2 

UAV flight simulation 1.0 0.0 1.0 4.0 5.9 

Table 4.2: The percentage of rejected utterances of each type 

The percentage of rejected utterances in Table 4.2 reveals that the characteristics of a 

task affect both the type and the number of rejected utterances. The air travel planning 

and the bus schedule enquiry which are real-world applications have higher rejected 

utterance rates than the map reading and the UAV flight simulation which are simulated 

tasks. The main difference comes from the scope of the task as reflected in the number of 

OOS. The simulated task has a limited scope that is well-defined while the real-world 

application is embedded in the world and appears to have an indefinite domain boundary. 

Since a dialog system that is applied to the real-world task will have limited 

functionalities, we would expect it to elicit more OOS utterances. 

Nevertheless, previous studies on the differences between human-human 

conversations and human-machine conversations (Dahlbäck et al., 1993; Hauptmann and 

Rudnicky, 1988; Jönsson and Dahlbäck, 1988) show that the language that a human uses 

to communicate with a computer is more constrained than the one he/she uses to 

communicate with a human participant. Since humans can adjust their language to 

accommodate the machine incomplete communication capability, we would expect to see 

fewer rejected utterances in human-machine conversations as the humans constrain 

themselves within the scope of a dialog system application and use simple and more 

direct utterances to communicate with the system. 

Summary 

The proposed form-based dialog structure representation has high dialog coverage in 

all four task-oriented domains (air travel planning, bus schedule enquiry, map reading, 

and UAV flight simulation) used in the evaluation. This result verifies that the form-

based representation has both the sufficiency and generality properties. Dialog coverage 

is lower in real-world applications (bus schedule enquiry and air travel planning) than in 

simulated tasks (map reading and UAV flight simulation) due to the greater difference 

between the broader scope of the real-word application and the limited dialog system 

functionalities. 
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4.2 Annotation scheme reliability 

The evaluation result in the previous section shows that that the proposed form-based 

dialog structure representation can account for large portions of dialogs in task-oriented 

domains. However the evaluation was carried on by an annotation scheme developer. It is 

also important to show that the proposed dialog structure can be understood and applied 

reliably by annotators other than the developer. In this section, I will discuss the 

evaluation of the form-based dialog structure representation along two aspects of 

reliability: reproducibility and accuracy. Reproducibility, which measures inter-coder 

variance, requires different annotators to produce similar annotations while accuracy 

requires an annotator to produce a similar annotation as a known standard (e.g. a coding 

scheme expert’s annotation). The evaluation was done through a dialog structure 

annotation experiment. 

First, a set of pilot annotation experiments was conducted in order to verify the 

experimental procedure and the annotation guidelines that would be used in the 

annotation experiment. Pilot experiments are described in Section 4.2.1. The form-based 

dialog structure annotation scheme poses two challenges in comparing two dialog 

structure annotations. Firstly, different tagsets may be used to annotate dialog structures 

in the same domain. Secondly, structural annotations are quite difficult to compare. These 

two challenges are discussed in Section 4.2.2 and Section 4.2.3 respectively. The 

experimental procedure of the annotation experiment is discussed in Section 4.2.4 and the 

results are presented in Section 4.2.5. Finally, Section 4.2.6 summarizes all the findings. 

4.2.1 Pilot annotation experiments 

A set of pilot annotation experiments was conducted to verify an experimental 

procedure especially annotation guidelines. Five subjects were participated in the pilot 

experiments. Since we would like to verify that the proposed form-based dialog structure 

representation can be understood and applied reliably by annotators other than a coding 

scheme developer, eligible subjects must not used the form-based annotation scheme 

previously. I focus particularly on a group of people who are likely to use the form-based 

dialog structure representation in the future. This target group includes people who are 

involved in dialog system development, linguistic and language technologies students. 

In the experiments, the subjects were asked to annotate the structures of the given 

dialogs using the form-based dialog structure annotation scheme. Coding scheme reliability 

is determined from the similarity of the annotations produced by different coders. The 

subjects were given annotation guidelines which contain a form-based dialog structure 
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definition and examples of dialog structure annotations from the task-oriented domains 

that were not used in the experiments. Since the form-based annotation scheme only 

specifies the definition of each dialog structure component (task, sub-task, and concept), 

but does not prescribe a specific tagset to be used in each domain, each annotator has to 

also develop his/her own tagset. In the annotation experiment, each subject had to first 

design a dialog structure representation (a tagset or a markup scheme) for a given domain 

according to the definitions of task, sub-task, and concept provided in the guidelines by 

analyzing a given set of in-domain dialogs. The markup scheme includes the tags for 

tasks, sub-tasks and concepts for the given domain. The subject was then asked to 

annotate a set of dialogs according to the tagset that he/she had designed. This set of 

dialogs is the same set as the one the subject saw when designing the dialog structure 

representation. This procedure is different from a typical annotation task in which the 

tagset is pre-specified and is given to the annotators. To control the number of annotated 

instances for each dialog structure component and to keep the annotation experiment 

simple, the experiment was divided into two parts: concept annotation, and task/sub-task 

annotation. There was no time limit on any part of the experiment.  

The annotation was done using CADIXE
1
, an XML-based annotation tool. CADIXE 

provides easy and interactive environment for text document annotation. An annotator is 

not required to have any experience with XML annotation as an annotated document is 

displayed in text format (in different colors and styles depending on the markups) in the 

annotation panel while its corresponding XML representation is displayed in the XML 

panel. CADIXE user interface is illustrated in Figure 4.1. Since each annotation tag has it 

own display style in the annotation panel, it is easy to distinguish between different types 

of dialog structure components. For example, Hour and Minute are displayed with 

different colors as shown in Figure 4.1. CADIXE version 2.0a6 was used in all of the 

annotation experiments. 

 

                                                 
1 More detail about CADIXE can be found at http://www-

leibniz.imag.fr/SICLAD/Caderige/Cadixe/ 

http://www-leibniz.imag.fr/SICLAD/Caderige/Cadixe/
http://www-leibniz.imag.fr/SICLAD/Caderige/Cadixe/
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Figure 4.1: The interface of CADIXE XML annotation editor 

After each pilot experiment, potential problems and ambiguities in both the 

experimental procedure and the annotation guidelines were identified by examining the 

tagset and the annotated dialogs that each subject produced. The subjects were also asked 

to explain the difficulty or ambiguity that they may have encountered during the 

experiment. The annotation guidelines were then successively modified to address those 

problems. The modifications include: 

● More precise definitions of dialog structure components 

● Clarifications for ambiguous components and more contrasting examples 

The following pieces of information were also added: 

● A formal definition of an action as it plays an important role in the 

decomposition of tasks and sub-tasks 

● A diagram that illustrates the decomposition of a dialog into tasks and sub-

tasks together with their associated actions and forms in each domain 

● A table that summarizes dialog structure components in each domain  

● More examples of annotated dialogs  

Annotation Panel 

XML Panel 
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In terms of the experimental procedure, more detail instructions were given especially 

on how the annotated dialog structure would be used (i.e. to build a dialog system based 

on the information in the dialog structure). An annotation exercise was also added to 

assess subjects’ understandability on the form-based dialog structure annotation scheme. 

After the subjects studied annotation guidelines, they were asked to annotate the 

structures of dialogs in the same domains as the ones discussed in the guidelines. In the 

exercise, the tagsets were provided for both domains (the tagsets are described in the 

guidelines); the subjects did not have to design a new tagset. Only a subject who 

sufficiently understood the form-based dialog structure annotation scheme would be 

entered into an annotation experiment.  

The pilot experiments revealed that the subjects could come up with dissimilar dialog 

structure designs (dissimilar markup schemes) even though they were working on the 

same set of dialogs. Table 4.3 shows examples of the differences found in the air travel 

planning domain. These differences include: additional concept types and variations in 

structured concept design. Annotation differences and the possible causes are discussed 

in more detail in Section 4.2.5.1 with the data from the main experiment.  

 

Subject 1 Subject 2 

<NoOfStop> - 

<DestinationCity> <DestinationLocation><City> 

<Date> <DepartureDate> and <ArrivalDate> 

Table 4.3: Differences in the tagsets designed by two different subjects 

Variations in the tagsets are acceptable as long as the tagsets and the annotations 

conform to the dialog structure definition given in the guidelines. Moreover equivalent 

but not identical dialog structures can generate dialog systems with the same 

functionality. This is analogous to different computer programs that generate the same 

output. The variations in the tagsets, however, create a challenge in evaluating inter-

annotator agreement as the conventional inter-annotator agreement metric assumes that 

an identical tagset is used by all annotators. To verify that an annotator can generate a 

reasonable domain-specific tagset for a given task-oriented domain rather than one 

specific tagset that matches a known answer, an evaluation methodology that can 

accommodate differences in annotation tagsets is required. To solve this problem, I 

propose a novel evaluation procedure which will be referred to as cross-annotator 

correction. The detail of this procedure is discussed in the next section. 
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4.2.2 Cross-annotator correction 

I propose cross-annotator correction as a suitable technique for assessing inter-

annotator agreement when the annotators create different markup schemes to annotate the 

same document. Instead of comparing two annotated documents produced by two 

different annotators mechanically, each annotated document is first critiqued and 

corrected by another annotator (a corrector). The corrector makes judgment based on the 

tagset created by the original annotator of that document and is only allowed to correct 

the annotation when it does not conform to the form-based dialog structure annotation 

guidelines, but not when it differs from his/her own annotation. The original annotation 

and its corrected version are then compared. Both annotated documents in cross-

annotator comparison are based on the same (original) tagset. Figure 4.2 illustrates the 

cross-annotator correction process. The cross-annotator comparison allows the original 

annotation to be evaluated against not only a single annotation but any annotations that 

conform to the guidelines. Thus, the idea is to compare annotators’ knowledge of the 

annotation scheme and not individual instances of annotation.  

 
 

Figure 4.2: A cross-annotator correction process 

A procedure for evaluating the reliability of the form-based dialog structure 

representation using the cross-annotator correction process is as follows. Each annotator 

is first asked to develop his/her own annotation tagset and use it to annotate the dialog 
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structures of the given dialogs. This part is similar to the dialog structure annotation 

experiment described in Section 4.2.1. The part of the procedure creates the original 

annotations shown in Figure 4.2. In the second part of the procedure, the annotator (the 

corrector) is asked to critique and correct the annotation done by another annotator that is 

given the same instruction and annotation guidelines and is working on the same set of 

dialogs. The corrector is instructed to correct the annotation only when it does not 

conform to the form-based dialog structure annotation guidelines not when it differs from 

his/her own annotation. 

The correction process consists of two steps: annotation critique and annotation 

correction. In the first step, the corrector is asked to rate each dialog structure component 

in the original annotation as correct or incorrect. I am also interested in the corrector’s 

level of confidence when making each decision because the corrector may agree or 

disagree with the original annotation when he/she is not certain with the decision. 

Therefore, instead of judging each annotation tag as only correct or incorrect the 

corrector is also asked to provide the level of confidence in his/her critique by rating each 

tag using one of the four possible correctness values: correct, maybe correct, maybe 

incorrect and incorrect.  

To ensure that the corrector marks an original tag as incorrect or maybe incorrect only 

when it does not conform to the guidelines, the corrector has to also specify the error 

category of that incorrect tag. In the main dialog structure annotation experiment 

described in Section 4.2.4, a list of common types of errors found in concept annotation, 

and a list of common types of errors found in task and sub-task annotation were given to 

the subjects to provide an idea of what kinds of annotation mistakes they might 

encounter. These lists were created by a coding scheme expert from the analysis of the 

annotation errors found in the pilot experiments. Nevertheless, the subjects could also 

correct additional types of errors when they discovered ones. The lists of common error 

types that were given to the subjects are shown in Figure 4.3 and Figure 4.4. The name in 

the parentheses is an error code which can be used interchangeably with an error type. 

Examples of task and sub-task annotation errors were taken from the bus schedule 

enquiry domain. The subjects could use the criteria in the following diagrams as 

guidelines to determine an error type of each incorrect tag. A diagram in Figure 4.5 

demonstrates how to identify the type of error in concept annotation while a diagram in 

Figure 4.6 demonstrates how to identify the type of error in task and sub-task annotation.  
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Figure 4.3: A list of common types of errors found in concept annotation 

1. Missing concepts 

The annotator did not annotate crucial information that is required in order to perform 

an action. There are two cases that a concept C could be missing from the annotation. 

1.1. Missing concept type (MissingType): the annotator did not identify the concept C. That 

is C is not in the list of concepts. 

1.2. Missing concept instance (MissingInstance): the annotator did not annotate an instance 

of C when it is presented in the dialog even though he/she has C in his/her concept list. 

2. Extraneous concept types (ExtraType) 

The annotator identified a concept that is not relevant to a task or is not necessary for 

performing an action.  

3. Incorrect use of concept labels (IncorrectLabel) 

 Use C to annotate a word or a group of words that does not belong to a concept C. This 

includes 1) annotate a word that belong to another concept as C and 2) annotate a word that 

doesn’t belong to any concept (a non-concept word) as C.  

4. Incorrect concept boundary (IncorrectBoundary) 

  Only a part of a concept is annotated, for example: 

        (incorrect)  <e-mail>tom</e-mail>@cmu.edu   

        (correct)     <e-mail>tom@cmu.edu</e-mail>   

5. Inappropriate structured concept granularity (IncorrectGranularity) 

Use a too fine-grained or a too coarse-grained structured concept.  For instance, the 

annotator annotated a structured concept without annotating its components when the individual 

component can be used separately, e.g. if a zip code is used separately for calculating shipping 

cost then, 

       (incorrect)     <address> 5000 Forbes Ave.  

         Pittsburgh PA 15213  

    </address> 

       (correct) <address> 5000 Forbes Ave.  

                    Pittsburgh PA <zipcode>15213</zipcode> 

        </address> 

6. No distinction between similar concepts that have different functionalities 

(NoDistinction) 

 For example, in an e-mail application, it is incorrect to annotate all e-mail addresses with 

the same concept type Address. The correct annotation is to distinguish between 

SenderAddress and RecipientAddress 
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Figure 4.4: A list of common types of errors found in task and sub-task annotation 

1. Missing tasks or sub-tasks  

The annotator did not annotate a subset of a dialog that corresponds to a task or a sub-

task. There are two cases that a task or a sub-task could be missing. 

1.1. Missing a task/subtask type (MissingType) 

1.2. Missing a task/sub-task instance (MissingInstance) 

2. Extraneous tasks or sub-tasks  (ExtraComponent) 

An extraneous task is a sub-set of a dialog that does not have a specific goal. An 

extraneous sub-task is a sub-set of a dialog that does not correspond to any well-defined 

action including too fine-grained decomposition of a task where each sub-task corresponds to 

acquiring each piece of information. For example, a get_bus_number sub-task and a 

get_departure_location sub-task, which are decomposed from a query_departure_time task, 

are extraneous sub-tasks. Each of them does not correspond to any action by itself, but 

rather acquires one piece of information for an action retrieve_depart_time_fromDB. 

3. Incorrect use of task or sub-task labels (IncorrectLabel) 

Use T to annotate a subset of a dialog that does not correspond to a task T or use S to 

annotate a subset of a dialog that does not correspond to a sub-task S.  

4. Incorrect task or sub-task boundary (IncorrectBoundary) 

For example, including a part of a dialog that belongs to the adjacent task in the scope of 

the considered task. 

5. Inappropriate task or sub-task granularity (IncorrectGranularity) 

Examples of this type of error are: 

5.1. Annotating multiple tasks as one task 

The following case is considered an annotation errors; the annotator annotated a 

dialog that discusses two independent bus schedule queries as one task. The correct 

annotation must separate the dialog into two tasks; one for each query. 

5.2. Merging adjacent sub-tasks together 

A sub-task that contains more than one action does not conform to the guideline. 

6. No distinction between different types of tasks or different types of sub-tasks 

(NoDistinction) 

 Subsets of a dialog that have dissimilar types of goals should be annotated with different 

task labels. Similarly, subsets of a dialog that correspond to dissimilar types of actions should 

be annotated with different sub-task labels 

7. Inappropriate task or sub-task decomposition (IncorrectDecomposition) 

 This includes identifying a sub-task as a task, a task as a sub-task, a second-level sub-task 

as a first-level sub-task and so on. 

 Tasks are independent from each other while the sub-tasks of the same task have some 

dependencies among them. Similarly, there are more dependencies between sub-tasks in the 

same decomposition level than between sub-tasks in different levels that do not subsume one 

another. The annotation that marks a subset of a dialog that has some dependencies with 

other parts of the dialog as a task does not conform to the guideline. 
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Figure 4.5: Criteria for classifying an error type in concept annotation 

for each original tag T which covers a word or a group of words Ws 

if a word or a group of words Ws should not be annotated as a concept then 

/*an extraneous label was used (e.g. a non-concept word was annotated)*/ 

if every instance of the concept T should not be annotated then 

Error Type = ExtraType 

correction = 1. Remove T from the concept list (change the annotation scheme) 

   2. Remove T from the annotation 

else 
 /*just some instances of T are incorrect*/ 

Error Type = IncorrectLabel 

correction = 1. Remove T from the annotation 

endif 
else 
 if T is not the right tag for this concept then 

if there is a tag R in the original concept list that should be used instead then 

 Error Type = IncorrectLabel 

 correction = 1. Change T to R 

else 
/*an appropriate concept type is missing*/ 

if the missing concept type M is required in order to distinguish between similar concepts 

that have different functionalities then 

Error Type = NoDistinction 

else 
Error Type = MissingType 

 endif 
correction = 1. Add the missing concept type M into the concept list (change the annotation 

scheme) 

 2. Change T to M 
endif 
correction = (optional) adjust the boundaries of the new tag if necessary 

 else 
/* T is the right tag for this concept */ 

if T is a structured concept and its granularity is inappropriate then 

Error Type = IncorrectGranularity 

correction = 1. Modify the structured concept components in the annotation scheme which 

may include adding a missing component 

  2. Modify the annotation (the error type of the added component should be 

MissingType or MissingInstance) 

else if the concept boundary is incorrect then 

 Error Type = IncorrectBoundary 

 correction = 1. Adjust the boundary 

else if T contains another type of error then 

 Error Type = Other (please also describe the new error type in the Description attribute) 

else 

 This tag is correct 

endif 
 endif 
endif 

end for each 
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Figure 4.6: Criteria for classifying an error type in task and sub-task annotation 

for each original tag T which covers a subset of a dialog D 

if T was placed at an inappropriate position in the task structure hierarchy (e.g. T was incorrectly 

identified as a task instead of a sub-task) then 

Error Type = IncorrectDecomposition 

correction  =  1. Modify the task structure hierarchy (change annotation the scheme) 

2. Modify the annotation; let PC be the current parent tag of T according to the 

original task structure hierarchy and PN be the new parent tag of T according to 

the modified task structure hierarchy 

2.1 To move T down the hierarchy (e.g. change from task to sub-task) 

o Extend the boundaries of PN to include T (PN should be marked as 

IncorrectBoundary) 

or 

o Add PN if it is missing (an error type of PN should be MissingInstance or 

MissingType) 

2.2 To move T up the hierarchy (e.g. change from sub-task to task) 

o Adjust the boundaries of PC to exclude T (PC should be marked as 

IncorrectBoundary) 

or 

o Remove PC (PC should be marked as ExtraComponent) 

else 

  Identify the number of goals NG in D if T is a task or  

Identify the number of actions NA in D if T is a sub-task (do not including the actions that 

correspond to the embedded sub-tasks of T in NA) 

  if NG or NA = 0 then 

   /* D contains no specific goal or action */ 

Error Type = ExtraComponent 

 correction  =  1. Remove T from the annotation 

2. (optional) adjust the boundaries of adjacent tags if necessary (those 

adjacent tags should be marked as IncorrectBoundary) 

else if NG or NA > 1 then 

/* merged multiple tasks or sub-tasks together*/ 

Error Type = IncorrectGranularity  

correction  =  1. Remove tag T from the annotation 

 2. Annotate all the merged components separately (the new components 

should be marked as MissingType or MissingInstance) 
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Figure 4.6: Criteria for classifying an error type in task and sub-task annotation (cont.) 

In the second step of the correction process, annotation correction, a corrector has to 

make the original annotation conforms to the form-based dialog structure annotation 

guidelines by correcting all of the tags that he/she marks as incorrect. For the tag that is 

marked as maybe incorrect, the corrector has an option to correct it if he/she is certain 

about the correction or leave it unchanged if he/she is not so sure. The corrector can also 

insert the tags that are missing from the original annotation. For each new tag, the 

corrector has to specify the type of error he/she intends to correct by adding this 

particular tag along with the degree of confidence (confident or not so confident) in the 

else if NG or NA = 1 then 

 if T is not the right tag for this task or sub-task then 

if there is a tag R in the original tagset that should be used instead then 

 Error Type = IncorrectLabel 

 correction = 1. Change T to R 

else 
/*an appropriate tag is missing*/ 

if the missing tag M is required in order to distinguish between different types of 

tasks or different types of sub-tasks then 

Error Type = NoDistinction 

else 
Error Type = MissingType 

 endif 
correction = 1. Add the missing tag M into the task structure hierarchy (change the 

annotation scheme) 

 2. Change T to M 
Endif 
correction = (optional) adjust the boundaries of the new tag if necessary 

 else 
/* T is the right tag for this concept */ 

if the boundary of T is incorrect then 

 Error Type = IncorrectBoundary 

 correction = 1. Adjust the boundary 

else if T contains another type of error then 

Error Type = Other (please also describe the new error type in the Description 

attribute) 

else 
 This tag is correct 

endif 
 endif 

 endif 

endif 

end for each 
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insertion. In the dialog structure annotation experiment, the subjects could use the 

suggested corrections provided in the error type classification diagrams in Figure 4.5 and 

Figure 4.6 as guidelines for correcting each type of error. 

4.2.3 Annotation similarity 

In cross-annotator comparison we need to compare two structural annotations. 

Furthermore, since there is no limitation on the number of levels in structured concept 

nor in sub-task decomposition, the number of annotation levels in form-based dialog 

structure annotation can be arbitrary.  

The Kappa coefficient (K) is a commonly used metric for assessing inter-annotator 

agreement. However, K is used primarily for comparing categorical judgments such as 

the dialog act label for each utterance. In order to use K with structural annotation, some 

extension is required. For instance, a cascaded approach was used in (Carletta et al., 

1997; Moser and Moore, 1997). In this approach, structural annotation is broken down 

into levels and only one annotation level is considered at a time. The highest annotation 

level in the structural annotation is evaluated first, then only the next level tags that are 

under agreed tags are considered. By separating the calculation in this way, it is quite 

difficult to tell directly the level of agreement on the overall structure and it is also not 

suitable for a structural annotation that has arbitrary number of levels as in the form-

based dialog structure representation. Other approaches (Flammia and Zue, 1995; Marcu 

et al., 1999) compared entire structural annotations directly without separating them into 

levels. However, the K values computed by these approaches may be artificially high. 

Flammia and Zue (1995) can only provide a lower bound estimation of chance 

agreement, thus an upper bound on K while Marcu et al.’s (1999) approach has a large 

numbers of non-active spans (a hierarchical structure of n segments is mapped into a set of 

2

)1(nn
overlapping spans) which may boost the observed agreement. Although the 

kappa statistic makes a correction for chance agreement, its calculation still needs to be 

based on a sensible choice of unit (Carletta, 1996). 

One can view a problem of annotating tasks, sub-tasks and concepts in a given dialog 

as a bracketing and labeling problem where a labeled bracket (task, sub-task or concept 

label) has to be placed around a word or a group of words. From this perspective, 

structural annotation of a dialog is analogous to structural annotation of a sentence. 

Brants (2000) and Civit et al. (2003) proposed similar inter-annotator agreement 

measures for syntactic structure annotation based on bracketed precision and bracketed 

recall. Both bracketed precision and bracketed recall were first introduced in the 
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PARSEVAL workshop as quantitative metrics for evaluating parser outputs (Abney et al., 

1991). 

Based on the ideas of Brants and Civit et al., I define acceptability as the degree to 

which an original annotation is acceptable to a corrector by measuring the similarity 

between an original annotation and its corrected version. If the original annotation and its 

corrected annotation are very similar, the acceptability value will be high. On the 

contrary, if the original annotation and its corrected annotation are very different, the 

acceptability value will be low. Let X be the original annotation and X’ be the corrected 

annotation: 

))'X,X(recall),'X,X(precision(avg)'X,X(ityacceptabil  (4.2) 

where 

X
XXprecision

in   brackets ofnumber  total

bracketssimilar  ofnumber 
)',(  (4.3) 

'in   brackets ofnumber  total

bracketssimilar  ofnumber 
)',(

X
XXrecall  (4.4) 

Two annotated tags (or brackets) are considered similar if both their contents and 

labels are the same. For example, <Date>may eleventh</Date> is not similar to 

<DepartureDate>may eleventh</DepartureDate>, and <Fare>fifty dollars</Fare> is not 

similar to <Fare>fifty</Fare>. This matching criterion is regarded as exact match. 

Alternative matching criteria will be discussed later in this section. Acceptability is an 

average between bracketed precision and bracketed recall. Both numbers are averaged 

using a harmonic mean similar to the way traditional precision and recall are combined to 

provide an F-1 measure. The bracketed precision and recall allows arbitrary levels in 

structural annotations to be compared at the same time.  

The changes that a corrector made to an original annotation during the cross-

annotator correction process can be classified into two board categories: major change 

and minor change. A major change modifiers the original dialog structure design, for 

example, adding a concept type or changing the composition of a structured concept, 

while a minor change occurs at the instance level and affects only the annotation and not 

the design, for example, changing a concept boundary or adding a missing annotation 

(instance not type). For task and sub-task annotation, a task or sub-task that corresponds 
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to more than one action or does not correspond to any well-defined action is considered a 

major error. Major and minor are referred to as the severity level of a change.  

The corrector makes changes to the original annotation in order to correct annotation 

errors. Therefore, each change is associated with an incorrect tag in the original 

annotation. The severity level of each change can be classified according to the error type 

of the incorrect tag that the corrector intends to correct. The terms change, correction, 

and error can be used interchangeably in this context. Common error types in Figure 4.3 

and Figure 4.4 are shown again in Table 4.4 and Table 4.5 respectively along with their 

severity levels. 

 

No. Error type Severity level 

1.1 Missing concept types (MissingType) major 

1.2 Missing concept instances (MissingInstance) minor 

2 Extraneous concept types (ExtraType) major 

3 Incorrect use of concept labels (IncorrectLabel) minor 

4 Incorrect concept boundary (IncorrectBoundary) minor 

5 Inappropriate concept granularity (IncorrectGranularity) major 

6 No distinction between similar concepts that have different 

functionalities (NoDistinction)  

major 

Table 4.4: Severity levels of common errors in concept annotation 

No. Error type Severity level 

1.1 Missing task or sub-task types (MissingType) major 

1.2 Missing task or sub-task instances (MissingInstance) minor 

2 Extraneous tasks or sub-tasks (ExtraComponent) major 

3 Incorrect use of task or sub-task labels (IncorrectLabel) minor 

4 Incorrect task or sub-task boundary (IncorrectBoundary) minor 

5 Inappropriate task or sub-task granularity 

(IncorrectGranularity) 

major 

6 No distinction between different types of tasks or different 

types of sub-tasks (NoDistinction) 

major 

7 Inappropriate task or sub-task decomposition 

(IncorrectDecomposition) 

major 

Table 4.5: Severity levels of common errors in task and sub-task annotation 
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A major error is more severe because it affects every instance of that type whereas a 

minor error affects only a specific instance. For example, MissingType is a major error 

because all of the instances of that type are not annotated while MissingInstance is a 

minor error because only one specific instance of a dialog structure component is 

omitted. 

Different dialog structures, which caused by major changes, may lead to dissimilar 

dialog systems. Some changes can cause the resulting dialog systems to have different 

functionalities. For instance, additional sub-tasks add extra actions to a dialog system. 

However, some differences can be compensated by a more sophisticated dialog system 

component. For example, a dialog system that built from a dialog structure that does not 

have detailed concept annotation (e.g. only contains <DepartLoc> not <city> and 

<state>) requires a more complex understanding module. Nevertheless, this dialog system 

still has the same functionality as a dialog system that built from a dialog structure that 

has detailed concept annotation. As it is quite subjective to decide how each change will 

affect dialog system functionalities, we merely consider both types of changes together as 

major changes rather than making subjective distinction between them. All of the minor 

changes will not affect the functionality of the target dialog system because they only 

change an annotation at the instance level but do not change a dialog structure design. 

In Equation (4.3) and (4.4), two annotated tags are considered similar if both of them 

are matched under a specified criterion. A common matching criterion is an exact match 

discussed earlier. By taking into account two additional pieces of information: degree of 

correctness and severity level, more flexible matching criteria for comparing two dialog 

structure annotations (an original annotation and its corrected annotation) can be defined. 

Six matching criteria with different degrees of rigorousness are described below. Each of 

them is defined based on how an annotation corrector judges the original tag in terms of 

its degree of correctness and type of error (for an incorrect one). The most rigorous 

criterion is listed first.   
 

1. confident match: two annotation tags are considered matched if a corrector 

rates the original tag as correct (not include maybe correct) 

2. agreed match: two annotation tags are considered matched if a corrector rates 

the original tag as correct or maybe correct 

3. labeled match: two annotation tags are considered matched if a corrector does 

not make any correction. This includes the case when a corrector rates the 
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original tag as maybe incorrect but leaves it unchanged. Labeled match is 

equivalent to exact match. 

4. labeled match and minor change: two annotation tags are considered matched 

if a corrector does not make any correction or makes only a minor change 

5. labeled match and unconfident change: two annotation tags are considered 

matched if a corrector does not make any correction or makes a change with 

uncertainty (the original tag is marked as maybe incorrect or not so confident) 

6. all but confident major change: two annotation tags are considered matched in 

all cases except the case that a corrector makes a major change with 

confidence (the original tag is marked as incorrect or confident) 

Criterion 4, 5 and 6 allow some acceptable changes to be considered as matched. 

4.2.4 Annotation experiment procedure 

The reliability of the proposed form-based dialog structure representation was 

evaluated in two types of task-oriented domains, air travel planning (information-

accessing task) and map reading (problem-solving task). The detail descriptions of both 

domains are described in Section 3.2 and Section 3.4 respectively. Eight participants 

were drawn from a target group, a group of people who are likely to use the form-based 

dialog structure representation in the future, which includes people are who involved in 

dialog system development, linguistic and language technologies students. This target 

group is the same target group as the one used in the pilot experiments. The subjects were 

drawn primarily from the Carnegie Mellon campus community. None of the subjects had 

used the scheme previously. Four subjects were assigned to each domain.  

At the beginning of the experiment, each subject was asked to study annotation 

guidelines which define the form-based dialog structure representation and also provides 

examples of dialog structure annotations in two task-oriented domains (bus schedule 

enquiry and UAV flight simulation; neither were used in the experiment). The material in 

the guidelines is quite similar to the one in Section 3.3 and Section 0. The subject was 

allowed to ask clarification questions about the guidelines. After the subject studied the 

annotation guidelines, he/she was asked to complete an annotation exercise in order to 

assess his/her understandability on the form-based dialog structure annotation scheme. 

Only a subject who sufficiently understands the annotation scheme was entered into the 

experiment.  
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During the experiment, each subject was given dialogs in one of the domains and was 

asked to design a dialog structure representation for the given domain, namely to develop 

a tagset that would be used for annotating the dialog structures of the given dialogs. The 

subject was then asked to annotate these dialogs according to the tagset he/she had 

designed. The annotation was done using CADIXE, an XML-based annotation tool. 

There was no time limit on any part of the experiment. On average, a subject studied the 

guidelines for 30-45 minutes and spent around 1-2 hours designing a markup scheme.  

To control the number of annotated instances for each dialog structure component and 

to keep the annotation experiment simple, dialog structure annotation was divided the 

into two parts: concept annotation and task/sub-task annotation. The number of dialogs 

that each subject had to annotation is shown in the first row of Table 4.6. The total 

number of components that a subject annotated for each annotation task on average is 

shown in the second row. All the subjects in the same group were given the same set of 

dialogs. 

 

 
Concept annotation Task/sub-task annotation 

Air Travel Map Reading Air Travel Map Reading 

Number of dialogs 2 2 4 2 

Number of components 178.8 347.8 50.5 60.8 

Table 4.6: Statistic of data collected from the annotation experiment 

For cross-annotation correction, each subject had to correct the markup of all the 

other subjects in the same group (i.e. three subjects). The subject was instructed to correct 

the annotation only when it did not conform to the guidelines. More detail discussion 

about dialog structure annotation and the cross-annotator correction procedure can be 

found in Section 4.2.1 and 4.2.2 respectively. 

At the end of the experiment, each participant received $10 compensation for each 

hour they had spent doing the experiment. A performance-based bonus of up to $20 was 

used to motivate the participants to complete the experiment as best as possible.  The 

subject’s performance on dialog structure design and annotation was evaluated by an 

expert (an annotation scheme developer) on how well the annotated dialogs conform to 

the form-based dialog structure annotation guidelines. The performance is quantified in 

terms of annotation accuracy which is defined as the expert’s acceptability in the 

subject’s annotation. The same cross-annotator correction procedure as the one used for 

assessing acceptability between two subjects was used to measure the expert’s 
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acceptability. The expert first corrected each subject original annotation; annotation 

accuracy was then computed by comparing the original annotation against the expert’s 

correction. The subject’s performance on annotation critique and correction was 

computed from the similarity between the subject’s critique and the expert’s critique. The 

subject’s critique and the expert’s critique for each original tag are considered similar if 

both of them mark the correctness of the original tag (as correct or incorrect) similarly.  

4.2.5 Results and discussions 

For each domain, we obtained 4 sets of original annotations along with 4 tagsets 

developed by the subjects. We also obtained 12 pairs of cross-correction (3 from each 

subjects) for each domain. Each cross-correction pair consists of an original annotation 

and its corrected version (corrected annotation).  

Two types of analysis were conducted: qualitative and quantitative analysis. In 

qualitative analysis, the differences among the original tagsets developed by the subjects 

were examined. For each type of difference, the possible causes were identified. 

Quantitative analysis, on the other hand, looks at the amount of changes the subjects 

made to the original annotations by computing acceptability for each cross-correction 

pair. The results from each type of analysis are given below. 

4.2.5.1 Qualitative analysis 

In each domain, 4 original tagsets developed by the subjects were compared against 

one another. The differences in dialog structure designs from the air travel planning 

domain and the map reading domain can be classified into 4 categories discussed below. 

The differences are illustrated by diagrams along with example annotations. The 

following notions are used in the diagrams. 

● Each box represents one annotation tag in a dialog structure design. 

● An arrow indicates decomposition in a structured concept and in a task/sub-

task hierarchy. 

● Boxes and arrows that have the same color (light or dark) were developed by 

the same subject. 

● Overlapping boxes represent equivalent tags developed by different subjects 

(two tags are considered equivalent if the subjects used them to mark the 

same set of instances in the given dialogs) 
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For each category of the differences, the possible causes and the corrections (if any) 

that the subjects made when they encountered the difference (between their own dialog 

structure design and the dialog structure they critiqued) are also discussed. 

Differences in concept annotation 
 

1. Structured concept granularity 

Examples 

A course-grained vs. a fine-grained annotation of “houston texas” in the 

air travel planning domain 

 

 

 

 

 

 

 

 

 

 

 <DepartureLocation>houston texas</DepartureLocation> 

 <DepartLoc> 

 <City>houston</City>  

 <State>texas</State> 

</DepartLoc> 

Possible causes 

 The form-based dialog structure representation does not specify the 

appropriate level of granularity of a structured concept. The design 

decision may depend on an annotator’s expectation on the capability 

of a natural language understanding module that will process the 

concept. 

Corrections 

Finer-grained concept structures were acceptable. A correction was made 

when a necessary component was missing. 

2. Structured concept decomposition 

 

 

DepartureLocation 

DepartLoc 

Airport City State 
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Examples 

 Two annotations of “five inches below the gold mine” in the map reading 

domain with different structured concept decompositions (a Distance is a 

component of a structured concept LocationRelative in the first annotation 

but is not a component of a structured concept RelativeLocation in the 

second annotation) 

 

 
 

 <LocationRelative> 

 <Distance>five inches </Distance> 

 <RelSpec>below</RelSpec> 

 <Landmark>the gold mine</Landmark> 

</LocationRelative> 

 <Distance>five inches</Distance> 

<RelativeLocation> 

 <Direction>below</ Direction > 

 <Landmark>the gold mine</Landmark> 

</RelativeLocation > 

Possible causes 

 The form-based dialog structure representation only specifies the 

definition of a structured concept; it is up to an annotator to decide on 

the complexity of each structured concept and a list of its components. 

Corrections 

 Additional structured concept components were acceptable 

 Some missing components were added 

LocationRelative 

RelSpec Distance Direction Landmark2 
 

Landmark2 

RelativeLocation 

Landmark 
Landmark 

Landmark Direction 

Direction Distance 
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3. Distinction between similar concepts (that have different functionalities) 

Examples  

 Annotations of “wednesday the eleventh” in the air travel planning domain 

with and without the distinction between Weekday and Date 

 

 

 

 <Day>wednesday the eleventh</Day> 

 <Weekday>wednesday</Weekday> <Date>the eleventh</Date> 

Possible causes 

 A design decision, whether to differentiate between rather similar 

concept types (between Weekday and Date in this example) that may 

have different functionalities in a dialog system 

Corrections 

  No distinction was mostly unacceptable 

4. Infrequent concept annotation 

 An infrequent concept is a concept that occurs only a couple of times in a 

given set of dialogs. Examples of infrequent concepts in the air travel 

planning domain are a PeriodHold and a PlaneType. 

Possible causes 

There is not enough data for making consistent decision. We can also 

observe inconsistency within the same subject annotation. This might be an 

indication that data sparseness is also a problem for humans, not only for 

machine learning algorithms. 

Corrections 

Subjects made changes to only a few differences. One possible 

explanation is that the subjects did not have sufficient evidence to decide on 

either of the variations.  

In summary, when there were differences between the subjects’ own dialog structure 

design and the design they critiqued, additional concept types were usually acceptable, 

but missing types were not. The frequency of a concept also affects the decision to make 

a correction.  

Day 

Weekday Date 
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Differences in task and sub-task annotation 
 

1. Sub-task granularity  

Examples  

 A coarse-grained sub-task vs. fine-grained sub-tasks in the air travel 

planning domain 

 

Possible causes 

 An action that associated with a low-level sub-task, for instance, 

hotel_price_decision, is correlated with the implementation of a 

target dialog system. Therefore, the design of a low-level sub-task is 

more subjective, and thus likely to be different. 

Corrections 

 A course-grained sub-task decomposition was more acceptable than a 

fine-grained sub-task decomposition.  

 Additional low-level sub-tasks were considered as extra components 

(not corresponding to any action) and were removed 

2. Distinction among different types of tasks or sub-tasks 

Examples  

Two distinct tasks (ReserveTrip and PurchaseTrip) vs. one general task 

(schedule_a_trip) in the air travel planning domain 

 

 

 

 

 

 

schedule_a_trip 

ReserveTrip PurchaseTrip 

arrange_hotel 

hotel_duration_decision hotel_price_decision 

book_hotel 
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Possible causes 

 Different levels of generalization of tasks or sub-tasks and their 

associated forms 

Corrections 

 Extra distinction was mostly acceptable 

3. Task and sub-task decomposition 

Examples  

Whether to have an additional sub-task (e.g. DefineLeg) that groups 

together all of the database queries made for one leg of the trip 

 

 

 

Possible causes 

 Different design decisions on how to organize related sub-tasks (into a 

hierarchical structure or a flat structure). These decisions may depend 

on how dependencies among sub-tasks are perceived. There are more 

dependencies between sub-tasks in the same decomposition level than 

between sub-tasks in different decomposition levels that do not 

subsume one another. 

 The guidelines only discuss dependencies between top-level sub-tasks 

as they are decomposed from a task, but do not discuss dependencies 

beyond the top level sub-tasks 

Corrections 

 Not acceptable by some subjects 

CheckFlightTime 

DefineLeg (s) 

DefineLegs 

Book-Flight 

Query-Flight-Attributes Query-Flight-Availability 
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4. Missing/extra sub-tasks 

Examples  

 Whether send_itinerary is an action in the air travel planning domain. 

Possible causes 

 Different decisions on what should be an action 

Corrections 

 Some extra sub-tasks were considered  incorrect 

In summary, when there were differences between the subjects’ own dialog structure 

design and the design they critiqued, additional sub-tasks were usually considered as 

extra components (not associated with any action) and were removed. This is opposite to 

the correction in concept annotation. One possible reason is that the guidelines state 

explicitly what should not be considered as a task or a sub-task, but do not do so for a 

concept. Moreover, extra concepts usually provide more information for the execution of 

a form.  

Another interesting finding is that all of the corrections on task and sub-task designs 

made the designs more similar to the correctors’ own designs. The subjects seem to have 

a stronger opinion on what should be a correct design (tagset) for tasks and sub-tasks than 

for concepts. 

4.2.5.2 Quantitative analysis 

In each domain, 12 pairs of cross-correction (3 pairs from each subject) were 

collected. Each cross-correction pair consists of an original annotation and its corrected 

version (corrected annotation). Acceptability for each cross-correction pair was computed 

according to Equation (4.2).  

I will first present the acceptability of concept annotation and the acceptability of task 

and sub-task annotation. Then, I will discuss annotation accuracy which is an expert’s 

acceptability in a subject’s annotation. Confidence in cross-annotator correction will also 

be discussed. Finally, the result presented in this section will be compared to other works.  

Acceptability of concept annotation 

The average acceptability in concept annotation of all cross-correction pairs is shown 

in the first row of Table 4.7. Between two types of changes, major and minor, discussed 

in Section 4.2.3, I am more interested in major changes as these changes reflect 

disagreement on dialog structure designs, which may stem from differences in the 

interpretation of the form-based dialog structure definition, while minor changes reflect 
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disagreement at the instance level, which are usually caused by inconsistency in 

annotation. The average acceptability when all of the minor changes are excluded from 

the corrected annotations is shown in the 2
nd

 row of Table 4.7. This is equivalent to using 

a labeled match and minor change criterion as a matching criterion in stead of a labeled 

match (or an exact match) criterion used for computing the acceptability shown in the 

first row. Acceptability with minor changes excluded can be considered as the 

acceptability of the dialog structure designs. 

 

Reliability Measure Air Travel Map Reading 

acceptability 0.81 0.85 

acceptability – minor 0.96 0.95 

Table 4.7: The acceptability of concept annotation 

In both domains, the acceptability of concept annotations is quite high (> 0.8) and is 

high (> 0.95) when minor changes are excluded. Only 22% of the changes in the air 

travel planning domain are major changes while the number is slightly higher (27%) in 

the map reading domain. Table 4.8 shows the percentage of each error type calculated 

from the total number of errors. Even though the overall number of major errors is lower 

in the air travel domain, the percentage of Missing Type errors is higher. Since the 

average number of concept types that each subject designed is higher in the air travel 

domain than in the map reading domain (36.0 vs. 12.3), it is more likely to miss some 

concept types. Examples of major changes (errors) in concept annotation are discussed in 

detail in Section 4.2.5.1 
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  Air Travel Map Reading 

Missing Type 10.6% 4.4% 

Extra Type 0.3% 6.1% 

Incorrect Granularity 6.4% 7.2% 

No Distinction 4.5% 9.6% 

Extra Distinction 0.3% 0.0% 

major errors 22.1% 27.2% 

 

Missing Instance 17.1% 26.6% 

Incorrect Label 35.0% 32.2% 

Incorrect Boundary 25.8% 14.0% 

minor errors 77.9% 72.8% 

Table 4.8: Errors in concept annotation 

Acceptability of task and sub-task annotation 

For task and sub-task annotation, the acceptability is moderate in both domains as 

shown in Table 4.9. But if minor changes are excluded, the acceptability is quite high (> 

0.8). In both domains, most of major changes come from differences in sub-task 

decomposition granularity. The subjects agreed on the tasks and top-level sub-tasks, but 

did not quite agree on low-level sub-tasks. The low-level sub-tasks are correlated with the 

implementation of a target dialog system; therefore, the design of the low-level sub-tasks 

is more subjective, and thus likely to be different. Additional low-level sub-tasks were 

usually considered extra components (not corresponding to any action). Therefore, a 

coarse-grained decomposition is more acceptable than a fine-grained decomposition. 

Major changes in task and sub-task annotation are discussed in detail in Section 4.2.5.1 

 

Reliability Measure Air Travel Map Reading 

acceptability 0.71 0.60 

acceptability - minor 0.81 0.84 

Table 4.9: The acceptability of task and sub-task annotation 

Table 4.10 shows the percentage of each error type calculated from the total number 

of errors. The air travel domain has higher percent of major errors than the map reading 

domain since the structure of task and sub-tasks in the air travel domain is more 

complicated. On the other hand, the map reading domain has higher disagreement at the 

instance level especially on the boundaries of draw_a_segment sub-tasks. It is more 
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difficult to identify a boundary between two sub-tasks of the same type than doing so for 

different types of sub-tasks as in the air travel domain. 

 

  Air Travel Map Reading 

Missing Type 27.1% 11.2% 

Extra Type 29.5% 6.3% 

Incorrect Granularity 6.8% 11.2% 

No Distinction 0.0% 0.0% 

Incorrect Decomposition 0.0% 5.6% 

Extra Distinction 1.5% 0.0% 

major errors 64.9% 34.3% 

  

Missing Instance 20.3% 37.5% 

Incorrect Label 0.9% 3.7% 

Incorrect Boundary 13.8% 24.5% 

minor errors 35.1% 65.7% 

Table 4.10: Errors in task and sub-task annotation 

When comparing between annotation tasks, the acceptability of task and sub-task 

annotation is lower than the acceptability of concept annotation. The percentage of major 

errors in task and sub-task annotation is also higher. A concept is easier to observe from 

the transcription as its unit is smaller than a task or a sub-task. Moreover, dialog 

participants have to clearly communicate the concepts in order to execute a domain 

action. A task and a sub-task, on the other hand, correspond to larger dialog units, and 

associate with domain actions which are sometimes quite difficult to observe directly 

from the transcription (a grounding action, for example). 

Annotation accuracy 

Accuracy is a coding scheme expert’s acceptability in a subject’s annotation and is 

computed by the same cross-annotator correction process. Annotation accuracy is used to 

verify that the subjects did not agree on incorrect annotations. When both acceptability 

and accuracy are high, we can be assured that the high level of agreement is reasonable. 

The accuracy of concept annotation shown in Table 4.11 is the average of all subjects. 

Both acceptability and accuracy are calculated when all minor changes are excluded. 

Since both numbers are high, we can say that high acceptability is reasonable when 

compared to the expert’s judgment. 
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Reliability Measure Air Travel Map Reading 

acceptability – minor 0.96 0.95 

accuracy – minor  0.97 0.89 

Table 4.11: The acceptability and the accuracy of concept annotation 

The acceptability and the accuracy of task and sub-task annotation are shown in Table 

4.12. The accuracy is slightly higher than the acceptability in the air travel domain, which 

means that on average the subjects were more critical and made slightly more changes 

than the expert. Nevertheless, we are assured that the acceptability of 0.81 is not biased 

high when compared to the expert’s judgment. However, in the map reading domain, the 

accuracy is moderate and is lower than the acceptability since the subjects were less strict 

than the expert on grounding sub-task annotation. The subjects may not have a concrete 

definition of this sub-task as the corresponding action is difficult to observe. 

 

Reliability Measure Air Travel Map Reading 

acceptability – minor 0.81 0.84 

accuracy – minor  0.90 0.65 

Table 4.12: The acceptability and the accuracy of task and sub-task annotation 

Confidence in annotation correction 

During the cross-annotator correction process, the subjects also provided the level of 

confidence in their correction by rating each tag as correct, maybe correct, maybe 

incorrect, and incorrect. By taking into account the level of confidence when computing 

acceptability, we can identify whether they were confident when they agreed or disagreed 

with other annotators.  

Both acceptability measures presented in Table 4.13 are computed by Equation (4.2) 

but with different matching criteria. The standard acceptability, which uses exact match 

or (labeled match) as a matching criterion, is presented in the first row of the table. The 

confident acceptability, which uses confident match as a matching criterion, is presented 

in the second row of the table. Under this criterion only correct tags are considered as 

matched whereas maybe correct tags are considered unacceptable. If there are many 

maybe correct tags in an annotation critique, the confident acceptability will be lower 

than the standard acceptability. The detail discussion about different matching criteria is 

given in Section 4.2.3.  
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Since the confident acceptability is only slightly lower than the standard acceptability 

in both domains, we can say that the subjects were confident when they marked dialog 

structure components as correct. When comparing between two annotation tasks, in 

concept annotation, the value of confident acceptability is almost the same as the value of 

standard acceptability while, in task and sub-task annotation, the value of confident 

acceptability is slightly lower. The subjects were more confident when they rated 

concepts as correct than when they made the same decision on tasks and sub-tasks. 

 

Reliability Measure 
Air Travel Map Reading 

Concept Task/sub-task Concept Task/sub-task 

acceptability 0.81 0.71 0.85 0.60 

confident acceptability 0.80 0.68 0.84 0.58 

Table 4.13: Confidence in acceptable tags  

Instead of excluding all minor changes from the corrected annotations as in 

acceptability – minor, acceptability – unconfident excludes all uncertain changes (the 

changes that are marked as maybe incorrect) from the corrected annotations. Only the 

changes that are marked as incorrect are considered unacceptable. The acceptability – 

unconfident uses a labeled match and confident change criterion as a matching criterion 

in stead of a labeled match (or an exact match) criterion used for computing the standard 

acceptability shown in the first row of Table 4.14. If there are many maybe incorrect tags 

in an annotation critique, the acceptability – unconfident will be higher than the standard 

acceptability. 

In Table 4.14, the values of the acceptability – unconfident are about the same as the 

values of the standard acceptability in the air travel domain while the values of the 

acceptability – unconfident are higher in the map reading domain. These results indicate 

the subjects were less confident when correcting the annotations in the map reading 

domain than when correcting the annotations in the air travel domain. However, many 

unconfident corrections in the map reading domain were caused by specific coder-

corrector pairs rather than by particular types of errors. When comparing between 

annotation tasks, the subject were less confident when correcting tasks and sub-tasks than 

when correcting concepts.  
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Reliability Measure 
Air Travel Map Reading 

Concept Task/sub-task Concept Task/sub-task 

acceptability 0.81 0.71 0.85 0.60 

acceptability – unconfident 0.83 0.75 0.91 0.70 

Table 4.14: Confidence in all changes  

Similar results when considering only major changes are shown in Table 4.15. 

Acceptability – (minor or unconfident) excludes all of the changes from the corrected 

annotations except the confident major changes. This acceptability measure uses the most 

relaxed matching criterion by allowing all but confident major changes to be considered 

as matched. If there are many major errors that are marked as maybe incorrect in an 

annotation critique, the acceptability – (minor or unconfident) will be higher than the 

acceptability - minor. In most of the cases, the subjects were confident when they made 

major changes as acceptability values do not change much when uncertain changes are 

excluded. 

 

Reliability Measure 

Air Travel Map Reading 

Concept Task/ 

sub-task 

Concept Task/ 

sub-tak 

acceptability – minor 0.96 0.81 0.95 0.84 

acceptability – (minor or unconfident) 0.96 0.83 0.97 0.88 

Table 4.15: Confidence in major changes  

In summary, the subjects were confident when they marked dialog structure 

components as correct and when they made major changes to the original annotations. 

Some subjects were, however, not so confident when they made minor changes to the 

original annotations of some other subjects, but were more confident when they made 

major changes. 

Comparison with other works 

First, I would like to emphasize the difference between the evaluation procedure 

described in this section and a conventional procedure used in other dialog structure 

annotation evaluations. The goal of the human annotation experiment described in this 

section is to verify that the proposed form-based dialog structure framework can be 

understood by annotators other than a coding scheme developer and that they can 

generate a reasonable domain-specific tagset for a given task-oriented domain from the 

definitions of task, sub-task, and concept provided by the framework. I was not intending 
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to evaluate agreement on a specific tagset for a specific domain as normally done in a 

conventional evaluation, which compares two annotated dialogs that are based on the 

same (given) tagset. 

Carletta et al. (1997) applied an alternate representation to the same HCRC Map Task 

corpus. However, since they used a different metric to evaluate the reliability of their 

representation, a direct comparison cannot be made between their result and the results 

presented in this section. The comparison in terms of how both representations, the form-

based dialog structure representation and Carletta et al.’s (1997) representation, model a 

dialog in the same map reading domain are provided in Section 3.4. 

Other researchers who used the similar evaluation metric as the one used in this 

section, (Brants, 2000; Civit et al., 2003) reported bracketed precisions in the range of 

0.63 - 0.92 on sentence structure annotation. The acceptability values, which are also 

based on bracketed precision, reported in this section are in a comparable range. 

4.2.6 Conclusion 

The form-based dialog structure annotation scheme can be understood and applied 

reliably by non-expert coders producing high acceptability in cross-annotator correction 

on dialog structure designs (bracketed precision > 0.8) in two disparate task-oriented 

domains: air travel planning (an information-access task) and map reading (a problem-

solving task). High acceptability is also reasonable when compared to an expert’s 

judgment measured in terms of annotation accuracy. Among the components in the form-

based dialog structure representation, concepts can be identified more reliably than tasks 

and sub-tasks in both domains. High annotation scheme reliability demonstrated by these 

results reveals that the form-based annotation scheme is concrete and unambiguous 

which could also imply learnability. 

The subjects were confident when they agreed with other subject annotations. They 

were sometimes not so confident when they made changes to the original annotations but 

mostly on minor changes. The major changes in the dialog structure designs includes: 

removing extraneous sub-tasks and adding missing concept types. Some of the 

differences between dialog structure designs were acceptable including: additional 

concept types and coarser-grained sub-task decomposition. The proposed evaluation 

methodology can accommodate acceptable annotation variations and thus helps to 

produce insights into annotation scheme designs. 
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Chapter 5 

Concept Identification and Clustering 

 The goal of concept identification and clustering described in this chapter is to 

identify a set domain concepts in each task-oriented domain from the transcription of in-

domain dialogs, and, for each concept, to identify a list of its members. For instance, 

given a set of dialogs in an air travel domain, we would like to discover that a set of 

domain concepts includes, CityName, Airline and Date, and, for a CityName, 

Pittsburgh and Seattle are its members. Since a list of concept types in a given domain is 

not pre-specified but will be explored from data, the concept identification problem is 

different from a classification problem, for example, named entity extraction. In the 

classification problem, a word or a group of words is classified as one of the predefined 

roles such as person and organization. 

Since the members of the same domain concept are used in similar context in that 

particular domain, we can employ a word clustering technique that clusters words based 

on their similarity to group words that belong to the same domain concept together. There 

are many techniques for clustering similar words together. Since the goal of this thesis is 

to minimize human effort in acquiring domain-specific information and that a list of 

domain concepts is not pre-specified and will be explored from in-domain dialogs, I will 

focus on unsupervised techniques which allow a learning system to learn the domain 

concepts from un-annotated transcription. A decision to use an unsupervised learning 

approach instead of a supervised learning approach is discussed in more detail in Section 

2.2.3. Two unsupervised clustering approaches are investigated, mutual information-

based clustering and Kullback-Liebler-based clustering. Both algorithms, described in 

Section 5.1.1 and Section 5.1.2 respectively, are an iterative statistical clustering 

algorithm, but use different heuristics to determine the similarity between words or 

groups of words. For an iterative hierarchical clustering approach, a stopping criterion is 

an important parameter. Automatic stopping criteria based on the measures available 

during the clustering process are proposed in Section 5.1.3 for both clustering algorithms. 

In additional to an unsupervised learning algorithm that explores domain concepts 

from unannotated transcription of in-domain dialogs, we can also employ existing 

knowledge sources that contain information about the language and the domain to 
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improve learning accuracy. A knowledge-based clustering approach that utilizes semantic 

information stored in the WordNet lexical database is described in Section 5.2. 

Fisher (1987) used an approach that differs from the ones discussed in this chapter to 

cluster categorical objects. Each object to be clustered is represented by a feature-value 

description. For example, a feature-value description for a fish is {BodyCover = “scales”, 

HeartChamber = “two”, BodyTemp = “unregulated”, Fertilization = “external”}. The 

similarity between objects is calculated from a conditional probability of a feature-value 

pair and an inferred object class. Möller  (1998) applied this conceptual clustering 

algorithm to infer a set of domain-specific dialog acts from a corpus of in-domain 

conversations. A set of features for each utterance consists of prosodic events, recognized 

words, and semantic structure. These features are automatically extracted from various 

knowledge sources available to a dialog system. The conceptual clustering algorithm that 

was used for dialog act acquisition is discussed in more detail in Section 2.2.2.1. Fisher’s 

clustering algorithm allows an object to be described with multiple features while 

statistical clustering algorithms discussed in this chapter only utilize the statistics of word 

co-occurrences. Since it is not clear that a richer set of features in addition to context 

words are useful for concept words clustering, a simpler algorithm that is designed 

specifically for word clustering might be a better choice. 

Some words in dialog transcription are not concept words and should be filtered out. 

Section 5.3 describes selection criteria that could be used to distinguish between concept 

words and non-concept words. The evaluation metrics that were used to evaluate the 

proposed concept identification and clustering approaches are described in Section 5.4. 

The experiment results are presented in Section 5.5. Finally, all the findings are 

concluded in Section 5.6. 

5.1 Statistical clustering algorithms 

A statistical clustering algorithm uses statistics calculated from the relation between a 

word to be clustered and its context to determine the similarity between words or group 

of words. Many statistical clustering algorithms rely on word co-occurrence statistics 

including the ones discussed in this section, mutual information-based clustering and 

Kullback-Liebler-based clustering. These algorithms groups words that occur in similar 

contexts together in the same cluster. The context is usually defined as immediately 

preceded words and immediately succeeded words. Statistics of other kinds of relations 

besides word co-occurrence can be used as well such as grammatical relations between a 
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word to be clustered and other words in the same sentence (Lin, 1998). However, this 

technique requires a parser with may not work well with a spoken language. 

Both mutual information-based clustering and Kullback-Liebler-based clustering are 

an agglomerative hierarchical clustering approach (or a bottom-up approach), but they 

use different heuristics to determine the similarity between words or groups of words. 

Both clustering algorithms iteratively merge words or clusters together in the order of 

their similarity which create a hierarchy of clusters (a treelike structure). The cluster at a 

leaf corresponds to a word in the vocabulary. The intermediate nodes that are closer to 

the leaves represent more specific word classes while the intermediate nodes that are 

closer to the root represent more general concepts. Hierarchical clustering provides us a 

more flexible way to understand and interpret the structure of a dialog since a concept 

may be broken down into several specific concepts or grouped into a more general 

concept, as needed.  

5.1.1 Mutual information-based clustering 

The mutual information-based clustering algorithm (MI-based clustering) used in this 

thesis is similar to the one described in (Brown et al., 1992)
4
. This algorithm defines the 

similarity between words or clusters based on their mutual information with adjacent 

words or clusters. The algorithm starts by assigning each word to its own cluster then 

iteratively merges clusters in a greedy way such that at each iteration the loss in average 

mutual information is minimized. After each merge, the original words or clusters in the 

transcript are replaced by a symbol of a new cluster and the related probabilities are 

recomputed. The merging process continues until the desired number of clusters is 

reached or a stopping criterion is met. A stopping criterion will be discussed in Section 

5.1.3. Average Mutual Information (AMI) is defined by the following equation.  
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(5.1) 

 

where p(i,j) is the bigram probability of clusteri and clusterj, i.e., the probability that a 

word in clusteri precedes a word in clusterj. 

5.1.2 Kullback-Liebler-based clustering 

In Kullback-Liebler-based clustering (KL-based clustering) similarity between words 

or clusters is determined by the Kullback-Liebler (KL) distance. The merging process is 

                                                 
4
 The MI-based clustering program that was used in the experiment was implemented by Rose Hoberman 
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similar to that of MI-based clustering except that the order of clusters that get merged is 

determined by KL-distance instead of AMI. Since the notion of distance is the invert of 

similarity, the KL-based clustering merges together words or clusters that have the least 

KL-distance first. 

The KL-distance used in this research is similar to the one described in (Siu and 

Meng, 1999) and (Pargellis et al., 2001). A symmetric non-blow-up variant of the KL-

distance, which is known as Jensen-Shannon divergence (Dagan et al., 1999), is applied 

to avoid the problem when one of the probabilities is equal to zero. The KL-distance 

between two probability functions pa and pb is given by the following equation. 
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A distance between clusteri and clusterj, is the sum of the KL-distance between the 

left context probability (p
left

) of the two clusters and the KL-distance between the right 

context probabilities (p
right

) of the two clusters. More specifically, 
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 and p
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 are bigram probabilities. pi
left

(vk) is the probability that word vk is found 

on the left of words in clusteri. Similarly pi
right

(vk) is the probability that word vk is found 

on the right of words in clusteri. Specifically, 
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From the definitions of p
left

 and p
right

, the sum in Equation (5.3) is the sum over all the 

context words vk in the vocabulary. 
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Since Equation (5.5) and (5.6) treat all of the words in the same cluster as the same 

word token, after two clusters are merged, all of the occurrences of their members in the 

corpus are replaced with the same token and the related probabilities are recomputed. By 

replacing the original word tokens with the new token that represents the merged cluster, 

both the MI-based clustering algorithm and the KL-based clustering algorithm can be 

considered as a recursive clustering algorithm. An alternative way to measure the 

distance between two clusters without recalculating word statistics is to calculate the 

distance between the clusters directly from the KL-distances between individual members 

of the two clusters. Three linkage distances, single linkage, maximal (or complete 

linkage), and average linkage, define a distance between two clusters from the distances 

between their members as follows: 
 

1. Single linkage (Ls) defines a distance between two clusters as the minimum   

KL-distance between members of the two clusters 

2. Complete linkage (Lc) defines a distance between two clusters as the 

maximum KL-distance between members of the two clusters 

3. Average linkage (Lg) defines a distance between two clusters as the average 

of the KL-distances between members of the two clusters 

More detail discussion on linkage methods can be found in many textbooks and 

tutorials  that describe hieratical clustering techniques such as Rasmussen’s article (1992) 

5.1.3 Stopping criteria 

Since an iterative clustering algorithm can continue to merge similar clusters together 

until there is only one big cluster left, it is very important to choose an appropriate stop 

point. A stopping criterion determines when the iterative clustering algorithm should be 

terminated; the clusters obtained at that iteration are the output of the clustering 

algorithm. A good stopping criterion is the one that yields a good clustering result 

according to the metrics described in Section 5.4. Given that each clustering algorithm 

has a different merging characteristic, a good stopping criterion for each algorithm might 

be different. To be able to identify the last merging iteration automatically during the 

clustering process, a stopping criterion has to be based on the measures available in the 

process; examples are an AMI score in the MI-based clustering algorithm and a KL-

distance in the KL-based clustering algorithm. 

For MI-based clustering, two measures that are available during the clustering 

process, log-AMIdelta and number-of-clusters, were observed. Log-AMIdelta is the 
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difference between AMI scores of successive iterations in log base. Number-of-clusters is 

the total number of the clusters that contain more than one word at a given iteration. 

Figure 5.1 shows the graph that plots the values of both measures versus the clustering 

iteration. Log-AMIdelta is presented in a lighter color while number-of-clusters is 

presented in a darker color. The diamond dots indicate stop points. 

Figure 5.1: The values of two indicators, log-AMIdelta and number-of-clusters at each 

merging iteration of MI-based clustering  

The first stopping criterion is based on AMIdelta. Since the MI-based clustering 

algorithm minimizes the loss in average mutual information (AMIdelta) when it merges 

two clusters together, AMIdelta is small at the early iteration and increases as the number 

of iterations increases. From the graph in Figure 5.1, we can see that the values of log-

AMIdelta form a straight line for the most part but rises up at the end. It is reasonable to 

stop the clustering process when AMIdelta increases significantly since too much 

information was lost from merging two clusters together at that iteration. To obtain that 

iteration point, we draw a linear estimation of the values of log-AMIdelta after removing 

the outliers. The intersection between the line that represents the linear estimation and the 

one that represents the actual values of log-AMIdelta is the stop point (AMI-intersection). 
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The second stopping criterion is based on the number of clusters. The number of 

clusters increases when two single words are merged together, but decreases when two 

clusters are merged. One possible stopping criterion is the last local maximum number-

of-clusters (last-max-clusters), which is the last iteration before the number-of-clusters 

decreases monotonically. This stopping criterion is justified because after this point no 

concept word is introduced to the clusters and irrelevant clusters may get merged 

together. 

For KL-based clustering, two measures that can be observed during the clustering 

process, KL-distance (between the two clusters that get merged) and number-of-clusters 

(which contains more than one word), were examined. Figure 5.2 shows the graph that 

plots the values of both measures versus the clustering iteration. KL-distance is presented 

in a lighter color while number-of-clusters is presented in a darker color. The diamond 

dots indicate stop points.  

Figure 5.2: The values of two indicators, KL-distance and number-of-clusters, at each 

merging iteration of KL-based clustering  
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The first stopping criterion for KL-based clustering is based on a KL-distance. Since 

the KL-based clustering algorithm chooses to merge the clusters that are more similar 

first, the KL-distance between the two clusters that get merged at the earlier iteration is 

smaller. The KL-distance increases as more merging iterations are carried on as shown in 

the graph in Figure 5.2. However, after about 300 iterations the value of the KL-distance 

starts to fluctuate because many context words were already merged and were replaced 

by the same token. The distance value at this point may not indicate the same degree of 

similarity as the similar distance value at the earlier iteration. The fluctuation in the 

values of the KL-distance indicates that the clustering algorithm excessively merges the 

clusters. Therefore, the iteration that the value starts to fluctuate is a good candidate for a 

stop point (before-fluctuated). For a stopping criterion that based on the number of 

clusters, the same criterion as the one used in MI-based clustering, the last local 

maximum number-of-clusters (last-max-clusters), can be applied. 

In the clustering algorithm that uses a linkage distance measure, a KL-distance is 

calculated from the original word statistic, so the distance at each merging iteration 

continues to increase without any fluctuation. The graph in Figure 5.3 shows a flat 

portion between the 250
th

 iteration and the 350
th

 iteration. The KL-distances at these 

iterations are the same and are equal to 1.386. This KL-distance value is obtained when 

all the left contexts of the two clusters that get merged are identical, but all their right 

contexts are different or vise versa. This usually occurs when the available contexts are 

not enough to determine the similarity. Furthermore, the identical contexts are mostly 

function words such as articles and preposition. For instance, “restrictions” and “base” 

always have the same right context “on” in this corpus. One reasonable stopping criterion 

is to stop right before the flat part in the KL-distance graph (before-flatten) since from 

this point onward the clusters are not quite similar or there is no enough information to 

determine their similarity. Riccardi and Bangalore (1998) proposed a simple stopping 

criterion based on a KL-distance, the median of the distance (median). A clustering 

algorithm can simply stop when the KL-distance between the two clusters that get 

merged exceeds the median.  
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Figure 5.3: The values of two indicators, KL-distance and number-of-clusters, at each 

merging iteration of average linkage KL-based clustering  

5.2 Knowledge-based clustering algorithms 

Some domain concepts are shared among various domains and are already defined as 

parts of world knowledge. One example would be a concept DayOfWeek which consists 

of 7 members: “Monday”, “Tuesday”, “Wednesday”, “Thursday”, “Friday”, “Saturday”, 

and “Sunday”. It seems redundant to re-discover these concepts again and again for every 

new domain. Furthermore, given that a statistical clustering algorithm is not perfect, it 

might be better to extract concepts that are domain-independent and well-defined from an 

existing knowledgebase instead. Since the statistical approach relies totally on data, its 

clustering performance is depended on statistical evidences. For example, if some 

concept members occur only a few times in the given data, the quality of that concept 

may not be so good. A concept that is obtained from a knowledgebase, on the other hand, 

is more accurate provided that the concept has already been defined in the given 

knowledge resource. Moreover, the knowledgebase does not only give us a list of 

 

KL-based clustering (average linkage)

0

50

100

150

200

250

0 200 400 600 800 1000

Iteration

n
u

m
b

e
r 

o
f 

c
lu

s
te

rs

0

0.5

1

1.5

2

2.5

3

d
is

ta
n

c
e

number of clusters KL-distance

last-max-clusters

median

before-flatten



Chapter 5: Concept Identification and Clustering 

 

170 

members for each concept, but also provides additional information about the concept 

itself such as the name of the concept.  

One available lexical resource is WordNet (Miller et al., 1990). WordNet is an 

electronic lexical database which organizes the lexicons based on their meanings rather 

than alphabetical order. The following properties of WordNet make it a suitable resource 

for concept clustering.  

● It contains a rich set of relations, such as synonym, hyponym, and antonym, 

that connects semantically related lexicons together 

● It provides detail information about each lexicon such as a gloss and its 

frequency 

● It is freely available and so as many applications and libraries that utilize 

information stored in WordNet 

Since each word can have multiple parts of speech and senses, in order to obtain the 

correct information of a specific word from WordNet, both its part of speech and word 

sense have to be specified. Hence, two additional steps, part of speech tagging and word 

sense disambiguation, are required in order to use information from WordNet for concept 

clustering. These two steps are discussed in more detail below. 

Many automatic part of speech taggers (POS taggers) that are available have a 

promising performance. Nevertheless, most POS taggers were trained from a written 

language such as news articles. The characteristics of a written language and the 

characteristics of a spoken language used in task-oriented conversations are quite 

different. Furthermore, a set of POSs used by a tagger may be different from the one used 

in WordNet. To obtain the part of speech of each word in the corpus, ePost
5
 tagger is 

used. This POS tagger is an adapted version of Brill's part-of-speech tagger (Brill, 1994) 

developed by Benjamin Han. ePost was trained from the Wall Street Journal corpus. 

Word sense disambiguation (WSD) is a more difficult problem. Unsupervised 

approaches for word sense disambiguation were hardly better than the most common 

sense baseline according to the results of SENSEVAL-3, The Third International 

Workshop on the Evaluation of Systems for the Semantic Analysis of Text, (Snyder and 

Palmer, 2004). Based on this reason, ambiguous word senses are simply resolved by 

choosing the most common sense. 

Semantic information in WordNet is organized separately for each of the four part of 

speech types: noun, verb, adjective and adverb. Among these four part of speech types, 

                                                 
5
 This POS tagger can be obtained from http://www-2.cs.cmu.edu/~benhdj/Code/index.html 
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noun is the one that is more likely to contain domain information. It is also a category 

that has been work on intensively and has a well-defined structure in WordNet. 

Therefore, the knowledge-based clustering will first focus on nouns. Among various 

semantic relations that hold between nouns, a relation that is useful for concept clustering 

is a hypernym relation or an is-a relation. This relation links a word to its superordinate. 

For example, “city” is a hypernym of “Pittsburgh” or in other words “Pittsburgh” is a 

“city”. Words that belong to the same type share the same hypernym. For instance, both 

“Pittsburgh” and “Seattle” have the same hypernym “city”. Therefore, we can group 

words that belong to the same type together based on their hypernyms. 

After assigning a part of speech and a sense to each word in the corpus, for the word 

that is tagged as a noun, its hypernym is retrieved from WordNet. Then words that have 

the same hypernym are grouped together into one cluster. 

5.3 Concept word selection 

Concept word selection is a pre-processing technique that identifies words that are 

likely to be concept members and then passes these words to a clustering process. This 

pre-processing technique allows a clustering algorithm to focus only on potential concept 

members; nevertheless, some concept members might be filtered out. Two types of 

selection criteria that are based on the features of each individual word are investigated: 

frequency cut-off and a stop word. The first criterion is based on the assumption that 

concept words should occur quite often in the conversations. Hence, words that rarely 

occur should be filtered out. However, some words such as determiners and prepositions 

are very common, but do not contain any domain information. Therefore, they should not 

be considered as concept words. These words are known as stop words and have been 

widely used in the information retrieval community. The second selection criterion makes 

use of a stop word list. Words that are defined as stop words are filtered out. Many stop 

word lists are freely available; however, the differences between the characteristics of a 

written language and the characteristics of a spoken language have to be considered.  

5.4 Evaluation metrics for concept clustering 

To assess the performance of each concept clustering algorithm, the output clusters 

are compared directly against a set of reference concepts (created by a domain expert) in 

a domain of interest using the evaluation metrics proposed by Chotimongkol and 

Rudnicky (Chotimongkol and Rudnicky, 2002). There are two levels of evaluation 

metrics, a concept-level metric, which measures how well a clustering algorithm 



Chapter 5: Concept Identification and Clustering 

 

172 

identifies and groups together the members of a particular concept and an overall metric, 

which measures the overall quality of all the concepts. The first step in the evaluation 

process is to create a mapping between the output clusters and the reference concepts. 

Then each cluster is evaluated against the concept that it represents using concept-level 

metrics. Finally, the overall quality of all the clusters is evaluated. These steps are 

described in detail in Section 5.4.1 – Section 5.4.3 respectively. 

5.4.1 Cluster to concept mapping 

Since a clustering algorithm does not assign a concept label to each cluster, a majority 

voting scheme is used to identify the concept that each cluster represents. Under this 

scheme, each word in the cluster is assigned a concept label according to the concept that 

it belongs to in the reference. For simplicity, each word is restricted to belong to only one 

concept. Then, the concept that encompasses the greatest number of words in the cluster, 

or the majority concept, is assigned as a concept label for that cluster. Based on this 

concept label assignment, several clusters may have the same majority concept and thus 

represent the same concept. A many-to-one mapping between multiple clusters and a 

reference concept is acceptable for concept identification. Ideally, we would like to 

merge every word that belongs to the same concept into a single cluster. However, a 

clustering algorithm may not be able to group all the members of the same concept 

together in one cluster. As a result, there are multiple clusters that represent the same 

concept. Since it is also possible to merge the clusters that represent the same concept 

together during a post-processing either by a human or an automatic process, allowing a 

many-to-one mapping between multiple clusters and a concept is better than strictly 

choosing only one cluster from these multiple clusters to represent the concept and 

missing concept members in the other clusters. 

5.4.2 Concept-level metrics 

Concept-level metrics indicate how well a clustering algorithm identifies and clusters 

the members of a particular concept. The following metrics, precision, recall and 

singularity score, are computed for each reference concept. Precision and recall measure 

the purity and completeness of the clusters respectively. Singularity score measures how 

well words that belong to the same concept are merged together. This metric was 

introduced by Chotimongkol and Rudnicky (2002)  to address the issue of a many-to-one 

mapping. 

A slight modification was made to the traditional precision and recall commonly used 

in the information retrieval community to allow multiple clusters to be compared against 
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a reference concept. Let Ri be a reference concept of interest and C1, C2, …, Cmi
 be the 

clusters that represent the concept Ri; where mi is the number of the clusters. The 

precision and recall of the concept Ri are calculated using the following equations. 
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Since more than one cluster is allowed to represent a concept, an additional quality 

metric, singularity score (SS) is used to capture how well words that belong to the same 

concept are merged together. When there is only one cluster that represents the concept, 

its singularity score gets a perfect score of 1. A penalty is imposed when a concept is split 

into more than one cluster. The singularity score is defined by the following equation.  

i

i
m

1
)y score(Rsingularit  (5.9) 

 

To combine all three concept-level metrics into a single number, a metric called 

quality score was introduced (Chotimongkol and Rudnicky, 2002). Quality score (QS) of 

each concept is computed from its precision, recall and singularity score in the same way 

that an F-measure is calculated from precision and recall. Specifically, quality score is a 

harmonic mean of precision, recall and singularity score. 

5.4.3 Overall metrics 

In order to perform an end-to-end comparison between two clustering algorithms, a 

metric that indicates the overall quality of a set of output clusters is required. For each 

concept-level metric, its corresponding overall metric can be computed by averaging the 

concept-level metrics of all the concepts in a reference. For example, the overall 

precision can be computed by averaging the precision of all the concepts. There are two 

approaches for computing the average: micro-average and macro-average. Micro-

average computes an average over the entire group of concepts by assigning every 

concept word an equal weight regardless of the concept that it belongs to. Therefore, a 
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concept that has more members is more significant. This method is similar to the 

unweighted or pooled method described in (NIST, 1998). Macro-average, on the other 

hand, computes an average by assigning every concept in a set of reference concepts an 

equal weight. This method is similar to the equal topic weighting or weighted method 

described in (NIST, 1998). Since the number of words in each concept is not uniformly 

distributed, a macro-average is chosen as an averaging method to emphasize that every 

concept is equally important and has equal contribution toward an overall quality metric. 

The macro-average can be used to compute an overall metric of every concept-level 

metric (e.g. macro-average precision and macro-average singularity score). The quality 

score computed from macro-average precision, macro-average recall and macro-average 

singularity score provides a single number that indicates the overall quality of the output 

clusters. 

5.5 Experiments and results 

Experiments on concept identification and clustering make use of the CMU Travel 

Agent corpus (Eskenazi et al., 1999), which contains goal-oriented human-human dialogs 

between an experienced travel agent and a client arranging a trip that includes plane, 

hotel and car reservations. A detail discussion about the dialogs in this air travel planning 

domain is provided in Section 3.2. Table 5.1 shows the statistics of the CMU Travel 

Agent corpus. 

 

Statistic Value 

Number of dialogs 39 

Number of utterances 2,196  

Number of an agent’s utterances (single agent) 1,108  

Number of clients’ utterances (multiple clients) 1,088  

Vocabulary size 947 

Table 5.1: The statistics of the CMU Travel Agent corpus 

A set of reference concepts in the air travel planning domain is shown in Table 5.2. 

This reference set contains 16 concepts with 190 concept members and was created by a 

domain expert. For each concept, examples of concept members and the total number of 

members are also given. The last column in Table 5.2 shows the number of times each 

concept occurs in the corpus. For simplicity, each word can belong to only one concept. 

Words that do not belong to any domain concept are grouped into a single general 

concept. 
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Concept name Examples Number of 

members 

Frequency  

in the corpus 

airline_company Continental, Delta 15 323 

airport LaGuardia, Midway 15 101 

am_pm a.m., p.m. 2 333 

area downtown, Manhattan 11 53 

car_category compact, mid-size 2 14 

car_rental_company hertz, thrifty 6 45 

car_type automatic, manual 2 15 

cardinal_number hundred, seventy 6 153 

city Boston, Pittsburgh 44 673 

date sixth, seventh 21 225 

day_of_week Monday, Saturday 7 100 

hotel_name Hyatt, Marriott 22 97 

hour_number three, twelve 12 1188 

minute_number fifteen, thirty 12 572 

month March, April 6 109 

time_period afternoon, evening 7 172 

general want, depart 757 14411 

Table 5.2: A list of concepts in the air travel planning domain 

5.5.1 Statistical clustering results 

Five statistical clustering algorithms were investigated: mutual information-based 

clustering (MI-based clustering), Kullback-Liebler-based clustering (KL-based 

clustering), and three variations of the Kullback-Liebler-based clustering that use a 

linkage distance measure (KL-based single linkage, KL-based complete linkage, and KL-

based average linkage). The results are shown in Figure 5.4 - Figure 5.8 and Table 5.3 - 

Table 5.7 respectively. For each clustering algorithm, the corresponding graph shows the 

quality of the clustering result at each iteration in terms of precision, recall, singularity 

score (SS), and quality score (QS). These numbers are the overall metrics computed from 

all 16 concepts using the macro-average. The graphs in Figure 5.4 - Figure 5.8 also show 

the values of the measures that were used to determine the stop points. The clustering 

quality at the stop points are given in Table 5.3 - Table 5.7. Max-QS is an oracle stop 

point that yields the highest QS. The automatic stopping criteria that yield the best 

clustering results are highlighted in italic. 
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Figure 5.4: The quality of the output clusters at each iteration of the MI-based clustering 

 

Stopping criterion Iteration Precision Recall SS QS 

Max-QS 766 0.81 0.52 0.77 0.68 

AMI-intersection 815 0.74 0.42 0.73 0.59 

last-max-clusters 721 0.78 0.43 0.77 0.61 

Table 5.3: The performance of the MI-based clustering algorithm at different stopping 

criteria 
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Figure 5.5: The quality of the output clusters at each iteration of the KL-based clustering 

 

Stopping criterion Iteration Precision Recall SS QS 

Max-QS 327 0.89 0.50 0.81 0.69 

before-fluctuated 312 0.86 0.52 0.76 0.68 

last-max-clusters 293 0.87 0.49 0.77 0.67 

Table 5.4: The performance of the KL-based clustering algorithm at different stopping 

criteria 
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Figure 5.6: The quality of the output clusters at each iteration of the KL-based single-

linkage clustering algorithm 

 

Stopping criterion Iteration Precision Recall SS QS 

Max-QS 290 0.91 0.42 0.81 0.64 

median 569 0.71 0.33 0.69 0.51 

before-flatten 461 0.88 0.28 0.79 0.50 

last-max-clusters 570 0.71 0.33 0.69 0.51 

Table 5.5: The performance of the KL-based single linkage clustering algorithm at 

different stopping criteria 
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Figure 5.7: The quality of the output clusters at each iteration of the KL-based complete 

linkage clustering algorithm 

 

Stopping criterion Iteration Precision Recall SS QS 

Max-QS 532 0.76 0.67 0.64 0.69 

median 474 0.84 0.65 0.60 0.68 

before-flatten 278 0.88 0.62 0.57 0.67 

last-max-clusters 580 0.73 0.67 0.64 0.68 

Table 5.6: The performance of the KL-based complete linkage clustering algorithm at 

different stopping criteria 
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Figure 5.8: The quality of the output clusters at each iteration of the KL-based average 

linkage clustering algorithm 

 

Stopping criterion Iteration Precision Recall SS QS 

Max-QS 310 0.88 0.60 0.71 0.71 

median 474 0.76 0.62 0.68 0.68 

before-flatten 315 0.86 0.60 0.70 0.70 

last-max-clusters 661 0.75 0.51 0.74 0.65 

Table 5.7: The performance of the KL-based average linkage clustering algorithm at 

different stopping criteria 
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Figure 5.9: Cluster quality comparison for all statistical clustering algorithms 
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Stop Algorithm Iteration Precision Recall SS QS 

MI-based 766 0.81 0.52 0.77 0.68 

KL-based 327 0.89 0.50 0.81 0.69 

Single-linkage 290 0.91 0.42 0.81 0.64 

Complete-linkage 532 0.76 0.67 0.64 0.69 

Average-linkage 310 0.88 0.60 0.71 0.71 

Table 5.8: The best performance of each statistical clustering algorithm 

The best clustering performances of the statistical algorithms are summarized in 

Table 5.8. These results are obtained when the oracle stopping criterion (Max-QS) is 

used. Except for the KL-based single-linkage algorithm, the best quality scores of all 

statistical clustering algorithms are about the same. The KL-based single-linkage 

algorithm achieves high precision at its optimal clustering iteration; however the recall is 

relatively low which makes the quality score not as good as other clustering algorithms. 

 

Algorithm Stopping criterion Iteration Precision Recall SS QS 

MI-based last-max-clusters 721 0.78 0.43 0.77 0.61 

KL-based before-fluctuated 312 0.86 0.52 0.76 0.68 

Single linkage median 569 0.71 0.33 0.69 0.51 

Complete linkage median 474 0.84 0.65 0.60 0.68 

Average linkage before-flatten 315 0.86 0.60 0.70 0.70 

Table 5.9: The performance of each statistical clustering algorithm at its best automatic 

stopping criterion 

The best automatic stopping criterion for each clustering algorithm is presented in 

Table 5.9 along with the quality of the clusters obtained at the stop iteration. For most 

clustering algorithms, the proposed automatic stopping criteria are able to achieve close 

to optimal clustering results. I would like to note that many alternative stopping criteria 

proposed in Section 5.1.3, although not the best criteria, also yield close to optimal 

clustering results as shown in Table 5.3 - Table 5.7. 

For the KL-based, the KL-based complete linkage, and the KL-based average linkage 

clustering algorithms, the clustering results obtained from the proposed automatic 

stopping criteria are as good as the best clustering result obtained from the oracle stop. 

But, for the MI-based and the KL-based single linkage clustering algorithms, the 

clustering results obtained from the proposed automatic stopping criteria are quite worse 

than the optimal results. When examining the quality scores that all of the clustering 
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algorithms obtained at each iteration, as shown in Figure 5.9 (bottom-right), I found that, 

for both the MI-based and the KL-based single linkage algorithms, there are only a few 

iterations that the corresponding quality scores are close to the optimal one. This might 

be one reason that it is difficult to find the optimal stop point automatically. For the 

algorithms that a near optimal clustering result can be obtained from an automatic 

stopping criterion (i.e. the KL-based, and especially the KL-based complete linkage and 

the KL-based average linkage clustering algorithm), I found that the range of iterations 

that have high quality scores is quite large. 

From the comparison shown in Figure 5.9, I found that when the number of iteration 

increases, the changes in all of the quality metrics (i.e. precision, recall, singularity score, 

and quality score) are quite similar among all the variations of the KL-based clustering 

algorithm. However, these changes in the quality metrics are quite different from the ones 

observed from the MI-based clustering algorithm. When examining the output clusters 

more closely, I found that KL-based algorithms tend to merge concept words together 

first, and are more likely to group a single word into the exist clusters rather than create a 

new cluster. In contrast, the MI-based clustering algorithm tends to merge none-concept 

words together first, and is more likely to merge two words into a new cluster. As a 

result, all the quality metrics, precision, recall and singularity score, of the KL-based 

algorithms are higher than those of the MI-based algorithm at the early iterations. Based 

on this characteristic, the KL-based algorithms require fewer clustering iterations to reach 

the optimal clustering quality than the MI-based algorithm as shown by the QS graphs in 

Figure 5.9 (bottom-right). Toward the end of the clustering process, the MI-based 

algorithm begins to merge concept words and clusters into bigger clusters which make 

the values of all quality metrics increase. Based on this characteristic, the MI-based 

algorithm requires more clustering iterations in order to obtain the optimal or near 

optimal clustering result. The disadvantage of a clustering algorithm that reaches the 

optimal point slower is that it has more chance to merge irrelevant words into the clusters 

that represent the concepts, and may also merge different concepts together before it 

reaches the iteration that yields the optimal clustering result. The results, shown in Table 

5.8, tend to agree with this analysis. The precision of the optimal clustering result 

achieved by the MI-based clustering algorithm is lower than the precision of the optimal 

result achieved by most KL-based clustering algorithms. 

The characteristics of each statistical clustering algorithm are summarized in Table 

5.10. The KL-based average linkage algorithm is the one that produces the best clustering 
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result both when the oracle stopping criterion (Max-QS) is used and when the automatic 

stop-criterion is used. 

 

Algorithm Advantage Disadvantage 

MI-based 

- 

 A near optimal result can be 

obtained from only a few iterations 

 Require more iterations in order to 

obtain a good result 

KL-based  

(all variations) 

 Require fewer iterations than the 

MI-based algorithm in order to a 

obtain good result 

- 

KL-based - - 

Single linkage - 

 A near optimal result can be 

obtained from only a few iterations 

 Recall is low in all iterations  

 

Complete linkage 

 A near optimal result can be 

obtained from many iterations 

 Recall is high in most iterations 

 Singularity scores at the stop 

iterations are quite low 

Average linkage 

 A near optimal result can be 

obtained from many iterations 

 Achieve the highest quality score at 

both the oracle stopping criterion 

and the automatic stopping criterion 

- 

Table 5.10: Characteristics of each statistical clustering algorithm 

Examples of the clusters obtained from the KL-based average linkage algorithm at the 

automatic stop point are shown in Figure 5.10. The first cluster represents hour_number; 

the second cluster represents car_rental_company; the third and forth clusters represent 

city. The cluster members that are marked in red and underlined are the ones that belong 

to other concepts. The precision of the clustering result is high as shown in the last row of 

Table 5.9. The first two clusters do not contain any error. For the concept hour_number, 

the clustering algorithm can identify all of its 12 concept members. The third and forth 

clusters contain some errors; those words should belong to the concept airport instead of 

the concept city. The cluster merged some airport names together with city names 

because they occur in quite similar context. The last two clusters also illustrate another 

kind of error, namely splitting. A large concept, such as city, sometimes gets split into 

multiple clusters. Singularity score, which reflects the splitting problem, is moderate for 

the KL-based average linkage algorithm. 
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Nevertheless, the recall of the KL-based average linkage algorithm is quite low. Other 

statistical clustering algorithms investigated in this chapter also have a similar problem. 

The highest recall achieved by the KL-based complete linkage algorithm is still not very 

high. Many of the concept words that cannot be identified are left by itself as a single 

word cluster rather than merged into an incorrect cluster. Some of them are infrequent 

concept words that the statistical approaches do not have enough evidence to merge them 

with any of the clusters. In other cases, some of the missing concept words have several 

usages. For example, “May” can be either Month or an auxiliary verb. Since we made an 

assumption that each word can belong to only one concept for simplicity, the proposed 

algorithms cannot handle these types of words correctly. 

 

 

 

 

 

 

 

 

 

Figure 5.10: Examples of the clusters obtained from the KL-based average linkage 

clustering algorithm 

5.5.2 Knowledge-based clustering results 

A resource for knowledge-based clustering is WordNet version 1.7.1. ePost tagger is 

used in the experiment to obtain the part of speech of each word in the corpus. The 

accuracy of ePost on Penn Treebank tag set, which contains 36 tags, is 90.20%. Since 

WordNet only distinguishes between four part of speech types (i.e. noun, verb, adjective 

and adverb), an accuracy on part of speech types, which is 95.60%, is a more appropriate 

number. It should be noted that ePost was trained on the Wall Street Journal corpus 

which is a written language rather than a spoken language.  

After a part of speech of each word is obtained, the one that is tagged as a noun is 

passed to a word sense disambiguation algorithm which simply assigns the most common 

sense to a polysemous word. In the CMU Travel Agent corpus in which polysemous 

nouns account for 57.1% of the nouns, this simple WSD technique achieved 70.1% 

accuracy.  

 

 TEN, TWELVE, ELEVEN, ONE, SIX, FOUR, NINE, SEVEN, FIVE, EIGHT, THREE, TWO 

 HERTZ, BUDGET, THRIFTY 

 GATWICK, CINCINNATI, PHILADELPHIA, L.A., ATLANTA 

 LAGUARDIA, MIDWAY, MADRID, DULLES, HONOLULU, NEWARK, PITTSBURGH, 

SEATTLE, OTTAWA, SYRACUSE, BALTIMORE, AUSTIN, HOUSTON 



Chapter 5: Concept Identification and Clustering 

 

186 

Clustering Algorithm Precision Recall SS QS 

Average linkage 0.86 0.60 0.70 0.70 

Hypernym-based with predicted nouns 0.84 0.20 0.72 0.40 

Hypernym-based with all possible nouns 0.78 0.33 0.81 0.54 

Table 5.11: The performance of the knowledge-based clustering approach 

The performance of the hypernym-based clustering algorithm that uses predicted 

POSs and words senses is shown in Table 5.11. The quality of the clustering results is not 

good because the recall is low. One reason for the low recall is that many concept words 

are not tagged as nouns. For example, ordinal numbers are tagged as adjective while 

cardinal numbers are assigned a specially tag CD (for cardinal number). Due to this 

discrepancy in the definition of each part of speech type used in WordNet and the POS 

tagger, I decide to use the part of speech information only from WordNet instead of 

relying on the POS tagger. Given the vocabulary of the corpus, every word that can be a 

noun according to WordNet is considered. The clustering result is shown in the 2
nd

 row of 

Table 5.11. Both the recall and the quality score are improved while the precision is 

slightly lower.  

However, the recall is still low comparing to the clustering results of the statistical 

clustering algorithm shown in Table 5.9. The recall of the knowledge-based clustering 

approach is low because WordNet does not contain some domain-specific concepts 

especially those that are proper names such as car_rental_company and hotel_name. 

Nevertheless, for the concepts that are present in WordNet such as day_of_week and 

month, the hypernym-based clustering algorithm can identify them very accurately both 

in terms of precision and recall. Another problem with knowledge-based clustering is 

that, a knowledge resource may group concept words differently from domain-specific 

definition especially for abstract concepts such as time. Section 5.6 discusses some 

extensions that could be used to improve the clustering results for both the statistical 

clustering algorithm and the knowledge-based clustering algorithm. 

5.5.3 Concept word selection results 

Four selection criteria based on word frequency and a stop word list were 

experimented. The frequency cut-off was set to 2 because the corpus is quite small. The 

second criterion is more restrictive than the first one because it selects only words that 

occur at least twice in one dialog not in the entire corpus. The performance of each 

criterion in identifying concept words is evaluated in terms of precision and recall. The 

performance of each concept word selection criterion and its corresponding clustering 
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result are shown in Table 5.12. The clustering process in this experiment utilized the KL-

based clustering with average linkage since it is the best clustering algorithm as shown in 

Table 5.9. 

 

 

Selection Criteria 

Concept Word Selection 

Performance Num. 

clusters 

Cluster Quality 

%select Prec. Recall F-1 Prec. Recall SS QS 

 All (baseline) 100.00% 0.20 1.00 0.33 134 0.82 0.50 0.68 0.64 

1 Freq >= 2 (in a corpus) 69.42% 0.25 0.86 0.38 93 0.83 0.48 0.70 0.64 

2 Freq >= 2 (in a dialog) 52.38% 0.30 0.79 0.44 65 0.85 0.46 0.75 0.64 

3 Remove stop words 81.90% 0.24 0.98 0.38 113 0.82 0.49 0.69 0.64 

4 Freq >= 2 (in a dialog) 

and remove stop words 

39.89% 0.39 0.78 0.52 57 0.84 0.46 0.75 0.64 

Table 5.12: The performance of each word selection criterion and its corresponding 

cluster quality 

Among the first three criteria, using frequency cut off for within dialog frequency (2
nd

 

criterion) yielded the best precision on concept word identification while removing stop 

words (3
rd

 criterion) yielded the best recall. Combining both criteria as in the forth 

criterion can improve both precision and F-1. Concept word selection can reduce the 

amount of words needs to be considered in the clustering process significantly, while the 

quality of the output clusters still remains the same. Even though, I expected to see an 

improvement on precision when non-concept words were removed, the precision was 

increased only slightly with a small degradation in the recall. I believe that the decrease 

in recall when applying a concept word selection technique can be resolved by 

reconsidered the filtered words in the next clustering iteration. Concept word selection 

also reduces the number of output clusters which makes it easier for a human to revise the 

clustering result. 

5.6 Discussion and conclusion 

Both the statistical approach and the knowledge-based approach have different strong 

points. For the statistical approach, no additional resource is required besides the 

collection of domain conversations. Since it is a data-driven method, it can capture 

domain-specific concepts that may not exist in a knowledgebase. Moreover, it is able to 

reflect domain-specific usage of some concept words such as time-related expressions 

and numbers. The drawback of the statistical approach is that it relies totally on the data. 

Therefore, if the statistical evidence is not strong enough, such as the case of a sparse 
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data problem, the accuracy of predicted concepts may be low. Furthermore, if some 

concept members do not occur in the data, it is impossible to discover them. On the other 

hand, the knowledge-based approach can identify domain concepts very accurately 

providing that those concepts are in the knowledge resource. The knowledgebase 

provides not only information about concept members but also information about the 

concept itself. For example, it tells us that the cluster which contains “January”, 

“February”, “March”, etc., is the month of the year. Moreover, it can identify concept 

members that are missing from the data. While the statistical method relies heavily on the 

data, the knowledge-based approach is restricted to only the information available in the 

knowledgebase. Domain-specific words are the main drawback of the knowledge-based 

approach since they are not usually presented in a knowledge repository.  

Recent research on automatic taxonomy induction (Snow et al., 2005, 2006) has 

produced efficient algorithms that can identify semantic relations, such as hypernyms and 

coordinate terms (words that have the same hypernym), automatically from text corpora. 

Promising results were reported when the relations were induced from news articles. 

Given a set of text from a particular domain, these data-driven approaches should be able 

to extend the taxonomy in WordNet to include new lexicons and their semantic relations 

which are specific to that particular domain, and thus increase the coverage of WordNet.  

Since both the statistical approach and the knowledge-based approach have different 

advantages, it is better to combine both techniques together rather than choosing one. 

One possible combination method is to acquire an initial set of concepts through a 

statistical clustering approach then revise these initial concepts with a knowledge-based 

clustering approach. A statistical clustering approach allows us to recover as many 

potential concepts as possible while a knowledge-based clustering approach can improve 

the quality of the initial concepts by adding missing concept members and removing 

incorrect concept members. In addition, more efficient concept word selection criteria 

could be identified by adding new concept word indicators and by combining different 

types of criteria together. One additional type of indicator that might be worth 

experimenting is a name entity flag (whether a word is a name entity or not). A word that 

is classified as a name entity (for example, location or time expression) is likely to 

capture domain information. 

In summary, among the five statistical clustering algorithms that were experimented 

(mutual information-based, Kullback-Liebler-based, and three variations of the Kullback-

Liebler-based that use linkage distance measures: single linkage, complete linkage, and 

average linkage), the KL-based average linkage algorithm is the one that produces the 
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best clustering result. For most statistical clustering algorithms, we are able to identify 

automatic stopping criteria that yield close to optimal results. A concept word selection 

criterion that combines word frequency cut-off with a stop word list can significantly 

reduce the number of words that needs to be considered in the clustering process without 

deteriorating the quality of the clustering result. The statistical approaches while able to 

capture domain-specific usage of concept words cannot accurately identify infrequent 

concept words due to a sparse data problem. The knowledge-based approach, on the other 

hand, can identify domain concepts very accurately, but on the condition that the 

concepts are present in the knowledge source. 
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Chapter 6 

Form Identification 

The goal of form identification is to determine different types of forms and their 

associated slots that a dialog system needs to know in order to perform a task in a given 

task-oriented domain. Since a form represents a portion of a dialog that corresponds to an 

action, namely a sub-task, identifying a list sub-tasks in sample dialogs can help 

determine a set of forms that is required in a particular domain. One approach to the form 

identification problem is to first segment a dialog into a sequence of sub-tasks, and then 

group the sub-tasks that are associated with the same form type into a cluster. By 

analyzing the concepts contained in each cluster, a set of slots that is associated with each 

form can be determined. This chapter is divided into 2 parts: Section 6.1 describes a 

dialog segmentation problem while Section 6.2 describes a sub-task clustering problem. 

6.1 Dialog segmentation 

A dialog segmentation problem can be considered as a discourse segmentation 

problem where a discourse unit is a sub-task in the form-based dialog structure 

representation. To decompose a dialog into a sequence of sub-tasks, the boundaries of the 

sub-tasks have to be determined. Hence, a dialog segmentation problem can also be 

considered as a sub-task boundary identification problem. 

Segmentation algorithms for both textual and spoken data have been a subject of 

extensive research. Most approaches on text segmentation rely on lexical cohesion within 

the same topic. Lexical cohesion measures the degree of similarity within a span of text 

(or transcription in the case of a spoken discourse). Based on the assumption that the 

content within the same topic is interrelated, lack of similarity between two consecutive 

parts of a discourse can indicate a topic boundary. One widely-used segmentation 

algorithm based on lexical cohesion is the Hearst’s TextTiling algorithm (Hearst, 1997). 

In this algorithm, lexical similarity is calculated from the cosine similarity of left and 

right context vectors of a candidate boundary. Potential boundaries are determined from 

relative changes in the similarity scores instead of from their absolute values. The 

candidate boundary that has a similarity score lower than both of its neighbors is 

considered a potential boundary. The number of boundaries (or the number of segments) 
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in a particular discourse is determined automatically from the statistic of the similarity 

scores in order to reflect the characteristic of each discourse. No training data is required 

for the Hearst’s TextTiling algorithm.  

Lexical cohesion is an efficient feature for identifying a boundary between two sub-

tasks that belong to different form types; however, it may not provide enough information 

for determining a boundary between two sub-tasks that belong to the same form type 

such as a boundary between two consecutive query_flight_info sub-tasks. The results in 

(Galley et al., 2003) and (Swerts and Ostendorf, 1997) confirmed this characteristic.  

Another type of features that is useful for determining topic boundaries is a discourse 

marker. Discourse markers or discourse particles or cue phrases such as “well” and “by 

the way” are linguistic expressions that function as explicit indicators of structural units 

in a discourse. Although discourse makers are reliable features, they are not useful for a 

domain that contains only a few of them such as an air travel planning domain (Swerts 

and Ostendorf, 1997). Moreover, identifying discourse markers in a conversation may not 

be straight forward. Even though a list of words that can function as a discourse marker 

can be obtained from many literatures (Hirschberg and Litman, 1993), it is quite difficult 

to identify the occurrences of those words that actually convey structural information of a 

conversation since many of the potential markers also have alternative uses.  

Instead of using a pre-defined list of discourse markers, Beeferman et al. (1999) 

determined a list of domain-specific cue words automatically from the context near the 

topic boundaries in the training data. Domain-specific cue words not only reflect the 

characteristic of each data set but also eliminate the need of a complex word sense 

disambiguation process that would be required in order to identify the occurrences of the 

pre-defined discourse markers that truly capture structural information of a discourse. A 

statistical framework, an exponential model, was then used to combine the domain-

specific cue words and the adaptive language model probabilities which capture lexical 

cohesion in the discourse to determine topic boundaries in a document. 

Another learning algorithm that has been applied to text segmentation is a hidden 

Markov model (HMM). This approach models the topics and topic shifts in the stream of 

text explicitly; each HMM state represents a topic while a transition between states 

represents a shift between topics. Each HMM state models the corresponding topic 

through its emission probability which can be regarded as a state-specific language 

model. State transition probabilities represent the probabilities of topic shifts and thus 

capture sequential order of topics in a document. A HMM is trained from a collection of 

documents to capture re-occurring patterns in an interested domain. It utilizes context 
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similarity from multiple documents to determine topic boundaries rather than relying on 

lexical cohesion of the local context near each candidate boundary as in the TextTiling 

algorithm. To identify topic boundaries in a given document, the Viterbi algorithm is 

used to determine a state label for each sentence. The boundary is then predicted between 

any two sentences that their state labels are different.  

A hidden Markov model itself is considered an unsupervised learning algorithm. 

However, the method used for constructing the HMM states may change the hidden 

Markov model to a supervised learning algorithm if the method makes use of topic 

boundary annotation. HMM states in the models proposed by Tür et al. (2001) and 

Yamron et al. (1998) were constructed by clustering similar topics in the training data 

together. Since this topic clustering algorithm made use of topic boundaries, those hidden 

Markov models are considered supervised. On the other hand, HMM states in a content 

model proposed by Barzilay and Lee (2004) were constructed by clustering similar 

sentences together. No topic boundary was utilized by this clustering algorithm; 

therefore, this hidden Markov models is considered unsupervised.  

Segmentation approaches for spoken discourses can also utilize prosodic features in 

addition to textual features from the transcription. Correlations between prosodic features 

and discourse segment boundaries have been reported in many studies (Levow, 2004; Tür 

et al., 2001). Pitch and duration are prosodic features that are reliable across different 

types of spoken discourses (Levow, 2004). Unlike lexical cohesion, prosodic features are 

not sensitive to the content of the segment. It has been shown that prosodic features are 

able to identify the discourse boundaries even though the content of the segments are 

quite similar (Swerts and Ostendorf, 1997). Although prosodic features seem to be more 

robust in some cases, the algorithms that combined both textual features and prosodic 

features together achieved better performance than using either of them alone (Galley et 

al., 2003; Swerts and Ostendorf, 1997; Tür et al., 2001).  

Supervised discourse segmentation approaches, such as (Beeferman et al., 1999) and 

(Tür et al., 2001), require training data with segment labels. However, when exploring the 

structure of dialogs in a new domain, as in the case of this thesis, such annotated data is 

not available. Therefore, we have to rely mainly on unsupervised approaches. In this 

section, two unsupervised discourse segmentation approaches are investigated: a 

TextTiling algorithm and a Hidden Markov Model. Both approaches, while performing 

well with expository text, require some modification when applied to spoken dialogs. 

One major concern is the granularity of the segments. A sub-task is rather small when 

compared to a topic in expository text or newscast. The topic length is 428 words in WSJ 
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text and 996 words in CNN broadcast news (Beeferman et al., 1999) while a sub-task 

length is only 84 words in the air travel domain and only 55 words in the map reading 

domain. Since the segments that have to be identified are small, special care is required 

when process the context. The term “topic” and “sub-task” can be used interchangeably 

in this chapter as both of them refer to a discourse unit that will be identified by a 

segmentation algorithm.  

In the following sections, I first discuss the features used in dialog segmentation and 

their representations. These features are used by both the TextTiling algorithm and the 

Hidden Markov Model. Each segmentation algorithm and the extensions that are made 

specifically for segmenting a dialog into a sequence of sub-tasks are described in detail in 

Section 6.1.2 and Section 6.1.3. The segmentation results were evaluated with three 

performance metrics discussed in Section 6.1.4. The experimental settings are described 

in Section 6.1.5 and the results obtained from the TextTiling algorithm and the Hidden 

Markov Model are discussed in Section 6.1.6 and Section 6.1.7 respectively. All the 

findings are concluded in Section 6.1.8 

6.1.1 Feature representation 

6.1.1.1 Word token representation 

Features for dialog segmentation algorithms are taken from dialog transcription. The 

features include transcribed words and concept markups if a set of domain concepts has 

already been identified. Each transcribed word is pre-processed by removing 

morphological inflections using the Porter's stemming algorithm. When concept 

annotation is available, a concept word is represented by both a concept label and a word 

string. This joint representation helps disambiguating between different concept types 

(for instance, [DepartureCity]:pittsburgh is not the same token as 

[ArrivalCity]:pittsburgh) and between different word senses (for instance, “one” in “that 

one” is not the same token as [hour]:one). 

6.1.1.2 Stop word treatment 

One common practice in text processing is to remove stop words form a set of 

features as they do not carry useful information for most natural language processing 

applications. Conventionally, a list of stop words is prepared manually and usually 

includes function words such as articles and prepositions. However, this manual process 

is subjective and may not be optimal for every application domain. For example, numbers 

which are regarded as stop words in an information retrieval system, contain crucial 

information about date and time in the air travel planning domain. Incompatibility 
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between a list of stop words and a target domain and genre may deteriorate the results.  

Gupta et al. (2006) reported a lower performance when the stop word list commonly used 

in the IR community was applied to a spoken dialog understanding application. Hand-

turning a stop word list specifically for every application domain is inconvenient and also 

time consuming when working with many different domains, as in the case of natural 

language call router design (Kuo and Lee, 2001) and domain knowledge acquisition 

discussed in this thesis. 

To alleviate a stop word incompatibility problem, I propose a novel approach for 

selecting a list of stop words specifically for each data set. In the context of a 

segmentation problem, a stop word is a word that carries no useful information for 

determining segment boundaries. Based on lexical coherence assumption used by many 

segmentation algorithms, words that occur regularly throughout a dialog are not 

informative. However, words that occur regularly are not the same as words that occur 

frequently. A high frequency word is still useful if its instances occur only in a specific 

location. For example, the word “northwest” which occurs many times in a 

reserve_flight sub-task but does not occur in a reserve_hotel sub-task or a reserve_car 

sub-task is undoubtedly useful for determining sub-task boundaries while the word “you” 

which can occur anywhere in a dialog is not so useful.  

Regularity of a particular word is determined from its distribution over the course of a 

dialog rather than its frequency.  Specifically, a regularity count of word w, RC(w), is 

defined as the number of sliding context windows of size c that contain the word w in 

each dialog. The window is shifted by one utterance at a time. The parameter c is the 

same parameter as the context window size used in the TextTiling algorithm that will be 

described in Section 6.1.2.  

Table 6.1 illustrates the calculation of regularity counts when c is set to 2. Each row 

in the table is equivalent to an utterance. “A” and “F” are two word tokens that have the 

same frequency; both of them occur 4 times in this text. The first column contains 8 

blocks that correspond to 8 sliding context windows of size 2. The block which marked 

as “yes” indicates that its corresponding context window contains the word “A”. The 

third column represents similar information but for the word “F”. The number of blocks 

that marked as “yes” in the first column (i.e. the number of context windows contain the 

word “A”) is the regularity count of “A”, or RC(“A”). The regularity counts of both 

words are shown in the last row. Since “F” is distributed more uniformly across the text, 

it has a higher regularity count than “A”.  
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Window contain 

A? 

Word token Windows contain 

F? 

yes  A    E  yes  

yes A     F yes 

yes  B     yes 

yes A     F yes 

    D   yes 

  B    F yes 

   C     

yes   C  E  yes 

 A     F  

5 Regularity count 7 

Table 6.1: Regularity count calculation 

In the TextTiling algorithm, where each dialog is processed separately, a regularity 

count is calculated specifically for each dialog. Therefore, the regularity count of the 

same word may not be the same in different dialogs. For a HMM-based segmentation 

algorithm, which utilizes information from all dialogs in a corpus to identify sub-task 

boundaries, a regularity count of each word is accumulated from all the dialogs. 

A word with high regularity count is less useful in determining segment boundaries 

and could be considered as a stop word. A dialog-specific stop word list is a list of words 

that have a regularity count greater than a pre-defined threshold. 

An alternative data-driven approach for handling stop words is to transform a 

regularity count into a regularity weight (RW) using the following equation: 

count_window_total

)w(RCcount_window_total
)w(RW  (6.1) 

;where total_window_count is the total number of sliding context windows 

The frequency of each word is then weighed with the corresponding RW(w). A word that 

has a higher regularity count is assigned a lower weight and thus contributed less in 

cosine similarity calculation. Regularity weight eliminates the need of an additional cut-

off threshold parameter. 

6.1.2 TextTiling algorithm 

The TextTiling algorithm (Hearst, 1997) is a widely-used unsupervised segmentation 

algorithm which determines segment boundaries based on lexical cohesion. Based on the 

assumption that two chunks of text from the same topic are more similar than the ones 

from different topics, a significant drop in lexical similarity indicates a potential segment 
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boundary. A dialog segmentation algorithm based on the TextTiling algorithm is as 

follows: 
 

1. For every utterance boundary, compute cosine similarity between left and 

right context vectors. Context vectors are created from pre-processed 

transcription. Each dimension of the vector represents the frequency of each 

stemmed token in a context window of size c.   

2. Smooth the similarity scores with average smoothing. A smoothed score is an 

average of all similarity scores within a smoothing window of size s. 

3. Calculate a depth score for every valley in the similarity score plot. A depth 

score is the sum of the distance from the valley to the peaks on both sides. It 

takes into account the relative changes from both sides of the candidate point.  

4. Output a candidate boundary that has a depth score higher than the cut-off 

threshold as a predicted boundary.  

A set of parameters, including a context window size (c), a smoothing window size 

(s) and a cut-off threshold, has to be specified. These parameters affect the performance 

of the segmentation algorithm. 

 

 

Figure 6.1: An example of a similarity score plot from the TextTiling algorithm 
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Figure 6.1 shows a similarity score plot produced by the TextTiling algorithm. In the 

plot, the x-axis represents all candidate points (utterance boundaries) and the y-axis 

represents similarity scores. The orange curve (lighter curve) represents cosine similarity 

scores while the green curve (darker curve) is the smoothed scores. The height of each 

blue peak is a depth score of each valley in the smoothed curve. Every peak is a potential 

boundary. The black horizontal line represents the cut-off threshold, which is set to μ - 

σ/2; where μ is the mean of the depth scores and σ is their standard deviation. All of the 

potential boundaries that have depth scores greater than the cut-off threshold are selected. 

The boundaries identified by the algorithm are represented by red vertical lines (the 

shortest vertical lines). The black vertical lines (the longer vertical lines) are reference 

boundaries. The black-red vertical lines (the longest vertical lines) are the cases when the 

TextTiling algorithm predicts a boundary at the same position as a reference boundary. 

In order to handle fine-grained segments in task-oriented dialogs, two types of 

modifications to the standard TextTiling algorithm are introduced: distance weight and 

triangular smoothing. 

6.1.2.1 Distance weight 

One crucial parameter for the TextTiling algorithm is the size of context windows. If 

the window size is too small, the algorithm may not have enough context to determine the 

similarity between two text spans that belong to the same topic and thus introduce a false 

alarm (false positive). On the other hand, if the window size is too large, the algorithm 

may find similarity between irrelevant parts of a dialog and thus miss the boundary when 

there is one (false negative). Since some sub-tasks are much shorter than the average 

length (only 2-3 utterances long), even a small context window can be considered too 

large for those sub-tasks.  

To resolve the problem of irrelevant similarity, a distance weight is introduced to 

demote the similarity between far away contexts. Each word in the context window is 

weighed by the distance between the word and the considered candidate boundary. 

Specifically, distance weight DW(w) is computed as follows: 

ewindow_siz

distanceewindow_siz
)w(DW  (6.2) 

;where window_size is the size of  a context window (c), which is a parameter in the 

TextTiling algorithm, and distance is the number of utterances between the word w and 

the considered candidate boundary. A distance of a word in an utterance that is adjacent 
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to the considered candidate boundary is 0. The distance weight calculation is illustrated 

below. 

Figure 6.2 shows two context windows of size 4. The thick border in the middle of 

the figure represents a candidate boundary; the top half of the figure represents a left 

context window while the bottom half represents a right context window. Each row 

represents an utterance. The distance of “C” is 1 utterance from the candidate boundary; 

therefore, DW(“C”) is (4-1)/4 = 3/4. For “D”, the distance is 0; therefore, DW(“D”) is (4-

0)/4 = 1. 
 

A     F 

 B     

A     F 

   D   

 B    F 

  C    

    E  

A     F 

Figure 6.2: Distance weight calculation 

The distance weight is applied to each word token rather word type because distances 

from different word tokens to the considered boundary are not equal. For example, the 

distance of the first “A” in the left context window in Figure 6.2 is 3 utterances while the 

distance of the second “A” in the left context window is 1 utterance. Therefore, their 

distance weights are 1/4 and 1/2 respectively. 

6.1.2.2 Smoothing algorithm 

The similarity score curve needs to be smoothed in order to remove shallow valleys 

which represent local minima. Those local minima may interrupt the scores and create 

two shallow valleys instead of one deep valley that should be a boundary. The similarity 

score plot in Figure 6.1 is shown again in Figure 6.3. A local minimum in unsmoothed 

cosine similarity scores at utterance 12
th

 creates two shallow valleys at utterance 12
th

 and 

16
th

 instead of one deep valley at utterance 16
th 

obtained from a smoothed curve. If the 

unsmoothed curve is used to identify potential boundaries, it may create a false alarm at 

utterance 12
th

 if its depth score is higher than the cut-off threshold.  Alternatively, the 

boundary at utterance 16
th

 could be missed if the depth score of the shallower valley is 

lower than the cut-off threshold. 
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Figure 6.3: Local minimum in a similarity score plot 

The original TextTiling algorithm uses a rectangular smoothing scheme which 

averages all of the scores in smoothing window by giving them the same weight. The 

following equation demonstrates how a rectangular smoothed score is computed when a 

smoothing window size (s) is set to 5. 

5
_ 2112 iiiii XXXXX

scoresmoothed  (6.3) 

;where Xi is a similarity score at the middle point of the smoothing window; Xi-1 and Xi+1 

are similarity scores on the left an right of Xi respectively. 

Since the sub-tasks are quite small, a precise boundary prediction is required. During 

a preliminary experiment, I observed that the rectangular smoothing scheme sometimes 

shifts the location of the valley from its original location in the unsmoothed curve and 

hence produced an inaccurate boundary prediction. To avoid this problem, a triangular 

smoothing scheme, which gives more weight to the scores closer to the center of the 

smoothing window, can be used instead. A triangular smoothed score is calculated form 

the following equation. 

local minimum 
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9

*2*3*2
_ 2112 iiiii XXXXX

scoresmoothed  (6.4) 

6.1.3 HMM-based segmentation algorithm 

The HMM-based segmentation algorithm approaches the problem of text 

segmentation by modeling the topics and topic shifts in the stream of text explicitly. Each 

state in the hidden Markov model (HMM) represents a distinct topic while a transition 

between states represents a shift between topics. The text that is relevant to each topic is 

assumed to be generated from the corresponding HMM state according to a state-specific 

language model which is captured by the emission probability of that state. The shift 

between topics occurs according to a transition probability. The HMM-based 

segmentation algorithm presented in this section is adopted from Barzilay and Lee’s 

(2004)
6
 algorithm. The process of constructing the hidden Markov model consists of two 

steps: HMM state induction and HMM parameter estimation.  

In the HMM state induction step, HMM states, which represent topics or sub-tasks, 

are created automatically by clustering similar text spans together. A text span can be a 

sentence, a paragraph or other text stream units; nevertheless, the size of a text span may 

affect the granularity of induced topics and the segmentation performance. In Barzilay 

and Lee’s algorithm, sentences in news articles were used as text spans. Since each 

sentence in a news article is quite long and the notion of a topic in their evaluation tasks, 

information ordering and single-document summarization, is quite small, the sentence is 

an appropriate text span unit. However, in task-oriented dialogs, some utterances are very 

short and contentless. Furthermore, some utterances can occur in any sub-task. Examples 

of these utterances are an acknowledgement and a yes/no response. In addition, a sub-

task on average is several utterances long; in the two domains that are used in the 

evaluation, the air travel domain and the map reading domain, the average sub-task 

length is 10 utterances and 7 utterances respectively. Based on these characteristics of a 

task-oriented dialog, a single utterance may not contain enough information that indicates 

its relevant topic. Therefore, an utterance unit is too small for topic induction. 

Larger text spans were used in (Tür et al., 2001; Yamron et al., 1998) where HMM 

states were constructed by clustering similar topics together. One drawback of this 

approach is that it requires topic boundary in order to create the HMM states; therefore, 

                                                 
6
 The actual implementation is based on a Java application developed by Jaime Arguello which was used as 

a baseline approach in (Arguello and Rosé, 2006). 
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the approach is no longer unsupervised. To eliminate the need of annotated data, true 

topic boundaries can be approximated by predicted boundaries obtained from other 

segmentation algorithms such as the TextTiling algorithm. The HMM states are then 

induced by clustering the predicted segments together. Segmentation performances when 

different text span units are used to induce HMM states are discussed in Section 6.1.7.2. 

A bisecting K-means clustering algorithm (Steinbach et al., 2000) is used to infer a set 

of HMM states from a set of in-domain dialogs. The bisecting K-means algorithm is a 

top-down clustering algorithm that utilizes cosine similarity between text segments in 

order to assign the segments into clusters. The algorithm starts with a single cluster that 

contains all of the text spans in the corpus. A unit of a text span can be either an utterance 

or a dialog segment. Then, at each iteration the largest cluster is split into two sub-

clusters until the desired number of clusters is reached. This clustering algorithm is 

similar to the one used in sub-task clustering and is discussed in detail in Section 6.2.2. A 

set of clusters outputted by the bisecting K-means algorithm is an initial set of HMM 

states. The algorithm also creates an etcetera state by combining small clusters (i.e. the 

clusters that contain less than T text spans) together to capture the sub-dialogs that are not 

relevant to the task. 

In the HMM parameter estimation step, two sets of HMM parameters, emission 

probabilities and transition probabilities, are computed. The HMM states correspond to 

the topic clusters created by the bisecting K-means algorithm, and the observations are 

utterances in a dialog. An emission probability of a given state captures word distribution 

of the corresponding topic or sub-task and can be regarded as a state-specific language 

model. Since the amount of dialog transcription available for training the HMM is rather 

small, a unigram language model is used to reduce a data sparseness problem. 

Specifically, the probability of an n-word utterance x = w1w2 … wn being generated from 

a state s can be expressed by Equation (6.5).  

n

1i iss )w(P)x(P  (6.5) 

Ps(wi) is a unigram probably of a word wi in a state s and can be estimated from its 

relative frequency using the following equation. 

V)u(f

)w(f
)w(P

1Vu s

1s
s  (6.6) 
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;where fs(w) is the frequency of w in the cluster that corresponds to a state s, V is the 

vocabulary and 1 is a smoothed count which gives a small count to words that do not 

occur in a state s. 

A simple additive language model smoothing technique, plus-delta, is used to 

estimate both the emission probabilities and the transition probabilities (discussed 

below). Nevertheless, a more sophisticated smoothing technique could be investigated. 

Chen and Goodman (1996) discussed several smoothing techniques and then compared 

those techniques empirically in the field of language modeling. 

For an etcetera state, a complementary language model similar to the one described in 

(Barzilay and Lee, 2004) is used. For a HMM that consists of m states where sm is an 

etcetera state, an emission probably of an etcetera state is given by the following 

equation. 

))u(Pmax1(

)w(Pmax1
)w(P

Vu smi:i

smi:i

etc

i

i

 (6.7) 

A state transition probability is estimated from a relative frequency of a transition 

between two specific states in the training data. Each utterance in a dialog is assinged a 

state label that is similar to the state label of the cluster that it belongs to. Specifically, let 

lt be a state label of an utterance t and C(si, sj) be the number of transitions from state si to 

sj in the training data, namely, the number of state label pairs where lt = si and lt+1 = sj. 

Equation (6.8) illustrates the smoothed estimation of the transition probability from state 

si to sj. 2 is a smoothed factor. 

m)s,s(C

)s,s(C
)s|s(P

2

m

1i

ji

2ji

ij  
(6.8) 

Since the HMM states represent the sub-tasks, a boundary can be placed between two 

utterances that are assigned different state labels. However, the initial clustering obtained 

from the bisecting K-means algorithm does not take into account sub-task ordering 

information. To incorporate the ordering information, the Viterbi algorithm, which 

utilizes the ordering information through the HMM transition probabilities, is used to find 

the best state sequence of the observed utterances. The new state labels obtained from the 

Viterbi decoding are then used to re-estimate the HMM parameters using the same 

equations given above. The Viterbi decoding and the HMM parameter re-estimation can 
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be iterated until converged, i.e. the number of utterances that are assigned new state 

labels is less than a pre-defined threshold (threshold-2), or the maximum number of 

iterations is reached. 

To identify sub-task boundaries in a given dialog, the Viterbi algorithm is used to 

determine the best state sequence of all the utterances in the given dialog. This Viterbi 

algorithm is the same algorithm as the one used for constructing the HMM model. The 

boundary is then predicted between any two utterances that their state labels are different. 

Practically, since the HMM-based segmentation algorithm is an unsupervised learning 

approach, we can construct the HMM model from all available dialog data. In this case, 

sub-task boundaries in each dialog can be determined from the state labels assigned to the 

utterances in the last iteration of the Viterbi decoding and HMM parameter re-estimation 

process.  

6.1.4 Evaluation metrics 

To evaluate the performance of each dialog segmentation algorithm, the predicted 

boundaries are compared against the sub-task boundaries annotated by a coding scheme 

expert. Two types of evaluation metrics are used: Pk and F-measure. Pk  is a probabilistic 

error metric proposed by Beeferman et al. (1999) that measures the probability of 

misclassifying two utterances that are k utterances apart as belong to the same sub-task or 

different sub-tasks. Pk is calculated by counting the classification errors via a moving 

window of length k. At each location, the algorithm determines whether the two ends of 

the probe are in the same or different segments in the reference segmentation, and 

increases a counter if the predicted segmentation disagrees. The total count is then 

normalized by the number of measurements taken to make the Pk value scales between 0 

and 1. Since Pk is a probability of segmentation errors, a lower Pk value is preferred. An 

algorithm that predicts all boundaries correctly receives a score of 0. The following 

equations formally defined Pk. 
 

Pk  = Pmiss * p(different ref segments) + PFalseAlarm * p(same ref segment) (6.9) 

;p(same ref segments) is the probability that two points that are k utterances apart are in 

the same segments in the reference while p(different ref segments) is the probability that 

two points that are k utterances apart are in the different segments in the reference. 
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(6.10) 
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1i ref
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kN

1i hyp

FalseAlarm

)ki,i(

)ki,i(*))ki,i(1(
P  (6.11) 

;where the summations are over all of the utterances in each dialog and where 

)j,i(  1 when utterances i and j are form the same sub-task 

     0 otherwise  

The value of Pk is also depended on the choice of k. Beeferman et al. (1999) 

suggested that the value of k should be set to half the average true segment length. 

However, there are several alternatives on how the average segment length could be 

computed. The first variation is the choice for the unit of k. Even though an utterance is 

used as a unit in the illustration given above, other units of discourse can be used 

interchangeably. In the context of dialog segmentation, the unit of k could be word or 

utterance. Additionally, an average segment length can be calculated from all of the 

dialogs in the corpus or calculated separately for each dialog; this introduces another 

variation in the calculation of k. Among several alternatives, an appropriate method for 

calculating the value of k is determined empirically from an experiment discussed in 

Section 6.1.5.2. 

F-measure (or F-1) is the harmonic mean of precision and recall. However, the 

standard F-measure does not give any credit to a near miss boundary. Some modifications 

have been made to the standard F-measure to allow some near misses to be considered as 

a match. For example, a credit is given to a boundary that is within an arbitrary fixed 

range from the reference boundary. Since the segmentation result will later be used to 

identify a set of forms and their associate slots, the predicted segment that contains the 

same set of concepts as the reference segment is acceptable even though their boundaries 

are slightly different. For that reason, it is more suitable to define a close match relative 

to the location of the concepts inside each segment rather than defining it based on a 

fixed distance. For this reason, a near-miss boundary is counted as a match if there is no 

concept between the near-miss boundary and the closest reference boundary. This 

extension to the standard precision and recall are referred to as concept-based precision 

and recall. Concept-based F-1 is the harmonic mean of concept-based precision and 

recall. The segmentation algorithm that achieves high concept-based F-1 may not 
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produce very accurate segment boundaries, but it will; nevertheless, produce segments 

that contain similar sets of domain concepts as the ones in the reference segments. 

6.1.5 Experimental settings 

The proposed dialog segmentation algorithms were evaluated with dialogs from two 

task-oriented domains: the air travel planning domain and the map reading domain 

described in Section 3.2 and Section 3.4 respectively. Reference sub-task boundaries 

were annotated by a coding scheme expert. For simplicity, the annotator was only 

allowed to place sub-task boundaries at utterance boundaries. 

6.1.5.1 Corpus statistic 

The test corpora consist of 24 dialogs from the air travel planning domain and 20 

dialogs from the map reading domain. The dialogs from the air travel planning domain 

were annotated with the task structure presented in Table 3.3 while the dialogs from the 

map reading domain were annotated with the task structure presented in Table 3.5. The 

statistics of annotated dialogs is shown in Table 6.2. 

 

 
Air Travel Map Task 

mean std. mean std. 

Dialog length (utterance) 55.6 23.0 125.5 36.5 

Utterance length (word) 8.2 7.8 7.5 7.9 

Number of segments per dialog 5.4 1.5 17.1 4.9 

Segment length (utterance) 10.3 7.1 7.4 4.8 

Segment length (word) 84.4 60.2 55.2 39.5 

Table 6.2: The statistics of the test corpora 

The sub-task is quite short when comparing to a topic in expository text or newscast. 

The topic length is 428 words in WSJ text and 996 words in CNN broadcast news 

(Beeferman et al., 1999) while an average sub-task length is 84 words in the air travel 

domain and only 55 words in the map reading domain. Furthermore, sub-task length 

variance is high especially in the air travel domain. Some sub-tasks in this domain are 

quite long due to lengthy negotiation while some sub-tasks are only 2-3 utterances long 

such as a query_flights_fare sub-task.  

6.1.5.2 Defining k for Pk 

Four degenerate segmentation algorithms similar to the ones described in (Beeferman 

et al., 1999) were implemented to identify an appropriate method for calculating k. 
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1. ALL predicts a boundary at the end of every utterance (at every candidate 

point) 

2. NONE predicts no boundary at all (except for the beginning of the dialog and 

the end of the dialog which are default boundaries) 

3. EVEN predicts a boundary at every m
th

 utterances, where m is the average 

reference segment length for each dialog 

4. RAND predicts n boundaries randomly, where n is the number of reference 

boundaries in each dialog 

Each degenerate algorithm was evaluated with 4 variations of Pk that differ along two 

aspects: 1) unit of k (utterance or word) and 2) average segment length calculation 

(averaging per dialog or per data set).  

 

Algorithm 
Number of 

boundaries 

Calculate k per dialog Calculate k per data set 

False alarm 

probability 

Miss 

probability 
Pk 

False alarm 

probability 

Miss 

probability 
Pk 

ALL 56.625 1.000 0.000 0.578 1.000 0.000 0.550 

NONE 2.000 0.000 1.000 0.422 0.000 1.000 0.450 

EVEN 6.667 0.422 0.509 0.456 0.463 0.476 0.426 

RAND 6.417 0.363 0.647 0.481 0.421 0.631 0.482 

 

Table 6.3: Utterance-based Pk of degenerate algorithms in the air travel domain 

Table 6.3 presents the results of the degenerate algorithms in the air travel domain 

when the unit of k is an utterance (utterance-based Pk). The results when k is calculated 

separately for each dialog and the results when k is calculated from the average segment 

length of all the dialogs in the data set are compared. When k is calculated per dialog, the 

Pk value of the NONE algorithm is much better than the Pk value of the ALL algorithm. 

These results are different from the ones reported in (Beeferman et al., 1999) and 

(Arguello and Rosé, 2006). When k is calculated per data set, the difference between the 

ALL algorithm and the NONE algorithm becomes smaller. 

It can be deduced from Equation (6.9) that when the false alarm probability is equal 

to 1 and the miss probability is equal to 0, Pk is equal to p(same ref segments).  Similarly, 

when the false alarm probability is equal to 0 and the miss probability is equal to 1, Pk is 

equal to p(different ref segments). Based on the results of the ALL and NONE 

algorithms, it can be deduced that p(same ref segments) is equal to 0.578 while 
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p(different ref segments) is equal to 0.422 when k is calculated per dialog. One possible 

reason for the unbalanced probabilities is that the segment length has high variance as 

show in Table 6.2. When k is calculated per data set, it can be deduced that p(same ref 

segments) is equal to 0.550 while p(different ref segments) is equal to 0.450. These two 

probabilities are closer together than when k is calculated per dialog. This result might 

indicate that calculating an average segment length from all of the dialogs in the data set 

is a better method since it reduces segment length variance. 

There is oracle information inherited in the EVEN and RAND algorithms. In the 

RAND algorithm, the number of boundaries in the reference is given while in the EVEN 

algorithm both the number of boundaries and the average sub-task length in the reference 

segments are given. The EVEN algorithm, which uses more oracle information, has a 

better Pk than the RAND algorithm. This is also different from the results reported in 

(Beeferman et al., 1999). One reason for this might be from the fact that in the air travel 

domain a span of text to be segmented, a dialog, is much shorter than continuous text 

corpus in the broadcast news domain. Since both pieces of oracle information are given 

per dialog, they have a lot of influence on the segmentation result. In the map reading 

domain, where an average dialog length is longer, difference in Pk values between the 

EVEN and the RAND algorithms is smaller. The results from the map reading domain 

are given in Table 6.5 and Table 6.6. 

 

Algorithm 
Number of 

boundaries 

Unit = utterance (k=5) Unit = word (k=42) 

False alarm 

probability 

Miss 

probability 
Pk 

False alarm 

probability 

Miss 

probability 
Pk 

ALL 56.625 1.000 0.000 0.550 0.989 0.000 0.544 

NONE 2.000 0.000 1.000 0.450 0.000 1.000 0.450 

EVEN 6.667 0.463 0.476 0.426 0.406 0.428 0.376 

RAND 6.417 0.421 0.631 0.482 0.343 0.624 0.443 

Table 6.4: Pk values of degenerate algorithm when k is calculated from all of the dialogs 

in the air travel domain 

The results of the degenerate algorithms in the air travel domain when a unit of k is an 

utterance (utterance-based Pk) and the results when a unit of k is a word (word-based Pk) 

are compared in Table 6.4. k is calculated per data set. When a unit of k is a word (word-

based Pk) the false alarm probability of the ALL algorithm may not be equal to 1 because 

some utterances can be longer than k words. When a unit of k is a word, better Pk values 
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are obtained for all degenerate algorithms. Using a word as a unit helps overcoming an 

utterance length variation problem. 

 

Algorithm 
Number of 

boundaries 

Calculate k per dialog Calculate k per data set 

False alarm 

probability 

Miss 

probability 
Pk 

False alarm 

probability 

Miss 

probability 
Pk 

ALL 126.500 1.000 0.000 0.537 1.000 0.000 0.509 

NONE 2.000 0.000 1.000 0.463 0.000 1.000 0.491 

EVEN 18.500 0.480 0.477 0.476 0.517 0.443 0.468 

RAND 18.050 0.418 0.573 0.488 0.439 0.556 0.488 

Table 6.5: Utterance-based Pk of degenerate algorithms in the map reading domain 

The utterance-based Pk of the degenerate algorithms in the map reading domain is 

shown in Table 6.5. When k is calculated separately for each dialog, p(same ref 

segments) is equal to 0.537 while p(different ref segments) is equal to 0.463. However, 

when k is calculated from all of the dialogs, these two probabilities are more balance, 

p(same ref segments) = to 0.509 while p(different ref segments) = 0. 491. These 

probabilities are closer together than those in the air travel domain as an average segment 

length in the map treading domain has lower variance.  

 

Algorithm 
Number of 

boundaries 

Unit = utterance (k=4) Unit = word (k=28) 

False alarm 

probability 

Miss 

probability 
Pk 

False alarm 

probability 

Miss 

probability 
Pk 

ALL 126.500 1.000 0.000 0.509 0.953 0.000 0.504 

NONE 2.000 0.000 1.000 0.491 0.000 1.000 0.470 

EVEN 18.500 0.517 0.443 0.468 0.446 0.423 0.417 

RAND 18.050 0.439 0.556 0.488 0.367 0.555 0.445 

Table 6.6: Pk values of degenerate algorithm when k is calculated from all of the dialogs 

in the map reading domain 

Similar to the air travel planning domain, better Pk values for all degenerate 

algorithms are obtained when using a word as a unit of k instead of an utterance as shown 

in Table 6.6.  

Summary 

From the results in both the air travel domain and the map reading domain, I chose to 

compute k from all dialogs in the corpus since the average segment length calculated 
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from more data reduces segment length variance. In terms of the unit of k, a word unit 

was chosen. The finer-grained unit resolves an utterance length variation problem. 

6.1.6 TextTiling experiments 

In all experiments (unless specified elsewhere), the context size (c) was set to 4 

utterances, smoothing window size (s) was set to 3 and cut-off threshold was set to μ - 

σ/2; where μ is the mean of the depth scores and σ is their standard deviation. The 

performance of each sub-task boundary predictor is reported in terms of Pk, standard F-

measure (F-1) and concept-based F-measure (C. F-1). The number reported is the average 

performance over all of the dialogs in the test corpus.  

For a sub-task boundary predictor that gains substantial improvement over the 

baseline predictor, the significance level of the improvement is also reported. To avoid 

making an assumption that the segmentation performance on each dialog has a normal 

distribution, the Wilcoxon signed-rank test was adopted instead of the Student's t-test. If 

the Student's t-test is used when the data does not have a normal distribution, the p-value 

can be misleading. The Wilcoxon test is a nonparametric test; hence, it makes fewer 

assumptions on the distribution of the data. More detail discussions of both statistical 

hypothesis tests can be found in many statistics textbook such as (Degroot, 1986). 

It has been argued that, a nonparametric test is less powerful than a parametric test 

that assumes a normal distribution (e.g. the Student's t-test), namely a nonparametric test 

is less likely to produces a small p-value. Therefore, it is more difficult to find the 

improvement that is statistically significant when a nonparametric test is used. In the 

preliminary experiments, I found that the p-values obtained from the Wilcoxon test were 

usually higher than the p-values obtained from the Student's t-test. A less powerful test, 

the Wilcoxon test, was chosen to ensure that the improvement achieved by the proposed 

approach is statistically significant. A Perl script provided by Institute of Phonetic 

Sciences, Amsterdam
7
 was used to perform the Wilcoxon signed-rank test. 

6.1.6.1 TextTiling baselines 

Two baseline boundary predictors were created from the conventional TextTiling 

algorithm. The first predictor, B1 (B stands for baseline predictor), uses all of the words 

in the transcription as features. The second predictor, B2, excludes stop words specified 

by a hand-crafted list. The stop word list was taken from the list that was developed in the 

                                                 
7
 http://www.fon.hum.uva.nl/rob/SignedRank/SRTest.pl 

http://www.fon.hum.uva.nl/rob/SignedRank/SRTest.pl
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Snowball project
8
.  This stop word list contains 174 words and includes pronouns, 

prepositions and auxiliary verbs. The baseline performances are shown in Table 6.7. 

 

Name Stop word treatment 
Air Travel Map Task 

Pk F-1 C. F-1 Pk F-1 C. F-1 

B1 Include all words 0.384 0.427 0.654 0.412 0.239 0.396 

B2 Exclude hand-crafted stop words 0.387 0.383 0.621 0.395 0.269 0.426 

Table 6.7: TextTiling baseline performances 

Summary 

When both baseline predictors are applied in two different domains, the results 

reveals that a hand-crafted stop word list is not optimal for every domain. In the air travel 

domain, removing hand-crafted stop words actually decreases segmentation performance; 

however, the same stop word list does improve segmentation performance in the map 

reading domain.  

6.1.6.2 Data-driven stop word treatments 

T3 and T4 (T stands for TextTiling) are sub-task boundary predictors that use the 

data-driven approaches discussed in Section 6.1.1 to handle stop words. T3 excludes stop 

words from a set of features similar to B2 but uses a dialog-specific stop word list instead 

of a hand-crafted stop word list. The threshold for selecting dialog-specific stop words 

was set to μ + 2*σ in all of the experiments; where μ is the mean of the regularity counts 

of all the words in a given dialog and σ is their standard deviation. The average number 

of dialog-specific stop words is 8.8 words per dialog in the air travel planning domain 

and 9.5 words per dialog in the map reading domain. Regularity counts discover common 

words that are specific to spoken dialog domains, but are not listed in the hand-crafted 

stop word list, such as “okay” and “yeah”. However, some function words that occur only 

a few times are not included in the data-driven stop word list. The second predictor, T4, 

does not remove any word from context windows but weighs each word with a regularity 

weight computed by Equation (6.1). The performances of both sub-task boundary 

predictors are shown in Table 6.8. 

 

                                                 
8
 http://search.cpan.org/~creamyg/Lingua-StopWords-0.08/lib/Lingua/StopWords.pm. 

http://search.cpan.org/~creamyg/Lingua-StopWords-0.08/lib/Lingua/StopWords.pm
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Name Stop word treatment 
Air Travel Map Task 

Pk F-1 C. F-1 Pk F-1 C. F-1 

T3 Exclude dialog-specific stop words 0.372 0.455 0.664 0.413 0.251 0.381 

T4 Use regularity weights 0.384 0.420 0.641 0.428 0.231 0.379 

Table 6.8: Results of data-driven stop word treatments 

T3, which uses a dialog-specific stop word list, outperforms both baseline boundary 

predictors (B1 and B2) in the air travel domain. However, its performance is worse than 

both baseline predictors in the map reading domain. In the map reading domain, many 

content words also occur regularly throughout a dialog since a dialog composes of a 

series of the same type of sub-task, a draw_a_segment sub-task. Therefore, it is quite 

difficult to distinguish between content words and stop words. With the current cut-off 

threshold, some concept words such as “right” are removed while some common words 

such as “do” remains. Some concept words occur quite regularly but as different concept 

types; for example, some landmarks are EndLocation in one sub-task but are 

StartLocation in another sub-task. In another case, “right” can be both Direction and a 

non-concept word for acknowledgement. Therefore, information from concept annotation 

may help improve the performance of the predictor that identifies stop words from word 

distribution. 

In T4, words that occur regularly are not removed unlike in T3, but are assigned only 

small weights. T4 performs slightly worse than T3 in both domains. Weighted common 

words still have some contribution to a cosine similarity score since there are many of 

them. 

Summary 

Data-driven stop word treatments can discover the stop words that are specific to the 

interested genre and domain. However, the efficiency of a data-driven stop word 

treatment is also depended on word distribution characteristic. In map reading domain, 

where the distributions of content words are quite similar to those of stop words, the data-

driven approaches are less efficient.  

6.1.6.3 Word token representation 

The segmentation results of the predictors that use information from concept 

annotation, manually created, are shown in Table 6.9. TC1, TC2, TC3 and TC4 use the 

same stop word treatment as their counterparts, B1, B2, T3 and T4 respectively, but also 

incorporate information from concept annotation in word token representations. C in the 

predictor’s name stands for concept information.  
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Name Stop word treatment 
Air Travel Map Task 

Pk F-1 C. F-1 Pk F-1 C. F-1 

TC1 Include all words 0.395 0.425 0.661 0.403 0.268 0.415 

TC2 Exclude hand-crafted stop words 0.360 0.385 0.634 0.398 0.299 0.440 

TC3 Exclude dialog-specific stop words 0.353 0.461 0.695 0.397 0.254 0.425 

TC4 Use regularity weights 0.388 0.426 0.671 0.390 0.282 0.443 

Table 6.9: Segmentation performances when incorporating concept information 

In both domains, the boundary predictors that use information from concept 

annotation (TC1, TC2, TC3 and TC4) perform better than their counterparts (B1, B2, T3 

and T4) that do not use the information, especially when evaluated by concept-based F-1. 

TC3 and TC4, which use a data-driven approach to define stop words from word 

distribution, can benefit more from concept information than TC1 and TC2, which use a 

traditional stop word treatment. Information from concept annotation provides a richer 

representation that helps distinguish between different concept types and also between 

different word senses. Co-occurrences of the same word string that actually belong to 

dissimilar concepts or dissimilar worse senses no longer affect the similarity score. In 

addition, this better representation makes the distributions of content words more 

distinguishable from the distributions of stop words; therefore, the boundary predictors 

that use data-driven stop word treatments, which rely on word distribution characteristic, 

can achieve more performance improvement.  

In the air travel domain, both TC3 and TC4 achieve better segmentation results than 

TC1 and TC2. When compared to the baselines, TC3, which uses information from 

concept annotation and a dialog-specific stop word list, performs significantly better than 

B2, which uses a hand-crafted stop word list, both in terms of exact F-1 (p-value = 0.002) 

and concept-based F-1 (p-value = 0.028). The result which is significantly better than the 

baseline at a significance level of 0.05 (an -level of 5%) is highlighted in bold
9
. In the 

map reading domain, the performances of TC3 and TC4 are about the same as the 

performances of TC1 and TC2. 

                                                 
9
 Since there are two baseline boundary predictors in the experiment, a significance test is conducted for 

each baseline separately. When a statistically significant improvement over one of the baseline is found, the 

p-value and the significance level of that particular test are reported. The claim of significant improvement 

is made specifically for that particular baseline to avoid a multiple testing problem. 
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Summary 

Information from concept annotation improves dialog segmentation results in both 

domains as it provides better word token representation that can distinguish between 

different concept types and also between different word senses. This better representation 

also makes the data-driven stop word treatments more efficient especially in the map 

reading domain. While a performance of the boundary predictor that uses a hand-crafted 

stop word list depended on compatibility between the selected stop word list and the 

domain, the performance of the boundary predictor that uses a data-driven stop word 

treatment (a dialog-specific stop word list or regularity weights) is not since the stop 

words are determined directly from word distribution in each data set.  

6.1.6.4 Distance weight 

The segmentation results obtained when distance weights are applied to sub-task 

boundary predictors are shown in Table 6.10. D in the predictor’s name stands for a 

distance weight. These boundary predictors do not use information from concept 

annotation and should be compared to B1, B2, T3 and T4. Distance weights improve the 

results, as measured by concept-based F-1, for most of the cases. The improvement 

comes from higher recall. Distance weights demote irrelevant similarity from far away 

contexts; therefore, help the TextTiling algorithm discovers more boundaries. 

 

Name Stop word treatment 
Air Travel Map Task 

Pk F-1 C. F-1 Pk F-1 C. F-1 

T1D Include all words 0.399 0.418 0.636 0.412 0.241 0.412 

T2D Exclude hand-crafted stop words 0.384 0.397 0.659 0.397 0.273 0.435 

T3D Exclude dialog-specific stop words 0.395 0.435 0.672 0.409 0.239 0.400 

T4D Use regularity weights 0.374 0.438 0.696 0.414 0.226 0.404 

Table 6.10: Segmentation performances when distance weights are applied to the 

predictors that do not use concept information. 

T4D which uses regularity weights together with distance weights obtains significant 

improvement over the baseline that uses a hand-crafted stop word list (B2) both in terms 

of exact match or standard F-measure (p-value = 0.026) and concept-based F-1 (p-value 

= 0.008). However, in the map reading domain, the boundary predictors that use data-

driven stop word treatments are still not better than the B2 baseline. T3D and T4D have 

the same problem as T3 and T4 that is without information form concept annotation the 

distributions of content words are quite similar to those of stop words which make the 

data-driven approaches less efficient.  
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Name Stop word treatment 
Air Travel Map Task 

Pk F-1 C. F-1 Pk F-1 C. F-1 

TC1D Include all words 0.405 0.387 0.628 0.399 0.260 0.423 

TC2D Exclude hand-crafted stop words 0.362 0.399 0.685 0.380 0.290 0.456 

TC3D Exclude dialog-specific stop words 0.357 0.482 0.720 0.391 0.247 0.418 

TC4D Use regularity weights 0.377 0.434 0.694 0.371 0.278 0.470 

Table 6.11: Segmentation performances when applied distance weights to the predictors 

that used concept information. 

Table 6.11 presents the segmentation results obtained when distance weights are 

applied to the predictors that also utilize information from concept annotation. Distance 

weights improve the segmentation performance when compared to the results in Table 

6.9, where the distance weights are not applied, as measured by concept-based F-1 for 

most of the cases. In the air travel domain, the predictors that use data-driven stop word 

treatments (TC3D and TC4D) achieve a significant improvement over the baseline that 

uses a hand-crafted stop word list (B2), in terms of concept-based F-measure (p-value = 

0.001 for TC3D and p-value = 0.004 for TC4D). TC3D also gains a significant 

improvement over the baseline (B2) in terms of exact F-1 (p-value = 0.002). In the map 

reading domain TC4D achieves a significant improvement over the baseline predictor 

does not remove any stop word (B1) in terms of concept-based F-measure (p-value = 

0.007). The segmentation result obtained from TC4D is also slightly better than the result 

obtained from TC2D which uses a hand-crafted stop word list. 

Summary 

The boundary predictors that utilize distance weights achieve better segmentation 

results, in terms of concept-based F-1, than the predictors that do not use distance 

weights. The performance gain can be achieved by both the predictors that use 

information from concept annotation and the ones that do not use it. When distance 

weights are used together with a data-driven stop word treatment, a significant 

improvement over the baseline can be achieved in both domains. 

6.1.6.5 Context size 

To examine the effect of the amount of context on segmentation performance, in this 

experiment, the context window size used in cosine similarity calculation was varied 

from 4 utterances to 16 utterances. To also observe the effect of distance weights on 

segmentation performance when the size of the context window increases, two boundary 
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predictors, TC4 and TC4D, were used. The former uses regularity weights and 

information from concept annotation while the latter uses additional distance weights. 

Both predictors achieved good performance in both domains as shown in the previous 

experiments. The segmentation results in the air travel domain are shown in Table 6.12, 

Figure 6.4 and Figure 6.5. 

 

Context 

size 

w/o distance weight (TC4) with distance weight (TC4D) 

Pk C. Prec 
C. 

Recall 
C. F-1 Pk C. Prec 

C. 

Recall 
C. F-1 

4 0.388 0.685 0.702 0.671 0.377 0.689 0.747 0.694 

6 0.431 0.675 0.614 0.620 0.392 0.669 0.693 0.657 

8 0.394 0.740 0.650 0.674 0.403 0.698 0.677 0.662 

10 0.410 0.711 0.581 0.624 0.424 0.693 0.608 0.628 

12 0.408 0.745 0.581 0.632 0.415 0.719 0.599 0.634 

14 0.410 0.766 0.610 0.656 0.410 0.738 0.628 0.657 

16 0.409 0.777 0.609 0.661 0.425 0.737 0.616 0.648 

Table 6.12: The performances of sub-task boundary predictors when the context size is 

varied in the air travel domain. 

When a larger context window is used, a context vector changes more gradually from 

one sliding window to another sliding window which makes the similarity score curve 

smoother. Both TC4 and TC4D predict less number of boundaries as the window size 

increases. As a result, precision tends to increase while recall tends to decrease as shown 

in Figure 6.4 and Figure 6.5. Similar observation is also found in the map reading 

domain. The trade-off between precision and recall determines the overall performance of 

the predictors. 
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Figure 6.4: The effect of the context size on the TC4 predictor in the air travel domain. 

In the air travel domain, when the context size increases, the overall performance of 

both boundary predictors decreases slightly both in terms of Pk and concept-based F-1. 

The performance is not monotonic decreasing; however, the performance is optimal when 

the context window size is set to 4 utterances. The loss in recall is greater than the gain in 

precision when the context size is large. When the context size increases, both predictors 

miss more boundaries between small sub-tasks (for example, between a query_car_info 

sub-task and a query_hotel_info sub-task). If the context windows are larger than the 

sub-tasks, they are more likely to contain irrelevant context and irrelevant similarity from 

other sub-tasks. This irrelevant similarity may prevent the TextTiling algorithm from 

detecting the boundary between two small sub-tasks since there is no significant drop in 

cosine similarity scores. 
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Figure 6.5: The effect of the context size on the TC4D predictor in the air travel domain. 

 

 

Figure 6.6: The effect of distance weights when the context size is varied in the air travel 

domain  
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The performances of TC4 and TC4D predictors in terms of concept-based F-1 are 

compared in Figure 6.6. The graphs for TC4 are in lighter colors while the graphs for 

TC4D are in darker colors. TC4D, which uses distance weights, achieves better 

performance from higher recall when the context window is small. However, when the 

context window is larger, the recall and concept-based F-1 of both predictors drop to 

about the same values.  

An error analysis reveals that longer dialogs benefit more from a larger context 

window. A long dialog usually has longer sub-tasks (from lengthy negotiation) rather 

than more sub-tasks. With a larger context window, the TextTiling algorithm is able to 

detect similar words within to the same sub-task that are quite far apart and hence reduces 

the number false alarms without missing more boundaries.  

To investigate this observation more closely, I separated the dialogs into two groups 

according to their length. The first group contains the dialogs that are shorter than the 

average dialog length (55.63 utterances) while the second group contains the dialogs that 

are longer than the average. When the size to of the context window increases, the 

segmentation performance decreases in the first group but increases in the second group 

as shown in Table 6.13 and Figure 6.7. The performances of short dialogs are illustrated 

with lighter color graphs. Similar results are obtained for both TC4 and TC4D. The 

segmentation performance for the set of long dialogs is optimal when the context window 

size is set to 16 utterances for both TC4 and TC4D. For TC4, the performance when 

using a large context window (context size = 16) is significantly better than when using a 

small context window (context = 4) in terms of Pk (p-value = 0.008). 
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Context 

size 

w/o distance weight (TC4) with distance weight (TC4D) 

short dialogs long dialogs short dialogs long dialogs 

Pk C. F-1 Pk C. F-1 Pk C. F-1 Pk C. F-1 

4 0.380 0.698 0.404 0.616 0.359 0.723 0.411 0.637 

6 0.474 0.617 0.345 0.627 0.398 0.669 0.381 0.633 

8 0.418 0.679 0.347 0.665 0.423 0.659 0.363 0.668 

10 0.442 0.626 0.347 0.619 0.440 0.623 0.391 0.638 

12 0.452 0.614 0.321 0.666 0.433 0.630 0.380 0.642 

14 0.454 0.646 0.322 0.675 0.434 0.648 0.362 0.674 

16 0.465 0.650 0.299 0.684 0.462 0.628 0.350 0.689 

Table 6.13: Performance comparison between short dialogs and long dialogs in the air 

travel domain 

Figure 6.7: The effect of the context size on short dialogs and long dialogs in the air 

travel domain  

Segmentation performances of TC4 and TC4D predictors in the map reading domain 

are shown in Table 6.14 and Figure 6.8. As the context size increases, both TC4 and 

TC4D predict fewer boundaries. Therefore, precision increases at the expense of recall, 

similar to the results obtained in the air travel domain. The boundary predictor that does 

not use distance weights (TC4) achieves a smaller gain in precision than the reduction in 

recall; hence, segmentation performance is slightly lower as the context size increases. 

The predictor that uses distance weights (TC4D), on the other hand, achieves higher gain 
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in precision that can compensate for the reduction in recall; therefore, its segmentation 

performance does not change much. In this domain, TC4D can still recover more 

boundaries than TC4 even when a larger context window is used unlike in the air travel 

domain. Another difference is that regardless of the amount of the context used, there is 

only small difference in segmentation performance between short dialogs and long 

dialogs. 

 

Context 

size 

w/o distance weight (TC4) with distance weight (TC4D) 

Pk C. Prec C. Recall C. F-1 Pk 
C. 

Prec 
C. Recall C. F-1 

4 0.390 0.490 0.409 0.443 0.371 0.499 0.450 0.470 

6 0.372 0.523 0.386 0.440 0.371 0.538 0.427 0.472 

8 0.385 0.532 0.367 0.430 0.371 0.544 0.410 0.464 

10 0.382 0.532 0.362 0.425 0.360 0.558 0.426 0.478 

12 0.371 0.555 0.362 0.432 0.379 0.539 0.395 0.450 

14 0.369 0.540 0.375 0.438 0.368 0.573 0.409 0.474 

16 0.391 0.539 0.349 0.421 0.363 0.578 0.397 0.467 

Table 6.14: The performances of both predictors when the context size is varied in the 

map reading domain. 
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Figure 6.8: The effect of distance weights when the context size is varied in the map 

reading domain 

There are two types of sub-tasks in the map reading domain: draw_a_segment and 

grounding. Grounding is a finer-grained sub-task embedded inside a draw_a_segment 

sub-task. The discussion on task structure decomposition in the map reading domain is 

presented in Section 3.4. When the context size increases, both TC4 and TC4D miss 

more boundaries between finer-grained sub-tasks (grounding sub-tasks) than the 

boundaries between coarser-grained sub-tasks (draw_a_segment sub-tasks). To evaluate 

segmentation performance on coarse-grained sub-tasks, only the boundaries of 

draw_a_segment sub-tasks are considered; the boundaries of grounding sub-tasks are 

excluded from the reference boundaries. The performances of TC4 and TC4D boundary 

predictors on coarse-grained sub-tasks are shown in Table 6.15. 
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Context 

size 

w/o distance weight (TC4) with distance weight (TC4D) 

Pk C. Prec 
C. 

Recall 
C. F-1 Pk C. Prec 

C. 

Recall 
C. F-1 

4 0.439 0.365 0.529 0.427 0.422 0.375 0.589 0.450 

6 0.409 0.392 0.495 0.432 0.406 0.412 0.568 0.470 

8 0.395 0.399 0.475 0.430 0.417 0.425 0.551 0.472 

10 0.376 0.419 0.485 0.444 0.391 0.430 0.567 0.482 

12 0.372 0.439 0.489 0.455 0.384 0.426 0.529 0.465 

14 0.385 0.419 0.498 0.450 0.378 0.453 0.557 0.492 

16 0.371 0.430 0.477 0.447 0.353 0.473 0.558 0.504 

Table 6.15: Segmentation performances on coarse-grained sub-tasks in the map reading 

domain 

An average segment length of coarse-grained sub-tasks is 13.8 utterances while an 

average segment length of all of sub-tasks is 7.4 utterances. When the context size 

increases, both boundary predictors have slightly better performance on coarse-grained 

sub-tasks due to reduction in false alarms. Between the two predictors, TC4D gains more 

improvement in precision than TC4 and also has better overall performance. When a 

larger context window is used, TC4D misses only a few more boundaries but reduces the 

number of false alarms by about one third. 

Summary 

A sub-task boundary predictor that uses a large context window can achieve a better 

result in specific circumstances. In the air travel planning domain, a large context 

window improves segmentation performance in long dialogs. In the map reading domain, 

a large context window is more suitable for identifying coarser-grained sub-task 

boundaries. In the map reading domain, distance weights help recover more boundaries 

regardless of the context window size used; however, in the air travel domain, there is no 

performance gain from distance weights when the context window size is large. 

Using an appropriate amount of context is crucial when segmenting a discourse into 

fine-grained segments such as sub-tasks. Even though a boundary predictor that uses a 

large context window can achieve better performance in some specific cases, a better 

overall performance can be achieved with a small context window. A small context 

window is more sensitive to small changes in the context and thus suitable for identifying 

fine-grained segments particularly when there is high variation in the segment length as 

in the air travel planning domain. 
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6.1.6.6 Smoothing algorithm 

In this experiment, two similarity score smoothing algorithms were examined: 

rectangular smoothing and triangular smoothing. Both smoothing algorithms are 

described in Section 6.1.2.2. Rectangular smoothing was used as a default smoothing 

technique in all previous experiments. A triangular smoothing technique is applied in 

T4DTr and TC4DTr. The former uses only transcribed words while the latter also 

incorporates information from concept annotation. Both predictors utilize regularity 

weighs and distance weights similar to T4D and TC4D but use a triangular smoothing 

scheme instead of a rectangular smoothing scheme (Tr stands for triangular smoothing). 

The results of T4D and TC4D presented in Table 6.16 are similar to the ones presented in 

Table 6.10 and Table 6.11 respectively.  

 

Name Smoothing technique 
Air Travel Map Task 

Pk F-1 C. F-1 Pk F-1 C. F-1 

T4D Rectangular smoothing 0.374 0.438 0.696 0.414 0.226 0.404 

T4DTr Triangular smoothing 0.376 0.445 0.702 0.424 0.230 0.396 

TC4D Rectangular smoothing 0.377 0.434 0.694 0.371 0.278 0.470 

TC4DTr Triangular smoothing 0.371 0.457 0.712 0.384 0.292 0.464 

Table 6.16: Segmentation results when used different smoothing algorithms 

The boundary predictors that utilize a triangular smoothing scheme achieve slightly 

better exact F-1 than the predictors that use a rectangular smoothing scheme (but not 

significantly better). However, Pk and concept-based F-1 are not always improved. Pk and 

concept-based F-1 already award some credit to near missed boundaries; therefore, a 

more precise boundary prediction may not always improve their values. 

Since the boundary predictors that use a triangular smoothing algorithm can achieve 

about the same level of concept-based F-1 as the predictors that use a rectangular 

smoothing algorithm, they also gain a significant improvement over the baseline, similar 

to their counterparts.  In the air travel domain, both T4DTr and TC4DTr are significantly 

better than the baseline predictor that uses a hand-crafted stop word list (B2). The p-

values are 0.003 and 0.002 respectively. In the map reading domain, TC4DTr is 

significantly better than the baseline that includes all words in the transcript as features 

(B1); p-value is equal to 0.026. The result which is significantly better than the baseline 

at a significance level of 0.05 (an -level of 5%) is highlighted in bold. 
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In terms of exact F-1, the boundary predictors that use a triangular smoothing 

algorithm achieve more improvement when compared to the baselines than the predictors 

that use a rectangular smoothing algorithm. In the air travel domain, both T4DTr and 

TC4DTr achieve a significant improvement over the baseline B2; the p-value is 0.015 

and 0.003 respectively. In the map reading domain, the p-value of TC4DTr is 0.050. 

Summary 

A triangular smoothing algorithm produces a more precise boundary prediction than a 

rectangular smoothing algorithm as shown by the improvement in exact F-1.  

6.1.6.7 Cut-off threshold 

It has been observed during the error analysis of segmentation results that sometimes 

the TextTiling algorithm found a drop in similarity scores (a valley) at the location where 

the boundary should be; however, its depth score was not high enough for the algorithm 

to predict it as a boundary. If the cut-off threshold is lower, these missing boundaries 

could be discovered; nevertheless, this might come with the cost of higher false alarms.  

In this experiment the effect of a cut-off threshold on segmentation performance is 

investigated. Four cut-off thresholds were examined. Threshold-1 is the threshold that 

was used in all previous experiments. The cut-off threshold for selecting a boundary is set 

to μ - σ/2; where μ is the mean of the depth scores and σ is their standard deviation. 

Threshold-2 has a lower value than threshold-1; the cut-off threshold is set to μ – σ. For 

all, there is no cut-off threshold; all of the valleys in the similarity score plot are 

outputted as boundaries. For oracle, the top-n candidate boundaries that have the highest 

depth scores are outputted; n is the number of reference boundaries in each dialog. The 

sub-task boundary predictor used in this experiment is the predictor that uses information 

from concept annotation, regularity weights and distance weights together with a 

triangular smoothing algorithm (TC4DTr). This boundary predictor is discussed in the 

previous section. Table 6.17 and Figure 6.9 present the segmentation results of TC4DTr 

in the air travel domain when different cut-off thresholds are used. The results in the map 

reading domain are presented in Table 6.18 and Figure 6.10. The result of threshold-1 is 

the same as the result of TC4DTr shown in Table 6.16. 
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Threshold  
#Predicted 

boundaries 

#Predicted/ 

#reference 

ratio 

Pk 

Concept-based 

Precision Recall F-1 

threshold-1 8.125 1.266 0.371 0.693 0.771 0.712 

threshold-2 9.292 1.448 0.393 0.630 0.803 0.692 

all 11.167 1.740 0.423 0.567 0.840 0.666 

oracle 6.417 1.000 0.362 0.729 0.685 0.704 

Table 6.17: Segmentation performance when different cut-off thresholds are used in the 

air travel domain  

 

Figure 6.9: The effect of the cut-off threshold in the air travel domain 

 

Threshold  
#Predicted 

boundaries 

#Predicted/ 

#reference 

ratio 

Pk 

Concept-based 

Precision Recall F-1 

threshold-1 15.550 0.861 0.384 0.506 0.433 0.464 

threshold-2 19.650 1.089 0.375 0.480 0.513 0.492 

all 23.150 1.283 0.372 0.461 0.580 0.511 

oracle 18.050 1.000 0.366 0.498 0.493 0.496 

Table 6.18: Segmentation performance when different cut-off thresholds are used in the 

map reading domain 
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Figure 6.10: The effect of the cut-off threshold in the map reading domain 

In Figure 6.9 and Figure 6.10, the threshold that yields fewer predicted boundaries is 

presented first. As expected when more boundaries are predicted recall is higher while 

precision is lower. Therefore, the overall performance is a trade-off between the gain in 

recall and the loss in precision. When the boundary predictor outputs more boundaries, 

the overall performance decreases in the air travel domain but increases in the map 

reading domain. The third column of Table 6.17 and Table 6.18 show the ratio between 

the number of predicted boundaries and the number of reference boundaries in the air 

travel domain and the map reading domain respectively. This ratio is used to compare the 

amount of boundaries outputted by a sub-task boundary predictor when the sets of input 

dialogs are not the same. When the same thresholding method is used, The predictor 

outputs less number of boundaries in the map reading domain as indicates by the lower 

predicted boundary ratio. A significant drop in lexical similarity, which indicates a 

potential segment boundary, occurs less frequent because the consecutive sub-tasks in the 

map reading domain are more similar given that each dialog composes of a series of the 

same type of sub-task. Therefore, a lower threshold is more suitable is the map reading 

domain. 

One interesting observation is that the oracle threshold does not provide optimal 

performance in terms of concept-based F-1, but the threshold that outputs slightly more 
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boundaries than the reference boundaries does. Since the boundary predictor can generate 

some false alarms, allowing the predictor to output slightly more boundaries than the 

number of reference boundaries can achieve higher gain in recall than reduction in 

precision assuming that the candidate boundaries that have high depth scores are likely to 

be true boundaries. 

Summary 

An appropriate cut-off threshold for predicting a sub-task boundary from the depth 

score is depended on the characteristic of the domain. If consecutive sub-tasks in a dialog 

are quite similar, a lower threshold is required as in the map reading domain. Similarly, a 

domain which has fine-grained sub-tasks may also require a low cut-off threshold. 

6.1.6.8 Error analysis 

A dialog segmentation result obtained from a TC4DTr sub-task boundary predictor 

which achieve good segmentation results in both the air travel domain and the map 

reading domain was analyzed. This predictor uses information from concept annotation, 

regularity weights and distance weights together with a triangular smoothing algorithm 

and is discussed in Section 6.1.6.6. There are two types of segmentation errors: missing 

boundaries and false alarms.  

 

Left segment Right segment 
Missed boundaries 

Count % 

query_flight_info query_flight_info 14 53.85 

query_flight_info query_flights_fare 7 31.82 

query_flights_fare query_car_info 5 55.56 

query_car_info query_hotel_info 4 40.00 

Table 6.19: The most frequent missing boundaries in the air travel domain 

Table 6.19 presents the most frequent missing boundaries in the air travel domain. 

The first and the second column show the left sub-task and the right sub-task of the 

missing boundary respectively. There are two types of boundaries that are difficult to 

identify by the TextTiling algorithm. The first one is a boundary between two 

consecutive sub-tasks of the same type such as a boundary between two 

query_flight_info sub-tasks that represent a departing flight and a return flight. Dialog 

segments that belong to the same sub-task type are more similar than dialog segments 

that belong to different sub-task types. Therefore, based on the lexical coherence 
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assumption, it is more difficult to identify the boundary between two instances of the 

same sub-task type. 

The second problem is the boundaries of a small sub-task that is only 2-3 utterances 

long such as a query_flights_fare sub-task. It is difficult to accurately identify the 

boundaries of fine-grained segments since useful context is limited. Moreover, the 

difficulty also comes from the limitation of the TextTiling algorithm. In order to identify 

both boundaries of a small sub-task, there must be two significant drops in a cosine 

similarity score plot that are only a couple of utterances apart. The TextTiling algorithm 

may be able to identify one boundary of a small sub-task but usually fail to detect another 

boundary since it is unlikely to have another significant drop in lexical cohesion that is 

very close to the first one. A boundary between a query_car_info sub-task and a 

query_hotel_info sub-task is sometimes difficult to identify since some instances of a 

query_car_info sub-task and a query_hotel_info sub-task are quite short. Moreover, 

they sometimes contain similar concepts and keywords, such as [Fare]:dollar and “rate”. 

 

Boundary type 
Missed boundaries 

Count % 

draw_a_segment 89 44.28% 

grounding (embedded) 117 73.13% 

Table 6.20: Missing boundaries in the map reading domain 

Statistic of missing boundaries in the map reading domain is shown in Table 6.20. 

Since there are only two types of sub-tasks in this domain and a grounding sub-task is 

embedded inside a draw_a_segment sub-task, the boundaries can be categorized into 

two types: a boundary between two draw_a_segment sub-tasks and a boundary of a 

grounding sub-task inside a draw_a_segment sub-task. The type of a boundary is 

indicated in the first column of Table 6.20. Boundaries of grounding sub-tasks are more 

problematic since the sub-tasks are quite short; some of them are only 2-3 utterances 

long. This problem is similar to the one occurs to the boundaries of query_flights_fare 

sub-tasks in the air travel domain discussed above. Since most of the boundaries in the 

map reading domain belong to those two problematic cases, the segmentation 

performance in the map reading domain is lower than the performance in the air travel 

domain.  

A false alarm sometimes occurs in a long segment since a long discussion usually has 

a slight shift in topic that might be detected by the TextTiling algorithm. In the air travel 
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domain some false alarms are correlated with sub-structures within a long sub-task. For 

example, some false alarms occur between a dialog segment that discusses a departure 

city and a dialog segment that discusses departure date and time. Some false alarms occur 

between a dialog segment that specifies all of the criteria for retrieving flight information 

and a dialog segment that discusses the results retrieved from the database. 

6.1.7 HMM-based segmentation experiments 

In all experiments, unless specified elsewhere, the parameters that were used to train 

a hidden Markov model are given in the following table. 

 

Parameter Value 

Bisecting cluster re-assignment threshold (threshold-1) 5% 

Number of bisecting runs (B) 10 

Minimum cluster size (T) 5 

Smoothed count for emission probability estimation ( 1) 1 

Smoothed count for transition probability estimation ( 2) 1 

Maximum HMM parameter re-estimating iterations 15 

State label re-assignment threshold for Viterbi decoding and 

HMM parameter re-estimation iterations 
1% 

Table 6.21: Default values of the parameters in HMM training 

The number of HMM states is another crucial parameter in HMM-based 

segmentation. In the implementation of the HMM-based approach employed in the 

experiments, only the maximum number of HMM states (M) can be specified. The actual 

number of HMM states (m) may be lower if the clustering algorithm combines small 

clusters into an etcetera state when it induces the initial HMM states from data. The value 

of M, the maximum number of HMM states, is treated as an independent variable in most 

experiments in order to investigate the effect of the number of HMM states on 

segmentation performance. For simplicity, when the number of HMM states is discussed 

in the following experiments, it refers to the maximum number of HMM states (M) not 

the actual number of HMM states (m) since M is the parameter that can be controlled in 

the experiments. 

Since the bisecting K-means clustering algorithm contains a random process as the 

new centroids of split clusters are chosen randomly, the performance of a HMM-based 

segmentation is averaged over 10 runs. 
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6.1.7.1 Utterance-based segmentation  

In this experiment, the initial states of the HMM-based sub-task boundary predictor 

are created by clustering similar utterances in the corpus together. A HMM is trained 

from dialog transcription that also contains concept annotation as it has been shown in the 

TextTiling experiment (Section 6.1.6.3) that information from concept annotation is 

useful for determining sub-task boundaries. In terms of a stop word treatment, the stop 

words that are specified in the hand-crafted list are removed. The effect of different stop 

word treatments on the segmentation performance is investigated in Section 6.1.7.4. The 

segmentation result of the HMM-based sub-task boundary predictor, UC2, is shown in 

Table 6.22 and Figure 6.11. The boundary predictor naming scheme is similar to the one 

used in TextTiling experiments where U stands for utterance-based HMM segmentation, 

C stands for concept information and the running number represents a stop word 

treatment. 

 

Number of 

states (M) 

Predicted 

boundaries 

Segment 

Length 
Pk 

Concept-based 

Precision Recall F-1 

2 5.633 12.006 0.398 0.797 0.544 0.624 

4 24.104 2.408 0.426 0.395 0.930 0.542 

6 25.079 2.310 0.420 0.394 0.951 0.544 

8 26.746 2.161 0.430 0.375 0.955 0.525 

TextTiling 7.792 8.190 0.360 0.625 0.679 0.634 

Table 6.22: Segmentation performance of an utterance-based HMM predictor (UC2) in 

the air travel domain  
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Figure 6.11: The effect of the number of HMM states on segmentation performance in 

the air travel domain 

When more states are used, the HMM predictor tends to output more boundaries 

which increases the recall but at the same time deteriorates the precision. The overall 

performances are lower both in terms of Pk and concept-based F-1 as the loss in precision 

is greater than the gain in recall. The decision to limit the number of states to 8 came 

from a preliminary experiment, where the initial result indicated that segmentation 

performance did not change much when M is higher than 8 as measured by all evaluation 

metrics discussed in Section 6.1.4. The segmentation results obtained from the HMM-

based boundary predictor are not as good as the result obtained from the TextTiling 

algorithm that uses the same features (TC2). The performance of the TextTiling 

algorithm is shown in the last row of Table 6.22. Please note that other boundary 

predictors that use different features can achieve better performance than TC2. 

When M = 2, UC2 predicts much fewer boundaries than other cases. Most of the 

utterances from a query_flight_info sub-task are clustered into one state while the 

utterances from other sub-tasks are clustered into another state. Although, the precision is 

quite high, the predictor misses 85.8% of the boundaries between two query_flight_info 

sub-tasks. When M is higher (M  4), UC2 predicts boundaries at every other utterance 

while the average true segment length is 10.3 utterances. Since the boundary is predicted 

between any two utterances such that their state labels are different, the number of 
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predicted boundaries reflects the number of changes between HMM states as a sequence 

of utterances in a dialog is observed. The clusters induced by grouping similar utterances 

together are not homogeneous. In task-oriented dialogs, social phrases such as an 

acknowledgement and a yes/no response can occur in any sub-task. Therefore, these 

utterances, even though they belong to different sub-tasks, are more similar and are 

grouped together into the same state while utterances from the same sub-task may be 

clustered into different states. Moreover, many short utterances do not contain enough 

context to robustly determine the similarity. From those mentioned problems, the 

decoded state labels of the utterances that belong to the same sub-task may be different 

from one another and thus creates a lot of false alarms. When the number of HMM states 

is higher, it is more likely for the utterances from the same sub-task to be clustered into 

different states; therefore, the HMM-based predictor is more likely to output more 

boundaries. 

The segmentation result from the map reading domain is shown in Table 6.23 and 

Figure 6.12. The performance of the TextTiling algorithm that uses the same features 

(TC2) is shown in the last row of the table. When more states are used, the number of 

predicted boundaries tends to increase but does not monotonically increase, as in the air 

travel domain. For all M values, the HMM-based predictor outputs much more 

boundaries than the average number of reference boundaries which is 18.1 boundaries per 

dialog; therefore, the number of false alarms is very high. When compared to the result 

obtained from the TextTiling algorithm that uses the same features (TC2), the HMM-

based predictors have better recall but lower precision. When the number of states is 

equal to 8, the overall performance of the HMM-based predictor is about the same as the 

overall performance of the TextTiling algorithm. However, the HMM predicts too many 

boundaries, one boundary at every other utterance, to be considered useful. 
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Number of 

states (M) 

Predicted 

boundaries 

Segment 

Length 
Pk 

Concept-based 

Precision Recall F-1 

2 37.895 3.402 0.397 0.326 0.565 0.385 

4 81.485 1.559 0.424 0.249 0.903 0.384 

6 66.850 1.906 0.406 0.317 0.844 0.430 

8 66.295 1.922 0.392 0.306 0.868 0.436 

TextTiling 14.750 9.127 0.398 0.497 0.400 0.440 

Table 6.23: Segmentation performance of an utterance-based HMM predictor (UC2) in 

the map reading domain 

Figure 6.12: The effect of the number of HMM states on segmentation performance in 

the map reading domain 

Summary 

When HMM states are induced from utterances, the HMM-based sub-task boundary 

predictor outputs many more boundaries than the reference boundaries and thus 

introduces a lot of false alarms.  Many boundaries are predicted because many 

consecutive utterances are modeled by different states. One possible cause of this 

problem is that the HMM states constructed by clustering similar utterances together are 

not accurate. Many utterances are short and do not contain enough context to robustly 

determine the similarity when clustering utterances that belong to the same sub-task 
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together. Moreover, social phrases such as an acknowledgement and a yes/no response, 

which can occur in any sub-task, further complicate the problem. Even though the initial 

state labels could be adjusted by the subsequent HMM parameter estimation step which 

also takes into account sub-task ordering information, this step cannot help much if the 

initial set of states is not good enough. The clustering algorithm requires more context 

from larger text spans to be able to robustly identify an initial set of HMM states from 

data. 

6.1.7.2 Topic-based segmentation 

In this experiment, the bisecting K-means clustering algorithm inferred the initial 

HMM states of the HMM-based sub-task boundary predictor from data by clustering 

similar dialog segments together. These segments are the approximations of the true sub-

tasks and were generated by the TextTiling boundary predictor, TC4DTr. This boundary 

predictor utilizes information from concept annotation together with regularity weights, 

distance weights and a triangular smoothing scheme to determine sub-task boundaries 

and is discussed in Section 6.1.6.6. It was chosen over other TextTiling boundary 

predictors because it achieved good segmentation performances in both domains. 

TC4DTr produced 171 dialog segments in the air travel domain. This number is slightly 

higher than the number of the reference segments, which is 130 segments. In the map 

reading domain, the number of predicted segments is lower than the number of reference 

segments (291 vs. 341 segments). The predicted segments provide larger context to the 

clustering algorithm than the utterances used in the previous experiment. The average 

predicted segment length is 7.8 utterances in the air travel domain and 8.6 in the map 

reading domain. The qualities of seeded segments in the air travel domain and the map 

reading domain in terms of Pk and concept-based F-measure are given in the last row of 

Table 6.24 and Table 6.26 respectively. 

 

Number of states 

(M) 

Predicted 

boundaries 
Pk 

Concept-based 

Precision Recall F-1 

2 4.471 0.390 0.800 0.538 0.627 

4 6.112 0.392 0.747 0.632 0.667 

6 6.987 0.391 0.725 0.683 0.687 

8 7.562 0.385 0.713 0.715 0.698 

Initial segments 8.125 0.371 0.693 0.771 0.712 

Table 6.24: Segmentation performance of a topic-based HMM predictor (PC2) in the air 

travel domain 
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Table 6.24 shows segmentation performance of the topic-based HMM boundary 

predictor, PC2 (P stands for predicted segment), that removes pre-define stop words from 

the feature set. When compared to the performance of the utterance-based HMM 

predictor (UC2), PC2 has better overall performances both in terms of Pk and concept-

based F-measure regardless of the number of HMM states used. The performance of UC2 

is presented in Table 6.22. The improvement comes from the increase in precision. When 

the states are induced from predicted segments, the HMM predicts much fewer 

boundaries than when the HMM states are induced from utterances.  

Nevertheless, the dialog segments obtained from the topic-based HMM predictor are 

not as good as the initial segments generated by the TextTiling algorithm. The HMM-

based predictor output fewer boundaries and achieves slightly better precision but has 

lower recall. The HMM-based predictor fails to detect the boundary between two 

consecutive segments if both of them are assigned the same state label. Table 6.25 shows 

the types of the boundaries in the air travel domain that are commonly missed by the 

dialog segmentation algorithms. For the HMM-based segmentation, the optimal result is 

analyzed and the frequency of the missed boundaries is averaged from all 10 runs. The 

optimal result is the segmentation result that yields the best Pk and concept-based F-

measure (underlined in Table 6.24) and is obtained when M is set to 8. 

 

Left segment Right segment 

Missed boundaries 

TextTiling 

(Seeding) 

HMM 

(PC2) 

query_flight_info query_flight_info 14 19.2 

query_flight_info query_flights_fare 7 0.3 

query_flights_fare query_car_info 5 6.6 

query_car_info query_hotel_info 4 8.8 

Table 6.25: Types and frequencies of the boundaries commonly missed by the 

TextTiling predictor and the HMM predictor in the air travel domain 

The HMM-based predictor is able identify most of the boundaries between a 

query_flight_info sub-task and a query_flights_fare sub-task while the TextTiling 

predictor misses 31.8% of this type of boundary. Many instances of a query_flights_fare 

sub-task are quite short, only 2-3 utterances long. The TextTiling algorithm which relies 

on lexical cohesion has difficulty identifying two significant drops in lexical similarity of 

the local context that are only a couple of utterances apart as discussed in Section 6.1.6.8. 

The HMM-based predictor, which utilizes lexical similarity between multiple segments 
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of dialogs in the corpus to determine topic boundaries instead of lexical cohesion, does 

not have this limitation. 

On the other hand, the HMM-based predictor misses more boundaries between two 

consecutive query_flight_info sub-tasks as both segments are usually represented by the 

same state. When compared to other dialog segments in the corpus, two consecutive 

query_flight_info sub-tasks are considered more similar and are clustered into the same 

state in the HMM-based segmentation algorithm; however, when compare the two 

segments together using only local context there might be enough drop in lexical 

cohesion that could be considered as a sub-task boundary by the TextTiling algorithm. 

The HMM-based predictor also misses more boundaries between a query_flights_fare 

sub-task and a query_car_info sub-task, and between a query_car_info sub-task and a 

query_hotel_info sub-task. Some instances of those sub-tasks are clustered into the same 

state as they share some common concepts and keywords such as [Fare]:dollar and 

“rate”. Moreover, boundary errors in the input segments of the clustering algorithm 

further complicate the problem. 

 

Number of states 

(M) 

Predicted 

boundaries 
Pk 

Concept-based 

Precision Recall F-1 

2 11.995 0.379 0.604 0.391 0.463 

4 13.660 0.355 0.600 0.453 0.507 

6 14.340 0.362 0.578 0.452 0.499 

8 13.690 0.369 0.581 0.433 0.486 

Initial segments 15.550 0.384 0.506 0.433 0.464 

Table 6.26: Segmentation performance of a topic -based HMM predictor (PC2) in the 

map reading domain 

Table 6.26 shows segmentation performance of the topic-based HMM boundary 

predictor, PC2, in the map reading domain. Similar to the results in the air travel domain, 

when the initial HMM states are inferred from larger text spans, the overall performances 

both in terms of Pk and concept-based F-measure are better than the performances 

achieved by UC2 regardless of the number of HMM states used. The performance of 

UC2 is presented in Table 6.23. The improvement comes from the increase in precision. 

When the states are induced from predicted segments, the HMM produces much less 

false boundaries than when the HMM states are induced from utterances.  
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The segmentation result obtained from the topic-based HMM predictor is slightly 

better than the initial segments generated by the TextTiling algorithm. The improvement 

comes from the higher precision. Table 6.27 shows the number of missed boundaries for 

each boundary type in the map reading domain. For the HMM-based predictor, the 

optimal result obtained when M is equal to 4 is analyzed and the frequency of the missed 

boundaries is averaged over all 10 runs. The optimal result is underlined in Table 6.26. 

 

Boundary type 

Missed boundaries 

TextTiling 

(Seeding) 

HMM 

(PC2) 

draw_a_segment 89 112.5 

grounding (embedded) 117 84.9 

Total 206 197.4 

Table 6.27: Number of boundaries missed by the TextTiling algorithm and the HMM 

algorithm in the map reading domain 

Even though both segmentation algorithms miss about the same number of sub-task 

boundaries, the types of missed boundaries are different. The HMM-based predictor 

misses more boundaries between two consecutive draw_a_segment sub-tasks as both 

segments are usually represented by the same state. On the other hand, the HMM-based 

predictor recovers more boundaries of the grounding sub-tasks that are embedded inside 

draw_a_segment sub-tasks while the TextTiling algorithm has difficulty with this type 

of boundary since the grounding sub-tasks are rather short. The limitation of the 

TextTiling algorithm in identifying the boundaries of a short sub-task is discussed in 

Section 6.1.6.8. 

Summary 

The HMM-based boundary predictor trained from predicted sub-tasks generated by 

the TextTiling algorithm outperforms the HMM-based predictor trained from utterances 

in both domains. The improvement comes from the increase in precision. When HMM 

states are induced from utterances, the predictor introduces a lot of false alarm boundaries 

since many consecutive utterances are modeled by different states. The HMM states that 

are induced from utterance units are not accurate because a single utterance does not 

contain enough context to robustly determine the similarity when clustering utterances 

that belong to the same sub-task together. When the bisecting k-means clustering 

algorithm induces an initial HMM states from larger text spans, predicted sub-tasks in 

this case, it produces a more robust state representation. The topic-based HMM boundary 
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predictor outputs much less false boundaries and thus improves the overall segmentation 

performance. 

While the overall segmentation quality of both dialog segmentation algorithms are 

not much different (the TextTiling algorithm performs slightly better in the air travel 

domain while the HMM-based segmentation algorithm performs slightly better in the 

map reading domain) the types of errors that they produce are. The HMM-based 

segmentation algorithm can identify more boundaries of the small sub-tasks (e.g. a 

query_flights_fare sub-task and a grounding sub-task) while the TextTiling algorithm, 

which relies on local lexical coherence, has more difficulty with short segments. On the 

other hand, the TextTiling algorithm can sometimes identify a boundary between two 

sub-task occurrences of the same type (for example, between two consecutive 

query_flight_info sub-tasks) while the HMM-based segmentation algorithm is likely to 

represent them by the same state; therefore, fails to detect the boundary.  

6.1.7.3 Concept word representation 

Since the first step of the HMM-based segmentation algorithm, the HMM state 

induction step, relies on a dialog segment clustering algorithm, a more efficient clustering 

algorithm may help improve a segmentation result. In this experiment, a concept word 

representation that composes of a concept label but not a concept value, the Label 

representation, is adopted. This concept word representation achieves a better sub-task 

clustering performance than the Label+Word representation, which uses both a concept 

label and a word string to represent a concept word, in both the air travel domain and the 

map reading domain as discussed in section 6.2.4.3. The Label+Word representation is a 

concept word representation used the previous experiments. Apart from a concept word 

representation, all other parameters used in this experiment are similar to the ones used in 

the PC2 boundary predictor discussed in the previous section. Table 6.28 shows the 

segmentation performance of the HMM-based sub-task boundary predictor that uses the 

Label representation, PL2 (L stands for the Label representation), in the air travel 

domain. The segmentation result when M is large is also reported since the values of both 

precision and recall still change as M increases. 
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Number of states 

(M) 

Predicted 

boundaries 
Pk 

Concept-based 

Precision Recall F-1 

2 4.783 0.349 0.908 0.560 0.680 

4 6.438 0.386 0.749 0.689 0.706 

6 9.129 0.386 0.633 0.813 0.695 

8 10.313 0.379 0.622 0.846 0.699 

10 11.975 0.384 0.573 0.905 0.690 

12 11.267 0.392 0.590 0.866 0.688 

14 12.908 0.406 0.548 0.902 0.667 

16 12.450 0.380 0.575 0.914 0.694 

Initial segments 8.125 0.371 0.693 0.771 0.712 

Table 6.28: Segmentation performance of a HMM-based boundary predictor (PL2) that 

uses the label representation in the air travel domain 

When the number of HMM states increases, PL2 tends to output more boundaries. As 

a result, recall is higher while precision is lower; nevertheless, the overall performances 

both in terms of Pk and concept-based F-1 do not change much. The effect of the number 

of HMM states on segmentation performance is quite similar to the one found in the 

result of PC2 when the Label+Word representation is used. However, the amount of the 

change in both precision and recall is larger in PL2.  

Figure 6.13 presents a comparison between the two HMM-based predictors that use 

different concept word representations, PC2 and PL2. The graphs for PC2 are in darker 

colors while the graphs for PL2 are in lighter colors. PL2 has much higher recall than 

PC2 when M is larger but has much lower precision due to the higher number of the 

boundaries predicted. In PL2, more utterances are reassigned to different states during 

several iterations of the Viterbi decoding and HMM parameter re-estimation. When the 

Label+Word representation is used, the similarity between concept words is constrained 

by both the concept label and their values; therefore, utterances are less likely to be 

reassigned to different states. As a result, PL2 outputs more boundaries than PC2; 

nevertheless, concept-based F-1 of both predictors are about the same. When compared to 

the quality of the initial segments generated by the TextTiling algorithm shown in the last 

row of Table 6.28, the PL2 predictor does not produce a result that has a better overall 

quality.  
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Figure 6.13: A performance comparison between two sub-task boundary predictors that 

use different concept word representations in the air travel domain 

Table 6.29 shows segmentation performance of the HMM-based sub-task boundary 

predictor that uses the Label representation, PL2, in the map reading domain. When the 

number of HMM states increases, PL2 predicts more boundaries and achieves higher 

recall, but precision and overall performances are lower both in terms of Pk and concept-

based F-1.  
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Number of states 

(M) 

Predicted 

boundaries 
Pk 

Concept-based 

Precision Recall F-1 

2 13.035 0.250 0.864 0.592 0.686 

4 27.405 0.306 0.522 0.775 0.619 

6 30.515 0.327 0.494 0.818 0.612 

8 32.715 0.335 0.471 0.829 0.596 

Initial segments 15.550 0.384 0.506 0.433 0.464 

PC2 (Label+Word) 13.660 0.355 0.600 0.453 0.507 

Table 6.29: Segmentation performance of a HMM-based boundary predictor (PL2) that 

uses the label representation in the map reading domain 

Figure 6.14 presents a comparison between the two HMM-based predictors that use 

different concept word representations, PC2 and PL2. The graphs for PC2 are in darker 

colors while the graphs for PL2 are in lighter colors. PL2, which uses the Label 

representation, achieves better overall performances both in terms of Pk and concept-

based F-measure regardless of the number of HMM states used. The improvement comes 

mainly from higher recall. Similar to the observation found in the air travel domain, PL2 

predicts more boundaries than PC2 after several iterations of the Viterbi decoding and 

HMM parameter re-estimation as more utterances are reassigned to different states. 

The optimal result of the boundary predictor that uses the Label representation (PL2) 

is also better than the optimal result of the predictor that uses the Label+Word 

representation (PC2) on all evaluation metrics. The optimal result of PL2 is obtained 

when M is equal to 2 and is underlined in Table 6.29 while the optimal result of PC2 is 

obtained when M is equal to 4 and is shown in the last row of the same table. The 

improvement obtained from a better concept word representation is statistically 

significant both in terms of Pk (p-value = 0.0006) and concept-based F-measure (p-value 

= 0.0004). The segmentation result of PL2 is also significantly better than the result 

obtained from the TextTiling algorithm shown in the 2nd to last row of Table 6.29. The 

p-value for the difference in Pk is 0.0005 and the p-value for the difference in concept-

based F-measure is 0.0003. 
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Figure 6.14: A performance comparison between two sub-task boundary predictors that 

use different concept word representations in the map reading domain 

 

Boundary type 
Missed boundaries 

PC2 PL2 

draw_a_segment 112.5 111.9 

grounding (embedded) 84.9 28.5 

Table 6.30: Types and number of boundaries missed by the HMM-based predictors that 

use different concept word representations in the map reading domain 

The types of boundaries in the map reading domain missed PC2 and PL2 are shown 

in Table 6.30 along with their frequencies. When compare between two HMM-based 

predictors that uses different concept word representations, PL2 can recover many more 

boundaries of the grounding sub-tasks embedded inside the draw_a_segment sub-tasks 

than PC2. In PL2, dialog segments that belong to different sub-tasks are well separated 

into different HMM states since the Label representation can distinguish between the two 

sub-tasks with higher accuracy than the Label+Word representation as discussed in 

section 6.2.4.3. 
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Summary 

When the Label representation, which is a more suitable concept word representation 

for sub-task clustering, is adopted in the HMM-based segmentation algorithm, a better 

segmentation result can be achieved in the map reading domain. The performance gain is 

statistically significant when compared to both the HMM-based segmentation algorithm 

that uses the Label+Word representation and the TextTiling algorithm. However, in the 

air travel domain, where the clustering result is marginal better when the Label 

representation is used, there is no difference in the overall segmentation performance 

between the HMM-based sub-task boundary predictors that uses different concept word 

representations. 

The HMM-based segmentation algorithm that uses the Label representation allows 

more utterances to be reassigned to different HMM states during the Viterbi decoding 

and HMM parameter re-estimation iterations. Therefore, it can discover more sub-task 

boundaries than the predictor that uses the Label+Word representation. Nevertheless, the 

number of false alarms is also higher. 

6.1.7.4 Stop word treatment 

It has been shown in the TextTiling experiments discussed in Section 6.1.6 that a 

data-driven stop word treatment, which determines a list of stop words dynamically from 

word distribution is each data set, can improve segmentation results especially in the air 

travel domain. In this experiment four HMM-based sub-task boundary predictors that 

utilize different stop word treatments are investigated. PL1 is a boundary predictor that 

uses all tokens in the transcription as features. PL2 is a boundary predictor that removes 

stop words defined manually from a set of features and is the same predictor as the one 

discussed in the previous experiment. PL3 is a boundary predictor that removes data-

driven stop words from a set of features. PL4 is a boundary predictor that weighs each 

word in the transcription with a regularity weight computed by Equation (6.1).  

For PL3 and PL4, a regularity count for a concept word is computed from an average 

regularity count of all of the words that belong to the same concept type since those 

words are represented by the same token in the Label representation. In this experiment, 

the threshold for selecting data-driven stop words was set to μ + 2*σ; where μ is the mean 

of the regularity counts of all of the words in a given corpus and σ is their standard 

deviation. A data-driven stop word list contains 24 words in the air travel domain and 21 
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words in the map reading domain while a hand-crafted stop word list contains 174 

words
10

. 

For PL4, regularity weights are only used when calculating the cosine similarity 

between dialog segments in the HMM state induction step but not when modeling the 

state emission probabilities in the HMM parameter estimation step. A regularity weight, 

while reflecting the significance of each word when determining the similarity between 

two dialog segments, does not indicate a likelihood of a word being generated from a 

given state. To handle common words when creating state-specific language models, the 

PL4 predictor excludes data-driven stop words from the vocabulary similar to the PL3 

predictor. 

Figure 6.15 shows the performance of each sub-task boundary predictor in the air 

travel domain in terms of concept-based F-1 when the number of HMM states (M) 

increases. All of the predictors output more boundaries when the models contain more 

HMM states. As a result, precision tends to decreases while recall tends to increase. For 

PL2, PL3 and PL4, the overall performance in terms of concept-based F-1 does not 

change much as the loss in precision can be compensated by the gain in recall. However, 

for PL1, concept-based F-1 slightly decreases as M increases. The performance of PL1, 

which has no special treatment for common words, is slightly lower than other predictors 

at all values of M. PL1 predicts more sub-task boundaries and creates more false alarms 

than other predictors. Some of the false alarms are correlated with sub-structures within a 

query_flight_info sub-task such as an extra boundary between a dialog segment that 

specifies all of the criteria for retrieving flight information and a dialog segment that 

discusses the results retrieved from the database. 

                                                 
10

 A hand-crafted stop word list was taken from the list that was created as part of the Snowball project 

http://search.cpan.org/~creamyg/Lingua-StopWords-0.08/lib/Lingua/StopWords.pm. 

 

http://search.cpan.org/~creamyg/Lingua-StopWords-0.08/lib/Lingua/StopWords.pm
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Figure 6.15: Concept-based F-measure of HMM-based sub-task boundary predictors that 

use different stop word treatments in the air travel domain 

Predictor 
Number of states 

(Optimal) 

Predicted 

boundaries 
Pk 

Concept-based 

Precision Recall F-1 

PL1 4 8.621 0.393 0.646 0.770 0.686 

PL2 4 6.438 0.386 0.749 0.689 0.706 

PL3 4 7.971 0.380 0.685 0.761 0.707 

PL4 10 10.696 0.376 0.606 0.874 0.700 

Initial segments - 8.125 0.371 0.693 0.771 0.712 

Table 6.31: Optimal performances of the HMM-based boundary predictors when 

different stop word treatments are applied in the air travel domain 

The best performance of each sub-task boundary predictor is shown in Table 6.31. 

The performance of PL1 is slightly worse than those of other predictors; however, the 

differences are not statistically significant. When compared to the quality of the initial 

segments generated by the TextTiling algorithm shown in the last row of Table 6.31, 

none of the HMM-based segmentation algorithms produces a result that has a better 

overall quality. 

Concept-based F-1 of HMM-based predictors in the air travel domain

0.5

0.55

0.6

0.65

0.7

0.75

0.8

2 4 6 8 10 12 14 16

Number of HMM states

PL1

PL2

PL3

PL4



Chapter 6: Form Identification 

 

246 

Figure 6.16: Concept-based F-measure of HMM-based sub-task boundary predictors that 

use different stop word treatments in the map reading domain 

Figure 6.16 shows the performances of the HMM-based sub-task boundary predictors 

that use different stop word treatments in the map reading domain. Similar to the result 

obtained in the air travel domain, the performance of PL1, which has no special treatment 

for common words, is lower than other predictors at all values of M. PL1 predicts more 

sub-task boundaries and creates more false alarms than other predictors. When M is equal 

to 2 the performances of all four sub-task boundary predictors are substantial different. 

The difference stems from the ability of the HMM in distinguishing between a 

draw_a_segment sub-task and a grounding sub-task. In PL2, where both sub-tasks are 

well separated into two different states, the segmentation performance is higher as the 

predictor can recover more boundaries of the grounding sub-tasks. PL3 and PL4 can also 

distinguish between the two sub-tasks, but not in every run; therefore, their average 

performances are lower. In PL3 and PL4, two keywords “go” and “got” which occur in a 

draw_a_segment sub-task and a grounding sub-task respectively are removed by data-

driven stop word treatments as they occur regularly throughout the dialogs. These two 

keywords can help distinguishing between the two sub-tasks in additional to the concept 

words. 
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Predictor 
Number of states 

(Optimal) 

Predicted 

boundaries 
Pk 

Concept-based 

Precision Recall F-1 

PL1 4 27.59 0.308 0.521 0.778 0.618 

PL2 2 13.035 0.250 0.864 0.592 0.686 

PL3 2 12.490 0.281 0.829 0.541 0.632 

PL4 2 12.500 0.280 0.830 0.543 0.634 

Initial segments - 15.550 0.384 0.506 0.433 0.464 

Table 6.32: Optimal performances of the HMM-based boundary predictors when 

different stop word treatments are applied in the map reading domain 

The best performance of each sub-task boundary predictor is shown in Table 6.32. 

The overall performances of PL2 are significantly better than the performance of other 

predictors both in terms of Pk and concept-based F-measure at a significance level of 

0.005 (p-value < 0.005). When compared to the quality of the initial segments generated 

by the TextTiling algorithm shown in the last row of Table 6.32, all HMM-based 

segmentation algorithms produce significantly better segmentation results in terms of 

both Pk and concept-based F-measure at a significance level of 0.05 (p-value < 0.05). 

Summary 

In the air travel domain, the choice of a stop word treatment is less crucial for the 

HMM-based segmentation algorithm than for the TextTiling algorithm. However, in the 

map reading domain, the segmentation results obtained from the sub-task boundary 

predictors that utilize different stop word treatments are significantly different. The 

predictor that removes the stop words manually defined outperforms other predictors 

both in terms of both Pk and concept-based F-measure.  

Both data-driven approaches (a data-driven stop word list and a regularity weight), 

which are developed based on lexical coherence assumption, are suitable for the 

TextTiling algorithm that follows the same assumption but not for the HMM-based 

segmentation algorithm which relies instead on recurring patterns in the corpus. The data-

driven approach may remove some keywords that can distinguish among different types 

of sub-tasks if they occur regularly throughout the dialogs. As a result, dialog segments 

from different types of sub-tasks are represented by the same HMM state which makes 

the predictor misses the boundaries between those sub-tasks. Nevertheless, the HMM-

based sub-task boundary predictors that utilize data-driven stop word treatments achieve 

slightly better segmentation performances than the predictor that has no special treatment 

for common words in both domains. 
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6.1.8 Discussion and conclusion 

In the previous sections, two unsupervised discourse segmentation approaches, a 

TextTiling algorithm and a hidden Markov model, have been investigated through a 

series of experiments. In this section, I will discuss some interesting findings and then 

summarize the results from all of the experiments.  

The proposed data-driven stop word treatments can discover stop words that are 

specific to the given domain and genre. While a performance of the sub-task boundary 

predictor that uses a hand-crafted stop word list depended on compatibility between the 

pre-selected word list and the domain, the performance of the boundary predictors that 

use data-driven stop word treatments (a dialog-specific stop word list and a regularity 

weight) are not since the stop words are determined directly from word distribution in 

each data set. However, the efficiency of the data-driven stop word treatments is also 

depended on word distribution characteristic. If the distributions of content words are 

quite similar to those of stop words, the data-driven approaches are less efficient as in the 

map reading domain. The proposed data-driven stop word treatments are developed based 

on lexical coherence assumption; therefore, these treatments are effective when used by 

the TextTiling algorithm, which follows the same assumption, but are not as effective 

when used by the HMM-based segmentation algorithm, which relies instead on recurring 

patterns in the corpus. Nevertheless, the HMM-based predictors that utilize data-driven 

stop word treatments achieve slightly better segmentation performances than the 

predictor that has no special treatment for common words in both domains. 

Information from concept annotation can improve dialog segmentation results. It 

provides a richer representation that helps distinguish between different concept types 

and also between different word senses. Co-occurrences of the same word string that 

actually belong to dissimilar concepts or dissimilar worse senses no longer affect the 

similarity score. In addition, this better representation makes the distributions of content 

words more distinguishable from the distributions of stop words; therefore, the boundary 

predictors that use data-driven stop word treatments, which rely on word distribution 

characteristic, can achieve more performance improvement. In the domain that the 

distributions of contents words and the distributions of stop words are quite similar, such 

as the map reading domain, the predictor that gives common words small weights rather 

than removing them from a set of features achieves a better performance.  

The size of context windows is a crucial parameter in the TextTiling algorithm. A 

small context window, which is more sensitive to small changes in the context, is more 

appropriate for identifying fine-grained segments in the task-oriented dialogs particularly 
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when segment length variation is high. Two modifications to the standard TextTiling 

algorithm are proposed to specifically handle fine-grained segments. Distance weights, 

which demote the similarity between far away contexts, improve the overall segmentation 

performance in most conditions while a triangular smoothing scheme produces a more 

precise boundary prediction. The segmentation results obtained from the modified 

TextTiling algorithm are significantly better than baselines in both domains. 

A cut-off threshold for selecting a list of boundaries from all candidate boundaries 

given their depth scores is another important parameter. An appropriate cut-off threshold 

is depended on the characteristic of the domain. If consecutive sub-tasks in a dialog are 

quite similar, a lower threshold is required as in the map reading domain. Similarly, a 

domain which contains short sub-tasks may also require a low cut-off threshold. 

For the HMM-based segmentation algorithm, the sub-task boundary predictor trained 

from predicted sub-tasks generated by the TextTiling algorithm outperforms the HMM-

based predictor trained from utterances in both domains. A single utterance does not 

contain enough context to robustly determine the similarity when clustering utterances 

that belong to the same sub-task together; therefore, the HMM states that are induced 

from utterance units are not accurate. Predicted segments provide more context to the 

clustering algorithm that induces the initial set of HMM states. Thus, the clustering 

algorithm produces a more robust state representation. The use of predicted segments 

also eliminates the need of annotated data that would be required if the HMM states are 

induced from reference segments. 

A more efficient clustering algorithm can also improve the performance of the HMM-

based segmentation algorithm since it provides a better state representation that can 

differentiate between dialog segments that belong to dissimilar sub-tasks. When the Label 

representation which is a more suitable concept word representation for sub-task 

clustering than the Label+Word representation is used, a HMM-based sub-task boundary 

predictor produces a better segmentation result. In the map reading domain where the 

Label representation makes dialog segments from different sub-tasks much more 

distinguishable, a significant improvement can be achieved. 

The types of errors produced by the TextTiling algorithm and the HMM-based 

segmentation algorithm are different. In both domains, the HMM-based segmentation 

algorithm can identify more boundaries of small sub-tasks, such as a query_flights_fare 

sub-task and a grounding sub-task, than the TextTiling algorithm. The TextTiling 

algorithm, which relies on local lexical cohesion, is unlikely to find two significant drops 

in lexical similarity that are only a couple of utterances apart and thus fails to detect a 
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boundary of a short segment. The HMM-based predictor, which utilizes lexical similarity 

between multiple segments of dialogs in the corpus to determine topic boundaries instead 

of lexical cohesion, does not have this limitation. On the other hand, the HMM-based 

segmentation algorithm misses more boundaries between two sub-task occurrences of the 

same type (for example, between two consecutive query_flight_info sub-tasks and two 

consecutive draw_a_segment sub-tasks) as they are usually represented by the same 

state. When compared to other dialog segments in the corpus, two consecutive sub-task 

of the same type are usually more similar and are clustered into the same state by the 

HMM-based segmentation algorithm; however, when compare the two segments together 

using only local context there might be enough drop in lexical cohesion that could be 

considered as a sub-task boundary by the TextTiling algorithm. 

Table 6.33 summarizes the best dialog segmentation results from the TextTiling 

algorithm and the HMM-based segmentation algorithm. The best result of the TextTiling 

algorithm is obtained when the sub-task boundary predictor utilizes information from 

concept annotation together with regularity weights, distance weights and a triangular 

smoothing scheme. For the HMM-based segmentation, the best result is obtained when 

the predictor utilizes the Label representation together with the hand-crafted stop word 

list. The optimal number of HMM states is 4 for the air travel domain and 2 for the map 

reading domain. Both predictors produce good segmentation results in both domains. 

Nevertheless, please note that some variations of the TextTiling algorithm and the HMM-

based segmentation algorithm do achieve better segmentation performances than the ones 

presented in Table 6.33 but only for one domain.  

 

Algorithm 
Air Travel Map Task 

Pk  C. F-1 Pk  C. F-1 

TextTiling 0.371 0.712 0.384 0.464 

HMM-based 0.386 0.706 0.250 0.686 

Table 6.33: The best segmentation performances of the TextTiling algorithm and the 

HMM-based algorithm in terms of Pk and concept-based F-1. 

Both text segmentation approaches while performing well with expository text 

require some modifications when applied to spoken dialogs and a fine-grained 

segmentation problem. For the TextTiling algorithm, the proposed modifications, which 

include a data-driven stop word treatment, a distance weight, and a triangular smoothing 

scheme, significantly improve segmentation performance over the baseline TextTiling 

algorithm. For the HMM-based segmentation algorithm, the use of larger text spans when 
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inducing HMM states and a more abstract concept word representation help improve the 

results, especially on the map reading domain. When comparing between the two 

algorithms, the HMM-based segmentation algorithm performs significantly better than 

the TextTiling algorithm in the map reading domain since the HMM-based segmentation 

algorithm can identify more boundaries of small sub-tasks which occur quite often in the 

map reading domain. The TextTiling algorithm, on the other hand, performs better in 

identifying the boundaries between consecutive sub-tasks of the same type. Since both 

dialog segmentation algorithms produce error types that complement each other, the 

segmentation result could be improved by combining both segmentation approaches 

together. 

 

Algorithm 
Air Travel Map Task 

Utterance-based Pk F-1 Utterance-based Pk F-1 

TextTiling 0.427 0.457 0.431 0.292 

HMM-based 0.417 0.456 0.265 0.552 

Table 6.34: The best segmentation performances of the TextTiling algorithm and the 

HMM-based algorithm in terms of utterance-based Pk and standard F-measure 

The performances of the best dialog segmentation algorithms in Table 6.33 are 

presented again but with different performance metrics. In Table 6.34 the performances 

of the segmentation algorithms are reported in terms of utterance-based Pk, (the unit of k 

is an utterance) and standard F-measure in order to make a direct comparison with the 

performance of the segmentation algorithms developed by other researchers. Since 

segment granularity is one factor that affects segmentation performance (Arguello and 

Rosé, 2006), the performances of the dialog segmentation algorithms proposed in this 

chapter are compared to the performances of the segmentation algorithms that were used 

to identify the boundaries of fine-grained segments. Arguello and Rosé (2006) reported 

the performances of several dialog segmentation algorithms. One of their corpora, the 

Thermo corpus, contains fine-grained segments of topics in tutoring dialogs where the 

topic is defined based on a discourse segment purpose. The average length of the 

segments in this corpus is 13.3 utterances (68.1 words) which is about the same as the 

average sub-task length in the air travel domain and the map reading domain. The best 

segmentation result on the Thermo corpus (utterance-based Pk = 0.404, F-1 = 0.369) was 

obtained from a supervised segmentation algorithm, a Naïve Bayes classifier trained on 

several textual features and prosodic features. The best segmentation performances 
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achieved by the unsupervised segmentation algorithms proposed in this thesis are 

comparable to their result. 

Both unsupervised dialog segmentation algorithms, TextTiling and HMM-based 

segmentation, can identify the boundaries between sub-tasks with acceptable accuracy. 

Nevertheless, both of algorithms, which rely on lexical similarity between dialog 

segments, have some difficulty identifying the boundary between two sub-tasks of the 

same type. Lexical similarity, which is an efficient feature for identifying the boundary 

between two sub-tasks that belong to dissimilar form types, may not provide enough 

information for determining the boundary between two instances of the same form type 

since their contents are more similar. To solve this problem, additional features that are 

not sensitive to the content of the segment, such as a prosodic feature, are necessary. It 

has been shown that prosodic features are able to identify a boundary between segments 

that contain quite similar contents (Swerts and Ostendorf, 1997). 

6.2 Sub-task clustering 

After segmenting all in-domain dialogs into sequences of sub-tasks, the next step in 

form identification is to group the dialog segments that belong to the same type of sub-

task together as they represent the same form type, i.e. dialog segments that correspond to 

a query_flight_info sub-task are grouped together in one cluster while dialog segments 

that correspond to a query_hotel_info sub-task are grouped together into another cluster. 

Sub-task clustering can be considered as one type of document clustering where a 

document is equivalent to a dialog segment which represents a sub-task in the form-based 

dialog structure representation. 

Similar to other learning problems, approaches for document clustering can be 

classified into two main categories: supervised approach and unsupervised approach. 

Supervised document clustering requires a set of pre-defined categories and also labeled 

data for training. K-Nearest Neighbor, Naive Bayes and Support Vector Machines are 

among many well-known supervised document clustering algorithms that have been 

applied to the problem of document classification or document categorization. Detail 

discussion of these algorithms and other supervised clustering algorithms along with their 

performance comparison can be found in survey literature (Aas and Eikvil, 1999; 

Sebastiani, 2002; Yang and Liu, 1999). 

Unsupervised clustering approaches, on the other hand, rely on context similarity 

between two text segments instead of labeled data. These approaches follow the 

assumption that two text segments that belong to the same group are more similar than 
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two text segments that belong to different groups. Since no pre-defined category is 

required, an unsupervised document clustering approach has been used to explore the 

structure of a document collection (Cutting et al., 1992). This problem is quite similar to 

a sub-task clustering problem where we would like to discover the structure of dialogs in 

a new domain and that a pre-defined list of sub-tasks is not available. 

Unsupervised clustering approaches can be categorized into hierarchical clustering 

and non-hierarchical clustering (or partitional clustering). A hierarchical clustering 

approach produces a nested partitions of documents in a tree-like structure with a root 

cluster at the top of the tree contains all of the documents while leaf nodes at the bottom 

of the tree contain only a single document. Hierarchical clusters can be generated in 

either a top-down or a bottom-up fashion. A divisive hierarchical clustering approach (or 

a top-down approach) starts with one cluster that contains all of the documents and, at 

each step, splits a cluster until all of the clusters contain only a single document or the 

desired number of clusters is obtained. An agglomerative hierarchical clustering approach 

(or a bottom-up approach), works on the opposite direction, starts with single document 

clusters and, at each step, merges the most similar clusters together until all of the 

documents are merged into one cluster or until  the desired number of clusters is 

obtained. In contrast to a hierarchical clustering approach, a partitional clustering 

approach creates all clusters at once by partitioning the data into K groups where K is the 

number of desired clusters. More detail discussion on unsupervised document clustering 

approaches can be found in (Rasmussen, 1992). 

A hierarchical clustering approach is known for its quality while a partitional 

clustering approach is known for its efficiency (Larsen and Aone, 1999; Steinbach et al., 

2000). To combine the strength of both techniques many hybrid approaches have been 

proposed (Cutting et al., 1992; Larsen and Aone, 1999; Steinbach et al., 2000). In this 

section, the bisecting K-means algorithm which is a hybrid approach proposed by 

Steinbach et al. (2000) was chosen as a sub-task clustering algorithm since it has been 

shown to produce as good or better results than an agglomerative hierarchical clustering 

approach and also have more efficient run time. 

In the following sections, Section 6.2.1, I first discuss the features used in sub-task 

clustering and their representations. Then in Section 6.2.2 a sub-task clustering algorithm, 

the bisecting K-means algorithm, is described. The clustering results were evaluated with 

the evaluation metrics discussed in Section 6.2.3. The experiments and the clustering 

results are given in Section 6.2.4. Finally, all the findings are concluded in Section 6.2.5. 
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6.2.1 Feature representation 

Sub-task clustering features are taken from dialog transcription. Each transcribed 

word is pre-processed by removing morphological inflections using the Porter's 

stemming algorithm. If a set of domain concepts has already been identified, information 

from concept annotation can also be utilized. In dialog segmentation algorithms discussed 

in Section 6.1.1.1 both a concept label and its value are used together to represent a 

concept word. Examples of this joint representation are [DepartureCity]:pittsburgh and 

[hour]:one.  

However, for a sub-task clustering problem, based on assumption that a list of 

concepts occurs in one sub-task is distinguishable from a list of concepts occurs in other 

sub-tasks regardless of the values of the concepts, a concept label is more informative 

than its value. From this assumption a more abstract representation which focuses on a 

concept type rather than its value may be a more suitable representation. Hence, in stead 

of representing a concept word with both a concept label and a concept value, only a 

concept label is used to make the representation generalized over all different values of 

the same concept type. For example, [ArrivalCity]:pittsburgh and [ArrivalCity]:boston 

are represented with the same token [ArrivalCity]. This new representation that uses 

only a concept label to represent a concept word is referred to as the Label representation 

while a concept word representation that uses both a concept label and a word string to 

represents a concept word  is referred to as the Label+Word representation. 

6.2.2 Bisecting K-means clustering algorithm 

The bisecting K-means algorithm (Steinbach et al., 2000). is a top-down clustering 

algorithm that combines a hierarchical clustering approach and a partitioning approach 

together by applying the standard K-means clustering (a partitional clustering) repeatedly 

to create hierarchical clusters. The algorithm utilizes cosine similarity between dialog 

segments in order to assign the segments into clusters. The algorithm starts with a single 

cluster that contains all of the dialog segments in the corpus.  Then, at each iteration the 

largest cluster is split into two sub-clusters until the desired number of clusters is reached. 

The bisecting algorithm, which splits one cluster into two clusters, is as follows:  
 

1. Choose two dialog segments from the cluster randomly and use them as the 

initial centroids of the new sub-clusters. Each dialog segment is represented 

by a vector; each dimension of the vector represents the frequency of each 

token in the segment similar to the context vector used in the TextTiling 

algorithm discussed in Section 6.1.2. 
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2. For each dialog segment in the original cluster, calculate the cosine similarity 

between the segment and each centroid of the new sub-clusters. Assign the 

dialog segment to the cluster of the most similar centroid. 

3. Re-compute the centroid of each new sub-cluster 

4. Repeat step 2 and 3 until the assignment in step 2 is stable (the number of 

changes in cluster assignment is less than a pre-defined threshold, threshold-

1) 

This algorithm is similar to the standard K-means algorithm when K is set to 2. The 

algorithm is repeated for several times (B times) and the split that produces the highest 

overall similarity is taken. For more detail discussion of the bisecting K-means algorithm, 

please refer to (Steinbach et al., 2000). Each cluster in a set of clusters outputted by the 

bisecting K-means algorithm corresponds to a sub-task. The algorithm also creates an 

etcetera state by combining small clusters (i.e. the clusters that contain less than T 

segments) together to capture the sub-dialogs that are not relevant to the task. 

Since each dialog segment in the same cluster is an instance of the same sub-task, it is 

associated with the same form type. Therefore, by simply extracting a list of concepts 

contained in each cluster, a set of slots that is associated with each type of form can be 

determined. 

6.2.3 Evaluation metrics 

To evaluate the performance of each sub-task clustering algorithm, the output clusters 

are compared against a set of reference sub-tasks in a domain of interest using the same 

set of evaluation metrics used to assess the performance of a concept clustering 

algorithm. The metrics include precision, recall and singularity score and are described 

in detail in Section 5.3. Equation (5.7), (5.8) and (5.9) can also be used to compute 

precision, recall and singularity score for each sub-task respectively when the notion of 

items in a cluster is changed from words to dialog segments and Ri is referred to a 

reference sub-task instead of a reference concept. 

To compare the output clusters with a set of reference sub-tasks, first, a mapping 

between each cluster and its corresponding sub-task has to be created. Similar to the 

evaluation of concept clustering, a many-to-one mapping between multiple clusters and a 

reference sub-task is allowed. Since the clustering algorithm does not assign a sub-task 

label to each cluster, a majority voting scheme is used to identify the sub-task that each 

cluster represents. Firstly, a sub-task label is assigned to each dialog segment in a cluster. 

Then, the sub-task label that occurs most often in the cluster, or the majority sub-task, is 
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assigned as a sub-task label for that cluster. It is quite straight forward to identify a 

concept label for each word in a cluster when a list of concept members of each reference 

concept is given. However, determining a sub-task label for each dialog segment in a 

cluster is more complicate when dialog segments are obtained from an automatic 

segmentation algorithm as these segments may have inaccurate boundaries. A dialog 

segment may not correspond to a single sub-task. Moreover, the number of predicted 

segments and the number of reference segments (or sub-tasks) may not be the same 

which make it more difficult to align the predicted segments with the reference sub-tasks. 

Figure 6.17 illustrates the alignments between reference sub-tasks and predicted 

segments. In Figure 6.17 (a), since the boundary between segment “a” and segment “b” is 

not accurate, segment “a” corresponds to both sub-task “A” and sub-task “B”. The 

alignment can be more complicated when the number of predicted segments is different 

from the number of reference sub-tasks as shown in Figure 6.17 (b) and Figure 6.17 (c). 

In Figure 6.17 (b) where there are fewer predicted segments than reference segments, 

segment “i” corresponds to both sub-task “I” and sub-task “J”. On the other hand, when 

there are more predicted segments than reference segments as in Figure 6.17 (c), multiple 

segments, “y” and “y ”, correspond to a single sub-task “Y”. The latter case is also 

problematic since the unit of the numerator in Equation (5.8) is no longer the same as the 

unit of the denominator (a predicted segment versus a reference segment). 
 

Figure 6.17: Sample alignments between reference sub-tasks and predicted segments 
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To avoid the complication in aligning predicted segments with reference sub-tasks, I 

chose to work on a smaller and unambiguous unit, namely an utterance. It is straight 

forward to assign a sub-task label to each utterance of dialog segments in a cluster. A 

majority sub-task can be defined as a sub-task that encompasses the greatest number of 

utterances in a cluster. However, this voting scheme favors a long sub-task. To resolve 

this problem each utterance is assigned a weighted count that is inversely proportional to 

the length of the sub-task that it belongs to. Specifically, a weighted utterance count for 

each utterance is set to
n

1
; where n is the length of the corresponding sub-task. Therefore, 

a majority sub-task is redefined as a sub-task that encompasses the greatest amount of 

weighted utterance counts. By using this weighting scheme, the units of both the 

numerator and the denominator in Equation (5.8) remain the same, a reference segment. 

Equation (5.7) and (5.8) are presented again in Equation (6.12) and (6.13) 

respectively with the new notions that make the equations more suitable for calculating 

the precision and recall of a given sub-task. Specifically, let Ri be a reference sub-task of 

interest and C1, C2, …, Cmi
 be the clusters that represent the sub-task Ri; where mi is the 

number of the clusters. The precision and recall of the sub-task Ri are as follows: 

i

i

m

1j

j

m

1j

ij

i

C in counts utterance weighted

 R to  belong hatt C in  counts utterance weighted

)R(precision  (6.12) 

i

m

1j

ij

i
R in   segmentsof number

 R to  belong hatt C in  counts utterance weighted

)R(recall

i

 
(6.13) 

Singularity score can be calculated using Equation (5.9) without any modification.  

Similarly, quality score of each sub-task is still defined as a harmonic mean of the 

precision, recall and singularity score.  

To compute an overall quality metric over all of the sub-tasks in the reference set, a 

macro-average is used to emphasize that every sub-task is equally important. Each sub-

task is assigned an equal weight when the metrics from all of the sub-tasks are averaged 

regardless of its size. Macro-average is discussed in detail in Section 5.4.3. The macro-

average can be used to compute an overall metric of every subtask-level metric (e.g. 

macro-average precision and macro-average singularity score). The quality score 
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computed from macro-average precision, macro-average recall and macro-average 

singularity score provides a single number that indicates the overall quality of the output 

clusters. This number is useful for an end-to-end comparison between two clustering 

algorithms. 

6.2.4 Experiments and results 

The test corpora consist of 24 dialogs from the air travel planning domain and 20 

dialogs from the map reading domain. Both task-oriented domains are described in 

Section 3.2 and Section 3.4 respectively. Task structure annotation for each dialog 

consists of boundaries and label for each task and sub-task and a label for each concept 

word. The dialogs from the air travel planning domain were annotated with the task 

structure presented in Table 3.3 while the dialogs from the map reading domain were 

annotated with the task structure presented in Table 3.5. The annotation was done by a 

domain expert. These test corpora are similar to the ones used in dialog segmentation 

experiments described previously. 

Table 6.35 shows the statistics of the segment types in the air travel domain. Each 

segment label in the table presents the full path in the task and sub-task hierarchy with the 

ascendant task and sub-task listed on the left. We may refer to each segment type only by 

its leaf node in the path (highlighted in bold) for short. The four most frequent segment 

types are the four sub-subtasks listed in Table 3.3. <reserve_flight> is a dialog segment 

which occurs after a query_flight_info sub-task and a query_flights_fare sub-task and 

discusses a make_a_flight_reservation action; please note that it does not correspond to 

the entire reserve_flight sub-task. Only these five segment types correspond to actions 

and forms. Other three segment types do not contain any action. <create_an_itinerary> 

is a dialog segment that is not covered by any other sub-task and corresponds to a closing 

sub-dialog. <reserve_car> and <reserve_hotel> are sub-dialogs while related to car and 

hotel reservations, do not contribute directly toward any action. For example, a client 

may only mention a possibility of getting a car rental without giving specific criteria of 

the desired car. Since the result from sub-task clustering will be used to determine 

different types of forms in each task-oriented domain, only the segment types that 

correspond to actions and forms are focused in the experiments. The infrequent segment 

types, which include <create_an_itinerary>, <reserve_car> and <reserve_hotel>, are 

excluded from the evaluation.  

 



Chapter 6: Form Identification 

 

259 

Segment type Frequency % 

<create_an_itinerary><reserve_flight><query_flight_info> 53 40.77% 

<create_an_itinerary><reserve_flight><query_flights_fare> 23 17.69% 

<create_an_itinerary><reserve_car><query_car_info> 18 13.85% 

<create_an_itinerary><reserve_hotel><query_hotel_info> 16 12.31% 

<create_an_itinerary><reserve_flight> 11 8.46% 

<create_an_itinerary> 6 4.62% 

<create_an_itinerary><reserve_car> 2 1.54% 

<create_an_itinerary><reserve_hotel> 1 0.77% 

Table 6.35: A list of sub-tasks in the air travel domain and their frequencies in the test 

corpus 

Table 6.36 shows the statistic of the segment types in the map reading domain. There 

are only two types of dialog segments in this domain which correspond to the two sub-

tasks: draw_a_segment and grounding. 

 

Segment type Frequency % 

<draw_a_route><draw_a_segment> 219 64.22% 

<draw_a_route><draw_a_segment><grounding> 122 35.78% 

Table 6.36: A list of sub-tasks in the map reading domain and their frequencies in the 

test corpus 

The bisecting K-means algorithm also creates an etcetera cluster by combining small 

clusters together to capture the sub-dialogs that are not relevant to the task. Since an 

etcetera cluster represents irrelevant sub-dialogs, it is excluded from the evaluation. 

In all experiments, unless specify else where, the bisecting cluster re-assignment 

threshold (threshold-1) was set to 5%, the number of bisecting runs (B) was set to 10 and 

the minimum cluster size (T) was set to 5. This set of parameters is similar to the one 

used in the HMM-based segmentation discussed in Section 6.1.7. The maximum number 

of clusters (M) in sub-task clustering experiments is also similar to the maximum number 

of HMM states in the HMM-based segmentation. Since the bisecting K-means clustering 

algorithm contains a random process as the new centroids of split clusters are chosen 

randomly, the performance of a HMM-based segmentation is averaged from 10 runs. 
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6.2.4.1 Oracle sub-task clustering 

The oracle clustering experiment was carried on in order to investigate the 

performance of the bisecting K-means clustering algorithm when apply to the segments 

that do not contain any boundary error. In oracle sub-task clustering, the input segments 

are reference segments manually created by a coding scheme expert. In this experiment, 

the reference segments also include information from concept annotation as it has been 

shown to be useful for dialog segmentation discussed previously. The Label+Word 

representation is used to represent concept words. Pre-defined stop words are removed 

from a set of features. The list of pre-defined stop words is discussed in Section 6.1.6.1.  

To see the effect of the number of clusters (M) on clustering performance, various M 

values were used. For the air travel domain, the values of M range from 2 to 16 to reflect 

both the case when M is smaller than the number of the reference sub-task types and the 

case when M is larger. Table 6.37 and Figure 6.18 present the oracle clustering 

performance when the clustering result is evaluated against 5 reference segment types 

discussed earlier. The best result, the one that produces highest quality score, is obtained 

when M is equal to 10 and is underlined in Table 6.37. In addition to the evaluation 

metrics described in Section 6.2.3, topic recall, which is a ratio between the number of 

sub-tasks discovered by the clustering algorithm and the number of sub-task types in the 

reference, is also reported. 

 

Number of 

clusters (M) 

Topic 

Recall 
Precision Recall 

Singularity 

score 

Quality 

score 

2 0.400 0.604 0.339 1.000 0.535 

4 0.680 0.650 0.573 0.900 0.680 

6 0.760 0.664 0.630 0.818 0.693 

8 0.900 0.669 0.689 0.785 0.706 

10 0.920 0.746 0.723 0.773 0.745 

12 0.980 0.741 0.758 0.728 0.738 

14 0.980 0.736 0.739 0.690 0.714 

16 0.980 0.749 0.723 0.668 0.706 

Table 6.37: Oracle clustering performance in the air travel domain 
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Figure 6.18: The effect of the number of clusters on clustering performance in the air 

travel domain 

When the clustering algorithm outputs more clusters, the topic recall increases. When 

the value of M is lower than the number of sub-tasks in the reference, i.e. M < 5, only the 

frequent sub-task types can be identified. For example, when M = 2, only the two most 

frequent sub-task types, query_flight_info and query_flights_fare, are discovered. As 

clusters are split to produce more clusters, the less frequent sub-tasks could be 

discovered. However, the three infrequent segment types, <create_an_itinerary>, 

<reserve_car> and <reserve_hotel>, which do not correspond to any action and are 

excluded from the evaluation, are hardly identified even when M is set to 16. An 

infrequent segment type is more difficult to identify than a frequent segment type. 

 

Oracle clustering performance in the air travel domain

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8 10 12 14 16

Number of clusters

Topic Recall

Precision

Recall

Singularity Score

Quality Score



Chapter 6: Form Identification 

 

262 

Sub-task Frequency Precision Recall 
Singularity 

score 

Quality 

score 

query_flight_info 53 0.937 0.908 0.275 0.513 

query_flights_fare 23 0.691 0.704 0.900 0.738 

query_car_info 18 0.708 0.894 0.850 0.792 

query_hotel_info 16 0.843 0.644 0.944 0.800 

reserve_flight 11 0.500 0.464 1.000 0.632 

Table 6.38: The qualities of the sub-tasks identified by oracle clustering in the air travel 

domain 

Table 6.38 shows the performance of the oracle clustering on each sub-task in the air 

travel domain when the quality score is optimal (M = 10). The clustering algorithm can 

identify a query_flight_info sub-task, which is the most frequent sub-task, with high 

precision and recall; however, the sub-task is split into 3 to 4 clusters on average for each 

run. Although all of the instances of a query_flight_info sub-task contain a similar set of 

concepts, the values of each concept can be different (for example, 

[ArrivalCity]:pittsburgh vs. [ArrivalCity]:boston and [DepartTime]:a.m. vs. 

[DepartTime]:p.m.). When the number of clusters increases, the clustering algorithm 

fails to group all of the segments that belong to a query_flight_info sub-task together. 

Those segments are split into multiple clusters; each cluster contains a similar set of 

concept values. For example, the segments that have the same arrival city are grouped 

together. For a clustering task, where the distribution of concept types is more 

importation than the distribution of concept values, a more abstract representation of 

concept words, such as the Label representation, may be more appropriate.  

Other sub-tasks can be identified with lower precision and recall. Some instances of 

these sub-tasks are grouped together into the same cluster. A query_flights_fare sub-

task, a query_car_info sub-task and a query_hotel_info sub-task share some common 

concepts and keywords, such as [Fare]:dollar and “rate”. Some of their instances also 

contain short closing dialogs that make them similar to a reserve_flight sub-task. 

Furthermore, these sub-tasks are shorter and have less number of occurrences than a 

query_flight_info sub-task; therefore, provide less context to the clustering algorithm. 

On the other hand, these sub-tasks are usually presented by a single cluster and have high 

singularity score.  

The analysis of topic recall and the observation on the quality of each type of sub-task 

identified by oracle clustering reveal that the frequency of the segment type has some 
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effect on the clustering result. A frequent segment type is likely to be identified reliably 

by the clustering algorithm but is subjected to splitting while an infrequent segment type 

may not contain enough information for the clustering algorithm to identify the similarity 

among its instances and thus more difficult to discover. 

 

Number of 

clusters (M) 

Topic 

Recall 
Precision Recall 

Singularity 

score 

Quality 

score 

2 0.950 0.737 0.730 0.950 0.791 

4 1.000 0.906 0.860 0.650 0.787 

6 1.000 0.909 0.856 0.447 0.656 

8 1.000 0.910 0.872 0.325 0.562 

Table 6.39: Oracle clustering performance in the map reading domain 

Figure 6.19: The effect of the number of clusters on clustering performance in the map 

reading domain 

In the map reading domain, the number of clusters (M) was varied from 2 to 8 in the 

experiment. The range of M is smaller than the one used in the air travel domain since the 

number of sub-tasks is smaller. Table 6.39 and Figure 6.19 show the performance of the 

oracle clustering in the map reading domain. When the clustering algorithm outputs more 

clusters, topic recall tends to increase together with precision and recall. Singularity 

score, on the other hand, tends to decrease. When there is no further improvement in both 

precision and recall, quality score is decreased from the decrease in singularity score. 
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These observations are quite similar to the ones found in the air travel domain. The best 

result is obtained when M is equal to 2 and is underlined in Table 6.39. 

 

Figure 6.20: The qualities of the sub-tasks identified by oracle clustering in the map 

reading domain 

Figure 6.20 shows the performance of the oracle clustering on each sub-task in the 

map reading domain. The graphs for a draw_a_segment sub-task are in darker colors 

while the graphs for a grounding sub-task are in lighter colors. When M is equal to 2 the 

clustering algorithm can already identify both types of sub-task; however, some 

occurrences of a draw_a_segment sub-task are merged into a grounding cluster and 

deteriorate the precision of the grounding sub-task and the recall of the 

draw_a_segment sub-task. Since the conversations in this domain are quite dynamic, 

some instances of a grounding sub-task may contain a partial route segment description 

which makes them quite similar to the instances of a grounding sub-task. When M is 

larger, those occurrences of a draw_a_segment sub-task are separated into other clusters 

which make both the precision of the grounding sub-task and the recall of the 

draw_a_segment sub-task increased. Nevertheless, the singularity score is lower for a 

draw_a_segment sub-task. Instances of a draw_a_segment sub-task are split into 

multiple clusters based on a set of concept values they contain similar to a 

query_flight_info sub-task in the air travel domain,  
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When a cluster is split, it is likely to separate the segments that belong to different 

sub-tasks into different clusters; therefore, the new clusters are likely to have higher 

purity than the original cluster. As a result, precision usually increases. In the air travel 

domain, the recall also increases because the new clusters can discover new sub-tasks 

while in the map reading domain the new clusters produce better separation between a 

draw_a_segment sub-task and a grounding sub-task. When new sub-tasks are 

discovered the splitting does not decrease singularity score. After all of the sub-tasks are 

discovered (when M is equal to 8 in the air travel domain and when M is equal to 2 in the 

map reading domain), allowing the clustering algorithm to output slightly more number 

of clusters could still improve precision and recall as the sub-tasks could be better 

separated even though there is no new sub-task to discover. However, this comes at the 

expense of lower singularity score. When the number of clusters increases much further, 

the clustering algorithm only partitions the clusters into smaller clusters without making a 

better separation among the sub-tasks. Both precision and recall are not improved and 

quality score is lower from reduction in singularity score caused by splitting sub-tasks. 

Based on this observation, the optimal performance could be obtained when all of the 

sub-tasks in the reference are identified or when allowing the clustering algorithm to 

output slightly more number of clusters. 

Summary 

The bisecting K-means clustering algorithm achieves quite a good clustering result 

when the input segments contain no boundary error producing overall quality score of 

0.745 in the air travel domain and 0.791 in the map reading domain when the number of 

clusters is optimal. A frequent sub-task can be identified with high precision and recall; 

however, it is split into multiple clusters. A more abstract concept word representation 

may help reduce the splitting problem. An infrequent sub-task is more difficult to 

discover as there is less context to identify the similarity among its instances. Precision 

and recall are lower; however, singularity score is quite high since it was usually 

presented by a single cluster. 

6.2.4.2 Sub-task clustering based on predicted segments 

In this experiment, the bisecting K-means algorithm was applied to dialog segments 

obtained from an automatic segmentation algorithm. These segments were produced by 

the TextTiling boundary predictor, TC4DTr, which utilizes information from concept 

annotation together with regularity weights, distance weights and a triangular smoothing 

scheme to determine sub-task boundaries as discussed in Section 6.1.6.6. This boundary 

predictor achieved good segmentation performances in both the air travel domain and the 
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map reading domain. The TC4DTr predictor produced more dialog segments when 

compared to the number of segments in the reference in the air travel domain (171 vs. 

130 segments) while produced fewer dialog segments when compared to the reference in 

the map reading domain (291 vs. 341 segments). Besides the input segments all other 

settings are similar to the ones used in the oracle clustering discussed above. The 

clustering results are shown in Table 6.40. The best result is obtained when M is equal to 

12 and is underlined in the table. 

 

Number of 

clusters (M) 

Topic 

Recall 
Precision Recall 

Singularity 

score 

Quality 

score 

2 0.300 0.471 0.253 0.750 0.403 

4 0.600 0.498 0.433 0.858 0.545 

6 0.720 0.493 0.475 0.785 0.552 

8 0.780 0.491 0.479 0.732 0.543 

10 0.920 0.480 0.484 0.759 0.545 

12 0.920 0.516 0.526 0.753 0.577 

14 0.900 0.518 0.521 0.643 0.551 

16 0.920 0.514 0.516 0.658 0.553 

Table 6.40: Sub-task clustering results in the air travel domain when predicted segments 

are used as an input 

Since predicted segments may contain some boundary errors, the sub-task clustering 

result obtained from predicted segments is not as good as the clustering result obtained 

from reference segments. Topic recall and singularity score (SS) are slightly worse, but 

precision and recall are considerably lower which make the overall performance in terms 

of quality score lower. The performance of the clustering algorithm that uses predicted 

segments is compared to the performance of the clustering algorithm that uses reference 

segments in Figure 6.21 and Table 6.41. The quality metrics of the oracle clustering are 

illustrated in darker colors while the quality metrics of the predicted segment clustering 

are illustrated in lighter colors. 
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Figure 6.21: A performance comparison between a clustering algorithm that uses 

reference segments and the one that uses predicted segments in the air travel domain 

 

Sub-task 
Oracle clustering (M=12) Predicted segment clustering (M=12) 

Precision Recall SS QS Precision Recall SS QS 

query_flight_info 0.972 0.915 0.257 0.495 0.801 0.846 0.230 0.438 

query_flights_fare 0.816 0.630 0.815 0.741 0.490 0.338 0.889 0.481 

query_car_info 0.760 0.839 0.900 0.814 0.433 0.523 0.889 0.559 

query_hotel_info 0.675 0.588 0.733 0.596 0.485 0.303 0.938 0.478 

reserve_flight 0.494 0.818 0.950 0.690 0.348 0.619 0.900 0.513 

Macro-average 0.741 0.758 0.728 0.738 0.516 0.526 0.753 0.577 

Table 6.41: The quality of each sub-task identified by the oracle clustering and the 

predicted segment clustering in the air travel domain 

Table 6.41 shows the quality of each sub-task in the air travel domain identified by 

both clustering algorithms. These set of results are obtained when M is equal to 12, which 

is the optimal number of clusters producing the best overall quality score for the 

predicted segment clustering. Please note that the quality score of the oracle clustering at 

M equals 12 is slightly lower than the optimal value obtained when M equals 10. The 
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quality of a query_flight_info sub-task identified from predicted segments is almost as 

good as the one identified from reference segments. Precision is slightly lower mostly 

because consecutive utterances that belong to a query_flights_fare sub-task are also 

included in the same cluster when the boundaries between a query_flight_info sub-task 

and a query_flights_fare are missing. For other sub-tasks, especially 

query_flights_fare, query_car_info and query_hotel_info, both precision and recall are 

considerably lower. Many boundaries of these sub-tasks are missing as shown in Table 

6.19. Even with correct sub-task boundaries as in the oracle clustering, some instances of 

these sub-tasks still get merged into the same cluster. When the boundaries among them 

are missing, it is more difficult to identify the sub-tasks accurately.  

Nevertheless, some types of boundary errors have less negative effect toward the 

clustering performance. A missing boundary between two instances of the same sub-task 

type is less problematic if the merged segment could be assigned to the right cluster. The 

result shows that, although, many boundaries between consecutive instances of a 

query_flight_info sub-task are not identified, they do not have much effect on the 

clustering quality of a query_flight_info sub-task. Extra boundaries, or false alarms, are 

less problematic than missing boundaries since the fragments of the same sub-task could 

be grouped together into the same cluster. A query_flight_info sub-task which has more 

false alarms than other types of sub-tasks still achieves better clustering quality. 

However, too many false alarms could affect the clustering performance since small 

fragments do not contain enough context to accurately identify the similarity among the 

fragments as occurred with utterance-based segmentation discussed in Section 6.1.7.1. 

The sub-task clustering performance in the map reading domain obtained when the 

predicted segments are used is shown in Table 6.42 and a comparison between the 

predicted segment clustering and the oracle clustering is given in Figure 6.22 and Table 

6.43. The quality metrics of the oracle clustering are illustrated with darker colors while 

the quality metrics of the predicted clustering are illustrated with lighter colors. Both 

precision and recall are considerably lower than when the reference segments are used 

regardless of the number of clusters outputted. However, when M is large, the predicted 

segment clustering obtains higher singularity score which reduces the difference between 

the quality scores of both algorithms. Better overall singularity score comes from higher 

singularity score of a grounding sub-task. Nevertheless, the optimal quality score 

produced by the predicted segment clustering, which is obtained when M is equal to 4 

and is underlined in  Table 6.42, is lower than the optimal quality score produced by the 

oracle clustering (QS = 0.791 when M is equal to 2). 
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Number of 

clusters (M) 

Topic 

Recall 
Precision Recall 

Singularity 

score 

Quality 

score 

2 0.500 0.642 0.500 0.500 0.540 

4 1.000 0.701 0.651 0.675 0.675 

6 1.000 0.714 0.645 0.585 0.641 

8 1.000 0.724 0.637 0.502 0.597 

Table 6.42: Sub-task clustering results in the map reading domain when predicted 

segments are used as an input 

Figure 6.22: A performance comparison between a clustering algorithm that uses 

reference segments and the one that uses predicted segments in the map reading domain 

 

Sub-task 
Oracle clustering (M=4) Predicted segment clustering  (M=4) 

Precision Recall SS QS Precision Recall SS QS 

draw_a_segment 0.876 0.968 0.350 0.593 0.737 0.854 0.350 0.553 

grounding 0.935 0.752 0.950 0.862 0.665 0.449 1.000 0.620 

Macro-average 0.906 0.860 0.650 0.787 0.701 0.651 0.675 0.675 

Table 6.43: The quality of each sub-task identified by the oracle clustering and the 

predicted segment clustering in the map reading domain 

Clustering performance in the map reading domain
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The quality metrics of each sub-task in the map reading domain presented in Table 

6.43 are obtained when M is equal to 4, which is the optimal number of clusters for the 

predicted segment clustering. Please note that the overall quality score of the oracle 

clustering at M equals 4 is slightly lower than its optimal value. The quality of a 

draw_a_segment sub-task identified from predicted segments is almost as good as the 

one identified from reference segments. The precision is slightly lower mostly because 

some consecutive utterances that belong to a grounding sub-task are also included in the 

same cluster when the sub-task boundary predictor failed to identify a boundary between 

a draw_a_segment sub-task and a grounding sub-task. This problem also causes the 

recall of a grounding sub-task to be much lower. On the other hand, missing boundaries 

between consecutive instances of a draw_a_segment sub-task and false alarm 

boundaries have less negative effect on the clustering results. 

Summary 

The quality of the clusters obtained from predicted segments is lower than the quality 

of the clusters obtained from the reference segments as inaccurate segment boundaries 

affect the performance of the clustering algorithm. However, some types of boundary 

errors have more negative influence on the clustering performance than other types of 

errors. A missing boundary between different types of sub-tasks is usually more 

problematic than a missing boundary between two consecutive instances of the same type 

of sub-task. False alarm boundaries also have less negative effect on the clustering result. 

Although, some of the predicted segments have inaccurate segment boundaries, the 

quality of some sub-tasks, such as a query_flight_info sub-task and a draw_a_segment 

sub-task, identified from the predicted segments is almost as good as the ones identified 

from the reference segments.  

6.2.4.3 The label representation 

In this experiment, the Label representation, which focuses on a concept label rather 

than its value as it is more informative for sub-task clustering, is used to represent 

concept words. As discussed in Section 6.2.4.1, a more abstract concept word 

representation could also reduce the splitting problem that usually occurs with high 

frequency sub-tasks. A performance comparison between the two concept word 

representations, the one that uses both a concept label and a word string (the Label+Word 

representation) and the one that uses only a concept label (the Label representation) is 

given in Table 6.44. For both representations, the results are the optimal result obtained 

from the oracle clustering. For the Label+Word representation the optimal result is 
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obtained when M is equal to 10 and is similar to the one presented in Table 6.38 while for 

the Label representation the optimal result is obtained when M is equal to 14. 

 

Sub-task 
Label+Word (M=10) Label (M=14) 

Precision Recall SS QS Precision Recall SS QS 

query_flight_info 0.937 0.908 0.275 0.513 1.000 0.906 0.242 0.475 

query_flights_fare 0.691 0.704 0.900 0.738 0.930 0.848 0.950 0.897 

query_car_info 0.708 0.894 0.850 0.792 0.835 0.706 0.850 0.760 

query_hotel_info 0.843 0.644 0.944 0.800 0.775 0.738 0.517 0.630 

reserve_flight 0.500 0.464 1.000 0.632 0.523 0.909 0.950 0.724 

Macro-average 0.746 0.723 0.773 0.745 0.812 0.821 0.702 0.772 

Table 6.44: Clustering results for each sub-task in the air travel domain when different 

concept word representations are used by the oracle clustering  

The optimal quality score for the Label representation is 0.772 which is slightly better 

than the value of 0.745 achieved by the Label+Word representation. The Label 

representation achieves higher precision and recall than the Label+Word representation. 

However, the singularity score is lower because its optimal result contains more clusters. 

When compare singularity scores of both representations at the same M value, the Label 

representation has a slightly better singularity score. The quality of each sub-task is also 

given in Table 6.44. The Label representation achieves better quality score for a 

query_flights_fare sub-task and a reserve_flight sub-task due to higher precision and 

recall. For a query_flight_info sub-task and a query_hotel_info sub-task, it achieves 

lower quality score mainly from more splitting as the number of clusters is higher. The 

quality score of a query_car_info sub-task is also slightly lower. 

The Label representation does not improve singularity score as expected. Frequent 

sub-tasks still get split into multiple clusters. Although, dialog segments that belong to 

the same sub-task should contain a similar set of concepts, some concepts are optional 

and do not occur in every instances of the sub-task. For instance, ArrivalAirport and 

ArrivalState are optional concepts and do not occur in every query_flight_info sub-

task. A frequent sub-task may get split into multiple clusters based on the optional 

concepts and other non-concept words that they contain as the bisecting K-means 

clustering algorithm always splits the largest cluster first. 

All splitting problems discussed above are the case that a sub-task is represented by 

more than one cluster which occurs when the instances of the same sub-task are separated 
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into multiple clusters and those instances are also a majority sub-task in some of the 

clusters. This type of splitting is reflected by singularity score. However, if the instances 

of the same sub-task are assigned to multiple clusters but as a minority sub-task in some 

of those clusters, there might be only one cluster that represents the sub-task. Singularity 

score cannot capture this kind of splitting; nevertheless, the splitting causes the clusters to 

be heterogeneous and reduces precision. Recall also decreases as some dialog segments 

are assigned to the clusters that do not represent their corresponding sub-task. 

The Label representation, which is a more abstract representation, makes it easier to 

distinguish some sub-tasks from other sub-tasks if they contain different sets of concepts 

and alleviates the second splitting problem. Precision and/or recall are increased for those 

sub-tasks. A query_flight_info sub-task, a query_flights_fare sub-task and a 

reserve_flight sub-task can be identified with high recall since most of their instances 

contain a similar set of concepts. In terms of precision, a query_flight_info sub-task has 

a perfect precision (i.e. precision = 1) as it contains a set of concepts that is distinct from 

the ones used in other sub-tasks. A query_flights_fare sub-task also has high precision. 

However, precision of a reserve_flight sub-task is quite low since the cluster that 

represents this sub-task also includes dialog segments from other sub-tasks that contain 

similar closing sub-dialogs. A query_hotel_info sub-task and a query_car_info sub-task 

have lower recall than other three sub-tasks since some of their instances get merged into 

the clusters that represent other sub-tasks. For instance, some instances of a 

query_hotel_info sub-task and a query_car_info are assigned to the cluster that 

represents a query_flights_fare sub-task as all three sub-tasks share the same concept 

Fare. 

 

Sub-task 
Label+Word (M=2) Label (M=2) 

Precision Recall SS QS Precision Recall SS QS 

draw_a_segment 0.911 0.620 0.950 0.775 0.997 0.991 1.000 0.996 

grounding 0.555 0.840 1.000 0.773 0.984 0.995 1.000 0.993 

Macro-average 0.737 0.730 0.950 0.791 0.991 0.993 1.000 0.994 

Table 6.45: Clustering results for each sub-task in the map reading domain when 

different concept word representations are used by the oracle clustering  

Table 6.45 shows a performance comparison between the two concept word 

representations in the map reading domain. For both representations, the results are the 

optimal result achieved by the oracle clustering which are obtained when M is equal to 2. 

When the Label representation is used all of the quality metrics, precision, recall and 
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singularity score, are almost perfect for both sub-tasks. The Label representation, which 

focuses on the concepts themselves rather than their values, can perfectly distinguish 

between a draw_a_segment sub-task and a grounding sub-task since both sub-tasks 

contain disjoint sets of concepts. There is no splitting in the optimal result obtained from 

the Label representation since the optimal number of clusters is equal to the number of 

the reference sub-tasks. However, when the clustering algorithm outputs more clusters, 

both sub-tasks are split into many clusters which reduces the singularity score. 

Nevertheless, precision and recall for both sub-tasks are still close to perfect.  

Table 6.46 shows a performance comparison between the two concept word 

representations when predicted segments from the air travel domain are used as an input 

of a clustering algorithm. The results are the optimal result obtained when M is equal to 

12 for the Label+Word representation and when M is equal to 10 for the Label 

representation. 

 

Sub-task 
Label+Word (M=12) Label (M=10) 

Precision Recall SS QS Precision Recall SS QS 

query_flight_info 0.801 0.846 0.230 0.438 0.865 0.844 0.213 0.424 

query_flights_fare 0.490 0.338 0.889 0.481 0.464 0.629 0.950 0.619 

query_car_info 0.433 0.523 0.889 0.559 0.717 0.049 1.000 0.285 

query_hotel_info 0.485 0.303 0.938 0.478 0.416 0.508 1.000 0.578 

reserve_flight 0.348 0.619 0.900 0.513 0.377 0.735 0.733 0.529 

Macro-average 0.516 0.526 0.753 0.577 0.549 0.553 0.741 0.601 

Table 6.46: Clustering results for each sub-task in the air travel domain when different 

concept word representations are used by the predicted segment clustering  

The Label representation achieves slightly better quality score from higher precision 

and recall; however, singularity score is slightly lower. When consider the quality of each 

sub-task separately, the Label representation achieves better quality score for a 

query_flights_fare sub-task and a query_hotel_info sub-task mainly from higher recall. 

On the other hand, a query_car_info sub-task has much lower quality score due to much 

lower recall. The recall is lower because many dialog segments that belong to a 

query_car_info sub-task get merged into either a query_flights_fare sub-task or a 

query_hotel_info sub-task as many boundaries between a query_car_info sub-task and 

a query_flights_fare sub-task or a query_hotel_info sub-task are missing as shown in 

Table 6.19. Moreover, some instances of these three sub-tasks are quite similar since they 
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share some common concepts and keywords, such as [Fare] and “rate” as discussed 

earlier. 

 

Sub-task 
Label+Word (M=4) Label (M=2) 

Precision Recall SS QS Precision Recall SS QS 

draw_a_segment 0.737 0.854 0.350 0.553 0.816 0.846 1.000 0.881 

grounding 0.665 0.449 1.000 0.620 0.705 0.657 1.000 0.761 

Macro-average 0.701 0.651 0.675 0.675 0.760 0.752 1.000 0.823 

Table 6.47: Clustering results for each sub-task in the map reading domain when 

different concept word representations are used by the predicted segment clustering  

Table 6.47 shows a performance comparison between two clustering algorithms that 

use predicted segments from the map reading domain as an input but use different 

concept word representations. The results are the optimal results obtained when M is 

equal to 4 for the Label+Word representation and when M is equal to 2 for the Label 

representation. The algorithm that uses the Label representation outperforms the 

algorithm that uses the Label+Word representation both in terms of the overall 

performance (the macro-average) and the performance on each sub-task. The best 

performance achieves by the predicted segment clustering that uses the Label 

representation is also better than the best performance achieves by the oracle clustering 

that uses the Label+Word representation shown Table 6.39. All of the quality metrics, 

precision, recall and singularity score, are slightly better. This result confirms that 

concept labels are more informative than their values for sub-task clustering and that the 

Label representation is a better representation than the Label+Word representation. An 

appropriate feature representation provides more useful information to the clustering 

algorithm than accurate segment boundaries.  

Summary 

The Label representation, which uses only a concept label to represent a concept 

word, is a better representation than the Label+Word representation, which uses both a 

concept label and a word string to represent a concept word, for sub-task clustering. The 

Label representation can better distinguish among different types of sub-tasks if they 

contain different sets of concepts. If the sets of concepts used in all of the reference sub-

tasks are disjoint, a clustering algorithm that uses the Label representation can achieves a 

very good results as in the map reading domain. The performance is almost perfect when 

the reference segments are used as an input. The quality of the clusters is still good when 

the predicted segments are used. Substantial improvement is achieved when compared to 
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the quality of the clusters obtained from the algorithm that uses the Label+Word 

representation. The result of the clustering algorithm that uses the Label representation 

with predicted segments is even better than the result obtained from the oracle clustering 

that uses the Label+Word representation. This result confirms that the Label 

representation is more suitable for sub-task clustering than the Label+Word 

representation. It also demonstrates that an appropriate feature representation provides 

more useful information to the clustering algorithm than accurate segment boundaries. 

In the air travel domain, the performance gain from the Label representation is 

smaller since the sub-tasks contain overlapping sets of concepts. A sub-task can be 

identified with high recall if most of its instances contain a similar set of concepts, such 

as, a query_flights_fare sub-task and a reserve_flight sub-task. High precision can be 

achieved if a sub-task contains a set of concepts that is distinct from the ones used in 

other sub-tasks such as a query_flight_info sub-task. For the oracle clustering, the new 

concept word representation improves the overall precision in recall. However, frequent 

sub-tasks still get split into multiple clusters based on the optional concepts and other 

non-concept words that they contain as the bisecting K-means clustering algorithm 

always splits the largest cluster first. As a result, the Label representation improves 

singularity score just slightly.  

In addition to higher overall cluster quality, in all of the experiments, the variances of 

the quality metrics of all 10 runs are also lower when the Label representation is used. 

6.2.4.4 Slot extraction 

In this experiment, the best clustering result obtained when the predicted segments 

are used as an input of the clustering algorithm is analyzed to identify a set of slots that is 

associated with each type of form. This result is obtained when the Label representation 

is used is discussed in detail in the previous section. Table 6.48 shows a list of slots and 

their frequencies of each cluster in the air travel domain. For simplicity, only the frequent 

slots are presented. 

Sets of slots for a flight query form, a hotel query form and a fare query form 

extracted from the corresponding clusters are quite acceptable. There are 5 clusters that 

represent a query_flight_info sub-task. All frequent slots found in these clusters belong 

to a flight query form. Erroneous slots that belong to other types of forms occur only a 

few times and are not shown in Table 6.48. A query_flight_info(3) cluster and a 

query_flight_info(4) cluster contain most essential slot in a flight query form. However, 

other clusters miss some of the necessary slots or contain only a few instances of them 
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since false alarm boundaries may cause some instances of a query_flight_info sub-task 

to be separated into multiple segments. For example, a query_flight_info(1) cluster 

misses the departure date related slots. A cluster that corresponds to a query_hotel_info 

sub-task contains all of the necessary slots in a hotel query form. It also contains only a 

few instances of erroneous slots. A cluster that corresponds to a query_flights_fare sub-

task contains some erroneous slots that belong to a hotel query form and a car query form 

as some instances of these forms get merged into the same cluster as discussed earlier. 

Erroneous slots that belong to other sub-tasks are highlighted in red. 

However, since the recall of a query_car_info sub-task is very low as many of its 

instances get merged into either a query_flights_fare sub-task or a query_hotel_info 

sub-task, many essential slots, such as [car_rental_company] and [car_category], are 

missing.  In the reference, a reserve_flight sub-task does not contain any concept as it 

only discusses a make_a_flight_reservation action at the end of a dialog when all other 

information has been discussed. The extraneous slots come from other types of sub-tasks 

that get merged into the cluster as its precision is quite low. The quality of each sub-task 

is presented in Table 6.46. 
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query_flight_info (1) query_flight_info (2) query_flight_info (3) query_flight_info (4) 
[arrive_time:minute_number] 63 [airline_company] 79 [airline_company] 39 [depart_time:minute_number] 65 

[arrive_time:hour_number] 42 [arrive_time:minute_number] 46 [arrive_loc:city] 17 [depart_time:hour_number] 60 

[depart_time:minute_number] 37 [depart_time:hour_number] 40 [arrive_time:minute_number] 15 [arrive_loc:city] 60 

[depart_time:hour_number] 36 [depart_time:minute_number] 39 [fare] 14 [arrive_time:minute_number] 52 

[depart_time:am_pm] 31 [arrive_time:hour_number] 36 [depart_time:time_period] 12 [depart_time:am_pm] 46 

[arrive_loc:city] 31 [arrive_loc:city] 27 [depart_loc:city] 10 [depart_loc:city] 42 

[depart_loc:city] 26 [depart_time:am_pm] 23 [arrive_time:hour_number] 10 [arrive_time:hour_number] 35 

[arrive_loc:airport] 23 [flight_number] 15 [depart_date:month_number] 10 [depart_date:month_number] 31 

[airline_company] 19 [arrive_time:am_pm] 14 [depart_time:minute_number] 9 [airline_company] 30 

[arrive_time:am_pm] 18 [arrive_loc:airport] 13 [depart_time:hour_number] 8 [flight_ref] 26 

  [depart_loc:city] 13     

  [depart_time:time_period] 11     

query_flight_info (5) reserve_flight (1) reserve_flight (2) query_flights_fare 
[depart_date:month_number] 43 [area] 10 [city] 4 [fare] 257 

[depart_date:month] 26 [arrive_loc:city] 6 [car_category] 3 [city] 27 

[arrive_loc:city] 24 [arrive_loc:airport] 5 [depart_date:day_of_week] 2 [car_rental_company] 17 

[depart_loc:city] 12 [arrive_date:day_of_week] 4 [arrive_loc:city] 2 [hotel_name] 15 

[depart_date:year] 12 [airline_company] 3 [hotel_name] 2 [arrive_loc:city] 14 

[depart_date:day_of_week] 10 [depart_loc:city] 3 [arrive_time:hour_number] 2 [airline_company] 11 

[depart_time:time_period] 10 [fare] 3 [flight_ref:airline_company] 2   

query_hotel_info query_car_info 
[fare] 75 [car_type] 13 

[city] 36 [city] 3 

[hotel_name] 33 [state] 1 

[area] 28   

[arrive_date:month_number] 14   

[depart_date:month_number] 10   

Table 6.48: A list of slots and their frequencies from each cluster in the air travel domain.  
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draw_a_segment grounding 

[Orientation:direction] 728 [TargetLM:landmark] 309 

[Path:Location:landmark] 596 [Location:location_mod] 288 

[EndLocation:Location:landmark] 433 [Location:landmark] 207 

[Path:Location:location_mod] 416 [Location] 192 

[Path:Location] 388 [Orientation:direction] 93 

[EndLocation:Location:location_mod] 385 [Location:map_ref] 93 

[Orientation:direction_mod] 315 [EndLocation:Location:landmark] 59 

[EndLocation:Location] 290   

[EndLocation:Location:map_ref] 179   

[StartLocation:Location:landmark] 124   

[TargetLM:landmark] 119   

[Distance:amount] 96   

Table 6.49: A list of slots and their frequencies from each cluster in the map reading 

domain.  

Table 6.49 shows a list of slots and their frequencies of each cluster in the air travel 

domain. A list of slots extracted from a draw_a_segment cluster and a list of slots 

extracted from a grounding cluster contain all of the necessary slots for a segment 

description form and a grounding form respectively. Since both clusters are not 

homogenous, they also contain some erroneous slots. Nevertheless, those erroneous slots, 

highlighted in red, do not occur as frequent as most of the correct slots that belong to the 

forms.  

Summary 

Essential slots in most of the forms can be identified from clusters of predicted 

segments in both the air travel domain and the map reading domain. If the recall of the 

sub-task is not too low, all of the essential slots of the corresponding form can be 

identified as only multiple instances of a concept, not all of them, is sufficient to identify 

the corresponding slot. If a cluster is not homogenous, i.e. precision is not perfect, it may 

contain extraneous slots that belong to other form types. However, if the precision is not 

too low these extraneous slots will occur only a few times compared to the correct ones. 

A query_car_info sub-task has very low recall, therefore, some of the slots can not be 

identified. For a reserve_flight sub-task, the corresponding clusters contain extraneous 

slots that are quite frequent since the precision is quite low. 
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6.2.5 Discussion and conclusion 

In the previous sections, an unsupervised clustering algorithm, the bisecting K-means 

clustering algorithm, has been applied to the problem of sub-task clustering through a 

series of experiments. In this section, I will summarize the clustering results and 

interesting findings from those experiments. 

The quality of the clusters obtained from predicted segments is lower than the quality 

of the clusters obtained from the reference segments as inaccurate segment boundaries 

affected the performance of the clustering algorithm. However, some types of boundary 

errors have more negative influence on the clustering performance than other types of 

errors. A missing boundary between different types of sub-tasks is usually more 

problematic than a missing boundary between two consecutive instances of the same type 

of sub-task. False alarm boundaries also have less negative effect on the clustering result. 

Although, some of the predicted segments have inaccurate segment boundaries, the 

quality of some sub-tasks that occur frequently, such as a query_flight_info sub-task and 

a draw_a_segment sub-task, identified from the predicted segments is almost as good as 

the ones identified from the reference segments.  

The frequency of the segment type has some effect on the clustering result. A 

frequent segment type is likely to be identified reliably by the clustering algorithm but is 

subjected to splitting as the bisecting K-means clustering algorithm always splits the 

largest cluster first while an infrequent segment type may not contain enough information 

for the clustering algorithm to identify the similarity among its instances and thus more 

difficult to discover. 

Since a list of concepts that occurs in one sub-task is distinguishable from a list of 

concepts that occurs in other sub-tasks regardless of the values of the concepts, concept 

labels are more informative for sub-task clustering than concept values. The Label 

representation, which focuses only on a concept label not its values, is a better 

representation than the Label+Word representation, which uses both a concept label and 

a word string to represent a concept word. The clustering algorithm that uses the Label 

representation achieves a better clustering performance in both domains. When the sets of 

concepts used in all of the sub-tasks are disjoint, a clustering algorithm that uses the 

Label representation can achieves a very good results as in the map reading domain. With 

a more abstract concept word representation, the quality of the clusters obtained from 

predicted segments is even better than the quality of the clusters obtained from the 

reference segments that use the Label+Word representation. This result demonstrates that 

an appropriate feature representation provides more useful information to the clustering 
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algorithm than accurate segment boundaries. However, when the sub-tasks contain 

overlapping sets of concepts as in the air travel domain, the performance gain obtained 

from the Label representation is small. In addition to higher overall cluster quality, in all 

of the experiments, the variances of the quality metrics of all 10 runs are also lower when 

the Label representation is used. 

For slot extraction, A set of slots in each form type can be identified by extracting a 

list of concepts from the corresponding clustering. When the best clustering result 

obtained from predicted segments are analyzed, essential slots for most of the forms can 

be identified in both domains. Only moderate sub-task precision and recall are required in 

order to accurately identify a set of slots. However, if the recall is too low, some slots 

might be missing. On the other hand, if the precision is too low, the cluster might contain 

extraneous slots from other form types that are as frequent as the correct slots. 

Sub-task clustering still has room for improvement. Since inaccurate segment 

boundaries affected the performance of the clustering algorithm, a better dialog 

segmentation algorithm will not only improve the quality of the segments but also the 

quality of a sub-task clustering results. To reduce the number of splitting in frequent sub-

tasks, different criteria for choosing a cluster to split at each iteration can be 

experimented. For example, a criterion based on the overall similarity of a cluster could 

be used instead of the one that always chooses to split the largest cluster.  
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Chapter 7 

Conclusion 

7.1 Summary of results 

In this dissertation, I proposed a form-based dialog structure representation (a three-

level structure of task, sub-task, and concept) suitable for representing the domain-

specific information required to build a task-oriented system and demonstrated that this 

representation has all of the required properties. 

● Sufficiency  

The form-based dialog structure representation can account for 93% of 

dialog content in four task-oriented domains (air travel planning, bus schedule 

enquiry, map reading and UAV flight simulation) as measured by a dialog 

coverage discussed Section 4.1. Some limitations of the form-based 

representation are discussed in Section 3.8. 

● Generality  

The form-based dialog structure representation can be applied to five 

disparate task-oriented domains, including air travel planning (information-

accessing), bus schedule inquiry (information-accessing), map reading 

(problem-solving), UAV flight simulation (command-and-control), and 

meeting, with an exception of the tutoring domain. 

● Learnability  

The form-based dialog structure representation is learnable by non-expert 

annotators and by unsupervised machine learning algorithms. The form-based 

representation can be applied reliably by non-expert annotators, producing 

high acceptability on task structure designs (bracketed precision > 0.8) in two 

disparate domains: air travel planning (an information-access task) and map 

reading (a problem-solving task). To show this, I introduced a novel 

evaluation procedure called cross-annotator correction suitable for 

comparing different markup schemes. High annotation scheme reliability 

suggests that the annotation scheme is concrete and unambiguous which 

implies learnability. Components of the form-based representation can be 
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identified with acceptable accuracy through unsupervised machine learning 

approaches as summarized below. 

The results of both dialog structure acquisition problems, concept identification and 

form identification, show that it is feasible to acquire the domain-specific knowledge 

necessary for creating a task-oriented dialog system automatically from a corpus of in-

domain conversations using unsupervised learning approaches. With some modifications, 

the proposed unsupervised learning approaches are able to learn the structure of a spoken 

dialog which captures the required domain-specific information as represented by the 

form-based dialog structure representation. 

Domain concepts can be identified with acceptable accuracy. The best concept 

identification result is obtained from the Kullback-Liebler-based clustering algorithm that 

uses an average linkage distance measure. The quality score of 0.70 is achieved when the 

automatic stopping criterion is applied. The clustering result has high precision but 

moderate recall since the statistical clustering algorithm cannot accurately identify 

infrequent concept words due to a sparse data problem. For most statistical clustering 

algorithms, we are able to identify automatic stopping criteria that yield close to optimal 

results. 

Forms that occur frequently can be identified with moderate accuracy. Forms and 

their associated slots are identified in three sequential steps: dialog segmentation (sub-

task boundary prediction), sub-task clustering, and slot extraction. To handle fine-grained 

segments in spoken dialogs, TextTiling and HMM-based segmentation algorithms are 

augmented with a data-driven stop word list and distance weights. With the proposed 

modifications, significant improvement on sub-task boundary prediction is achieved. 

Subsequent steps of form identification are subjected to propagated errors from its 

preceding steps. Since the proposed learning algorithms are based on generalization of 

recurring patterns, they can still learn from inaccurate information given that the number 

of errors is moderate, so that there are enough correct examples to learn from. The results 

show that moderate segmentation accuracy is sufficient for identifying frequent form 

types using the bisecting K-mean sub-task clustering algorithm. Similarly, moderate sub-

task clustering accuracy is sufficient for identifying essential slots in each form. Dialog 

structure acquisition, as in the case of this thesis, does not require high learning accuracy. 

In conclusion, to represent a dialog for a learning purpose (to acquire domain 

knowledge necessary for creating a task-oriented dialog system) we based our 

representation, a form-based dialog structure representation, on an observable structure. 

This observable representation can be generalized for various types of task-oriented 



Chapter 7: Conclusion 

 

283 

dialogs and can be understood and applied by different annotators. More importantly, the 

representation can be learned by unsupervised learning approaches. 

7.2 Contributions 

This dissertation has presented the work on exploring the feasibility of using an 

unsupervised machine learning approach to infer the domain-specific information 

required to build a task-oriented dialog system through the observation of in-domain 

human-human conversations. The main contributions of this work are: 
 

1. A dialog structure framework based on a form representation that has the 

following properties:  

 Sufficiency 

 The proposed form-based dialog structure representation formally 

defines the domain-specific knowledge necessary for building a task-

oriented dialog system based on the notion of form. These 

components while already exist, no formal definition has been 

specified.  

 Generality 

 The definitions of domain knowledge components provided in the 

proposed form-based dialog structure representation are extended 

beyond the common interpretations used specifically for an 

information-accessing domain; hence, they are domain-independent 

and can be applied to different types of task-oriented dialogs as 

demonstrated in Chapter 3.  

 Learnability 

 To represent a dialog for a learning purpose (acquiring domain 

knowledge necessary for creating a task-oriented dialog system), we 

based our representation on an observable structure of a dialog. As a 

result, this observable representation can be learned through 

unsupervised learning approaches. 

 A concrete mapping between dialog structure components and dialog 

system architecture 

2. An unsupervised machine learning approach for inferring domain information 

from in-domain conversations that could potentially reduce human effort in 

developing a new task-oriented dialog system 
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● An unsupervised algorithm that can identify and cluster domain concepts 

from un-annotated data 

● Automatic stop criteria for the Kullback-Liebler-based clustering 

algorithm and the mutual information-based clustering algorithm that 

yield close to optimal clustering results 

● A data-driven approach that identifies less informative words in a text 

segmentation problem from word distribution  

● An unsupervised segmentation algorithm that can identify the boundaries 

between fine-grained segments 

3. Annotation assessment based on cross-annotator correction suitable for 

assessing inter-annotator agreement when annotators create and use their own 

markup schemes and annotation variations are acceptable 

7.3 Future directions 

Automatic domain knowledge acquisition intended for creating a new dialog system 

is a very new research area. This thesis has investigated the feasibility of such approach 

which could be extended in many directions as summarized below.  

7.3.1 Extending the form-based dialog structure representation 

The form-based dialog structure representation only models the observable structure 

of a dialog using a simple representation so that the domain-specific information captured 

by this representation could be inferred from in-domain conversations through existing 

unsupervised learning approaches. This representation works well for many types of task-

oriented domains as shown in Chapter 3. The form-based representation should also be 

able to represent other types of task-oriented dialogs that have the following 

characteristics: 1) the conversation goal is achieved through the execution of domain 

actions, and 2) the dialog participants have to communicate the information required to 

perform these actions through dialog. 

By assuming that all the required domain-specific information is observable and can 

be represented by a simple model, the form-based representation is not suitable for 

modeling a complex dialog that has a dynamic structure. These types of dialogs, for 

example, the tutoring domain, require a more expressive representation. Nevertheless, I 

believe that the components in the form-based dialog structure representation (i.e. task, 

sub-task, and concept) are still the keys components of a task-oriented dialog. However, 

the relations among these components in some domains may be more complex than the 
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ones modeled by the form-based representation. For example, a compositional structure 

of a dialog may better be described by the purposes of the segments (Grosz and Sidner, 

1986) than by the characteristics of a task and domain actions
1
. In each of the segments, 

some pieces of domain information are exchanged by the participants, but these pieces of 

information can be more complicated than domain entities modeled by concepts. 

Some modifications can be applied to the form-based dialog structure representation 

to make it accounted for more types of dialogs. Concepts could be extended to model 

other kind of domain information not just domain entities, for example, relations between 

entities such as equality. For a complex domain that requires multiples forms, the 

relations between forms may be required. For instance, different concept values in the 

first form may activate different types of subsequent forms. For the type of dialog that the 

necessary domain information is not directly reflected in the conversation, a more 

complex dialog structure which also models unobservable aspects of the dialog may be 

required. A teaching strategy in a tutoring dialog is one example of the information that 

cannot be observed directly from the conversation. Different teaching strategies could be 

applied to the same question depended on a student’s ability. Even though it is possible to 

extend the form-based dialog structure representation to account for more types of 

dialogs, other existing dialog representations may be more suitable than forms for some 

particular domains and applications. Learnability of an additional component is also 

subjected to future research.  

7.3.2 Improving the performance of dialog structure acquisition algorithms 

The performance of dialog structure acquisition algorithms can be improved along 

several dimensions. 

7.3.2.1 Improving the proposed unsupervised learning algorithms 

All of the unsupervised learning approaches presented in this thesis still have room 

for improvement. Typically, adding more useful features and combining different 

learning algorithms together can improve the learning performance. 

For a concept identification problem, more efficient concept word selection criteria 

could be identified by adding new concept word indicators and by combining different 

types of criteria together. One additional type of indicator that might be worth 

experimenting is a name entity flag (whether a word is a name entity or not). A word that 

                                                 
1
 Executing a domain action can be considered as a specific case of a segment purpose. 
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is classified as a name entity (for example, location or time expression) is likely to 

capture domain information. 

For a dialog segmentation problem, both TextTiling and HMM-based segmentation 

algorithms, which rely on lexical similarity between dialog segments, have some 

difficulty identifying the boundary between two sub-tasks of the same type. Lexical 

similarity, which is an efficient feature for identifying the boundary between two sub-

tasks that belong to dissimilar form types, may not provide enough information for 

determining the boundary between two instances of the same form type since their 

contents are more similar. To solve this problem, additional features that are not sensitive 

to the content of the segment, such as a prosodic feature, are necessary. It has been shown 

that prosodic features are able to identify a boundary between the segments that contain 

quite similar contents (Swerts and Ostendorf, 1997). Since inaccurate segment boundaries 

affected the performance of the clustering algorithm, a better dialog segmentation 

algorithm will not only improve the quality of the segments but also the quality of a sub-

task clustering results. 

To reduce the number of splitting in frequent sub-tasks in a sub-task clustering 

problem, different criteria for choosing a cluster to split at each iteration can be 

experimented. For example, a criterion based on the overall similarity of a cluster could 

be used instead of the one that always chooses to split the largest cluster. A more efficient 

clustering algorithm can also improve the performance of the HMM-based segmentation 

algorithm since it provides a better state representation that can differentiate between 

dialog segments that belong to dissimilar sub-tasks.  

The advantages of different algorithms can be combined to improve the performance 

of the learning algorithms. For both concept identification and sub-task boundary 

detection problems, competitive approaches seem to have complementary advantages. 

For concept identification, the statistical approach and the knowledge-based approach 

have different strong points. The statistical approaches while able to capture domain-

specific usage of concept words cannot accurately identify infrequent concept words due 

to a sparse data problem. The knowledge-based approach, on the other hand, can identify 

domain concepts very accurately, but on the condition that the concepts are present in the 

knowledge source. One possible combination method is to acquire an initial set of 

concepts through a statistical clustering approach then revise these initial concepts with a 

knowledge-based clustering approach. A statistical clustering approach allows us to 

recover as many potential concepts as possible while a knowledge-based clustering 

approach can improve the quality of the initial concepts by adding missing concept 
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members and removing incorrect concept members. For sub-task boundary detection, the 

TextTiling and the HMM-based segmentation algorithm are good at different types of 

boundaries. The HMM-based algorithm performs better on very fine-grained segments 

boundaries while the TextTiling algorithm performs better on the boundaries between 

consecutive sub-tasks of the same type. Therefore, combining the predictions made by 

both algorithms could help improve sub-task boundary detection performance. 

Since tasks, sub-tasks, and concepts are the components of the same dialog structure, 

information about one component may be useful for inferring another component. As 

shown in Chapter 6, information from concept annotation can improve both dialog 

segmentation and sub-task clustering results. Information from sub-task boundaries and 

types of tasks and sub-tasks should also help improve the performance of a concept 

identification algorithm. For example, based on an assumption that a list of concepts 

occurs in one sub-task is distinguishable from a list of concepts occurs in other sub-tasks, 

a similarity score between words that occur in the same type of sub-task should receive 

more weight than a similarity score between words that occur in different types of sub-

tasks. More interaction between components such as an iterative approach should also be 

considered. To measure the effect of propagated errors when incorporating information 

from another dialog structure component in the learning algorithm, the performance when 

incorporating predicted components and the performance when incorporating hand-

annotated components should be compared.  

7.3.2.2 Learning from a larger corpus 

The unsupervised learning approaches investigated in this thesis have been applied to 

dialog corpora that are quite small. The limitation came from the amount of annotated 

data. Even though all the learning algorithms are unsupervised, reference annotation is 

still required in order to evaluate the performance of the proposed algorithms. More 

dialog data should improve learning accuracy as it reduces a sparse data problem that the 

statistical learning approaches used in this thesis have encountered. Unsupervised 

learning algorithms proposed in this thesis and an efficient annotation tool can expedite 

the annotation process. Human-annotated data can be obtained by correcting the form-

based dialog structure components that the learning algorithm predicted. It is also 

interesting to see the performance gain each learning algorithm can achieve when more 

dialog data is available. In addition to the learning accuracy on a specific data set, 

different learning algorithms can be compared in terms of the steepness in their learning 

curve. 
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7.3.2.3 Exploring the use of supervised learning algorithms 

The investigation in this thesis focuses mainly on unsupervised learning algorithms as 

the target domain-specific information (i.e. a list of concepts and sub-tasks) has not been 

specified and needs to be inferred from in-domain dialogs. Nevertheless, for a 

comparison purpose, it is interesting to see how well an unsupervised learning approach 

performs compared to a supervised learning approach on the same dialog structure 

acquisition task. 

Some supervised learning techniques can be applied to the domain knowledge 

acquisition problem if these learning algorithms are trained on dialog data from a 

different domain, or if the target dialog structure components are not utilized in the 

training. For example, a supervised segmentation algorithm trained on an air travel 

domain can be used to identify sub-task boundaries of dialogs in a meeting domain. 

Nevertheless, the performance of this supervised algorithm is also depended on the 

similarity between the domain that it is trained from and the domain that it is applied to. 

If the characteristics of both domains are similar and the learning algorithm uses the 

features which are a good indicator in both domains, the performance of the algorithm on 

both domains should not be much different. On the other hand, if the characteristics of 

both domains are different, cross-domain performance may not be as good due to the 

mismatch. It is more difficult to apply a supervised learning algorithm to the clustering 

task across domains than to apply it to the segmentation task. In addition to the possible 

different in domain characteristics, the sets of labels (e.g. the list of concepts) are also 

different. Moreover, some concepts that look similar might have different roles in 

different domains. For instance, the numbers “one” to “nine” are quantity in one domain 

but are hour_number in another domain.  

For the problem of concept clustering, it can also be considered as coordinate term 

classification (coordinate terms are words that have the same hypernym) and can utilize 

some existing supervised algorithms. A coordinate term classifier (Snow et al., 2005, 

2006) was trained on information in the WordNet lexicon database to identified 

coordinate terms in a given data set such as newswire. By using this algorithm we should 

be able to identify coordinate terms, which are words that belong to the same concept, 

from both in-domain conversations and additional text corpora which are related to the 

domain of interest such as related information from the web. Other supervised learning 

approaches such as named entity extraction and semantic role labeling which were 

trained on standard corpora, for example, PropBank (Palmer et al., 2005) for semantic 

role labeling, can be used to extract useful features for concept identification and 
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clustering. For instance, words that are classified as the same entity type, or words that 

have the same semantic role for the same verb are more likely to belong to the same 

concept. 

A semi-supervised learning approach trained on in-domain data might be more 

efficient than a supervised learning approach trained on cross-domain data. For a semi-

supervised learning, a small number of annotated instances are provided. For instance, a 

couple of concept instances can be annotated and then use as seeds in the concept 

clustering algorithm. The algorithm proposed by Zhu et al. (2003) is one example of a 

semi-supervised algorithm. For information-accessing tasks, information from the 

backend database is a very useful resource for acquiring domain-specific information. 

However, the design of the database, such as the list of fields, may not correspond 

perfectly to the domain-specific information actually communicated in human-human 

conversations. The information from the database can be used as annotated instances for 

a semi-supervised learning approach. 

Incorporating human feedback into the learning process should also improve the 

learning performance. Unsupervised learning can be used first to explore unannotated 

data. If additional knowledge from a human is required, active learning will be applied to 

select the most informative questions. This approach will require only a minimal amount 

of human annotation. 

7.3.3 Implementing a dialog system from acquired domain knowledge 

Since the data-driven approach presented in this thesis could potentially reduce 

human effort in developing a new task-oriented dialog system, it should be implemented 

in a practical dialog system. In order to do so, the learning approaches of all dialog 

structure components need to be put together into a completed learning system. A human 

should also be included in the loop to correct any learning mistake that the system might 

produce. This process includes putting all the learning approaches into a single 

framework; streamlining all the parts that require human supervision and providing a 

helpful interface for annotating the data;  presenting the result of the learning system in a 

systematic way and optionally allowing a human to revise the result. This may require a 

slight modification on the learning approaches to make all of them fit together. 
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