

 Learning the Structure of Task-Oriented Conversations
from the Corpus of In-Domain Dialogs

Ananlada Chotimongkol

CMU-LTI-08-001

Language Technologies Institute

School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213
www.lti.cs.cmu.edu

Thesis Committee:

Alexander I. Rudnicky, Chair
William W. Cohen

Carolyn Penstein Rosé
Gokhan Tür, SRI International

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

In Language and Information Technologies

© 2008, Ananlada Chotimongkol

Keywords: domain knowledge acquisition, dialog structure model, task-oriented dialogs,

spoken dialog system, dialog structure annotation, unsupervised learning, word

clustering, document clustering, text segmentation

i

Acknowledgements

I would like to take this opportunity to thank all the people who have helped me with

my research and thus made this work possible. First of all, I am very grateful to my

advisor, Alexander Rudnicky, for his valuable guidance and support throughout the

course of this work and my graduate school career. His vision and understanding in

scientific research teach me all the elements I would need to know when conducting high

quality research on my own. I am also sincerely grateful to my committee members,

William Cohen, Carolyn Penstein Rosé, and Gokhan Tür, for their valuable suggestions

and contributions to this research. Carolyn Penstein Rosé in particular gave me a great

deal of feedback on the thesis writing.

While at CMU, I have been lucky enough to be a part of a friendly and very helpful

research community. I would like to thank my fellow research group members and the

members of the Dialogs on Dialogs reading group, Dan Bohus, Antoine Raux, Mihai

Rotaru, Banerjee Satanjeev, Stefanie Tomko, and many other people that I would not be

possible to list all their names here, for numerous intellectual discussions and their

encouragement. I also would like to thank Rose Hoberman for the mutual information-

based clustering program, Jaime Arguello Museli for the HMM-based segmentation

program, and Banerjee Satanjeev for the dialog segmentation program and evaluation.

I have been fortunate to have great friends at CMU, whose continuous support was

invaluable. And above all their friendship has made the life in Pittsburgh a home far away

from home. In particular, I would like to thank my roommates, Nawaporn Wisitpongphan

and Samita Dhanasobhon, and also Win Trivitayanurak and Teeraphong Mahatham for

being there through good and bad times. I also would like to express my gratefulness to

Pahnit Seriburi, my long-time friend, who always being there for me.

My gratitude also goes to my former advisor Surapant Meknavin who led me into the

field of natural language processing and who has continued to give me advice throughout

the years. And the last but not least, I would like to thank my parents for their love and

encouragement, and for allowing their only child to be very far away from home to

pursuit her dream in academic achievement.

ii

Table of Contents

List of Figures ... vi

List of Tables ... x

Abstract ... xiv

Chapter 1 Introduction .. 1

1.1 Dialog system architecture ... 4

1.1.1 Finite state-based systems .. 4

1.1.2 Form-based systems ... 5

1.1.3 Agent-based systems .. 6

1.1.4 Dialog system architecture comparison .. 7

1.2 Characteristic of task-oriented conversations .. 7

1.3 Conventional approaches in dialog system development 8

1.4 Overview of the proposed solution ... 10

1.5 Thesis statement .. 15

1.6 Thesis organization .. 15

Chapter 2 Literature Review ... 17

2.1 Discourse structure representations ... 17

2.1.1 Informational-oriented discourse structures ... 19

2.1.1.1 Discourse Representation Theory (DRT) ... 19

2.1.1.2 The Linguistic Discourse Model (LDM) .. 19

2.1.1.3 Segmented Discourse Representation Theory (SDRT) 20

2.1.1.4 Rhetorical Structure Theory (RST) .. 21

2.1.2 Intentional-oriented discourse structures .. 22

2.1.2.1 Speech act theory .. 22

2.1.2.2 Dialog Act Markup in Several Layers (DAMSL) .. 23

2.1.2.3 Dialog grammars .. 24

2.1.2.4 Plan-based models .. 26

2.1.2.5 The theory of conversation acts .. 28

2.1.2.6 Grosz and Sidner’s Theory of discourse structure .. 29

2.1.3 A comparison of existing discourse structure representations 31

2.2 Data-driven approaches to dialog structure modeling 40

2.2.1 Dialog structure recognition approaches .. 41

2.2.1.1 Markov models ... 41

2.2.1.2 Grammar induction approaches .. 42

2.2.1.3 Categorical classifiers ... 43

2.2.2 Dialog structure acquisition approaches ... 44

iii

2.2.2.1 Conceptual clustering ... 44

2.2.2.2 Example-based learning ... 45

2.2.2.3 Information extraction .. 46

2.2.3 The overview of the proposed learning approach .. 46

Chapter 3 Form-based Dialog Structure Representation 48

3.1 Components in form-based dialog structure representation 53

3.1.1 Component definitions and representations ... 54

3.1.2 Form operators .. 57

3.1.3 Task and sub-task decomposition ... 63

3.2 Air travel planning domain .. 66

3.3 Bus schedule inquiry domain .. 78

3.4 Map reading domain .. 82

3.5 UAV flight simulation domain .. 90

3.6 Meeting domain .. 98

3.7 Tutoring domain ... 110

3.8 Difficulties in applying the form-based dialog structure representation 114

3.8.1 Implicit concept values ... 114

3.8.2 Fragmented sub-tasks ... 117

3.8.3 Non-task dialog segments ... 119

3.8.4 Potential difficulties in other task-oriented domains 121

3.9 Conclusion .. 122

Chapter 4 Form-based Dialog Structure Representation Evaluation 126

4.1 Dialog coverage ... 127

4.2 Annotation scheme reliability ... 130

4.2.1 Pilot annotation experiments .. 130

4.2.2 Cross-annotator correction ... 134

4.2.3 Annotation similarity .. 141

4.2.4 Annotation experiment procedure .. 145

4.2.5 Results and discussions .. 147

4.2.5.1 Qualitative analysis... 147

4.2.5.2 Quantitative analysis ... 153

4.2.6 Conclusion .. 160

Chapter 5 Concept Identification and Clustering 161

5.1 Statistical clustering algorithms ... 162

5.1.1 Mutual information-based clustering ... 163

5.1.2 Kullback-Liebler-based clustering ... 163

5.1.3 Stopping criteria ... 165

5.2 Knowledge-based clustering algorithms .. 169

5.3 Concept word selection .. 171

iv

5.4 Evaluation metrics for concept clustering .. 171

5.4.1 Cluster to concept mapping .. 172

5.4.2 Concept-level metrics ... 172

5.4.3 Overall metrics ... 173

5.5 Experiments and results ... 174

5.5.1 Statistical clustering results .. 175

5.5.2 Knowledge-based clustering results ... 185

5.5.3 Concept word selection results ... 186

5.6 Discussion and conclusion ... 187

Chapter 6 Form Identification .. 190

6.1 Dialog segmentation ... 190

6.1.1 Feature representation .. 193

6.1.1.1 Word token representation .. 193

6.1.1.2 Stop word treatment.. 193

6.1.2 TextTiling algorithm .. 195

6.1.2.1 Distance weight .. 197

6.1.2.2 Smoothing algorithm .. 198

6.1.3 HMM-based segmentation algorithm ... 200

6.1.4 Evaluation metrics .. 203

6.1.5 Experimental settings ... 205

6.1.5.1 Corpus statistic ... 205

6.1.5.2 Defining k for Pk ... 205

6.1.6 TextTiling experiments .. 209

6.1.6.1 TextTiling baselines ... 209

6.1.6.2 Data-driven stop word treatments ... 210

6.1.6.3 Word token representation .. 211

6.1.6.4 Distance weight .. 213

6.1.6.5 Context size .. 214

6.1.6.6 Smoothing algorithm .. 223

6.1.6.7 Cut-off threshold... 224

6.1.6.8 Error analysis .. 227

6.1.7 HMM-based segmentation experiments ... 229

6.1.7.1 Utterance-based segmentation .. 230

6.1.7.2 Topic-based segmentation .. 234

6.1.7.3 Concept word representation .. 238

6.1.7.4 Stop word treatment.. 243

6.1.8 Discussion and conclusion ... 248

6.2 Sub-task clustering ... 252

6.2.1 Feature representation .. 254

6.2.2 Bisecting K-means clustering algorithm .. 254

6.2.3 Evaluation metrics .. 255

v

6.2.4 Experiments and results .. 258

6.2.4.1 Oracle sub-task clustering .. 260

6.2.4.2 Sub-task clustering based on predicted segments ... 265

6.2.4.3 The label representation .. 270

6.2.4.4 Slot extraction ... 275

6.2.5 Discussion and conclusion ... 279

Chapter 7 Conclusion.. 281

7.1 Summary of results ... 281

7.2 Contributions .. 283

7.3 Future directions .. 284

7.3.1 Extending the form-based dialog structure representation 284

7.3.2 Improving the performance of dialog structure acquisition algorithms 285

7.3.2.1 Improving the proposed unsupervised learning algorithms 285

7.3.2.2 Learning from a larger corpus .. 287

7.3.2.3 Exploring the use of supervised learning algorithms.................................... 288

7.3.3 Implementing a dialog system from acquired domain knowledge 289

References .. 290

vi

List of Figures

Figure 1.1: The proposed domain knowledge acquisition process 3

Figure 1.2: An example output of the proposed machine learning approach 3

Figure 3.1: A form representation and its associated action in a retail domain 56

Figure 3.2: A fill_form operator and its effect on the corresponding form in the air

travel planning domain .. 61

Figure 3.3: A fill_form operator and its effect on the corresponding form in the map

reading domain .. 61

Figure 3.4: Examples of response-dependent operators .. 62

Figure 3.5: An example of a speaker turn that corresponds to more than one operator .. 63

Figure 3.6: The summary of the form-based dialog structure representation 66

Figure 3.7: An example dialog in the air travel planning domain 67

Figure 3.8: A task, sub-tasks and their corresponding forms and actions in the air

travel planning domain .. 69

Figure 3.9: Flight query forms, their corresponding actions and the outcomes for a

round trip reservation ... 70

Figure 3.10: A reserve_flight sub-task and the corresponding form and action for a

round trip reservation ... 71

Figure 3.11: A fare query form and its corresponding action. ... 72

Figure 3.12: An example of dialog structure annotation in the air travel domain 75

Figure 3.13: All of the forms that correspond to the dialog structure annotation in the

air travel domain presented in Figure 3.12 .. 77

Figure 3.14: An example dialog in the bus schedule enquiry domain 78

Figure 3.15: Actions and the associated forms in the bus schedule inquiry domain 79

Figure 3.16: An example of dialog structure annotation in the bus schedule inquiry

domain ... 81

Figure 3.17: A form query_departure_time in the bus schedule inquiry domain 81

Figure 3.18: An example of dialog structure annotation for a dialog that contains two

tasks ... 82

Figure 3.19: An example dialog (partial) in the map reading domain 84

Figure 3.20: A route giver’s map and a route follower’s map in the HCRC Map Task

corpus ... 85

Figure 3.21: A task, sub-tasks and their corresponding forms and actions in the map

reading domain .. 86

vii

Figure 3.22: A grounding sub-subtask and its associated form and action. 88

Figure 3.23: An example of dialog structure annotation in the map reading domain 89

Figure 3.24: The corresponding form of each sub-task in the map reading domain

annotated in Figure 3.23 .. 89

Figure 3.25: An example conversation (partial) in the UAV flight simulation domain .. 91

Figure 3.26: A task, sub-tasks and their corresponding forms and actions in the UAV

flight simulation domain .. 93

Figure 3.27: A grounding sub-subtask and a control_a_plane sub-subtask in the first

take_a_photo sub-task.. 95

Figure 3.28: An example of dialog structure annotation in the UAV flight simulation

domain ... 97

Figure 3.29: The corresponding form of each sub-task in the UAV flight simulation

domain annotated in Figure 3.28 ... 98

Figure 3.30: An example conversation in the meeting domain 100

Figure 3.31: A task, sub-tasks and their corresponding forms and actions in the

meeting domain.. 102

Figure 3.32: A computer query form and its corresponding action and outcome 103

Figure 3.33: A get_computer sub-task and the corresponding form and action 103

Figure 3.34: A create_action_item sub-task and the corresponding form and action ... 104

Figure 3.35: An example of dialog structure annotation in the meeting domain 107

Figure 3.36: All of the forms that correspond to the dialog structure annotation in the

meeting domain presented in Figure 3.35 .. 109

Figure 3.37: An example dialog (partial) in the tutoring domain 111

Figure 3.38: An example of a non-task dialog segment in the air travel planning

domain ... 120

Figure 3.39: An example of a non-task dialog segment in the bus schedule inquiry

domain ... 120

Figure 4.1: The interface of CADIXE XML annotation editor 132

Figure 4.2: A cross-annotator correction process .. 134

Figure 4.3: A list of common types of errors found in concept annotation 136

Figure 4.4: A list of common types of errors found in task and sub-task annotation 137

Figure 4.5: Criteria for classifying an error type in concept annotation 138

Figure 4.6: Criteria for classifying an error type in task and sub-task annotation 139

Figure 5.1: The values of two indicators, log-AMIdelta and number-of-clusters at

each merging iteration of MI-based clustering .. 166

Figure 5.2: The values of two indicators, KL-distance and number-of-clusters, at

each merging iteration of KL-based clustering.. 167

viii

Figure 5.3: The values of two indicators, KL-distance and number-of-clusters, at

each merging iteration of average linkage KL-based clustering 169

Figure 5.4: The quality of the output clusters at each iteration of the MI-based

clustering .. 176

Figure 5.5: The quality of the output clusters at each iteration of the KL-based

clustering .. 177

Figure 5.6: The quality of the output clusters at each iteration of the KL-based

single-linkage clustering algorithm ... 178

Figure 5.7: The quality of the output clusters at each iteration of the KL-based

complete linkage clustering algorithm ... 179

Figure 5.8: The quality of the output clusters at each iteration of the KL-based

average linkage clustering algorithm ... 180

Figure 5.9: Cluster quality comparison for all statistical clustering algorithms 181

Figure 5.10: Examples of the clusters obtained from the KL-based average linkage

clustering algorithm ... 185

Figure 6.1: An example of a similarity score plot from the TextTiling algorithm 196

Figure 6.2: Distance weight calculation .. 198

Figure 6.3: Local minimum in a similarity score plot ... 199

Figure 6.4: The effect of the context size on the TC4 predictor in the air travel

domain. .. 216

Figure 6.5: The effect of the context size on the TC4D predictor in the air travel

domain. .. 217

Figure 6.6: The effect of distance weights when the context size is varied in the air

travel domain ... 217

Figure 6.7: The effect of the context size on short dialogs and long dialogs in the air

travel domain ... 219

Figure 6.8: The effect of distance weights when the context size is varied in the map

reading domain .. 221

Figure 6.9: The effect of the cut-off threshold in the air travel domain 225

Figure 6.10: The effect of the cut-off threshold in the map reading domain 226

Figure 6.11: The effect of the number of HMM states on segmentation performance

in the air travel domain .. 231

Figure 6.12: The effect of the number of HMM states on segmentation performance

in the map reading domain... 233

Figure 6.13: A performance comparison between two sub-task boundary predictors

that use different concept word representations in the air travel domain .. 240

Figure 6.14: A performance comparison between two sub-task boundary predictors

that use different concept word representations in the map reading

domain ... 242

ix

Figure 6.15: Concept-based F-measure of HMM-based sub-task boundary predictors

that use different stop word treatments in the air travel domain 245

Figure 6.16: Concept-based F-measure of HMM-based sub-task boundary predictors

that use different stop word treatments in the map reading domain 246

Figure 6.17: Sample alignments between reference sub-tasks and predicted segments 256

Figure 6.18: The effect of the number of clusters on clustering performance in the air

travel domain ... 261

Figure 6.19: The effect of the number of clusters on clustering performance in the

map reading domain... 263

Figure 6.20: The qualities of the sub-tasks identified by oracle clustering in the map

reading domain .. 264

Figure 6.21: A performance comparison between a clustering algorithm that uses

reference segments and the one that uses predicted segments in the air

travel domain ... 267

Figure 6.22: A performance comparison between a clustering algorithm that uses

reference segments and the one that uses predicted segments in the map

reading domain .. 269

x

List of Tables

Table 1.1: Dialog system architecture comparison .. 7

Table 2.1: Discourse structure models comparison ... 32

Table 3.1: A list of task-oriented operators.. 59

Table 3.2: A list of discourse-oriented operators ... 60

Table 3.3: Task, sub-tasks and their corresponding actions and concepts in the air

travel planning domain .. 73

Table 3.4: Examples of tasks and the corresponding actions and concepts in the bus

schedule inquiry domain .. 80

Table 3.5: Task, sub-tasks and their corresponding actions and concepts in the map

reading domain .. 88

Table 3.6: Task, sub-tasks and their corresponding actions and concepts in the UAV

flight simulation domain .. 95

Table 3.7: Task, sub-tasks and their corresponding actions and concepts in the

meeting domain.. 105

Table 3.8: Examples of indirect concept values .. 114

Table 4.1: The amount of data used in the analysis ... 127

Table 4.2: The percentage of rejected utterances of each type 129

Table 4.3: Differences in the tagsets designed by two different subjects 133

Table 4.4: Severity levels of common errors in concept annotation 143

Table 4.5: Severity levels of common errors in task and sub-task annotation 143

Table 4.6: Statistic of data collected from the annotation experiment........................... 146

Table 4.7: The acceptability of concept annotation ... 154

Table 4.8: Errors in concept annotation ... 155

Table 4.9: The acceptability of task and sub-task annotation .. 155

Table 4.10: Errors in task and sub-task annotation .. 156

Table 4.11: The acceptability and the accuracy of concept annotation 157

Table 4.12: The acceptability and the accuracy of task and sub-task annotation 157

Table 4.13: Confidence in acceptable tags... 158

Table 4.14: Confidence in all changes ... 159

Table 4.15: Confidence in major changes .. 159

Table 5.1: The statistics of the CMU Travel Agent corpus ... 174

Table 5.2: A list of concepts in the air travel planning domain 175

xi

Table 5.3: The performance of the MI-based clustering algorithm at different

stopping criteria ... 176

Table 5.4: The performance of the KL-based clustering algorithm at different

stopping criteria ... 177

Table 5.5: The performance of the KL-based single linkage clustering algorithm at

different stopping criteria... 178

Table 5.6: The performance of the KL-based complete linkage clustering algorithm

at different stopping criteria ... 179

Table 5.7: The performance of the KL-based average linkage clustering algorithm at

different stopping criteria... 180

Table 5.8: The best performance of each statistical clustering algorithm 182

Table 5.9: The performance of each statistical clustering algorithm at its best

automatic stopping criterion .. 182

Table 5.10: Characteristics of each statistical clustering algorithm 184

Table 5.11: The performance of the knowledge-based clustering approach 186

Table 5.12: The performance of each word selection criterion and its corresponding

cluster quality ... 187

Table 6.1: Regularity count calculation ... 195

Table 6.2: The statistics of the test corpora ... 205

Table 6.3: Utterance-based Pk of degenerate algorithms in the air travel domain 206

Table 6.4: Pk values of degenerate algorithm when k is calculated from all of the

dialogs in the air travel domain.. 207

Table 6.5: Utterance-based Pk of degenerate algorithms in the map reading domain ... 208

Table 6.6: Pk values of degenerate algorithm when k is calculated from all of the

dialogs in the map reading domain .. 208

Table 6.7: TextTiling baseline performances .. 210

Table 6.8: Results of data-driven stop word treatments... 211

Table 6.9: Segmentation performances when incorporating concept information 212

Table 6.10: Segmentation performances when distance weights are applied to the

predictors that do not use concept information. ... 213

Table 6.11: Segmentation performances when applied distance weights to the

predictors that used concept information. .. 214

Table 6.12: The performances of sub-task boundary predictors when the context size

is varied in the air travel domain. .. 215

Table 6.13: Performance comparison between short dialogs and long dialogs in the

air travel domain .. 219

Table 6.14: The performances of both predictors when the context size is varied in

the map reading domain. .. 220

xii

Table 6.15: Segmentation performances on coarse-grained sub-tasks in the map

reading domain .. 222

Table 6.16: Segmentation results when used different smoothing algorithms 223

Table 6.17: Segmentation performance when different cut-off thresholds are used in

the air travel domain .. 225

Table 6.18: Segmentation performance when different cut-off thresholds are used in

the map reading domain ... 225

Table 6.19: The most frequent missing boundaries in the air travel domain 227

Table 6.20: Missing boundaries in the map reading domain ... 228

Table 6.21: Default values of the parameters in HMM training 229

Table 6.22: Segmentation performance of an utterance-based HMM predictor (UC2)

in the air travel domain .. 230

Table 6.23: Segmentation performance of an utterance-based HMM predictor (UC2)

in the map reading domain... 233

Table 6.24: Segmentation performance of a topic-based HMM predictor (PC2) in the

air travel domain .. 234

Table 6.25: Types and frequencies of the boundaries commonly missed by the

TextTiling predictor and the HMM predictor in the air travel domain 235

Table 6.26: Segmentation performance of a topic -based HMM predictor (PC2) in the

map reading domain... 236

Table 6.27: Number of boundaries missed by the TextTiling algorithm and the HMM

algorithm in the map reading domain .. 237

Table 6.28: Segmentation performance of a HMM-based boundary predictor (PL2)

that uses the label representation in the air travel domain 239

Table 6.29: Segmentation performance of a HMM-based boundary predictor (PL2)

that uses the label representation in the map reading domain 241

Table 6.30: Types and number of boundaries missed by the HMM-based predictors

that use different concept word representations in the map reading

domain ... 242

Table 6.31: Optimal performances of the HMM-based boundary predictors when

different stop word treatments are applied in the air travel domain 245

Table 6.32: Optimal performances of the HMM-based boundary predictors when

different stop word treatments are applied in the map reading domain 247

Table 6.33: The best segmentation performances of the TextTiling algorithm and the

HMM-based algorithm in terms of Pk and concept-based F-1. 250

Table 6.34: The best segmentation performances of the TextTiling algorithm and the

HMM-based algorithm in terms of utterance-based Pk and standard F-

measure .. 251

xiii

Table 6.35: A list of sub-tasks in the air travel domain and their frequencies in the

test corpus .. 259

Table 6.36: A list of sub-tasks in the map reading domain and their frequencies in the

test corpus .. 259

Table 6.37: Oracle clustering performance in the air travel domain 260

Table 6.38: The qualities of the sub-tasks identified by oracle clustering in the air

travel domain ... 262

Table 6.39: Oracle clustering performance in the map reading domain 263

Table 6.40: Sub-task clustering results in the air travel domain when predicted

segments are used as an input .. 266

Table 6.41: The quality of each sub-task identified by the oracle clustering and the

predicted segment clustering in the air travel domain 267

Table 6.42: Sub-task clustering results in the map reading domain when predicted

segments are used as an input .. 269

Table 6.43: The quality of each sub-task identified by the oracle clustering and the

predicted segment clustering in the map reading domain.......................... 269

Table 6.44: Clustering results for each sub-task in the air travel domain when

different concept word representations are used by the oracle clustering . 271

Table 6.45: Clustering results for each sub-task in the map reading domain when

different concept word representations are used by the oracle clustering . 272

Table 6.46: Clustering results for each sub-task in the air travel domain when

different concept word representations are used by the predicted

segment clustering ... 273

Table 6.47: Clustering results for each sub-task in the map reading domain when

different concept word representations are used by the predicted

segment clustering ... 274

Table 6.48: A list of slots and their frequencies from each cluster in the air travel

domain. .. 277

Table 6.49: A list of slots and their frequencies from each cluster in the map reading

domain. .. 278

xiv

Abstract

Acquiring domain-specific knowledge necessary for creating a dialog system in a

new task-oriented domain is a time consuming task that requires domain expertise. This

dissertation explores the feasibility of using a machine learning approach to infer the

required domain-specific information automatically from in-domain conversations. In

order to achieve this goal, two problems need to be addressed: 1) creating a dialog

representation that is suitable for representing the required domain-specific information,

and 2) developing a machine learning approach that uses this representation to capture

information from a corpus of in-domain conversations.

In order to solve the first problem, I propose a form-based dialog structure

representation incorporating a three-level structure of task, sub-task, and concept. These

components are observable in human dialogs. In terms of representation, tasks and sub-

tasks are represented by forms while concepts are slots in a form. The notion of form is

generalized as a repository of related pieces of information so that it can be applied to

various types of task-oriented domains. Dialog structure analysis and an annotation

experiment are used to demonstrate that the form-based representation has all the

required properties: sufficiency, generality, and learnability. The proposed representation

is applied to six disparate task-oriented domains (air travel planning, bus schedule

inquiry, map reading, UAV flight simulation, meeting, and tutoring). While the form-

based approach shows some limitations, it is sufficient to model important phenomena in

dissimilar types of task-oriented dialogs, and thus has both sufficiency and generality.

The annotation experiment shows that the form-based dialog structure representation can

be applied reliably by novice annotators which implies that the representation is

unambiguous and learnable.

For the second problem, inferring the form-based dialog structure representation from

a corpus of in-domain conversations, I divide this dialog structure acquisition problem

into two sub-problems, concept identification and form identification, to make the

problem tractable. In order to identify a set of domain concepts, two unsupervised

concept clustering approaches are investigated: statistical-based clustering and

knowledge-based clustering. For most statistical-based clustering algorithms, we are able

to find automatic stopping criteria that yield close to optimal results. The statistical-based

approaches, which utilize word co-occurrence statistics such as mutual information and

xv

the Kullback-Liebler distance, while able to capture domain-specific usage of concept

words cannot accurately identify infrequent concept words due to a sparse data problem.

On the other hand, the knowledge-based approach, which uses semantic information

stored in the WordNet lexical database, can identify domain concepts very accurately, but

on the condition that the concepts are present in the knowledge source.

To determine different types of forms and their associated slots, a dialog is first

segmented into a sequence of sub-tasks by an unsupervised text segmentation algorithm.

Then, the bisecting K-mean sub-task clustering algorithm is used to group the sub-tasks

that represent the same form type into the same cluster. Finally, a set of slots that is

associated with each form is determined from the concepts present in each cluster. To

handle fine-grained segments in spoken dialogs, TextTiling and HMM-based

segmentation algorithms are augmented with a data-driven stop word list and distance

weights. With these modifications significant improvement is achieved. Even though the

performance of the bisecting K-mean sub-task clustering algorithm can be affected by

inaccurate sub-task boundaries, I found that moderate segmentation accuracy is sufficient

for identifying frequent form types. Similarly, moderate sub-task clustering accuracy is

sufficient for identifying essential slots in each form.

The results of both dialog structure acquisition problems, concept identification and

form identification, show that it is feasible to acquire the domain-specific knowledge

necessary for creating a task-oriented dialog system automatically from a corpus of in-

domain conversations using unsupervised learning approaches. This data-driven approach

could potentially reduce human effort in developing a new task-oriented dialog system.

Chapter 1: Introduction

1

Chapter 1

Introduction

A spoken dialog system is a computer system that interacts with a user via natural

spoken language to help the user obtains desired information or resolves a problem. As

for current technologies, a dialog system is one of many natural language applications

that operate on a specific domain. For instance, the CMU Communicator system

(Rudnicky et al., 1999) is a dialog system in an air travel domain that provides

information about flight, car, and hotel reservations. Another example is the JUPITER

system (Zue et al., 2000) which is a dialog system in a weather domain that provides

forecast information for a requested city.

A dialog system typically is composed of the following components: a speech

recognizer, a natural language understanding module, a dialog manager, a natural

language generation module and a speech synthesizer. When developing a dialog system

in a new domain, we may be able to reuse some components from existing dialog systems

if they were designed independently of domain-specific information. Examples of such

domain-independent components include speech recognizer and speech synthesizer

engines. However, the components that are integrated with domain-specific information

have to be modified or reconstructed for every new domain. In a task-oriented dialog,

which is the type of dialog that is focused in this thesis, participants engage in a

conversation in order to achieve a specific goal (i.e. to accomplish a task that they have in

mind), for example, to obtain the departure time of a particular bus or to order a product

from a catalog. Hence in the context of this thesis, domain-specific information refers to

the knowledge which is specific to a task that a dialog system has to support rather than

the knowledge about general dialogue mechanisms. The work in this thesis also focuses

specifically on the domain-specific knowledge that is used by a dialog manager rather

than the one that might be required by other components in the system. The domain-

specific information used by a dialog manager includes a list of tasks that a dialog system

has to support, a list of steps that needs to be taken in order to successfully accomplish

each task, and domain keywords which capture pieces of information that dialog

participants need to communicate in order to achieve these steps. An example of the

necessary domain knowledge in an air travel domain is shown in Figure 1.2.

Chapter 1: Introduction

2

Conventionally when developing a dialog system in a new domain, the domain-

specific information is identified manually by a human who is familiar with the domain.

For common domains, such as an air travel domain or a weather domain, dialog system

developers usually have enough knowledge to identify the necessary domain-specific

information. However, for unfamiliar domains, such as a military domain (Bohus and

Rudnicky, 2002), the necessary expertise may be scarce which makes the knowledge

engineering process more difficult. Furthermore, a domain expert’s decision can be

subjective and may not cover all of the possible cases as users’ perspectives of a task may

not be foreseen by the expert (Yankelovich, 1997). As more dialog data becomes

available, recent approaches in acquiring the domain knowledge are more data-driven.

Dialog system developers identify the necessary domain information by analyzing

conversations between the humans who perform similar tasks as a target dialog system.

The use of in-domain data can be supplemented for the need of a domain expert. A data-

driven approach is less subjective and also reflects more realistic users’ perspectives of a

task. However, the main drawback of this approach is that analyzing in-domain

conversations manually is very time consuming.

In the past decade, the computational linguistics community has focused on

developing language processing algorithms that can leverage the vast quantities of corpus

data that are available. The same idea can also be applied to the problem of acquiring

domain-specific information. A machine learning technique could potentially reduce

human effort in the knowledge engineering process and alleviate the bottleneck in

developing a new dialog system. This thesis investigates the possibility of using a

machine learning approach to acquire the domain-specific information required to build a

task-oriented dialog system from in-domain conversations. Figure 1.1 outlines the

proposed solution to the problem of domain knowledge acquisition. Instead of identifying

the required domain knowledge from in-domain dialogs manually, the knowledge

engineering process will be done automatically using a machine learning approach. The

automatically obtained information, such as the one shown in Figure 1.2, can be revised

by dialog system developers before being used to build a dialog system. Even though

some revision might be required, the amount of effort spent on revising the learned

information should be smaller than the amount of effort spent on manually analyzing in-

domain dialogs. This thesis focuses on the highlighted part, inferring the required domain

knowledge from in-domain dialogs.

Chapter 1: Introduction

3

Figure 1.1: The proposed domain knowledge acquisition process

Figure 1.2: An example output of the proposed machine learning approach

In the following sections, I will provide some background knowledge about task-

oriented dialog systems and then outline the proposed solution to the problem of

acquiring the domain-specific information necessary for creating a task-oriented dialog

system. The rest of this chapter is organized as follows: Section 1.1 provides background

knowledge on different types of dialog system architectures. Section 1.2 discusses the

observable structure of a task-oriented dialog and how it reflects the domain-specific

information required to build a dialog system. Section 1.3 discusses conventional

approaches that have been used to develop a dialog system in a task-oriented domain.

Section 1.4 provides the overview of the proposed solution to the problem of domain

example
dialogs

Domain Knowledge
(tasks, steps,

domain keywords)

dialog system human revises

air travel
dialogs

Domain Knowledge

task = create a travel itinerary
steps = reserve a flight,
 reserve a hotel,
 reserve a car
keywords = airline, city name,

date

Chapter 1: Introduction

4

knowledge acquisition. The thesis statement is given in Section 1.5. Finally, the outline

of the remainder of this thesis is provided in Section 1.6.

1.1 Dialog system architecture

The architecture of a dialog system governs the interaction between the system and a

user as it sets up expectation on user input, guides the system actions and controls the

flow of a dialog. Furthermore, a dialog itself and other related information, such as

domain and world knowledge, are modeled differently by each type of dialog

architecture. According to McTear (2002), dialog systems can be classified into three

main categories based on the architecture of the systems: a finite state-based system, a

form-based system and an agent-based system.

1.1.1 Finite state-based systems

In a finite state-based system (or a graph-based system), a dialog is modeled as a

sequence of steps or states. The system takes an initiative and leads a user through a

dialog graph or a state transition network. At each state, the system produces a specific

prompt to elicit particular responses from the user. Based on the response, the system

performs an action and transits to a new state. A set of dialog states and eligible

transitions among the states are fixed and pre-determined. Domain knowledge and other

information related to a dialog are modeled implicitly by dialog states and their

transitions. Examples of finite state-based systems are the automatic book club service of

Larsen and Baekgaard (1994) and the bus schedule information system of Bennett et al.

(2002).

A major advantage of the finite state model is its simplicity. Since the system takes

control over the interaction and user’s responses at each dialog state are quite

constrained, technologies required to build each system component are less demanding.

Restricted input and simple interaction lead to fewer errors as discussed in Section 5.1.2

of McTear’s article (2002). For those reasons, the finite state-based dialog architecture

has been adopted in many commercial systems. Nevertheless, its simplicity can become a

drawback as the model is not flexible enough to handle any deviation from expected

interaction. The state-based dialog architecture is suitable for a well-structured task that

has a clearly defined set of information items a dialog system needs to obtain and that the

order for eliciting those items can be fixed. However, it is not appropriate for a complex

task whose dialog flow cannot be pre-determined, (e.g. a task that requires negotiation or

contains unknown constraints) or can be affected by the dependencies between

information items.

Chapter 1: Introduction

5

1.1.2 Form-based systems

A form-based system (or a frame-based or a template-based system) models a dialog

as an information gathering session analogous to a form-filling task. At each turn, the

system attempts to elicit a piece of necessary information from a user and uses that

information to fill the corresponding slot in a form. In the form-based dialog system

architecture, a form is a repository of items of information required to perform a task

such as acquiring flight information from a database. However, other data structures can

also be used to represent those items of information as well. Examples of other data

structures are a product, a collection of forms (Constantinides et al., 1998) and a typed

feature structure (Denecke and Waibel, 1997). The Philips train timetable information

system (Aust et al., 1995) and the CMU Communicator system (Rudnicky et al., 1999)

are examples of real world applications that use the form-based dialog system

architecture.

The information gathering process in the form-based system is quite similar to the

one in the state-based system; however, the form-based architecture allows more flexible

and more natural interaction. The flow of a dialog is determined dynamically from dialog

context rather than pre-defined. An appropriate system action (e.g. which question the

system should ask next) is chosen by a control algorithm or a dialog strategy based on

dialog context such as the current content of a form and the user’s previous utterance.

The form-based system can handles more open input from a user; nevertheless, the

understanding process focuses primarily on words or phrases that can be filled into a pre-

defined set of lots. The user can take initiative by providing more information in addition

to the one requested by the system. More flexible interaction makes a dialog more

efficient but at the same time requires a more complicated control strategy. In the form-

based system, domain-specific information is modeled explicitly by forms and slots and

is decoupled from a control mechanism.

Similar to the state-based system, the form-based system is appropriate for a well-

defined task. Even though a dialog flow does not have to be pre-determined as in the

state-based system, a set of information items the form-based system has to elicit need to

be specified. The system also utilizes only simple context information to determine

appropriate actions. Therefore, it is not suitable for a domain that has a dynamic structure

or requires complex interpretation of dialog context beyond the information represented

by a form and dialog history. Moreover, since the form-based architecture assumes that a

dialog is an information gathering interaction where the system acquires necessary

Chapter 1: Introduction

6

information to perform a task from the user, this type of system cannot handle the dialogs

that deviate from this assumption.

1.1.3 Agent-based systems

An agent-based system models a dialog as collaboration between intelligent agents

and utilizes Artificial Intelligence (AI) techniques to manage the interaction between the

system and a user. There are many variants of agent-based systems depending on

intelligent behaviors and discourse theories adopted by the systems. For example, a

theorem proving approach was used by Smith and Hipp (1994) while a plan-base

approach and a rational interaction approach were used by Sadek et al.(1997). Generally,

an agent-based system follows a human reasoning process by taking into account its own

goals, beliefs and intentions and sometimes those of the user when determining an

appropriate action. AI approaches mentioned above provide theoretical foundation on

how those conceptual components influent the interaction between the system and the

user as they collaborate in order to accomplish a task. Since the conceptual components

(e.g. beliefs and intention) sometimes are not explicitly expressed in a dialog, a

sophisticated natural language processing technique together with the knowledge about

human conversations and a domain are required in order to infer those components from

dialog context.

With a complex dialog model, an agent-based system can support a complicated task

that the flow of a dialog evolves dynamically and the content of the interaction (e.g. the

topics and key information discussed) cannot be determined in advance. For instance,

during a tutoring session additional topics may need to be discussed if a tutoring system

discovers that a student lacks the basic knowledge required to solve the current problem.

The user can also take initiative by introducing a new topic or shifting from the current

topic to a different one. Since both the sequence and the content of user input are not pre-

defined, an understanding module needs to be able to handle fairly unrestricted user

input. Examples of agent-based systems are the TRAINS system, a dialog system that

helps a manager solve a routing problem in a transportation domain (Allen et al., 1995)

and the physics tutoring system (Freedman, 2000).

The agent-based dialog system architecture can support a more complex task than the

finite state-based and the form-based architectures. However, a more complicated model

comes with the cost of intensive computation both in terms of dialog control and user’s

input interpretation.

Chapter 1: Introduction

7

1.1.4 Dialog system architecture comparison

The agent-based dialog system architecture seems to be more appealing than other

types of architectures as it can model a more complex dialog and has the closest

conversational competent to a human participant. However, for a simple and well-

structured task, the finite state-based and the form-based architectures can be more

efficient as they take less effort to develop. Simpler interaction is also more robust to

system errors such as speech recognition errors and understanding problems. Table 1.1

summarizes the comparison among the three dialog system architectures along three

aspects: user input, dialog flow and domain information.

Features

Dialog system architecture

State-based Frame-based Agent-based

User input Single words or phrases

restricted by system prompts

Natural language with

concept spotting

Unrestricted natural

language

Dialog flow Fixed and pre-determined by

a state transition diagram

Determined dynamically

from the current content of a

form and the user’s previous

utterance

Determined dynamically

from a model of goals,

beliefs and intentions

Domain

information

Represented implicitly in

terms of dialog states

Represented explicitly by

forms and their associated

slots

Represented explicitly in a

knowledgebase and a

domain reasoning module

Table 1.1: Dialog system architecture comparison

1.2 Characteristic of task-oriented conversations

Observations of goal-oriented human-human dialogs from different domains show

that such dialogs have clear structures that capture domain-specific information. When

two or more people engage in a conversation that has a specific goal, such as obtaining

bus schedule information, they organize their conversion so that key ideas are clearly

communicated and that progress towards the goal is observable by all the parties. If the

task the dialog participants try to achieve is complicated, they usually divide the task into

a series of sub-tasks in which they will pursue one at a time. This observation is similar to

Grosz’s (1978) discussion about dialog structure and task structure. A sub-task is

accomplished through a domain action and all pieces of information required in order to

perform the action have to be clearly communicated among the participants. The

characteristics of task-oriented conversations are reflected in the choice of language,

which will be instrumental, and will reference the shared representation of a task. This

Chapter 1: Introduction

8

contrasts with the characteristics of non-task-oriented conversations such as the ones in

the Switchboard corpus (Godfrey et al., 1992) and the CALLHOME corpus (Kingsbury

et al., 1997). Those corpora are casual social conversations.

1.3 Conventional approaches in dialog system development

The development process of a dialog system is similar to development processes of

other types of computer systems. This process involves specifying system requirements,

designing and implementing a dialog system that meets all of the requirements, and

evaluating the implemented system. Establishing system requirements is the first step in

the process. In this step, dialog system developers need to specify the scope of a target

dialog system (i.e. the tasks that the system can support and the functionality of the

system); determine the structure of each task; indicate the desired interaction between the

system and a user which includes determining the dialog flow and anticipated user input

and system output; and list other technical constraints such as a user pool (native vs. non-

native) and usage environment. This section focuses on this step, requirement

specification, as it involves identifying domain-specific information.

In the current dialog system development process, dialog system requirements are

specified manually by dialog system developers based on the knowledge that they have

about the domain. However, the resulting system may not interact with a user in the way

that he/she expects it to, as the developers’ perspectives of the system could be different

from the user’ perspectives. To avoid this problem, the analysis of in-domain

conversations is used to guide the design decisions made by the dialog system

developers. For example, the dialog processing component in the VERBMOBIL speech-

to-speech translation system was designed based on the analysis of scheduling dialogs

and the requirements of other components in the system (Alexandersson and Reithinger,

1995). There are two ways to obtain a collection of in-domain conversations: 1) by

recoding conversations between humans that perform the same task as a target dialog

system, or 2) by simulating a target dialog system using a human wizard and recording

conversations between a user and the simulated system.

The first method creates a corpus of human-human conversations which provides an

insight into how human participants interact through a dialog to accomplish a task in a

given domain. There are two types of human-human conversations the one that occurs in

a real situation, e.g. a call made to a help desk operator of the Pittsburgh Port Authority

Transit system (Raux et al., 2003), and the one that based on a prescribed scenario, e.g.

the TRAINS corpus (Gross et al., 1993). Prescribed scenarios are used when it is not

Chapter 1: Introduction

9

possible to record real human-human conversations due to some issues such as a privacy

issue, or when there is no existing setting that matches a target dialog system. A scenario-

based conversation is less natural since the goal of the conversation is not the participants

own goal but is given in the scenario along with other constraints. The participants may

not have real motivation to accomplish a task. Furthermore, the language used to describe

the scenario can affect the user’s choice of language which is known as a priming effect

(Dybkjær et al., 1995). How well scenario-based conversations cover the domain also

depended on a set of scenarios chosen. Nevertheless, scenario-based conversations still

provide useful information about the characteristics of a task and the interaction between

dialog participants. Yankelovich (1997) used pre-design studies to collect human-human

conversations in four task-oriented domains. Conversations in one of the domains were

recorded when the participants performed a task in a real situation while in other three

domains prescribed scenarios were used. In his experiments, the analysis of the

conversations collected from the pre-design studies, which took place prior to any system

design, revealed users’ perspectives of a task that might not be foreseen by dialog system

developers and helped reduce major design problems. The main drawback of the method

that elicits dialog system requirements from the analysis of human-human conversations

is that the language used in those conversations is rich and unrestricted while the

language that a dialog system can support is more limited.

To observe a conversation between a human and a dialog system before such a

system is actually created, the simulation of the system is required. A Wizard-of-Oz

(WOZ) method is commonly used to create simulated human-machine conversations. In

this method, a human (a wizard or an experimenter) plays a role of a dialog system and

responds to a user using a synthesized voice. The user is made to believe that he or she is

interacting with a computer system. An example of the WOZ method can be found in the

work by Bangalore, Fabbrizio et al. (2006). In this work, the data collected by the WOZ

method was analyzed by a user experience engineer to determine dialog system

specifications and its functionality. However, there are several concerns regarding a

WOZ procedure (Churcher et al., 1997). For example, it is difficult for a human wizard to

behave exactly like a dialog system, which has limited communication capability, and

simulate speech recognition and understanding problems that may occur in a real system.

The behavior of each wizard may also affect how a user interacts with the simulated

system. To resolve this problem, a prototype system with limited functionality is used to

collect real human-machine conversations. The system that has more completed

functionality is then developed based on the analysis of this initial human-machine data.

Chapter 1: Introduction

10

The prototype of the CMU Communicator system was designed based on the analysis of

both human-human data and simulated human-machined data (WOZ data) (Eskenazi et

al., 1999). This prototype system was then used to collect real human-machine dialogs to

further improve the automatic travel planning system.

As we can see from the discussion above, the analysis of in-domain conversations

both human-human and human-machine conversations plays an important role in the

requirement specification and design of a task-oriented dialog system. However, the

analysis has been done manually which makes the process expensive, subjective and

probably inconsistent (Bangalore, Fabbrizio et al., 2006).

1.4 Overview of the proposed solution

This thesis aims at exploring the feasibility of using a machine learning approach to

infer the domain-specific information required to build a task-oriented dialog system

from in-domain conversations. The machine learning approach could potentially alleviate

the bottleneck that occurs in the conventional dialog system development process, where

the domain-specific information is identified manually, and reduce human effort in

developing a dialog system in a new task-oriented domain. In this section, I will first

define the scope of this thesis work, and then describe the overview of the proposed

approach.

Since the knowledge engineering process occurs before the first prototype system is

created, a collection of recorded conversations between human participants that perform

the same task as a target dialog system becomes a main resource. In many task-oriented

domains, collections of human-human conversations already exist. One example is a

collection of calls made to a help desk operator of the Pittsburgh Port Authority Transit

system (Raux et al., 2003). Even if there is not one, in the case where we would like to

replace one of the participants’ roles with a dialog system, a corpus of human-human

conversations can be collected quite easily. For instance, human-human conversations in

a travel-planning domain can be collected by recording the conversations between travel

agents and their clients (Eskenazi et al., 1999). In addition to a dialog corpus of a target

domain, I am also interested in incorporating information from other knowledge sources

that are already available to improve learning accuracy. One example of the existing

resources is the WordNet lexical database.

There are some previous studies on the differences between human-human

conversations and human-machine conversations (Dahlbäck et al., 1993; Hauptmann and

Rudnicky, 1988; Jönsson and Dahlbäck, 1988). These studies show that the language a

Chapter 1: Introduction

11

human uses to communicate with a computer is more constrained than the one he/she

uses to communicate with another human participant. For example, the vocabulary size

and the syntactic variations are smaller when compared to those of human-human

conversations in the same domain. One explanation of this phenomenon is that humans

adjust their language to accommodate the machine incomplete communication capability.

However, the differences are in terms of the language used to communicate information.

I assume that the structure of a task and domain keywords do not change with the

communication ability of dialog participants, and that a corpus of human-human

conversations is still a useful resource for acquiring the domain-specific information that

will be used to create a dialog system.

The proposed machine learning approaches for inferring the domain-specific

information from in-domain conversations are mainly unsupervised. When acquiring the

domain-specific information for a new task-oriented domain, there is no annotated data

available for training supervised learning algorithms as the target domain-specific

information has not been specified and needs to be inferred from in-domain dialogs. For

that reason, we have to rely on unsupervised learning algorithms. Acquiring the necessary

domain knowledge from a set of human-human dialogs is considered a knowledge

acquisition process and is carried out before a dialog system is created. This is contrasted

with a dialog structure recognition process in which pre-specified dialog structure

components are recognized as a dialog progresses. Although a supervised learning

approach usually provides a more accurate result, it comes with the cost of manually

labeled data. There are also some cases where an unsupervised learning approach

performs better than a supervised one (Woszczyna and Waibel, 1994). In these cases, the

unsupervised approach, which doesn’t get any influence from human annotation, better

reflects the characteristics of the data. Furthermore, it is interesting to see how well an

unsupervised learning approach can perform on the problem of domain knowledge

acquisition and what would be its limitations.

 In order to apply a machine learning approach to the problem of domain knowledge

acquisition, two research problems have to be addressed: 1) specifying a target

representation which captures the domain-specific information that a dialog system needs

to have in order to support a task in that particular domain, and 2) developing a machine

learning approach that infers the domain information captured by this representation from

in-domain dialogs.

For the purpose of this dissertation research, a suitable domain knowledge

representation should have all of the following properties:

Chapter 1: Introduction

12

● Sufficiency: capturing all domain-specific information required to build a

dialog system in a new task-oriented domain

● Generality: being able to describe task-oriented dialogs in dissimilar domains

and types

● Learnability: the representation can be identified by a machine learning

algorithm from observable language behaviors in human-human

conversations

In this thesis, I propose a form-based dialog structure representation as a target

representation of the domain-specific information, which will be inferred from in-domain

conversations, and claim that it has all of the required properties. The form-based dialog

structure representation is a three-level structure of task, sub-task and concept. These

components reflect the observable structure of a task-oriented conversation discussed in

Section 1.2. Task and sub-task represent the decomposition of a complicated task while

concepts are items of information (or domain keywords) that dialog participants have to

communicate in order to achieve the conversation goal. A more formal definition of each

component and examples of the component in various task-oriented domains are

discussed in detail in Chapter 3. The proposed representation is based on the notion of

form, a data representation used in the form-based dialog system architecture. The use of

forms and a form-filling strategy in dialog systems was first introduced by Ferrieux and

Sadek (1994) and has been adopted in many systems built on the form-based dialog

system architecture. Forms are well understood by practitioners but in an informal way.

Typically, a form corresponds to a database query form and contains items of information

that are search criteria. This interpretation is specific to only information-accessing

domains. In this thesis, a more generalized interpretation of the form representation is

provided, so that it can be used to represent the structure of dialogs in other types of task-

oriented domains as well.

In the following parts of this section, I will briefly discuss the properties of the form-

based dialog structure representation and the approaches that are used to verify these

properties. Since the form-based dialog structure representation is based on the data

representation used in the form-based dialog system architecture, it captures all of the

domain information required to build a form-based dialog system. Thus, the form-based

representation is sufficient for representing task-oriented dialogs, at least in information-

accessing domains, as demonstrated by the success of the systems that were implemented

based on the form-based architecture. To verify its sufficiency for other types of task-

oriented domains and its generality, six dissimilar task-oriented domains are analyzed.

Chapter 1: Introduction

13

Those six domains are air travel planning (information-accessing task), bus schedule

inquiry (information-accessing task), map reading (problem-solving task), UAV flight

simulation (command-and-control task), meeting and tutoring. These domains are chosen

to cover dissimilar types of task-oriented domains. The choices of domains are also

subjected to the availability of human-human data. Dialog coverage, which measures the

percentage of dialog content that can be accounted for by the proposed dialog structure, is

also used to verify the sufficiency of the form-based dialog structure representation.

In terms of learnability, since the components of the form-based dialog structure

representation can be observed directly from a dialog as they reflect the observable

structure of a task-oriented conversation discussed in Section 1.2, the form-based

representation should be learnable through an unsupervised learning algorithm. The

accuracy of the domain information obtained by the proposed machine learning

algorithms is used to verify the learnability of the form-based representation. The

proposed learning algorithms are described below. An additional evaluation, a human

annotation experiment, is carried out to verify that the proposed form-based dialog

structure representation can be understood and applied reliably by annotators other than

the coding scheme developer. This evaluation also verifies the learnability of the form-

based representation in terms of human learnability. High annotation scheme reliability

suggests that the annotation scheme is concrete and unambiguous which also imply

learnability. Annotation scheme reliability is assessed along two aspects, reproducibility,

which measures the level of agreement among novice coders and, and accuracy, which

measures the correctness of a novice coder’s annotation when compared to an expert’s

annotation.

The form-based dialog structure representation also has another desirable property, a

direct mapping between dialog structure components and dialog system components. By

using an existing dialog system framework to describe the structure of a task-oriented

conversation, the connections between the components of the form-based dialog structure

representation and the components of the system that employs the representation become

straightforward. This direction is opposite to many other research works that implement a

dialog system from an existing dialog structure theory.

To make a dialog structure acquisition problem tractable, I divide the problem into

two sub-problems: concept identification and form identification (a form is associated

with a sub-task in the form-based dialog structure representation). Each sub-problem is

handled separately. However, it should be kept in mind that these individual components

are parts of the same dialog structure; therefore, information about one component may

Chapter 1: Introduction

14

be useful for inferring another component. After each component can be acquired with

acceptable accuracy, interaction between components should also be considered in the

learning process. The accuracy of the acquired domain information is evaluated by

comparing the learned dialog structure components to the reference components

identified by a domain expert.

To identify a set of domain concepts, a learning algorithm has to identify instances of

concepts and group the ones that belong to the same concept type together. Since a list of

concept types in a given domain is not pre-specified but will be explored from data, the

concept identification problem is different from a classification problem, for example,

named entity extraction. In the classification problem, a word or a group of words is

classified as one of the predefined roles such as person and organization. Two concept

clustering approaches are investigated in this thesis, statistical clustering and knowledge-

based clustering. By assuming that words that have similar meaning tend to occur in

similar context, a statistical clustering approach groups concept words together based on

their distributional similarity. Two statistical clustering algorithms, mutual information-

based clustering and Kullback-Liebler-based clustering, are compared. Both algorithms

are an agglomerative hierarchical clustering approach (or a bottom-up approach);

however, they use different heuristics to determine the similarity between words or

groups of words. Automatic stopping criteria based on the measures available during the

clustering process are also proposed for both approaches. For knowledge-based

clustering, the proposed approach utilizes semantic information stored in the WordNet

lexical database and groups concept words together based on their hypernyms.

The goal of the second learning problem, form identification, is to determine different

types of forms and their associated slots that a dialog system needs to know in order to

perform a task. Since a form represents a segment of a dialog that corresponds to a sub-

task, identifying the sub-tasks in a set of in-domain dialogs can help determine a set of

forms. The proposed solution is as follows: first segment a dialog into a sequence of sub-

tasks, then group the sub-tasks that are associated with the same form type into a cluster.

By analyzing the concepts contained in each cluster, a set of slots that is associated with

each form can be obtained. Two unsupervised discourse segmentation approaches are

investigated: a TextTiling algorithm and a Hidden Markov Model. Both approaches,

while performing well with expository text, require some modifications when they are

applied to a fine-grained segmentation problem of spoken dialogs. The proposed

modifications include: a data-driven stop word list, a distance weight and an appropriate

context size. After segmenting all dialogs into sequences of sub-tasks, the bisecting K-

Chapter 1: Introduction

15

means clustering algorithm is used to group the dialog segments that belong to the same

type of sub-task together as they represent the same form type. The bisecting K-means

algorithm is an unsupervised clustering algorithm that utilizes cosine similarity between

dialog segments in order to assign the segments into clusters. Information from concept

annotation is included as an optional feature for both dialog segmentation and sub-task

clustering algorithms to see how information from another dialog structure component

affects the learning accuracy.

1.5 Thesis statement

This thesis investigates how to infer, from a corpus of task-oriented human-human

conversations, the domain-specific information that a dialog system needs to have in

order to support a task. The required domain information is clearly reflected in the

structure of a dialog as dialog participants exchange pieces of information to perform a

task, and for a complex task, decompose it into a set of sub-tasks which they can pursue

one at a time. For the domains that exhibit this information-exchanging characteristic,

when the domain-specific information is clearly expressed in a dialog, it can be

automatically acquired from the associated language behaviors through unsupervised

machine learning approaches.

1.6 Thesis organization

The following is an outline of the remainder of this thesis.

● Chapter 2: Literature Review. This chapter summarizes several well-known

discourse structure representations and prior research works that attempted to

identify those structures from data. The chapter also discusses the limitations

of the existing discourse structure representations if they were to be used in

the context of this dissertation.

● Chapter 3: Form-based Dialog Structure Representation. This chapter

describes the proposed form-based dialog structure representation and argues

that it has all of the required properties. Examples on how to model the

structure of a dialog with the proposed representation in six disparate types of

task-oriented domains are given. The chapter also discusses the limitations of

the proposed structure and compares it to existing dialog structures.

● Chapter 4: Form-based Dialog Structure Representation Evaluation. This

chapter describes two evaluation procedures: dialog coverage, which

measures the percentage of dialog content that can be accounted for by the

Chapter 1: Introduction

16

proposed structure, and annotation scheme reliability, which assesses

annotation agreement among novice coders to verify that the proposed form-

based dialog structure can be understood and applied by annotators other than

the coding scheme developer.

● Chapter 5: Concept Identification and Clustering. In this chapter, approaches

for identifying a set of domain concepts are described along with their

evaluations.

● Chapter 6: Form Identification. This chapter consists of two parts which

correspond to the two major steps used to identify different form types and

their associated slots. The first part describes dialog segmentation algorithms.

The second part describes sub-task clustering algorithms along with the

analysis of the potential slots for each type of form. A series of experiments

used to evaluate these learning algorithms are reported.

● Chapter 7: Conclusion. This chapter summarizes all the findings and discuses

directions for future research

Chapter 2: Literature Review

17

Chapter 2

Literature Review

This chapter reviews existing research works in two areas: discourse structure

representation, and data-driven approach to dialog structure modeling. These two areas

are related to the two research problems that have to be solved in order to achieve the

goal of this dissertation which is to infer the domain-specific information required to

build a task-oriented dialog system from in-domain conversations through a machine

learning approach. The two research problems that have to be solved are 1) specifying a

dialog structure representation that is suitable for representing the required domain-

specific information, and 2) developing a machine learning approach that infers the

domain information captured by this representation from in-domain dialogs. Throughout

this thesis, the terms discourse and dialog can be used interchangeably. Nevertheless, in

some specific discussions, the term discourse may have a boarder interpretation that

includes both monologs and dialogs.

This chapter is organized as follows: Section 2.1 summarizes well-known discourse

structure theories and models. Section 2.2 discusses the learning approaches that have

been used to identify a structure of a dialog from data.

2.1 Discourse structure representations

Discourse structure modeling has been a topic of interest for several decades. Many

theories and models have been proposed to explain a structure of a human-human

conversation. These dialog structure models (or theories) focus on different aspects of

dialogs depended on the purpose of the models and the assumptions they made about

human-human conversations. In addition to linguistics, the ideas behind discourse

structure theories and models were also influenced by many other fields of study

including psychology, sociology, philosophy, and computer science.

In the early days, the research in the area of discourse structure modeling focused

mainly on developing a theory that facilitates the interpretation of discourse meaning that

goes beyond the level of an individual utterance. These discourse structure theories were

derived mainly from linguistic and psychological point of views, and were aimed

preliminary at describing discourse phenomena in both monologs and dialogs with the

Chapter 2: Literature Review

18

proposed structure. Recent works on discourse structure modeling are more engineering-

oriented. Practical issues such as predictability of each structure component and a

computational model that can represent the proposed dialog structure in an automate

system have been addressed when developing a discourse structure model. Many of these

representations are derived from the analysis of recorded human-human conversations,

and thus receive more influence from real data than linguistic and psychological theories.

In this section, I will review some of the works that are well known in the field or

have been applied in dialog system implementation. Additional reviews on discourse

structure representation can be found in many survey articles including the chapter 6 of

Cole et al.’s (1997) article, Grosz et al.’s (1989) article which focuses on discourse

structure for natural language understanding, and Moore and Wiemer-Hastings’ (2003)

article which focuses on discourse structure for natural language generation.

Most discourse structure models agree that a discourse has a compositional structure

(Grosz et al., 1989; Moore and Wiemer-Hastings, 2003). That is, a discourse can be

divided into coherent segments. Moreover, these segments also possess some relations

among one another. Discourse segments and their relations constitute the structure of the

discourse. However, what discourse segments and their relations represent can be

different depended on the aspect of a discourse that each model emphasizes. A discourse

can be viewed from two different perspectives: an informational perspective and an

intentional perspective. This categorization is similar to the informational-intentional

distinction discussed in the chapter 6 of Cole et al.’s (1997) article and also in (Hobbs,

1996; Moore and Pollack, 1992)

1. Informational perspective (or content-based perspective) captures the actual

content being conveyed in a discourse. The content of the discourse can be

modeled by its surface representation, such as the actual entity that was

mentioned, or by its semantic representation.

2. Intentional perspective captures a speaker’s intention behind each utterance

(i.e. why it was said) and the overall goal of a discourse.

Some discourse structure representations may capture both the informational and the

intentional aspects of a discourse, but only one aspect is emphasized. Based on the

emphasized aspect, discourse structure representations can be broadly categorized into

two groups: informational-oriented discourse structures and intentional-oriented

discourse structures. After reviewing each group of discourse structure representations in

Section 2.1.1 and Section 2.1.2 respectively, all discourse structure representations are

Chapter 2: Literature Review

19

compared in Section 2.1.3. In Section 2.1.3, I will also discuss the appropriateness of

these representations if they were to be used in the context of this dissertation.

2.1.1 Informational-oriented discourse structures

2.1.1.1 Discourse Representation Theory (DRT)

Discourse Representation Theory (DRT) is a formal semantic model which focuses

on the semantic truth conditions of a discourse and aims primarily for discourse

understanding. The theory was first introduced by Kamp (1981) and further developed by

Kamp and Reyle (1993). DRT uses a logical language to represent the meaning of text

similar to a first-order predicate logic; however, the logical representation in DRT is

extended from the level of a sentence to the level of a discourse by including the

representation of the context. The semantic representation of a discourse in DRT is called

a Discourse Representation Structure (DRS). The meaning of a given text is derived on a

sentence-by-sentence basis. Semantic interpretation rules are used to transform the

syntactic structure of each sentence to the semantic one. The interpretation of each

sentence is made in the context of preceding sentences which is represented by the

current DRS. The result of this interpretation is then used to update the DRS. The

advantage of this approach is that the semantic representation of a discourse is built up

from the contents of the discourse alone without bringing in external information. DRT

provides a computation framework to resolve some linguistic issues, such as anaphora

resolution and quantifier scoping, through predicate calculus which can be implement

using LISP or PROLOG. Although, DRT provides a representation for a discourse, it

focuses more on describing the truth conditions of the discourse rather than its

compositional structure. Most of DRT mechanisms also focus on sentence level

processing without taking into account the relationship between sentences.

2.1.1.2 The Linguistic Discourse Model (LDM)

The Linguistic Discourse Model (LDM) (Polanyi, 1996) provides a framework for

discourse interpretation based on the linguistic theory of discourse structure that has been

developed by Polanyi and her colleagues since 1984. In the LDM framework, both

structural relations and semantic accessibility relations (relations among contextual

categories) play important roles in discourse interpretation. A structural description of a

discourse is represented by a Discourse Parse Tree (DPT). Each leaf node in the DPT is a

Discourse Constituent Unit (DCU), a semantically motivated discourse unit that

expresses a single event or state of affairs in a discourse world. A DCU is equivalent to a

single clause or a single phonological phrase and is often marked by discourse operators

Chapter 2: Literature Review

20

(or discourse markers). These discourse operators also provide information about the

relations among the DCUs.

A DPT can be constructed from DCUs using a discourse grammar. Polanyi argued

that for most of the cases, simple context-free rewrite rules are sufficient to describe the

structure of a discourse. The discourse is processed on a DCU-by-DCU basis. The

relation between a new DCU and its immediately preceding DCU determines how the

new DCU will be attached to the DPT. This relation also determines how the semantic

interpretation of the new DCU will be combined with the current semantic representation

of the discourse. A semantic representation in the LDM captures both propositional

content and discourse contexts, which are modeled by a hierarchy of contextual

categories (interaction, speech event, genre unit, modality, polarity, and point of view).

The semantic representation in the LDM is an extension of the discourse representation

structure (DRS) used in Discourse Representation Theory (DRT) discussed in Section

2.1.1.1. However, while DRT emphasizes discourse referents, the LDM emphasizes the

setting and resetting of discourse contexts.

Similar to DRT, the LDM focuses on a semantic representation of a discourse which

is described in terms of the truth conditions. The LDM also describes a structural

representation of a discourse; however, a discourse parse tree is influenced by sentential

syntax rather than a task structure or discourse goals.

2.1.1.3 Segmented Discourse Representation Theory (SDRT)

Segmented Discourse Representation Theory (SDRT) (Asher, 1993) is the extension

of Discourse Representation Theory (DRT), discussed in Section 2.1.1.1, that takes into

account the structure of a discourse when combining the semantic representation of a new

sentence into the overall semantic representation of the discourse. Instead of simply

merging the sentence-level representation with the current Discourse Representation

Structure (DRS) and creating a larger DRS as in DRT, SDRT uses a discourse relation

between the new sentence and its previous sentence to determine how the semantic

representation of the new sentence should be combined with the analysis of previous

sentences in the overall structural semantic representation.

From the influence of DRT and the analysis of anaphora, SDRT views the structure

of a discourse from a semantic perspective and can be considered as a semantic theory of

discourse structure. A unit of a discourse (or a discourse segment) is defined at the level

of proposition and is equivalent to a simplest form of a DRS in DRT. A set of discourse

segments, namely a set of DRSs, and a set of discourse relations between these DRSs

Chapter 2: Literature Review

21

determine the structure of a discourse. This discourse structure, called a Segmented

Discourse Representation Structure (Segmented DRS or, SDRS), is imposed on the top of

the semantic representation in DRS. Since SDRS is defined recursively, it many contain

another SDRS, and thus constitutes a hierarchical discourse structure.

There are two types of relations: structural relation and non-structural relation (or

semantic relation). Structural relations specify how a discourse is segmented and how the

segments are organized. For examples, Continuation indicates that a new sentence and

its previous sentence are in the same discourse segment while Elaboration indicates that

a new sentence is in the discourse segment that is dominated by the discourse segment of

its previous sentence. Nevertheless, structural relations do not affect the semantic truth

conditions of discourse content. Non-structural relations such as CAUSE, on the other

hand, have some implications on the semantic truth conditions of the discourse content.

Satisfaction conditions of these relations impose constraints on the locations in the

current SDRS that a new sentence can be attached to. A list of discourse relations are

open; but for one specific set of data, the number of relations should be small.

The overall structure of a discourse is created on a sentence-by-sentence basis similar

to DRT. In order to attach the DRS of a new sentence to the current SDRS, both an

attachment point and the discourse relation between the new DRS and its preceding

sentence have to be identified. The discourse relation can be inferred from various

sources of information including cue words, available attachment points, the content of

the current SDRS and the new DRS, and satisfaction conditions of possible relations.

SDRS is quite similar to the Linguistic Discourse Model (LDM) discussed in Section

2.1.1.2. However, SDRS puts more emphasis on the semantic aspect of a discourse

structure while the LDM puts more emphasis on the syntactic and structural aspects of

the structure. This difference is reflected in the choices of discourse relations and their

effects on discourse processing. The relations in LDM mostly affect the structure of a

discourse while some relations in SDRS also affect the semantic representation of the

discourse.

2.1.1.4 Rhetorical Structure Theory (RST)

Rhetorical Structure Theory (RST) (Mann and Thompson, 1988) was originally

developed from the analysis of carefully prepared text from various sources. The theory

explains a structure of a discourse in terms of relations between its parts. The assumption

behind RST is that every part of coherent text has a reason for its presence. RST provides

a rich set of coherence relations, yet principally open, that describes a role that one text

Chapter 2: Literature Review

22

span (a satellite) has with respect to another text span (a nucleus). These coherence

relations were defined based on functional and semantic criteria rather than syntactic

ones. There are two types of relations: a subject matter relation and a presentational

relation. A subject matter relation (e.g. elaboration and cause) is intended for a reader

to recognize the relation while a presentational relation (e.g. Motivation and Justify) is

intended to increase some inclination in the reader. From the two aspects of a discourse

discussed earlier, a subject matter relation is considered informational as the relation

itself has to be recognized in order to understand the discourse while a presentational

relation is considered intentional as it affects the reader’s belief not the meaning of the

discourse.

Since a text span is roughly defined as any uninterrupted linear interval of text, one

can create a hierarchical structure of text by identifying coherence relations between all

of the compositions of a given discourse (e.g. between sentences, groups of sentences and

paragraphs). Such a structure is called a rhetorical structure tree or a discourse tree.

Recently, Taboada and Mann (2006) reviewed and responded to the issues that have been

addressed on theoretical aspects of RST. In terms of learning, Marcu (1999) proposed a

rhetorical parsing algorithm that learns to construct a rhetorical structure of text from

annotated data using a decision tree.

RST has been used mainly for text generation such as automatic summarization. To

apply RST to dialogs several modifications are required in order to handle dialog-specific

behaviors. Stent (2000) captured the collaboration between participants in task-oriented

dialogs by introducing a new set of relations that describe adjacent pairs such as

question-response and proposal-accept. However, like other relations, adjacency

pairs emphasize speakers’ rhetorical goals rather than task goals. To capture task-specific

structural patterns, the notion of schema (e.g. make-plan and describe-situation) was

added to the annotation scheme.

2.1.2 Intentional-oriented discourse structures

2.1.2.1 Speech act theory

Speech act theory has its root in the field of philosophy of language from the work of

a philosopher J. A. Austin and his follower J. R. Searle. This theory focuses on the

function of language that goes beyond the level of semantics (i.e. the truth value of a

proposition). Speech act theory analyzes the role of an utterance with respect to the

intention of a speaker (the illocutionary force) and the effect on a listener (the

perlocutionary effect), and thus introduces pragmatics to the field of discourse structure

Chapter 2: Literature Review

23

modeling. Several categories of speech acts have been proposed; however, the one that

has the strongest influence on the set of dialog acts
1
 used in many dialog systems is

Searle’s taxonomy of illocutionary acts (Searle, 1975). Searle argued that a number of

basic categories of intentions behind the use of language is definite and proposed five

categories of illocutionary acts which are assertives (a speaker conveys the belief that

something is being the case), directives (a speaker attempts to get a hearer to do

something), commissives (a speaker commits to do something in the future), expressives

(a speaker expresses his/her feelings), and declarations (a speaker changes the state of the

world by saying the utterance). Each utterance may contain more than one illocutionary

act. Many researchers have modified the speech act taxonomy to better suite their tasks

by adding more domain-specific acts. Alexandersson et al. (1995) extended Searle’s

speech act taxonomy to a set of 17 dialog acts that describes appointment scheduling

conversations in the VERBMOBIL speech-to-speech translation system.

Speech act theory does not describe the overall structure of a discourse but focuses

only on the level of an utterance. Nevertheless, a speaker’s intention captured by a speech

act is also a key component in many other theories that use an utterance as a discourse

structure unit including a dialog grammar, a plan-based model and the theory of

conversation acts. The details of these theories are discussed below.

2.1.2.2 Dialog Act Markup in Several Layers (DAMSL)

The DAMSL annotation scheme (Core and Allen, 1997) was developed from speech

act theory (Searle, 1975) discussed in the previous section. However, instead of using a

single label to capture an utterance’s purpose as in speech act theory, DAMSL uses

multiple labels in multiple layers to describe the utterance’s function in various aspects.

The DAMSL annotation scheme consists of three orthogonal layers: Forward

Communicative Functions, Backward Communicative Functions, and Utterance

Features. The Forward Communicative Functions contain a taxonomy similar to the

actions in speech act theory. The Backward Communicative Functions contain a set of

labels that indicates the relation between the current utterance and the previous ones such

as agreement and answer. The Utterance Features describe the content and form of an

utterance.

DAMSL was developed by Multiparty Discourse Group as an annotation guideline

for task-oriented conversations in general. The communicative acts defined in DAMSL

are primitive communicative actions that are common in various task-oriented domains.

1
 The term dialog act may also be used interchangeably for the term speech act.

Chapter 2: Literature Review

24

These communicative acts can be extended to include domain-specific acts as shown in

Meeting Recorder Dialog Act (MRDA) (Dhillon et al., 2004) and the dialog move

taxonomy for tutorial dialogs (Tsovaltzi and Karagjosová, 2004). The DAMSL

annotation scheme can also be augmented with additional layers that describe an

utterance’s functions in other aspects. To better describe reasoning and problem-solving

processes in problem-solving conversations, two additional layers were introduced in the

COCONUT project (Eugenio et al., 1998). The Topic layer describes the content of an

utterance with domain-specific tags while the SurfaceFeatures capture syntactic features

of the utterance such as tense and subject. Hardy et al. (2003) added the semantic layer to

capture domain-related information enclosed in each utterance.

Since DAMSL was developed from speech act theory, it too does not describe an

overall structure of a discourse but focuses only on the level of an utterance. Each

utterance is described in isolation. A relation between utterances is not captured except

for the link to the antecedent, the previous utterance being responded to by the current

utterance, provided by Backward Communicative Functions. A structural relation

between groups of utterances is not specified. Nevertheless, DAMSL is widely used in

many dialog systems to aid the interpretation of user utterances similar to other

extensions of speech act theory. Furthermore, it has been shown that the DAMSL tagset

and its extension can be automatically recognized with acceptable accuracy (Jurafsky et

al., 1997; Stolcke et al., 2000).

2.1.2.3 Dialog grammars

The idea of a dialog grammar is based on the observation that a conversation contains

regular patterns. The most prominent pattern is known as an adjacency pair such as a

question/answer pair. In a collaborative conversation, we can assume that the succeeding

utterance will follow the initiative set by the preceding utterance. For example, we can

expect that a question will be followed by an answer. Generally, each pattern is a

sequence of utterances in which the first utterance of the sequence (or an initiation)

creates a discourse expectation that will be fulfilled by subsequent utterances (or

responses). These sequences are then built up into larger patterns in a dialog. Regular

patterns in a dialog are hierarchical and can be expressed by a grammar. Each grammar

rule specifies how a dialog or a dialog segment is decomposed into smaller units.

Usually, the smallest unit of a dialog, or a terminal node in a dialog grammar, is

represented by a dialog act. The next level non-terminal node is an adjacency pair which

corresponds to a certain sequence of dialog acts. Non-terminal nodes higher up in the

hierarchy could be motivated by the characteristics of a conversation. For example, in a

Chapter 2: Literature Review

25

task-oriented conversation, some non-terminal may correspond to the sub-goals. By

describing a dialog using a grammar, the structure of a dialog can be obtained by parsing

the dialog similar to sentence structure parsing. Unlike some other theories that can be

applied to any type of discourse, this theory is specific to dialogs.

One well-known dialog grammar model is a five-level structure proposed by Sinclair

and Coulthard (1975) from the analysis of the language used by teachers and students.

The five levels are lesson, transaction, exchange, move, and act. The largest unit of a

classroom discourse is a lesson. A lesson is a collection of transactions; each of them

corresponds to one segment of a dialog that has a specific purpose and contributes toward

the goal of the conversation. A transaction is equivalent to a discourse segment in Grosz

and Sidner’s Theory of discourse structure (Grosz and Sidner, 1986) discussed in Section

2.1.2.6. A transaction in turn consists of a set of related exchanges, a set of initiation-

response sub-dialogs. An exchange is the most apparent pattern in a dialog and can be

considered as a more general case of a question-answer pair. It consists of an initiation, a

response, and a feedback, which are the categories of moves. A move is the smallest free

unit that composes of the smallest dialog units called acts. These acts are also known as

dialog acts and usually are an extended set of the original speech acts (Searle, 1975).

The HCRC dialog structure (Carletta et al., 1996) adopted the structure proposed by

Sinclair and Coulthard (1975), but used only the three middle levels, to describe the

phenomena in problem-solving conversations in a map reading domain. At the highest

level of the HCRC hierarchical structure, a dialog is divided into transactions. Each

transaction is a sub-dialog that corresponds to a major step of a task. A transaction is

made of a sequence of conversational games or initiation-response exchanges. Each

exchange consists of an initiation and a sequence of responses that fulfills a discourse

expectation set by an initiation. Each initiation or response is called a move and

corresponds to an utterance or a part of an utterance. Lewin et al. (1993) incorporated

dialog move recognition in the dialog manager of the automatic route-planning system to

predict the move of another conversation participant. In addition, the corpora annotated

with the HCRC dialog structure were used to study various language phenomena such as

intonation and effects of communication conditions. Please refer to the references in the

conclusion of Carletta et al.’s (1997) article for more detail.

In summary, a dialog grammar describes a tree structure of a dialog that has dialog

acts as terminal nodes and larger dialog segments such as initiation-response exchanges

as non-terminal nodes. The dialog grammar can be used to prescribe acceptable dialogs in

a given domain. The grammar rules can also be used to predict the next element in a

Chapter 2: Literature Review

26

conversation. The dialog grammar is employed in some dialog systems to predict

subsequent user utterances and guide a conversation. One example is the rules of

conversations in SUNDIAL ESPRIT project (Bilange, 1991). The limitation of the dialog

grammar is that it might be too restrict to describe complicated dialogs. Since the dialog

grammar uses grammar rules to specify acceptable dialogs, it is quite difficult to generate

a set of rules that covers all possible variations of conversations in a complex domain.

2.1.2.4 Plan-based models

In a plan-based model, a conversation is perceived as a plan that dialog participants

execute in order to achieve some goals. A plan consists of a sequence of operators that

transforms an initial world state to a goal state. In a conversation, a speech act is an

operator that produces an utterance and causes some effect on a hearer and the state of the

hearer’s world, such as modifying the hearer’s belief. A plan-based model also describes

how speaker intentions captured by speech acts fit together in the conversation and how

they relate to the conversation goal. Examples of plan-based models can be found in the

works of Carberry (1990), Cohen and Perrault (1979), and Pollack (1992).

During a conversation, a participant attempts to recognize the plan of another

participant in order to make an appropriate response. Allen and Perrault (1980) described

a computational model that infers another participant’s plan from observed actions. An

action (or an operator) is defined in terms of preconditions, criteria that have to be

achieved before executing the action, and effects, how the hearer’s world model changes

after executing the action. The plan inference process can be done by: 1) given expected

goals, searching for a plan that includes observed actions, or 2) using inference rules to

infer a goal from observed actions. Partial plans are rated by how well-form the plans are

in the given context and how well they conform to the expectation. Since a plan-based

model describes the relations between utterances and a conversation goal, its principle

can be applied to dialog control or dialog management. The plan-based approach to

dialog has been implemented in many complex dialog systems such as the VERBMOBIL

speech-to-speech translation system (Alexandersson, 1995).

Traditional plan-based models are quite rigid as they make rather strong assumptions

about the nature of a plan, its elements and the environment in which the plan will be

executed. For example, they assume that there is no change in the world between the time

of planning and the time of execution, and that dialog participants’ beliefs persist.

However, those assumptions are not practical in real situations. Several augmented plan-

based models have been proposed to address these issues.

Chapter 2: Literature Review

27

The traditional models work well for a dialog that follows the task structure closely,

but have a problem accounting for some types of sub-dialogs (e.g. clarification,

correction, and topic change) since the models only allow an utterance to describe a step

in a plan. Litman and Allen (1987) introduced discourse plans to describe various ways

an utterance can relate to a discourse topic and distinguished them from domain plans

that are actually used to model the topics (plans in a traditional plan-based model).

Discourse plans explicitly represent discourse intentions and incorporate the knowledge

about a discourse into a plan-based model in addition to the knowledge a domain

captured by traditional domain plans.

A tripartite model (Lambert and Carberry, 1991) further differentiates discourse plans

into problem-solving plans and communicative plans. The relationships among the three

types of plans are organized into a hierarchical dialog model with discourse plans

(communicative plans) at the lowest level, problem-solving plans at the middle level, and

domain plans at the highest level. The actions in the lower level plans contribute toward

the actions in the higher level plans. Nevertheless, actions in all levels can be recognized

incrementally as the tree structure is allowed to grow from both the root and the leaves. A

tripartite model provides a finer-grained differentiation among different types of user

intentions and allows a different processing to be applied to each type of plan.

In a negotiation sub-dialog, dialog participants may change their beliefs as the dialog

progresses which conflicts with a persistent belief assumption made by the traditional

plan-based models. To handle the changes in beliefs, a multi-strength belief model and

acceptance actions, were added to the tripartite plan-based model (Lambert and Carberry,

1992). An acceptance action, which is included in a discourse plan, addresses the

understandability, believability, or relevance of a particular proposition communicated by

the participants. The plan-based model combines multiple knowledge sources including

linguistic, contextual, and world knowledge to recognize the changes in beliefs. Rosé

(1995) extended the tripartite model further in order to capture multi-threads of

negotiations in the scheduling domain. The changes in beliefs occur in negotiation sub-

dialogs suggest that dialog participants need to have shared beliefs in order to collaborate

on a task. The notions of mutual belief and shared plan are discussed in a collaborative

planning model in Section 2.1.2.6.

Rather than assume that an environment is static as in the traditional plan-based

models, the BDI (Belief, Desire, and Intention) architecture (Bratman et al., 1988;

Pollack, 1992) allows a plan to be executed in a dynamic environment where it may

change in the way that makes the plan invalid. The BDI model, also known as IRMA (the

Chapter 2: Literature Review

28

Intelligent, Resource-Bounded Machine Architecture), is based on the idea of practical

reasoning developed by Bratman (1987). Beliefs are uninstantiated plans while desires

are a participant’s goals. Intentions are steps in the plan that the participant has

committed but not yet acted on. To handle the change in the environment, the participant

is allowed to make changes to the plan that he/she has already committed. At each step in

the plan, the participant can choose to continue with the current intention or adopt one of

the new options arise from the change in the environment. The new intention may better

suite the new beliefs and goals that are the results of the change. However, as practical

reasoning poses the constraint on the amount of resources available for planning, the

decision at each step can be sub-optimal. The BDI model was adopted in the TRAINS

system (Ferguson et al., 1996), a dialog system that helps a manager solve a routing

problem in a transportation domain. A reactive planner, such as the one developed by

Georgeff and Ingrand (1989), is also implemented on the basis of practical reasoning and

the BDI model. Even though reactive planning was originally developed for real-time

control systems, it can also be used in a variety of other domains such as tutoring

(Freedman, 2000).

The ability to represent complicated conversations of a plan-based model comes with

the cost of a complex dialog structure. In order to apply the plan-based model to a

particular task-oriented domain, the following components have to be specified: beliefs

and goals of the participants, a plan library, and plan elements (e.g. actions and their

preconditions and effects). The complex structure also leads to a complicated plan

recognition process. Other drawbacks of the plan-based model are mentioned in the

chapter 6 of Cole et al.’s (1997) article.

2.1.2.5 The theory of conversation acts

The theory of conversation acts (Traum and Hinkelman, 1992) views a dialog as

composed of fine-grained actions similar to speech act theory (Searle, 1975) discussed in

Section 2.1.2.1. However, several extensions were introduced in the theory of

conversation acts to make it better accounts for the structure of a spoken discourse. The

theory of conversation acts models the conversation as a collection of joint speaker-

hearer actions instead of single agent actions. This eliminates a mutual understanding

assumption among conversation participants and makes grounding actions more explicit.

The extensions include three levels of actions in additional to the core speech act level.

The theory of conversation acts describes four levels of actions necessary for maintaining

the coherence and content of the conversation. These four levels are turn-taking acts,

grounding acts, core speech acts, and argumentation acts. These levels are typically

Chapter 2: Literature Review

29

realized by larger segments respectively in a dialog; however, the four-level

representation of conversation acts is not hierarchical as each dialog act level is

independent from each other and concerns a distinct aspect of the dialog. Turn-taking acts

model the participants’ control over a speaking channel while and grounding acts capture

mutual understanding among the participants. Core speech acts are similar to the

traditional speech acts and operate at the level of an utterance. The argumentation acts

level accounts for the structure of the dialog above the level of an utterance.

Argumentation acts capture the purposes of discourse segments and can be built up into a

hierarchy of argumentation acts. At the top levels of the hierarchy, argumentation acts

resemble tasks and sub-tasks in a task structure while, at the lower levels, they are similar

to rhetorical relations (Mann and Thompson, 1988) and adjacency pairs.

Since each level of conversation acts captures distinct dialog information, they are

employed independently from each other in a dialog system. Turn-taking acts may not be

necessary in two-party conversations, but are more crucial in multi-party conversations

while argumentation acts are important in a dialog system that involves complex

planning. The theory of conversation acts emphasizes more on coordinated activities in

the conversation, such as turn-taking and grounding, rather than the domain information

communicated. Among the four levels of conversation acts, the argumentation act level is

the one that captures the overall structure of a conversation similar to the structure of a

task. Nevertheless, how to recognize argumentation acts and use them in a dialog system

was only briefly discussed in the theory where the authors suggested the use of cue words

together with the knowledge about discourse, language, and the domain for

argumentation act recognition.

2.1.2.6 Grosz and Sidner’s Theory of discourse structure

Grosz and Sidner’s Theory of discourse structure (GST) (Grosz and Sidner, 1986)

provides a framework for interpreting the meaning of an utterance in discourse context

and for understanding discourse phenomena such as interruption based on the idea that a

proper account of a discourse structure provides the basis for the interpretation of

discourse meaning. GST models a structure of a discourse based on the concepts of

discourse unit and discourse coherence. The proposed structure is composed of three

components: linguistic structure (the structure of utterances in a discourse), intentional

structure (the structure of purposes), and attentional state (the state of focus of attention).

The linguistic structure captures how utterances in a discourse are aggregated into

discourse units. A discourse unit or a discourse segment is defined as a sequence of

utterances which fulfills a certain function with respect to the overall goal of the

Chapter 2: Literature Review

30

discourse. The intention underlies each discourse segment is called the discourse segment

purpose. We could also say that a discourse segment is defined based on dialog

participants’ intention. The second component, the intentional structure, models

relationships between discourse segment purposes, and thus captures discourse

coherence. These relationships are structural relations between intentions rather than

relations between discourse segments as in Rhetorical Structure Theory (Mann and

Thompson, 1988) discussed in Section 2.1.1.4. Therefore, the number of relations is

smaller and the relations are also simpler. The last component, the attentional state,

contains objects, properties, relations, and the purpose of the discourse segment that

receives the focus of attention from discourse participants at any given point of the

discourse. The attentional state models the participants’ focus of attention during a

conversation via focusing structure which uses the information from the intentional

structure to determine a discourse segment that receives the focus of attention as the

conversation progresses. The three components together supply contextual information

necessary for the interpretation of utterances in discourse context.

GST describes an abstract model of discourse structures. To construct a

computational model based on this theory the following problems need to be solved:

discourse segmentation, and the recognition of discourse segment purposes and the

relationships between them. Grosz and Sidner discussed some of these processing issues

and suggested the use of cue phrases, utterance-level intention, and the knowledge about

domain actions and objects to resolve the problems; however, no concrete

implementation of the structure was proposed. Grosz and Sidner (1990) argued that a

computational theory for recognizing discourse segment purposes and the intentional

structure depends on the underlying theory of intention, action and plan and proposed

SharedPlans, a model of collaborative planning that takes into account mutual beliefs and

multi-agent actions in addition to a mental state model of a single-agent plan. This model

also provides a framework for modeling the intentional structure. Lochbaum (1998)

implemented a computational model that can recognize the intentional structure, and used

it in discourse processing. The extension of SharedPlans that can handle more

complicated situations in collaborative planning was proposed by Grosz and Kraus

(1996). The model of SharedPlans emphasizes discourse-level intentions while a single-

agent plan (Cohen and Perrault, 1979) only concerns with utterance-level intentions.

Plan-based models are discussed in more detail in Section 2.1.2.4. The SharedPlan

formalism was adopted in the COLLAGEN framework (Rich et al., 2001) which provides

an intelligent user interface in various application domains.

Chapter 2: Literature Review

31

2.1.3 A comparison of existing discourse structure representations

In this section, I will first compare all the discourse structure representations

reviewed in Section 2.1.1 and Section 2.1.2. Then, I will discuss the appropriateness of

these representations if they were to be used in the context of this dissertation. The

following table summarizes the characteristics of each discourse structure model along

the two aspects, informational and intentional, discussed earlier. The forth column of the

table describes how each discourse structure model describes a compositional structure of

a discourse. The reference given in the first column refers to the primary work of each

model.

The first group of discourse structures in Table 2.1, informational-oriented discourse

structures, includes Discourse Representation Theory (DRT), the Linguistic Discourse

Model (LDM), Segmented Discourse Representation Theory (SDRT) and Rhetorical

Structure Theory (RST). For the informational perspective, DRT, LDM and SDRT

capture the content of a discourse with a semantic representation (a first-order predicate

logic) while RST focuses more on the relations between discourse segments rather than

their content. In terms of the informational perspective, none of DRT, LDM and SDRT

explicitly models the participant’s intentions. For RST, even though it captures both

informational perspective and intentional perspective of a discourse through subject

matter relations and presentational relations respectively, the theory focuses more on the

informational perspective (Moore and Pollack, 1992). DRT, LDM, and SDRT differ from

each other mainly in their compositional structures, i.e. how the structure of a discourse

affects its semantic representation. DRT does not consider discourse relations among

sentences when creating a discourse-level semantic representation from sentence-level

semantic representations. In LDM, the discourse relations only affect the compositional

structure of the discourse-level semantic representation while, in SDRS, the discourse

relations also affect the content of the semantic representation.

Chapter 2: Literature Review

32

Discourse structure model Informational perspective Intentional perspective Compositional structure Remarks

Informational-oriented

Discourse Representation

Theory (DRT)

(Kamp, 1981)

Discourse Representation

Structure or DRS (a semantic

representation of a discourse

using a first-order predicate

logic)

- A representation of a discourse is

aggregated from sentence-level

representations without considered

the structure of the discourse.

Linguistic Discourse Model

(LDM)

(Polanyi, 1996)

A semantic representation

similar to the one used in DRT

but with a slightly different

representation for discourse

context.

- A discourse parse tree (A

discourse segment is a

semantically motivated unit which

is equivalent to a clause while a

relation is a syntactic or a

semantic connection between the

segments)

Segmented Discourse

Representation Theory (SDRT)

(Asher, 1993)

A semantic representation

similar to the one used in DRT.

- A Segmented Discourse

Representation Structure or SDRS

(A discourse segment is a

proposition which is equivalent to

a simple DRS in DRT while a

relation is a semantic or structural

relation that specifies how the

semantic representations of the

segments should be combined)

Rhetorical Structure Theory

(RST)

(Mann and Thompson, 1988)

Subject matter relations such as

Elaboration and SolutionHood

Presentational relations such

as Motivation and Justify

A rhetorical structure contains

rhetorical relations between

utterances and group of utterances

(focus on the relations between

segments)

The theory focuses

more on the

informational

perspective than the

intentional perspective

(Moore and Pollack,

1992)

Table 2.1: Discourse structure models comparison

Chapter 2: Literature Review

33

Discourse structure model Informational perspective Intentional perspective Compositional structure Remarks

Intentional-oriented

Speech act theory

(Searle, 1975)

- Speech act describes the role

of each utterance with respect

to a speaker’s intention and

its effect on a listener

A compositional structure of a

dialog is not described. The theory

focuses only on the utterance level.

Domain-specific acts

can be added.

Dialog Act Markup in Several

Layers (DAMSL)

(Core and Allen, 1997)

Utterance Features (e.g. the

content and form of an

utterance)

Forward Communicative

Functions (similar to speech

acts)

Backward Communicative

Functions capture the relations

between the current utterance and

the previous ones in the form of a

link to an antecedent. However,

these relations only link two

utterances together. Discourse

segments and structural relations

among the segments are not

specified.

The model describes the

role of each utterance

with multiple labels in

multiple layers. More

layers that describe

other types of utterance

functions, such as

domain-specific

information, can be

added

Dialog grammar

(Sinclair and Coulthard, 1975)

- Terminal nodes in the

grammar are dialog acts

A hierarchical structure of

recurrent patterns in a dialog

(focus more on segments than

relations)

Plan-based models

(Cohen and Perrault, 1979)

Conditions, constraints and

arguments of an action

A plan describes how speaker

intentions (speech acts) fit

together in a dialog in order to

achieve a dialog goal

A compositional structure is not

mentioned directly, but a plan can

be decomposed into small steps

(sub-plans).

Table 2.1: Discourse structure models comparison (cont.)

Chapter 2: Literature Review

34

Discourse structure model Informational perspective Intentional perspective Compositional structure Remarks

Intentional-oriented (cont.)

The theory of conversation acts

(Traum and Hinkelman, 1992)

- Core speech act level The level of argumentation acts

combines core speech acts into a

hierarchy of higher level discourse

acts. Some argumentation acts

resemble the rhetorical relations

while some argumentation acts

resemble adjacency pairs.

Each level represents

different pieces of

information. The theory

also includes turn taking

acts and grounding acts

(emphasizes more on

coordinated activities)

Grosz and Sidner’s Theory of

discourse structure (GST)

(Grosz and Sidner, 1986)

Entities in the attentional state Discourse Segment Purpose

or DSP

The linguistic structure or the

structure of utterances describes

coherent segments in a discourse (a

discourse segment is defined based

on intention) while the intentional

structure models the relations

between the purposes of these

segments (between DSPs)

The theory also models

the attentional structure

(the structure of the

focus of attention)

Table 2.1: Discourse structure models comparison (cont.)

Chapter 2: Literature Review

35

The second group of discourse structures in Table 2.1, intentional-oriented discourse

structures, includes speech act theory, Dialog Act Markup in Several Layers (DAMSL), a

dialog grammar, a plan-based model, the theory of conversation acts, and Grosz and

Sidner’s Theory of discourse structure (GST). Among these theories and models, speech

act theory and its successor, DAMSL, only focus at the level of an individual utterance.

Both of them model a speaker’s intention in uttering each utterance without describing

how the intentions fit together in a dialog. In DAMSL, richer information about the

utterance’s functions is provided. Even though speech act theory does not describe the

overall structure of a dialog, a speech act, which captures an utterance-level intention, is a

key component in many other theories that use an utterance as a dialog structure unit

including a dialog grammar, a plan-based model and the theory of conversation acts.

These theories model the structure of a dialog from the intentional perspective by

describing how utterance-level intentions captured by speech acts or dialog acts fit

together in a dialog. In a dialog grammar, a dialog act is the smallest unit of recurring

patterns in a dialog. A plan-based model, on the other hand, uses a plan to describe how

speaker intentions captured by speech acts fit together in a conversation and how they

relate to the conversation goal. In the theory of conversation acts, the structure of a dialog

is accounted for by argumentation acts which combine speech acts into a hierarchy of

higher level discourse acts. GST, on the other hand, uses a larger discourse unit, a

sequence of utterances. Nevertheless, this discourse segment is also defined based on

intention and goal. The structure of a discourse is modeled in terms of the relations

between the purposes of the discourse segments

Since the discourse structure representations reviewed in the previous sections

capture different aspects of a dialog, they are applied differently in a dialog system. A

dialog structure that captures the intentional aspect of a dialog, such as a plan-based

model and Grosz and Sidner’s Theory of discourse structure, is employed in a natural

language understanding module to help interpreting user utterances. For instance, the

TRAINS system (Ferguson et al., 1996) utilizes a plan-based model and a plan

recognition algorithm in order to guide the interaction between a user and the system.

The current state of the plan and discourse context are used to interpret the underlying

intention of a user utterance and determine an appropriate system response. On the other

hand, a dialog structure model that captures relations between discourse segments, such

as RST, is utilized in a natural language generation module. In the MATCH system (Stent

et al., 2004), where an output utterance may contain complex information such as a list of

Chapter 2: Literature Review

36

restaurants and a comparison among them, the sentence planner that models the rhetorical

relations among various pieces of information produces a higher quality output utterance.

In addition to various dialog structure theories and models discussed in previous

sections, information state theory (Larsson and Traum, 2000) is another theory that

describes the structure of a dialog. However, instead of defining a specific dialog

structure representation, information state theory provides a general dialog modeling

framework that can be interpreted and implemented in the context of any dialog structure

theory. Under this general modeling framework, it is possible to directly compare two

dialog structure modeling approaches when they are used to implement the same dialog

application. Information state theory centers on the concept of information state, a

representation which captures relevant information in a dialog that is necessary for

distinguishing one dialog from the others. This information also includes the

accumulative information from previous actions and the obligation for future actions. The

key idea of this theory concerns the representation of the information state, how it is

updated and how the updating process is controlled. Information state theory consists of:

informational components (e.g. domain knowledge, intentions, and a user model), formal

representations of the informational components, dialog moves that trigger the update of

the information state, update rules which formalize the way that the information state is

changed as a dialog progresses, and update strategy which selects an appropriate update

rule. The term dialog move in information state theory is an abstract term for any

mediating input and not restricted to just a speech act. The architecture and tools that

facilitate the implementation of the information-state approach is available in TrindiKit, a

dialog management toolkit developed under the TRINDI project (Larsson and Traum,

2000). The toolkit has been used to develop many dialog system managers that employ

different dialog processing techniques. For example, GoDiS (Kruijff-Korbayová et al.,

2003), an information-seeking dialog system in multiple domains, represents the

information state as a record while MIDAS (Traum et al., 2000), a dialog system in a

route-planning domain, uses Discourse Representation Structure (DRS) as information

state representation.

The goal of this dissertation is to develop a machine learning approach that can infer,

from a corpus of in-domain conversations, the domain-specific information required to

build a task-oriented dialog system; therefore, a suitable dialog structure representation

for this purpose needs to capture all of the necessary domain information. This domain-

specific information includes a list of tasks that a dialog system has to support, and how a

complicated task should be decomposed into a set of sub-tasks. This information also

Chapter 2: Literature Review

37

includes domain keywords which capture pieces of information that dialog participants

need to communicate in order to achieve each task or sub-task. In a retail domain, for

instance, a product name and a quantity are domain keywords since they are essential

information for making a purchase.

A hierarchical structure of a task and its sub-tasks can be considered as a

compositional structure of a dialog where a discourse unit is defined based on the

characteristics of the task. Many of the dialog structures reviewed in the previous sections

represent a compositional structure of a dialog. However, most of them define a discourse

unit at the level of a sentence or a clause, which is too small to be a step in a task, except

for Grosz and Sidner’s Theory of discourse structure (GST) which uses a larger discourse

unit, a sequence of utterances. For those discourse structures that use a sentence or a

clause as a basic unit, some discourse segments at the upper levels of the compositional

structure (such as lessons and transactions in Sinclair and Coulthard’s (1975) dialog

grammar, the components at the top levels of a rhetorical structure, and the

argumentation acts at the top levels of the hierarchy in the theory of conversation acts)

may resemble tasks and sub-tasks.

A domain keyword, another piece of the required domain-specific information, is an

actual content of a dialog that the participants have to communicate in order to

accomplish a task; therefore, a suitable dialog structure representation must capture the

informational aspect of a dialog. Nevertheless, the informational-oriented discourse

structures reviewed in Section 2.1.1, such as the Linguistic Discourse Model (LDM),

Segmented Discourse Representation Theory (SDRT), model the meaning of a discourse

with a semantic representation instead of the actual entities that were mentioned in the

discourse.

There are some intentional-oriented dialog structures that also model the

informational aspect of a dialog including Dialog Act Markup in Several Layers

(DAMSL), a plan-based model, and Grosz and Sidner’s Theory of discourse structure

(GST). In the original DAMSL annotation scheme, the Information Level in the

Utterance Features layer only captures abstract characteristics of an utterance (e.g.

whether the utterance addresses a task, a communication process, or other aspects), but

not the actual information that the utterance carries nor the information that is specific to

a particular domain (e.g. the type of a task). However, some extensions of the DAMSL

annotation scheme do capture the actual content of a dialog and some domain-specific

information. In the COCONUT project (Eugenio et al., 1998), the Topic layer contains

domain-specific tags such as needItem, haveItem budgetAmount, and

Chapter 2: Literature Review

38

budgetRemains that describe the content of an utterance. Nevertheless, some of them

seem to capture domain-specific intentions rather than domain-specific entities enclosed

in the utterance. ItemFeature is another set of labels that captures domain-specific

information. However, only the properties of domain objects (e.g. price and color) are

annotated, not the objects (e.g. table and chair) themselves.

Hardy et al.’s (2003) annotation scheme is another extension of DAMSL that captures

domain-specific information. The semantic layer was added to the original DAMSL

annotation scheme in order to model domain-related information enclosed in each

utterance. The information captured by this layer consists of transactions (or

AccessFrames) which contain attributes (or slots) and attribute modifiers. In a customer

service domain, AccessFrames correspond to customer-service tasks such as

ChangeAddress; this task contains an attribute Address and its modifier New, for

example. While this semantic layer does capture the informational-aspect of a dialog that

is also domain-specific, it restricts itself to utterance-level information similar to the

DAMSL annotation scheme that it is based on. For instance, an AccessFrame only

captures the name of a task that each utterance belongs to rather than the discourse

segment that corresponds to the entire task.

In some plan-based models such as (Litman and Allen, 1987) and (Lambert and

Carberry, 1991), the parameters of the domain plans are quite similar to the notion of

domain keywords, items of information that dialog participants need to communicate in

order to achieve a task. Grosz and Sidner’s Theory of discourse structure also mentioned

objects in a discourse segment when discussing the attentional state but did not provide a

detail description about these objects. Information state theory is another theory that

includes informational components as one of the elements in its framework. However,

since information state theory is a general dialog modeling framework, the choice of the

informational components depended on the choice of the dialog structure theory that will

be adopted in the framework.

In summary, there are several existing discourse structure models which represent a

compositional structure of a dialog that is similar to a hierarchical structure of a task and

its sub-tasks. These discourse structure models are Rhetorical Structure Theory (RST), a

dialog grammar, the theory of conversation acts, and Grosz and Sidner’s Theory of

discourse structure (GST). Nevertheless, the entire discourse structure in the first three

models (RST, a dialog grammar, and the theory of conversation acts) does not correspond

to the task structure as the discourse units that are lower in the discourse structure

hierarchy are smaller than steps in a task. The intentional structure in GST is the one that

Chapter 2: Literature Review

39

is most similar to the task structure; however, GST does not explicitly model domain

keywords.

Only a few existing dialog structure representations capture the informational aspect

of a dialog that resembles domain keywords, items of information that dialog participants

need to communicate in order to achieve a task. These dialog structure representations

include some variations of a plan-based model and the extension of the DAMSL

annotation scheme proposed by Hardy et al. (2003). However, Hardy et al.’s annotation

scheme only focuses at the level of an individual utterance and does not describe the

overall structure of a dialog. Although a plan-based model doesn’t address a

compositional structure of a dialog directly, it allows a plan to be decomposed into

smaller steps. Thus, a plan-based model appears to be a dialog structure representation

that captures all of the domain-specific information required to build a dialog system.

Nevertheless, one difficulty in modeling the required domain-specific information with a

plan-based model is the complexity of the model. In addition to the required domain-

specific information, a plan-based model includes many intentional components such as

beliefs and intentions (represented by speech acts). These intentional components, while

capturing useful information for processing a dialog, do not directly describe the tasks

that a dialog system has to support or the domain-specific components required to

achieve the tasks. Moreover, intentional components are rather abstract and may be

difficult to be identified directly from in-domain conversations through an unsupervised

machine learning approach. The reason for using an unsupervised learning approach

rather than a supervised one is discussed in Section 2.2.3.

Since none of the existing discourse structure representation is suitable for the

purpose of this dissertation, which is to infer the domain-specific information required to

build a task-oriented dialog system from in-domain conversations using an unsupervised

machine learning approach, a new representation, called a form-based dialog structure

representation, is proposed. The form-based representation captures all the required

domain-specific information and focuses only on concrete information that can be

observed directly from in-domain conversations. Chapter 3 describes the proposed form-

based dialog structure representation in detail. A comparison between the proposed

dialog structure representation and existing discourse structure representations is also

discussed.

Chapter 2: Literature Review

40

2.2 Data-driven approaches to dialog structure modeling

In the past decade, the computational linguistics community has focused on

developing language processing approaches that can leverage the vast quantities of

corpus data that are available. The same idea has also been applied by dialog system

researchers and developers. As more dialog data becomes available, techniques for

building dialog systems have been shifted from hand-crafted approaches toward data-

driven ones. There has been substantial amount of research on applying data-driven

approaches to several dialog system components. Those works are different in terms of

the algorithm used, the component to be learned, and how the learning approach is

integrated with a dialog system. Reinforcement learning is one best-known approach for

learning a dialog management policy from in-domain dialogs. Singh et al. (2002) is

among the first groups who successfully applied this technique to find an optimized

policy from very large policy space as demonstrated in the NJFun system. Karahan et al.

(2003), who combined two classifiers (the Bayesian classifier and Boosting) in order to

identify users’ intents (i.e. call-types) in a customer care application, are among many

other researchers that applied a machine learning technique to the problem of natural

language understanding in a goal-oriented spoken dialog system. Various approaches to

this problem are summarized in (Bangalore, Hakkani-Tür et al., 2006). As for natural

language generation, Stent et al. (2004) trained a sentence ranker to select an appropriate

sentence plan from a set of possible ones by applying a boosting algorithm on human-

rated sentences.

Research on a data-driven approach to dialog structure modeling is relatively new and

focuses mainly on recognizing a structure of a dialog as it progresses. Since a dialog

structure encapsulates relations between utterances and dialog context (e.g. between user

intentions and a task being pursued), a dialog system can utilize this information to better

understand a user’s utterance and generate an appropriate response to the user. Various

dialog structure recognition approaches will be discussed in more detail in Section 2.2.1.

A data-driven approach to dialog structure modeling can also be used to reduce the

amount of human effort spent in the knowledge engineering process when developing a

dialog system in a new task-oriented domain. Necessary knowledge required to build a

dialog system could be identified through a machine learning approach rather than hand-

crafted. For example, a task model can be learned with an example-based learning

algorithm as described in (Garland et al., 2001) and in Section 2.2.2.2. Acquiring the

necessary knowledge from data is an acquisition process that is carried out before a

dialog system is created. This is contrasted with a dialog structure recognition process

Chapter 2: Literature Review

41

discussed previously where pre-specified dialog structure components are recognized as a

dialog progresses. Data-driven approaches for a dialog structure acquisition problem have

only been explored by a handful of researchers. Some of the interesting works in this area

are reviewed Section 2.2.2.

Research works on dialog structure learning (both recognition and acquisition) differ

from each other in two important aspects: the type of the structure to be learned and the

learning approach. A variety of dialog structure theories are adopted in dialog system

implementation and in some cases they are modified to better suit the tasks. The choice of

the learning approach depends heavily on the characteristics of the dialog structure and

the type of information available for training. For example, a Markov model is suitable

for sequential structures while a grammar induction approach is suitable for hierarchical

structures. For a multi-level dialog structure and a hierarchical structure, the components

of the structure are often identified independently or in a cascaded manner where

information from one component is being used to identify another component. This

decomposition helps reduce learning complexity. Related works reviewed in the

following sections are organized according to the learning approaches. The overview of

the proposed learning approach for acquiring the form-based dialog structure

representation is given in Section 2.2.3.

2.2.1 Dialog structure recognition approaches

2.2.1.1 Markov models

A Markov model is suitable for learning the sequential structure of observations.

Since some dialog structure components, such as dialog acts, seem to have a sequential

property, the Markov model has been widely used in many dialog structure learning

approaches. In (Woszczyna and Waibel, 1994), the structure of a conversation in a

scheduling domain composes of topics, discourse states, speech acts, and common

phrases. The information captured by the dialog structure can reduce ambiguities in

natural language understanding. Two components of the structure, dialog state and

speech act, were focused in the paper. To infer both dialog structure components

automatically from data, a Markov Model (MM) was used in a supervised scenario and a

Hidden Markov Model (HMM) was used in an unsupervised scenario. Only word

sequences were used as features in both models. The Markov model requires training data

annotated with state labels, which in this case are equivalent to dialog states and speech

acts. The Hidden Markov model, on the other hand, requires no labeled data; therefore, it

can utilize all of the data available. The notion of state is obtained automatically from the

Chapter 2: Literature Review

42

data given a number of hidden states. The Hidden Markov model performed better than

the Markov model in terms of perplexity when both models were trained on the same

amount of data as a pre-defined set of states could be suboptimal for a given set of data.

The Hidden Markov model could be improved further by adding more training data and

increasing the number of hidden states; however, the latter came with higher

computational cost.

Finke (1998) used a Markov model to both segment and classify speech acts in

telephone-based conversations in the CALLHOME SPANISH corpus. Speech acts are

part of the three-level discourse structure consists of speech acts, dialog games (similar to

the ones described in Section 2.1.2.3), and discourse segments or topic segments. The

structure was developed under the CLARITY project (Levin et al., 1998) which aimed at

exploring the use of discourse structure in dialog understanding. The annotation scheme

for speech acts was extended from the DAMSL annotation scheme in order to handle

non-task-oriented conversations in this domain. On a speech act segmentation problem, a

Markov model was trained on word and part of speech features, and achieved a

comparable performance to a neural network approach. To classify the speech act of each

segment, a Markov model was trained on prosodic features, word sequences, and speech

act sequences. The integrated Markov model for both segmentation and classification was

also investigated. For a topic segmentation problem, Hearst’s TextTiling algorithm

(Hearst, 1997) was used to determine topical segment boundaries.

2.2.1.2 Grammar induction approaches

A grammar induction approach can be used to identify the structure of a dialog if the

structure can be described by a context-free grammar. The VERBMOBIL system used a

plan hierarchy to describe a dialog in a meeting scheduling domain (Bub and Schwinn,

1996). A plan hierarchy is a four-level organization composes of the dialog act level, the

turn level, the phrase level, and the dialog level. By viewing plan recognition as parsing,

the plan hierarchy is compiled into a context-free grammar. Grammar rules (or plan

operators) for processing the components in the dialog act level, the phrase level, and the

dialog level can be hand-coded. However, as the number of turn classes is quite large and

the sequences of dialog acts that correspond to each turn class are rather complex, it is

difficult to construct plan operators that generalize for all of the data by hand.

Alexandersson and Reithinger (1997) used a grammar induction approach based on

Bayesian model merging to derive a stochastic context free grammar that describes the

structure of each turn class from the corpus of dialog act annotation. The automatically

derived plan operators were applied in a plan recognition process to identify the

Chapter 2: Literature Review

43

intentional structure of user utterances; 66.8% turn class prediction accuracy was

reported. They also suggested the focus and relations between new utterances, and the

current foci as additional information sources for improving the performance.

In recent research, Bangalore, Fabbrizio et al. (2006) attempted to recognize a

structure of a task-oriented dialog as it progresses in order to guide a dialog manager’s

decision and construct an appropriate agent response. Other dialog system components

besides the dialog manager and the natural language generation module could also benefit

from the information captured by a dialog structure as well. Based on the SharedPlans

theory (Grosz and Sidner, 1990) adopted in this research, a dialog structure was

represented as a tree that encapsulates the task structure, the dialog act structure, and the

linguistic structure of utterances, which contains the inter-clausal relations and predicate

argument relations within a clause. The paper focused on recognizing the task structure of

an on-going dialog in a catalog ordering service domain. A top-down incremental parser

that incorporates bottom up information was used to discover the most likely plan tree

that encapsulates the dominance relations (or hierarchical relations) between sub-tasks

from a sequence of utterances. The utterances were first segmented and classified into a

sequence of sub-tasks with a maximum entropy classifier in order to identify the

precedence relations (or sequential relations) between sub-tasks. For each utterance, the

classifier predicted the most likely sub-task label given word n-gram features of local

context. Since the label not only represents the type of sub-task but also encodes the

position of the utterance in relative to the sub-task (i.e. begin, middle and end), the

classifier can segment a dialog into a sequence of sub-tasks and assign a label to each

sub-task in a single parse. The paper also discussed dialog structure recognition at the

level of dialog acts.

2.2.1.3 Categorical classifiers

Another type of machine learning algorithm that has been extensively used for dialog

structure recognition when the sequential structure of the components is not fundamental

is a categorical classifier; a neural network and a decision tree, for example. Vilar et al.

(Vilar et al., 2003) used both a neural network and a Hidden Markov Model to identify

the structures of dialogs in the Spanish train information domain. The structure consists

of speech acts, frames and cases. Each frame represents a specific type of user message

and contains a set of cases or slots that associate with pieces of information that are

related to a query. Both frames and slots are domain-specific components and could be

used to improve the understanding process of the system. The authors of this paper

assumed that while the sequential structure of a sentence is useful for segmenting the

Chapter 2: Literature Review

44

sentence into a set of slots, the sequential structure is not fundamental for classifying the

type of frame. For that reason, a neural network was used to classify the frame type of

each user turn given context word features while a frame-specific HMM trained on

annotated data was used to segment each turn into a sequence of semantic units. Each

semantic unit captures the semantic function of a word or a group of words and

corresponds to a HMM state. Particular types of semantic units are associated with the

slots. The proposed techniques achieved 5.2% error rate on frame classification and

14.4% on semantic unit segmentation.

In (Hardy et al., 2004), a vector-based approach was used to train both a task

identification agent and a dialog act classifier in order to identify the customer’s desired

transaction and the corresponding dialog act of each utterance respectively in the user-

initiative customer service system, Amities. Both a transaction (also task and frame) and

a dialog act are components of the dialog structure proposed by Hardy et al. (2003)

discussed in Section 2.1.3. The vector-based approach used a cosine similarity score to

determine the similarity between the vector that represents an input utterance and the

vector that represents each task or each dialog act created from training data.

Speech acts or dialog acts may be used independently in a dialog system without

specifying the structure of an entire dialog. Many classification algorithms, such as a

decision tree and a maximum entropy model, have been used to predict a dialog act label

of a give dialog segment such as an utterance. Related works on dialog act classification

were summarized in (Stolcke et al., 2000). However, the research in this area is less

relevant to the work in this dissertation which focuses more on identifying the overall

structure of a dialog.

Categorical classifiers require a set of pre-defined categories and, for each category,

the training data. However, both requirements are not applicable when acquiring domain-

specific information in a new domain, as in the case of this dissertation research, since

the target representations will be explored from in-domain dialogs instead of being pre-

specified.

2.2.2 Dialog structure acquisition approaches

2.2.2.1 Conceptual clustering

Möller (1998) developed a dialog modeling toolkit, DIA-MOLE, to help reduce

human effort in creating a dialog model for a new application. Instead of using a pre-

defined dialog act taxonomy, an unsupervised learning technique was used to infer a set

of domain-specific dialog acts (DDAs) from a corpus of in-domain conversations. The

Chapter 2: Literature Review

45

DDA learner module in DIA-MOLE utilizes a conceptual clustering algorithm,

CLASSITALL, to create a DDA hierarchy from segmented utterances and their features.

A set of features for each segment, which consists of prosodic events, recognized words,

and semantic structure, is extracted from various knowledge sources available to a dialog

system and is represented by a set of attribute-value pairs. CLASSITALL allows various

types of features including numeric, symbolic, and structured features to be integrated

into the clustering framework. Moreover, each feature can be associated with a

probability value, which expresses the quality of the feature (e.g. a confidence score

produced by a feature extraction algorithm), or a weight, which specifies the significance

of the feature.

Since there is no example from training data to supervise the clustering algorithm,

CLASSITALL uses a heuristic that reflects the quality of the clusters to guide the

hierarchy construction. Based on the assumption that a good set of clusters is the one that

similar objects are assigned to the same class while dissimilar objects are assigned to

different classes, CLASSITALL defines a cluster quality measure, category utility, as a

tradeoff between intra-class similarity and inter-class dissimilarity. Both intra-class

similarity and inter-class dissimilarity are computed from a conditional probability of an

attribute-value pair and a class.

DIA-MOLE was applied in VERBMOBIL, a dialog system in an appointment

scheduling domain, where predicted DDAs could help identify an appropriate language

model for a speech recognizer or guide a spoken language generation module. The

learned DAA taxonomy was evaluated against the human-assigned taxonomy;

comparable dialog act prediction rates were reported.

2.2.2.2 Example-based learning

Garland et al. (2001) used an example-based learning algorithm to lessen domain

expert effort in developing a task model, a declarative representation of a task, for a

collaborative system. The task model, which based on the SharedPlans theory of

collaborative discourse (Grosz and Sidner, 1990), captures the structure of actions. The

task model composes of actions and recipes. There are two types of actions, a primitive

action, which can be executed directly, and a non-primitive action, which can be achieved

indirectly by achieving other actions. A recipe describes a set of steps required in order to

achieve a goal or a sub-goal (a non-primitive action). It also contains constrains on the

order of actions and the logical relations among action parameters. A collaborative

system, which helps a user achieves a task goal through a spoken conversation, requires

domain-specific task models in order to adapt agent utterances according to the task.

Chapter 2: Literature Review

46

With an example-based learning approach, a domain expert only needs to generate

examples of how to accomplish a task which is considered more intuitive than

constructing a complete task model that generalizes for all possible cases. The learning

algorithm then infers the target task model by inducing the constraints and generalizing

the model over a series of annotated examples. The approach was tested on two simulated

tasks: building graphical user interfaces and cooking, but not on real dialogs. Expert

examples, which were described in terms of actions and relations among them, were

generated from the targeted task model. The numbers of examples required to learn the

correct task models given different kinds of annotations were reported.

2.2.2.3 Information extraction

Feng et al. (2003) proposed a framework called WebTalk that aimed at creating a

specific type of a dialog system, namely a customer care service, automatically from

information extracted from the company’s website. There are three types of customer

care dialog systems: 1) an information retrieval aid system (or a question-answering

system), 2) a form-filling system, which helps a customer fills out an online form, and 3)

a table-based system, which operates on a table of related information (e.g. product

details) automatically created from web contents. A corporate website contains rich and

well-organized information including a web page structure, hyperlinks between related

web pages, lists, forms, tables, and graphics; hence, it is a useful resource for extracting

task-specific information. The task-specific knowledge includes a website structure and

an information unit, a coherent area in a web page according to its content or its

behaviors such as LIST-ITEMS and QUESTION-ANSWER. A website structure is

obtained from directory organization and a list of hyperlinks. Information units are

generated by Webpage Parser which identifies the boundaries and type of each

information unit using a supervised classifier, a support vector machine (SVM). Some

types of information units may need further processing to extract more useful

information. Since the information source is a company’s website rather than a corpus of

dialogs, the information extracted is not the structure of a dialog or a component in the

structure. Nevertheless, those extracted pieces of information are included in a task-

specific knowledgebase that will be used by a customer care service system

2.2.3 The overview of the proposed learning approach

The goal of this dissertation is to infer the domain-specific information required to

build a task-oriented dialog system from in-domain conversations through a machine

learning approach. Acquiring the necessary domain knowledge from a set of human-

Chapter 2: Literature Review

47

human dialogs is considered a knowledge acquisition process and is carried out before a

dialog system is created. This is contrasted with a dialog structure recognition process in

which pre-specified dialog structure components are recognized as a dialog progresses.

Most data-driven approaches to dialog structure recognition discussed in Section

2.2.1 rely on supervised learning algorithms since they usually provide more accurate

results but at the cost of manually labeled data. However, for the dialog structure

acquisition problem investigated in this thesis, the structure of a dialog in a new task-

oriented domain has not been pre-specified and will be explored from data. Hence, a

corpus of in-domain dialogs annotated with the target dialog structure is not available for

training a supervised learning algorithm. The example-based learning algorithm and the

information extraction algorithm discussed in Section 2.2.2.2 and 2.2.2.3 had to utilize

annotated data from other information sources, examples described in a specific

annotation language and a well-organized website, respectively. In this thesis an

unsupervised learning approach is preferred since the goal is to minimize human effort

including annotation effort in the domain knowledge engineering process. Since this

process occurs before the first prototype system is created, a corpus of recorded

conversations between the humans who perform the same task as the target dialog system

becomes the main resource. The motivation behind the use of an unsupervised learning

approach is quite similar to the idea that motivates the work in DIA-MOLE, the only

approach among the dialog structure acquisition approaches discussed in Section 2.2.2

that utilizes an unsupervised learning algorithm. Nevertheless, different unsupervised

learning algorithms that are suitable for the target dialog structure, the form-based dialog

structure representation, are investigated in this thesis. The detail discussions of those

algorithms are provided in subsequent chapters.

To make the problem tractable, I divide a dialog structure acquisition problem into

two sub-problems: concept identification and clustering, and form identification (a form

is associated with a sub-task in the form-based dialog structure representation). Each sub-

problem is handled separately and is discussed in more detail in Chapter 5 and Chapter 6

respectively. However, it should be kept in mind that these individual components are

parts of the same dialog structure; therefore, information about one component may be

useful for inferring another component. After each component can be acquired with

acceptable accuracy, interaction between components should also be considered in the

learning process. The decomposition of a dialog structure learning problem for a multi-

level dialog structure and a hierarchical dialog structure was also applied by many

researchers (Finke et al., 1998; Hardy et al., 2004; Vilar et al., 2003).

Chapter 3: Form-based Dialog Structure Representation

48

Chapter 3

Form-based Dialog Structure Representation

The goal of this dissertation research is to develop a data-driven approach that can

infer domain-specific information required to build a task-oriented dialog system from a

corpus of in-domain conversations. In order to achieve this goal, one would have to first

specify a suitable domain-specific information representation, and then develop a

machine learning approach that is able to identify the domain information captured by

this representation from a corpus of in-domain dialogs. This chapter focuses on the first

step, describing a suitable domain-specific information representation and demonstrating

how it can be used to model domain information in various types of task-oriented dialogs.

A domain-specific information representation that is suitable for the purpose of this

dissertation should have all of the following properties: sufficiency, generality, and

learnability.

● Sufficiency is implied if the representation captures all domain-specific

information required to build a task-oriented dialog system.

This domain-specific information includes a list of tasks that a dialog

system has to support, for a complicated task how it should be decomposed

into smaller steps or sub-tasks, and domain keywords which capture pieces of

information that dialog participants need to communicate in order to achieve

each task or sub-task. For instance, in a retail domain, where a task is to make

a purchase, the domain keywords are a product name and a quantity. These

two pieces of information are essential for making a purchase.

● Generality is implied if the representation can describe task-oriented dialogs

in dissimilar domains and types.

Different types of task-oriented domains have different characteristics; for

instance, some discourse phenomena such as grounding do not occur in every

domain. Therefore, a desired domain-specific information representation

should be generalized for various types of task-oriented domains, namely, it

should be domain-independent.

Chapter 3: Form-based Dialog Structure Representation

49

● Learnability is implied if the representation can be identified by a machine

learning algorithm from observable language behaviors in human-human

conversations.

When acquiring the domain-specific information for a new task-oriented

domain, there is no annotated data available for training a supervised learning

algorithm as the target domain-specific information has not been specified

and will be explored from in-domain conversations. Since we have to rely on

an unsupervised learning approach, the representation of the domain-specific

information has to be observable from the conversations.

Existing dialog structure representations do not have all of the three required

properties. Most of them do not capture all of the domain-specific information required to

build a dialog system as discussed in Section 2.1.3. Some of these discourse structure

models and theories describe the compositional structure of a dialog that resembles tasks

and sub-tasks but do not represent domain keywords, or vice versa. For the one that

captures all of the required domain-specific information, namely, a plan-based model, its

discourse structure is quite complex and contains many intentional components, such as

beliefs and intentions. These abstract components are rather difficult to be observed

directly from a conversation and, as for the current technology, may not be learnable

through an unsupervised machine learning approach. Moreover, these additional

components, while capturing useful information for processing a dialog, do not directly

describe a task or domain-specific elements required to achieve the task.

In order to have a domain-specific information representation that has all of the

desired properties discussed above, we have to either augment an existing dialog

structure representation or specify a new representation. In this thesis, I propose a new

representation, called a form-based dialog structure representation, as a target

representation of the domain-specific information that will be inferred from in-domain

conversations. This representation is based on the notion of form, a data representation

used in the form-based dialog system architecture. The form-based dialog system

architecture is described in detail in section 1.1.2. I choose to develop a new dialog

structure representation based on the data representation used in a functional dialog

system architecture rather than augmenting an existing dialog structure theory because

this data representation already captures the domain-specific information a dialog system

needs to have in order to support a task. It is quite easy to demonstrate that the

representation is sufficient for representing task-oriented conversations which is one of

the three required properties. The sufficiency of the form-based dialog structure

Chapter 3: Form-based Dialog Structure Representation

50

representation has been demonstrated by the success of the systems that were

implemented based on the form-based dialog system architecture. Another advantage of

using an existing dialog system framework to describe the structure of a task-oriented

conversation is that the connections between the dialog structure components and the

components of a dialog system that employs the structure become straightforward. This

direction is opposite to many other approaches that implement a dialog system from an

existing dialog structure theory.

In addition to sufficiency, the form-based dialog structure representation needs to

have other two properties: generality and learnability. The form-based dialog system

architecture has been used mainly in information-accessing domains where a form

corresponds to a database query form while slots in the form represent search criteria. In

this thesis, a more generalized definition of the form representation is provided, so that it

can be used to represent the structure of dialogs in other types of task-oriented domains

as well. In terms of learnability, the form-based dialog structure representation focuses

only on concrete information that can be observed directly from in-domain conversations;

hence, it should be learnable through an unsupervised learning approach. In the

following parts of this section, I will describe the form-based dialog structure

representation and discuss its properties in more detail. The approaches that are used to

verify these properties are also described.

The form-based dialog structure representation is a three-level structure of task, sub-

task, and concept. This representation models the tasks that a dialog system has to

support, a set of sub-tasks (a decomposition of a task) which corresponds to the steps that

needs to be taken in order to successfully accomplish the task, and concepts which are the

items of information (or domain keywords) that dialog participants have to communicate

in order to achieve a task or a sub-task. The components of the form-based dialog

structure representation (i.e. task, sub-task, and concept) reflect the observable structure

of a task-oriented conversation discussed in Section 1.2. A hierarchical structure of a task

and its sub-tasks represents a compositional structure of a dialog that is defined based on

the characteristics of the task while a domain concept captures the actual content being

conveyed in the dialog. Along the two aspects of a discourse (informational and

intentional) discussed in Section 2.1, the form-based representation focuses more on the

informational aspect as it represents the actual content of the discourse. The intentional

aspect is addressed by a conversation goal which is included in the definition of a task. A

formal definition of each component is provided in Section 3.1. As the name indicates,

the form-based dialog structure uses a form as a central representation. The concepts that

Chapter 3: Form-based Dialog Structure Representation

51

the participants have to communicate in order to achieve a particular sub-task are stored

together in the same form. Therefore, a task is represented by one or more forms

depending on the number of its sub-tasks.

The use of forms and a form-filling strategy in dialog systems was first introduced by

Ferrieux and Sadek (1994) and has been adopted in many systems that built on the form-

based dialog system architecture. In the form-based dialog system, a form specifies all

relevant pieces of information (or slots) that must be filled in before a system can take an

action, such as query a database. All domain-specific information a dialog system needs

to have in order to support a task is captured by forms; hence, the form-based dialog

structure representation is sufficient for representing a task-oriented conversation as

demonstrated by the success of the systems that were implemented based on the form-

based architecture. Examples of these systems are the Philips train timetable information

system (Aust et al., 1995) and the CMU Communicator system (Rudnicky et al., 1999).

Dialog coverage, which measures the percentage of dialog content that can be accounted

for by the proposed dialog structure, is also used to verify the sufficiency of the form-

based dialog structure representation. Dialog coverage is reported in Section 4.1.

The form-based dialog system architecture has been used mainly in information-

accessing domains where a form corresponds to a database query form while slots in the

form represent search criteria. To make the form representation generalized for other

types of task-oriented domains as well, a broader definition of the form representation is

provided. In this thesis, the notion of form is generalized as a repository of related pieces

of information. These pieces of information are not restricted to only the search criteria

so that the form can be applied to various types of task-oriented domains. To verify the

generality of the form-based dialog structure representation, six dissimilar task-oriented

domains are analyzed. These six domains are air travel planning (information-accessing

task), bus schedule inquiry (information-accessing task), map reading (problem-solving

task), UAV flight simulation (command-and-control task), meeting and tutoring. Dialog

structure analyses of these six domains are given in Section 3.2 - Section 3.7 respectively.

These disparate domains are chosen to cover various types of task-oriented conversations.

The choices of domains are also subjected to the availability of human-human data. The

corpora of human-human conversations used in the dialog structure analyses are taken

from various projects conducted by different research institutes. Some of the corpora

were collected during the development process of a spoken dialog system. However,

some of the corpora were originally collected for other purposes.

Chapter 3: Form-based Dialog Structure Representation

52

In terms of learnability, a dialog structure component that is observable from a

conversation should be more easily identified by an unsupervised learning algorithm than

a dialog structure component that cannot be directly observed such as a belief and an

intention. The components of the form-based dialog structure representation (i.e. task,

sub-task, and concept) can be observed directly from a dialog as it reflects the observable

structure of a task-oriented conversation discussed in Section 1.2. Task and sub-task

represent the decomposition of a complicated task while concept is an item of

information that dialog participants have to communicate in order to achieve the

conversation goal. By focusing only on the observable structure of a dialog, the form-

based dialog structure model works well when all of the domain-specific information

necessary for supporting a task is communicated clearly in a dialog. This occurs when a

dialog has the following characteristics: 1) the conversation goal is achieved through the

execution of domain actions, and 2) the dialog participants have to communicate the

information required to perform these actions through dialog. However, if the goal of a

dialog is achieved in a different manner or if the necessary domain-specific information

is not communicated through the dialog, we may not be able to represent this dialog with

the form-based dialog structure representation. The difficulties in representing various

types of task-oriented dialogs with the form-based dialog structure representation are

discussed in Section 3.8. For the type of dialog that the dialog goal is not directly

reflected in the conversation, a more complex dialog structure which also models

unobservable aspects of a dialog, such as participants beliefs and intentions, may be

required.

Another characteristic of the form-based dialog structure representation that makes it

possible to be inferred from in-domain conversations through an unsupervised learning

approach is its simplicity. Compared to other dialog structure representations used in

other types of dialog system architectures such as a plan-based system, the form-based

representation is quite a bit simpler. The detailed discussion about different types of

dialog system architectures and the comparison among them can be found in Section 1.1.

However, by choosing the representation that is quite simple, we may not be able to

model a complex task that has a dynamic structure such as a planning task as discussed in

Section 1.1. Nonetheless, the form-based system has been applied successfully in many

real world applications. Example of these dialog systems are the Philips train timetable

information system (Aust et al., 1995), the CMU Communicator system (Rudnicky et al.,

1999), and many other systems built under the RavenClaw framework (Bohus and

Rudnicky, 2003).

Chapter 3: Form-based Dialog Structure Representation

53

The learnability of the form-based dialog structure representation is verified with the

accuracy of the domain information obtained from the proposed machine learning

algorithms described in Chapter 5 and Chapter 6. Annotation scheme reliability, which is

obtained from a human annotation experiment described in Section 4.2, can also verifies

the learnability of the form-based representation in terms of human learnability. High

annotation scheme reliability suggests that the annotation scheme is concrete and

unambiguous which imply learnability.

The rest of this chapter is organized as follows: Section 3.1 provides a detailed

description of the form-based dialog structure representation along with the definition of

each component. A comparison between the form-based representation and existing

dialog structure representations is discussed at the end of Section 3.1. Examples on how

to model the structure of a dialog with the proposed representation in six task-oriented

domains (air travel planning, bus schedule inquiry, map reading, UAV flight simulation,

meeting and tutoring) are given in Section 3.2 - Section 3.7 respectively. These dialog

structure analyses are done manually by the developer of the form-based dialog structure

representation. The difficulties in applying the form-based dialog structure representation

to these task-oriented domains are discussed in Section 3.8. Finally, Section 3.9

summarizes the properties of the proposed dialog structure representation.

3.1 Components in form-based dialog structure representation

In task-oriented domains, participants engage in a conversation in order to achieve a

specific goal such as to obtain the departure time of a particular bus or to order a product

from a catalog. For simplicity, I will refer to the participants as a client and an operator.

Typically the client’s goal is to have the operator perform actions that serve his or her

need. The operator in turn needs specific information from the client in order to perform

each action. Actions are domain-specific; for instance, in a bus schedule inquiry domain

an action is looking up information from a bus schedule while in a retail domain an action

is ordering a product. The action occurs when all necessary information has been

gathered. For example, in the retail domain, the name of a product and a quantity need to

be specified before an order can be placed. The purpose of the goal-oriented conversation

is to communicate this information among the participants and to ensure that the

information is consistent.

Different task-oriented domains may have some dissimilar characteristics; for

instance, some discourse phenomena such as grounding do not occur in every domain.

Therefore, in order to develop a dialog structure representation that is generalized across

Chapter 3: Form-based Dialog Structure Representation

54

these differences, dialogs from different types of task-oriented domains have to be

analyzed. The initial form-based dialog structure representation was derived from the

analysis of conversations in information-accessing domains which are the most common

application domains of form-based dialog systems. Constraints from a backend database

make it easier to identify the form in this type of task-oriented domain. Then

conversations from other types of task-oriented domains, namely a problem-solving task

and a command-and-control task, were analyzed to verify the completeness of the initial

dialog structure. The form-based dialog structure was modified when necessary to

account for new discourse phenomena in the new domain. Finally, the definitions of all of

the components in the form-based dialog structure representation were verified through

several iterations of pilot annotation experiments (human annotation experiments are

described in Section 4.2).

In summary, conversations in various task-oriented domains have the following

characteristics. In order to achieve a conversation goal, one or more actions must be

taken, and all of the information required in order to perform these actions has to be

clearly communicated. The form-based dialog structure representation organizes domain-

specific information necessary for achieving the conversation goal into a three-level

structure of task, sub-task and concept. The definition of each component is given below.

3.1.1 Component definitions and representations

1. A task is a subset of a dialog that has one specific goal.

A simple dialog usually has only one goal; therefore, the entire dialog

corresponds to a single task. A complex dialog can have multiple goals. For

instance, a customer who makes a call to a customer service may have two

goals, to obtain account balance and to change the address; therefore, this

dialog consists of two tasks, one for each goal. To decompose a dialog into

multiple tasks, each sub-dialog, which corresponds to a task, must have a

clear goal that is distinct from the rest of the dialog and can be considered as

a separate dialog.

To accomplish a task goal, one or more actions need to be taken. When

multiple actions are required, the task is decomposed into a set of sub-tasks,

one for each action. However, if only one action is required, no further

decomposition is necessary.

2. A sub-task is a step in a task that contains sufficient information to execute a

domain action.

Chapter 3: Form-based Dialog Structure Representation

55

Within each sub-task, dialog participants exchange information in order to

execute the corresponding action. The sub-task ends when the action is

executed. When there is a discussion about the outcome of the action, such as

a discussion about the information retrieved from a database, the sub-tasks

ends at the end of the discussion

A task can be decomposed into both a sequence of different types of sub-

tasks and a series of the same type of sub-task. For example, to reserve a

round trip ticket, a client must provide the criteria for a flight in each leg;

therefore, a task of reserving a round trip ticket can be decomposed into two

sub-tasks: specifying a departing flight and specifying a return flight. In some

cases, a sub-task can be further decomposed if it is associated with a complex

action. This creates a hierarchical structure of a task and sub-tasks. More

examples of the task structure decomposition are given in the following

sections.

3. A concept is a word or a group of words which captures a piece of

information that is necessary for performing an action.

A piece of information that describes the outcome of an action is also

considered a concept.

Some pieces of information might be complex and contain several

components. For example, an address is composed of a street, a city, a zip

code, etc. Street, City or ZipCode can be a concept by itself since it captures

a distinguishable piece of information that may be used separately. A concept

that contains other concepts such as Address is called a structured concept.

It is possible that the same word or group of words belongs to more than

one concept. For example, “tom@cmu.edu” can be both a SenderEmail and

a RecipientEmail. It is important to distinguish between similar concepts that

have different functionalities such as between a sender and a recipient as

shown in this example.

Each dialog structure component has two aspects: type and instance. A type is an

abstraction of similar information items while an instance is a specific value of an

information item. For example, query_departure_time is a type of task in a bus

schedule inquiry domain while the dialogs that correspond to this task are instances. For a

concept, an instance is also called a concept member or a slot value. For example, Color

is a concept type while “red,” “blue,” and “green” are concept members.

mailto:tom@cmu.edu

Chapter 3: Form-based Dialog Structure Representation

56

A dialog structure needs to be generalized over all relevant dialogs in a domain.

Hence, for the same type of task, some sub-tasks may be optional. Similarly, some

concepts may not be required in order to perform the same action. For instance, since not

all of the criteria have to be specified in order to retrieve flight information from a

database, some concepts, such as Airline and NoOfStop, are optional.

As the name indicates, the form-based dialog structure uses a form as a central

representation. Related pieces of information necessary for performing a particular

action, i.e. concepts, are organized into a form. A dialog structure is associated with a

form in the following ways. A simple task, which contains only one action, is represented

by a single form while a complex task is presented by a set of forms; each of its sub-tasks

is associated with one form. We can also say that each form represents information in a

subset of a dialog that contributes toward one action. Lastly, a concept is a slot inside a

form. Even though a structured concept is composed of a set of concepts, it is not

equivalent to a form because there is no action associated with it. A diagram in Figure 3.1

shows how a form captures information from a conversation in a retail domain along with

the action that makes use of the information in the form.

Figure 3.1: A form representation and its associated action in a retail domain

As a conversation progresses, the participants gradually fill in a form with pieces of

information. They may also verify the correctness of the information as they try to fill it

I want to buy scarves

How many do
you want?

Two please

client agent

Form: Order Form

ProductName: scarves

Quantity: two

fill form

Action: order_a_product
 (order two scarves)

Chapter 3: Form-based Dialog Structure Representation

57

into the form. When the form is complete (when all of the required pieces of information

are obtained) an action that associates with the form is ready to be executed. The purpose

of a goal-directed conversation is to fill one or more forms and to ensure that the

information is consistent. How each utterance affects the form and its content is described

in the next section.

3.1.2 Form operators

In the form-based dialog structure framework, when a participant speaks, his/her

utterance is considered as an operator (or an operation) that operates on a form and its

content. At the beginning of a dialog, an utterance fills the corresponding slot in the form

with the concept enclosed in the utterance. When the form is complete and its associated

action is ready to be taken, an utterance executes the action that is associated with the

form or indicates that the action has been executed. After that, the subsequent utterances

discuss the outcome of the action. These three basic operations are fill_form,

execute_form, and report_outcome, and are summarized in Table 3.1. If the

participants are not satisfied with the outcome of the action, they may fill the form with

different slot values and then re-execute the action. For example, if a client does not like

the flights that were retrieved, he/she may change the search criteria and then ask an

agent to retrieve a new set of flights. The new set of slot values get filled into the form

through the same fill_form operation as the previous set of slot values.

Each type of operator is defined based on the effect that the operator has on a form

and its content, and on the way that the operator uses the information stored in the form.

Table 3.1 contains, for each operator, a short description that describes the effect of the

operator on a form along with example expressions that indicate this operator. These

examples are taken from various task-oriented domains as indicated in the last column of

the tables. Air Travel is the Air travel planning domain described in Section 3.2; Bus

Schedule is the Bus schedule inquiry domain described in Section 3.3; Map Reading is

the Map reading domain described in Section 3.4; UAV is the UAV flight simulation

domain described in Section 3.5.

Besides the three basic operations, a dialog participant can also cancel an operation

that another participant performs if he/she believes that the operation is not appropriate at

that point of the dialog. An example of a cancel operation illustrated in Table 3.1 is

taken from the air travel planning domain when an agent canceled a client’s previous

operation, a fill_form operation which operated on the form of the second leg, in order to

continue with the form of the first leg (the current sub-task). If a serious

Chapter 3: Form-based Dialog Structure Representation

58

misunderstanding occurs the participant can use a start_over operator to clear the

content of the current form and restart the sub-task all over again.

Nevertheless, some utterances may not directly manipulate the content of the form,

but rather manage the flow of the communication and maintain the integrity of the dialog.

For example, a request_repetition operator repairs a communication problem by

requesting another dialog participant to repeat the previous utterance again. This operator

doesn’t modify or use the content of the form. This group of operators can be regarded as

a discourse-oriented operator while the first group of operators that directly manipulates

the form and is listed in Table 3.1 is considered a task-oriented operator. Discourse-

oriented operators are listed in Table 3.2.

Since the form-based dialog structure model uses the same form representation to

represent domain-specific information in every task-oriented domain, the set of operators

that can be used to manipulate the form representation is the same across all of the

domains. Thus, the lists of form operators in Table 3.1 and Table 3.2 are domain-

independent. The consequence of the same operator is the same regardless of the domain.

For example, a fill_form operator, which fills a specific slot in a form with a given

concept value, has the same behavior in every domain; only the parameters of the

operator (the identities of the slot and the form, and the concept value) that are different.

The effect of the fill_form operator on the corresponding form in the air travel planning

domain and in the map reading domain are shown in Figure 3.2 and Figure 3.3

respectively. However, the consequence of an execute_form operator is the only

exception. Since the execute_form operator executes the domain-specific action that is

associated with a form, its consequence is domain-dependent. Even though a list of form

operators and their effects on a form are domain-independent, the expressions that are

associated with each operator vary according to the characteristic of a task as illustrated

by example expressions taken from dissimilar task-oriented domains in Table 3.1 and

Table 3.2.

Chapter 3: Form-based Dialog Structure Representation

59

Operator Description Example utterance Domain

initiate_form Initiate a new form (and a new sub-task) “I also need a car” Air Travel

fill_form Fill a slot in a form with a specific concept

value

“I’d like to fly to Houston Texas” Air Travel

“I'm looking for a 41E leaving downtown Pittsburgh

around three o'clock”

Bus Schedule

“To the left for about an inch” Map Reading

“AVO, radius of H-area is five miles” UAV

execute_form

Perform a domain-specific action that is

associated with a form

“Just make the reservation” Air Travel

“We got a good photo for H-area” UAV

report_outcome Report the outcome of an execute_form

operator

“That round trip fare is four hundred three dollars

and fifty cents”

Air Travel

“Currently 7¼ miles out from H-area” UAV

cancel Cancel the previous operator “I would like to complete this leg first” Air Travel

start_over Clear the content of a form and restart the

sub-task all over again

“Start again” Map Reading

Table 3.1: A list of task-oriented operators

Chapter 3: Form-based Dialog Structure Representation

60

Operator Description Example utterance Domain

acknowledge Show understanding of another participant’s previous

utterance. (can be considered as a backchannel

response)

“Right” Map Reading

“Roger” UAV

request_repetition Request another participant to repeat the previous

utterance

“Pardon me” Bus Schedule

“Please repeat that again one more

time. F-area?”

UAV

greeting A social utterance at the beginning of the

conversation

“Thank you for calling port authority

this is Dalisa how may I help you”

Bus Schedule

closing A social utterance at the end of the conversation “Okay thank you” Air Travel

Table 3.2: A list of discourse-oriented operators

Chapter 3: Form-based Dialog Structure Representation

61

Figure 3.2: A fill_form operator and its effect on the corresponding form in the air travel

planning domain

Figure 3.3: A fill_form operator and its effect on the corresponding form in the map

reading domain

The effect of a task-oriented operator listed in Table 3.1 can be determined directly

from the utterance that is associated with the operator. However, since dialog participants

collaborate to achieve a task in a task-oriented dialog, the effects of some utterances on a

form may depend on a response from another participant. There are three types of

response-dependent operators: request, suggest and confirm. Any task-oriented

operator can be transformed into a request operator, a suggest operator, or a confirm

operator (e.g. request_fill_form, suggest_fill_form, or confirm_fill_form). Examples of

response-dependent operators are given in Figure 3.4. The names of the operators are

Client: (fill_form) i'd like to fly to houston texas

 [ArriveCity] [ArriveState]

 Form: flight query

DepartCity:
DepartState:
DepartDate:
DepartTime:
ArriveCity: houston

ArriveState: texas

GIVER: (fill_form) to the left for about an inch.

 [Direction] [Distance]

 Form: segment description

Start Location:

Direction: left

Distance: an inch

Path:

End Location:

Chapter 3: Form-based Dialog Structure Representation

62

enclosed in parentheses. The dialog in Figure 3.4 is taken from the air travel planning

domain and is the same dialog as the one in Figure 3.12.

Figure 3.4: Examples of response-dependent operators

A dialog participant (a speaker) may request another participant (a listener) to

perform a specific operation. For instance, in the second utterance of the dialog in Figure

3.4, an agent requested a client to fill_form with an ArriveCity. The client then

responded by performing a fill_form operator that filled both ArriveCity and

ArriveState into a flight query form. The request operator by itself doesn’t affect the

form; nevertheless, it creates an obligation on a listener to perform the requested

operation.

When a speaker requests that a listener perform an operation, the speaker doesn’t

specify all of the parameters of the requested operation; it is up to the listener to choose

these parameters. However, the speaker can also suggest operation parameters as

illustrated in the forth utterance of the same dialog. The agent suggested two values of an

ArriveAirport that could be filled into the flight query form. The suggest_fill_form

operator by itself didn’t fill any of these values into the form as a response from the client

Client 1: (greeting) hello

Agent 2: (request_fill_form) hi people's travel what city would you like to fly to

Client 3: (fill_form) i'd like to fly to houston texas

 [ArriveCity] [ArriveState]

Agent 4: (suggest_fill_form) into intercontinental airport or hobby

 [ArriveAirport] [ArriveAirport]

Client 5: (fill_form) at the intercontinental

 [ArriveAirport]

 …

Agent 12: (report_outcome) the only flight i have before that that's a non-stop

 would be on continental airlines that's at

 FlightInfo:[Airline]

 six thirty a.m. arrive houston at eight fifty

 FlightInfo:[DepartTime] FlightInfo:[ArriveCity] FlightInfo:[ArriveTime]

Client 13: (fill_form) that's okay i'll take that

 FlightInfo:[FlightRef]

Agent 14: (confirm_fill_form) you'll take the continental flight

 FlightInfo:[Airline]

Client 15: (respond) yes

Chapter 3: Form-based Dialog Structure Representation

63

was required in order to decide which concept value should be used. The flight query

form actually got filled in the fifth utterance by the fill_form operator which is the client’s

response to the agent’s suggest_fill_form operator.

A dialog participant may verify the correctness of an operator and its parameters that

have been specified earlier in a dialog with a confirmation utterance. To confirm the

correctness of the fill_form operator that was uttered in utterance 13, the agent verified

with the client that he/she would like to select the continental flight in the next utterance.

With an affirmative response in utterance 15, the information of the selected flight got

filled into a flight reservation form. A confirm operator is usually expressed in the form

of a yes/no question. An affirmative response carries out the confirmed operation while a

negative response discards that operation.

Usually, an utterance or a speaker turn corresponds to one form operator. However,

an utterance can correspond to more than one operator if the utterance has more than one

distinguishable effect on a form. For instance, a client’s turn in Figure 3.5 corresponds to

two operators: respond and init_form. In the first part of the turn the client gave a

negative response to an agent question about a car reservation while in the second part of

the turn the client initiated a discussion about a hotel reservation.

Figure 3.5: An example of a speaker turn that corresponds to more than one operator

I would like to note that even though a form operator describes the role of an

utterance in a task-oriented dialog similar to a dialog act, it describes specifically the

effect of the utterance on the form representation rather than modeling a speaker

underlying intention. This thesis focuses more on the form-based dialog structure

representation than on form operators since the form-based representation models

domain-dependent components which have to be acquired in every new domain while a

list of form operators is domain-independent and is pre-specified.

3.1.3 Task and sub-task decomposition

A list of actions constrains how a task is decomposed into a set of sub-tasks in each

domain. An action in the form-based dialog structure representation is defined as a

process that uses the information gathered during the conversation to create an outcome

Agent: (suggest_init_form) do you need a car
Client: (respond) no
 (init_form) but I do need a hotel

Chapter 3: Form-based Dialog Structure Representation

64

that contributes toward the conversation goal. The outcome can be the desired piece of

information, such as the inquired departure time from a bus schedule, or a new dialog

state that is closer to the desired goal state. However, a process through which a dialog

participant acquires each piece of information is not considered as an action. For

instance, in a retail domain, obtaining a product name or a quantity from a client is not an

action; it fills a form in preparation for eventual execution of the corresponding action.

But using the product name and the quantity to make an order is an action since this

process makes a dialog reaches its goal state.

Usually, an action is observable from a verbal expression that associates with it (for

example, “let me look that up for you”) or from a physical action (for example, an

operator types a query and submits it to a database system). Another indication of an

action that can be observed is a discussion of the new information obtained from the

execution of the action. A retrieved departure time in a bus schedule inquiry domain is an

example. However, there are some cases that actions are less noticeable. One example is

defining a new term (grounding). A grounding action associates a word with its definition

or its properties. This knowledge is stored for future reference. If a dialog participant only

memorizes the knowledge, neither physical action nor verbal expression occurs.

Nevertheless, the process that discusses the term and the information regarding its

definition and properties are observable. The grounding process is considered a sub-task

which corresponds to a grounding action while the term, its definition, and properties are

concepts. The grounding process is further discussed in Section 3.4 and 3.5 when the

structures of dialogs in the map reading domain and the UAV flight simulation domain

are analyzed respectively.

The definition of an action in the form-based dialog structure representation is

different from the one in the plan-based model discussed in Section 2.1.2.3. The action in

the plan-based model is a communicative action expressed by an utterance and is usually

represented by a speech act. The communicative action is more fine-grained and captures

a speaker’s intention rather than a physical action while the action in the form-based

representation occurs at the end of an information-exchanging sub-dialog and is defined

as a process (usually observable) that uses the exchanged information to create an

outcome that contributes toward the conversation goal.

I would like to note that the notions of AccessFrame and attribute proposed by Hardy

et al. (2003) and reviewed in Section 2.1.3 are fairly similar to the notions of task and

concept in the proposed form-based dialog structure representation. However, the form-

based representation offers a richer representation by providing a hierarchical structure of

Chapter 3: Form-based Dialog Structure Representation

65

tasks and sub-tasks rather than a flat structure. The form-based representation also

provides a more general definition for each dialog structure component and is, therefore,

applicable to various types of task-oriented domains. Since Hardy’s dialog structure

representation is based on the DAMSL annotation scheme, it restricts itself to the

information available at the level of utterance (e.g. an AccessFrame only describes a task

that corresponds to each utterance) and does not describe an aggregate structure over

multiple utterances. The intentional structure in Grosz and Sidner’s Theory of discourse

structure (Grosz and Sidner, 1986) is also closely related to the structure of tasks and sub-

tasks. However, the intentional structure is influenced by discourse segment purposes and

their relations rather than domain-specific actions, which capture the characteristics of the

tasks more directly, as in case of the form-based dialog structure representation.

To model the structure of a dialog in a new task-oriented domain with the form-based

dialog structure representation, a list of tasks, sub-tasks, and concepts in that domain has

to be identified. This list can be considered as a domain-dependent tagset and is not pre-

specified by the form-based representation but will be identified from in-domain dialogs.

The notions of task, sub-task, and concept defined in this section can be regarded as

meta-tags and are domain-independent. A summary of task, sub-task, and concept

definitions are given in Figure 3.6.

For consistency, I will use the following formatting styles to mark tasks, sub-tasks,

concepts, and actions in the rest of this thesis document.

● Task and sub-task types are marked in bold with “_” connects all the words

together, e.g. create_an_itinerary and grounding.

● Concept types are marked in bold with all the first letter of each word

capitalized e.g. ProductName and Quantity.

● All task, sub-task and concept instances are marked with double quotation

marks e.g. “blue” and “green”.

● Actions are marked in bold italic with “_” connects all the words together e.g.

make_a_flight_reservation.

Chapter 3: Form-based Dialog Structure Representation

66

Figure 3.6: The summary of the form-based dialog structure representation

3.2 Air travel planning domain

A dialog in an air travel planning domain is a conversation between an experienced

travel agent and a client arranging a trip that includes plane, hotel and car reservations. A

plane ticket reservation is mandatory while hotel and car reservations are optional. A trip

can be either a domestic or an international one. In some conversations, a client may have

multiple destinations. A corpus of human-human conversations in this domain was

collected during the development of the CMU Communicator system. The data collection

process is described in (Eskenazi et al., 1999). Figure 3.7 shows a transcript of a recorded

conversation in the air travel planning domain. The number that follows the speaker label

is an utterance ID. The transcript also includes some noises and fillers (e.g. /UH/ and

PAUSE) made by both participants and from the environment. Examples of dialog

structure analysis discussed in this section are drawn mainly from this dialog.

Task is a subset of a dialog that has one specific goal
● A dialog corresponds to one task if it has only one goal
● A dialog corresponds to a set of tasks if it has multiple goals and each task

may stand alone as a separate dialog
● If as a task requires more than one action, it is decomposed into a set of sub-

tasks
Sub-task is a step in a task that contains sufficient information to execute an action*

● ends after the action that associates with that sub-task is executed or after the
outcome of the action has been discussed.

Concept is a word or a group of words that captures
● the information necessary for performing an action
● the information about the outcome of an action

 It is also important to distinguish between similar concepts that have different
functionalities.

*An action is a process that uses related pieces of information stored in a form to
● create a new piece of information (for example, through computation or

database retrieval)
or,
● move a conversation to a new state that is closer to the desired goal state

An action is not a process through which a dialog participant acquires individual
pieces of information.

Chapter 3: Form-based Dialog Structure Representation

67

Figure 3.7: An example dialog in the air travel planning domain

Client 1: HELLO
Agent 2: /H#/ HI PEOPLE'S TRAVEL WHAT CITY WOULD YOU LIKE TO FLY TO
Client 3: I'D LIKE TO FLY TO HOUSTON TEXAS
Agent 4: INTO INTERCONTINENTAL AIRPORT OR HOBBY
Client 5: AT THE /UH/ INTERCONTINENTAL
Agent 6: AND DEPARTING PITTSBURGH ON WHAT DATE
Client 7: DEPARTING ON FEBRUARY TWENTIETH
Agent 8: WHAT TIME WOULD YOU LIKE TO DEPART PITTSBURGH
Client 9: /UM/ EARLY MORNING NOT BEFORE SEVEN
Agent 10: OKAY U.S. AIRWAYS HAS A NON-STOP AT TEN OH FIVE A.M. YOU'LL ARRIVE INTO

HOUSTON AT TWELVE TWENTY P.M.
Client 11: IS THERE AN EARLIER FLIGHT
Agent 12: THE ONLY FLIGHT I HAVE BEFORE THAT THAT'S A NON-STOP WOULD BE ON

CONTINENTAL AIRLINES THAT'S AT SIX THIRTY A.M. ARRIVE HOUSTON AT EIGHT
FIFTY

Client 13: THAT'S OKAY I'LL TAKE THAT
Agent 14: YOU'LL TAKE THE CONTINENTAL FLIGHT
Client 15: YES
Agent 16: AND WHAT DAY WOULD YOU BE RETURNING
Client 17: ON /UM/ *PAUSE* MONDAY FEBRUARY TWENTY THIRD
Agent 18: WHAT TIME WOULD YOU LIKE TO DEPART HOUSTON
Client 19: AROUND FIVE P.M.
Agent 20: I HAVE A NON-STOP ON CONTINENTAL DEPARTING HOUSTON AT SIX FORTY FIVE

P.M. ARRIVING INTO PITTSBURGH AT TEN TWENTY THREE P.M.
Client 21: OKAY
Agent 22: THAT ROUND TRIP FARE IS FOUR HUNDRED THREE DOLLARS AND FIFTY CENTS
Client 23: OKAY
Agent 24: WOULD YOU LIKE ME TO MAKE THE RESERVATION AND DID YOU NEED A CAR
Client 25: YEAH
Agent 26: THEY LEAST EXPENSIVE RATE I HAVE WOULD BE WITH THRIFTY RENTAL CAR AT

THE HOUSTON AIRPORT FOR THE WEEKEND RATE OF TWENTY THREE NINETY A
DAY

Client 27: OKAY
Agent 28: WOULD YOU LIKE ME TO BOOK THAT CAR FOR YOU
Client 29: YES
Agent 30: OKAY AND WOULD YOU NEED A HOTEL WHILE YOU'RE IN HOUSTON
Client 31: YES
Agent 32: AND WHERE AT IN HOUSTON
Client 33: /UM/ DOWNTOWN
Agent 34: OKAY
Agent 35: DID YOU HAVE A HOTEL PREFERENCE
Client 36: /UM/ ANYTHING HILTON #NOISE# MARRIOTT
Agent 37: I HAVE A MARRIOTT IN DOWNTOWN HOUSTON FOR ONE OH NINE A NIGHT
Client 38: OKAY
Agent 39: WOULD YOU LIKE ME TO BOOK THAT
Client 40: YES
Agent 41: OKAY
Agent 42: WOULD YOU LIKE TO PURCHASE THE TICKET TODAY OR JUST MAKE THE

RESERVATION
Client 43: /H#/ JUST MAKE THE RESERVATION
Agent 44: I CAN HOLD THAT TICKET FOR YOU UNTIL TOMORROW AT FIVE P.M. IF YOU

COULD PLEASE CALL US BY THEN
Client 45: OKAY
Agent 46: OKAY THANK YOU
Client 47: THANK YOU #CUT_IN#
Agent 48: BYE BYE
Client 49: YEAH BYE

Chapter 3: Form-based Dialog Structure Representation

68

A conversation in the air travel domain is an information-accessing task. In this

domain, a travel agent helps a client arrange an air-travel itinerary by retrieving flight,

hotel, and car rental information from a backend database. In order to do so, the client has

to provide the agent with his/her preferences and constraints on the itinerary. Since 1) the

conversation goal is achieved by performing domain actions (retrieving information from

the database and making a travel reservation), and 2) the client and the agent have to

exchange information in order to carry out these actions through dialog, the

characteristics of a dialog in the air travel domain match all of the assumptions made by

the form-based dialog structure representation. Thus, a dialog in this domain could be

modeled by the form-based representation. Detailed analysis of the structure of an air

travel planning dialog is given below.

The goal of a conversation in the air travel planning domain is to create an air-travel

itinerary for a trip. In each conversation, a client usually has only one trip in mind;

therefore, the entire dialog corresponds to a single task, create_an_itinerary. However,

in some cases, a client may want to arrange several trips in one conversation. In that case,

a dialog corresponds to several create_an_itinerary tasks; one for each trip.

An air-travel itinerary consists of three types of reservations: a plane ticket

reservation, a hotel reservation, and a car rental reservation. A plane ticket reservation is

accomplished through a make_a_flight_reservation action. Similarly, a hotel reservation

and a car rental reservation are achieved by a make_a_hotel_reservation action and a

make_a_car_reservation respectively. Hence, the create_an_itinerary task is

decomposed into three sub-tasks, one for each type of reservation (flight, hotel, and car).

All types of reservations are regarded as sub-tasks instead of tasks even though each of

them has a clear goal (to make a specific type of reservation) because they belong to the

same itinerary and there is also some dependency between them as will be discussed later

in this section. Figure 3.8 shows a decomposition of the task create_an_itinerary into

three sub-tasks: reserve_flight, reserve_hotel, and reserve_car together with their

corresponding forms and actions. The detail of each form is omitted and will be discussed

later on.

If a trip has multiple destinations, an itinerary may contain more than one plane ticket

reservation as well as multiple hotel and car reservations. In that case, a dialog may

contain multiple instances of reserve_flight, reserve_hotel, and reserve_car sub-tasks.

On the other hand, in some conversations, reserve_hotel, and/or reserve_car sub-tasks

are optional. Only a reserve_flight sub-task is mandatory in this domain.

Chapter 3: Form-based Dialog Structure Representation

69

Figure 3.8: A task, sub-tasks and their corresponding forms and actions in the air travel

planning domain

A reserve_flight sub-task can be further decomposed. To make a flight reservation

for a round trip, an agent needs to know the flight that a client would like to take for each

leg of the trip (i.e. a departure flight and a return flight). The client must provide criteria

of the preferred flight for each leg to the agent who then retrieves flight(s) that matches

the given criteria from a database. Therefore, a reserve_flight sub-task is then

decomposed into two query_flight_info sub-subtasks, one for each

retrieve_flight_fromDB action required for each leg of the trip. The criteria for retrieving

a desired flight include a DepartureCity, an ArrivalCity, a DepartureDate, an

ArrivalDate, a DepartureTime, an ArrivalTime, an Airline, etc. These are concepts in

a flight query form associated with a query_flight_info sub-subtask. Since not all of the

criteria have to be specified in order to retrieve information from a database, some

concepts in the flight query form may not get filled.

In the dialog in Figure 3.7, a client would like to reserve a round trip flight from

Pittsburgh to Houston. Two flight query forms, one for each leg of the round trip

reservation, are shown in Figure 3.9. Only the slots that are discussed in the dialog are

presented in the forms. In some examples, detailed representation and annotation are

omitted for a display purpose. Some concept names may be shortened and structured

concept components may be excluded. For example, a DepartureDate is a structure

concept consists of a Month and a Date, but for simplicity we only represent it as

“DepartDate: February twentieth” instead of “DepartDate: Month: February Date:

Dialog A

Goal: create
an air-travel
itinerary

Form: flight reservation Sub-task:
reserve_flight

:
 Action: make_a_flight

reservation

Sub-task:
reserve_hotel

Sub-task:
reserve_car

:

:

Form: hotel reservation

Form: car reservation

 Action: make_a_hotel
reservation

 Action: make_a_car
reservation

Chapter 3: Form-based Dialog Structure Representation

70

twentieth” in the flight query form. A dialog structure annotation of the conversation in

Figure 3.7 is given at the end of this section.

The result of a retrieve_flight_fromDB action is the information of the flight(s) that

matches the given criteria. “CONTINENTAL AIRLINES THAT'S AT SIX THIRTY A.M. ARRIVE

HOUSTON AT EIGHT FIFTY” excerpted from Utterance 12 in Figure 3.7 is one example of

the result. This piece of information can be regarded as a structured concept FlightInfo,

which composes of an Airline “Continental”, a DepartTime “six thirty a.m.”, an

ArriveCity “Houston”, and an ArriveTime “eight fifty”. A FlightInfo is a structured

concept that refers to a particular flight and will be used by a travel agent to make a flight

reservation.

Figure 3.9: Flight query forms, their corresponding actions and the outcomes for a round

trip reservation

In many cases, there is more than one flight that matches a client’s criterion. The

client needs to select only one flight from a list of flights returned by a

retrieve_flight_fromDB action. After the client select the desired flight, the FlightInfo of

the selected flight gets filled into a flight reservation form. When all required FlightInfos

for that trip are obtained, e.g. two for a round trip, an agent will perform a

make_a_flight_reservation action. Figure 3.10 shows a flight reservation form that

Form: flight query

DepartCity: Pittsburgh
ArriveCity: Houston
ArriveState: Texas
ArriveAirport:

Intercontinental airport
DepartDate:
 February twentieth
DepartTime:
 early morning
 not before seven

:

Action: retrieve_flight
 fromDB

Retrieve a flight that
matches the criteria in a
flight query form from a
database

FlightInfo:
 Airline: Continental
 DepartCity: Houston
 DepartTime:
 six forty-five p.m.
 ArriveCity: Pittsburgh
 ArriveTime:
 ten twenty-three p.m.

Form: flight query

DepartCity: Houston
ArriveCity: Pittsburgh
DepartDate:
 Monday February
 twenty third
DepartTime: five p.m.

FlightInfo:
 Airline: Continental
 DepartTime: six thirty a.m.
 ArriveCity: Houston
 ArriveTime: eight fifty

:

Action: retrieve_flight
 fromDB

Retrieve a flight that
matches the criteria in a
flight query form from a
database

Sub-subtask:
query_flight_info

Sub-subtask:
query_flight_info

Chapter 3: Form-based Dialog Structure Representation

71

contains two FlightInfos, one for each leg of the trip, retrieved by two

retrieve_flight_fromDB actions in Figure 3.9. In some conversations, a flight reservation

form may contain additional concepts such as a client’s Name and a PaymentMethod.

These additional concepts may not be discussed in some dialogs such as the one in Figure

3.7 because an agent may already have that information in a client’s profile.

Figure 3.10: A reserve_flight sub-task and the corresponding form and action for a round

trip reservation

Another action that may occur in a reserve_flight sub-task is a retrieve_flights_fare

action. A client may want to know the ticket price before making a reservation. Normally

a ticket fare is based on all of the flights in the itinerary together. For example, a round

trip fare is usually cheaper than the summation of two one-way fares. Therefore, the

retrieve_flights_fare action requires information of all of the flights in an itinerary. Since

a FlightInfo is an outcome of a retrieve_flight_fromDB action, a query_flights_fare

sub-subtask, which corresponds to a retrieve_flights_fare action, occurs after all

query_flight_info sub-subtasks. Figure 3.11 shows a fare query form for retrieving a

ticket fare of a round trip ticket in Figure 3.9.

Form: flight reservation

FlightInfo:
 Airline: Continental
 DepartTime: six thirty a.m.
 ArriveCity: Houston
 ArriveTime: eight fifty

FlightInfo:
 Airline: Continental
 DepartCity: Houston
 DepartTime: six forty-five p.m.
 ArriveCity: Pittsburgh
 ArriveTime: ten twenty-three p.m.
Name:
PaymentMethod:

Sub-task:
reserve_flight

:

Action: make_a_flight
reservation

Make a reservation for
“a Continental flight
departing at six thirty
a.m. arriving Houston at
eight fifty” and “a
Continental flight
departing Houston at
six forty-five p.m.
arriving Pittsburgh at
ten twenty-three p.m.”

Chapter 3: Form-based Dialog Structure Representation

72

Figure 3.11: A fare query form and its corresponding action.

Since actions and the corresponding forms for reserve_hotel, and reserve_car sub-

tasks are quite similar, I only discuss a reserve_hotel sub-task in this section. In a

reserve_hotel sub-task, a client first specifies the criteria of the hotel room that he/she

would like to reserve such as a HotelName and an Area of a city. These concepts are

filled into a hotel query form which is then used by an agent to retrieve hotel room(s) that

matches the given criteria from a database via a retrieve_hotel_info_fromDB action. An

example of a hotel query form is given in Figure 3.13 (f). query_hotel_info is a sub-

subtask under a reserve_hotel sub-task and is associated with a

retrieve_hotel_info_fromDB action. Similar to a FlightInfo, a HotelInfo is a structured

concept that contains information about a particular hotel room retrieved from a database.

The client has to select only one hotel room from a list of hotel rooms retrieved by a

retrieve_hotel_info_fromDB action. The selected HotelInfo gets filled into a hotel

reservation form as illustrated in Figure 3.13 (g).

A reserve_hotel sub-task is less complex than a reserve_flight sub-task. A hotel for

each stop in an itinerary can be reserved separately while all of the flights should be

reserved together as in the case of a round trip. Hence, only one HotelInfo is required in

each hotel reservation form while a FlightInfo of every leg in the itinerary is required for

a flight reservation form. Hotel fare is also associated with an individual hotel room;

therefore, it can be retrieved from a database by the same retrieve_hotel_info_fromDB

action as other information in a HotelInfo. A separate retrieve_hotel_fare action is not

necessary.

Sub-subtask:
query_flights_fare

:

Action: retrieve_flights_fare

Retrieve a round trip fare for
“a Continental flight departing
at six thirty a.m. arriving
Houston at eight fifty” and “a
Continental flight departing
Houston at six forty-five p.m.
arriving Pittsburgh at ten
twenty-three p.m.”

Form: flight reservation

FlightInfo:
 Airline: Continental
 DepartTime: six thirty a.m.
 ArriveCity: Houston
 ArriveTime: eight fifty

FlightInfo:
 Airline: Continental
 DepartCity: Houston
 DepartTime: six forty-five p.m.
 ArriveCity: Pittsburgh

 ArriveTime: ten twenty-three p.m.

Chapter 3: Form-based Dialog Structure Representation

73

Table 3.3 summarizes the structure of a dialog in the air travel planning domain. The

hierarchical structure of tasks and sub-tasks is indicated by the numbering in the first

column. Examples of related concepts for each task or sub-task are presented in the last

column.

ID Name Associated action Related concepts

Task 1 create_an_itinerar

y

Sub-task 1.1 reserve_flight make_a_flight_reservation FlightInfos, Name,

PaymentMethod

Sub-subtask 1.1.1 query_flight_info retrieve_flight_fromDB DepartCity, ArriveCity,

DepartTime, DepartDate

Sub- subtask 1.1.2 query_flights_fare retrieve_flights_fare FlightInfos

Sub-task 1.2 reserve_hotel make_a_hotel_reservation HotelInfo, Name,

PaymentMethod

Sub- subtask 1.2.1 query_hotel_info retrieve_hotel_info_fromD

B

HotelName, Area

Sub-task 1.3 reserve_car make_a_car_reservation CarInfo, Name,

PaymentMethod

Sub- subtask 1.3.1 query_car_info retrieve_car_info_fromDB RentalCompany,

CarSize

Table 3.3: Task, sub-tasks and their corresponding actions and concepts in the air travel

planning domain

Figure 3.12 illustrates a dialog structure annotation for the conversation in Figure 3.7.

In this example, the entire dialog corresponds to one task create_an_itinerary; therefore,

only sub-task and sub-subtask boundaries are illustrated.

The following notions are used to illustrate the structure of a dialog.

● The bracket on the left shows the boundaries of a sub-task while the bracket

on the right shows the boundaries of a sub-subtasks

● An instance of a concept is underlined and the concept name is enclosed in a

square bracket underneath it.

● The name of the structured concept is placed on the left-handed side next to

its component names. For simplicity the annotation of some structured

concept components are excluded. For example, the full annotation for

“february twentieth” is DepartDate:[[Month][Date]].

● (action: …) indicates approximately when an action occurs in a conversation

Chapter 3: Form-based Dialog Structure Representation

74

This dialog consists of three sub-tasks: reserve_flight (round trip), reserve_car, and

reserve_hotel. The criteria for an out-bound flight and an in-bound flight are captured in

the flight query forms in Figure 3.13 (a) and (b) respectively. The flights that a client

selected are presented in a flight reservation form in Figure 3.13 (c) under FlightInfo

concepts. Both concepts were used to retrieve a Fare in a query_flights_fare sub-

subtask. A separate fare query form is not presented. The make reservation part of the

flight reservation was interrupted by the discussion of the car reservation. It was resumed

at the end of the conversation. Information about a client’s name and a payment method

were omitted in this dialog.

There are a lot of dependencies among a flight reservation, a car reservation, and a

hotel reservation. An agent did not need more information about a rental car from the

client as all of the concepts required in a car query form. For instance, PickUpDate and

PickUpTime could be inferred from the information of the selected flights. These

implicit concepts are marked in italic in the car query form in Figure 3.13 (d). The

information of the car that the client reserved is shown in Figure 3.13 (e). For the hotel

reservation, the agent inquired a preferred Area and HotelName from the client in

addition to a CheckInDate and a CheckOutDate that can be inferred from the selected

flights. The hotel query form and the hotel reservation form are shown in Figure 3.13 (f)

and (g) respectively. Implication of implicit concepts and interrupted sub-tasks on dialog

structure learning is discussed in Section 3.8.

Chapter 3: Form-based Dialog Structure Representation

75

Figure 3.12: An example of dialog structure annotation in the air travel domain

Client 1: hello

Agent 2: hi people's travel what city would you like to fly to

Client 3: i'd like to fly to houston texas

 [ArriveCity] [ArriveState]

Agent 4: into intercontinental airport or hobby

 [ArriveAirport] [ArriveAirport]

Client 5: at the intercontinental

 [ArriveAirport]

Agent 6: and departing pittsburgh on what date

 [DepartCity]

Client 7: departing on february twentieth

 [DepartDate]

Agent 8: what time would you like to depart pittsburgh

 [DepartCity]

Client 9: early morning not before seven

 [DepartTime]

Agent 10: okay (action: retrieve_flight_fromDB)

 u.s. airways has a non-stop at ten oh five a.m.

 FlightInfo:[Airline] FlightInfo:[DepartTime]

 you'll arrive into houston at twelve twenty p.m.

 FlightInfo:[ArriveCity] FlightInfo:[ArriveTime]

Client 11: is there an earlier flight

Agent 12: the only flight i have before that that's a non-stop would be on continental

 FlightInfo:[Airline]

 airlines that's at six thirty a.m. arrive houston at eight fifty

 FlightInfo:[DepartTime] FlightInfo:[ArriveCity] FlightInfo:[ArriveTime]

Client 13: that's okay i'll take that

 FlightInfo:[FlightRef]

Agent 14: you'll take the continental flight

 FlightInfo:[Airline]

Client 15: yes

Agent 16: and what day would you be returning

Client 17: on monday february twenty third

 [DepartDate]

Agent 18: what time would you like to depart houston

 [DepartCity]

Client 19: around five p.m.

 [DepartTime]

S
u

b
-s

u
b

ta
s
k

: q
u

e
ry

_
flig

h
t_

in
fo

s
u

b
-t

a
s
k

:
re

s
e
rv

e
_

fl
ig

h
t

S
u

b
-s

u
b

ta
s
k

: q
u

e
ry

_
flig

h
t_

in
fo

Chapter 3: Form-based Dialog Structure Representation

76

Figure 3.12: An example of dialog structure annotation in the air travel domain (cont.)

Agent 20: (action: retrieve_flight_fromDB)

 i have a non-stop on continental departing houston at six forty five p.m.

 FlightInfo:[DepartCity] FlightInfo:[DepartTime]

 arriving into pittsburgh at ten twenty three p.m.

 FlightInfo:[ArriveCity] FlightInfo:[ArriveTime]

Client 21: okay

Agent 22: (action: retrieve_flights_fare)

 that round trip fare is four hundred three dollars and fifty cents

 [Fare]
Client 23: okay

Agent 24: would you like me to make the reservation and do you need a car

Client 25: yeah

Agent 26: (action: retrieve_car_info_fromDB)

 the least expensive rate i have would be with thrifty rental car

 CarInfo:[RentalCompany]

 at the houston airport for the weekend rate of twenty three ninety a day

 CarInfo:[PickUpLoc] CarInfo:[Fare]

Client 27: okay

Agent 28: would you like me to book that car for you

Client 29: yes (action: make_a_car_reservation)

Agent 30: okay and would you need a hotel while you're in houston

 [City]
Client 31: yes

Agent 32: and where at in houston

 [City]
Client 33: downtown

 [Area]

Agent 34: okay

Agent 35: did you have a hotel preference

Client 36: anything hilton marriott

 [HotelName] [HotelName]

Agent 37: (action: retrieve_hotel_info_fromDB)

 i have a marriott in downtown houston for one oh nine a night

 HotelInfo:[HotelName] HotelInfo:[Area] HotelInfo:[City] HotelInfo:[Fare]

Client 38: okay

Agent 39: would you like me to book that

Client 40: yes

Agent 41: okay (action: make_a_hotel_reservation)

Agent 42: would you like to purchase the ticket today or just make the reservation

Client 43: just make the reservation (action: make_a_flight_reservation)

Agent 44: i can hold that ticket for you until tomorrow at five p.m. if you could please call us by then

S
u

b
-s

u
b

ta
s
k

:
q

u
e

ry
_

flig
h

ts
_
fa

re

S
u

b
-s

u
b

ta
s
k

:
 q

u
e

ry
_

c
a
r_

in
fo

s
u

b
-t

a
s
k

:
re

s
e
rv

e
_

c
a

r
S

u
b

-s
u

b
ta

s
k

: q
u

e
ry

_
h

o
te

l_
in

fo

s
u

b
-t

a
s
k

:
re

s
e
rv

e
_

h
o

te
l

s
u

b
-t

a
s
k

:
re

s
e
rv

e
_

fl
ig

h
t

Chapter 3: Form-based Dialog Structure Representation

77

Figure 3.13: All of the forms that correspond to the dialog structure annotation in the air

travel domain presented in Figure 3.12

Form: flight query

DepartCity: Houston
ArriveCity: Pittsburgh
DepartDate: Monday February
 twenty third

DepartTime: five p.m.

Form: flight reservation

FlightInfo:
 Airline: Continental
 DepartTime: six thirty a.m.
 ArriveCity: Houston
 ArriveTime: eight fifty

FlightInfo:
 Airline: Continental
 DepartCity: Houston
 DepartTime: six forty-five p.m.
 ArriveCity: Pittsburgh
 ArriveTime: ten twenty-three p.m.

Fare: four hundred three dollars

 and fifty cents

Name:

PaymentMethod:

Form: hotel reservation

HotelInfo:
 City: Houston
 Area: downtown
 HotelName: Marriott
 Fare: one oh nine a night
Name:
PaymentMethod:

Form: hotel query

City: Houston
Area: downtown
HotelName: Hilton, Marriott
CheckInDate: February twentieth

CheckOutDate: February twenty third

Form: car query

PickUpLoc: Houston
PickUpDate: February twentieth
PickUpTime: after eight fifty
DropOffLoc: Houston
DropOffDate: February twenty third
DropOffTime: before six forty-five p.m.

Form: flight query

DepartCity: Pittsburgh
ArriveCity: Houston
ArriveState: Texas
ArriveAirport: Intercontinental

 airport
DepartDate: February twentieth
DepartTime: early morning

 not before seven

Form: car reservation

CarInfo:
 PickUpLoc: Houston airport
 RentalCompany: Thrifty
 Fare: twenty three ninety a day
Name:
PaymentMethod:

(a)

(b) (c)

(d) (e)

(f) (g)

Chapter 3: Form-based Dialog Structure Representation

78

3.3 Bus schedule inquiry domain

Conversations in the bus schedule inquiry domain are taken from the Let’s Go corpus

(Raux et al., 2003). This corpus is a collection of calls to the Pittsburgh Port Authority

Transit system enquiring about the bus schedule and other related issues such as lost-and-

found and driver behavior complaint. Each conversation is a telephone conversation

between a help desk operator and a client. We selected those conversations that involved

enquiries about the bus schedule for the analysis. An example of dialogs in this domain is

shown in Figure 3.14. The number that follows the speaker label is an utterance ID. The

transcript also includes some noises and fillers (e.g. /um/ and /feed/) made by both

participants and from the environment.

Figure 3.14: An example dialog in the bus schedule enquiry domain

A conversation in the bus schedule inquiry domain is considered an information-

accessing task similar to a conversation in the air travel planning domain discussed in the

previous section. In this domain, an operator helps a client find the desired bus

information by looking up the information from the bus schedule. In order to do so, the

client has to provide enough criteria to do the search. Since 1) the conversation goal is

achieved through the execution of a domain action (looking up the information from the

bus schedule), and 2) the client and the operator have to exchange information required to

perform this action through dialog, the characteristics of a dialog in the bus schedule

inquiry domain match all of the assumptions made by the form-based dialog structure

representation. Therefore, a dialog in this domain could be modeled by the form-based

representation. Detailed analysis of the structure of a bus schedule inquiry dialog is given

below.

The goal of a conversation in this domain is to obtain information about the bus

schedule. However, unlike a conversation in the air travel planning domain, a client’s

specific goal may vary from dialog to dialog depending on the specific piece of

information that the client would like to obtain from the bus schedule (e.g., the time that a

specific bus leaves a given bus stop location, or the numbers of the buses that run

between two locations).

Operator 1: thank you for calling port authority this is dalisa how may i help you
Client 2: yeah /feed/ i'm looking for a 41E leaving downtown pittsburgh /um/

around three o'clock
Operator 3: there would be one due at two_forty_five three_seventeen or

three_forty_five
Client 4: ok thank you

Chapter 3: Form-based Dialog Structure Representation

79

To answer a client’s question, an operator looks up the inquired pieces of information

from the bus schedule. In order to do so, the operator needs to gather enough information

about the question from the client. For example, to answer a client’s question about a

departure time, an operator needs a BusNumber and a DepartureLocation from the

client. These pieces of information are slots in a query form as shown in Figure 3.15.

After getting all of the necessary information, the operator retrieves the departure time

from a database and then informs the retrieved information to the client. The outcome of

the action retrieve_dept_time_fromDB, which is a DepartureTime, is also a concept.

Only one simple action, “retrieve information from the database”, is required to

accomplish a conversation goal; therefore, in this domain there is no need to decompose a

task into sub-tasks.

If a dialog has a different goal, the corresponding action and form will be different.

Dialog B shows another goal, “get bus numbers”; therefore, the corresponding form

contains different slot items.

Figure 3.15: Actions and the associated forms in the bus schedule inquiry domain

There are several types of tasks in this domain depending on the type of information

that a client would like to obtain from the bus schedule. Two types of tasks are shown in

Table 3.4. The concepts shown in the query forms in Figure 3.15 and in Table 3.4 are a

minimal set of concepts required for each action. Human-human conversations are more

flexible than a query language; therefore, for the same type of task a slightly different set

of concepts may be used. A client may specify additional information to constraint the

search as shown in the next example. On the other hand, the concept that is commonly

:

Dialog A

Goal: get departure

time

Form: Query Departure Time

BusNumber: A

DepartureLocation: B

:

Action: retrieve_depart_time_fromDB

Retrieve DepartureTime from the
schedule database where BusNumber =

“A” and DepartureLocation = “B”

Form: Query Bus Number

DepartureLocation: X

ArrivalLocation: Y

Action: retrieve_bus_number_fromDB

Retrieve BusNumber from the schedule
database where DepartureLocation = “X”

and ArrivalLocation = “Y”

Dialog B

Goal: get bus

numbers

Chapter 3: Form-based Dialog Structure Representation

80

known by both participants can be omitted; for instance, the departure date can be

assumed to be the current date.

ID Name Associated action Related concepts

Task 1 query_departure_time retrieve_dept_time_fromDB BusNumber,

DepartureLocation

Task 2 query_bus_number retrieve_bus_number_fromDB DepartureLocation,

ArrivalLocation

Table 3.4: Examples of tasks and the corresponding actions and concepts in the bus

schedule inquiry domain

Figure 3.16 illustrates a dialog structure annotation for the conversation shown in

Figure 3.14. The goal of this conversation it to get the departure time for the bus of

interest. The client also specified an approximated DepartureTime that he was interested

in to reduce the scope of the search. This concept is an optional concept and is not listed

in Table 3.4. The corresponding form of this conversation is shown in Figure 3.17.

The following notions are used to illustrate the structure of a dialog. Theses notions

are similar to the ones used in Figure 3.12.

● The curly bracket on the right shows the boundaries of a task.

● An instance of a concept is underlined and the concept name is enclosed in a

square bracket underneath it.

● The name of the structured concept is placed on the left-handed side next to

its component names. A DeptTime (a shorten form of a DepartureTime) is a

structured concept consists of an Hour and a Min (minute).

● (action: …) indicates approximately when an action occurs in a conversation .

Chapter 3: Form-based Dialog Structure Representation

81

Figure 3.16: An example of dialog structure annotation in the bus schedule inquiry

domain

Figure 3.17: A form query_departure_time in the bus schedule inquiry domain

Most of the dialogs in this domain have only one goal; therefore, the entire dialog

corresponds to one task as illustrated in Figure 3.16. However, if a client would like to

ask several questions about the bus schedule, that dialog has multiple goals, one for each

question, and hence corresponds to multiple tasks. Unlike all sub-tasks in the air travel

planning domain, each bus schedule query in this domain is independent from each other

as all required information is independent; therefore, it can be a separate task. In the

following conversation, a client would like to know a DepartureTime of two different

buses. So, this dialog corresponds to two query_departure_time tasks as illustrated by

the annotation in Figure 3.18.

ta
sk

 =
 q

u
ery

 d
ep

a
rtu

re tim
e

Operator 1: thank you for calling port authority this is dalisa how may i help you

Client 2: yeah i'm looking for a 41E leaving downtown pittsburgh

 [BusNumber] [DepartureLocation]

 around three o'clock

 DepartTime:[[Hour]]

Operator 3: (action: retrieve_depart_time_fromDB)

 there would be one due at two forty-five three seventeen

 DepartTime:[[Hour][Min]] DepartTime:[[Hour][Min]]
 or three forty-five

 DepartTime:[[Hour][Min]]

Client 4: ok thank you

ta
sk

 =
 q

u
ery

_
d

ep
a
rtu

re_
tim

e

Form: Query Departure Time

BusNumber: 41E

DepartureLocation: downtown pittsburgh

DepartureTime: Hour: three (approximated)

Chapter 3: Form-based Dialog Structure Representation

82

Figure 3.18: An example of dialog structure annotation for a dialog that contains two

tasks

3.4 Map reading domain

Dialogs in the map reading domain are taken from the HCRC Map Task corpus

(Anderson et al., 1991), collected at University of Edinburgh and University of Glasgow.

Each dialog is a conversation between two participants: a route giver and a route

follower. Both of them have maps of artificial places; however, only the route giver’s map

has a route printed on it while the route follower’s one does not. The goal of the

conversation is to have the follower reproduce the route on the giver’s map solely through a

dialog. The maps may have differences that complicate the task. The task in this domain can be

considered as a problem-solving task. In order for the follower to reproduce the route on

his/her map, the giver has to describe how to draw it to the follower. Since 1) the

conversation goal is achieved by performing a domain action, drawing a route, and 2) the

Operator 1: thank you for calling the port authority this jenny may i help you

Client 2: yes i'd like to know what time the 1A comes to the clark building in town

 [BusNumber] [DepartureLocation]

 between the hours of three and four o'clock

 DepartTime:[[Hour]] DepartTime:[[Hour]]

Operator 3: (action: retrieve_depart_time_fromDB)

 three oh-nine three fifty and four oh-nine

 DepartTime:[[Hour][Min]] DepartTime:[[Hour][Min]] DepartTime:[[Hour][Min]]

Client 4: how bout the 91A butler street outbound

 [BusNumber] [Direction]

 what time does it come to the clark building

 [DepartureLocation]

Operator 5: (action: retrieve_depart_time_fromDB)

 there's a three twenty-eight a three fifty-eight

 DepartTime:[[Hour][Min]] DepartTime:[[Hour][Min]]

 and a four twenty

 DepartTime:[[Hour][Min]]

Client 6: thank you very much

Operator 7: you're welcome

ta
sk

 =
 q

u
ery

_
d

ep
a
rtu

re_
tim

e
ta

sk
 =

 q
u

ery
_
d

ep
a
rtu

re_
tim

e

Chapter 3: Form-based Dialog Structure Representation

83

route giver and the route follower have to communicate the description of the route in

order to draw it through dialog, the characteristics of a dialog in the map reading domain

match all of the assumptions made by the form-based dialog structure representation.

Thus, a dialog in this domain could be modeled by the form-based representation. The

remainder of this section provides detailed analysis of the structure of a map reading

dialog.

A transcript of a conversation in the map reading domain is shown in Figure 3.19 and

the corresponding maps are shown in Figure 3.20 with a route giver’s map on the left and

a route follower’s map on the right. Since conversations in this domain are usually long,

around 150 utterances in average, only the first part of the conversation is presented. The

utterances labeled with “GIVER” belong to the route giver while the utterances labeled

with “FOLLOWER” belong to the route follower. The number that follows the speaker

label is an utterance ID. The transcript also includes additional markers such as “--” for

disfluency and “…” for discontinuity in the recorded speech. A dialog structure

annotation of this conversation is given at the end of this section. For the purpose of

illustration, some examples of dialog structure analysis discussed in this section are taken

from other sources.

The goal of a conversation in the map reading domain is to reproduce the giver’s

route on the follower’s map. Since drawing an entire route is a complicated action, a

draw_a_route task can be divided into a series of similar sub-tasks; each of them focuses

on a small segment of the route. Each draw_a_segment sub-task corresponds to one

draw_a_segment action which draws a small segment of the route on the follower’s map.

To draw a segment of the route on his/her map, the follower needs a detailed

description of the segment from the route giver. Information in the description may

include a StartLocation, a Direction, a Distance, and an EndLocation. These items of

information are concepts in a draw_a_segment sub-task. To describe a rather complex

route segment, the route giver may also include the landmarks found along the way in a

segment description. Information about locations in a segment description that are not a

StartLocation and an EndLocation is capture by a concept Path. All location types

(StartLocation, EndLocation and Path) can be described in terms of an absolute

position on the map such as “at the left corner of the page” or in relative to a known

landmark on the map such as “above the waterfall”. A relative location can be considered

a structure concept which consists of a Relation and a Landmark. In the previous

example “above” is a Relation while “waterfall” is a Landmark. For simplicity,

components of structure concepts are omitted from the examples.

Chapter 3: Form-based Dialog Structure Representation

84

Figure 3.19: An example dialog (partial) in the map reading domain

GIVER 1: okay ... ehm ... right, you have the start?
FOLLOWER 2: yeah.
GIVER 3: right, below the start do you have ... er like a missionary camp?
FOLLOWER 4: yeah.
GIVER 5: okay, well if you take it from the start just run

horizontally.
FOLLOWER 6: uh-huh.
GIVER 7: eh to the left for about an inch.
FOLLOWER 8: right.
GIVER 9: and then go down along the side of the missionary camp.
FOLLOWER 10: uh-huh.
GIVER 11: 'til you're about an inch ... above the bottom of the map.
FOLLOWER 12: right.
GIVER 13: then you need to go straight along for about 'til about ... you're

about an inch and a half away from the edge of the map.
FOLLOWER 14: the banana tree?
GIVER 15: okay?
FOLLOWER 16: do you have a banana tree?
GIVER 17: i have gorillas that's probably the.
FOLLOWER 18: right okay, i'll go round the banana tree.
GIVER 19: yeah, so you're at where are you now you're at the bottom?
FOLLOWER 20: i'm at the bottom.
GIVER 21: okay, now you ... you need to go parallel to the side of the map.
FOLLOWER 22: uh-huh.
GIVER 23: ehm about ... four inches.
FOLLOWER 24: right.
GIVER 25: so you're just ab-- y-- you're now about two inches

above the gorillas ... or the banana tree.
FOLLOWER 26: yeah.
…

Chapter 3: Form-based Dialog Structure Representation

85

Figure 3.20: A route giver’s map and a route follower’s map in the HCRC Map Task

corpus

There is more than one alternative to describe a route segment. One route giver may

use only a StartLocation and an EndLocation (for instance, go from “A” to “B”) to

describe the segment while another route giver may use a StartLocation, a Direction,

and a Distance (for instance, from “A” go toward “the right” for “3 centimeters”) to

describe the same segment. Figure 3.21 illustrates two draw_a_segment sub-tasks: the

first one has only two concepts as shown in the corresponding segment description form

while the second one has all five concepts. Since dialog participants usually discuss route

segments in order (from start to finish), the start locations of most segments are omitted.

The StartLocation of the current segment is assumed to have the same value as the

EndLocation of the previous segment. Omitted concepts are discussed in more detail in

Section 3.8.1. After a route follower gathers enough information about a route segment

from a route giver, he/she then draws a line that represented the segment on his/her map.

This line is an outcome of a draw_a_segment action.

Chapter 3: Form-based Dialog Structure Representation

86

Figure 3.21: A task, sub-tasks and their corresponding forms and actions in the map

reading domain

Since there are many ways to describe a route segment, and there is no database

backend constraint as in the air travel planning domain and the bus schedule query

domain discussed in the previous sections, there is no hard constraint on how a route

should be divided into smaller segments . The length and complexity of each segment can

be varied depending on a route giver’s decision. To identify a boundary between two

consecutive draw_a_segment sub-tasks, one possibility is to use an occurrence of a

draw_a_segment action since an occurrence of an action usually signals the end of its

corresponding sub-task. However, a draw_a_segment action may not be observed

directly from a conversation as there is usually no explicit expression like “I’m drawing a

line” that marks the action. Moreover, the outcome of the draw_a_segment action, which

is a route segment drawn on a follower’s map, is also not observable from the

conversation.

Nevertheless, there is still evidence found within the conversation that indicates the

boundaries of a draw_a_segment sub-task. I observe a route giver and a route follower

usually discuss back and forth on the description of a route segment until the follower has

enough information to draw the route segment on the map. A set of concept instances that

are used to describe the route segment are repeated within this dialog segment. This set of

concept instances is different from the ones used to describe adjacent route segments.

Therefore, we can say that a set of concept instances are coherence within a sub-task.

Dialog A

Goal:
draw a route

Form: segment description

StartLocation: A
Direction:
Distance:
Path:

EndLocation: B

Sub-task:
draw_a_segment
(1)

:

Action: draw_a_segment

Draw a line from “A” to “B”

Action: draw_a_segment

Draw a line “up” from “X”
for “5 centimeters” pass
“Y” to “Z”

Sub-task:
draw_a_segment
(n)

.

.

.

:

Form: segment description

StartLocation: X
Direction: up
Distance: 5 centimeters
Path: Y

EndLocation: Z

Chapter 3: Form-based Dialog Structure Representation

87

This coherence set of information items can help us identify the boundaries of a

draw_a_segment sub-task.

The maps of both participants may have some differences, thus some landmarks may

be missing from one of the map. The participants have to define the location of a missing

landmark before using it in a segment description. This part of a conversation can be

considered as grounding because it creates mutual understanding on the location of a

particular landmark between the participants.

Grounding is a sub-subtask under a draw_a_segment sub-task. Figure 3.22 shows a

grounding sub-subtask and its corresponding form and action. A define_a_landmark

action associates a LandmarkName with its Location (these are concepts in a

grounding sub-subtask). The define_a_landmark action can only be observed when a

participant explicitly marks a missing landmark on his/her map. Even though the action

may not be observed, the knowledge about the location of the missing landmark is

constructed and can be used for future reference by both participants. The

define_a_landmark action occurs when the participants agree on the location of the

landmark and storing the information for future use (either by marking the landmark on a

map or memorizing it). A grounding sub-subtask may occur more than once in one

draw_a_segment sub-task, or may not occur at all if no landmark needs to be grounded.

The grounding sub-subtask is an example of an optional sub-task.

In order to know which landmark is missing, the participants check with each other

on the existence of a particular landmark on their maps. If the landmark occurs on both

maps, they can assume that the location of the landmark is the same and does not have to

be explicitly defined. The landmark is implicitly grounded and a define_a_landmark

action also occurs (define the location of the landmark to be the same on both maps). If

the landmark is missing from one of the participants’ maps, the participant who has that

landmark on his/her map describes its location relative to known landmarks. Both types

of a define_a_landmark action (implicit and explicit) are illustrated in Figure 3.23. There

is also the case that even though a landmark is missing from one map, the participants do

not explicitly ground the landmark. They just avoid using that landmark in a segment

description. In this case, a define_a_landmark action does not occur and the landmark is

left ungrounded. Table 3.5 summarizes the structure of a dialog in the map reading

domain.

Chapter 3: Form-based Dialog Structure Representation

88

Figure 3.22: A grounding sub-subtask and its associated form and action.

ID Name Associated action Related concepts

Task 1 draw_a_route

Sub-task 1.1 draw_a_segment draw_a_segment StartLocation, Direction,

Distance, Path, EndLocation

Sub-subtask 1.1.1 grounding define_a_landmark LandmarkName, Location

Table 3.5: Task, sub-tasks and their corresponding actions and concepts in the map

reading domain

Figure 3.23 illustrates a dialog structure annotation of the first part of the

conversation shown in Figure 3.19. The corresponding maps are presented in Figure 3.20.

Similar notions as in Figure 3.12 and Figure 3.16 are used to mark dialog structure

components in the dialog. Since the boundaries of a task go beyond the sub-set of the

conversation presented in Figure 3.23 (the entire dialog corresponds to a draw_a_route

task) only sub-task and sub-subtask boundaries are illustrated. Figure 3.24 shows the

forms that correspond to all three sub-tasks annotated in Figure 3.23. In the first

grounding sub-subtask, “the start” is implicitly grounded since both participants have it

on their maps.

Sub-task:
draw_a_route_
segment (1)
 Form: grounding

LandmarkName: A
Location: B

:

Action: define_a_landmark

A landmark “A” is located at
location “B”

Sub-subtask:
grounding

Chapter 3: Form-based Dialog Structure Representation

89

Figure 3.23: An example of dialog structure annotation in the map reading domain

Figure 3.24: The corresponding form of each sub-task in the map reading domain

annotated in Figure 3.23

GIVER 1: okay ... ehm ... right, you have the start?

 [LandmarkName]

FOLLOWER 2: yeah.
 (action: (implicit) define_a_landmark)

GIVER 3: right, below the start do you have ... er like a missionary camp?

 [Location] [LandmarkName]

FOLLOWER 4: yeah.
 (action: define_a_landmark)

GIVER 5: okay, well if you take it from the start just run horizontally.

 [StartLocation]

FOLLOWER 6: uh-huh.
GIVER 7: eh to the left for about an inch.

 [Direction] [Distance]

FOLLOWER 8: right.
GIVER 9: and then go down along the side of the missionary camp.

 [Direction] [Path]

FOLLOWER 10: uh-huh.
GIVER 11: 'til you're about an inch ... above the bottom of the map.

 [EndLocation]

FOLLOWER 12: right.
 (action: draw_a_segment)

GIVER 13: then you need to go straight along for about 'til about ... you're about
an inch and a half away from the edge of the map.

FOLLOWER 14: the banana tree?

s
u

b
-ta

s
k

: d
ra

w
_

a
_

s
e

g
m

e
n

t

s
u

b
-s

u
b

ta
s
k
:

g
ro

u
n

d
in

g

s
u

b
-s

u
b

ta
s
k
:

g
ro

u
n

d
in

g

Form: segment description

Start Location: the start

Direction: left, down

Distance: an inch

Path: the side of the missionary camp

End Location: an inch above the bottom

of the map

Form: Grounding

LandmarkName: the start

Location: (same on both maps)

Form: Grounding

LandmarkName: missionary camp

Location: below the start (a)

(b)

(c)

Chapter 3: Form-based Dialog Structure Representation

90

There are other researchers who applied an alternate representation to the same

HCRC Map Task corpus for dissimilar purposes. The dialog structure representation

proposed by Carletta et al. (1997) describes the compositional structure of a dialog in the

map reading domain with a three level hierarchical structure of transaction,

conversational game and move. This dialog structure representation is based on the idea

of dialog grammar which attempts to model regular patterns in a dialog. A detail

discussion about a dialog grammar and dialog structure representations that are based on

this idea is provided in Section 2.1.2.3. A transaction in Carletta et al.’s representation,

which is a sub-dialog that accomplishes one major step in dialog participants’ plan for

achieving a task, is quite similar to a sub-task in the form-based dialog structure

representation. However, a conversational game and a move are not a decomposition of a

task structure as a dialog segment that corresponds to a game or a move is smaller than a

step in the task (a sub-set of a conversation that corresponds to one domain action). Both

components focus more at the level of intention. A move captures a speaker’s intention

while a game represents a sequence of intentions (or an initiation-response exchange).

Carletta et al.’s dialog structure also does not capture the domain concepts that the

participants have to communicate in order to achieve the task goal.

3.5 UAV flight simulation domain

Conversations in the UAV flight simulation domain are taken form the CERTT UAV

corpus collected by Cognitive Engineering Research on Team Tasks (CERTT)

Laboratory, New Mexico State University (Gorman et al., 2003). A conversation in this

domain is an interaction among a pilot, a navigator, and a payload operator, tasked to fly

a simulation of an Unmanned Air Vehicle (UAV) on a mission to get photographs of

specified targets. The participants had to control the simulated airplane according to

various restrictions that were imposed on a route. From the pilot point of view, the

conversation in this domain can be considered as a command-and-control task.

 Information transfer in a multi-party conversation is more complicated than when

there are only two participants in a conversation. In this domain, each participant has

different pieces of information that have to be put together in order to perform domain

actions. For example, a payload operator has a list of targets while both a payload

operator and a navigator know about speed and altitude restrictions. A pilot, on the other

hand, does not have any of this information. Therefore, more collaboration, such as

volunteering information, is necessary.

Chapter 3: Form-based Dialog Structure Representation

91

Figure 3.25: An example conversation (partial) in the UAV flight simulation domain

PLO -> DEMPC 1: DEMPC, we have SSTE...
DEMPC -> PLO 2: Please stand by, PLO.
DEMPC -> all 3: AVO, I've just sent the route. PLO, go ahead and start naming the

targets.
PLO -> DEMPC 4: Targets are SSTE, Farea, Harea, MSTE, RSTE.
DEMPC -> PLO 5: Please repeat that again one more time. Farea?
PLO -> DEMPC 6: Um, it's SSTE, Farea, Harea, MSTE, RSTE, SEN1.
DEMPC -> PLO 7: That's a roger.
DEMPC -> AVO 8: AVO, go ahead and proceed to waypoint LVN.
AVO -> DEMPC 9: We were about 2 miles within there already. I changed course to

Harea.
DEMPC -> all 10: AVO, radius of Harea is five miles. PLO, five miles.
AVO -> DEMPC 11: Roger.
AVO -> all 12: That is target area, correct?
PLO -> AVO 13: Yes. AVO, I need an altitude of greater than 3000.
DEMPC -> AVO 14: AVO, this is DEMPC. You have to maintain a speed above 50

knots, and stay below 200 knots.
AVO -> all 15: Roger. Speed changing to 181 altitude climbing to 3300. Currently

71/4 miles out from Harea.
AVO -> DEMPC 16: Is our next waypoint or target after Harea Farea?
DEMPC -> AVO 17: Roger.
AVO -> all 18: How close do we need to get to Farea?
DEMPC -> AVO 19: Radius is five miles.
AVO -> DEMPC 20: Roger.
PLO -> all 21: We got a good photo for Harea.
PLO -> AVO 22: Uh, AVO recommended altitude lower than 3000, or equal to 3000.
AVO -> all 23: Changing altitude to 2700, speed 181 151/2 miles from Farea.
DEMPC -> PLO 24: PLO, this is DEMPC. I need a list again of those targets, another list

please. Thank you.
PLO -> DEMPC 25: DEMPC, this is PLO. I have SSTE, SEN1, and MSTE as well as

RSTE.
DEMPC -> PLO 26: Roger.
AVO -> DEMPC 27: DEMPC, this is AVO. When you get a chance, can you send me the

next waypoint after Farea?
DEMPC -> AVO 28: Roger, that's a go.
AVO -> PLO 29: PLO, do I have any speed restrictions right now?
PLO -> AVO 30: No, not at all.
AVO -> all 31: Roger, increasing speed to 250.
AVO -> PLO 32: PLO, is OAK a target?
PLO -> AVO 33: Negative.
AVO -> PLO 34: Roger.
DEMPC -> AVO 35: AVO, this is DEMPC. OAK is our exiting waypoint.
AVO -> DEMPC 36: Exiting waypoint need to be within five miles, after that is LMR?
DEMPC -> AVO 37: That is correct. That is the target.
AVO -> DEMPC 38: Roger.
DEMPC -> AVO 39: AVO, this is DEMPC. I wanted to say that's not a target. I'm sorry.
AVO -> DEMPC 40: LMR is not a target.

Chapter 3: Form-based Dialog Structure Representation

92

Since 1) the goal a dialog in this domain is achieved by performing domain actions

(controlling a simulated airplane and taking photographs of specified targets), and 2) the

dialog participants have to exchange different pieces of information that they have in

order to perform these actions through dialog, the characteristics of a dialog in the UAV

flight simulation domain match all of the assumptions made by the form-based dialog

structure representation. Thus, a dialog in this domain could be modeled by the form-

based representation. Detailed analysis of the structure of a dialog in this domain is given

below.

A transcript of a conversation in the UAV flight simulation domain is shown in

Figure 3.25. Since a conversation in this domain is quite long, only the first part of the

conversation is presented. An utterance label indicates both the speaker and the

addressees of the utterance. “PLO” represents a payload operator; “DEMPC” represents a

navigator, and “AVO” represents a pilot. Since the interaction is among three

participants, a speaker may address other two participants together in one utterance as

indicated by “ALL”. The number that follows the addressees label is an utterance ID. The

part of the conversation that is highlighted in blue (utterance 8-21) will be used as an

example during dialog structure analysis.

The goal of a conversation in this domain is to take photographs of all specified

targets in a given area. There are dependencies among different parts of the conversation

as all of the targets are on the same map; therefore, the entire conversation corresponds to

only one task, take_photos rather than a set of tasks. In order to accomplish the goal,

several photos have to be taken, one for each target. A take_a_photo sub-task

corresponds to a subset of the conversation that contributes toward one take_a_photo

action. The sub-task begins when a particular target is selected as a focused target and

ends when a photograph of that target is taken. In order to take a photograph of a target, a

plane has to be at a specific distance from the target (an essential radius). Both a Target

(target name) and a Radius are concepts in a target form which associates with a

take_a_photo action. Figure 3.26 shows the decomposition of a task into sub-tasks and

their corresponding forms and actions. The first sub-task corresponds to utterance 8 – 21

in Figure 3.25. Only the first part of the second sub-task is included in the example

conversation while other sub-tasks are not presented. A detailed annotation of this

conversation is given at the end of this section.

Chapter 3: Form-based Dialog Structure Representation

93

Figure 3.26: A task, sub-tasks and their corresponding forms and actions in the UAV

flight simulation domain

In order to take a photograph of a specific target, the participants have to “control a

plane” toward the target and “define the type of a landmark” that may appear on a route.

These two actions (control_a_plane and define_a_landmark) need to be achieved in

order to perform a take_a_photo action. Therefore, subsets of a conversation that

correspond to these actions are sub-subtasks under a take_a_photo sub-task. These sub-

tasks and actions are described in detail below.

A pilot controls a plane by directing the plane toward a destination, and adjusting its

speed and altitude according to the restrictions imposed on a route. A control_a_plane

action involves three concepts that are airplane parameters: Speed, Altitude, and

Destination. A control_a_plane sub-subtask is a subset of a conversation that discusses

these parameters. One or more parameters may be discussed in one control_a_plane sub-

subtask. The action occurs when the pilot directs the plane toward a new destination (or is

ordered to do so) and/or changes the speed or the altitude of the plane. This action

changes the position and/or the condition of the plane which the participants may discuss

in terms of the new Speed and Altitude, and a distance from the current destination. A

Distance is a concept that describes the result of the control_a_plane action. The

control_a_plane action may occur more than once in one take_a_photo sub-task if the

airplane parameters have to be adjusted repeatedly with respected to the plane route.

Dialog A

Goal:
take photos of
specified
targets

Form: Target

Target: H-area
Radius: 5 miles

Sub-task:
take_a_photo (1)

:

Form: Target

Target: SEN2
Radius: 5 miles

:

Action: take_a_photo

Take a photo of a target “H-
area” from the radius of “5
miles”

Action: take_a_photo

Take a photo of a target
“SEN2” from the radius of
“5 miles”

Sub-task:
take_a_photo (n)

.

.

.

Chapter 3: Form-based Dialog Structure Representation

94

Figure 3.27 shows two control_a_plane sub-subtasks that are embedded in the first

take_a_photo sub-task in Figure 3.26 together with their corresponding forms and

actions. The first control_a_plane sub-subtask corresponds to utterance 9 in Figure 3.25

and discusses only one concept, Destination. The second control_a_plane sub-subtask

corresponds to utterance 14 – 16 and discusses other two plane’s parameters: Altitude

and Speed.

All of the locations mentioned in a conversation are landmarks. There are two types

of landmarks: a “target” or a “waypoint” (a point between major points on a route). The

participants need to know the type of a landmark in order to plan the route appropriately.

A define_a_landmark action occurs when the type of a particular landmark is discussed

in the conversation. The form that associates with this action requires two slots, a

LandmarkName and its Type. The result of the define_a_landmark action is the

knowledge of the type of the landmark that can be used to plan the route. This action

might be difficult to observe if no physical action, such as taking note on the landmark

type, is performed.

The part of the conversation that associates with a define_a_landmark action is

considered a grounding sub-subtask because it creates mutual understanding among the

participants about the type of a particular landmark. A grounding sub-subtask may occur

more than once in one take_a_photo sub-task, or may not occur at all if the participants

are familiar with all of the landmarks involve in that take_a_photo sub-task. The

grounding sub-subtask is an example of an optional sub-task. A grounding sub- subtask

and a define_a_landmark action in this domain are similar to a grounding sub- subtask

and a define_a_landmark action in the map reading domain described in Section 3.4.

The only difference is the concept that will be associated with a LandmarkName. The

define_a_landmark action in the UAV flight simulation domain defines the Type of a

landmark while the define_a_landmark action in the map reading domain defines the

Location of a landmark. Figure 3.27 also shows a grounding sub-subtask that is

embedded in the first take_a_photo sub-task in Figure 3.26 together with its

corresponding form and action. This grounding sub-subtask corresponds to utterance 12

-13 in Figure 3.25

Unlike a define_a_landmark action which can be completed instantaneously, a

control_a_plane action may take some time to finish since it might take several minutes

before a plane reaches the current destination in the simulation. During that time the

participants may occasionally discuss the progress of the plane (the result of the

control_a_plane action) in terms of the Distance from the Destination, and the current

Chapter 3: Form-based Dialog Structure Representation

95

Speed and Altitude. The participants may also plan the next part of the route or discuss

about a new target. When this occurs the current take_a_photo sub-task is interrupted by

the new take_a_photo sub-task that corresponds to the new target, and is resumed when

the plane approaches the current target and the participants discuss about its

corresponding take_a_photo action. The issues related to the time and physical

constraints that cause some actions to be delayed until these constraints are met which are

specific to this domain is discussed in more detail in Section 3.8.2. Table 3.6 summarizes

the structure of a dialog in the UAV flight simulation domain.

Figure 3.27: A grounding sub-subtask and a control_a_plane sub-subtask in the first

take_a_photo sub-task

ID Name Associated action Related concepts

Task 1 take_photos

Sub-task 1.1 take_a_photo take_a_photo Target, Radius

Sub-subtask 1.1.1 grounding define_a_landmark LandmarkName, Type

Sub-subtask 1.1.2 control_a_plane control_a_plane Altitude, Speed,

Destination

Table 3.6: Task, sub-tasks and their corresponding actions and concepts in the UAV

flight simulation domain

Sub-task:
take_a_photo (1)

Form: Control_a_plane

Altitude: greater than 3000
Speed: above 50 knots,

below 200 knots
Destination:

:

Form: Grounding

LandmarkName: H-area
Type: target

:

Action: control_a_plane

Fly a plane at Altitude =
“greater than 3000”, Speed
= “above 50 knots, below
200 knots”

Action: define_a_landmark

Define a landmark “H-area”
to be a “target”

Sub-subtask:
grounding

Sub-subtask:
control-a-plan

Form: Control_a_plane

Altitude:
Speed:
Destination: H-area

Action: control_a_plane

Fly a plane “toward a
Destination “H-area”

Sub-subtask:
control-a-plan

:

Chapter 3: Form-based Dialog Structure Representation

96

Figure 3.28 illustrates a dialog structure annotation of a subset of a conversation in

this domain. This subset of a conversation is the same as the one highlighted in blue

(utterance 8-21) in Figure 3.25. For simplicity, the subset of the conversation that

discusses the next target while the plane is still heading for the current target is excluded

from the analysis. Since the boundaries of a task go beyond the sub-set of the

conversation presented in Figure 3.28 (the entire conversation corresponds to a

take_photos task) only sub-task and sub-subtask boundaries are illustrated. The

following notions are used to illustrate the structure of a dialog. Theses notions are

similar to the ones used in other dialog structure annotation examples.

● DEMPC is a navigator, AVO is a pilot and PLO is a payload operator.

● The curly bracket on the right shows the boundaries of a sub-task

● An instance of a concept is underlined and the concept name is enclosed in a

square bracket underneath it.

● The same word “H-area” is a concept member of 3 different concepts: a

Target, a LandmarkName, and a Destination depended on which sub-task

it is a part of and its function in that sub-task.

● A Radius, a Distance, and a Speed are structured concepts which compose

of two concepts: an Amount and a Unit. The name of the structured concept

is placed on the left-handed side next to its component names.

● (action: …) indicates approximately when an action occurs in a conversation.

● “Roger” means “yes” or “okay”.

Figure 3.29 shows the forms that are associated with all five actions in Figure 3.28; a

take_a_photo action (a), a define_a_landmark action (b) and three control_a_plane

actions (c - e). For simplicity, the labels of the components in structured concepts are

excluded. The part of the conversation that plans the new target before a take_a_photo

action occurs is also omitted.

Chapter 3: Form-based Dialog Structure Representation

97

Figure 3.28: An example of dialog structure annotation in the UAV flight simulation

domain

 …

DEMPC -> AVO 8: AVO, go ahead and proceed to waypoint LVN.

 [Destination]

 (action: control_a_plane)

AVO -> DEMPC 9: We were about 2 miles within there already.

 Distance:[[Amount][Unit]] [Destination (LVN)]

 I changed course to H-area.

 [Destination]

 (action: control_a_plane)

DEMPC to all 10 : AVO, radius of H-area is five miles.

 [Target] Radius:[[Amount][Unit]]

AVO to DEMPC 11: Roger.

AVO to all 12: H-area is target area, correct?

 [LandmarkName] [Type]

PLO to AVO 13: Yes. (action: define_a_landmark)

PLO to AVO 14: AVO, I need an altitude of greater than 3000.

 [Altitude]

DEMPC to AVO 15: AVO, this is DEMPC. You have to maintain a speed

above 50 knots, and stay below 200 knots.

 Speed:[[Amount][Unit]] Speed:[[Amount][Unit]]

AVO to all 16: Roger. (action: control_a_plane)

 Speed changing to 181 altitude climbing to 3300.

 Speed:[[Amount] (new)] [Altitude (new)]

 Currently 7 1/4 miles out from H-area.

 Distance:[[Amount][Unit]] [Destination]

 …

PLO to all 21: We got a good photo for H-area. (action: take_a_photo)

 [Target]

s
u

b
-ta

s
k

: ta
k

e
_

a
_

p
h

o
to

s
u

b
-s

u
b

ta
s

k
:

g
ro

u
n

d
in

g

s
u

b
-s

u
b

ta
s

k
:

c
o

n
tro

l_
a

_
p

la
n

e

s
u

b
-s

u
b

ta
s

k
:

c
o

n
tro

l_
a

_
p

la
n

e

s
u

b
-s

u
b

ta
s

k
:

c
o

n
tro

l_
a

_
p

la
n

e

Chapter 3: Form-based Dialog Structure Representation

98

Figure 3.29: The corresponding form of each sub-task in the UAV flight simulation

domain annotated in Figure 3.28

3.6 Meeting domain

Conversations in this domain are taken from the CMU CALO
1
 Meeting corpus which

is the same set of data as the Y2 meeting scenario data described in (Banerjee and

Rudnicky, 2006). This corpus contains a collection of multi-party conversations recorded

from the meetings in equipment and personnel resource management scenarios. The goal

of each scenario is to purchase computers and allocate office spaces to newly hired

employees. Each scenario is a series of five meetings; each meeting was being held one

week apart. The discussions in subsequence meetings were built up on the decision made

in the previous meetings and the progress that was occurred during the one week period.

There are three participants in each meeting; each of them takes a role as a manager, a

hardware acquisition expert, or a building facility expert. The same set of participants

took part in all of the meetings in the sequence. At the end of each meeting, the

participants produce a Gantt chart that summarizes all of the decisions made during the

meeting. The corpus provides rich information about each meeting including recorded

speech from a close-talking microphone and the corresponding transcription, video clips

from a long shot video camera and a CAMEO (Camera Assisted Meeting Event

Observer), which captures a panoramic view of the meeting, the meeting agenda and

notes that all participants took during the meeting. The agenda provides a list of goals

1
 The Cognitive Assistant that Learns and Organizes project http://www.ai.sri.com/project/CALO

Form: Target

Target: H-area

Radius: five miles

Form: Grounding

LandmarkName: H-area

Type: target

(a) (b) (c)

Form: Control a Plane

Altitude: greater than 3000
Speed: above 50 knots,
 below 200 knots

Destination:

Form: Control a Plane

Altitude:
Speed:

Destination: H-area

Form: Control a Plane

Altitude:
Speed:

Destination: LVN

(d) (e)

Chapter 3: Form-based Dialog Structure Representation

99

that the participants attempted to achieve form the meeting; however, the goals could be

adjusted due to dynamic nature of a meeting. The data collection process is described in

(Banerjee et al., 2004).

Figure 3.30 shows a transcript of a recorded conversation in the meeting domain.

Since a conversation in this domain is quite long, only the first part of the conversation is

presented. The nature of this domain is very spontaneous; meeting participants can speak

at any time during collaborative discussions. Therefore, a conversation usually contains

many interruptions, overlapping speech, and self corrections which cause one speaker

turn to be fragmented into several utterances. The marker on the left-handed side

indicates the speaker of each utterance (Hardware Expert is a hardware acquisition

expert; Building Expert is a building facility expert). The number that follows the speaker

label is an utterance ID. The transcript also includes additional markups for noises and

fillers (e.g. /noise/, /uh/, and #begin_background#) made by the participants or occurred

in the environment. A dialog structure annotation of the conversation in Figure 3.30 is

given at the end of this section. For the purpose of illustration, some examples of dialog

structure analysis discussed in this section are taken from other sources.

Purchasing a computer can be viewed as an information-accessing task where a

hardware expert searches for computers that match specified criteria from available

resources, then presents the result of the search to meeting participants to decide which

one they would like to purchase. Similarly, to allocate space to a newly hired employee, a

building facility expert searches for available rooms that match specified criteria, then

informs the result to the group to decide on the preferred location. Since 1) the

conversation goal is achieved by performing domain actions (searching for computers

and spaces, and making decisions), and 2) the information that is required to do the

search (e.g. computer specification) and to make a decision is discussed through a

meeting conversation, the parts of the conversation that discuss the specifications of the

desired computer and space, and the parts of the conversations that make the

corresponding decisions can be represented by the form-based dialog structure

representation similar to the cases of other information-accessing tasks.

Chapter 3: Form-based Dialog Structure Representation

100

Figure 3.30: An example conversation in the meeting domain

Manager 1: we've got a new student coming his name's joe_browning
Manager 2: /uh/ i've got funding for him and i need to get him a computer and some

office space
Building Expert 3: /uh/ huh
Manager 4: /uh/ he'll be here on the twenty_first of december
Manager 5: so let's figure out space first where's he going
Building Expert 6: well we should get something
Building Expert 7: /uh/ one space freed on the fourteenth of december
Manager 8: okay
Building Expert 9: /uh/ by paul_smith so i guess if one week is enough for you that should do it
Manager 10: i think that's dependent on a lot of other things
Manager 11: you're the expert on [h(how)] on getting people in
Manager 12: how do we do it
Building Expert 13: well if he just need to i mean the the desk is there if you just need to put the

computer if you have the computer one week
Building Expert 14: in advance then
Manager 15: okay
Building Expert 16: i mean one week is more than enough to set up the desk so
Manager 17: okay so if that's we'll plan then
Manager 18: let's get up and write this up
Manager 19: really need to get the facilities people to get us working markers
Manager 20: otherwise it gets pretty hard to do this
Building Expert 21: yeah
Manager 22: alright so what's today the twenty_third
Building Expert 23: yeah twenty_third of november
Manager 24: alright
Manager 25: alright so you said on the twenty_first or rather i said on the twenty_first

joe's going to arrive
Building Expert 26: yeah
Manager 27: okay and you said on the fourteenth you'd have space
Building Expert 28: yeah
Manager 29: okay
Manager 30: alright so then we need a computer by then
Manager 31: can we do it
Hardware Expert 32: okay so you need the computer before the fourteenth right
Manager 33: yes
Hardware Expert 34: so that means that we have like about three weeks from now to get
Hardware Expert 35: so you have like any idea what kind of computer do you like to get
Manager 36: well he's going to be working on speech so it needs to be able to do
Manager 37: audio processing for the most part
Hardware Expert 38: yeah and you are looking for like the desktop computer and like what type of

operating system do you want him to select there
Manager 39: /uh/ i think for right now we'll work with a desktop /uh/ decent amount of disk

space so that he can
Hardware Expert 40: /uh/ huh
Manager 41: you know there's plenty of space to store audio files
 …

Manager 44: /um/ obviously it'll have to have working audio out and in
Manager 45: beyond that i'm not really sure what it'll what it'll need
Hardware Expert 46: yeah
Hardware Expert 47: so you looking at like just a what machine or the workstation or
Manager 48: and
Manager 49: pretty much a workstation probably windows maybe linux also
Hardware Expert 50: /hm/ let's see if we have only three weeks from now and wait because

now it's like

Chapter 3: Form-based Dialog Structure Representation

101

The goal of purchasing computers and allocating office spaces to newly hired

employees discussed above is specific to this meeting scenario. A meeting also has

another goal, to delegate a specific work to an appropriate person. This goal is common

to a meeting conversation in general. To achieve this goal, a manager assigns a specific

work to a person who has the matched expertise. In some cases, a meeting participant

may volunteer to do the work. In order to do a work assignment, the description of the

work has to be clearly communicated in a conversation along with possible constraints

such as the due date. Since the part of the conversation that discusses the work

assignment has the characteristics that match all of the assumptions made by the form-

based dialog structure representation, this part of conversation can also be modeled by the

form-based representation.

Some discussions in a meeting may not contribute directly toward the conversation

goals that have been discussed previously. For example, a subset of a conversation

highlighted in grey (utterance 9-26) in Figure 3.30, the first part (utterance 9 – 17)

contains an additional discussion about the arrangement for a tentatively available room;

the second part (utterance 18 – 21) is out of scope of this meeting; the last part (utterance

22 – 26) contains a discussion about the time that a newly hired person would arrive. The

discussions in the first part and the last part, while related to the topic of the meeting, do

not contribute directly toward the conversation goals. Thus, they are not modeled by the

form-based dialog structure representation. This type of sub-dialog is further discussed in

Section 3.8.3. Segments of a conversation that do not contribute directly toward the

conversation goals are not included in dialog structure analysis described below.

Since each conversation in this domain is a meeting in a sequence of related

meetings, discourse structure analysis is done based on the entire sequence rather than on

each individual meeting. The ultimate goal of each meeting sequence is to purchase

computers and allocate office spaces to newly hired employees. Since all of the meetings

in the sequence are based on the same scenario, the entire sequence corresponds to a

single task manage_resource. In order to achieve the goal, at least two actions are

required purchase_computer and reserve_space. These actions may occur more than

once in the sequence if there are several new employees. The manage_resource task is

decomposed into two types of sub-tasks: get_computer and get_space. Even though

both sub-tasks seem to have a clear goal (i.e. to purchase a computer and to find an office

space respectively), they are regarded as sub-tasks instead of tasks because they belong to

the same scenario; the decision made in one sub-task may affect the decision made in

another sub-task. For instance, a budget constraint may affect the choices of both a

Chapter 3: Form-based Dialog Structure Representation

102

computer and an office space. Figure 3.31 shows a decomposition of a manage_resource

task into two sub-tasks together with the corresponding forms and actions of both sub-

tasks. The detail of each form is omitted and will be discussed later on.

Figure 3.31: A task, sub-tasks and their corresponding forms and actions in the meeting

domain

In order to purchase a computer, the meeting participants have to first discuss the

specification of the computer that would be suitable for a new employee then check for

the price and availability. Based on the information obtained the group decides which

computer they will purchase. The computer specification which includes, for example, a

Processor, an operating system (OS), and a DiskSpace is a set of concepts in a computer

query form. A hardware acquisition expert uses this information to perform a

search_computer action which searches for the computer(s) that matches the criteria

from various sources such as internet and a computer store. The result of this action is the

information of the computer(s) that has the required specification along with the Price,

Store and Availability. This information is regarded as a structured concept,

ComputerInfo, which contains information about a particular computer. A

search_computer_info sub-task is the discourse segment that contributes toward the

execution of the search_computer action and discusses its result. The illustration of a

search_computer_info sub-task, its associated form and action is given in Figure 3.32.

Dialog A

Goal:
purchase
computers
and allocate
office space

Form: computer order Sub-task:
get_computer

:
 Action: purchase_

computer

Sub-task:
get_space

:
Form: space reservation Action: reserve_space

Chapter 3: Form-based Dialog Structure Representation

103

Figure 3.32: A computer query form and its corresponding action and outcome

After the hardware acquisition expert informs all the meeting participants the possible

choices of computers that have the required specification, the group selects the preferred

one from the list which makes its corresponding ComputerInfo get filled into a

computer order form as illustrated in Figure 3.33. The computer order form also contains

other concepts that are necessary for purchasing a computer such as an Owner and a

PaymentMethod.

Figure 3.33: A get_computer sub-task and the corresponding form and action

The process for acquiring an office space is quite similar to the process for purchasing

a computer. The meeting participants first discuss the criteria of the desired space which

include a Building and a RoomLoc. A building facility expert then uses these criteria,

which are concepts in a space query form, to perform a search_space action which

Form: computer order

ComputerInfo:
 Type: Desktop
 Processor: Pentium 4, 3 GHz
 OS:
 DiskSpace: 100 GB
 RAM: 2 GB
 Brand: Dell
 Other: audio processing
 Store: dell.com
 Price: $1000

 Availability: next week
Quantity: 1
Owner: John Smith
PaymentMethod: credit card

Sub-task:
get_computer

:

Action: purchase_computer

Purchase one Pentium 4, 3
GHz Dell desktop with 100
GB hard disk, 2 GB RAM
and audio processing from
dell.com

Form: computer query

Type: desktop
Processor: Pentium 4
OS:
DiskSpace: 100 GB
RAM: at least 1 GB
Brand:

Other: audio processing

:

Action: search_
computer

Search for a computer
that matches the
criteria in a computer
query form

ComputerInfo:
Type: desktop
Processor: Pentium4, 3

GHz
OS:
DiskSpace: 100 GB
RAM: 2 GB
Brand: Dell
Other: audio processing
Store: dell.com
Price: $1000
Availability: next week

Sub-subtask:
search_
computer_info

Chapter 3: Form-based Dialog Structure Representation

104

searches for an office space that matches the criteria. The result of this action is the

information of the available space(s) along with its Cost, Capacity and Availability

time. The result is represented in terms of a structured concept, SpaceInfo, which

contains information about one particular office space. A search_space_info sub-task is

the discourse segment that contributes toward the execution of the search_space action

and discusses its result. After the building facility expert informs the participants all of

the available spaces, the group then decides on the preferred location which makes its

corresponding SpaceInfo get filled into a room reservation form. This form also contains

other concepts that are necessary for reserving an office space such as an Owner and a

MoveInDate.

All of the task and sub-tasks mentioned earlier corresponds to the ultimate goal and

sub-goals of the entire meeting sequence. Since each meeting is a collaborative decision

making process, it also produces a set of group decisions. One common form of the

decisions is a work assignment, a decision to delegate a specific work to an appropriate

person. This type of group decision is also known as an action item (or a to-do item)

(Purver et al., 2006). Segments of a meeting conversation that discuss action items are

usually observable. In this meeting domain, the participants have to produce a Gantt chart

that summarizes the action items discussed during each meeting. Information in each

action item includes a Description of the work, a Person in charge, a StartDate and an

EndDate. These pieces of information are concepts in an action item form as illustrated

in Figure 3.34. A segment of a conversation that discusses an action item is considered a

create_action_item sub-task and the corresponding action is a commit_on_action_item

action which occurs when the person that is responsible for the action item commits to

the work either by accepting the assignment or volunteering to take charge. The

create_action_item sub-task shown in Figure 3.34 corresponds to utterance 27 – 29 in

Figure 3.30. The slot values that are marked in italic are implicit concepts, which have to

be inferred from dialog context. Implicit concepts are discussed in more detail below.

Figure 3.34: A create_action_item sub-task and the corresponding form and action

Form: Action Item

Description: have space
Person: you (building facility expert)
StartDate: today
EndDate: the fourteenth

Sub-task:
create_action
_item

:

Action: commit_on_
action_item

“building facility expert”
commits to “have space”
by “the fourteenth”

Chapter 3: Form-based Dialog Structure Representation

105

Table 3.7 summarizes the structure of a dialog in the meeting domain. While the task

and most of the sub-tasks are specific to this equipment and personnel resource

management scenario, a create_action_item sub-task is quite general in many types of

meetings.

ID Name Associated action Related concepts

Task 1 manage_resource

Sub-task 1.1 get_computer purchase_computer ComputerInfo, Quantity,

Owner, PaymentMethod

Sub- subtask 1.1.1 search_computer_inf

o

search_computer Type, Processor,

DiskSpace, RAM, etc.

Sub-task 1.2 get_space reserve_space SpaceInfo, Owner,

MoveInDate

Sub- subtask 1.2.1 search_space_info search_space Building, RoomLoc

Sub-task 1.3 create_action_item commit_on_action_item Description, Person,

StartDate, EndDate

Table 3.7: Task, sub-tasks and their corresponding actions and concepts in the meeting

domain

Figure 3.35 illustrates a dialog structure annotation of the first meeting in the

sequence of five meetings. Only sub-task and sub-subtask boundaries are illustrated as a

manage_resource task corresponds to the entire meeting sequence. For illustration

purpose, some parts of the conversation are removed from the annotation. The following

notions are used to illustrate the structure of a dialog. Theses notions are similar to the

ones used in other dialog structure annotation examples.

● Hardware Expert is a hardware acquisition expert and Building Expert is a

building facility expert

● The bracket on the right shows the boundaries of a sub-tasks or a sub-subtask.

● An instance of a concept is underlined and the concept name is enclosed in a

square bracket underneath it. For a structured concept, its name is placed on

the left-handed side next to its component names.

● (action: …) indicates approximately when an action occurs in a conversation.

One characteristic of the actions in the meeting domain which is different from those

in other domains discussed earlier is that some actions are done outside the meeting. In

the example conversation, a hardware acquisition expert only provided a tentative and

partial result of a search_computer action using partial information that he/she had at

hand. The actual search action was done after the meeting was over and the result of the

Chapter 3: Form-based Dialog Structure Representation

106

action, the information of the computer(s) that matches the criteria, was reported in the

next meeting (not show in the example). A computer query form, such as the one in

Figure 3.36 (a), got filled during the first meeting when all of the participants discussed

and agreed on the computer specification. However, since the corresponding

search_computer action was executed later by the hardware acquisition expert, it could

not be observed during the meeting. ComputerInfos which are the results of the action

were reported in the next meeting and one of them was selected and filled into a

computer order form. The actual a search_space action also occurred outside the

meeting. A building facility expert only provided a tentative result which he/she had to

confirm after the meeting was done. A search_computer_info sub-task, a get_computer

sub-task, a search_space_info, sub-task and a get_space sub-task may span across

multiple meetings. The issues related to fragmented sub-tasks are discussed in more

detail in Section 3.8.2.

Some concepts in an action item form may not be observed directly from a

conversation and have to be inferred from the context. The participants usually discuss an

EndDate explicitly but not a StartDate. The value of a StartDate usually be “today”

when it is not mentioned explicitly which is the cases for all action times in Figure 3.36.

The StartDate of one action item may also depend on the EndDate of another action

items. For example, an action item “set up a computer” can only start after an action item

“get a computer” is finished. Sometimes the participants may not explicitly state the

StartDate of the succeeding action item as it can be inferred from the EndDate of the

preceding action item. For an EndDate, if its value is omitted from the discussion, the

default value should be “next meeting” as shown in Figure 3.36 (g).

For a Person in charge, it is usually referred to by a pronoun such as “you” (when the

person is assigned the work) or “me” (when the person volunteers to do the work) as

shown in Figure 3.36 (e) and Figure 3.36 (g) respectively. When the value of a Person is

omitted entirely, it could be inferred from the context using a role detection algorithm

which predicts the participant whose expertise matches the description of the action item

as the person in charge (Banerjee and Rudnicky, 2006). The implicit concepts are marked

in italic in Figure 3.36. Implication of implicit concepts on dialog structure learning is

discussed in Section 3.8.1.

Chapter 3: Form-based Dialog Structure Representation

107

Figure 3.35: An example of dialog structure annotation in the meeting domain

Manager 1: we've got a new student coming his name's joe browning

Manager 2: i've got funding for him and i need to get him a computer and some
office space

SPACE 3: huh

Manager 4: he'll be here on the twenty first of december

Manager 5: so let's figure out space first where's he going

SPACE 6: well we should get something

SPACE 7: one space freed on the fourteenth of december

 SpaceInfo:[Capacity] SpaceInfo: [Availability]
 …

Manager 27: okay and you said on the fourteenth you'd have space

 [Person] [EndDate] [Description]

SPACE 28: yeah (action: commit_on_action_item)

Manager 29: okay

Manager 30: alright so then we need a computer by then

Manager 31: can we do it

Hardware Expert 32: okay so you need the computer before the fourteenth right

 [Description] [EndDate]

Manager 33: yes

Hardware Expert 34: so that means that we have like about three weeks from now to get

 (action: commit_on_action_item)

Hardware Expert 35: so you have like any idea what kind of computer do you like to get

Manager 36: well he's going to be working on speech so it needs to be able to do

Manager 37: audio processing for the most part

 [OtherSpec]

Hardware Expert 38: yeah and you are looking for like the desktop computer and like

 [Type]

 what type of operating system do you want him to select there

Manager 39: i think for right now we'll work with a desktop decent amount of

 [Type] [DiskSpace]
 disk space so that he can

Hardware Expert 40: huh

Manager 41: you know there's plenty of space to store audio files

Hardware Expert 42: huh

Manager 43: obviously it'll have to have working audio out and in

 [OtherSpec]

Manager 44: beyond that i'm not really sure what it'll what it'll need

Hardware Expert 45: yeah

Hardware Expert 46: so you looking at like just a regular machine or the workstation or

 [Type] [Type]
Manager 47: and

S
u

b
-ta

s
k

: g
e

t_
s

p
a

c
e

S
u

b
-s

u
b

ta
s
k

:

s
e
a

rc
h

_
s
p

a
c
e
_

in
fo

Sub-task:

create_action_item

S
u

b
-ta

s
k

:

c
re

a
te

_
a
c

tio
n

_
ite

m

S
u

b
-ta

s
k

: g
e
t_

c
o

m
p

u
te

r

S
u

b
-ta

s
k
: s

e
a

rc
h

_
c
o

m
p

u
te

r_
in

fo

Chapter 3: Form-based Dialog Structure Representation

108

Figure 3.35: An example of dialog structure annotation in the meeting domain (cont.)

Manager 48: pretty much a workstation probably windows maybe linux also

 [Type] [OS] [OS]
 …
Hardware Expert 66: yeah let let me check on a couple option that we have like

Hardware Expert 67: either like buying it from computer store which is i i'm pretty sure

 CompInfo:[Store]
 that we can get it

Hardware Expert 68: like within a week but that might be a little expensive because like

 CompInfo:[Availability] CompInfo:[Price]

Manager 69: okay

Hardware Expert 70: and we might have to go for either like ibm or dell is that okay with you

 CompInfo:[Brand] CompInfo: [Brand]

Manager 71: yeah as long as it as long as it's capable of doing the speech work he

 needs that's that's all that matters to me

Hardware Expert 72: and

Hardware Expert 73: okay so that but i just like to be concerned about the the budget

 let me check with them and get

 [Person] [Description]

Hardware Expert 74: back to you on that otherwise we i'm i might check with the

 [Description]

Hardware Expert 75: their my manager to see like how fast that we can do with like the normal

 [Description]

 ordering process (action: commit_on_action_item)

Manager 76: okay

Hardware Expert 77: with that we might be able to get something that is like cheaper and if it's

Hardware Expert 78: we'll be in time for a two week it might be better to go for that to save your
budget

Manager 79: okay

Manager 80: alright then

 …
SPACE 131: you don't have any constraints on where you want him put right

Manager 132: preferably as close to me as possible in wean

 [RoomLoc] [Building]
SPACE 133: okay

SPACE 134: right so so yeah the one i was thinking of is is in wean

 SpaceInfo:[Building]
 fifty fifty three oh three so

 SpaceInfo:[RoomNo]

Manager 135: okay good good good which floor

SPACE 136: five fifths

Manager 137: five okay yeah that should be okay

S
u

b
-ta

s
k

:
c

re
a

te
_

a
c

tio
n

_
ite

m

S
u

b
-ta

s
k

: g
e

t_
s

p
a

c
e

S
u

b
-s

u
b

ta
s
k

:

s
e
a

rc
h

_
s
p

a
c
e

_
in

fo

Chapter 3: Form-based Dialog Structure Representation

109

Figure 3.36: All of the forms that correspond to the dialog structure annotation in the

meeting domain presented in Figure 3.35

Form: computer query

Type: desktop, workstation
Processor:
OS: windows, linux
DiskSpace: decent amount
RAM:
Brand:

Other: audio processing, working audio
out and in

(c) (d)

Form: space query

Building: wean

RoomLoc: as close to me as possible

(a) (b)

SpaceInfo:
 Building: wean
 RoomNo: fifty three oh three
 Capacity: one
 Cost:

 Availability: the fourteenth of december

ComputerInfo:
Type:
Processor:
OS:
DiskSpace:
RAM:
Brand: ibm, dell
Other:
Store: computer store
Price: a little expensive
Availability: within a week

Form: Action Item

Description: have space
Person: you (building facility expert)
StartDate: today
EndDate: the fourteenth

Form: Action Item

Description: need the computer
Person: hardware acquisition expert
StartDate: today
EndDate: before the fourteenth

Form: Action Item

Description: check with them (computer store), check with my manager to see how fast that we
can do with the normal ordering process

Person: me (hardware acquisition expert)
StartDate: today
EndDate: next meeting

(e) (f)

(g)

Chapter 3: Form-based Dialog Structure Representation

110

3.7 Tutoring domain

Conversations in this domain are taken from the WHY Human Tutoring corpus (Rosé

et al., 2003), a collection of human-human typed dialogs in a physics tutoring domain.

Each dialog is an interaction between a tutor and a student during an essay writing

process in response to qualitative physics questions. For each problem, the student first

types a short essay to answer the question. A good essay should cover all expected

propositions and does not contain any misconception. Based on the analysis of the initial

essay, the tutor then engages the student in a tutoring dialog to address misconceptions

and help the student learns the correct physics concepts. At the end of the conversation,

the tutor asks the student to revise the essay. The rewriting process iterates until the tutor

satisfies with the essay and then presents the student with a correct essay. Figure 3.37

presents a typed conversation captured from a tutoring session. Since a tutoring dialog for

each problem is quite long, only the first part is presented. A typed dialog may include

some typos that both participants introduced. Figure 3.37 also shows a question, a

student’s initial essay before a tutoring conversation starts and a student’s revised essay

at the end of the conversation.

The ultimate goal of a tutoring session is to help a student learn physics concepts

through qualitative explanations. However, only an interactive part (a tutoring dialog) is

focused in this analysis. This part is highlighted in blue in Figure 3.37 (sentence 1 – 46).

The goal of the tutoring dialog is to help the student improve the quality of an initial

essay. However, a tutor cannot simply give away a correct answer but rather helps the

student constructs the required knowledge by himself through a knowledge formation

process. In this process, the tutor asks the student a series of questions that helps the

student learn a specific physics concept such as objects’ acceleration or forces acting on

objects. If the student gives an incorrect answer to one of the questions, another

knowledge formation process will be evoked to help the student develop the underlying

physics concept required to answer that question.

In each tutoring dialog, a tutor takes initiative as he/she guides a student through a

series of questions that helps the student construct necessary physics knowledge. In order

to do so, a list of questions and a correct answer for each question must be specified. This

domain information is specific to each physics concept. After analyzing tutoring dialogs

in this domain, I found that the proposed form-based dialog structure representation may

not be suitable for representing the domain information in the tutoring domain because of

the following reasons.

Chapter 3: Form-based Dialog Structure Representation

111

Figure 3.37: An example dialog (partial) in the tutoring domain

Problem 38. If a lightweight car and a massive truck have a head-on collision, upon which
vehicle is the impact force greater? Which vehicle undergoes the greater
change in its motion? Defend your answers.

Essay: The lightweight vehicle wll undergo the greater change in its motion because
the massive truck has more power and more weight than the lightweight
vehicle. The lightweight vehicle might flip over and it would get more
damaged the the truck.

Tutor 1: Let us think systematically.Consider any one of the vehicles, what factor
determines the change in its motion?

Student 2: velocity

Tutor 3: Velocity describes the motion. What will describe change in motion

Student 4: the weight, i dont know

Tutor 5: What term relates to change in velocity?

Student 6: acceleration

Tutor 7: Right. What determines the acceleration of an object?

Student 8: the speed

Tutor 9: Speed is magnitude of velocity. What is it that causes acceleration?

Student 10: the force on gravity, im not sure

Tutor 11: Yes, force. The force could be due to earth's gravity or due to something else.
For example, if an object is sitting on the table(,i.e. it has zero velocity) you
want to change its velocity. Tha tis you want it to move. What would you do?

Student 12: I would push the object. so basically what your trying to say is that in this
problem we are not sure what kind of force they have so we cant determine
which vehicle will have greater change.

Tutor 13: No. I am not saying that. I am trying to show that a force is necessary to
cause an acceleration. Nature of force does not matter. In this case the car
and the truck collide and each exerts the force of impact on the other. What is
the relation between the force experienced by each?

Student 14: they are equal

Tutor 15: Yes, equal in magnitude. How about the dircetion?

 …

Tutor 46: Right but some what indeirect. Newton's law uses mass not weight so it
should be made clear that less weight means less mass. Secondly, the law
gives you acceleration, you should state that larger acceleration means
greater change in motion. it is better to be explicit about statements. Can yoiu
revise the essay now.

Essay: According to Newton's third law of motion, the two objects interacting to exert
a force on each other and the force on each is equal in magnitude and
opposite in direction. To determine which vehicle has the greater change in
motion during the impact, Newton's second law covers that and it states that
an object mass times acceleration is equal to the net force acting on it. Now,
less weight means less mass and the larger acceleration means greate
change in motion so the lightweight vehilcle will undergo the greater change
in its motion due to all of theses arguments.

Tutor 47: Ok. Below is the ideal essay. Indicate when you have read it.
 …

Chapter 3: Form-based Dialog Structure Representation

112

1. The form-based dialog structure representation does not capture a relation

between objects.

Concepts in the form-based representation are originally designed to

capture domain entities, as such location (CityName), organization

(RentalCompany) and dates (StartDate), rather than relations between

entities. However, in the tutoring domain, relations between entities are also

essential for determining the correctness of each student answer. For

example, in sentence 14, “equal” is a relation between the force experienced

by the car and the force experienced by the truck and was inquired by the

tutor in the previous sentence.

2. The form-based dialog structure representation models types of information

rather than specific values.

As described in Section 3.1, each form-based dialog structure component

has two aspects: type and instance. A type is an abstraction of similar

information items (for example, CityName) while an instance is a specific

value of an information item (for example, “pittsburgh”). The form-based

dialog structure representation models pieces of domain information by their

types rather than instances. A slot in a form corresponds to a concept type;

therefore, it represents any instance of that concept not just one specific

instance. For example, a slot CityName represents any city name not only

one specific city name “pittsburgh”. However, in the tutoring domain, some

domain entities and relations do not require the types. For example, physics

terms such as “velocity” and “force” must be represented by the terms

themselves. There is no notion of type abstraction for such terms. Moreover,

for each question, certain values of domain entities and relations must be

specified in the answer to be considered as correct. Hence, the abstract

representations of forms and slots may not be suitable for representing

domain information in this domain.

3. The characteristic of a tutoring dialog does not match the assumption made by

the form-based dialog structure representation.

The form-based dialog structure representation is developed based on the

assumption that a conversation goal is achieved through the execution of

domain actions and dialog participants gather pieces of information required

to perform these actions through dialog. However, in a tutoring dialog, the

Chapter 3: Form-based Dialog Structure Representation

113

conversation goal, which is to help a student improve the quality of an initial

essay, is achieved through a knowledge formation process rather than through

the execution of particular domain actions. Even though, a tutor asks the

student a series of questions in the knowledge formation process, both the

student and the tutor do not gather pieces of information to perform any

domain action through these questions. Each question helps the student

formulate the underlying physics concept while helps the tutor discover gaps

in the student’s knowledge. By answering the questions, the student gradually

learns the target physics concept as the dialog progresses.

Furthermore, a tutoring dialog is quite complex since the structure of a

dialog can change dynamically depended on the student’s answers. For

example, the tutor may change the teaching strategy if the student seems to

have a lot of problem understanding the target physics concept. The target

concept may also need to be changed to address a more crucial

misconception. The form-based dialog structure representation, which models

a dialog with a rather simple representation, is not suitable for modeling a

complex dialog that has a dynamic structure as discussed at the beginning of

this chapter.

To resolve the first problem, the form-based representation also needs to model

relations between domain entities. Even though a concept may be extended to represent a

relation, a representation that is designed specifically for describing complex relations

between objects should be more effective. Rosé and Hall (2004) used a predicate

language representation to describe complex properties of objects and their relationships

in the same physics tutoring domain. The predicate language representation also

facilitates deep semantic analysis of student utterances which is essential for determining

the correctness of student answers and providing appropriate feedback. For the second

problem, a constant concept can be added to the form-based dialog structure to represent

a domain entity that does not require type abstraction. For example, physics terms such

as “force” can be modeled as a constant concept Force. Solving the third problem

requires modification to the assumption made by the form-based dialog structure

representation.

Since extensive modification is required in order to represent a tutoring dialog with

the form-based dialog structure representation, we can conclude that the form-based

dialog structure representation is not suitable for representing domain information

required to build a dialog system in the tutoring domain.

Chapter 3: Form-based Dialog Structure Representation

114

3.8 Difficulties in applying the form-based dialog structure

representation

It has been shown in the previous sections that the proposed form-based dialog

structure representation can be used to model domain-specific information in various

types of task-oriented domains except for the tutoring domain as discussed in Section 3.7.

However, among the five domains that it can be applied, air travel planning (information-

accessing), bus schedule inquiry (information-accessing), map reading (problem-solving),

UAV flight simulation (command-and-control), and meeting, there are some cases that

are quite difficult to model with the proposed form-based representation. These

complicated cases are implicit concept values, fragmented sub-tasks, and non-task dialog

segments. Detailed discussions of these cases are provided in Section 3.8.1 - 3.8.3

respectively. Section 3.8.4 discusses potential difficulties that one might encounter when

applying the form-based dialog structure representation to other task-oriented domains

besides the ones discussed in this chapter.

3.8.1 Implicit concept values

In some dialogs, dialog participants may not express the values of some concepts

explicitly. In some cases, indirect expressions are used while in other cases the values are

omitted entirely. The former are considered indirect concepts while the latter are

considered omitted concepts. The following table shows examples of indirect concept

values from various task-oriented domains.

Indirect concept value Concept type Domain

“I have a five forty flight” ArriveTime bus schedule inquiry

“the top of it” Location map reading

“as close to me as possible” RoomLoc meeting

“before the new person arrive” EndDate meeting

Table 3.8: Examples of indirect concept values

Indirect concept values are rarely used in information-accessing domains (air travel

domain and bus schedule inquiry domain). A client in these domains usually expresses

the criteria for the desired flight or bus clearly, so that an agent does not misunderstand

the information. The first example in Table 3.8 occurred when a client used the departure

time of his flight as an implicit arrival time of the desired bus instead of the actual time

that he would like to arrive at the airport. In the UAV flight simulation domain, due to the

characteristic of a command-and-control task, indirect concept values are also rarely

Chapter 3: Form-based Dialog Structure Representation

115

used. Moreover, some concept values are specified in a scenario that is not shared among

dialog participants; hence, they have to explicitly communicate these concepts. In the

map reading domain indirect concept values, mostly pronouns that refer to landmarks, are

used occasionally.

However, indirect concept values are used quite often in the meeting domain.

Meeting participants are usually familiar with each other and share some common

domain knowledge; therefore, some concept values do not have to be mentioned

explicitly in a conversation. For example, “as close to me as possible” was used as an

implicit value for a RoomLoc in a space query from shown in Figure 3.36 (c) instead of

an explicit value such as “close to the room 5324”. Furthermore, a meeting conversation

is not self-contained. The participants often refer to the information that occurs outside

the meeting. Examples of this information are the e-mail sent out before the meeting and

the information discussed in the previous meeting. Within the same meeting, there are

some discussions that do not contribute directly toward any domain action by themselves

but have influence on the values of the concepts. The participants may refer to the

information in those discussions as concept values instead of using explicit expressions as

shown in the last example in Table 3.8. The exact EndDate of an action item “get office

space” has to be inferred from the arrival date of a newly hired employee which was

discussed in another part of the meeting. Many pronouns are also used as indirect concept

values in the meeting domain as discussed in Section 3.6.

Indirect concept values are ambiguous; for instance, a pronoun can refer to any kind

of noun. To determine an actual value of an indirect concept, additional information

besides the indirect expression itself is required. For some indirect concept values,

contextual information from within a dialog is sufficient for determining their actual

values while other indirect concept values require additional domain and world

knowledge that are not presented in a dialog in order to interpret the indirect expressions.

Examples of the first type of indirect concept value are pronouns and indirect temporal

expressions (e.g. “before the new person arrive”). For this type of indirect concept value,

additional understanding processes, such as anaphora resolution and temporal reasoning,

can be used to infer the actual concept value from dialog context. Examples of the second

type of indirect concept value are the first and the third examples in Table 3.8. To

determine the exact value of the ArriveTime in the first example, the relation between

the departure time of the flight (an indirect value) and the time that a client needs to

arrive at the airport (an exact value) has to be provided. For the third example, the

location of a manager’s office is needed in order to resolve the exact value of the

Chapter 3: Form-based Dialog Structure Representation

116

RoomLoc. These pieces of information are shared among dialog participants, so they are

not mentioned in a dialog. An understanding module that interprets this type of indirect

concept value has to model the necessary information separately such as in a

knowledgebase.

An actual value of an indirect concept is necessary in order to understand a dialog.

However, for domain knowledge acquisition, as in the case of this thesis, an actual value

of an indirect concept may not be as crucial. In this thesis, the components of the form-

based dialog structure representation, such as a list of concepts, are inferred from a set of

in-domain conversations. Therefore, if only a few instances of a particular concept type

have indirect values, a machine learning algorithm can still utilize evidences from other

instances to identify that concept. On the other hand, if many instances of a particular

concept type have indirect values, it might be difficult to identify that concept without

determining the actual values of those indirect concept instances.

Some concepts are omitted from a conversation even though they are required in

order to perform domain actions. These concepts are commonly known by all of the

participants, so they do not have to mention them again in the conversation. The

participants infer the omitted concepts from the following information:

● Common knowledge about the world or the domain

In the bus schedule query domain, the date of travel is usually omitted and

is assumed to be “today”. In the map reading domain, a location of a

landmark may be omitted from a grounding form. If both participants

discover that they have the same landmark name on their maps, they can

assume that the location of the landmark is the same on both maps and does

not have to be explicitly defined. In the meeting domain, a StartDate of an

action item is rarely specified and is assumed to be “today”.

● Dependencies with other concepts

In the air travel planning domain, many concepts in a car query form and

a hotel query form are not explicitly specified. These pieces of information

can be inferred from related concepts in a flight reservation form since there

are a lot of dependencies among a flight reservation, a car reservation and a

hotel reservation as discussed in Section 3.2. In the map reading domain,

since a route giver and a route follower usually discuss route segments in

order (from start to finish), the start locations of most segments are omitted.

They are assumed to have the same values as the end locations of the

previous segments. In the meeting domain, meeting participants may not

Chapter 3: Form-based Dialog Structure Representation

117

explicitly state the StartDate of the succeeding action item as it can be

inferred from the EndDate of the preceding action item.

Similar to the case of indirect concepts, omitted concepts occur more often in the

meeting domain than in the other domains due to the characteristic of the meeting domain

discussed above. To process a dialog that contains an omitted concept, additional

knowledge, such as a user profile and a default concept value, is required in order to

determine the value of the omitted concept. For domain knowledge acquisition, an

omitted concept is more problematic than an indirect concept value. If many instances of

a particular concept are omitted, it may not be possible to identify that concept using only

information from in-domain conversations.

3.8.2 Fragmented sub-tasks

When dialog participants divide a complicated task into a series of sub-tasks, they

usually pursue the sub-tasks one at a time, completing one sub-task first before moving

on to another one. For example, in the air travel planning domain, a travel agent and a

client usually discuss the first leg of an itinerary until the client selects the desired flight

before moving on to discuss the second leg. Nevertheless, in some dialogs, a sub-task

may be interrupted by another sub-task before dialog participants can gather enough

information to execute the associated action or finish the discussion about the outcome of

the action. The participants may resume the interrupted sub-task later in the conversation.

When a sub-task is interrupted we can say that it is fragmented since the entire sub-task is

not represented by one continuous segment of conversation.

Fragmented sub-tasks occur more often in some domains than other domains due to

different characteristics of task-oriented domains. In the bus schedule inquiry domain,

each task is quite simple and does not have to be decomposed into sub-tasks. Hence,

there is no fragmented sub-task problem. In the map reading domain, since drawing a

route on a map has a sequential characteristic, the draw_a_segment sub-tasks are

discussed in order from the start of the route to the end of the route. Only one route

segment is discussed at a time until both a route giver and a route follower agree on the

segment description and the route segment is drawn on the follower’s map. Then they

move on to the next segment of the route. Therefore, there is also no fragmented sub-task

problem in the map reading domain. If there is a serious understanding problem on a

segment description, the participants may restart that sub-task again. In the air travel

domain, a make reservation part of a reserve_flight sub-task may be interrupted by a

reserve_car subtask or a reserve_hotel sub-task as shown in Figure 3.12. The

Chapter 3: Form-based Dialog Structure Representation

118

reserve_flight sub-task is usually resumed at the end of the conversation. Since a plane

ticket reservation is mandatory in this domain while car and hotel reservations are

optional, a travel agent may want to focus on the purchase options of the ticket when all

other optional discussions about car and hotel have been done.

Some actions in the UAV flight simulation domain cannot be executed or completed

immediately after all required concepts have been gathered. Physical and time constraints

cause these actions to be delayed until all constraints are met. For example, a

take_a_photo action cannot take place until a plane reaches a target. The interval

between the time that all of the required slots have been filled, and the time that all

physical and time constraints are met and the action is ready to be executed (or

completed) may take several minutes. During this time dialog participants may discuss in

preparation for a new sub-task which cause the current sub-task to be fragmented. For

example, if the participants discuss about a new target while waiting for the plane to

reach the current target in order to execute a take_a_photo action, the current

take_a_photo sub-task is interrupted by another take_a_photo sub-task. A

control_a_plane sub-task may also be fragmented if the participants start planning the

next destination while the plane is still heading toward the current destination.

In the meeting domain, some actions are executed outside the meeting. This makes

the part of a sub-task that fills the corresponding form and the part of a sub-task that

discusses the outcome of an action take place in different meetings. For instance, a space

query form may be filled during the first meeting when the meeting participants discuss

and agree on the criteria of a desired office space. The search_space action actually

occurs after the meeting is done and its result, the office spaces that match the criteria, is

discussed in the next meeting. Since a sub-task can span across meetings, it is likely to be

interrupted by other discussions that occur in those meetings. Within the same meeting,

the participants may revisit the sub-task in order to add or change the values of the slots

in the corresponding form as the form is not yet be executed. The dialog structure

annotation in Figure 3.35 shows that a get_space sub-task and a search_space_info sub-

task are revisited again at the end of the conversation as the participants specified

additional criteria for a desired office space. Other sub-tasks that may span across

multiple meetings are a search_computer_info sub-task, a get_computer sub-task. The

characteristics of the meeting domain make the sub-tasks more likely to be fragmented

than other domains.

Depending on how the sub-tasks are fragmented and how often they occur,

fragmented sub-task instances could make it more difficult to learn the form and slots that

Chapter 3: Form-based Dialog Structure Representation

119

are associated with that type of sub-task. In most of the cases discussed above a sub-task

gets interrupted after all of the concepts that are necessary for performing an action are

discussed but before the action can be executed or completed. This type of fragmented

sub-task is less problematic as the slots in the corresponding form are presented in one

continuous dialog segment. However, when a sub-task is interrupted before all of the

necessary slots in the corresponding form are filled, as in the case of sub-task revisiting in

the meeting domain, it may be difficult to identify all of the relevant slots for that type of

sub-task if many of it instances have this kind of fragmentation.

For other kinds of dialog structure analysis, fragmented sub-tasks can become more

problematic. For example, interrupting sub-tasks make it more difficult to recognizing

participants’ focus of attention at run time as there are multiple active sub-tasks that

could receive the focus of attention. Interruption in a form-based dialog system can be

handled by a stack as described in (Constantinides et al., 1998); nevertheless, this issue is

not the main focus of this thesis.

3.8.3 Non-task dialog segments

The form-based dialog structure representation focuses on modeling domain-specific

information necessary for performing domain actions that contribute directly toward a

conversation goal. Since human-human conversations are rich in nature, there might be

some segments of a dialog that are not directly related to the domain actions and the

dialog goal. These non-task dialog segments cannot be explained with the proposed

dialog structure representation. Examples of non-task segments are a client’s comment on

the price of a car rental in the air travel planning domain (utterance 16 -19 in Figure

3.38), and a discussion about a direction from a bus stop to a client’s actual destination in

the bus schedule inquiry domain (utterance 25 – 30 in Figure 3.38). A non-task segment

may have some influence on the interpretation of an indirect concept value as discussed

in Section 3.8.1. However, the content of the non-task segment itself does not contain

domain-specific information or have any effect on the form.

Chapter 3: Form-based Dialog Structure Representation

120

Figure 3.38: An example of a non-task dialog segment in the air travel planning domain

Figure 3.39: An example of a non-task dialog segment in the bus schedule inquiry

domain

Among five task-oriented domains that can be represented with the form-based dialog

structure, real-world applications (air travel planning, bus schedule enquiry and meeting)

have more non-task segments than simulated tasks (map reading and UAV flight

simulation) because the real-world applications are embedded in the world where a

domain boundary is not clearly defined while the simulated tasks have a more limited

scope that is well-defined. Since a meeting usually contains a lot of discussions, a

conversation in the meeting domain contains more non-task segments than other types of

 …
AGENT 13: WITH THE DISCOUNT NUMBER FROM C.M.U. IT COMES TO

FIFTY FOUR NINETY NINE FOR HERTZ
CLIENT 14: FIFTY FOUR NINETY NINE
AGENT 15: /MM/ /UM/
CLIENT 16: OKAY THAT SOUNDS ABOUT RIGHT PRICES ARE GOING UP
AGENT 17: THEY ARE HERTZ IS A LITTLE BIT MORE EXPENSIVE THAN

SOME OF THE OTHER COMPANIES
CLIENT 18: BUT YOU GET TO DRIVE FORDS
AGENT 19: /LG/ OKAY
 …

 …
AGENT 21: get a 71C
CLIENT 22: ok yeah and which stop do i get off at
AGENT 23: get off at /um/ forbes downtown forbes_and_stanwick down by the

mcdonald's
CLIENT 24: yeah ok
AGENT 25: you will cross
CLIENT 26: yeah
AGENT 27: stanwick_street and you will see on your right after you pass the

subway station /feed/ on the right on the left side will be the state
office building and on the other side of the street will be the hilton
hotel so just so you have your bearings so you know where you're
goin

CLIENT 28: yeah #begin_feed# ok #end_feed#
AGENT 29: just walk straight up liberty_avenue and it should be right there on

your left
CLIENT 30: ok
 …

Chapter 3: Form-based Dialog Structure Representation

121

task-oriented domains. Examples of non-task segments in the meeting domain are given

in Section 3.6.

To verify that the form-based dialog structure can account for most parts of task-

oriented dialogs on average, a dialog structure experiment (see Section 4.1) which

determines the percentage of dialog content that can be accounted for by the proposed

form-based dialog structure was conducted.

3.8.4 Potential difficulties in other task-oriented domains

The form-based dialog structure representation could be applied to other task-oriented

domains besides the ones discussed in this chapter as well if the characteristics of dialogs

in those domains match all of the assumptions made by the form-based representation.

The form-based dialog structure framework assumes that 1) a goal of a dialog is achieved

through the execution of domain actions, and 2) dialog participants have to communicate

the information required to perform these actions through dialog. However, the form-

based dialog structure representation may not be able to describe all the phenomena

occurring in those task-oriented domains because it only captures the observable structure

of a dialog using a simple model.

In addition to the difficulties discussed in the previous sections, a negotiation sub-

dialog is another complicated case that is difficult to handle using the form-based

representation. In the domains analyzed in this chapter, a negotiation only occurs at a

concept level where dialog participants discuss alternative values for a particular concept

rather than at a form level where the participants discuss alternative ways of performing

one particular action. For example, in the air travel planning domain, a client may ask for

an alternative flight, such as an earlier flight, from a set of flights that match the specified

criteria as shown in utterance 10 -15 in Figure 3.12. This sub-dialog only discusses

alternative values of a particular FlightInfo slot in a flight reservation form not

alternative flight reservation forms. In all five domains analyzed (air travel planning, bus

schedule inquiry, map reading, UAV flight simulation, and meeting), dialog participants

help each other fill one particular form rather than proposing alternative forms since each

participant has different pieces of information that need to be put together in order to

perform a domain action or there is only one person who is responsible for making a

decision on how to perform the action.

Nevertheless, in some domains, dialog participants may have similar pieces of

information and help each other find the best way to perform an action. For example, in a

scheduling domain, dialog participants have to find a meeting date and time that fit with

Chapter 3: Form-based Dialog Structure Representation

122

all of the participants’ schedules. They may discuss several alternatives; each of them

corresponds to a form rather than one specific slot. Even though the participants will

choose only one alternative at the end, during a negotiation sub-dialog we may need

multiple instances of the same form to represent all the options that are discussed. The

proposed form-based dialog structure representation which assumes that there is only one

instance of a form in each sub-task, while sufficient for modeling a negotiation at a

concept level, is not adequate for modeling a negotiation at a form level where multiple

form instances are required in each sub-task to represent alternative ways to perform the

action that is associated with the sub-task.

We could extend the form-based representation to allow multiple instances of a form

in each sub-task. However, the implication of this extension on domain-specific

information acquisition and dialog processing should also be considered. For domain-

specific information acquisition as in the case of this thesis, since there are multiple sets

of concepts discussed in one sub-task (one set for each form instance), it is more difficult

to identify a set of slots that is associated with one form especially if the concepts that

belong to the same form instance are not discussed together in one segment. For dialog

processing, an understanding module has to be able to identity the instance of a form that

a dialog participant refers to in each utterance. This problem is more complicated than

recognizing the participant’ focus of attention when a sub-task is interrupted since in a

negotiation sub-dialog the focus of attention shifts within the same sub-task rather than

between sub-tasks. For a more subtle shift in the focus of attention, usually there is less

evidence that indicates the shift. Rosé et al. (1995) proposed an extension to a plan-based

model that is able to capture multi-threads of negotiations in the scheduling domain.

Nevertheless, dialog processing is not the main focus of this thesis.

3.9 Conclusion

In this chapter, I proposed a form-based dialog structure representation as a suitable

representation for representing the domain-specific information required to build a task-

oriented dialog system. The form-based dialog structure representation models the tasks

that a dialog system has to support, a set of sub-tasks (a decomposition of a task) which

corresponds to the steps that needs to be taken in order to successfully accomplish the

task, and concepts which are the items of information (or domain keywords) that dialog

participants have to communicate in order to achieve a task or a sub-task. In this

framework, the domain-specific information in each dialog (i.e. tasks, sub-tasks, and

Chapter 3: Form-based Dialog Structure Representation

123

concepts) is represented by forms and their slots while each utterance in the dialog is

considered as an operator that operates on the forms and their content.

This form-based dialog structure representation is conjectured to have all of the

required properties, sufficiency, generality, and learnability, discussed at the beginning of

this chapter. The form-based representation is sufficient for representing the domain-

specific information required to build a task-oriented dialog system since it is already

used in the dialog systems that are implemented based on the form-based dialog system

architecture, for example, the Philips train timetable information system (Aust et al.,

1995) and the CMU Communicator system (Rudnicky et al., 1999). In this thesis, the

notion of form in the form-based dialog structure representation is generalized beyond a

database query form, so that it can be used to represent other types of task-oriented

domains besides the information-accessing domains. The form-based dialog structure

representation focuses only on concrete information that can be observed directly from

in-domain conversations and models this information with a rather simple representation.

These characteristics of the form-based representation (observable and simple) make it

possible to be learned through an unsupervised learning approach.

Dialog structure analysis of six different types of task-oriented conversations

described in this chapter demonstrates that the proposed form-based representation

fulfills two of the required properties: sufficiency and generality. Interesting findings

from the analysis are summarized below. The learnability of the form-based

representation can be verified by the accuracy of its components obtained from the

proposed machine learning algorithms described in Chapter 5 and Chapter 6.

By focusing only on observable aspects of a task-oriented dialog, the form-based

dialog structure representation requires that all of the domain-specific information

necessary for supporting a task is communicated clearly in a conversation. This occurs

when a dialog has the following characteristics: 1) the dialog goal is achieved through the

execution of domain actions, and 2) dialog participants have to communicate the

information required to perform these actions through dialog. From dialog structure

analysis of six task-oriented domains discussed in Section 3.2 - Section 3.7, I found that

dialogs from five domains have the required characteristics and can be modeled by the

form-based representation. These domains are air travel planning (information-

accessing), bus schedule inquiry (information-accessing), map reading (problem-solving),

UAV flight simulation (command-and-control), and meeting. However, the proposed

dialog structure is not suitable for representing dialogs in the tutoring domain since their

characteristics do not match the assumptions made by the form-based dialog structure

Chapter 3: Form-based Dialog Structure Representation

124

representation. Furthermore, the simplicity of the form-based representation makes it not

suitable for representing a complex dialog that has a dynamic structure as in the case of a

tutor dialog.

Since human-human conversations are rich in nature and the form-based dialog

structure representation only captures the observable structure of a dialog using a simple

model, the form-based representation is not able to describe all of the phenomena

occurring in those five task-oriented domains that it can be applied. The problematic

cases include implicit concept values, fragmented sub-tasks, and non-task dialog

segments. Nevertheless, the form-based dialog structure is sufficient enough to model

important phenomena that occur regularly in dissimilar types of task-oriented dialogs,

and thus has both sufficiency and generality properties. Even though a dialog system built

from imperfect domain-specific information will have limited functionalities when

compared to a human participant, it still be able to carry out the required tasks as

demonstrated by the success of the systems that were implemented based on the form-

based architecture. Dialog coverage, which measures the percentage of dialog content

that can be accounted for by the proposed dialog structure and is reported in Section 4.1,

is additional evidence that supports the sufficiency of the form-based dialog structure

representation.

The form-based dialog structure representation also has another desirable property, a

straightforward connection between its components and the components of a dialog

system that employs the representation. Since we take a different approach using an

existing dialog system framework to describe the structure of a task-oriented

conversation rather than adapting an existing dialog structure theory to the existing dialog

system architecture, configuring a dialog system from the acquired representation is less

complicated as a mapping between form-based dialog structure components and the

components of a form-based dialog system is straightforward. For instance, the learned

domain-specific information can be used as a task specification in the RavenClaw

framework (Bohus and Rudnicky, 2003).

The learnability of the form-based dialog structure representation can be verified by

the accuracy of the tasks, sub-tasks, and concepts obtained from the learning algorithms

proposed in Chapter 5 and Chapter 6. Implicit concept values and fragmented sub-tasks

discussed in Section 3.8 may complicate a dialog structure acquisition process. However,

if these complex cases only occur occasionally, the acquisition process should not be

affected since the learning approaches which will be used to infer the components of the

form-based dialog structure are based on the generalization of recurring patterns. If there

Chapter 3: Form-based Dialog Structure Representation

125

are enough instances that clearly represent a particular dialog structure component, we

should be able to learn the underlying concept or sub-task. Experiment results confirm

this hypothesis; the learning accuracies of frequent concepts and sub-tasks are usually

higher than the learning accuracies of infrequent components. The overall accuracy is

acceptable for all learning problems: concept identification (see Chapter 5), and sub-task

boundary detection and sub-task clustering (see Section 6.1 and 6.2 respectively) which

are two main steps in form identification.

Learnability is also suggested if the structure of task-oriented dialogs can be marked

up reliably with the proposed scheme. Section 4.2 describes a human annotation

experiment that was carried out to evaluate the reliability of the proposed form-based

dialog structure representation along two aspects: reproducibility and accuracy.

Reproducibility measures the level of agreement among non-expert coders and verifies

that the proposed dialog structure can be understood and applied by the annotators other

than a coding scheme developer while accuracy ensures that the agreement between the

coders conforms to the expert’s judgment. Experiment results show that the form-based

dialog structure annotation scheme can be understood and applied reliably by non-expert

users producing high level of reproducibility and acceptability. High annotation scheme

reliability suggests that the annotation scheme is concrete and unambiguous which imply

learnability

Chapter 4: Form-based Dialog Structure Representation Evaluation

126

Chapter 4

Form-based Dialog Structure Representation

Evaluation

The previous chapter showed that the form-based dialog structure representation can

be used to model the structure of dialogs in a variety of task-oriented domains.

Nevertheless, to be useful for automatic acquisition of domain-specific information

which is the goal of this thesis, the representation should also provide good coverage of

dialogs, and, more importantly, it should be clear and unambiguous in its application.

This chapter describes two annotation experiments that were carried out to validate these

properties of the proposed form-based dialog structure representation.

To verify that the form-based dialog structure representation can account for most

parts of task-oriented dialogs on average, a dialog structure experiment which determines

dialog coverage, the percentage of dialog content that can be accounted for by a given

dialog representation, was conducted. This experiment, which will be described in

Section 4.1, also identifies those pieces of human-human conversation that the proposed

dialog structure fails to account for. This evaluation procedure verifies two required

properties of a domain-specific information representation (sufficiency and generality)

discussed in Chapter 3. If the proposed representation achieves high dialog coverage in

various types of task-oriented domains, we can say that the representation fulfills both the

sufficiency and generality requirements.

In addition to being able to model important phenomena in dissimilar types of task-

oriented dialogs, a domain-specific information representation has to be concrete and

unambiguous, so that it can be identified reliably from in-domain dialogs. Learnability,

which is another desired property, is implied if the structure of task-oriented dialogs can

be marked up reliably by annotators other than coding scheme developers using the

proposed dialog structure annotation scheme. A dialog structure annotation experiment

described in Section 4.2 was conducted in order to evaluate the form-based dialog

structure representation along two aspects of annotation scheme reliability:

reproducibility, which requires different annotators to produce similar annotations, and

Chapter 4: Form-based Dialog Structure Representation Evaluation

127

accuracy, which requires an annotator to produce a similar annotation as a known

standard (e.g. a coding scheme expert’s annotation).

4.1 Dialog coverage

Dialog coverage is defined as the percentage of dialog content that can be accounted

for by a specific dialog structure. In the form-based dialog structure framework, domain-

specific information in each dialog is represented by forms. Each utterance in the dialog

is regarded as an operator that operates on the forms and their content. Therefore, an

utterance that can be classified as one of the form operators discussed in Section 0 is an

utterance that can be described by the form-based dialog structure representation. Dialog

coverage for the form-base representation is computed by the following equation.

100*
utterances of number total

 structuretheby described be can that utterances of number
 eragecovlogdia (4.1)

To measure the dialog coverage of the proposed form-based dialog structure

representation, four task-oriented domains: air travel planning, bus schedule enquiry, map

reading and UAV flight simulation were analyzed on an utterance-by-utterance basis.

Table 4.1 shows the number of dialogs that were available during the time of the

evaluation as well as those used in the analysis.

Domain

Available Analyzed

Number of

dialogs

Number of

dialogs

Number of

utterances

Air travel planning 43 4 273

Bus schedule enquiry 12 5 90

Map reading 128 4 498

UAV flight simulation 2 1 224

Table 4.1: The amount of data used in the analysis

On average, 93% of the utterances that were analyzed could be accounted for by the

form-based dialog structure representation. Utterances that could not be described by the

proposed framework are classified into four categories: out of domain (OOD), out of

scope (OOS), indirect and task management (TM).

1. Out of domain (OOD) utterances contain information that does not relate to

the domain (and thus would not need to be accounted for).

Chapter 4: Form-based Dialog Structure Representation Evaluation

128

2. Out of scope (OOS) utterances contain information that while related to the

domain, falls outside the scope of the defined conversation goal, or does not

contribute directly toward an execution of any domain action. For example, in

the bus schedule inquiry domain, a dialog goal is to obtain information about a

bus schedule; therefore, the utterances that contain an additional discussion

about how to get to a client’s actual destination from a bus stop are out of

scope. More discussion about this type of utterance can be found in Section

3.8.3.

3. Indirect utterances are utterances that require additional domain and world

knowledge that are not presented in a dialog in order to interpret and act upon.

For example, in the bus schedule enquiry domain, instead of specifying the

actual time that he would like to arrive at the airport, a client may provide the

departure time of his flight as an implicit arrival time of the desired bus.

Additional knowledge representation and interpretation process are required in

order to represent this type of utterance with the form-based dialog structure

representation. However, this type of utterance does not include the utterances

that contain indirect expressions which can be resolved using contextual

information from within a dialog such pronouns and indirect temporal

expressions. Indirect expressions are discussed in more detail in Section 3.8.1.

4. Task management (TM) utterances are utterances that manage the overall state

of a dialog (e.g. suspending or resuming a task) rather than manipulate a

particular form. This type of utterance occurs when a sub-task is interrupted

by another sub-task. “Can you hold one second please” is one example of TM

utterances. While a task management utterance contain information that is

necessary for run time dialog processing such as determining a speaker’s

focus of attention, it does not contain information that is necessary for

performing any domain action. The form-based dialog structure representation

focuses on modeling domain-specific information required in order to execute

domain actions that contribute directly toward a dialog goal rather than the

information that may be required to process the dialog at run time as discussed

at the end of Section 3.8.2.

Chapter 4: Form-based Dialog Structure Representation Evaluation

129

Domain
Rejected utterances (%)

OOD OOS Indirect TM Total

Air travel planning 4.4 4.4 6.7 0.0 15.6

Bus schedule enquiry 1.8 4.4 0.4 2.6 9.2

Map reading 0.0 0.0 2.2 0.0 2.2

UAV flight simulation 1.0 0.0 1.0 4.0 5.9

Table 4.2: The percentage of rejected utterances of each type

The percentage of rejected utterances in Table 4.2 reveals that the characteristics of a

task affect both the type and the number of rejected utterances. The air travel planning

and the bus schedule enquiry which are real-world applications have higher rejected

utterance rates than the map reading and the UAV flight simulation which are simulated

tasks. The main difference comes from the scope of the task as reflected in the number of

OOS. The simulated task has a limited scope that is well-defined while the real-world

application is embedded in the world and appears to have an indefinite domain boundary.

Since a dialog system that is applied to the real-world task will have limited

functionalities, we would expect it to elicit more OOS utterances.

Nevertheless, previous studies on the differences between human-human

conversations and human-machine conversations (Dahlbäck et al., 1993; Hauptmann and

Rudnicky, 1988; Jönsson and Dahlbäck, 1988) show that the language that a human uses

to communicate with a computer is more constrained than the one he/she uses to

communicate with a human participant. Since humans can adjust their language to

accommodate the machine incomplete communication capability, we would expect to see

fewer rejected utterances in human-machine conversations as the humans constrain

themselves within the scope of a dialog system application and use simple and more

direct utterances to communicate with the system.

Summary

The proposed form-based dialog structure representation has high dialog coverage in

all four task-oriented domains (air travel planning, bus schedule enquiry, map reading,

and UAV flight simulation) used in the evaluation. This result verifies that the form-

based representation has both the sufficiency and generality properties. Dialog coverage

is lower in real-world applications (bus schedule enquiry and air travel planning) than in

simulated tasks (map reading and UAV flight simulation) due to the greater difference

between the broader scope of the real-word application and the limited dialog system

functionalities.

Chapter 4: Form-based Dialog Structure Representation Evaluation

130

4.2 Annotation scheme reliability

The evaluation result in the previous section shows that that the proposed form-based

dialog structure representation can account for large portions of dialogs in task-oriented

domains. However the evaluation was carried on by an annotation scheme developer. It is

also important to show that the proposed dialog structure can be understood and applied

reliably by annotators other than the developer. In this section, I will discuss the

evaluation of the form-based dialog structure representation along two aspects of

reliability: reproducibility and accuracy. Reproducibility, which measures inter-coder

variance, requires different annotators to produce similar annotations while accuracy

requires an annotator to produce a similar annotation as a known standard (e.g. a coding

scheme expert’s annotation). The evaluation was done through a dialog structure

annotation experiment.

First, a set of pilot annotation experiments was conducted in order to verify the

experimental procedure and the annotation guidelines that would be used in the

annotation experiment. Pilot experiments are described in Section 4.2.1. The form-based

dialog structure annotation scheme poses two challenges in comparing two dialog

structure annotations. Firstly, different tagsets may be used to annotate dialog structures

in the same domain. Secondly, structural annotations are quite difficult to compare. These

two challenges are discussed in Section 4.2.2 and Section 4.2.3 respectively. The

experimental procedure of the annotation experiment is discussed in Section 4.2.4 and the

results are presented in Section 4.2.5. Finally, Section 4.2.6 summarizes all the findings.

4.2.1 Pilot annotation experiments

A set of pilot annotation experiments was conducted to verify an experimental

procedure especially annotation guidelines. Five subjects were participated in the pilot

experiments. Since we would like to verify that the proposed form-based dialog structure

representation can be understood and applied reliably by annotators other than a coding

scheme developer, eligible subjects must not used the form-based annotation scheme

previously. I focus particularly on a group of people who are likely to use the form-based

dialog structure representation in the future. This target group includes people who are

involved in dialog system development, linguistic and language technologies students.

In the experiments, the subjects were asked to annotate the structures of the given

dialogs using the form-based dialog structure annotation scheme. Coding scheme reliability

is determined from the similarity of the annotations produced by different coders. The

subjects were given annotation guidelines which contain a form-based dialog structure

Chapter 4: Form-based Dialog Structure Representation Evaluation

131

definition and examples of dialog structure annotations from the task-oriented domains

that were not used in the experiments. Since the form-based annotation scheme only

specifies the definition of each dialog structure component (task, sub-task, and concept),

but does not prescribe a specific tagset to be used in each domain, each annotator has to

also develop his/her own tagset. In the annotation experiment, each subject had to first

design a dialog structure representation (a tagset or a markup scheme) for a given domain

according to the definitions of task, sub-task, and concept provided in the guidelines by

analyzing a given set of in-domain dialogs. The markup scheme includes the tags for

tasks, sub-tasks and concepts for the given domain. The subject was then asked to

annotate a set of dialogs according to the tagset that he/she had designed. This set of

dialogs is the same set as the one the subject saw when designing the dialog structure

representation. This procedure is different from a typical annotation task in which the

tagset is pre-specified and is given to the annotators. To control the number of annotated

instances for each dialog structure component and to keep the annotation experiment

simple, the experiment was divided into two parts: concept annotation, and task/sub-task

annotation. There was no time limit on any part of the experiment.

The annotation was done using CADIXE
1
, an XML-based annotation tool. CADIXE

provides easy and interactive environment for text document annotation. An annotator is

not required to have any experience with XML annotation as an annotated document is

displayed in text format (in different colors and styles depending on the markups) in the

annotation panel while its corresponding XML representation is displayed in the XML

panel. CADIXE user interface is illustrated in Figure 4.1. Since each annotation tag has it

own display style in the annotation panel, it is easy to distinguish between different types

of dialog structure components. For example, Hour and Minute are displayed with

different colors as shown in Figure 4.1. CADIXE version 2.0a6 was used in all of the

annotation experiments.

1 More detail about CADIXE can be found at http://www-

leibniz.imag.fr/SICLAD/Caderige/Cadixe/

http://www-leibniz.imag.fr/SICLAD/Caderige/Cadixe/
http://www-leibniz.imag.fr/SICLAD/Caderige/Cadixe/

Chapter 4: Form-based Dialog Structure Representation Evaluation

132

Figure 4.1: The interface of CADIXE XML annotation editor

After each pilot experiment, potential problems and ambiguities in both the

experimental procedure and the annotation guidelines were identified by examining the

tagset and the annotated dialogs that each subject produced. The subjects were also asked

to explain the difficulty or ambiguity that they may have encountered during the

experiment. The annotation guidelines were then successively modified to address those

problems. The modifications include:

● More precise definitions of dialog structure components

● Clarifications for ambiguous components and more contrasting examples

The following pieces of information were also added:

● A formal definition of an action as it plays an important role in the

decomposition of tasks and sub-tasks

● A diagram that illustrates the decomposition of a dialog into tasks and sub-

tasks together with their associated actions and forms in each domain

● A table that summarizes dialog structure components in each domain

● More examples of annotated dialogs

Annotation Panel

XML Panel

Chapter 4: Form-based Dialog Structure Representation Evaluation

133

In terms of the experimental procedure, more detail instructions were given especially

on how the annotated dialog structure would be used (i.e. to build a dialog system based

on the information in the dialog structure). An annotation exercise was also added to

assess subjects’ understandability on the form-based dialog structure annotation scheme.

After the subjects studied annotation guidelines, they were asked to annotate the

structures of dialogs in the same domains as the ones discussed in the guidelines. In the

exercise, the tagsets were provided for both domains (the tagsets are described in the

guidelines); the subjects did not have to design a new tagset. Only a subject who

sufficiently understood the form-based dialog structure annotation scheme would be

entered into an annotation experiment.

The pilot experiments revealed that the subjects could come up with dissimilar dialog

structure designs (dissimilar markup schemes) even though they were working on the

same set of dialogs. Table 4.3 shows examples of the differences found in the air travel

planning domain. These differences include: additional concept types and variations in

structured concept design. Annotation differences and the possible causes are discussed

in more detail in Section 4.2.5.1 with the data from the main experiment.

Subject 1 Subject 2

<NoOfStop> -

<DestinationCity> <DestinationLocation><City>

<Date> <DepartureDate> and <ArrivalDate>

Table 4.3: Differences in the tagsets designed by two different subjects

Variations in the tagsets are acceptable as long as the tagsets and the annotations

conform to the dialog structure definition given in the guidelines. Moreover equivalent

but not identical dialog structures can generate dialog systems with the same

functionality. This is analogous to different computer programs that generate the same

output. The variations in the tagsets, however, create a challenge in evaluating inter-

annotator agreement as the conventional inter-annotator agreement metric assumes that

an identical tagset is used by all annotators. To verify that an annotator can generate a

reasonable domain-specific tagset for a given task-oriented domain rather than one

specific tagset that matches a known answer, an evaluation methodology that can

accommodate differences in annotation tagsets is required. To solve this problem, I

propose a novel evaluation procedure which will be referred to as cross-annotator

correction. The detail of this procedure is discussed in the next section.

Chapter 4: Form-based Dialog Structure Representation Evaluation

134

4.2.2 Cross-annotator correction

I propose cross-annotator correction as a suitable technique for assessing inter-

annotator agreement when the annotators create different markup schemes to annotate the

same document. Instead of comparing two annotated documents produced by two

different annotators mechanically, each annotated document is first critiqued and

corrected by another annotator (a corrector). The corrector makes judgment based on the

tagset created by the original annotator of that document and is only allowed to correct

the annotation when it does not conform to the form-based dialog structure annotation

guidelines, but not when it differs from his/her own annotation. The original annotation

and its corrected version are then compared. Both annotated documents in cross-

annotator comparison are based on the same (original) tagset. Figure 4.2 illustrates the

cross-annotator correction process. The cross-annotator comparison allows the original

annotation to be evaluated against not only a single annotation but any annotations that

conform to the guidelines. Thus, the idea is to compare annotators’ knowledge of the

annotation scheme and not individual instances of annotation.

Figure 4.2: A cross-annotator correction process

A procedure for evaluating the reliability of the form-based dialog structure

representation using the cross-annotator correction process is as follows. Each annotator

is first asked to develop his/her own annotation tagset and use it to annotate the dialog

original

annotation

(dialog A)

tagset

1

tagset

2

original

annotation

(dialog A)

corrected
annotation

(dialog A)

corrected
annotation

(dialog A)

cross-annotator

comparison

Coder 2

correct

Coder 1

annotates

Coder 2

annotates

Coder 1

corrects

direct
comparison

cross-annotator

comparison

Chapter 4: Form-based Dialog Structure Representation Evaluation

135

structures of the given dialogs. This part is similar to the dialog structure annotation

experiment described in Section 4.2.1. The part of the procedure creates the original

annotations shown in Figure 4.2. In the second part of the procedure, the annotator (the

corrector) is asked to critique and correct the annotation done by another annotator that is

given the same instruction and annotation guidelines and is working on the same set of

dialogs. The corrector is instructed to correct the annotation only when it does not

conform to the form-based dialog structure annotation guidelines not when it differs from

his/her own annotation.

The correction process consists of two steps: annotation critique and annotation

correction. In the first step, the corrector is asked to rate each dialog structure component

in the original annotation as correct or incorrect. I am also interested in the corrector’s

level of confidence when making each decision because the corrector may agree or

disagree with the original annotation when he/she is not certain with the decision.

Therefore, instead of judging each annotation tag as only correct or incorrect the

corrector is also asked to provide the level of confidence in his/her critique by rating each

tag using one of the four possible correctness values: correct, maybe correct, maybe

incorrect and incorrect.

To ensure that the corrector marks an original tag as incorrect or maybe incorrect only

when it does not conform to the guidelines, the corrector has to also specify the error

category of that incorrect tag. In the main dialog structure annotation experiment

described in Section 4.2.4, a list of common types of errors found in concept annotation,

and a list of common types of errors found in task and sub-task annotation were given to

the subjects to provide an idea of what kinds of annotation mistakes they might

encounter. These lists were created by a coding scheme expert from the analysis of the

annotation errors found in the pilot experiments. Nevertheless, the subjects could also

correct additional types of errors when they discovered ones. The lists of common error

types that were given to the subjects are shown in Figure 4.3 and Figure 4.4. The name in

the parentheses is an error code which can be used interchangeably with an error type.

Examples of task and sub-task annotation errors were taken from the bus schedule

enquiry domain. The subjects could use the criteria in the following diagrams as

guidelines to determine an error type of each incorrect tag. A diagram in Figure 4.5

demonstrates how to identify the type of error in concept annotation while a diagram in

Figure 4.6 demonstrates how to identify the type of error in task and sub-task annotation.

Chapter 4: Form-based Dialog Structure Representation Evaluation

136

Figure 4.3: A list of common types of errors found in concept annotation

1. Missing concepts

The annotator did not annotate crucial information that is required in order to perform

an action. There are two cases that a concept C could be missing from the annotation.

1.1. Missing concept type (MissingType): the annotator did not identify the concept C. That

is C is not in the list of concepts.

1.2. Missing concept instance (MissingInstance): the annotator did not annotate an instance

of C when it is presented in the dialog even though he/she has C in his/her concept list.

2. Extraneous concept types (ExtraType)

The annotator identified a concept that is not relevant to a task or is not necessary for

performing an action.

3. Incorrect use of concept labels (IncorrectLabel)

 Use C to annotate a word or a group of words that does not belong to a concept C. This

includes 1) annotate a word that belong to another concept as C and 2) annotate a word that

doesn’t belong to any concept (a non-concept word) as C.

4. Incorrect concept boundary (IncorrectBoundary)

 Only a part of a concept is annotated, for example:

 (incorrect) <e-mail>tom</e-mail>@cmu.edu

 (correct) <e-mail>tom@cmu.edu</e-mail>

5. Inappropriate structured concept granularity (IncorrectGranularity)

Use a too fine-grained or a too coarse-grained structured concept. For instance, the

annotator annotated a structured concept without annotating its components when the individual

component can be used separately, e.g. if a zip code is used separately for calculating shipping

cost then,

 (incorrect) <address> 5000 Forbes Ave.

 Pittsburgh PA 15213

 </address>

 (correct) <address> 5000 Forbes Ave.

 Pittsburgh PA <zipcode>15213</zipcode>

 </address>

6. No distinction between similar concepts that have different functionalities

(NoDistinction)

 For example, in an e-mail application, it is incorrect to annotate all e-mail addresses with

the same concept type Address. The correct annotation is to distinguish between

SenderAddress and RecipientAddress

Chapter 4: Form-based Dialog Structure Representation Evaluation

137

Figure 4.4: A list of common types of errors found in task and sub-task annotation

1. Missing tasks or sub-tasks

The annotator did not annotate a subset of a dialog that corresponds to a task or a sub-

task. There are two cases that a task or a sub-task could be missing.

1.1. Missing a task/subtask type (MissingType)

1.2. Missing a task/sub-task instance (MissingInstance)

2. Extraneous tasks or sub-tasks (ExtraComponent)

An extraneous task is a sub-set of a dialog that does not have a specific goal. An

extraneous sub-task is a sub-set of a dialog that does not correspond to any well-defined

action including too fine-grained decomposition of a task where each sub-task corresponds to

acquiring each piece of information. For example, a get_bus_number sub-task and a

get_departure_location sub-task, which are decomposed from a query_departure_time task,

are extraneous sub-tasks. Each of them does not correspond to any action by itself, but

rather acquires one piece of information for an action retrieve_depart_time_fromDB.

3. Incorrect use of task or sub-task labels (IncorrectLabel)

Use T to annotate a subset of a dialog that does not correspond to a task T or use S to

annotate a subset of a dialog that does not correspond to a sub-task S.

4. Incorrect task or sub-task boundary (IncorrectBoundary)

For example, including a part of a dialog that belongs to the adjacent task in the scope of

the considered task.

5. Inappropriate task or sub-task granularity (IncorrectGranularity)

Examples of this type of error are:

5.1. Annotating multiple tasks as one task

The following case is considered an annotation errors; the annotator annotated a

dialog that discusses two independent bus schedule queries as one task. The correct

annotation must separate the dialog into two tasks; one for each query.

5.2. Merging adjacent sub-tasks together

A sub-task that contains more than one action does not conform to the guideline.

6. No distinction between different types of tasks or different types of sub-tasks

(NoDistinction)

 Subsets of a dialog that have dissimilar types of goals should be annotated with different

task labels. Similarly, subsets of a dialog that correspond to dissimilar types of actions should

be annotated with different sub-task labels

7. Inappropriate task or sub-task decomposition (IncorrectDecomposition)

 This includes identifying a sub-task as a task, a task as a sub-task, a second-level sub-task

as a first-level sub-task and so on.

 Tasks are independent from each other while the sub-tasks of the same task have some

dependencies among them. Similarly, there are more dependencies between sub-tasks in the

same decomposition level than between sub-tasks in different levels that do not subsume one

another. The annotation that marks a subset of a dialog that has some dependencies with

other parts of the dialog as a task does not conform to the guideline.

Chapter 4: Form-based Dialog Structure Representation Evaluation

138

Figure 4.5: Criteria for classifying an error type in concept annotation

for each original tag T which covers a word or a group of words Ws

if a word or a group of words Ws should not be annotated as a concept then

/*an extraneous label was used (e.g. a non-concept word was annotated)*/

if every instance of the concept T should not be annotated then

Error Type = ExtraType

correction = 1. Remove T from the concept list (change the annotation scheme)

 2. Remove T from the annotation

else
 /*just some instances of T are incorrect*/

Error Type = IncorrectLabel

correction = 1. Remove T from the annotation

endif
else
 if T is not the right tag for this concept then

if there is a tag R in the original concept list that should be used instead then

 Error Type = IncorrectLabel

 correction = 1. Change T to R

else
/*an appropriate concept type is missing*/

if the missing concept type M is required in order to distinguish between similar concepts

that have different functionalities then

Error Type = NoDistinction

else
Error Type = MissingType

 endif
correction = 1. Add the missing concept type M into the concept list (change the annotation

scheme)

 2. Change T to M
endif
correction = (optional) adjust the boundaries of the new tag if necessary

 else
/* T is the right tag for this concept */

if T is a structured concept and its granularity is inappropriate then

Error Type = IncorrectGranularity

correction = 1. Modify the structured concept components in the annotation scheme which

may include adding a missing component

 2. Modify the annotation (the error type of the added component should be

MissingType or MissingInstance)

else if the concept boundary is incorrect then

 Error Type = IncorrectBoundary

 correction = 1. Adjust the boundary

else if T contains another type of error then

 Error Type = Other (please also describe the new error type in the Description attribute)

else

 This tag is correct

endif
 endif
endif

end for each

Chapter 4: Form-based Dialog Structure Representation Evaluation

139

Figure 4.6: Criteria for classifying an error type in task and sub-task annotation

for each original tag T which covers a subset of a dialog D

if T was placed at an inappropriate position in the task structure hierarchy (e.g. T was incorrectly

identified as a task instead of a sub-task) then

Error Type = IncorrectDecomposition

correction = 1. Modify the task structure hierarchy (change annotation the scheme)

2. Modify the annotation; let PC be the current parent tag of T according to the

original task structure hierarchy and PN be the new parent tag of T according to

the modified task structure hierarchy

2.1 To move T down the hierarchy (e.g. change from task to sub-task)

o Extend the boundaries of PN to include T (PN should be marked as

IncorrectBoundary)

or

o Add PN if it is missing (an error type of PN should be MissingInstance or

MissingType)

2.2 To move T up the hierarchy (e.g. change from sub-task to task)

o Adjust the boundaries of PC to exclude T (PC should be marked as

IncorrectBoundary)

or

o Remove PC (PC should be marked as ExtraComponent)

else

 Identify the number of goals NG in D if T is a task or

Identify the number of actions NA in D if T is a sub-task (do not including the actions that

correspond to the embedded sub-tasks of T in NA)

 if NG or NA = 0 then

 /* D contains no specific goal or action */

Error Type = ExtraComponent

 correction = 1. Remove T from the annotation

2. (optional) adjust the boundaries of adjacent tags if necessary (those

adjacent tags should be marked as IncorrectBoundary)

else if NG or NA > 1 then

/* merged multiple tasks or sub-tasks together*/

Error Type = IncorrectGranularity

correction = 1. Remove tag T from the annotation

 2. Annotate all the merged components separately (the new components

should be marked as MissingType or MissingInstance)

Chapter 4: Form-based Dialog Structure Representation Evaluation

140

Figure 4.6: Criteria for classifying an error type in task and sub-task annotation (cont.)

In the second step of the correction process, annotation correction, a corrector has to

make the original annotation conforms to the form-based dialog structure annotation

guidelines by correcting all of the tags that he/she marks as incorrect. For the tag that is

marked as maybe incorrect, the corrector has an option to correct it if he/she is certain

about the correction or leave it unchanged if he/she is not so sure. The corrector can also

insert the tags that are missing from the original annotation. For each new tag, the

corrector has to specify the type of error he/she intends to correct by adding this

particular tag along with the degree of confidence (confident or not so confident) in the

else if NG or NA = 1 then

 if T is not the right tag for this task or sub-task then

if there is a tag R in the original tagset that should be used instead then

 Error Type = IncorrectLabel

 correction = 1. Change T to R

else
/*an appropriate tag is missing*/

if the missing tag M is required in order to distinguish between different types of

tasks or different types of sub-tasks then

Error Type = NoDistinction

else
Error Type = MissingType

 endif
correction = 1. Add the missing tag M into the task structure hierarchy (change the

annotation scheme)

 2. Change T to M
Endif
correction = (optional) adjust the boundaries of the new tag if necessary

 else
/* T is the right tag for this concept */

if the boundary of T is incorrect then

 Error Type = IncorrectBoundary

 correction = 1. Adjust the boundary

else if T contains another type of error then

Error Type = Other (please also describe the new error type in the Description

attribute)

else
 This tag is correct

endif
 endif

 endif

endif

end for each

Chapter 4: Form-based Dialog Structure Representation Evaluation

141

insertion. In the dialog structure annotation experiment, the subjects could use the

suggested corrections provided in the error type classification diagrams in Figure 4.5 and

Figure 4.6 as guidelines for correcting each type of error.

4.2.3 Annotation similarity

In cross-annotator comparison we need to compare two structural annotations.

Furthermore, since there is no limitation on the number of levels in structured concept

nor in sub-task decomposition, the number of annotation levels in form-based dialog

structure annotation can be arbitrary.

The Kappa coefficient (K) is a commonly used metric for assessing inter-annotator

agreement. However, K is used primarily for comparing categorical judgments such as

the dialog act label for each utterance. In order to use K with structural annotation, some

extension is required. For instance, a cascaded approach was used in (Carletta et al.,

1997; Moser and Moore, 1997). In this approach, structural annotation is broken down

into levels and only one annotation level is considered at a time. The highest annotation

level in the structural annotation is evaluated first, then only the next level tags that are

under agreed tags are considered. By separating the calculation in this way, it is quite

difficult to tell directly the level of agreement on the overall structure and it is also not

suitable for a structural annotation that has arbitrary number of levels as in the form-

based dialog structure representation. Other approaches (Flammia and Zue, 1995; Marcu

et al., 1999) compared entire structural annotations directly without separating them into

levels. However, the K values computed by these approaches may be artificially high.

Flammia and Zue (1995) can only provide a lower bound estimation of chance

agreement, thus an upper bound on K while Marcu et al.’s (1999) approach has a large

numbers of non-active spans (a hierarchical structure of n segments is mapped into a set of

2

)1(nn
overlapping spans) which may boost the observed agreement. Although the

kappa statistic makes a correction for chance agreement, its calculation still needs to be

based on a sensible choice of unit (Carletta, 1996).

One can view a problem of annotating tasks, sub-tasks and concepts in a given dialog

as a bracketing and labeling problem where a labeled bracket (task, sub-task or concept

label) has to be placed around a word or a group of words. From this perspective,

structural annotation of a dialog is analogous to structural annotation of a sentence.

Brants (2000) and Civit et al. (2003) proposed similar inter-annotator agreement

measures for syntactic structure annotation based on bracketed precision and bracketed

recall. Both bracketed precision and bracketed recall were first introduced in the

Chapter 4: Form-based Dialog Structure Representation Evaluation

142

PARSEVAL workshop as quantitative metrics for evaluating parser outputs (Abney et al.,

1991).

Based on the ideas of Brants and Civit et al., I define acceptability as the degree to

which an original annotation is acceptable to a corrector by measuring the similarity

between an original annotation and its corrected version. If the original annotation and its

corrected annotation are very similar, the acceptability value will be high. On the

contrary, if the original annotation and its corrected annotation are very different, the

acceptability value will be low. Let X be the original annotation and X’ be the corrected

annotation:

))'X,X(recall),'X,X(precision(avg)'X,X(ityacceptabil (4.2)

where

X
XXprecision

in brackets ofnumber total

bracketssimilar ofnumber
)',((4.3)

'in brackets ofnumber total

bracketssimilar ofnumber
)',(

X
XXrecall (4.4)

Two annotated tags (or brackets) are considered similar if both their contents and

labels are the same. For example, <Date>may eleventh</Date> is not similar to

<DepartureDate>may eleventh</DepartureDate>, and <Fare>fifty dollars</Fare> is not

similar to <Fare>fifty</Fare>. This matching criterion is regarded as exact match.

Alternative matching criteria will be discussed later in this section. Acceptability is an

average between bracketed precision and bracketed recall. Both numbers are averaged

using a harmonic mean similar to the way traditional precision and recall are combined to

provide an F-1 measure. The bracketed precision and recall allows arbitrary levels in

structural annotations to be compared at the same time.

The changes that a corrector made to an original annotation during the cross-

annotator correction process can be classified into two board categories: major change

and minor change. A major change modifiers the original dialog structure design, for

example, adding a concept type or changing the composition of a structured concept,

while a minor change occurs at the instance level and affects only the annotation and not

the design, for example, changing a concept boundary or adding a missing annotation

(instance not type). For task and sub-task annotation, a task or sub-task that corresponds

Chapter 4: Form-based Dialog Structure Representation Evaluation

143

to more than one action or does not correspond to any well-defined action is considered a

major error. Major and minor are referred to as the severity level of a change.

The corrector makes changes to the original annotation in order to correct annotation

errors. Therefore, each change is associated with an incorrect tag in the original

annotation. The severity level of each change can be classified according to the error type

of the incorrect tag that the corrector intends to correct. The terms change, correction,

and error can be used interchangeably in this context. Common error types in Figure 4.3

and Figure 4.4 are shown again in Table 4.4 and Table 4.5 respectively along with their

severity levels.

No. Error type Severity level

1.1 Missing concept types (MissingType) major

1.2 Missing concept instances (MissingInstance) minor

2 Extraneous concept types (ExtraType) major

3 Incorrect use of concept labels (IncorrectLabel) minor

4 Incorrect concept boundary (IncorrectBoundary) minor

5 Inappropriate concept granularity (IncorrectGranularity) major

6 No distinction between similar concepts that have different

functionalities (NoDistinction)

major

Table 4.4: Severity levels of common errors in concept annotation

No. Error type Severity level

1.1 Missing task or sub-task types (MissingType) major

1.2 Missing task or sub-task instances (MissingInstance) minor

2 Extraneous tasks or sub-tasks (ExtraComponent) major

3 Incorrect use of task or sub-task labels (IncorrectLabel) minor

4 Incorrect task or sub-task boundary (IncorrectBoundary) minor

5 Inappropriate task or sub-task granularity

(IncorrectGranularity)

major

6 No distinction between different types of tasks or different

types of sub-tasks (NoDistinction)

major

7 Inappropriate task or sub-task decomposition

(IncorrectDecomposition)

major

Table 4.5: Severity levels of common errors in task and sub-task annotation

Chapter 4: Form-based Dialog Structure Representation Evaluation

144

A major error is more severe because it affects every instance of that type whereas a

minor error affects only a specific instance. For example, MissingType is a major error

because all of the instances of that type are not annotated while MissingInstance is a

minor error because only one specific instance of a dialog structure component is

omitted.

Different dialog structures, which caused by major changes, may lead to dissimilar

dialog systems. Some changes can cause the resulting dialog systems to have different

functionalities. For instance, additional sub-tasks add extra actions to a dialog system.

However, some differences can be compensated by a more sophisticated dialog system

component. For example, a dialog system that built from a dialog structure that does not

have detailed concept annotation (e.g. only contains <DepartLoc> not <city> and

<state>) requires a more complex understanding module. Nevertheless, this dialog system

still has the same functionality as a dialog system that built from a dialog structure that

has detailed concept annotation. As it is quite subjective to decide how each change will

affect dialog system functionalities, we merely consider both types of changes together as

major changes rather than making subjective distinction between them. All of the minor

changes will not affect the functionality of the target dialog system because they only

change an annotation at the instance level but do not change a dialog structure design.

In Equation (4.3) and (4.4), two annotated tags are considered similar if both of them

are matched under a specified criterion. A common matching criterion is an exact match

discussed earlier. By taking into account two additional pieces of information: degree of

correctness and severity level, more flexible matching criteria for comparing two dialog

structure annotations (an original annotation and its corrected annotation) can be defined.

Six matching criteria with different degrees of rigorousness are described below. Each of

them is defined based on how an annotation corrector judges the original tag in terms of

its degree of correctness and type of error (for an incorrect one). The most rigorous

criterion is listed first.

1. confident match: two annotation tags are considered matched if a corrector

rates the original tag as correct (not include maybe correct)

2. agreed match: two annotation tags are considered matched if a corrector rates

the original tag as correct or maybe correct

3. labeled match: two annotation tags are considered matched if a corrector does

not make any correction. This includes the case when a corrector rates the

Chapter 4: Form-based Dialog Structure Representation Evaluation

145

original tag as maybe incorrect but leaves it unchanged. Labeled match is

equivalent to exact match.

4. labeled match and minor change: two annotation tags are considered matched

if a corrector does not make any correction or makes only a minor change

5. labeled match and unconfident change: two annotation tags are considered

matched if a corrector does not make any correction or makes a change with

uncertainty (the original tag is marked as maybe incorrect or not so confident)

6. all but confident major change: two annotation tags are considered matched in

all cases except the case that a corrector makes a major change with

confidence (the original tag is marked as incorrect or confident)

Criterion 4, 5 and 6 allow some acceptable changes to be considered as matched.

4.2.4 Annotation experiment procedure

The reliability of the proposed form-based dialog structure representation was

evaluated in two types of task-oriented domains, air travel planning (information-

accessing task) and map reading (problem-solving task). The detail descriptions of both

domains are described in Section 3.2 and Section 3.4 respectively. Eight participants

were drawn from a target group, a group of people who are likely to use the form-based

dialog structure representation in the future, which includes people are who involved in

dialog system development, linguistic and language technologies students. This target

group is the same target group as the one used in the pilot experiments. The subjects were

drawn primarily from the Carnegie Mellon campus community. None of the subjects had

used the scheme previously. Four subjects were assigned to each domain.

At the beginning of the experiment, each subject was asked to study annotation

guidelines which define the form-based dialog structure representation and also provides

examples of dialog structure annotations in two task-oriented domains (bus schedule

enquiry and UAV flight simulation; neither were used in the experiment). The material in

the guidelines is quite similar to the one in Section 3.3 and Section 0. The subject was

allowed to ask clarification questions about the guidelines. After the subject studied the

annotation guidelines, he/she was asked to complete an annotation exercise in order to

assess his/her understandability on the form-based dialog structure annotation scheme.

Only a subject who sufficiently understands the annotation scheme was entered into the

experiment.

Chapter 4: Form-based Dialog Structure Representation Evaluation

146

During the experiment, each subject was given dialogs in one of the domains and was

asked to design a dialog structure representation for the given domain, namely to develop

a tagset that would be used for annotating the dialog structures of the given dialogs. The

subject was then asked to annotate these dialogs according to the tagset he/she had

designed. The annotation was done using CADIXE, an XML-based annotation tool.

There was no time limit on any part of the experiment. On average, a subject studied the

guidelines for 30-45 minutes and spent around 1-2 hours designing a markup scheme.

To control the number of annotated instances for each dialog structure component and

to keep the annotation experiment simple, dialog structure annotation was divided the

into two parts: concept annotation and task/sub-task annotation. The number of dialogs

that each subject had to annotation is shown in the first row of Table 4.6. The total

number of components that a subject annotated for each annotation task on average is

shown in the second row. All the subjects in the same group were given the same set of

dialogs.

Concept annotation Task/sub-task annotation

Air Travel Map Reading Air Travel Map Reading

Number of dialogs 2 2 4 2

Number of components 178.8 347.8 50.5 60.8

Table 4.6: Statistic of data collected from the annotation experiment

For cross-annotation correction, each subject had to correct the markup of all the

other subjects in the same group (i.e. three subjects). The subject was instructed to correct

the annotation only when it did not conform to the guidelines. More detail discussion

about dialog structure annotation and the cross-annotator correction procedure can be

found in Section 4.2.1 and 4.2.2 respectively.

At the end of the experiment, each participant received $10 compensation for each

hour they had spent doing the experiment. A performance-based bonus of up to $20 was

used to motivate the participants to complete the experiment as best as possible. The

subject’s performance on dialog structure design and annotation was evaluated by an

expert (an annotation scheme developer) on how well the annotated dialogs conform to

the form-based dialog structure annotation guidelines. The performance is quantified in

terms of annotation accuracy which is defined as the expert’s acceptability in the

subject’s annotation. The same cross-annotator correction procedure as the one used for

assessing acceptability between two subjects was used to measure the expert’s

Chapter 4: Form-based Dialog Structure Representation Evaluation

147

acceptability. The expert first corrected each subject original annotation; annotation

accuracy was then computed by comparing the original annotation against the expert’s

correction. The subject’s performance on annotation critique and correction was

computed from the similarity between the subject’s critique and the expert’s critique. The

subject’s critique and the expert’s critique for each original tag are considered similar if

both of them mark the correctness of the original tag (as correct or incorrect) similarly.

4.2.5 Results and discussions

For each domain, we obtained 4 sets of original annotations along with 4 tagsets

developed by the subjects. We also obtained 12 pairs of cross-correction (3 from each

subjects) for each domain. Each cross-correction pair consists of an original annotation

and its corrected version (corrected annotation).

Two types of analysis were conducted: qualitative and quantitative analysis. In

qualitative analysis, the differences among the original tagsets developed by the subjects

were examined. For each type of difference, the possible causes were identified.

Quantitative analysis, on the other hand, looks at the amount of changes the subjects

made to the original annotations by computing acceptability for each cross-correction

pair. The results from each type of analysis are given below.

4.2.5.1 Qualitative analysis

In each domain, 4 original tagsets developed by the subjects were compared against

one another. The differences in dialog structure designs from the air travel planning

domain and the map reading domain can be classified into 4 categories discussed below.

The differences are illustrated by diagrams along with example annotations. The

following notions are used in the diagrams.

● Each box represents one annotation tag in a dialog structure design.

● An arrow indicates decomposition in a structured concept and in a task/sub-

task hierarchy.

● Boxes and arrows that have the same color (light or dark) were developed by

the same subject.

● Overlapping boxes represent equivalent tags developed by different subjects

(two tags are considered equivalent if the subjects used them to mark the

same set of instances in the given dialogs)

Chapter 4: Form-based Dialog Structure Representation Evaluation

148

For each category of the differences, the possible causes and the corrections (if any)

that the subjects made when they encountered the difference (between their own dialog

structure design and the dialog structure they critiqued) are also discussed.

Differences in concept annotation

1. Structured concept granularity

Examples

A course-grained vs. a fine-grained annotation of “houston texas” in the

air travel planning domain

 <DepartureLocation>houston texas</DepartureLocation>

 <DepartLoc>

 <City>houston</City>

 <State>texas</State>

</DepartLoc>

Possible causes

 The form-based dialog structure representation does not specify the

appropriate level of granularity of a structured concept. The design

decision may depend on an annotator’s expectation on the capability

of a natural language understanding module that will process the

concept.

Corrections

Finer-grained concept structures were acceptable. A correction was made

when a necessary component was missing.

2. Structured concept decomposition

DepartureLocation

DepartLoc

Airport City State

Chapter 4: Form-based Dialog Structure Representation Evaluation

149

Examples

 Two annotations of “five inches below the gold mine” in the map reading

domain with different structured concept decompositions (a Distance is a

component of a structured concept LocationRelative in the first annotation

but is not a component of a structured concept RelativeLocation in the

second annotation)

 <LocationRelative>

 <Distance>five inches </Distance>

 <RelSpec>below</RelSpec>

 <Landmark>the gold mine</Landmark>

</LocationRelative>

 <Distance>five inches</Distance>

<RelativeLocation>

 <Direction>below</ Direction >

 <Landmark>the gold mine</Landmark>

</RelativeLocation >

Possible causes

 The form-based dialog structure representation only specifies the

definition of a structured concept; it is up to an annotator to decide on

the complexity of each structured concept and a list of its components.

Corrections

 Additional structured concept components were acceptable

 Some missing components were added

LocationRelative

RelSpec Distance Direction Landmark2

Landmark2

RelativeLocation

Landmark
Landmark

Landmark Direction

Direction Distance

Chapter 4: Form-based Dialog Structure Representation Evaluation

150

3. Distinction between similar concepts (that have different functionalities)

Examples

 Annotations of “wednesday the eleventh” in the air travel planning domain

with and without the distinction between Weekday and Date

 <Day>wednesday the eleventh</Day>

 <Weekday>wednesday</Weekday> <Date>the eleventh</Date>

Possible causes

 A design decision, whether to differentiate between rather similar

concept types (between Weekday and Date in this example) that may

have different functionalities in a dialog system

Corrections

 No distinction was mostly unacceptable

4. Infrequent concept annotation

 An infrequent concept is a concept that occurs only a couple of times in a

given set of dialogs. Examples of infrequent concepts in the air travel

planning domain are a PeriodHold and a PlaneType.

Possible causes

There is not enough data for making consistent decision. We can also

observe inconsistency within the same subject annotation. This might be an

indication that data sparseness is also a problem for humans, not only for

machine learning algorithms.

Corrections

Subjects made changes to only a few differences. One possible

explanation is that the subjects did not have sufficient evidence to decide on

either of the variations.

In summary, when there were differences between the subjects’ own dialog structure

design and the design they critiqued, additional concept types were usually acceptable,

but missing types were not. The frequency of a concept also affects the decision to make

a correction.

Day

Weekday Date

Chapter 4: Form-based Dialog Structure Representation Evaluation

151

Differences in task and sub-task annotation

1. Sub-task granularity

Examples

 A coarse-grained sub-task vs. fine-grained sub-tasks in the air travel

planning domain

Possible causes

 An action that associated with a low-level sub-task, for instance,

hotel_price_decision, is correlated with the implementation of a

target dialog system. Therefore, the design of a low-level sub-task is

more subjective, and thus likely to be different.

Corrections

 A course-grained sub-task decomposition was more acceptable than a

fine-grained sub-task decomposition.

 Additional low-level sub-tasks were considered as extra components

(not corresponding to any action) and were removed

2. Distinction among different types of tasks or sub-tasks

Examples

Two distinct tasks (ReserveTrip and PurchaseTrip) vs. one general task

(schedule_a_trip) in the air travel planning domain

schedule_a_trip

ReserveTrip PurchaseTrip

arrange_hotel

hotel_duration_decision hotel_price_decision

book_hotel

Chapter 4: Form-based Dialog Structure Representation Evaluation

152

Possible causes

 Different levels of generalization of tasks or sub-tasks and their

associated forms

Corrections

 Extra distinction was mostly acceptable

3. Task and sub-task decomposition

Examples

Whether to have an additional sub-task (e.g. DefineLeg) that groups

together all of the database queries made for one leg of the trip

Possible causes

 Different design decisions on how to organize related sub-tasks (into a

hierarchical structure or a flat structure). These decisions may depend

on how dependencies among sub-tasks are perceived. There are more

dependencies between sub-tasks in the same decomposition level than

between sub-tasks in different decomposition levels that do not

subsume one another.

 The guidelines only discuss dependencies between top-level sub-tasks

as they are decomposed from a task, but do not discuss dependencies

beyond the top level sub-tasks

Corrections

 Not acceptable by some subjects

CheckFlightTime

DefineLeg (s)

DefineLegs

Book-Flight

Query-Flight-Attributes Query-Flight-Availability

Chapter 4: Form-based Dialog Structure Representation Evaluation

153

4. Missing/extra sub-tasks

Examples

 Whether send_itinerary is an action in the air travel planning domain.

Possible causes

 Different decisions on what should be an action

Corrections

 Some extra sub-tasks were considered incorrect

In summary, when there were differences between the subjects’ own dialog structure

design and the design they critiqued, additional sub-tasks were usually considered as

extra components (not associated with any action) and were removed. This is opposite to

the correction in concept annotation. One possible reason is that the guidelines state

explicitly what should not be considered as a task or a sub-task, but do not do so for a

concept. Moreover, extra concepts usually provide more information for the execution of

a form.

Another interesting finding is that all of the corrections on task and sub-task designs

made the designs more similar to the correctors’ own designs. The subjects seem to have

a stronger opinion on what should be a correct design (tagset) for tasks and sub-tasks than

for concepts.

4.2.5.2 Quantitative analysis

In each domain, 12 pairs of cross-correction (3 pairs from each subject) were

collected. Each cross-correction pair consists of an original annotation and its corrected

version (corrected annotation). Acceptability for each cross-correction pair was computed

according to Equation (4.2).

I will first present the acceptability of concept annotation and the acceptability of task

and sub-task annotation. Then, I will discuss annotation accuracy which is an expert’s

acceptability in a subject’s annotation. Confidence in cross-annotator correction will also

be discussed. Finally, the result presented in this section will be compared to other works.

Acceptability of concept annotation

The average acceptability in concept annotation of all cross-correction pairs is shown

in the first row of Table 4.7. Between two types of changes, major and minor, discussed

in Section 4.2.3, I am more interested in major changes as these changes reflect

disagreement on dialog structure designs, which may stem from differences in the

interpretation of the form-based dialog structure definition, while minor changes reflect

Chapter 4: Form-based Dialog Structure Representation Evaluation

154

disagreement at the instance level, which are usually caused by inconsistency in

annotation. The average acceptability when all of the minor changes are excluded from

the corrected annotations is shown in the 2
nd

 row of Table 4.7. This is equivalent to using

a labeled match and minor change criterion as a matching criterion in stead of a labeled

match (or an exact match) criterion used for computing the acceptability shown in the

first row. Acceptability with minor changes excluded can be considered as the

acceptability of the dialog structure designs.

Reliability Measure Air Travel Map Reading

acceptability 0.81 0.85

acceptability – minor 0.96 0.95

Table 4.7: The acceptability of concept annotation

In both domains, the acceptability of concept annotations is quite high (> 0.8) and is

high (> 0.95) when minor changes are excluded. Only 22% of the changes in the air

travel planning domain are major changes while the number is slightly higher (27%) in

the map reading domain. Table 4.8 shows the percentage of each error type calculated

from the total number of errors. Even though the overall number of major errors is lower

in the air travel domain, the percentage of Missing Type errors is higher. Since the

average number of concept types that each subject designed is higher in the air travel

domain than in the map reading domain (36.0 vs. 12.3), it is more likely to miss some

concept types. Examples of major changes (errors) in concept annotation are discussed in

detail in Section 4.2.5.1

Chapter 4: Form-based Dialog Structure Representation Evaluation

155

 Air Travel Map Reading

Missing Type 10.6% 4.4%

Extra Type 0.3% 6.1%

Incorrect Granularity 6.4% 7.2%

No Distinction 4.5% 9.6%

Extra Distinction 0.3% 0.0%

major errors 22.1% 27.2%

Missing Instance 17.1% 26.6%

Incorrect Label 35.0% 32.2%

Incorrect Boundary 25.8% 14.0%

minor errors 77.9% 72.8%

Table 4.8: Errors in concept annotation

Acceptability of task and sub-task annotation

For task and sub-task annotation, the acceptability is moderate in both domains as

shown in Table 4.9. But if minor changes are excluded, the acceptability is quite high (>

0.8). In both domains, most of major changes come from differences in sub-task

decomposition granularity. The subjects agreed on the tasks and top-level sub-tasks, but

did not quite agree on low-level sub-tasks. The low-level sub-tasks are correlated with the

implementation of a target dialog system; therefore, the design of the low-level sub-tasks

is more subjective, and thus likely to be different. Additional low-level sub-tasks were

usually considered extra components (not corresponding to any action). Therefore, a

coarse-grained decomposition is more acceptable than a fine-grained decomposition.

Major changes in task and sub-task annotation are discussed in detail in Section 4.2.5.1

Reliability Measure Air Travel Map Reading

acceptability 0.71 0.60

acceptability - minor 0.81 0.84

Table 4.9: The acceptability of task and sub-task annotation

Table 4.10 shows the percentage of each error type calculated from the total number

of errors. The air travel domain has higher percent of major errors than the map reading

domain since the structure of task and sub-tasks in the air travel domain is more

complicated. On the other hand, the map reading domain has higher disagreement at the

instance level especially on the boundaries of draw_a_segment sub-tasks. It is more

Chapter 4: Form-based Dialog Structure Representation Evaluation

156

difficult to identify a boundary between two sub-tasks of the same type than doing so for

different types of sub-tasks as in the air travel domain.

 Air Travel Map Reading

Missing Type 27.1% 11.2%

Extra Type 29.5% 6.3%

Incorrect Granularity 6.8% 11.2%

No Distinction 0.0% 0.0%

Incorrect Decomposition 0.0% 5.6%

Extra Distinction 1.5% 0.0%

major errors 64.9% 34.3%

Missing Instance 20.3% 37.5%

Incorrect Label 0.9% 3.7%

Incorrect Boundary 13.8% 24.5%

minor errors 35.1% 65.7%

Table 4.10: Errors in task and sub-task annotation

When comparing between annotation tasks, the acceptability of task and sub-task

annotation is lower than the acceptability of concept annotation. The percentage of major

errors in task and sub-task annotation is also higher. A concept is easier to observe from

the transcription as its unit is smaller than a task or a sub-task. Moreover, dialog

participants have to clearly communicate the concepts in order to execute a domain

action. A task and a sub-task, on the other hand, correspond to larger dialog units, and

associate with domain actions which are sometimes quite difficult to observe directly

from the transcription (a grounding action, for example).

Annotation accuracy

Accuracy is a coding scheme expert’s acceptability in a subject’s annotation and is

computed by the same cross-annotator correction process. Annotation accuracy is used to

verify that the subjects did not agree on incorrect annotations. When both acceptability

and accuracy are high, we can be assured that the high level of agreement is reasonable.

The accuracy of concept annotation shown in Table 4.11 is the average of all subjects.

Both acceptability and accuracy are calculated when all minor changes are excluded.

Since both numbers are high, we can say that high acceptability is reasonable when

compared to the expert’s judgment.

Chapter 4: Form-based Dialog Structure Representation Evaluation

157

Reliability Measure Air Travel Map Reading

acceptability – minor 0.96 0.95

accuracy – minor 0.97 0.89

Table 4.11: The acceptability and the accuracy of concept annotation

The acceptability and the accuracy of task and sub-task annotation are shown in Table

4.12. The accuracy is slightly higher than the acceptability in the air travel domain, which

means that on average the subjects were more critical and made slightly more changes

than the expert. Nevertheless, we are assured that the acceptability of 0.81 is not biased

high when compared to the expert’s judgment. However, in the map reading domain, the

accuracy is moderate and is lower than the acceptability since the subjects were less strict

than the expert on grounding sub-task annotation. The subjects may not have a concrete

definition of this sub-task as the corresponding action is difficult to observe.

Reliability Measure Air Travel Map Reading

acceptability – minor 0.81 0.84

accuracy – minor 0.90 0.65

Table 4.12: The acceptability and the accuracy of task and sub-task annotation

Confidence in annotation correction

During the cross-annotator correction process, the subjects also provided the level of

confidence in their correction by rating each tag as correct, maybe correct, maybe

incorrect, and incorrect. By taking into account the level of confidence when computing

acceptability, we can identify whether they were confident when they agreed or disagreed

with other annotators.

Both acceptability measures presented in Table 4.13 are computed by Equation (4.2)

but with different matching criteria. The standard acceptability, which uses exact match

or (labeled match) as a matching criterion, is presented in the first row of the table. The

confident acceptability, which uses confident match as a matching criterion, is presented

in the second row of the table. Under this criterion only correct tags are considered as

matched whereas maybe correct tags are considered unacceptable. If there are many

maybe correct tags in an annotation critique, the confident acceptability will be lower

than the standard acceptability. The detail discussion about different matching criteria is

given in Section 4.2.3.

Chapter 4: Form-based Dialog Structure Representation Evaluation

158

Since the confident acceptability is only slightly lower than the standard acceptability

in both domains, we can say that the subjects were confident when they marked dialog

structure components as correct. When comparing between two annotation tasks, in

concept annotation, the value of confident acceptability is almost the same as the value of

standard acceptability while, in task and sub-task annotation, the value of confident

acceptability is slightly lower. The subjects were more confident when they rated

concepts as correct than when they made the same decision on tasks and sub-tasks.

Reliability Measure
Air Travel Map Reading

Concept Task/sub-task Concept Task/sub-task

acceptability 0.81 0.71 0.85 0.60

confident acceptability 0.80 0.68 0.84 0.58

Table 4.13: Confidence in acceptable tags

Instead of excluding all minor changes from the corrected annotations as in

acceptability – minor, acceptability – unconfident excludes all uncertain changes (the

changes that are marked as maybe incorrect) from the corrected annotations. Only the

changes that are marked as incorrect are considered unacceptable. The acceptability –

unconfident uses a labeled match and confident change criterion as a matching criterion

in stead of a labeled match (or an exact match) criterion used for computing the standard

acceptability shown in the first row of Table 4.14. If there are many maybe incorrect tags

in an annotation critique, the acceptability – unconfident will be higher than the standard

acceptability.

In Table 4.14, the values of the acceptability – unconfident are about the same as the

values of the standard acceptability in the air travel domain while the values of the

acceptability – unconfident are higher in the map reading domain. These results indicate

the subjects were less confident when correcting the annotations in the map reading

domain than when correcting the annotations in the air travel domain. However, many

unconfident corrections in the map reading domain were caused by specific coder-

corrector pairs rather than by particular types of errors. When comparing between

annotation tasks, the subject were less confident when correcting tasks and sub-tasks than

when correcting concepts.

Chapter 4: Form-based Dialog Structure Representation Evaluation

159

Reliability Measure
Air Travel Map Reading

Concept Task/sub-task Concept Task/sub-task

acceptability 0.81 0.71 0.85 0.60

acceptability – unconfident 0.83 0.75 0.91 0.70

Table 4.14: Confidence in all changes

Similar results when considering only major changes are shown in Table 4.15.

Acceptability – (minor or unconfident) excludes all of the changes from the corrected

annotations except the confident major changes. This acceptability measure uses the most

relaxed matching criterion by allowing all but confident major changes to be considered

as matched. If there are many major errors that are marked as maybe incorrect in an

annotation critique, the acceptability – (minor or unconfident) will be higher than the

acceptability - minor. In most of the cases, the subjects were confident when they made

major changes as acceptability values do not change much when uncertain changes are

excluded.

Reliability Measure

Air Travel Map Reading

Concept Task/

sub-task

Concept Task/

sub-tak

acceptability – minor 0.96 0.81 0.95 0.84

acceptability – (minor or unconfident) 0.96 0.83 0.97 0.88

Table 4.15: Confidence in major changes

In summary, the subjects were confident when they marked dialog structure

components as correct and when they made major changes to the original annotations.

Some subjects were, however, not so confident when they made minor changes to the

original annotations of some other subjects, but were more confident when they made

major changes.

Comparison with other works

First, I would like to emphasize the difference between the evaluation procedure

described in this section and a conventional procedure used in other dialog structure

annotation evaluations. The goal of the human annotation experiment described in this

section is to verify that the proposed form-based dialog structure framework can be

understood by annotators other than a coding scheme developer and that they can

generate a reasonable domain-specific tagset for a given task-oriented domain from the

definitions of task, sub-task, and concept provided by the framework. I was not intending

Chapter 4: Form-based Dialog Structure Representation Evaluation

160

to evaluate agreement on a specific tagset for a specific domain as normally done in a

conventional evaluation, which compares two annotated dialogs that are based on the

same (given) tagset.

Carletta et al. (1997) applied an alternate representation to the same HCRC Map Task

corpus. However, since they used a different metric to evaluate the reliability of their

representation, a direct comparison cannot be made between their result and the results

presented in this section. The comparison in terms of how both representations, the form-

based dialog structure representation and Carletta et al.’s (1997) representation, model a

dialog in the same map reading domain are provided in Section 3.4.

Other researchers who used the similar evaluation metric as the one used in this

section, (Brants, 2000; Civit et al., 2003) reported bracketed precisions in the range of

0.63 - 0.92 on sentence structure annotation. The acceptability values, which are also

based on bracketed precision, reported in this section are in a comparable range.

4.2.6 Conclusion

The form-based dialog structure annotation scheme can be understood and applied

reliably by non-expert coders producing high acceptability in cross-annotator correction

on dialog structure designs (bracketed precision > 0.8) in two disparate task-oriented

domains: air travel planning (an information-access task) and map reading (a problem-

solving task). High acceptability is also reasonable when compared to an expert’s

judgment measured in terms of annotation accuracy. Among the components in the form-

based dialog structure representation, concepts can be identified more reliably than tasks

and sub-tasks in both domains. High annotation scheme reliability demonstrated by these

results reveals that the form-based annotation scheme is concrete and unambiguous

which could also imply learnability.

The subjects were confident when they agreed with other subject annotations. They

were sometimes not so confident when they made changes to the original annotations but

mostly on minor changes. The major changes in the dialog structure designs includes:

removing extraneous sub-tasks and adding missing concept types. Some of the

differences between dialog structure designs were acceptable including: additional

concept types and coarser-grained sub-task decomposition. The proposed evaluation

methodology can accommodate acceptable annotation variations and thus helps to

produce insights into annotation scheme designs.

Chapter 5: Concept Identification and Clustering

161

Chapter 5

Concept Identification and Clustering

 The goal of concept identification and clustering described in this chapter is to

identify a set domain concepts in each task-oriented domain from the transcription of in-

domain dialogs, and, for each concept, to identify a list of its members. For instance,

given a set of dialogs in an air travel domain, we would like to discover that a set of

domain concepts includes, CityName, Airline and Date, and, for a CityName,

Pittsburgh and Seattle are its members. Since a list of concept types in a given domain is

not pre-specified but will be explored from data, the concept identification problem is

different from a classification problem, for example, named entity extraction. In the

classification problem, a word or a group of words is classified as one of the predefined

roles such as person and organization.

Since the members of the same domain concept are used in similar context in that

particular domain, we can employ a word clustering technique that clusters words based

on their similarity to group words that belong to the same domain concept together. There

are many techniques for clustering similar words together. Since the goal of this thesis is

to minimize human effort in acquiring domain-specific information and that a list of

domain concepts is not pre-specified and will be explored from in-domain dialogs, I will

focus on unsupervised techniques which allow a learning system to learn the domain

concepts from un-annotated transcription. A decision to use an unsupervised learning

approach instead of a supervised learning approach is discussed in more detail in Section

2.2.3. Two unsupervised clustering approaches are investigated, mutual information-

based clustering and Kullback-Liebler-based clustering. Both algorithms, described in

Section 5.1.1 and Section 5.1.2 respectively, are an iterative statistical clustering

algorithm, but use different heuristics to determine the similarity between words or

groups of words. For an iterative hierarchical clustering approach, a stopping criterion is

an important parameter. Automatic stopping criteria based on the measures available

during the clustering process are proposed in Section 5.1.3 for both clustering algorithms.

In additional to an unsupervised learning algorithm that explores domain concepts

from unannotated transcription of in-domain dialogs, we can also employ existing

knowledge sources that contain information about the language and the domain to

Chapter 5: Concept Identification and Clustering

162

improve learning accuracy. A knowledge-based clustering approach that utilizes semantic

information stored in the WordNet lexical database is described in Section 5.2.

Fisher (1987) used an approach that differs from the ones discussed in this chapter to

cluster categorical objects. Each object to be clustered is represented by a feature-value

description. For example, a feature-value description for a fish is {BodyCover = “scales”,

HeartChamber = “two”, BodyTemp = “unregulated”, Fertilization = “external”}. The

similarity between objects is calculated from a conditional probability of a feature-value

pair and an inferred object class. Möller (1998) applied this conceptual clustering

algorithm to infer a set of domain-specific dialog acts from a corpus of in-domain

conversations. A set of features for each utterance consists of prosodic events, recognized

words, and semantic structure. These features are automatically extracted from various

knowledge sources available to a dialog system. The conceptual clustering algorithm that

was used for dialog act acquisition is discussed in more detail in Section 2.2.2.1. Fisher’s

clustering algorithm allows an object to be described with multiple features while

statistical clustering algorithms discussed in this chapter only utilize the statistics of word

co-occurrences. Since it is not clear that a richer set of features in addition to context

words are useful for concept words clustering, a simpler algorithm that is designed

specifically for word clustering might be a better choice.

Some words in dialog transcription are not concept words and should be filtered out.

Section 5.3 describes selection criteria that could be used to distinguish between concept

words and non-concept words. The evaluation metrics that were used to evaluate the

proposed concept identification and clustering approaches are described in Section 5.4.

The experiment results are presented in Section 5.5. Finally, all the findings are

concluded in Section 5.6.

5.1 Statistical clustering algorithms

A statistical clustering algorithm uses statistics calculated from the relation between a

word to be clustered and its context to determine the similarity between words or group

of words. Many statistical clustering algorithms rely on word co-occurrence statistics

including the ones discussed in this section, mutual information-based clustering and

Kullback-Liebler-based clustering. These algorithms groups words that occur in similar

contexts together in the same cluster. The context is usually defined as immediately

preceded words and immediately succeeded words. Statistics of other kinds of relations

besides word co-occurrence can be used as well such as grammatical relations between a

Chapter 5: Concept Identification and Clustering

163

word to be clustered and other words in the same sentence (Lin, 1998). However, this

technique requires a parser with may not work well with a spoken language.

Both mutual information-based clustering and Kullback-Liebler-based clustering are

an agglomerative hierarchical clustering approach (or a bottom-up approach), but they

use different heuristics to determine the similarity between words or groups of words.

Both clustering algorithms iteratively merge words or clusters together in the order of

their similarity which create a hierarchy of clusters (a treelike structure). The cluster at a

leaf corresponds to a word in the vocabulary. The intermediate nodes that are closer to

the leaves represent more specific word classes while the intermediate nodes that are

closer to the root represent more general concepts. Hierarchical clustering provides us a

more flexible way to understand and interpret the structure of a dialog since a concept

may be broken down into several specific concepts or grouped into a more general

concept, as needed.

5.1.1 Mutual information-based clustering

The mutual information-based clustering algorithm (MI-based clustering) used in this

thesis is similar to the one described in (Brown et al., 1992)
4
. This algorithm defines the

similarity between words or clusters based on their mutual information with adjacent

words or clusters. The algorithm starts by assigning each word to its own cluster then

iteratively merges clusters in a greedy way such that at each iteration the loss in average

mutual information is minimized. After each merge, the original words or clusters in the

transcript are replaced by a symbol of a new cluster and the related probabilities are

recomputed. The merging process continues until the desired number of clusters is

reached or a stopping criterion is met. A stopping criterion will be discussed in Section

5.1.3. Average Mutual Information (AMI) is defined by the following equation.

ji jpip

jip
jipAMI

,)()(

),(
log),(

(5.1)

where p(i,j) is the bigram probability of clusteri and clusterj, i.e., the probability that a

word in clusteri precedes a word in clusterj.

5.1.2 Kullback-Liebler-based clustering

In Kullback-Liebler-based clustering (KL-based clustering) similarity between words

or clusters is determined by the Kullback-Liebler (KL) distance. The merging process is

4
 The MI-based clustering program that was used in the experiment was implemented by Rose Hoberman

Chapter 5: Concept Identification and Clustering

164

similar to that of MI-based clustering except that the order of clusters that get merged is

determined by KL-distance instead of AMI. Since the notion of distance is the invert of

similarity, the KL-based clustering merges together words or clusters that have the least

KL-distance first.

The KL-distance used in this research is similar to the one described in (Siu and

Meng, 1999) and (Pargellis et al., 2001). A symmetric non-blow-up variant of the KL-

distance, which is known as Jensen-Shannon divergence (Dagan et al., 1999), is applied

to avoid the problem when one of the probabilities is equal to zero. The KL-distance

between two probability functions pa and pb is given by the following equation.

2

))||()||((

);(22

babbaa

ba

ppDppD

ppJ (5.2)

where D(pa , pb) is the conventional KL-distance.

)(

)(
log)(),(

Yp

Yp
YpppD

b

a

Y

aba (5.3)

A distance between clusteri and clusterj, is the sum of the KL-distance between the

left context probability (p
left

) of the two clusters and the KL-distance between the right

context probabilities (p
right

) of the two clusters. More specifically,

)p,p(J)p,p(J)j,i(Dist right

j

right

i

left

j

left

i
(5.4)

p
left

 and p
right

 are bigram probabilities. pi
left

(vk) is the probability that word vk is found

on the left of words in clusteri. Similarly pi
right

(vk) is the probability that word vk is found

on the right of words in clusteri. Specifically,

)(

),(
)|()(

i

ik
ik

left

k

left

i
clusterp

clustervp
clustervpvp (5.5)

)(

),(
)|()(

i

ki

ik

right

k

right

i
clusterp

vclusterp
clustervpvp

(5.6)

From the definitions of p
left

 and p
right

, the sum in Equation (5.3) is the sum over all the

context words vk in the vocabulary.

Chapter 5: Concept Identification and Clustering

165

Since Equation (5.5) and (5.6) treat all of the words in the same cluster as the same

word token, after two clusters are merged, all of the occurrences of their members in the

corpus are replaced with the same token and the related probabilities are recomputed. By

replacing the original word tokens with the new token that represents the merged cluster,

both the MI-based clustering algorithm and the KL-based clustering algorithm can be

considered as a recursive clustering algorithm. An alternative way to measure the

distance between two clusters without recalculating word statistics is to calculate the

distance between the clusters directly from the KL-distances between individual members

of the two clusters. Three linkage distances, single linkage, maximal (or complete

linkage), and average linkage, define a distance between two clusters from the distances

between their members as follows:

1. Single linkage (Ls) defines a distance between two clusters as the minimum

KL-distance between members of the two clusters

2. Complete linkage (Lc) defines a distance between two clusters as the

maximum KL-distance between members of the two clusters

3. Average linkage (Lg) defines a distance between two clusters as the average

of the KL-distances between members of the two clusters

More detail discussion on linkage methods can be found in many textbooks and

tutorials that describe hieratical clustering techniques such as Rasmussen’s article (1992)

5.1.3 Stopping criteria

Since an iterative clustering algorithm can continue to merge similar clusters together

until there is only one big cluster left, it is very important to choose an appropriate stop

point. A stopping criterion determines when the iterative clustering algorithm should be

terminated; the clusters obtained at that iteration are the output of the clustering

algorithm. A good stopping criterion is the one that yields a good clustering result

according to the metrics described in Section 5.4. Given that each clustering algorithm

has a different merging characteristic, a good stopping criterion for each algorithm might

be different. To be able to identify the last merging iteration automatically during the

clustering process, a stopping criterion has to be based on the measures available in the

process; examples are an AMI score in the MI-based clustering algorithm and a KL-

distance in the KL-based clustering algorithm.

For MI-based clustering, two measures that are available during the clustering

process, log-AMIdelta and number-of-clusters, were observed. Log-AMIdelta is the

Chapter 5: Concept Identification and Clustering

166

difference between AMI scores of successive iterations in log base. Number-of-clusters is

the total number of the clusters that contain more than one word at a given iteration.

Figure 5.1 shows the graph that plots the values of both measures versus the clustering

iteration. Log-AMIdelta is presented in a lighter color while number-of-clusters is

presented in a darker color. The diamond dots indicate stop points.

Figure 5.1: The values of two indicators, log-AMIdelta and number-of-clusters at each

merging iteration of MI-based clustering

The first stopping criterion is based on AMIdelta. Since the MI-based clustering

algorithm minimizes the loss in average mutual information (AMIdelta) when it merges

two clusters together, AMIdelta is small at the early iteration and increases as the number

of iterations increases. From the graph in Figure 5.1, we can see that the values of log-

AMIdelta form a straight line for the most part but rises up at the end. It is reasonable to

stop the clustering process when AMIdelta increases significantly since too much

information was lost from merging two clusters together at that iteration. To obtain that

iteration point, we draw a linear estimation of the values of log-AMIdelta after removing

the outliers. The intersection between the line that represents the linear estimation and the

one that represents the actual values of log-AMIdelta is the stop point (AMI-intersection).

MI-based clustering

0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000

Iteration

n
u

m
b

e
r

o
f

c
lu

s
te

rs

-6.0

-5.5

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

lo
g

(A
M

Id
e

lt
a

)

#clusters log(AMIdelta) Linear (log(AMIdelta))

AMI-intersection

last-max-clusters

Chapter 5: Concept Identification and Clustering

167

The second stopping criterion is based on the number of clusters. The number of

clusters increases when two single words are merged together, but decreases when two

clusters are merged. One possible stopping criterion is the last local maximum number-

of-clusters (last-max-clusters), which is the last iteration before the number-of-clusters

decreases monotonically. This stopping criterion is justified because after this point no

concept word is introduced to the clusters and irrelevant clusters may get merged

together.

For KL-based clustering, two measures that can be observed during the clustering

process, KL-distance (between the two clusters that get merged) and number-of-clusters

(which contains more than one word), were examined. Figure 5.2 shows the graph that

plots the values of both measures versus the clustering iteration. KL-distance is presented

in a lighter color while number-of-clusters is presented in a darker color. The diamond

dots indicate stop points.

Figure 5.2: The values of two indicators, KL-distance and number-of-clusters, at each

merging iteration of KL-based clustering

KL-based clustering

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000

Iteration

n
u

m
b

e
r

o
f

c
lu

s
te

rs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

K
L

-d
is

ta
n

c
e

number of clusters KL-distance

before-fluctuated

last-max-clusters

Chapter 5: Concept Identification and Clustering

168

The first stopping criterion for KL-based clustering is based on a KL-distance. Since

the KL-based clustering algorithm chooses to merge the clusters that are more similar

first, the KL-distance between the two clusters that get merged at the earlier iteration is

smaller. The KL-distance increases as more merging iterations are carried on as shown in

the graph in Figure 5.2. However, after about 300 iterations the value of the KL-distance

starts to fluctuate because many context words were already merged and were replaced

by the same token. The distance value at this point may not indicate the same degree of

similarity as the similar distance value at the earlier iteration. The fluctuation in the

values of the KL-distance indicates that the clustering algorithm excessively merges the

clusters. Therefore, the iteration that the value starts to fluctuate is a good candidate for a

stop point (before-fluctuated). For a stopping criterion that based on the number of

clusters, the same criterion as the one used in MI-based clustering, the last local

maximum number-of-clusters (last-max-clusters), can be applied.

In the clustering algorithm that uses a linkage distance measure, a KL-distance is

calculated from the original word statistic, so the distance at each merging iteration

continues to increase without any fluctuation. The graph in Figure 5.3 shows a flat

portion between the 250
th

 iteration and the 350
th

 iteration. The KL-distances at these

iterations are the same and are equal to 1.386. This KL-distance value is obtained when

all the left contexts of the two clusters that get merged are identical, but all their right

contexts are different or vise versa. This usually occurs when the available contexts are

not enough to determine the similarity. Furthermore, the identical contexts are mostly

function words such as articles and preposition. For instance, “restrictions” and “base”

always have the same right context “on” in this corpus. One reasonable stopping criterion

is to stop right before the flat part in the KL-distance graph (before-flatten) since from

this point onward the clusters are not quite similar or there is no enough information to

determine their similarity. Riccardi and Bangalore (1998) proposed a simple stopping

criterion based on a KL-distance, the median of the distance (median). A clustering

algorithm can simply stop when the KL-distance between the two clusters that get

merged exceeds the median.

Chapter 5: Concept Identification and Clustering

169

Figure 5.3: The values of two indicators, KL-distance and number-of-clusters, at each

merging iteration of average linkage KL-based clustering

5.2 Knowledge-based clustering algorithms

Some domain concepts are shared among various domains and are already defined as

parts of world knowledge. One example would be a concept DayOfWeek which consists

of 7 members: “Monday”, “Tuesday”, “Wednesday”, “Thursday”, “Friday”, “Saturday”,

and “Sunday”. It seems redundant to re-discover these concepts again and again for every

new domain. Furthermore, given that a statistical clustering algorithm is not perfect, it

might be better to extract concepts that are domain-independent and well-defined from an

existing knowledgebase instead. Since the statistical approach relies totally on data, its

clustering performance is depended on statistical evidences. For example, if some

concept members occur only a few times in the given data, the quality of that concept

may not be so good. A concept that is obtained from a knowledgebase, on the other hand,

is more accurate provided that the concept has already been defined in the given

knowledge resource. Moreover, the knowledgebase does not only give us a list of

KL-based clustering (average linkage)

0

50

100

150

200

250

0 200 400 600 800 1000

Iteration

n
u

m
b

e
r

o
f

c
lu

s
te

rs

0

0.5

1

1.5

2

2.5

3

d
is

ta
n

c
e

number of clusters KL-distance

last-max-clusters

median

before-flatten

Chapter 5: Concept Identification and Clustering

170

members for each concept, but also provides additional information about the concept

itself such as the name of the concept.

One available lexical resource is WordNet (Miller et al., 1990). WordNet is an

electronic lexical database which organizes the lexicons based on their meanings rather

than alphabetical order. The following properties of WordNet make it a suitable resource

for concept clustering.

● It contains a rich set of relations, such as synonym, hyponym, and antonym,

that connects semantically related lexicons together

● It provides detail information about each lexicon such as a gloss and its

frequency

● It is freely available and so as many applications and libraries that utilize

information stored in WordNet

Since each word can have multiple parts of speech and senses, in order to obtain the

correct information of a specific word from WordNet, both its part of speech and word

sense have to be specified. Hence, two additional steps, part of speech tagging and word

sense disambiguation, are required in order to use information from WordNet for concept

clustering. These two steps are discussed in more detail below.

Many automatic part of speech taggers (POS taggers) that are available have a

promising performance. Nevertheless, most POS taggers were trained from a written

language such as news articles. The characteristics of a written language and the

characteristics of a spoken language used in task-oriented conversations are quite

different. Furthermore, a set of POSs used by a tagger may be different from the one used

in WordNet. To obtain the part of speech of each word in the corpus, ePost
5
 tagger is

used. This POS tagger is an adapted version of Brill's part-of-speech tagger (Brill, 1994)

developed by Benjamin Han. ePost was trained from the Wall Street Journal corpus.

Word sense disambiguation (WSD) is a more difficult problem. Unsupervised

approaches for word sense disambiguation were hardly better than the most common

sense baseline according to the results of SENSEVAL-3, The Third International

Workshop on the Evaluation of Systems for the Semantic Analysis of Text, (Snyder and

Palmer, 2004). Based on this reason, ambiguous word senses are simply resolved by

choosing the most common sense.

Semantic information in WordNet is organized separately for each of the four part of

speech types: noun, verb, adjective and adverb. Among these four part of speech types,

5
 This POS tagger can be obtained from http://www-2.cs.cmu.edu/~benhdj/Code/index.html

Chapter 5: Concept Identification and Clustering

171

noun is the one that is more likely to contain domain information. It is also a category

that has been work on intensively and has a well-defined structure in WordNet.

Therefore, the knowledge-based clustering will first focus on nouns. Among various

semantic relations that hold between nouns, a relation that is useful for concept clustering

is a hypernym relation or an is-a relation. This relation links a word to its superordinate.

For example, “city” is a hypernym of “Pittsburgh” or in other words “Pittsburgh” is a

“city”. Words that belong to the same type share the same hypernym. For instance, both

“Pittsburgh” and “Seattle” have the same hypernym “city”. Therefore, we can group

words that belong to the same type together based on their hypernyms.

After assigning a part of speech and a sense to each word in the corpus, for the word

that is tagged as a noun, its hypernym is retrieved from WordNet. Then words that have

the same hypernym are grouped together into one cluster.

5.3 Concept word selection

Concept word selection is a pre-processing technique that identifies words that are

likely to be concept members and then passes these words to a clustering process. This

pre-processing technique allows a clustering algorithm to focus only on potential concept

members; nevertheless, some concept members might be filtered out. Two types of

selection criteria that are based on the features of each individual word are investigated:

frequency cut-off and a stop word. The first criterion is based on the assumption that

concept words should occur quite often in the conversations. Hence, words that rarely

occur should be filtered out. However, some words such as determiners and prepositions

are very common, but do not contain any domain information. Therefore, they should not

be considered as concept words. These words are known as stop words and have been

widely used in the information retrieval community. The second selection criterion makes

use of a stop word list. Words that are defined as stop words are filtered out. Many stop

word lists are freely available; however, the differences between the characteristics of a

written language and the characteristics of a spoken language have to be considered.

5.4 Evaluation metrics for concept clustering

To assess the performance of each concept clustering algorithm, the output clusters

are compared directly against a set of reference concepts (created by a domain expert) in

a domain of interest using the evaluation metrics proposed by Chotimongkol and

Rudnicky (Chotimongkol and Rudnicky, 2002). There are two levels of evaluation

metrics, a concept-level metric, which measures how well a clustering algorithm

Chapter 5: Concept Identification and Clustering

172

identifies and groups together the members of a particular concept and an overall metric,

which measures the overall quality of all the concepts. The first step in the evaluation

process is to create a mapping between the output clusters and the reference concepts.

Then each cluster is evaluated against the concept that it represents using concept-level

metrics. Finally, the overall quality of all the clusters is evaluated. These steps are

described in detail in Section 5.4.1 – Section 5.4.3 respectively.

5.4.1 Cluster to concept mapping

Since a clustering algorithm does not assign a concept label to each cluster, a majority

voting scheme is used to identify the concept that each cluster represents. Under this

scheme, each word in the cluster is assigned a concept label according to the concept that

it belongs to in the reference. For simplicity, each word is restricted to belong to only one

concept. Then, the concept that encompasses the greatest number of words in the cluster,

or the majority concept, is assigned as a concept label for that cluster. Based on this

concept label assignment, several clusters may have the same majority concept and thus

represent the same concept. A many-to-one mapping between multiple clusters and a

reference concept is acceptable for concept identification. Ideally, we would like to

merge every word that belongs to the same concept into a single cluster. However, a

clustering algorithm may not be able to group all the members of the same concept

together in one cluster. As a result, there are multiple clusters that represent the same

concept. Since it is also possible to merge the clusters that represent the same concept

together during a post-processing either by a human or an automatic process, allowing a

many-to-one mapping between multiple clusters and a concept is better than strictly

choosing only one cluster from these multiple clusters to represent the concept and

missing concept members in the other clusters.

5.4.2 Concept-level metrics

Concept-level metrics indicate how well a clustering algorithm identifies and clusters

the members of a particular concept. The following metrics, precision, recall and

singularity score, are computed for each reference concept. Precision and recall measure

the purity and completeness of the clusters respectively. Singularity score measures how

well words that belong to the same concept are merged together. This metric was

introduced by Chotimongkol and Rudnicky (2002) to address the issue of a many-to-one

mapping.

A slight modification was made to the traditional precision and recall commonly used

in the information retrieval community to allow multiple clusters to be compared against

Chapter 5: Concept Identification and Clustering

173

a reference concept. Let Ri be a reference concept of interest and C1, C2, …, Cmi
 be the

clusters that represent the concept Ri; where mi is the number of the clusters. The

precision and recall of the concept Ri are calculated using the following equations.

i

i

m

1j

j

m

1j

ij

i

C in wordsof number

 R to belong hatt C in wordsof number

)R(precision (5.7)

i

m

1j

ij

i
R in wordsof number

 R to belong hatt C in wordsof number

)R(recall

i

(5.8)

Since more than one cluster is allowed to represent a concept, an additional quality

metric, singularity score (SS) is used to capture how well words that belong to the same

concept are merged together. When there is only one cluster that represents the concept,

its singularity score gets a perfect score of 1. A penalty is imposed when a concept is split

into more than one cluster. The singularity score is defined by the following equation.

i

i
m

1
)y score(Rsingularit (5.9)

To combine all three concept-level metrics into a single number, a metric called

quality score was introduced (Chotimongkol and Rudnicky, 2002). Quality score (QS) of

each concept is computed from its precision, recall and singularity score in the same way

that an F-measure is calculated from precision and recall. Specifically, quality score is a

harmonic mean of precision, recall and singularity score.

5.4.3 Overall metrics

In order to perform an end-to-end comparison between two clustering algorithms, a

metric that indicates the overall quality of a set of output clusters is required. For each

concept-level metric, its corresponding overall metric can be computed by averaging the

concept-level metrics of all the concepts in a reference. For example, the overall

precision can be computed by averaging the precision of all the concepts. There are two

approaches for computing the average: micro-average and macro-average. Micro-

average computes an average over the entire group of concepts by assigning every

concept word an equal weight regardless of the concept that it belongs to. Therefore, a

Chapter 5: Concept Identification and Clustering

174

concept that has more members is more significant. This method is similar to the

unweighted or pooled method described in (NIST, 1998). Macro-average, on the other

hand, computes an average by assigning every concept in a set of reference concepts an

equal weight. This method is similar to the equal topic weighting or weighted method

described in (NIST, 1998). Since the number of words in each concept is not uniformly

distributed, a macro-average is chosen as an averaging method to emphasize that every

concept is equally important and has equal contribution toward an overall quality metric.

The macro-average can be used to compute an overall metric of every concept-level

metric (e.g. macro-average precision and macro-average singularity score). The quality

score computed from macro-average precision, macro-average recall and macro-average

singularity score provides a single number that indicates the overall quality of the output

clusters.

5.5 Experiments and results

Experiments on concept identification and clustering make use of the CMU Travel

Agent corpus (Eskenazi et al., 1999), which contains goal-oriented human-human dialogs

between an experienced travel agent and a client arranging a trip that includes plane,

hotel and car reservations. A detail discussion about the dialogs in this air travel planning

domain is provided in Section 3.2. Table 5.1 shows the statistics of the CMU Travel

Agent corpus.

Statistic Value

Number of dialogs 39

Number of utterances 2,196

Number of an agent’s utterances (single agent) 1,108

Number of clients’ utterances (multiple clients) 1,088

Vocabulary size 947

Table 5.1: The statistics of the CMU Travel Agent corpus

A set of reference concepts in the air travel planning domain is shown in Table 5.2.

This reference set contains 16 concepts with 190 concept members and was created by a

domain expert. For each concept, examples of concept members and the total number of

members are also given. The last column in Table 5.2 shows the number of times each

concept occurs in the corpus. For simplicity, each word can belong to only one concept.

Words that do not belong to any domain concept are grouped into a single general

concept.

Chapter 5: Concept Identification and Clustering

175

Concept name Examples Number of

members

Frequency

in the corpus

airline_company Continental, Delta 15 323

airport LaGuardia, Midway 15 101

am_pm a.m., p.m. 2 333

area downtown, Manhattan 11 53

car_category compact, mid-size 2 14

car_rental_company hertz, thrifty 6 45

car_type automatic, manual 2 15

cardinal_number hundred, seventy 6 153

city Boston, Pittsburgh 44 673

date sixth, seventh 21 225

day_of_week Monday, Saturday 7 100

hotel_name Hyatt, Marriott 22 97

hour_number three, twelve 12 1188

minute_number fifteen, thirty 12 572

month March, April 6 109

time_period afternoon, evening 7 172

general want, depart 757 14411

Table 5.2: A list of concepts in the air travel planning domain

5.5.1 Statistical clustering results

Five statistical clustering algorithms were investigated: mutual information-based

clustering (MI-based clustering), Kullback-Liebler-based clustering (KL-based

clustering), and three variations of the Kullback-Liebler-based clustering that use a

linkage distance measure (KL-based single linkage, KL-based complete linkage, and KL-

based average linkage). The results are shown in Figure 5.4 - Figure 5.8 and Table 5.3 -

Table 5.7 respectively. For each clustering algorithm, the corresponding graph shows the

quality of the clustering result at each iteration in terms of precision, recall, singularity

score (SS), and quality score (QS). These numbers are the overall metrics computed from

all 16 concepts using the macro-average. The graphs in Figure 5.4 - Figure 5.8 also show

the values of the measures that were used to determine the stop points. The clustering

quality at the stop points are given in Table 5.3 - Table 5.7. Max-QS is an oracle stop

point that yields the highest QS. The automatic stopping criteria that yield the best

clustering results are highlighted in italic.

Chapter 5: Concept Identification and Clustering

176

Figure 5.4: The quality of the output clusters at each iteration of the MI-based clustering

Stopping criterion Iteration Precision Recall SS QS

Max-QS 766 0.81 0.52 0.77 0.68

AMI-intersection 815 0.74 0.42 0.73 0.59

last-max-clusters 721 0.78 0.43 0.77 0.61

Table 5.3: The performance of the MI-based clustering algorithm at different stopping

criteria

MI-based clustering

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 200 400 600 800 1000

Iteration

c
lu

s
te

rs
 q

u
a

li
ty

/

n
u

m
b

e
r

o
f

c
lu

s
te

rs
 (

x
1

0
0

)

-6.0

-5.5

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

lo
g

(A
M

Id
e

lt
a

)

Precision Recall SS

QS #clusters log(AMIdelta)

Linear (log(AMIdelta))

max-QS

AMI-intersection

last-max-clusters

Chapter 5: Concept Identification and Clustering

177

Figure 5.5: The quality of the output clusters at each iteration of the KL-based clustering

Stopping criterion Iteration Precision Recall SS QS

Max-QS 327 0.89 0.50 0.81 0.69

before-fluctuated 312 0.86 0.52 0.76 0.68

last-max-clusters 293 0.87 0.49 0.77 0.67

Table 5.4: The performance of the KL-based clustering algorithm at different stopping

criteria

KL-based clustering

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 200 400 600 800 1000

Iteration

c
lu

s
te

rs
 q

u
a

li
ty

/

n
u

m
b

e
r

o
f

c
lu

s
te

rs
 (

x
1

0
0

)

-2.4

-2

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

1.6

d
is

ta
n

c
e

Precision Recall SS QS #clusters Distance

max-QS

before-fluctuated

last-max-clusters

Chapter 5: Concept Identification and Clustering

178

Figure 5.6: The quality of the output clusters at each iteration of the KL-based single-

linkage clustering algorithm

Stopping criterion Iteration Precision Recall SS QS

Max-QS 290 0.91 0.42 0.81 0.64

median 569 0.71 0.33 0.69 0.51

before-flatten 461 0.88 0.28 0.79 0.50

last-max-clusters 570 0.71 0.33 0.69 0.51

Table 5.5: The performance of the KL-based single linkage clustering algorithm at

different stopping criteria

KL-based clustering (single linkage)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 200 400 600 800 1000

Iteration

c
lu

s
te

rs
 q

u
a
li
ty

/

n
u

m
b

e
r

o
f

c
lu

s
te

rs
 (

x
1
0
0
)

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

d
is

ta
n

c
e

Precision Recall SS QS #clusters Distance

max-QS

before-flatten
median

last-max-clusters

Chapter 5: Concept Identification and Clustering

179

Figure 5.7: The quality of the output clusters at each iteration of the KL-based complete

linkage clustering algorithm

Stopping criterion Iteration Precision Recall SS QS

Max-QS 532 0.76 0.67 0.64 0.69

median 474 0.84 0.65 0.60 0.68

before-flatten 278 0.88 0.62 0.57 0.67

last-max-clusters 580 0.73 0.67 0.64 0.68

Table 5.6: The performance of the KL-based complete linkage clustering algorithm at

different stopping criteria

KL-based clustering (complete linkage)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 200 400 600 800 1000

Iteration

c
lu

s
te

rs
 q

u
a

li
ty

/

n
u

m
b

e
r

o
f

c
lu

s
te

rs
 (

x
1

0
0

)

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

3.3

3.6

d
is

ta
n

c
e

Precision Recall SS QS #clusters Distance

max-QS

last-max-clusters

medianbefore-flatten

Chapter 5: Concept Identification and Clustering

180

Figure 5.8: The quality of the output clusters at each iteration of the KL-based average

linkage clustering algorithm

Stopping criterion Iteration Precision Recall SS QS

Max-QS 310 0.88 0.60 0.71 0.71

median 474 0.76 0.62 0.68 0.68

before-flatten 315 0.86 0.60 0.70 0.70

last-max-clusters 661 0.75 0.51 0.74 0.65

Table 5.7: The performance of the KL-based average linkage clustering algorithm at

different stopping criteria

KL-based clustering (average linkage)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 200 400 600 800 1000

Iteration

c
lu

s
te

rs
 q

u
a

li
ty

/

n
u

m
b

e
r

o
f

c
lu

s
te

rs
 (

x
1

0
0

)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

d
is

ta
n

c
e

Precision Recall SS QS #clusters Distance

last-max-clusters

max-QS

medianbefore-flatten

Chapter 5: Concept Identification and Clustering

181

Figure 5.9: Cluster quality comparison for all statistical clustering algorithms

Precision

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

MI

KL

Ls

Lc

Lg

Recall

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

MI

KL

Ls

Lc

Lg

Singularity Score

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

MI

KL

Ls

Lc

Lg

Quality Score

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

MI

KL

Ls

Lc

Lg

Chapter 5: Concept Identification and Clustering

182

Stop Algorithm Iteration Precision Recall SS QS

MI-based 766 0.81 0.52 0.77 0.68

KL-based 327 0.89 0.50 0.81 0.69

Single-linkage 290 0.91 0.42 0.81 0.64

Complete-linkage 532 0.76 0.67 0.64 0.69

Average-linkage 310 0.88 0.60 0.71 0.71

Table 5.8: The best performance of each statistical clustering algorithm

The best clustering performances of the statistical algorithms are summarized in

Table 5.8. These results are obtained when the oracle stopping criterion (Max-QS) is

used. Except for the KL-based single-linkage algorithm, the best quality scores of all

statistical clustering algorithms are about the same. The KL-based single-linkage

algorithm achieves high precision at its optimal clustering iteration; however the recall is

relatively low which makes the quality score not as good as other clustering algorithms.

Algorithm Stopping criterion Iteration Precision Recall SS QS

MI-based last-max-clusters 721 0.78 0.43 0.77 0.61

KL-based before-fluctuated 312 0.86 0.52 0.76 0.68

Single linkage median 569 0.71 0.33 0.69 0.51

Complete linkage median 474 0.84 0.65 0.60 0.68

Average linkage before-flatten 315 0.86 0.60 0.70 0.70

Table 5.9: The performance of each statistical clustering algorithm at its best automatic

stopping criterion

The best automatic stopping criterion for each clustering algorithm is presented in

Table 5.9 along with the quality of the clusters obtained at the stop iteration. For most

clustering algorithms, the proposed automatic stopping criteria are able to achieve close

to optimal clustering results. I would like to note that many alternative stopping criteria

proposed in Section 5.1.3, although not the best criteria, also yield close to optimal

clustering results as shown in Table 5.3 - Table 5.7.

For the KL-based, the KL-based complete linkage, and the KL-based average linkage

clustering algorithms, the clustering results obtained from the proposed automatic

stopping criteria are as good as the best clustering result obtained from the oracle stop.

But, for the MI-based and the KL-based single linkage clustering algorithms, the

clustering results obtained from the proposed automatic stopping criteria are quite worse

than the optimal results. When examining the quality scores that all of the clustering

Chapter 5: Concept Identification and Clustering

183

algorithms obtained at each iteration, as shown in Figure 5.9 (bottom-right), I found that,

for both the MI-based and the KL-based single linkage algorithms, there are only a few

iterations that the corresponding quality scores are close to the optimal one. This might

be one reason that it is difficult to find the optimal stop point automatically. For the

algorithms that a near optimal clustering result can be obtained from an automatic

stopping criterion (i.e. the KL-based, and especially the KL-based complete linkage and

the KL-based average linkage clustering algorithm), I found that the range of iterations

that have high quality scores is quite large.

From the comparison shown in Figure 5.9, I found that when the number of iteration

increases, the changes in all of the quality metrics (i.e. precision, recall, singularity score,

and quality score) are quite similar among all the variations of the KL-based clustering

algorithm. However, these changes in the quality metrics are quite different from the ones

observed from the MI-based clustering algorithm. When examining the output clusters

more closely, I found that KL-based algorithms tend to merge concept words together

first, and are more likely to group a single word into the exist clusters rather than create a

new cluster. In contrast, the MI-based clustering algorithm tends to merge none-concept

words together first, and is more likely to merge two words into a new cluster. As a

result, all the quality metrics, precision, recall and singularity score, of the KL-based

algorithms are higher than those of the MI-based algorithm at the early iterations. Based

on this characteristic, the KL-based algorithms require fewer clustering iterations to reach

the optimal clustering quality than the MI-based algorithm as shown by the QS graphs in

Figure 5.9 (bottom-right). Toward the end of the clustering process, the MI-based

algorithm begins to merge concept words and clusters into bigger clusters which make

the values of all quality metrics increase. Based on this characteristic, the MI-based

algorithm requires more clustering iterations in order to obtain the optimal or near

optimal clustering result. The disadvantage of a clustering algorithm that reaches the

optimal point slower is that it has more chance to merge irrelevant words into the clusters

that represent the concepts, and may also merge different concepts together before it

reaches the iteration that yields the optimal clustering result. The results, shown in Table

5.8, tend to agree with this analysis. The precision of the optimal clustering result

achieved by the MI-based clustering algorithm is lower than the precision of the optimal

result achieved by most KL-based clustering algorithms.

The characteristics of each statistical clustering algorithm are summarized in Table

5.10. The KL-based average linkage algorithm is the one that produces the best clustering

Chapter 5: Concept Identification and Clustering

184

result both when the oracle stopping criterion (Max-QS) is used and when the automatic

stop-criterion is used.

Algorithm Advantage Disadvantage

MI-based

-

 A near optimal result can be

obtained from only a few iterations

 Require more iterations in order to

obtain a good result

KL-based

(all variations)

 Require fewer iterations than the

MI-based algorithm in order to a

obtain good result

-

KL-based - -

Single linkage -

 A near optimal result can be

obtained from only a few iterations

 Recall is low in all iterations

Complete linkage

 A near optimal result can be

obtained from many iterations

 Recall is high in most iterations

 Singularity scores at the stop

iterations are quite low

Average linkage

 A near optimal result can be

obtained from many iterations

 Achieve the highest quality score at

both the oracle stopping criterion

and the automatic stopping criterion

-

Table 5.10: Characteristics of each statistical clustering algorithm

Examples of the clusters obtained from the KL-based average linkage algorithm at the

automatic stop point are shown in Figure 5.10. The first cluster represents hour_number;

the second cluster represents car_rental_company; the third and forth clusters represent

city. The cluster members that are marked in red and underlined are the ones that belong

to other concepts. The precision of the clustering result is high as shown in the last row of

Table 5.9. The first two clusters do not contain any error. For the concept hour_number,

the clustering algorithm can identify all of its 12 concept members. The third and forth

clusters contain some errors; those words should belong to the concept airport instead of

the concept city. The cluster merged some airport names together with city names

because they occur in quite similar context. The last two clusters also illustrate another

kind of error, namely splitting. A large concept, such as city, sometimes gets split into

multiple clusters. Singularity score, which reflects the splitting problem, is moderate for

the KL-based average linkage algorithm.

Chapter 5: Concept Identification and Clustering

185

Nevertheless, the recall of the KL-based average linkage algorithm is quite low. Other

statistical clustering algorithms investigated in this chapter also have a similar problem.

The highest recall achieved by the KL-based complete linkage algorithm is still not very

high. Many of the concept words that cannot be identified are left by itself as a single

word cluster rather than merged into an incorrect cluster. Some of them are infrequent

concept words that the statistical approaches do not have enough evidence to merge them

with any of the clusters. In other cases, some of the missing concept words have several

usages. For example, “May” can be either Month or an auxiliary verb. Since we made an

assumption that each word can belong to only one concept for simplicity, the proposed

algorithms cannot handle these types of words correctly.

Figure 5.10: Examples of the clusters obtained from the KL-based average linkage

clustering algorithm

5.5.2 Knowledge-based clustering results

A resource for knowledge-based clustering is WordNet version 1.7.1. ePost tagger is

used in the experiment to obtain the part of speech of each word in the corpus. The

accuracy of ePost on Penn Treebank tag set, which contains 36 tags, is 90.20%. Since

WordNet only distinguishes between four part of speech types (i.e. noun, verb, adjective

and adverb), an accuracy on part of speech types, which is 95.60%, is a more appropriate

number. It should be noted that ePost was trained on the Wall Street Journal corpus

which is a written language rather than a spoken language.

After a part of speech of each word is obtained, the one that is tagged as a noun is

passed to a word sense disambiguation algorithm which simply assigns the most common

sense to a polysemous word. In the CMU Travel Agent corpus in which polysemous

nouns account for 57.1% of the nouns, this simple WSD technique achieved 70.1%

accuracy.

 TEN, TWELVE, ELEVEN, ONE, SIX, FOUR, NINE, SEVEN, FIVE, EIGHT, THREE, TWO

 HERTZ, BUDGET, THRIFTY

 GATWICK, CINCINNATI, PHILADELPHIA, L.A., ATLANTA

 LAGUARDIA, MIDWAY, MADRID, DULLES, HONOLULU, NEWARK, PITTSBURGH,

SEATTLE, OTTAWA, SYRACUSE, BALTIMORE, AUSTIN, HOUSTON

Chapter 5: Concept Identification and Clustering

186

Clustering Algorithm Precision Recall SS QS

Average linkage 0.86 0.60 0.70 0.70

Hypernym-based with predicted nouns 0.84 0.20 0.72 0.40

Hypernym-based with all possible nouns 0.78 0.33 0.81 0.54

Table 5.11: The performance of the knowledge-based clustering approach

The performance of the hypernym-based clustering algorithm that uses predicted

POSs and words senses is shown in Table 5.11. The quality of the clustering results is not

good because the recall is low. One reason for the low recall is that many concept words

are not tagged as nouns. For example, ordinal numbers are tagged as adjective while

cardinal numbers are assigned a specially tag CD (for cardinal number). Due to this

discrepancy in the definition of each part of speech type used in WordNet and the POS

tagger, I decide to use the part of speech information only from WordNet instead of

relying on the POS tagger. Given the vocabulary of the corpus, every word that can be a

noun according to WordNet is considered. The clustering result is shown in the 2
nd

 row of

Table 5.11. Both the recall and the quality score are improved while the precision is

slightly lower.

However, the recall is still low comparing to the clustering results of the statistical

clustering algorithm shown in Table 5.9. The recall of the knowledge-based clustering

approach is low because WordNet does not contain some domain-specific concepts

especially those that are proper names such as car_rental_company and hotel_name.

Nevertheless, for the concepts that are present in WordNet such as day_of_week and

month, the hypernym-based clustering algorithm can identify them very accurately both

in terms of precision and recall. Another problem with knowledge-based clustering is

that, a knowledge resource may group concept words differently from domain-specific

definition especially for abstract concepts such as time. Section 5.6 discusses some

extensions that could be used to improve the clustering results for both the statistical

clustering algorithm and the knowledge-based clustering algorithm.

5.5.3 Concept word selection results

Four selection criteria based on word frequency and a stop word list were

experimented. The frequency cut-off was set to 2 because the corpus is quite small. The

second criterion is more restrictive than the first one because it selects only words that

occur at least twice in one dialog not in the entire corpus. The performance of each

criterion in identifying concept words is evaluated in terms of precision and recall. The

performance of each concept word selection criterion and its corresponding clustering

Chapter 5: Concept Identification and Clustering

187

result are shown in Table 5.12. The clustering process in this experiment utilized the KL-

based clustering with average linkage since it is the best clustering algorithm as shown in

Table 5.9.

Selection Criteria

Concept Word Selection

Performance Num.

clusters

Cluster Quality

%select Prec. Recall F-1 Prec. Recall SS QS

 All (baseline) 100.00% 0.20 1.00 0.33 134 0.82 0.50 0.68 0.64

1 Freq >= 2 (in a corpus) 69.42% 0.25 0.86 0.38 93 0.83 0.48 0.70 0.64

2 Freq >= 2 (in a dialog) 52.38% 0.30 0.79 0.44 65 0.85 0.46 0.75 0.64

3 Remove stop words 81.90% 0.24 0.98 0.38 113 0.82 0.49 0.69 0.64

4 Freq >= 2 (in a dialog)

and remove stop words

39.89% 0.39 0.78 0.52 57 0.84 0.46 0.75 0.64

Table 5.12: The performance of each word selection criterion and its corresponding

cluster quality

Among the first three criteria, using frequency cut off for within dialog frequency (2
nd

criterion) yielded the best precision on concept word identification while removing stop

words (3
rd

 criterion) yielded the best recall. Combining both criteria as in the forth

criterion can improve both precision and F-1. Concept word selection can reduce the

amount of words needs to be considered in the clustering process significantly, while the

quality of the output clusters still remains the same. Even though, I expected to see an

improvement on precision when non-concept words were removed, the precision was

increased only slightly with a small degradation in the recall. I believe that the decrease

in recall when applying a concept word selection technique can be resolved by

reconsidered the filtered words in the next clustering iteration. Concept word selection

also reduces the number of output clusters which makes it easier for a human to revise the

clustering result.

5.6 Discussion and conclusion

Both the statistical approach and the knowledge-based approach have different strong

points. For the statistical approach, no additional resource is required besides the

collection of domain conversations. Since it is a data-driven method, it can capture

domain-specific concepts that may not exist in a knowledgebase. Moreover, it is able to

reflect domain-specific usage of some concept words such as time-related expressions

and numbers. The drawback of the statistical approach is that it relies totally on the data.

Therefore, if the statistical evidence is not strong enough, such as the case of a sparse

Chapter 5: Concept Identification and Clustering

188

data problem, the accuracy of predicted concepts may be low. Furthermore, if some

concept members do not occur in the data, it is impossible to discover them. On the other

hand, the knowledge-based approach can identify domain concepts very accurately

providing that those concepts are in the knowledge resource. The knowledgebase

provides not only information about concept members but also information about the

concept itself. For example, it tells us that the cluster which contains “January”,

“February”, “March”, etc., is the month of the year. Moreover, it can identify concept

members that are missing from the data. While the statistical method relies heavily on the

data, the knowledge-based approach is restricted to only the information available in the

knowledgebase. Domain-specific words are the main drawback of the knowledge-based

approach since they are not usually presented in a knowledge repository.

Recent research on automatic taxonomy induction (Snow et al., 2005, 2006) has

produced efficient algorithms that can identify semantic relations, such as hypernyms and

coordinate terms (words that have the same hypernym), automatically from text corpora.

Promising results were reported when the relations were induced from news articles.

Given a set of text from a particular domain, these data-driven approaches should be able

to extend the taxonomy in WordNet to include new lexicons and their semantic relations

which are specific to that particular domain, and thus increase the coverage of WordNet.

Since both the statistical approach and the knowledge-based approach have different

advantages, it is better to combine both techniques together rather than choosing one.

One possible combination method is to acquire an initial set of concepts through a

statistical clustering approach then revise these initial concepts with a knowledge-based

clustering approach. A statistical clustering approach allows us to recover as many

potential concepts as possible while a knowledge-based clustering approach can improve

the quality of the initial concepts by adding missing concept members and removing

incorrect concept members. In addition, more efficient concept word selection criteria

could be identified by adding new concept word indicators and by combining different

types of criteria together. One additional type of indicator that might be worth

experimenting is a name entity flag (whether a word is a name entity or not). A word that

is classified as a name entity (for example, location or time expression) is likely to

capture domain information.

In summary, among the five statistical clustering algorithms that were experimented

(mutual information-based, Kullback-Liebler-based, and three variations of the Kullback-

Liebler-based that use linkage distance measures: single linkage, complete linkage, and

average linkage), the KL-based average linkage algorithm is the one that produces the

Chapter 5: Concept Identification and Clustering

189

best clustering result. For most statistical clustering algorithms, we are able to identify

automatic stopping criteria that yield close to optimal results. A concept word selection

criterion that combines word frequency cut-off with a stop word list can significantly

reduce the number of words that needs to be considered in the clustering process without

deteriorating the quality of the clustering result. The statistical approaches while able to

capture domain-specific usage of concept words cannot accurately identify infrequent

concept words due to a sparse data problem. The knowledge-based approach, on the other

hand, can identify domain concepts very accurately, but on the condition that the

concepts are present in the knowledge source.

Chapter 6: Form Identification

190

Chapter 6

Form Identification

The goal of form identification is to determine different types of forms and their

associated slots that a dialog system needs to know in order to perform a task in a given

task-oriented domain. Since a form represents a portion of a dialog that corresponds to an

action, namely a sub-task, identifying a list sub-tasks in sample dialogs can help

determine a set of forms that is required in a particular domain. One approach to the form

identification problem is to first segment a dialog into a sequence of sub-tasks, and then

group the sub-tasks that are associated with the same form type into a cluster. By

analyzing the concepts contained in each cluster, a set of slots that is associated with each

form can be determined. This chapter is divided into 2 parts: Section 6.1 describes a

dialog segmentation problem while Section 6.2 describes a sub-task clustering problem.

6.1 Dialog segmentation

A dialog segmentation problem can be considered as a discourse segmentation

problem where a discourse unit is a sub-task in the form-based dialog structure

representation. To decompose a dialog into a sequence of sub-tasks, the boundaries of the

sub-tasks have to be determined. Hence, a dialog segmentation problem can also be

considered as a sub-task boundary identification problem.

Segmentation algorithms for both textual and spoken data have been a subject of

extensive research. Most approaches on text segmentation rely on lexical cohesion within

the same topic. Lexical cohesion measures the degree of similarity within a span of text

(or transcription in the case of a spoken discourse). Based on the assumption that the

content within the same topic is interrelated, lack of similarity between two consecutive

parts of a discourse can indicate a topic boundary. One widely-used segmentation

algorithm based on lexical cohesion is the Hearst’s TextTiling algorithm (Hearst, 1997).

In this algorithm, lexical similarity is calculated from the cosine similarity of left and

right context vectors of a candidate boundary. Potential boundaries are determined from

relative changes in the similarity scores instead of from their absolute values. The

candidate boundary that has a similarity score lower than both of its neighbors is

considered a potential boundary. The number of boundaries (or the number of segments)

Chapter 6: Form Identification

191

in a particular discourse is determined automatically from the statistic of the similarity

scores in order to reflect the characteristic of each discourse. No training data is required

for the Hearst’s TextTiling algorithm.

Lexical cohesion is an efficient feature for identifying a boundary between two sub-

tasks that belong to different form types; however, it may not provide enough information

for determining a boundary between two sub-tasks that belong to the same form type

such as a boundary between two consecutive query_flight_info sub-tasks. The results in

(Galley et al., 2003) and (Swerts and Ostendorf, 1997) confirmed this characteristic.

Another type of features that is useful for determining topic boundaries is a discourse

marker. Discourse markers or discourse particles or cue phrases such as “well” and “by

the way” are linguistic expressions that function as explicit indicators of structural units

in a discourse. Although discourse makers are reliable features, they are not useful for a

domain that contains only a few of them such as an air travel planning domain (Swerts

and Ostendorf, 1997). Moreover, identifying discourse markers in a conversation may not

be straight forward. Even though a list of words that can function as a discourse marker

can be obtained from many literatures (Hirschberg and Litman, 1993), it is quite difficult

to identify the occurrences of those words that actually convey structural information of a

conversation since many of the potential markers also have alternative uses.

Instead of using a pre-defined list of discourse markers, Beeferman et al. (1999)

determined a list of domain-specific cue words automatically from the context near the

topic boundaries in the training data. Domain-specific cue words not only reflect the

characteristic of each data set but also eliminate the need of a complex word sense

disambiguation process that would be required in order to identify the occurrences of the

pre-defined discourse markers that truly capture structural information of a discourse. A

statistical framework, an exponential model, was then used to combine the domain-

specific cue words and the adaptive language model probabilities which capture lexical

cohesion in the discourse to determine topic boundaries in a document.

Another learning algorithm that has been applied to text segmentation is a hidden

Markov model (HMM). This approach models the topics and topic shifts in the stream of

text explicitly; each HMM state represents a topic while a transition between states

represents a shift between topics. Each HMM state models the corresponding topic

through its emission probability which can be regarded as a state-specific language

model. State transition probabilities represent the probabilities of topic shifts and thus

capture sequential order of topics in a document. A HMM is trained from a collection of

documents to capture re-occurring patterns in an interested domain. It utilizes context

Chapter 6: Form Identification

192

similarity from multiple documents to determine topic boundaries rather than relying on

lexical cohesion of the local context near each candidate boundary as in the TextTiling

algorithm. To identify topic boundaries in a given document, the Viterbi algorithm is

used to determine a state label for each sentence. The boundary is then predicted between

any two sentences that their state labels are different.

A hidden Markov model itself is considered an unsupervised learning algorithm.

However, the method used for constructing the HMM states may change the hidden

Markov model to a supervised learning algorithm if the method makes use of topic

boundary annotation. HMM states in the models proposed by Tür et al. (2001) and

Yamron et al. (1998) were constructed by clustering similar topics in the training data

together. Since this topic clustering algorithm made use of topic boundaries, those hidden

Markov models are considered supervised. On the other hand, HMM states in a content

model proposed by Barzilay and Lee (2004) were constructed by clustering similar

sentences together. No topic boundary was utilized by this clustering algorithm;

therefore, this hidden Markov models is considered unsupervised.

Segmentation approaches for spoken discourses can also utilize prosodic features in

addition to textual features from the transcription. Correlations between prosodic features

and discourse segment boundaries have been reported in many studies (Levow, 2004; Tür

et al., 2001). Pitch and duration are prosodic features that are reliable across different

types of spoken discourses (Levow, 2004). Unlike lexical cohesion, prosodic features are

not sensitive to the content of the segment. It has been shown that prosodic features are

able to identify the discourse boundaries even though the content of the segments are

quite similar (Swerts and Ostendorf, 1997). Although prosodic features seem to be more

robust in some cases, the algorithms that combined both textual features and prosodic

features together achieved better performance than using either of them alone (Galley et

al., 2003; Swerts and Ostendorf, 1997; Tür et al., 2001).

Supervised discourse segmentation approaches, such as (Beeferman et al., 1999) and

(Tür et al., 2001), require training data with segment labels. However, when exploring the

structure of dialogs in a new domain, as in the case of this thesis, such annotated data is

not available. Therefore, we have to rely mainly on unsupervised approaches. In this

section, two unsupervised discourse segmentation approaches are investigated: a

TextTiling algorithm and a Hidden Markov Model. Both approaches, while performing

well with expository text, require some modification when applied to spoken dialogs.

One major concern is the granularity of the segments. A sub-task is rather small when

compared to a topic in expository text or newscast. The topic length is 428 words in WSJ

Chapter 6: Form Identification

193

text and 996 words in CNN broadcast news (Beeferman et al., 1999) while a sub-task

length is only 84 words in the air travel domain and only 55 words in the map reading

domain. Since the segments that have to be identified are small, special care is required

when process the context. The term “topic” and “sub-task” can be used interchangeably

in this chapter as both of them refer to a discourse unit that will be identified by a

segmentation algorithm.

In the following sections, I first discuss the features used in dialog segmentation and

their representations. These features are used by both the TextTiling algorithm and the

Hidden Markov Model. Each segmentation algorithm and the extensions that are made

specifically for segmenting a dialog into a sequence of sub-tasks are described in detail in

Section 6.1.2 and Section 6.1.3. The segmentation results were evaluated with three

performance metrics discussed in Section 6.1.4. The experimental settings are described

in Section 6.1.5 and the results obtained from the TextTiling algorithm and the Hidden

Markov Model are discussed in Section 6.1.6 and Section 6.1.7 respectively. All the

findings are concluded in Section 6.1.8

6.1.1 Feature representation

6.1.1.1 Word token representation

Features for dialog segmentation algorithms are taken from dialog transcription. The

features include transcribed words and concept markups if a set of domain concepts has

already been identified. Each transcribed word is pre-processed by removing

morphological inflections using the Porter's stemming algorithm. When concept

annotation is available, a concept word is represented by both a concept label and a word

string. This joint representation helps disambiguating between different concept types

(for instance, [DepartureCity]:pittsburgh is not the same token as

[ArrivalCity]:pittsburgh) and between different word senses (for instance, “one” in “that

one” is not the same token as [hour]:one).

6.1.1.2 Stop word treatment

One common practice in text processing is to remove stop words form a set of

features as they do not carry useful information for most natural language processing

applications. Conventionally, a list of stop words is prepared manually and usually

includes function words such as articles and prepositions. However, this manual process

is subjective and may not be optimal for every application domain. For example, numbers

which are regarded as stop words in an information retrieval system, contain crucial

information about date and time in the air travel planning domain. Incompatibility

Chapter 6: Form Identification

194

between a list of stop words and a target domain and genre may deteriorate the results.

Gupta et al. (2006) reported a lower performance when the stop word list commonly used

in the IR community was applied to a spoken dialog understanding application. Hand-

turning a stop word list specifically for every application domain is inconvenient and also

time consuming when working with many different domains, as in the case of natural

language call router design (Kuo and Lee, 2001) and domain knowledge acquisition

discussed in this thesis.

To alleviate a stop word incompatibility problem, I propose a novel approach for

selecting a list of stop words specifically for each data set. In the context of a

segmentation problem, a stop word is a word that carries no useful information for

determining segment boundaries. Based on lexical coherence assumption used by many

segmentation algorithms, words that occur regularly throughout a dialog are not

informative. However, words that occur regularly are not the same as words that occur

frequently. A high frequency word is still useful if its instances occur only in a specific

location. For example, the word “northwest” which occurs many times in a

reserve_flight sub-task but does not occur in a reserve_hotel sub-task or a reserve_car

sub-task is undoubtedly useful for determining sub-task boundaries while the word “you”

which can occur anywhere in a dialog is not so useful.

Regularity of a particular word is determined from its distribution over the course of a

dialog rather than its frequency. Specifically, a regularity count of word w, RC(w), is

defined as the number of sliding context windows of size c that contain the word w in

each dialog. The window is shifted by one utterance at a time. The parameter c is the

same parameter as the context window size used in the TextTiling algorithm that will be

described in Section 6.1.2.

Table 6.1 illustrates the calculation of regularity counts when c is set to 2. Each row

in the table is equivalent to an utterance. “A” and “F” are two word tokens that have the

same frequency; both of them occur 4 times in this text. The first column contains 8

blocks that correspond to 8 sliding context windows of size 2. The block which marked

as “yes” indicates that its corresponding context window contains the word “A”. The

third column represents similar information but for the word “F”. The number of blocks

that marked as “yes” in the first column (i.e. the number of context windows contain the

word “A”) is the regularity count of “A”, or RC(“A”). The regularity counts of both

words are shown in the last row. Since “F” is distributed more uniformly across the text,

it has a higher regularity count than “A”.

Chapter 6: Form Identification

195

Window contain

A?

Word token Windows contain

F?

yes A E yes

yes A F yes

yes B yes

yes A F yes

 D yes

 B F yes

 C

yes C E yes

 A F

5 Regularity count 7

Table 6.1: Regularity count calculation

In the TextTiling algorithm, where each dialog is processed separately, a regularity

count is calculated specifically for each dialog. Therefore, the regularity count of the

same word may not be the same in different dialogs. For a HMM-based segmentation

algorithm, which utilizes information from all dialogs in a corpus to identify sub-task

boundaries, a regularity count of each word is accumulated from all the dialogs.

A word with high regularity count is less useful in determining segment boundaries

and could be considered as a stop word. A dialog-specific stop word list is a list of words

that have a regularity count greater than a pre-defined threshold.

An alternative data-driven approach for handling stop words is to transform a

regularity count into a regularity weight (RW) using the following equation:

count_window_total

)w(RCcount_window_total
)w(RW (6.1)

;where total_window_count is the total number of sliding context windows

The frequency of each word is then weighed with the corresponding RW(w). A word that

has a higher regularity count is assigned a lower weight and thus contributed less in

cosine similarity calculation. Regularity weight eliminates the need of an additional cut-

off threshold parameter.

6.1.2 TextTiling algorithm

The TextTiling algorithm (Hearst, 1997) is a widely-used unsupervised segmentation

algorithm which determines segment boundaries based on lexical cohesion. Based on the

assumption that two chunks of text from the same topic are more similar than the ones

from different topics, a significant drop in lexical similarity indicates a potential segment

Chapter 6: Form Identification

196

boundary. A dialog segmentation algorithm based on the TextTiling algorithm is as

follows:

1. For every utterance boundary, compute cosine similarity between left and

right context vectors. Context vectors are created from pre-processed

transcription. Each dimension of the vector represents the frequency of each

stemmed token in a context window of size c.

2. Smooth the similarity scores with average smoothing. A smoothed score is an

average of all similarity scores within a smoothing window of size s.

3. Calculate a depth score for every valley in the similarity score plot. A depth

score is the sum of the distance from the valley to the peaks on both sides. It

takes into account the relative changes from both sides of the candidate point.

4. Output a candidate boundary that has a depth score higher than the cut-off

threshold as a predicted boundary.

A set of parameters, including a context window size (c), a smoothing window size

(s) and a cut-off threshold, has to be specified. These parameters affect the performance

of the segmentation algorithm.

Figure 6.1: An example of a similarity score plot from the TextTiling algorithm

Chapter 6: Form Identification

197

Figure 6.1 shows a similarity score plot produced by the TextTiling algorithm. In the

plot, the x-axis represents all candidate points (utterance boundaries) and the y-axis

represents similarity scores. The orange curve (lighter curve) represents cosine similarity

scores while the green curve (darker curve) is the smoothed scores. The height of each

blue peak is a depth score of each valley in the smoothed curve. Every peak is a potential

boundary. The black horizontal line represents the cut-off threshold, which is set to μ -

σ/2; where μ is the mean of the depth scores and σ is their standard deviation. All of the

potential boundaries that have depth scores greater than the cut-off threshold are selected.

The boundaries identified by the algorithm are represented by red vertical lines (the

shortest vertical lines). The black vertical lines (the longer vertical lines) are reference

boundaries. The black-red vertical lines (the longest vertical lines) are the cases when the

TextTiling algorithm predicts a boundary at the same position as a reference boundary.

In order to handle fine-grained segments in task-oriented dialogs, two types of

modifications to the standard TextTiling algorithm are introduced: distance weight and

triangular smoothing.

6.1.2.1 Distance weight

One crucial parameter for the TextTiling algorithm is the size of context windows. If

the window size is too small, the algorithm may not have enough context to determine the

similarity between two text spans that belong to the same topic and thus introduce a false

alarm (false positive). On the other hand, if the window size is too large, the algorithm

may find similarity between irrelevant parts of a dialog and thus miss the boundary when

there is one (false negative). Since some sub-tasks are much shorter than the average

length (only 2-3 utterances long), even a small context window can be considered too

large for those sub-tasks.

To resolve the problem of irrelevant similarity, a distance weight is introduced to

demote the similarity between far away contexts. Each word in the context window is

weighed by the distance between the word and the considered candidate boundary.

Specifically, distance weight DW(w) is computed as follows:

ewindow_siz

distanceewindow_siz
)w(DW (6.2)

;where window_size is the size of a context window (c), which is a parameter in the

TextTiling algorithm, and distance is the number of utterances between the word w and

the considered candidate boundary. A distance of a word in an utterance that is adjacent

Chapter 6: Form Identification

198

to the considered candidate boundary is 0. The distance weight calculation is illustrated

below.

Figure 6.2 shows two context windows of size 4. The thick border in the middle of

the figure represents a candidate boundary; the top half of the figure represents a left

context window while the bottom half represents a right context window. Each row

represents an utterance. The distance of “C” is 1 utterance from the candidate boundary;

therefore, DW(“C”) is (4-1)/4 = 3/4. For “D”, the distance is 0; therefore, DW(“D”) is (4-

0)/4 = 1.

A F

 B

A F

 D

 B F

 C

 E

A F

Figure 6.2: Distance weight calculation

The distance weight is applied to each word token rather word type because distances

from different word tokens to the considered boundary are not equal. For example, the

distance of the first “A” in the left context window in Figure 6.2 is 3 utterances while the

distance of the second “A” in the left context window is 1 utterance. Therefore, their

distance weights are 1/4 and 1/2 respectively.

6.1.2.2 Smoothing algorithm

The similarity score curve needs to be smoothed in order to remove shallow valleys

which represent local minima. Those local minima may interrupt the scores and create

two shallow valleys instead of one deep valley that should be a boundary. The similarity

score plot in Figure 6.1 is shown again in Figure 6.3. A local minimum in unsmoothed

cosine similarity scores at utterance 12
th

 creates two shallow valleys at utterance 12
th

 and

16
th

 instead of one deep valley at utterance 16
th

obtained from a smoothed curve. If the

unsmoothed curve is used to identify potential boundaries, it may create a false alarm at

utterance 12
th

 if its depth score is higher than the cut-off threshold. Alternatively, the

boundary at utterance 16
th

 could be missed if the depth score of the shallower valley is

lower than the cut-off threshold.

Chapter 6: Form Identification

199

Figure 6.3: Local minimum in a similarity score plot

The original TextTiling algorithm uses a rectangular smoothing scheme which

averages all of the scores in smoothing window by giving them the same weight. The

following equation demonstrates how a rectangular smoothed score is computed when a

smoothing window size (s) is set to 5.

5
_ 2112 iiiii XXXXX

scoresmoothed (6.3)

;where Xi is a similarity score at the middle point of the smoothing window; Xi-1 and Xi+1

are similarity scores on the left an right of Xi respectively.

Since the sub-tasks are quite small, a precise boundary prediction is required. During

a preliminary experiment, I observed that the rectangular smoothing scheme sometimes

shifts the location of the valley from its original location in the unsmoothed curve and

hence produced an inaccurate boundary prediction. To avoid this problem, a triangular

smoothing scheme, which gives more weight to the scores closer to the center of the

smoothing window, can be used instead. A triangular smoothed score is calculated form

the following equation.

local minimum

Chapter 6: Form Identification

200

9

*2*3*2
_ 2112 iiiii XXXXX

scoresmoothed (6.4)

6.1.3 HMM-based segmentation algorithm

The HMM-based segmentation algorithm approaches the problem of text

segmentation by modeling the topics and topic shifts in the stream of text explicitly. Each

state in the hidden Markov model (HMM) represents a distinct topic while a transition

between states represents a shift between topics. The text that is relevant to each topic is

assumed to be generated from the corresponding HMM state according to a state-specific

language model which is captured by the emission probability of that state. The shift

between topics occurs according to a transition probability. The HMM-based

segmentation algorithm presented in this section is adopted from Barzilay and Lee’s

(2004)
6
 algorithm. The process of constructing the hidden Markov model consists of two

steps: HMM state induction and HMM parameter estimation.

In the HMM state induction step, HMM states, which represent topics or sub-tasks,

are created automatically by clustering similar text spans together. A text span can be a

sentence, a paragraph or other text stream units; nevertheless, the size of a text span may

affect the granularity of induced topics and the segmentation performance. In Barzilay

and Lee’s algorithm, sentences in news articles were used as text spans. Since each

sentence in a news article is quite long and the notion of a topic in their evaluation tasks,

information ordering and single-document summarization, is quite small, the sentence is

an appropriate text span unit. However, in task-oriented dialogs, some utterances are very

short and contentless. Furthermore, some utterances can occur in any sub-task. Examples

of these utterances are an acknowledgement and a yes/no response. In addition, a sub-

task on average is several utterances long; in the two domains that are used in the

evaluation, the air travel domain and the map reading domain, the average sub-task

length is 10 utterances and 7 utterances respectively. Based on these characteristics of a

task-oriented dialog, a single utterance may not contain enough information that indicates

its relevant topic. Therefore, an utterance unit is too small for topic induction.

Larger text spans were used in (Tür et al., 2001; Yamron et al., 1998) where HMM

states were constructed by clustering similar topics together. One drawback of this

approach is that it requires topic boundary in order to create the HMM states; therefore,

6
 The actual implementation is based on a Java application developed by Jaime Arguello which was used as

a baseline approach in (Arguello and Rosé, 2006).

Chapter 6: Form Identification

201

the approach is no longer unsupervised. To eliminate the need of annotated data, true

topic boundaries can be approximated by predicted boundaries obtained from other

segmentation algorithms such as the TextTiling algorithm. The HMM states are then

induced by clustering the predicted segments together. Segmentation performances when

different text span units are used to induce HMM states are discussed in Section 6.1.7.2.

A bisecting K-means clustering algorithm (Steinbach et al., 2000) is used to infer a set

of HMM states from a set of in-domain dialogs. The bisecting K-means algorithm is a

top-down clustering algorithm that utilizes cosine similarity between text segments in

order to assign the segments into clusters. The algorithm starts with a single cluster that

contains all of the text spans in the corpus. A unit of a text span can be either an utterance

or a dialog segment. Then, at each iteration the largest cluster is split into two sub-

clusters until the desired number of clusters is reached. This clustering algorithm is

similar to the one used in sub-task clustering and is discussed in detail in Section 6.2.2. A

set of clusters outputted by the bisecting K-means algorithm is an initial set of HMM

states. The algorithm also creates an etcetera state by combining small clusters (i.e. the

clusters that contain less than T text spans) together to capture the sub-dialogs that are not

relevant to the task.

In the HMM parameter estimation step, two sets of HMM parameters, emission

probabilities and transition probabilities, are computed. The HMM states correspond to

the topic clusters created by the bisecting K-means algorithm, and the observations are

utterances in a dialog. An emission probability of a given state captures word distribution

of the corresponding topic or sub-task and can be regarded as a state-specific language

model. Since the amount of dialog transcription available for training the HMM is rather

small, a unigram language model is used to reduce a data sparseness problem.

Specifically, the probability of an n-word utterance x = w1w2 … wn being generated from

a state s can be expressed by Equation (6.5).

n

1i iss)w(P)x(P (6.5)

Ps(wi) is a unigram probably of a word wi in a state s and can be estimated from its

relative frequency using the following equation.

V)u(f

)w(f
)w(P

1Vu s

1s
s (6.6)

Chapter 6: Form Identification

202

;where fs(w) is the frequency of w in the cluster that corresponds to a state s, V is the

vocabulary and 1 is a smoothed count which gives a small count to words that do not

occur in a state s.

A simple additive language model smoothing technique, plus-delta, is used to

estimate both the emission probabilities and the transition probabilities (discussed

below). Nevertheless, a more sophisticated smoothing technique could be investigated.

Chen and Goodman (1996) discussed several smoothing techniques and then compared

those techniques empirically in the field of language modeling.

For an etcetera state, a complementary language model similar to the one described in

(Barzilay and Lee, 2004) is used. For a HMM that consists of m states where sm is an

etcetera state, an emission probably of an etcetera state is given by the following

equation.

))u(Pmax1(

)w(Pmax1
)w(P

Vu smi:i

smi:i

etc

i

i

 (6.7)

A state transition probability is estimated from a relative frequency of a transition

between two specific states in the training data. Each utterance in a dialog is assinged a

state label that is similar to the state label of the cluster that it belongs to. Specifically, let

lt be a state label of an utterance t and C(si, sj) be the number of transitions from state si to

sj in the training data, namely, the number of state label pairs where lt = si and lt+1 = sj.

Equation (6.8) illustrates the smoothed estimation of the transition probability from state

si to sj. 2 is a smoothed factor.

m)s,s(C

)s,s(C
)s|s(P

2

m

1i

ji

2ji

ij
(6.8)

Since the HMM states represent the sub-tasks, a boundary can be placed between two

utterances that are assigned different state labels. However, the initial clustering obtained

from the bisecting K-means algorithm does not take into account sub-task ordering

information. To incorporate the ordering information, the Viterbi algorithm, which

utilizes the ordering information through the HMM transition probabilities, is used to find

the best state sequence of the observed utterances. The new state labels obtained from the

Viterbi decoding are then used to re-estimate the HMM parameters using the same

equations given above. The Viterbi decoding and the HMM parameter re-estimation can

Chapter 6: Form Identification

203

be iterated until converged, i.e. the number of utterances that are assigned new state

labels is less than a pre-defined threshold (threshold-2), or the maximum number of

iterations is reached.

To identify sub-task boundaries in a given dialog, the Viterbi algorithm is used to

determine the best state sequence of all the utterances in the given dialog. This Viterbi

algorithm is the same algorithm as the one used for constructing the HMM model. The

boundary is then predicted between any two utterances that their state labels are different.

Practically, since the HMM-based segmentation algorithm is an unsupervised learning

approach, we can construct the HMM model from all available dialog data. In this case,

sub-task boundaries in each dialog can be determined from the state labels assigned to the

utterances in the last iteration of the Viterbi decoding and HMM parameter re-estimation

process.

6.1.4 Evaluation metrics

To evaluate the performance of each dialog segmentation algorithm, the predicted

boundaries are compared against the sub-task boundaries annotated by a coding scheme

expert. Two types of evaluation metrics are used: Pk and F-measure. Pk is a probabilistic

error metric proposed by Beeferman et al. (1999) that measures the probability of

misclassifying two utterances that are k utterances apart as belong to the same sub-task or

different sub-tasks. Pk is calculated by counting the classification errors via a moving

window of length k. At each location, the algorithm determines whether the two ends of

the probe are in the same or different segments in the reference segmentation, and

increases a counter if the predicted segmentation disagrees. The total count is then

normalized by the number of measurements taken to make the Pk value scales between 0

and 1. Since Pk is a probability of segmentation errors, a lower Pk value is preferred. An

algorithm that predicts all boundaries correctly receives a score of 0. The following

equations formally defined Pk.

Pk = Pmiss * p(different ref segments) + PFalseAlarm * p(same ref segment) (6.9)

;p(same ref segments) is the probability that two points that are k utterances apart are in

the same segments in the reference while p(different ref segments) is the probability that

two points that are k utterances apart are in the different segments in the reference.

Chapter 6: Form Identification

204

))ki,i(1(

))ki,i(1(*)ki,i(
P

ref

kN

1i

ref

kN

1i hyp

miss
(6.10)

kN

1i ref

ref

kN

1i hyp

FalseAlarm

)ki,i(

)ki,i(*))ki,i(1(
P (6.11)

;where the summations are over all of the utterances in each dialog and where

)j,i(1 when utterances i and j are form the same sub-task

 0 otherwise

The value of Pk is also depended on the choice of k. Beeferman et al. (1999)

suggested that the value of k should be set to half the average true segment length.

However, there are several alternatives on how the average segment length could be

computed. The first variation is the choice for the unit of k. Even though an utterance is

used as a unit in the illustration given above, other units of discourse can be used

interchangeably. In the context of dialog segmentation, the unit of k could be word or

utterance. Additionally, an average segment length can be calculated from all of the

dialogs in the corpus or calculated separately for each dialog; this introduces another

variation in the calculation of k. Among several alternatives, an appropriate method for

calculating the value of k is determined empirically from an experiment discussed in

Section 6.1.5.2.

F-measure (or F-1) is the harmonic mean of precision and recall. However, the

standard F-measure does not give any credit to a near miss boundary. Some modifications

have been made to the standard F-measure to allow some near misses to be considered as

a match. For example, a credit is given to a boundary that is within an arbitrary fixed

range from the reference boundary. Since the segmentation result will later be used to

identify a set of forms and their associate slots, the predicted segment that contains the

same set of concepts as the reference segment is acceptable even though their boundaries

are slightly different. For that reason, it is more suitable to define a close match relative

to the location of the concepts inside each segment rather than defining it based on a

fixed distance. For this reason, a near-miss boundary is counted as a match if there is no

concept between the near-miss boundary and the closest reference boundary. This

extension to the standard precision and recall are referred to as concept-based precision

and recall. Concept-based F-1 is the harmonic mean of concept-based precision and

recall. The segmentation algorithm that achieves high concept-based F-1 may not

Chapter 6: Form Identification

205

produce very accurate segment boundaries, but it will; nevertheless, produce segments

that contain similar sets of domain concepts as the ones in the reference segments.

6.1.5 Experimental settings

The proposed dialog segmentation algorithms were evaluated with dialogs from two

task-oriented domains: the air travel planning domain and the map reading domain

described in Section 3.2 and Section 3.4 respectively. Reference sub-task boundaries

were annotated by a coding scheme expert. For simplicity, the annotator was only

allowed to place sub-task boundaries at utterance boundaries.

6.1.5.1 Corpus statistic

The test corpora consist of 24 dialogs from the air travel planning domain and 20

dialogs from the map reading domain. The dialogs from the air travel planning domain

were annotated with the task structure presented in Table 3.3 while the dialogs from the

map reading domain were annotated with the task structure presented in Table 3.5. The

statistics of annotated dialogs is shown in Table 6.2.

Air Travel Map Task

mean std. mean std.

Dialog length (utterance) 55.6 23.0 125.5 36.5

Utterance length (word) 8.2 7.8 7.5 7.9

Number of segments per dialog 5.4 1.5 17.1 4.9

Segment length (utterance) 10.3 7.1 7.4 4.8

Segment length (word) 84.4 60.2 55.2 39.5

Table 6.2: The statistics of the test corpora

The sub-task is quite short when comparing to a topic in expository text or newscast.

The topic length is 428 words in WSJ text and 996 words in CNN broadcast news

(Beeferman et al., 1999) while an average sub-task length is 84 words in the air travel

domain and only 55 words in the map reading domain. Furthermore, sub-task length

variance is high especially in the air travel domain. Some sub-tasks in this domain are

quite long due to lengthy negotiation while some sub-tasks are only 2-3 utterances long

such as a query_flights_fare sub-task.

6.1.5.2 Defining k for Pk

Four degenerate segmentation algorithms similar to the ones described in (Beeferman

et al., 1999) were implemented to identify an appropriate method for calculating k.

Chapter 6: Form Identification

206

1. ALL predicts a boundary at the end of every utterance (at every candidate

point)

2. NONE predicts no boundary at all (except for the beginning of the dialog and

the end of the dialog which are default boundaries)

3. EVEN predicts a boundary at every m
th

 utterances, where m is the average

reference segment length for each dialog

4. RAND predicts n boundaries randomly, where n is the number of reference

boundaries in each dialog

Each degenerate algorithm was evaluated with 4 variations of Pk that differ along two

aspects: 1) unit of k (utterance or word) and 2) average segment length calculation

(averaging per dialog or per data set).

Algorithm
Number of

boundaries

Calculate k per dialog Calculate k per data set

False alarm

probability

Miss

probability
Pk

False alarm

probability

Miss

probability
Pk

ALL 56.625 1.000 0.000 0.578 1.000 0.000 0.550

NONE 2.000 0.000 1.000 0.422 0.000 1.000 0.450

EVEN 6.667 0.422 0.509 0.456 0.463 0.476 0.426

RAND 6.417 0.363 0.647 0.481 0.421 0.631 0.482

Table 6.3: Utterance-based Pk of degenerate algorithms in the air travel domain

Table 6.3 presents the results of the degenerate algorithms in the air travel domain

when the unit of k is an utterance (utterance-based Pk). The results when k is calculated

separately for each dialog and the results when k is calculated from the average segment

length of all the dialogs in the data set are compared. When k is calculated per dialog, the

Pk value of the NONE algorithm is much better than the Pk value of the ALL algorithm.

These results are different from the ones reported in (Beeferman et al., 1999) and

(Arguello and Rosé, 2006). When k is calculated per data set, the difference between the

ALL algorithm and the NONE algorithm becomes smaller.

It can be deduced from Equation (6.9) that when the false alarm probability is equal

to 1 and the miss probability is equal to 0, Pk is equal to p(same ref segments). Similarly,

when the false alarm probability is equal to 0 and the miss probability is equal to 1, Pk is

equal to p(different ref segments). Based on the results of the ALL and NONE

algorithms, it can be deduced that p(same ref segments) is equal to 0.578 while

Chapter 6: Form Identification

207

p(different ref segments) is equal to 0.422 when k is calculated per dialog. One possible

reason for the unbalanced probabilities is that the segment length has high variance as

show in Table 6.2. When k is calculated per data set, it can be deduced that p(same ref

segments) is equal to 0.550 while p(different ref segments) is equal to 0.450. These two

probabilities are closer together than when k is calculated per dialog. This result might

indicate that calculating an average segment length from all of the dialogs in the data set

is a better method since it reduces segment length variance.

There is oracle information inherited in the EVEN and RAND algorithms. In the

RAND algorithm, the number of boundaries in the reference is given while in the EVEN

algorithm both the number of boundaries and the average sub-task length in the reference

segments are given. The EVEN algorithm, which uses more oracle information, has a

better Pk than the RAND algorithm. This is also different from the results reported in

(Beeferman et al., 1999). One reason for this might be from the fact that in the air travel

domain a span of text to be segmented, a dialog, is much shorter than continuous text

corpus in the broadcast news domain. Since both pieces of oracle information are given

per dialog, they have a lot of influence on the segmentation result. In the map reading

domain, where an average dialog length is longer, difference in Pk values between the

EVEN and the RAND algorithms is smaller. The results from the map reading domain

are given in Table 6.5 and Table 6.6.

Algorithm
Number of

boundaries

Unit = utterance (k=5) Unit = word (k=42)

False alarm

probability

Miss

probability
Pk

False alarm

probability

Miss

probability
Pk

ALL 56.625 1.000 0.000 0.550 0.989 0.000 0.544

NONE 2.000 0.000 1.000 0.450 0.000 1.000 0.450

EVEN 6.667 0.463 0.476 0.426 0.406 0.428 0.376

RAND 6.417 0.421 0.631 0.482 0.343 0.624 0.443

Table 6.4: Pk values of degenerate algorithm when k is calculated from all of the dialogs

in the air travel domain

The results of the degenerate algorithms in the air travel domain when a unit of k is an

utterance (utterance-based Pk) and the results when a unit of k is a word (word-based Pk)

are compared in Table 6.4. k is calculated per data set. When a unit of k is a word (word-

based Pk) the false alarm probability of the ALL algorithm may not be equal to 1 because

some utterances can be longer than k words. When a unit of k is a word, better Pk values

Chapter 6: Form Identification

208

are obtained for all degenerate algorithms. Using a word as a unit helps overcoming an

utterance length variation problem.

Algorithm
Number of

boundaries

Calculate k per dialog Calculate k per data set

False alarm

probability

Miss

probability
Pk

False alarm

probability

Miss

probability
Pk

ALL 126.500 1.000 0.000 0.537 1.000 0.000 0.509

NONE 2.000 0.000 1.000 0.463 0.000 1.000 0.491

EVEN 18.500 0.480 0.477 0.476 0.517 0.443 0.468

RAND 18.050 0.418 0.573 0.488 0.439 0.556 0.488

Table 6.5: Utterance-based Pk of degenerate algorithms in the map reading domain

The utterance-based Pk of the degenerate algorithms in the map reading domain is

shown in Table 6.5. When k is calculated separately for each dialog, p(same ref

segments) is equal to 0.537 while p(different ref segments) is equal to 0.463. However,

when k is calculated from all of the dialogs, these two probabilities are more balance,

p(same ref segments) = to 0.509 while p(different ref segments) = 0. 491. These

probabilities are closer together than those in the air travel domain as an average segment

length in the map treading domain has lower variance.

Algorithm
Number of

boundaries

Unit = utterance (k=4) Unit = word (k=28)

False alarm

probability

Miss

probability
Pk

False alarm

probability

Miss

probability
Pk

ALL 126.500 1.000 0.000 0.509 0.953 0.000 0.504

NONE 2.000 0.000 1.000 0.491 0.000 1.000 0.470

EVEN 18.500 0.517 0.443 0.468 0.446 0.423 0.417

RAND 18.050 0.439 0.556 0.488 0.367 0.555 0.445

Table 6.6: Pk values of degenerate algorithm when k is calculated from all of the dialogs

in the map reading domain

Similar to the air travel planning domain, better Pk values for all degenerate

algorithms are obtained when using a word as a unit of k instead of an utterance as shown

in Table 6.6.

Summary

From the results in both the air travel domain and the map reading domain, I chose to

compute k from all dialogs in the corpus since the average segment length calculated

Chapter 6: Form Identification

209

from more data reduces segment length variance. In terms of the unit of k, a word unit

was chosen. The finer-grained unit resolves an utterance length variation problem.

6.1.6 TextTiling experiments

In all experiments (unless specified elsewhere), the context size (c) was set to 4

utterances, smoothing window size (s) was set to 3 and cut-off threshold was set to μ -

σ/2; where μ is the mean of the depth scores and σ is their standard deviation. The

performance of each sub-task boundary predictor is reported in terms of Pk, standard F-

measure (F-1) and concept-based F-measure (C. F-1). The number reported is the average

performance over all of the dialogs in the test corpus.

For a sub-task boundary predictor that gains substantial improvement over the

baseline predictor, the significance level of the improvement is also reported. To avoid

making an assumption that the segmentation performance on each dialog has a normal

distribution, the Wilcoxon signed-rank test was adopted instead of the Student's t-test. If

the Student's t-test is used when the data does not have a normal distribution, the p-value

can be misleading. The Wilcoxon test is a nonparametric test; hence, it makes fewer

assumptions on the distribution of the data. More detail discussions of both statistical

hypothesis tests can be found in many statistics textbook such as (Degroot, 1986).

It has been argued that, a nonparametric test is less powerful than a parametric test

that assumes a normal distribution (e.g. the Student's t-test), namely a nonparametric test

is less likely to produces a small p-value. Therefore, it is more difficult to find the

improvement that is statistically significant when a nonparametric test is used. In the

preliminary experiments, I found that the p-values obtained from the Wilcoxon test were

usually higher than the p-values obtained from the Student's t-test. A less powerful test,

the Wilcoxon test, was chosen to ensure that the improvement achieved by the proposed

approach is statistically significant. A Perl script provided by Institute of Phonetic

Sciences, Amsterdam
7
 was used to perform the Wilcoxon signed-rank test.

6.1.6.1 TextTiling baselines

Two baseline boundary predictors were created from the conventional TextTiling

algorithm. The first predictor, B1 (B stands for baseline predictor), uses all of the words

in the transcription as features. The second predictor, B2, excludes stop words specified

by a hand-crafted list. The stop word list was taken from the list that was developed in the

7
 http://www.fon.hum.uva.nl/rob/SignedRank/SRTest.pl

http://www.fon.hum.uva.nl/rob/SignedRank/SRTest.pl

Chapter 6: Form Identification

210

Snowball project
8
. This stop word list contains 174 words and includes pronouns,

prepositions and auxiliary verbs. The baseline performances are shown in Table 6.7.

Name Stop word treatment
Air Travel Map Task

Pk F-1 C. F-1 Pk F-1 C. F-1

B1 Include all words 0.384 0.427 0.654 0.412 0.239 0.396

B2 Exclude hand-crafted stop words 0.387 0.383 0.621 0.395 0.269 0.426

Table 6.7: TextTiling baseline performances

Summary

When both baseline predictors are applied in two different domains, the results

reveals that a hand-crafted stop word list is not optimal for every domain. In the air travel

domain, removing hand-crafted stop words actually decreases segmentation performance;

however, the same stop word list does improve segmentation performance in the map

reading domain.

6.1.6.2 Data-driven stop word treatments

T3 and T4 (T stands for TextTiling) are sub-task boundary predictors that use the

data-driven approaches discussed in Section 6.1.1 to handle stop words. T3 excludes stop

words from a set of features similar to B2 but uses a dialog-specific stop word list instead

of a hand-crafted stop word list. The threshold for selecting dialog-specific stop words

was set to μ + 2*σ in all of the experiments; where μ is the mean of the regularity counts

of all the words in a given dialog and σ is their standard deviation. The average number

of dialog-specific stop words is 8.8 words per dialog in the air travel planning domain

and 9.5 words per dialog in the map reading domain. Regularity counts discover common

words that are specific to spoken dialog domains, but are not listed in the hand-crafted

stop word list, such as “okay” and “yeah”. However, some function words that occur only

a few times are not included in the data-driven stop word list. The second predictor, T4,

does not remove any word from context windows but weighs each word with a regularity

weight computed by Equation (6.1). The performances of both sub-task boundary

predictors are shown in Table 6.8.

8
 http://search.cpan.org/~creamyg/Lingua-StopWords-0.08/lib/Lingua/StopWords.pm.

http://search.cpan.org/~creamyg/Lingua-StopWords-0.08/lib/Lingua/StopWords.pm

Chapter 6: Form Identification

211

Name Stop word treatment
Air Travel Map Task

Pk F-1 C. F-1 Pk F-1 C. F-1

T3 Exclude dialog-specific stop words 0.372 0.455 0.664 0.413 0.251 0.381

T4 Use regularity weights 0.384 0.420 0.641 0.428 0.231 0.379

Table 6.8: Results of data-driven stop word treatments

T3, which uses a dialog-specific stop word list, outperforms both baseline boundary

predictors (B1 and B2) in the air travel domain. However, its performance is worse than

both baseline predictors in the map reading domain. In the map reading domain, many

content words also occur regularly throughout a dialog since a dialog composes of a

series of the same type of sub-task, a draw_a_segment sub-task. Therefore, it is quite

difficult to distinguish between content words and stop words. With the current cut-off

threshold, some concept words such as “right” are removed while some common words

such as “do” remains. Some concept words occur quite regularly but as different concept

types; for example, some landmarks are EndLocation in one sub-task but are

StartLocation in another sub-task. In another case, “right” can be both Direction and a

non-concept word for acknowledgement. Therefore, information from concept annotation

may help improve the performance of the predictor that identifies stop words from word

distribution.

In T4, words that occur regularly are not removed unlike in T3, but are assigned only

small weights. T4 performs slightly worse than T3 in both domains. Weighted common

words still have some contribution to a cosine similarity score since there are many of

them.

Summary

Data-driven stop word treatments can discover the stop words that are specific to the

interested genre and domain. However, the efficiency of a data-driven stop word

treatment is also depended on word distribution characteristic. In map reading domain,

where the distributions of content words are quite similar to those of stop words, the data-

driven approaches are less efficient.

6.1.6.3 Word token representation

The segmentation results of the predictors that use information from concept

annotation, manually created, are shown in Table 6.9. TC1, TC2, TC3 and TC4 use the

same stop word treatment as their counterparts, B1, B2, T3 and T4 respectively, but also

incorporate information from concept annotation in word token representations. C in the

predictor’s name stands for concept information.

Chapter 6: Form Identification

212

Name Stop word treatment
Air Travel Map Task

Pk F-1 C. F-1 Pk F-1 C. F-1

TC1 Include all words 0.395 0.425 0.661 0.403 0.268 0.415

TC2 Exclude hand-crafted stop words 0.360 0.385 0.634 0.398 0.299 0.440

TC3 Exclude dialog-specific stop words 0.353 0.461 0.695 0.397 0.254 0.425

TC4 Use regularity weights 0.388 0.426 0.671 0.390 0.282 0.443

Table 6.9: Segmentation performances when incorporating concept information

In both domains, the boundary predictors that use information from concept

annotation (TC1, TC2, TC3 and TC4) perform better than their counterparts (B1, B2, T3

and T4) that do not use the information, especially when evaluated by concept-based F-1.

TC3 and TC4, which use a data-driven approach to define stop words from word

distribution, can benefit more from concept information than TC1 and TC2, which use a

traditional stop word treatment. Information from concept annotation provides a richer

representation that helps distinguish between different concept types and also between

different word senses. Co-occurrences of the same word string that actually belong to

dissimilar concepts or dissimilar worse senses no longer affect the similarity score. In

addition, this better representation makes the distributions of content words more

distinguishable from the distributions of stop words; therefore, the boundary predictors

that use data-driven stop word treatments, which rely on word distribution characteristic,

can achieve more performance improvement.

In the air travel domain, both TC3 and TC4 achieve better segmentation results than

TC1 and TC2. When compared to the baselines, TC3, which uses information from

concept annotation and a dialog-specific stop word list, performs significantly better than

B2, which uses a hand-crafted stop word list, both in terms of exact F-1 (p-value = 0.002)

and concept-based F-1 (p-value = 0.028). The result which is significantly better than the

baseline at a significance level of 0.05 (an -level of 5%) is highlighted in bold
9
. In the

map reading domain, the performances of TC3 and TC4 are about the same as the

performances of TC1 and TC2.

9
 Since there are two baseline boundary predictors in the experiment, a significance test is conducted for

each baseline separately. When a statistically significant improvement over one of the baseline is found, the

p-value and the significance level of that particular test are reported. The claim of significant improvement

is made specifically for that particular baseline to avoid a multiple testing problem.

Chapter 6: Form Identification

213

Summary

Information from concept annotation improves dialog segmentation results in both

domains as it provides better word token representation that can distinguish between

different concept types and also between different word senses. This better representation

also makes the data-driven stop word treatments more efficient especially in the map

reading domain. While a performance of the boundary predictor that uses a hand-crafted

stop word list depended on compatibility between the selected stop word list and the

domain, the performance of the boundary predictor that uses a data-driven stop word

treatment (a dialog-specific stop word list or regularity weights) is not since the stop

words are determined directly from word distribution in each data set.

6.1.6.4 Distance weight

The segmentation results obtained when distance weights are applied to sub-task

boundary predictors are shown in Table 6.10. D in the predictor’s name stands for a

distance weight. These boundary predictors do not use information from concept

annotation and should be compared to B1, B2, T3 and T4. Distance weights improve the

results, as measured by concept-based F-1, for most of the cases. The improvement

comes from higher recall. Distance weights demote irrelevant similarity from far away

contexts; therefore, help the TextTiling algorithm discovers more boundaries.

Name Stop word treatment
Air Travel Map Task

Pk F-1 C. F-1 Pk F-1 C. F-1

T1D Include all words 0.399 0.418 0.636 0.412 0.241 0.412

T2D Exclude hand-crafted stop words 0.384 0.397 0.659 0.397 0.273 0.435

T3D Exclude dialog-specific stop words 0.395 0.435 0.672 0.409 0.239 0.400

T4D Use regularity weights 0.374 0.438 0.696 0.414 0.226 0.404

Table 6.10: Segmentation performances when distance weights are applied to the

predictors that do not use concept information.

T4D which uses regularity weights together with distance weights obtains significant

improvement over the baseline that uses a hand-crafted stop word list (B2) both in terms

of exact match or standard F-measure (p-value = 0.026) and concept-based F-1 (p-value

= 0.008). However, in the map reading domain, the boundary predictors that use data-

driven stop word treatments are still not better than the B2 baseline. T3D and T4D have

the same problem as T3 and T4 that is without information form concept annotation the

distributions of content words are quite similar to those of stop words which make the

data-driven approaches less efficient.

Chapter 6: Form Identification

214

Name Stop word treatment
Air Travel Map Task

Pk F-1 C. F-1 Pk F-1 C. F-1

TC1D Include all words 0.405 0.387 0.628 0.399 0.260 0.423

TC2D Exclude hand-crafted stop words 0.362 0.399 0.685 0.380 0.290 0.456

TC3D Exclude dialog-specific stop words 0.357 0.482 0.720 0.391 0.247 0.418

TC4D Use regularity weights 0.377 0.434 0.694 0.371 0.278 0.470

Table 6.11: Segmentation performances when applied distance weights to the predictors

that used concept information.

Table 6.11 presents the segmentation results obtained when distance weights are

applied to the predictors that also utilize information from concept annotation. Distance

weights improve the segmentation performance when compared to the results in Table

6.9, where the distance weights are not applied, as measured by concept-based F-1 for

most of the cases. In the air travel domain, the predictors that use data-driven stop word

treatments (TC3D and TC4D) achieve a significant improvement over the baseline that

uses a hand-crafted stop word list (B2), in terms of concept-based F-measure (p-value =

0.001 for TC3D and p-value = 0.004 for TC4D). TC3D also gains a significant

improvement over the baseline (B2) in terms of exact F-1 (p-value = 0.002). In the map

reading domain TC4D achieves a significant improvement over the baseline predictor

does not remove any stop word (B1) in terms of concept-based F-measure (p-value =

0.007). The segmentation result obtained from TC4D is also slightly better than the result

obtained from TC2D which uses a hand-crafted stop word list.

Summary

The boundary predictors that utilize distance weights achieve better segmentation

results, in terms of concept-based F-1, than the predictors that do not use distance

weights. The performance gain can be achieved by both the predictors that use

information from concept annotation and the ones that do not use it. When distance

weights are used together with a data-driven stop word treatment, a significant

improvement over the baseline can be achieved in both domains.

6.1.6.5 Context size

To examine the effect of the amount of context on segmentation performance, in this

experiment, the context window size used in cosine similarity calculation was varied

from 4 utterances to 16 utterances. To also observe the effect of distance weights on

segmentation performance when the size of the context window increases, two boundary

Chapter 6: Form Identification

215

predictors, TC4 and TC4D, were used. The former uses regularity weights and

information from concept annotation while the latter uses additional distance weights.

Both predictors achieved good performance in both domains as shown in the previous

experiments. The segmentation results in the air travel domain are shown in Table 6.12,

Figure 6.4 and Figure 6.5.

Context

size

w/o distance weight (TC4) with distance weight (TC4D)

Pk C. Prec
C.

Recall
C. F-1 Pk C. Prec

C.

Recall
C. F-1

4 0.388 0.685 0.702 0.671 0.377 0.689 0.747 0.694

6 0.431 0.675 0.614 0.620 0.392 0.669 0.693 0.657

8 0.394 0.740 0.650 0.674 0.403 0.698 0.677 0.662

10 0.410 0.711 0.581 0.624 0.424 0.693 0.608 0.628

12 0.408 0.745 0.581 0.632 0.415 0.719 0.599 0.634

14 0.410 0.766 0.610 0.656 0.410 0.738 0.628 0.657

16 0.409 0.777 0.609 0.661 0.425 0.737 0.616 0.648

Table 6.12: The performances of sub-task boundary predictors when the context size is

varied in the air travel domain.

When a larger context window is used, a context vector changes more gradually from

one sliding window to another sliding window which makes the similarity score curve

smoother. Both TC4 and TC4D predict less number of boundaries as the window size

increases. As a result, precision tends to increase while recall tends to decrease as shown

in Figure 6.4 and Figure 6.5. Similar observation is also found in the map reading

domain. The trade-off between precision and recall determines the overall performance of

the predictors.

Chapter 6: Form Identification

216

Figure 6.4: The effect of the context size on the TC4 predictor in the air travel domain.

In the air travel domain, when the context size increases, the overall performance of

both boundary predictors decreases slightly both in terms of Pk and concept-based F-1.

The performance is not monotonic decreasing; however, the performance is optimal when

the context window size is set to 4 utterances. The loss in recall is greater than the gain in

precision when the context size is large. When the context size increases, both predictors

miss more boundaries between small sub-tasks (for example, between a query_car_info

sub-task and a query_hotel_info sub-task). If the context windows are larger than the

sub-tasks, they are more likely to contain irrelevant context and irrelevant similarity from

other sub-tasks. This irrelevant similarity may prevent the TextTiling algorithm from

detecting the boundary between two small sub-tasks since there is no significant drop in

cosine similarity scores.

Performance of TC4 in the air travel domain

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 6 8 10 12 14 16

context size (utterances)

0

1

2

3

4

5

6

7

8

9

10

Pk

Precision

Recall

Concept-based F-1

Predicted boundaries

Chapter 6: Form Identification

217

Figure 6.5: The effect of the context size on the TC4D predictor in the air travel domain.

Figure 6.6: The effect of distance weights when the context size is varied in the air travel

domain

Performance of TC4 and TC4D in the air travel domain

0.5

0.6

0.7

0.8

0.9

4 6 8 10 12 14 16

context size (utterances)

TC4 concept-based F-1

TC4 precision

TC4 recall

TC4D concept-based F-1

TC4D precision

TC4D recall

Performance of TC4D in the air travel domain

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 6 8 10 12 14 16

context size (utterances)

0

1

2

3

4

5

6

7

8

9

10

Pk

Precision

Recall

Concept-based F-1

Predicted boundaries

Chapter 6: Form Identification

218

The performances of TC4 and TC4D predictors in terms of concept-based F-1 are

compared in Figure 6.6. The graphs for TC4 are in lighter colors while the graphs for

TC4D are in darker colors. TC4D, which uses distance weights, achieves better

performance from higher recall when the context window is small. However, when the

context window is larger, the recall and concept-based F-1 of both predictors drop to

about the same values.

An error analysis reveals that longer dialogs benefit more from a larger context

window. A long dialog usually has longer sub-tasks (from lengthy negotiation) rather

than more sub-tasks. With a larger context window, the TextTiling algorithm is able to

detect similar words within to the same sub-task that are quite far apart and hence reduces

the number false alarms without missing more boundaries.

To investigate this observation more closely, I separated the dialogs into two groups

according to their length. The first group contains the dialogs that are shorter than the

average dialog length (55.63 utterances) while the second group contains the dialogs that

are longer than the average. When the size to of the context window increases, the

segmentation performance decreases in the first group but increases in the second group

as shown in Table 6.13 and Figure 6.7. The performances of short dialogs are illustrated

with lighter color graphs. Similar results are obtained for both TC4 and TC4D. The

segmentation performance for the set of long dialogs is optimal when the context window

size is set to 16 utterances for both TC4 and TC4D. For TC4, the performance when

using a large context window (context size = 16) is significantly better than when using a

small context window (context = 4) in terms of Pk (p-value = 0.008).

Chapter 6: Form Identification

219

Context

size

w/o distance weight (TC4) with distance weight (TC4D)

short dialogs long dialogs short dialogs long dialogs

Pk C. F-1 Pk C. F-1 Pk C. F-1 Pk C. F-1

4 0.380 0.698 0.404 0.616 0.359 0.723 0.411 0.637

6 0.474 0.617 0.345 0.627 0.398 0.669 0.381 0.633

8 0.418 0.679 0.347 0.665 0.423 0.659 0.363 0.668

10 0.442 0.626 0.347 0.619 0.440 0.623 0.391 0.638

12 0.452 0.614 0.321 0.666 0.433 0.630 0.380 0.642

14 0.454 0.646 0.322 0.675 0.434 0.648 0.362 0.674

16 0.465 0.650 0.299 0.684 0.462 0.628 0.350 0.689

Table 6.13: Performance comparison between short dialogs and long dialogs in the air

travel domain

Figure 6.7: The effect of the context size on short dialogs and long dialogs in the air

travel domain

Segmentation performances of TC4 and TC4D predictors in the map reading domain

are shown in Table 6.14 and Figure 6.8. As the context size increases, both TC4 and

TC4D predict fewer boundaries. Therefore, precision increases at the expense of recall,

similar to the results obtained in the air travel domain. The boundary predictor that does

not use distance weights (TC4) achieves a smaller gain in precision than the reduction in

recall; hence, segmentation performance is slightly lower as the context size increases.

The predictor that uses distance weights (TC4D), on the other hand, achieves higher gain

Performance of TC4D on short dialogs and long dialogs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

4 6 8 10 12 14 16

context size (utterances)

short dialogs Pk

short dialogs concept-based F-1

long dialogs Pk

long dialogs concept-based F-1

Chapter 6: Form Identification

220

in precision that can compensate for the reduction in recall; therefore, its segmentation

performance does not change much. In this domain, TC4D can still recover more

boundaries than TC4 even when a larger context window is used unlike in the air travel

domain. Another difference is that regardless of the amount of the context used, there is

only small difference in segmentation performance between short dialogs and long

dialogs.

Context

size

w/o distance weight (TC4) with distance weight (TC4D)

Pk C. Prec C. Recall C. F-1 Pk
C.

Prec
C. Recall C. F-1

4 0.390 0.490 0.409 0.443 0.371 0.499 0.450 0.470

6 0.372 0.523 0.386 0.440 0.371 0.538 0.427 0.472

8 0.385 0.532 0.367 0.430 0.371 0.544 0.410 0.464

10 0.382 0.532 0.362 0.425 0.360 0.558 0.426 0.478

12 0.371 0.555 0.362 0.432 0.379 0.539 0.395 0.450

14 0.369 0.540 0.375 0.438 0.368 0.573 0.409 0.474

16 0.391 0.539 0.349 0.421 0.363 0.578 0.397 0.467

Table 6.14: The performances of both predictors when the context size is varied in the

map reading domain.

Chapter 6: Form Identification

221

Figure 6.8: The effect of distance weights when the context size is varied in the map

reading domain

There are two types of sub-tasks in the map reading domain: draw_a_segment and

grounding. Grounding is a finer-grained sub-task embedded inside a draw_a_segment

sub-task. The discussion on task structure decomposition in the map reading domain is

presented in Section 3.4. When the context size increases, both TC4 and TC4D miss

more boundaries between finer-grained sub-tasks (grounding sub-tasks) than the

boundaries between coarser-grained sub-tasks (draw_a_segment sub-tasks). To evaluate

segmentation performance on coarse-grained sub-tasks, only the boundaries of

draw_a_segment sub-tasks are considered; the boundaries of grounding sub-tasks are

excluded from the reference boundaries. The performances of TC4 and TC4D boundary

predictors on coarse-grained sub-tasks are shown in Table 6.15.

Performance of TC4 and TC4D in the map reading domain

0.2

0.3

0.4

0.5

0.6

0.7

4 6 8 10 12 14 16

context size (utterances)

TC4 concept-based F-1

TC4 precision

TC4 recall

TC4D concept-based F-1

TC4D precision

TC4D recall

Chapter 6: Form Identification

222

Context

size

w/o distance weight (TC4) with distance weight (TC4D)

Pk C. Prec
C.

Recall
C. F-1 Pk C. Prec

C.

Recall
C. F-1

4 0.439 0.365 0.529 0.427 0.422 0.375 0.589 0.450

6 0.409 0.392 0.495 0.432 0.406 0.412 0.568 0.470

8 0.395 0.399 0.475 0.430 0.417 0.425 0.551 0.472

10 0.376 0.419 0.485 0.444 0.391 0.430 0.567 0.482

12 0.372 0.439 0.489 0.455 0.384 0.426 0.529 0.465

14 0.385 0.419 0.498 0.450 0.378 0.453 0.557 0.492

16 0.371 0.430 0.477 0.447 0.353 0.473 0.558 0.504

Table 6.15: Segmentation performances on coarse-grained sub-tasks in the map reading

domain

An average segment length of coarse-grained sub-tasks is 13.8 utterances while an

average segment length of all of sub-tasks is 7.4 utterances. When the context size

increases, both boundary predictors have slightly better performance on coarse-grained

sub-tasks due to reduction in false alarms. Between the two predictors, TC4D gains more

improvement in precision than TC4 and also has better overall performance. When a

larger context window is used, TC4D misses only a few more boundaries but reduces the

number of false alarms by about one third.

Summary

A sub-task boundary predictor that uses a large context window can achieve a better

result in specific circumstances. In the air travel planning domain, a large context

window improves segmentation performance in long dialogs. In the map reading domain,

a large context window is more suitable for identifying coarser-grained sub-task

boundaries. In the map reading domain, distance weights help recover more boundaries

regardless of the context window size used; however, in the air travel domain, there is no

performance gain from distance weights when the context window size is large.

Using an appropriate amount of context is crucial when segmenting a discourse into

fine-grained segments such as sub-tasks. Even though a boundary predictor that uses a

large context window can achieve better performance in some specific cases, a better

overall performance can be achieved with a small context window. A small context

window is more sensitive to small changes in the context and thus suitable for identifying

fine-grained segments particularly when there is high variation in the segment length as

in the air travel planning domain.

Chapter 6: Form Identification

223

6.1.6.6 Smoothing algorithm

In this experiment, two similarity score smoothing algorithms were examined:

rectangular smoothing and triangular smoothing. Both smoothing algorithms are

described in Section 6.1.2.2. Rectangular smoothing was used as a default smoothing

technique in all previous experiments. A triangular smoothing technique is applied in

T4DTr and TC4DTr. The former uses only transcribed words while the latter also

incorporates information from concept annotation. Both predictors utilize regularity

weighs and distance weights similar to T4D and TC4D but use a triangular smoothing

scheme instead of a rectangular smoothing scheme (Tr stands for triangular smoothing).

The results of T4D and TC4D presented in Table 6.16 are similar to the ones presented in

Table 6.10 and Table 6.11 respectively.

Name Smoothing technique
Air Travel Map Task

Pk F-1 C. F-1 Pk F-1 C. F-1

T4D Rectangular smoothing 0.374 0.438 0.696 0.414 0.226 0.404

T4DTr Triangular smoothing 0.376 0.445 0.702 0.424 0.230 0.396

TC4D Rectangular smoothing 0.377 0.434 0.694 0.371 0.278 0.470

TC4DTr Triangular smoothing 0.371 0.457 0.712 0.384 0.292 0.464

Table 6.16: Segmentation results when used different smoothing algorithms

The boundary predictors that utilize a triangular smoothing scheme achieve slightly

better exact F-1 than the predictors that use a rectangular smoothing scheme (but not

significantly better). However, Pk and concept-based F-1 are not always improved. Pk and

concept-based F-1 already award some credit to near missed boundaries; therefore, a

more precise boundary prediction may not always improve their values.

Since the boundary predictors that use a triangular smoothing algorithm can achieve

about the same level of concept-based F-1 as the predictors that use a rectangular

smoothing algorithm, they also gain a significant improvement over the baseline, similar

to their counterparts. In the air travel domain, both T4DTr and TC4DTr are significantly

better than the baseline predictor that uses a hand-crafted stop word list (B2). The p-

values are 0.003 and 0.002 respectively. In the map reading domain, TC4DTr is

significantly better than the baseline that includes all words in the transcript as features

(B1); p-value is equal to 0.026. The result which is significantly better than the baseline

at a significance level of 0.05 (an -level of 5%) is highlighted in bold.

Chapter 6: Form Identification

224

In terms of exact F-1, the boundary predictors that use a triangular smoothing

algorithm achieve more improvement when compared to the baselines than the predictors

that use a rectangular smoothing algorithm. In the air travel domain, both T4DTr and

TC4DTr achieve a significant improvement over the baseline B2; the p-value is 0.015

and 0.003 respectively. In the map reading domain, the p-value of TC4DTr is 0.050.

Summary

A triangular smoothing algorithm produces a more precise boundary prediction than a

rectangular smoothing algorithm as shown by the improvement in exact F-1.

6.1.6.7 Cut-off threshold

It has been observed during the error analysis of segmentation results that sometimes

the TextTiling algorithm found a drop in similarity scores (a valley) at the location where

the boundary should be; however, its depth score was not high enough for the algorithm

to predict it as a boundary. If the cut-off threshold is lower, these missing boundaries

could be discovered; nevertheless, this might come with the cost of higher false alarms.

In this experiment the effect of a cut-off threshold on segmentation performance is

investigated. Four cut-off thresholds were examined. Threshold-1 is the threshold that

was used in all previous experiments. The cut-off threshold for selecting a boundary is set

to μ - σ/2; where μ is the mean of the depth scores and σ is their standard deviation.

Threshold-2 has a lower value than threshold-1; the cut-off threshold is set to μ – σ. For

all, there is no cut-off threshold; all of the valleys in the similarity score plot are

outputted as boundaries. For oracle, the top-n candidate boundaries that have the highest

depth scores are outputted; n is the number of reference boundaries in each dialog. The

sub-task boundary predictor used in this experiment is the predictor that uses information

from concept annotation, regularity weights and distance weights together with a

triangular smoothing algorithm (TC4DTr). This boundary predictor is discussed in the

previous section. Table 6.17 and Figure 6.9 present the segmentation results of TC4DTr

in the air travel domain when different cut-off thresholds are used. The results in the map

reading domain are presented in Table 6.18 and Figure 6.10. The result of threshold-1 is

the same as the result of TC4DTr shown in Table 6.16.

Chapter 6: Form Identification

225

Threshold
#Predicted

boundaries

#Predicted/

#reference

ratio

Pk

Concept-based

Precision Recall F-1

threshold-1 8.125 1.266 0.371 0.693 0.771 0.712

threshold-2 9.292 1.448 0.393 0.630 0.803 0.692

all 11.167 1.740 0.423 0.567 0.840 0.666

oracle 6.417 1.000 0.362 0.729 0.685 0.704

Table 6.17: Segmentation performance when different cut-off thresholds are used in the

air travel domain

Figure 6.9: The effect of the cut-off threshold in the air travel domain

Threshold
#Predicted

boundaries

#Predicted/

#reference

ratio

Pk

Concept-based

Precision Recall F-1

threshold-1 15.550 0.861 0.384 0.506 0.433 0.464

threshold-2 19.650 1.089 0.375 0.480 0.513 0.492

all 23.150 1.283 0.372 0.461 0.580 0.511

oracle 18.050 1.000 0.366 0.498 0.493 0.496

Table 6.18: Segmentation performance when different cut-off thresholds are used in the

map reading domain

Performance of TC4DTr in the air travel domain

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

oracle threshold-1 threshold-2 all

0

2

4

6

8

10

12

Pk

Concept-based Precision

Concept-based Recall

Concept-based F-1

Predicted boundaries

Chapter 6: Form Identification

226

Figure 6.10: The effect of the cut-off threshold in the map reading domain

In Figure 6.9 and Figure 6.10, the threshold that yields fewer predicted boundaries is

presented first. As expected when more boundaries are predicted recall is higher while

precision is lower. Therefore, the overall performance is a trade-off between the gain in

recall and the loss in precision. When the boundary predictor outputs more boundaries,

the overall performance decreases in the air travel domain but increases in the map

reading domain. The third column of Table 6.17 and Table 6.18 show the ratio between

the number of predicted boundaries and the number of reference boundaries in the air

travel domain and the map reading domain respectively. This ratio is used to compare the

amount of boundaries outputted by a sub-task boundary predictor when the sets of input

dialogs are not the same. When the same thresholding method is used, The predictor

outputs less number of boundaries in the map reading domain as indicates by the lower

predicted boundary ratio. A significant drop in lexical similarity, which indicates a

potential segment boundary, occurs less frequent because the consecutive sub-tasks in the

map reading domain are more similar given that each dialog composes of a series of the

same type of sub-task. Therefore, a lower threshold is more suitable is the map reading

domain.

One interesting observation is that the oracle threshold does not provide optimal

performance in terms of concept-based F-1, but the threshold that outputs slightly more

Performance of TC4DTr in the map reading domain

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold-1 oracle threshold-2 all

0

5

10

15

20

25

Pk

Concept-based Precision

Concept-based Recall

Concept-based F-1

Predicted boundaries

Chapter 6: Form Identification

227

boundaries than the reference boundaries does. Since the boundary predictor can generate

some false alarms, allowing the predictor to output slightly more boundaries than the

number of reference boundaries can achieve higher gain in recall than reduction in

precision assuming that the candidate boundaries that have high depth scores are likely to

be true boundaries.

Summary

An appropriate cut-off threshold for predicting a sub-task boundary from the depth

score is depended on the characteristic of the domain. If consecutive sub-tasks in a dialog

are quite similar, a lower threshold is required as in the map reading domain. Similarly, a

domain which has fine-grained sub-tasks may also require a low cut-off threshold.

6.1.6.8 Error analysis

A dialog segmentation result obtained from a TC4DTr sub-task boundary predictor

which achieve good segmentation results in both the air travel domain and the map

reading domain was analyzed. This predictor uses information from concept annotation,

regularity weights and distance weights together with a triangular smoothing algorithm

and is discussed in Section 6.1.6.6. There are two types of segmentation errors: missing

boundaries and false alarms.

Left segment Right segment
Missed boundaries

Count %

query_flight_info query_flight_info 14 53.85

query_flight_info query_flights_fare 7 31.82

query_flights_fare query_car_info 5 55.56

query_car_info query_hotel_info 4 40.00

Table 6.19: The most frequent missing boundaries in the air travel domain

Table 6.19 presents the most frequent missing boundaries in the air travel domain.

The first and the second column show the left sub-task and the right sub-task of the

missing boundary respectively. There are two types of boundaries that are difficult to

identify by the TextTiling algorithm. The first one is a boundary between two

consecutive sub-tasks of the same type such as a boundary between two

query_flight_info sub-tasks that represent a departing flight and a return flight. Dialog

segments that belong to the same sub-task type are more similar than dialog segments

that belong to different sub-task types. Therefore, based on the lexical coherence

Chapter 6: Form Identification

228

assumption, it is more difficult to identify the boundary between two instances of the

same sub-task type.

The second problem is the boundaries of a small sub-task that is only 2-3 utterances

long such as a query_flights_fare sub-task. It is difficult to accurately identify the

boundaries of fine-grained segments since useful context is limited. Moreover, the

difficulty also comes from the limitation of the TextTiling algorithm. In order to identify

both boundaries of a small sub-task, there must be two significant drops in a cosine

similarity score plot that are only a couple of utterances apart. The TextTiling algorithm

may be able to identify one boundary of a small sub-task but usually fail to detect another

boundary since it is unlikely to have another significant drop in lexical cohesion that is

very close to the first one. A boundary between a query_car_info sub-task and a

query_hotel_info sub-task is sometimes difficult to identify since some instances of a

query_car_info sub-task and a query_hotel_info sub-task are quite short. Moreover,

they sometimes contain similar concepts and keywords, such as [Fare]:dollar and “rate”.

Boundary type
Missed boundaries

Count %

draw_a_segment 89 44.28%

grounding (embedded) 117 73.13%

Table 6.20: Missing boundaries in the map reading domain

Statistic of missing boundaries in the map reading domain is shown in Table 6.20.

Since there are only two types of sub-tasks in this domain and a grounding sub-task is

embedded inside a draw_a_segment sub-task, the boundaries can be categorized into

two types: a boundary between two draw_a_segment sub-tasks and a boundary of a

grounding sub-task inside a draw_a_segment sub-task. The type of a boundary is

indicated in the first column of Table 6.20. Boundaries of grounding sub-tasks are more

problematic since the sub-tasks are quite short; some of them are only 2-3 utterances

long. This problem is similar to the one occurs to the boundaries of query_flights_fare

sub-tasks in the air travel domain discussed above. Since most of the boundaries in the

map reading domain belong to those two problematic cases, the segmentation

performance in the map reading domain is lower than the performance in the air travel

domain.

A false alarm sometimes occurs in a long segment since a long discussion usually has

a slight shift in topic that might be detected by the TextTiling algorithm. In the air travel

Chapter 6: Form Identification

229

domain some false alarms are correlated with sub-structures within a long sub-task. For

example, some false alarms occur between a dialog segment that discusses a departure

city and a dialog segment that discusses departure date and time. Some false alarms occur

between a dialog segment that specifies all of the criteria for retrieving flight information

and a dialog segment that discusses the results retrieved from the database.

6.1.7 HMM-based segmentation experiments

In all experiments, unless specified elsewhere, the parameters that were used to train

a hidden Markov model are given in the following table.

Parameter Value

Bisecting cluster re-assignment threshold (threshold-1) 5%

Number of bisecting runs (B) 10

Minimum cluster size (T) 5

Smoothed count for emission probability estimation (1) 1

Smoothed count for transition probability estimation (2) 1

Maximum HMM parameter re-estimating iterations 15

State label re-assignment threshold for Viterbi decoding and

HMM parameter re-estimation iterations
1%

Table 6.21: Default values of the parameters in HMM training

The number of HMM states is another crucial parameter in HMM-based

segmentation. In the implementation of the HMM-based approach employed in the

experiments, only the maximum number of HMM states (M) can be specified. The actual

number of HMM states (m) may be lower if the clustering algorithm combines small

clusters into an etcetera state when it induces the initial HMM states from data. The value

of M, the maximum number of HMM states, is treated as an independent variable in most

experiments in order to investigate the effect of the number of HMM states on

segmentation performance. For simplicity, when the number of HMM states is discussed

in the following experiments, it refers to the maximum number of HMM states (M) not

the actual number of HMM states (m) since M is the parameter that can be controlled in

the experiments.

Since the bisecting K-means clustering algorithm contains a random process as the

new centroids of split clusters are chosen randomly, the performance of a HMM-based

segmentation is averaged over 10 runs.

Chapter 6: Form Identification

230

6.1.7.1 Utterance-based segmentation

In this experiment, the initial states of the HMM-based sub-task boundary predictor

are created by clustering similar utterances in the corpus together. A HMM is trained

from dialog transcription that also contains concept annotation as it has been shown in the

TextTiling experiment (Section 6.1.6.3) that information from concept annotation is

useful for determining sub-task boundaries. In terms of a stop word treatment, the stop

words that are specified in the hand-crafted list are removed. The effect of different stop

word treatments on the segmentation performance is investigated in Section 6.1.7.4. The

segmentation result of the HMM-based sub-task boundary predictor, UC2, is shown in

Table 6.22 and Figure 6.11. The boundary predictor naming scheme is similar to the one

used in TextTiling experiments where U stands for utterance-based HMM segmentation,

C stands for concept information and the running number represents a stop word

treatment.

Number of

states (M)

Predicted

boundaries

Segment

Length
Pk

Concept-based

Precision Recall F-1

2 5.633 12.006 0.398 0.797 0.544 0.624

4 24.104 2.408 0.426 0.395 0.930 0.542

6 25.079 2.310 0.420 0.394 0.951 0.544

8 26.746 2.161 0.430 0.375 0.955 0.525

TextTiling 7.792 8.190 0.360 0.625 0.679 0.634

Table 6.22: Segmentation performance of an utterance-based HMM predictor (UC2) in

the air travel domain

Chapter 6: Form Identification

231

Figure 6.11: The effect of the number of HMM states on segmentation performance in

the air travel domain

When more states are used, the HMM predictor tends to output more boundaries

which increases the recall but at the same time deteriorates the precision. The overall

performances are lower both in terms of Pk and concept-based F-1 as the loss in precision

is greater than the gain in recall. The decision to limit the number of states to 8 came

from a preliminary experiment, where the initial result indicated that segmentation

performance did not change much when M is higher than 8 as measured by all evaluation

metrics discussed in Section 6.1.4. The segmentation results obtained from the HMM-

based boundary predictor are not as good as the result obtained from the TextTiling

algorithm that uses the same features (TC2). The performance of the TextTiling

algorithm is shown in the last row of Table 6.22. Please note that other boundary

predictors that use different features can achieve better performance than TC2.

When M = 2, UC2 predicts much fewer boundaries than other cases. Most of the

utterances from a query_flight_info sub-task are clustered into one state while the

utterances from other sub-tasks are clustered into another state. Although, the precision is

quite high, the predictor misses 85.8% of the boundaries between two query_flight_info

sub-tasks. When M is higher (M 4), UC2 predicts boundaries at every other utterance

while the average true segment length is 10.3 utterances. Since the boundary is predicted

between any two utterances such that their state labels are different, the number of

Segmentation performance of UC2 in the air travel domain

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8

Number of HMM states

0

5

10

15

20

25

30

Pk

concept-based prec

concept-based recall

concept-based F-1

Predicted boundaries

Chapter 6: Form Identification

232

predicted boundaries reflects the number of changes between HMM states as a sequence

of utterances in a dialog is observed. The clusters induced by grouping similar utterances

together are not homogeneous. In task-oriented dialogs, social phrases such as an

acknowledgement and a yes/no response can occur in any sub-task. Therefore, these

utterances, even though they belong to different sub-tasks, are more similar and are

grouped together into the same state while utterances from the same sub-task may be

clustered into different states. Moreover, many short utterances do not contain enough

context to robustly determine the similarity. From those mentioned problems, the

decoded state labels of the utterances that belong to the same sub-task may be different

from one another and thus creates a lot of false alarms. When the number of HMM states

is higher, it is more likely for the utterances from the same sub-task to be clustered into

different states; therefore, the HMM-based predictor is more likely to output more

boundaries.

The segmentation result from the map reading domain is shown in Table 6.23 and

Figure 6.12. The performance of the TextTiling algorithm that uses the same features

(TC2) is shown in the last row of the table. When more states are used, the number of

predicted boundaries tends to increase but does not monotonically increase, as in the air

travel domain. For all M values, the HMM-based predictor outputs much more

boundaries than the average number of reference boundaries which is 18.1 boundaries per

dialog; therefore, the number of false alarms is very high. When compared to the result

obtained from the TextTiling algorithm that uses the same features (TC2), the HMM-

based predictors have better recall but lower precision. When the number of states is

equal to 8, the overall performance of the HMM-based predictor is about the same as the

overall performance of the TextTiling algorithm. However, the HMM predicts too many

boundaries, one boundary at every other utterance, to be considered useful.

Chapter 6: Form Identification

233

Number of

states (M)

Predicted

boundaries

Segment

Length
Pk

Concept-based

Precision Recall F-1

2 37.895 3.402 0.397 0.326 0.565 0.385

4 81.485 1.559 0.424 0.249 0.903 0.384

6 66.850 1.906 0.406 0.317 0.844 0.430

8 66.295 1.922 0.392 0.306 0.868 0.436

TextTiling 14.750 9.127 0.398 0.497 0.400 0.440

Table 6.23: Segmentation performance of an utterance-based HMM predictor (UC2) in

the map reading domain

Figure 6.12: The effect of the number of HMM states on segmentation performance in

the map reading domain

Summary

When HMM states are induced from utterances, the HMM-based sub-task boundary

predictor outputs many more boundaries than the reference boundaries and thus

introduces a lot of false alarms. Many boundaries are predicted because many

consecutive utterances are modeled by different states. One possible cause of this

problem is that the HMM states constructed by clustering similar utterances together are

not accurate. Many utterances are short and do not contain enough context to robustly

determine the similarity when clustering utterances that belong to the same sub-task

Segmentation performance of UC2 in the map reading domain

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 3 4 5 6 7 8

Number of HMM states

0

10

20

30

40

50

60

70

80

90

100

Pk

concept-based prec

concept-based recall

concept-based F-1

Predicted boundaries

Chapter 6: Form Identification

234

together. Moreover, social phrases such as an acknowledgement and a yes/no response,

which can occur in any sub-task, further complicate the problem. Even though the initial

state labels could be adjusted by the subsequent HMM parameter estimation step which

also takes into account sub-task ordering information, this step cannot help much if the

initial set of states is not good enough. The clustering algorithm requires more context

from larger text spans to be able to robustly identify an initial set of HMM states from

data.

6.1.7.2 Topic-based segmentation

In this experiment, the bisecting K-means clustering algorithm inferred the initial

HMM states of the HMM-based sub-task boundary predictor from data by clustering

similar dialog segments together. These segments are the approximations of the true sub-

tasks and were generated by the TextTiling boundary predictor, TC4DTr. This boundary

predictor utilizes information from concept annotation together with regularity weights,

distance weights and a triangular smoothing scheme to determine sub-task boundaries

and is discussed in Section 6.1.6.6. It was chosen over other TextTiling boundary

predictors because it achieved good segmentation performances in both domains.

TC4DTr produced 171 dialog segments in the air travel domain. This number is slightly

higher than the number of the reference segments, which is 130 segments. In the map

reading domain, the number of predicted segments is lower than the number of reference

segments (291 vs. 341 segments). The predicted segments provide larger context to the

clustering algorithm than the utterances used in the previous experiment. The average

predicted segment length is 7.8 utterances in the air travel domain and 8.6 in the map

reading domain. The qualities of seeded segments in the air travel domain and the map

reading domain in terms of Pk and concept-based F-measure are given in the last row of

Table 6.24 and Table 6.26 respectively.

Number of states

(M)

Predicted

boundaries
Pk

Concept-based

Precision Recall F-1

2 4.471 0.390 0.800 0.538 0.627

4 6.112 0.392 0.747 0.632 0.667

6 6.987 0.391 0.725 0.683 0.687

8 7.562 0.385 0.713 0.715 0.698

Initial segments 8.125 0.371 0.693 0.771 0.712

Table 6.24: Segmentation performance of a topic-based HMM predictor (PC2) in the air

travel domain

Chapter 6: Form Identification

235

Table 6.24 shows segmentation performance of the topic-based HMM boundary

predictor, PC2 (P stands for predicted segment), that removes pre-define stop words from

the feature set. When compared to the performance of the utterance-based HMM

predictor (UC2), PC2 has better overall performances both in terms of Pk and concept-

based F-measure regardless of the number of HMM states used. The performance of UC2

is presented in Table 6.22. The improvement comes from the increase in precision. When

the states are induced from predicted segments, the HMM predicts much fewer

boundaries than when the HMM states are induced from utterances.

Nevertheless, the dialog segments obtained from the topic-based HMM predictor are

not as good as the initial segments generated by the TextTiling algorithm. The HMM-

based predictor output fewer boundaries and achieves slightly better precision but has

lower recall. The HMM-based predictor fails to detect the boundary between two

consecutive segments if both of them are assigned the same state label. Table 6.25 shows

the types of the boundaries in the air travel domain that are commonly missed by the

dialog segmentation algorithms. For the HMM-based segmentation, the optimal result is

analyzed and the frequency of the missed boundaries is averaged from all 10 runs. The

optimal result is the segmentation result that yields the best Pk and concept-based F-

measure (underlined in Table 6.24) and is obtained when M is set to 8.

Left segment Right segment

Missed boundaries

TextTiling

(Seeding)

HMM

(PC2)

query_flight_info query_flight_info 14 19.2

query_flight_info query_flights_fare 7 0.3

query_flights_fare query_car_info 5 6.6

query_car_info query_hotel_info 4 8.8

Table 6.25: Types and frequencies of the boundaries commonly missed by the

TextTiling predictor and the HMM predictor in the air travel domain

The HMM-based predictor is able identify most of the boundaries between a

query_flight_info sub-task and a query_flights_fare sub-task while the TextTiling

predictor misses 31.8% of this type of boundary. Many instances of a query_flights_fare

sub-task are quite short, only 2-3 utterances long. The TextTiling algorithm which relies

on lexical cohesion has difficulty identifying two significant drops in lexical similarity of

the local context that are only a couple of utterances apart as discussed in Section 6.1.6.8.

The HMM-based predictor, which utilizes lexical similarity between multiple segments

Chapter 6: Form Identification

236

of dialogs in the corpus to determine topic boundaries instead of lexical cohesion, does

not have this limitation.

On the other hand, the HMM-based predictor misses more boundaries between two

consecutive query_flight_info sub-tasks as both segments are usually represented by the

same state. When compared to other dialog segments in the corpus, two consecutive

query_flight_info sub-tasks are considered more similar and are clustered into the same

state in the HMM-based segmentation algorithm; however, when compare the two

segments together using only local context there might be enough drop in lexical

cohesion that could be considered as a sub-task boundary by the TextTiling algorithm.

The HMM-based predictor also misses more boundaries between a query_flights_fare

sub-task and a query_car_info sub-task, and between a query_car_info sub-task and a

query_hotel_info sub-task. Some instances of those sub-tasks are clustered into the same

state as they share some common concepts and keywords such as [Fare]:dollar and

“rate”. Moreover, boundary errors in the input segments of the clustering algorithm

further complicate the problem.

Number of states

(M)

Predicted

boundaries
Pk

Concept-based

Precision Recall F-1

2 11.995 0.379 0.604 0.391 0.463

4 13.660 0.355 0.600 0.453 0.507

6 14.340 0.362 0.578 0.452 0.499

8 13.690 0.369 0.581 0.433 0.486

Initial segments 15.550 0.384 0.506 0.433 0.464

Table 6.26: Segmentation performance of a topic -based HMM predictor (PC2) in the

map reading domain

Table 6.26 shows segmentation performance of the topic-based HMM boundary

predictor, PC2, in the map reading domain. Similar to the results in the air travel domain,

when the initial HMM states are inferred from larger text spans, the overall performances

both in terms of Pk and concept-based F-measure are better than the performances

achieved by UC2 regardless of the number of HMM states used. The performance of

UC2 is presented in Table 6.23. The improvement comes from the increase in precision.

When the states are induced from predicted segments, the HMM produces much less

false boundaries than when the HMM states are induced from utterances.

Chapter 6: Form Identification

237

The segmentation result obtained from the topic-based HMM predictor is slightly

better than the initial segments generated by the TextTiling algorithm. The improvement

comes from the higher precision. Table 6.27 shows the number of missed boundaries for

each boundary type in the map reading domain. For the HMM-based predictor, the

optimal result obtained when M is equal to 4 is analyzed and the frequency of the missed

boundaries is averaged over all 10 runs. The optimal result is underlined in Table 6.26.

Boundary type

Missed boundaries

TextTiling

(Seeding)

HMM

(PC2)

draw_a_segment 89 112.5

grounding (embedded) 117 84.9

Total 206 197.4

Table 6.27: Number of boundaries missed by the TextTiling algorithm and the HMM

algorithm in the map reading domain

Even though both segmentation algorithms miss about the same number of sub-task

boundaries, the types of missed boundaries are different. The HMM-based predictor

misses more boundaries between two consecutive draw_a_segment sub-tasks as both

segments are usually represented by the same state. On the other hand, the HMM-based

predictor recovers more boundaries of the grounding sub-tasks that are embedded inside

draw_a_segment sub-tasks while the TextTiling algorithm has difficulty with this type

of boundary since the grounding sub-tasks are rather short. The limitation of the

TextTiling algorithm in identifying the boundaries of a short sub-task is discussed in

Section 6.1.6.8.

Summary

The HMM-based boundary predictor trained from predicted sub-tasks generated by

the TextTiling algorithm outperforms the HMM-based predictor trained from utterances

in both domains. The improvement comes from the increase in precision. When HMM

states are induced from utterances, the predictor introduces a lot of false alarm boundaries

since many consecutive utterances are modeled by different states. The HMM states that

are induced from utterance units are not accurate because a single utterance does not

contain enough context to robustly determine the similarity when clustering utterances

that belong to the same sub-task together. When the bisecting k-means clustering

algorithm induces an initial HMM states from larger text spans, predicted sub-tasks in

this case, it produces a more robust state representation. The topic-based HMM boundary

Chapter 6: Form Identification

238

predictor outputs much less false boundaries and thus improves the overall segmentation

performance.

While the overall segmentation quality of both dialog segmentation algorithms are

not much different (the TextTiling algorithm performs slightly better in the air travel

domain while the HMM-based segmentation algorithm performs slightly better in the

map reading domain) the types of errors that they produce are. The HMM-based

segmentation algorithm can identify more boundaries of the small sub-tasks (e.g. a

query_flights_fare sub-task and a grounding sub-task) while the TextTiling algorithm,

which relies on local lexical coherence, has more difficulty with short segments. On the

other hand, the TextTiling algorithm can sometimes identify a boundary between two

sub-task occurrences of the same type (for example, between two consecutive

query_flight_info sub-tasks) while the HMM-based segmentation algorithm is likely to

represent them by the same state; therefore, fails to detect the boundary.

6.1.7.3 Concept word representation

Since the first step of the HMM-based segmentation algorithm, the HMM state

induction step, relies on a dialog segment clustering algorithm, a more efficient clustering

algorithm may help improve a segmentation result. In this experiment, a concept word

representation that composes of a concept label but not a concept value, the Label

representation, is adopted. This concept word representation achieves a better sub-task

clustering performance than the Label+Word representation, which uses both a concept

label and a word string to represent a concept word, in both the air travel domain and the

map reading domain as discussed in section 6.2.4.3. The Label+Word representation is a

concept word representation used the previous experiments. Apart from a concept word

representation, all other parameters used in this experiment are similar to the ones used in

the PC2 boundary predictor discussed in the previous section. Table 6.28 shows the

segmentation performance of the HMM-based sub-task boundary predictor that uses the

Label representation, PL2 (L stands for the Label representation), in the air travel

domain. The segmentation result when M is large is also reported since the values of both

precision and recall still change as M increases.

Chapter 6: Form Identification

239

Number of states

(M)

Predicted

boundaries
Pk

Concept-based

Precision Recall F-1

2 4.783 0.349 0.908 0.560 0.680

4 6.438 0.386 0.749 0.689 0.706

6 9.129 0.386 0.633 0.813 0.695

8 10.313 0.379 0.622 0.846 0.699

10 11.975 0.384 0.573 0.905 0.690

12 11.267 0.392 0.590 0.866 0.688

14 12.908 0.406 0.548 0.902 0.667

16 12.450 0.380 0.575 0.914 0.694

Initial segments 8.125 0.371 0.693 0.771 0.712

Table 6.28: Segmentation performance of a HMM-based boundary predictor (PL2) that

uses the label representation in the air travel domain

When the number of HMM states increases, PL2 tends to output more boundaries. As

a result, recall is higher while precision is lower; nevertheless, the overall performances

both in terms of Pk and concept-based F-1 do not change much. The effect of the number

of HMM states on segmentation performance is quite similar to the one found in the

result of PC2 when the Label+Word representation is used. However, the amount of the

change in both precision and recall is larger in PL2.

Figure 6.13 presents a comparison between the two HMM-based predictors that use

different concept word representations, PC2 and PL2. The graphs for PC2 are in darker

colors while the graphs for PL2 are in lighter colors. PL2 has much higher recall than

PC2 when M is larger but has much lower precision due to the higher number of the

boundaries predicted. In PL2, more utterances are reassigned to different states during

several iterations of the Viterbi decoding and HMM parameter re-estimation. When the

Label+Word representation is used, the similarity between concept words is constrained

by both the concept label and their values; therefore, utterances are less likely to be

reassigned to different states. As a result, PL2 outputs more boundaries than PC2;

nevertheless, concept-based F-1 of both predictors are about the same. When compared to

the quality of the initial segments generated by the TextTiling algorithm shown in the last

row of Table 6.28, the PL2 predictor does not produce a result that has a better overall

quality.

Chapter 6: Form Identification

240

Figure 6.13: A performance comparison between two sub-task boundary predictors that

use different concept word representations in the air travel domain

Table 6.29 shows segmentation performance of the HMM-based sub-task boundary

predictor that uses the Label representation, PL2, in the map reading domain. When the

number of HMM states increases, PL2 predicts more boundaries and achieves higher

recall, but precision and overall performances are lower both in terms of Pk and concept-

based F-1.

Segmentation performance of PC2 and PL2 in the air travel domain

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8 10 12 14 16

Number of HMM States

PC2 concept-based prec

PC2 concept-based recall

PC2 concept-based F-1

PL2 concept-based prec

PL2 concept-based recall

PL2 concept-based F-1

Chapter 6: Form Identification

241

Number of states

(M)

Predicted

boundaries
Pk

Concept-based

Precision Recall F-1

2 13.035 0.250 0.864 0.592 0.686

4 27.405 0.306 0.522 0.775 0.619

6 30.515 0.327 0.494 0.818 0.612

8 32.715 0.335 0.471 0.829 0.596

Initial segments 15.550 0.384 0.506 0.433 0.464

PC2 (Label+Word) 13.660 0.355 0.600 0.453 0.507

Table 6.29: Segmentation performance of a HMM-based boundary predictor (PL2) that

uses the label representation in the map reading domain

Figure 6.14 presents a comparison between the two HMM-based predictors that use

different concept word representations, PC2 and PL2. The graphs for PC2 are in darker

colors while the graphs for PL2 are in lighter colors. PL2, which uses the Label

representation, achieves better overall performances both in terms of Pk and concept-

based F-measure regardless of the number of HMM states used. The improvement comes

mainly from higher recall. Similar to the observation found in the air travel domain, PL2

predicts more boundaries than PC2 after several iterations of the Viterbi decoding and

HMM parameter re-estimation as more utterances are reassigned to different states.

The optimal result of the boundary predictor that uses the Label representation (PL2)

is also better than the optimal result of the predictor that uses the Label+Word

representation (PC2) on all evaluation metrics. The optimal result of PL2 is obtained

when M is equal to 2 and is underlined in Table 6.29 while the optimal result of PC2 is

obtained when M is equal to 4 and is shown in the last row of the same table. The

improvement obtained from a better concept word representation is statistically

significant both in terms of Pk (p-value = 0.0006) and concept-based F-measure (p-value

= 0.0004). The segmentation result of PL2 is also significantly better than the result

obtained from the TextTiling algorithm shown in the 2nd to last row of Table 6.29. The

p-value for the difference in Pk is 0.0005 and the p-value for the difference in concept-

based F-measure is 0.0003.

Chapter 6: Form Identification

242

Figure 6.14: A performance comparison between two sub-task boundary predictors that

use different concept word representations in the map reading domain

Boundary type
Missed boundaries

PC2 PL2

draw_a_segment 112.5 111.9

grounding (embedded) 84.9 28.5

Table 6.30: Types and number of boundaries missed by the HMM-based predictors that

use different concept word representations in the map reading domain

The types of boundaries in the map reading domain missed PC2 and PL2 are shown

in Table 6.30 along with their frequencies. When compare between two HMM-based

predictors that uses different concept word representations, PL2 can recover many more

boundaries of the grounding sub-tasks embedded inside the draw_a_segment sub-tasks

than PC2. In PL2, dialog segments that belong to different sub-tasks are well separated

into different HMM states since the Label representation can distinguish between the two

sub-tasks with higher accuracy than the Label+Word representation as discussed in

section 6.2.4.3.

Segmentation performance of PC2 and PL2 in the map reading domain

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8

Number of HMM States

PC2 concept-based precision

PC2 concept-based recall

PC2 concept-based F-1

PL2 concept-based precision

PL2 concept-based recall

PL2 concept-based F-1

Chapter 6: Form Identification

243

Summary

When the Label representation, which is a more suitable concept word representation

for sub-task clustering, is adopted in the HMM-based segmentation algorithm, a better

segmentation result can be achieved in the map reading domain. The performance gain is

statistically significant when compared to both the HMM-based segmentation algorithm

that uses the Label+Word representation and the TextTiling algorithm. However, in the

air travel domain, where the clustering result is marginal better when the Label

representation is used, there is no difference in the overall segmentation performance

between the HMM-based sub-task boundary predictors that uses different concept word

representations.

The HMM-based segmentation algorithm that uses the Label representation allows

more utterances to be reassigned to different HMM states during the Viterbi decoding

and HMM parameter re-estimation iterations. Therefore, it can discover more sub-task

boundaries than the predictor that uses the Label+Word representation. Nevertheless, the

number of false alarms is also higher.

6.1.7.4 Stop word treatment

It has been shown in the TextTiling experiments discussed in Section 6.1.6 that a

data-driven stop word treatment, which determines a list of stop words dynamically from

word distribution is each data set, can improve segmentation results especially in the air

travel domain. In this experiment four HMM-based sub-task boundary predictors that

utilize different stop word treatments are investigated. PL1 is a boundary predictor that

uses all tokens in the transcription as features. PL2 is a boundary predictor that removes

stop words defined manually from a set of features and is the same predictor as the one

discussed in the previous experiment. PL3 is a boundary predictor that removes data-

driven stop words from a set of features. PL4 is a boundary predictor that weighs each

word in the transcription with a regularity weight computed by Equation (6.1).

For PL3 and PL4, a regularity count for a concept word is computed from an average

regularity count of all of the words that belong to the same concept type since those

words are represented by the same token in the Label representation. In this experiment,

the threshold for selecting data-driven stop words was set to μ + 2*σ; where μ is the mean

of the regularity counts of all of the words in a given corpus and σ is their standard

deviation. A data-driven stop word list contains 24 words in the air travel domain and 21

Chapter 6: Form Identification

244

words in the map reading domain while a hand-crafted stop word list contains 174

words
10

.

For PL4, regularity weights are only used when calculating the cosine similarity

between dialog segments in the HMM state induction step but not when modeling the

state emission probabilities in the HMM parameter estimation step. A regularity weight,

while reflecting the significance of each word when determining the similarity between

two dialog segments, does not indicate a likelihood of a word being generated from a

given state. To handle common words when creating state-specific language models, the

PL4 predictor excludes data-driven stop words from the vocabulary similar to the PL3

predictor.

Figure 6.15 shows the performance of each sub-task boundary predictor in the air

travel domain in terms of concept-based F-1 when the number of HMM states (M)

increases. All of the predictors output more boundaries when the models contain more

HMM states. As a result, precision tends to decreases while recall tends to increase. For

PL2, PL3 and PL4, the overall performance in terms of concept-based F-1 does not

change much as the loss in precision can be compensated by the gain in recall. However,

for PL1, concept-based F-1 slightly decreases as M increases. The performance of PL1,

which has no special treatment for common words, is slightly lower than other predictors

at all values of M. PL1 predicts more sub-task boundaries and creates more false alarms

than other predictors. Some of the false alarms are correlated with sub-structures within a

query_flight_info sub-task such as an extra boundary between a dialog segment that

specifies all of the criteria for retrieving flight information and a dialog segment that

discusses the results retrieved from the database.

10

 A hand-crafted stop word list was taken from the list that was created as part of the Snowball project

http://search.cpan.org/~creamyg/Lingua-StopWords-0.08/lib/Lingua/StopWords.pm.

http://search.cpan.org/~creamyg/Lingua-StopWords-0.08/lib/Lingua/StopWords.pm

Chapter 6: Form Identification

245

Figure 6.15: Concept-based F-measure of HMM-based sub-task boundary predictors that

use different stop word treatments in the air travel domain

Predictor
Number of states

(Optimal)

Predicted

boundaries
Pk

Concept-based

Precision Recall F-1

PL1 4 8.621 0.393 0.646 0.770 0.686

PL2 4 6.438 0.386 0.749 0.689 0.706

PL3 4 7.971 0.380 0.685 0.761 0.707

PL4 10 10.696 0.376 0.606 0.874 0.700

Initial segments - 8.125 0.371 0.693 0.771 0.712

Table 6.31: Optimal performances of the HMM-based boundary predictors when

different stop word treatments are applied in the air travel domain

The best performance of each sub-task boundary predictor is shown in Table 6.31.

The performance of PL1 is slightly worse than those of other predictors; however, the

differences are not statistically significant. When compared to the quality of the initial

segments generated by the TextTiling algorithm shown in the last row of Table 6.31,

none of the HMM-based segmentation algorithms produces a result that has a better

overall quality.

Concept-based F-1 of HMM-based predictors in the air travel domain

0.5

0.55

0.6

0.65

0.7

0.75

0.8

2 4 6 8 10 12 14 16

Number of HMM states

PL1

PL2

PL3

PL4

Chapter 6: Form Identification

246

Figure 6.16: Concept-based F-measure of HMM-based sub-task boundary predictors that

use different stop word treatments in the map reading domain

Figure 6.16 shows the performances of the HMM-based sub-task boundary predictors

that use different stop word treatments in the map reading domain. Similar to the result

obtained in the air travel domain, the performance of PL1, which has no special treatment

for common words, is lower than other predictors at all values of M. PL1 predicts more

sub-task boundaries and creates more false alarms than other predictors. When M is equal

to 2 the performances of all four sub-task boundary predictors are substantial different.

The difference stems from the ability of the HMM in distinguishing between a

draw_a_segment sub-task and a grounding sub-task. In PL2, where both sub-tasks are

well separated into two different states, the segmentation performance is higher as the

predictor can recover more boundaries of the grounding sub-tasks. PL3 and PL4 can also

distinguish between the two sub-tasks, but not in every run; therefore, their average

performances are lower. In PL3 and PL4, two keywords “go” and “got” which occur in a

draw_a_segment sub-task and a grounding sub-task respectively are removed by data-

driven stop word treatments as they occur regularly throughout the dialogs. These two

keywords can help distinguishing between the two sub-tasks in additional to the concept

words.

Concept-based F-1 of HMM-based predictors in the map reading domain

0.5

0.55

0.6

0.65

0.7

2 4 6 8

Number of HMM states

PL1

PL2

PL3

PL4

Chapter 6: Form Identification

247

Predictor
Number of states

(Optimal)

Predicted

boundaries
Pk

Concept-based

Precision Recall F-1

PL1 4 27.59 0.308 0.521 0.778 0.618

PL2 2 13.035 0.250 0.864 0.592 0.686

PL3 2 12.490 0.281 0.829 0.541 0.632

PL4 2 12.500 0.280 0.830 0.543 0.634

Initial segments - 15.550 0.384 0.506 0.433 0.464

Table 6.32: Optimal performances of the HMM-based boundary predictors when

different stop word treatments are applied in the map reading domain

The best performance of each sub-task boundary predictor is shown in Table 6.32.

The overall performances of PL2 are significantly better than the performance of other

predictors both in terms of Pk and concept-based F-measure at a significance level of

0.005 (p-value < 0.005). When compared to the quality of the initial segments generated

by the TextTiling algorithm shown in the last row of Table 6.32, all HMM-based

segmentation algorithms produce significantly better segmentation results in terms of

both Pk and concept-based F-measure at a significance level of 0.05 (p-value < 0.05).

Summary

In the air travel domain, the choice of a stop word treatment is less crucial for the

HMM-based segmentation algorithm than for the TextTiling algorithm. However, in the

map reading domain, the segmentation results obtained from the sub-task boundary

predictors that utilize different stop word treatments are significantly different. The

predictor that removes the stop words manually defined outperforms other predictors

both in terms of both Pk and concept-based F-measure.

Both data-driven approaches (a data-driven stop word list and a regularity weight),

which are developed based on lexical coherence assumption, are suitable for the

TextTiling algorithm that follows the same assumption but not for the HMM-based

segmentation algorithm which relies instead on recurring patterns in the corpus. The data-

driven approach may remove some keywords that can distinguish among different types

of sub-tasks if they occur regularly throughout the dialogs. As a result, dialog segments

from different types of sub-tasks are represented by the same HMM state which makes

the predictor misses the boundaries between those sub-tasks. Nevertheless, the HMM-

based sub-task boundary predictors that utilize data-driven stop word treatments achieve

slightly better segmentation performances than the predictor that has no special treatment

for common words in both domains.

Chapter 6: Form Identification

248

6.1.8 Discussion and conclusion

In the previous sections, two unsupervised discourse segmentation approaches, a

TextTiling algorithm and a hidden Markov model, have been investigated through a

series of experiments. In this section, I will discuss some interesting findings and then

summarize the results from all of the experiments.

The proposed data-driven stop word treatments can discover stop words that are

specific to the given domain and genre. While a performance of the sub-task boundary

predictor that uses a hand-crafted stop word list depended on compatibility between the

pre-selected word list and the domain, the performance of the boundary predictors that

use data-driven stop word treatments (a dialog-specific stop word list and a regularity

weight) are not since the stop words are determined directly from word distribution in

each data set. However, the efficiency of the data-driven stop word treatments is also

depended on word distribution characteristic. If the distributions of content words are

quite similar to those of stop words, the data-driven approaches are less efficient as in the

map reading domain. The proposed data-driven stop word treatments are developed based

on lexical coherence assumption; therefore, these treatments are effective when used by

the TextTiling algorithm, which follows the same assumption, but are not as effective

when used by the HMM-based segmentation algorithm, which relies instead on recurring

patterns in the corpus. Nevertheless, the HMM-based predictors that utilize data-driven

stop word treatments achieve slightly better segmentation performances than the

predictor that has no special treatment for common words in both domains.

Information from concept annotation can improve dialog segmentation results. It

provides a richer representation that helps distinguish between different concept types

and also between different word senses. Co-occurrences of the same word string that

actually belong to dissimilar concepts or dissimilar worse senses no longer affect the

similarity score. In addition, this better representation makes the distributions of content

words more distinguishable from the distributions of stop words; therefore, the boundary

predictors that use data-driven stop word treatments, which rely on word distribution

characteristic, can achieve more performance improvement. In the domain that the

distributions of contents words and the distributions of stop words are quite similar, such

as the map reading domain, the predictor that gives common words small weights rather

than removing them from a set of features achieves a better performance.

The size of context windows is a crucial parameter in the TextTiling algorithm. A

small context window, which is more sensitive to small changes in the context, is more

appropriate for identifying fine-grained segments in the task-oriented dialogs particularly

Chapter 6: Form Identification

249

when segment length variation is high. Two modifications to the standard TextTiling

algorithm are proposed to specifically handle fine-grained segments. Distance weights,

which demote the similarity between far away contexts, improve the overall segmentation

performance in most conditions while a triangular smoothing scheme produces a more

precise boundary prediction. The segmentation results obtained from the modified

TextTiling algorithm are significantly better than baselines in both domains.

A cut-off threshold for selecting a list of boundaries from all candidate boundaries

given their depth scores is another important parameter. An appropriate cut-off threshold

is depended on the characteristic of the domain. If consecutive sub-tasks in a dialog are

quite similar, a lower threshold is required as in the map reading domain. Similarly, a

domain which contains short sub-tasks may also require a low cut-off threshold.

For the HMM-based segmentation algorithm, the sub-task boundary predictor trained

from predicted sub-tasks generated by the TextTiling algorithm outperforms the HMM-

based predictor trained from utterances in both domains. A single utterance does not

contain enough context to robustly determine the similarity when clustering utterances

that belong to the same sub-task together; therefore, the HMM states that are induced

from utterance units are not accurate. Predicted segments provide more context to the

clustering algorithm that induces the initial set of HMM states. Thus, the clustering

algorithm produces a more robust state representation. The use of predicted segments

also eliminates the need of annotated data that would be required if the HMM states are

induced from reference segments.

A more efficient clustering algorithm can also improve the performance of the HMM-

based segmentation algorithm since it provides a better state representation that can

differentiate between dialog segments that belong to dissimilar sub-tasks. When the Label

representation which is a more suitable concept word representation for sub-task

clustering than the Label+Word representation is used, a HMM-based sub-task boundary

predictor produces a better segmentation result. In the map reading domain where the

Label representation makes dialog segments from different sub-tasks much more

distinguishable, a significant improvement can be achieved.

The types of errors produced by the TextTiling algorithm and the HMM-based

segmentation algorithm are different. In both domains, the HMM-based segmentation

algorithm can identify more boundaries of small sub-tasks, such as a query_flights_fare

sub-task and a grounding sub-task, than the TextTiling algorithm. The TextTiling

algorithm, which relies on local lexical cohesion, is unlikely to find two significant drops

in lexical similarity that are only a couple of utterances apart and thus fails to detect a

Chapter 6: Form Identification

250

boundary of a short segment. The HMM-based predictor, which utilizes lexical similarity

between multiple segments of dialogs in the corpus to determine topic boundaries instead

of lexical cohesion, does not have this limitation. On the other hand, the HMM-based

segmentation algorithm misses more boundaries between two sub-task occurrences of the

same type (for example, between two consecutive query_flight_info sub-tasks and two

consecutive draw_a_segment sub-tasks) as they are usually represented by the same

state. When compared to other dialog segments in the corpus, two consecutive sub-task

of the same type are usually more similar and are clustered into the same state by the

HMM-based segmentation algorithm; however, when compare the two segments together

using only local context there might be enough drop in lexical cohesion that could be

considered as a sub-task boundary by the TextTiling algorithm.

Table 6.33 summarizes the best dialog segmentation results from the TextTiling

algorithm and the HMM-based segmentation algorithm. The best result of the TextTiling

algorithm is obtained when the sub-task boundary predictor utilizes information from

concept annotation together with regularity weights, distance weights and a triangular

smoothing scheme. For the HMM-based segmentation, the best result is obtained when

the predictor utilizes the Label representation together with the hand-crafted stop word

list. The optimal number of HMM states is 4 for the air travel domain and 2 for the map

reading domain. Both predictors produce good segmentation results in both domains.

Nevertheless, please note that some variations of the TextTiling algorithm and the HMM-

based segmentation algorithm do achieve better segmentation performances than the ones

presented in Table 6.33 but only for one domain.

Algorithm
Air Travel Map Task

Pk C. F-1 Pk C. F-1

TextTiling 0.371 0.712 0.384 0.464

HMM-based 0.386 0.706 0.250 0.686

Table 6.33: The best segmentation performances of the TextTiling algorithm and the

HMM-based algorithm in terms of Pk and concept-based F-1.

Both text segmentation approaches while performing well with expository text

require some modifications when applied to spoken dialogs and a fine-grained

segmentation problem. For the TextTiling algorithm, the proposed modifications, which

include a data-driven stop word treatment, a distance weight, and a triangular smoothing

scheme, significantly improve segmentation performance over the baseline TextTiling

algorithm. For the HMM-based segmentation algorithm, the use of larger text spans when

Chapter 6: Form Identification

251

inducing HMM states and a more abstract concept word representation help improve the

results, especially on the map reading domain. When comparing between the two

algorithms, the HMM-based segmentation algorithm performs significantly better than

the TextTiling algorithm in the map reading domain since the HMM-based segmentation

algorithm can identify more boundaries of small sub-tasks which occur quite often in the

map reading domain. The TextTiling algorithm, on the other hand, performs better in

identifying the boundaries between consecutive sub-tasks of the same type. Since both

dialog segmentation algorithms produce error types that complement each other, the

segmentation result could be improved by combining both segmentation approaches

together.

Algorithm
Air Travel Map Task

Utterance-based Pk F-1 Utterance-based Pk F-1

TextTiling 0.427 0.457 0.431 0.292

HMM-based 0.417 0.456 0.265 0.552

Table 6.34: The best segmentation performances of the TextTiling algorithm and the

HMM-based algorithm in terms of utterance-based Pk and standard F-measure

The performances of the best dialog segmentation algorithms in Table 6.33 are

presented again but with different performance metrics. In Table 6.34 the performances

of the segmentation algorithms are reported in terms of utterance-based Pk, (the unit of k

is an utterance) and standard F-measure in order to make a direct comparison with the

performance of the segmentation algorithms developed by other researchers. Since

segment granularity is one factor that affects segmentation performance (Arguello and

Rosé, 2006), the performances of the dialog segmentation algorithms proposed in this

chapter are compared to the performances of the segmentation algorithms that were used

to identify the boundaries of fine-grained segments. Arguello and Rosé (2006) reported

the performances of several dialog segmentation algorithms. One of their corpora, the

Thermo corpus, contains fine-grained segments of topics in tutoring dialogs where the

topic is defined based on a discourse segment purpose. The average length of the

segments in this corpus is 13.3 utterances (68.1 words) which is about the same as the

average sub-task length in the air travel domain and the map reading domain. The best

segmentation result on the Thermo corpus (utterance-based Pk = 0.404, F-1 = 0.369) was

obtained from a supervised segmentation algorithm, a Naïve Bayes classifier trained on

several textual features and prosodic features. The best segmentation performances

Chapter 6: Form Identification

252

achieved by the unsupervised segmentation algorithms proposed in this thesis are

comparable to their result.

Both unsupervised dialog segmentation algorithms, TextTiling and HMM-based

segmentation, can identify the boundaries between sub-tasks with acceptable accuracy.

Nevertheless, both of algorithms, which rely on lexical similarity between dialog

segments, have some difficulty identifying the boundary between two sub-tasks of the

same type. Lexical similarity, which is an efficient feature for identifying the boundary

between two sub-tasks that belong to dissimilar form types, may not provide enough

information for determining the boundary between two instances of the same form type

since their contents are more similar. To solve this problem, additional features that are

not sensitive to the content of the segment, such as a prosodic feature, are necessary. It

has been shown that prosodic features are able to identify a boundary between segments

that contain quite similar contents (Swerts and Ostendorf, 1997).

6.2 Sub-task clustering

After segmenting all in-domain dialogs into sequences of sub-tasks, the next step in

form identification is to group the dialog segments that belong to the same type of sub-

task together as they represent the same form type, i.e. dialog segments that correspond to

a query_flight_info sub-task are grouped together in one cluster while dialog segments

that correspond to a query_hotel_info sub-task are grouped together into another cluster.

Sub-task clustering can be considered as one type of document clustering where a

document is equivalent to a dialog segment which represents a sub-task in the form-based

dialog structure representation.

Similar to other learning problems, approaches for document clustering can be

classified into two main categories: supervised approach and unsupervised approach.

Supervised document clustering requires a set of pre-defined categories and also labeled

data for training. K-Nearest Neighbor, Naive Bayes and Support Vector Machines are

among many well-known supervised document clustering algorithms that have been

applied to the problem of document classification or document categorization. Detail

discussion of these algorithms and other supervised clustering algorithms along with their

performance comparison can be found in survey literature (Aas and Eikvil, 1999;

Sebastiani, 2002; Yang and Liu, 1999).

Unsupervised clustering approaches, on the other hand, rely on context similarity

between two text segments instead of labeled data. These approaches follow the

assumption that two text segments that belong to the same group are more similar than

Chapter 6: Form Identification

253

two text segments that belong to different groups. Since no pre-defined category is

required, an unsupervised document clustering approach has been used to explore the

structure of a document collection (Cutting et al., 1992). This problem is quite similar to

a sub-task clustering problem where we would like to discover the structure of dialogs in

a new domain and that a pre-defined list of sub-tasks is not available.

Unsupervised clustering approaches can be categorized into hierarchical clustering

and non-hierarchical clustering (or partitional clustering). A hierarchical clustering

approach produces a nested partitions of documents in a tree-like structure with a root

cluster at the top of the tree contains all of the documents while leaf nodes at the bottom

of the tree contain only a single document. Hierarchical clusters can be generated in

either a top-down or a bottom-up fashion. A divisive hierarchical clustering approach (or

a top-down approach) starts with one cluster that contains all of the documents and, at

each step, splits a cluster until all of the clusters contain only a single document or the

desired number of clusters is obtained. An agglomerative hierarchical clustering approach

(or a bottom-up approach), works on the opposite direction, starts with single document

clusters and, at each step, merges the most similar clusters together until all of the

documents are merged into one cluster or until the desired number of clusters is

obtained. In contrast to a hierarchical clustering approach, a partitional clustering

approach creates all clusters at once by partitioning the data into K groups where K is the

number of desired clusters. More detail discussion on unsupervised document clustering

approaches can be found in (Rasmussen, 1992).

A hierarchical clustering approach is known for its quality while a partitional

clustering approach is known for its efficiency (Larsen and Aone, 1999; Steinbach et al.,

2000). To combine the strength of both techniques many hybrid approaches have been

proposed (Cutting et al., 1992; Larsen and Aone, 1999; Steinbach et al., 2000). In this

section, the bisecting K-means algorithm which is a hybrid approach proposed by

Steinbach et al. (2000) was chosen as a sub-task clustering algorithm since it has been

shown to produce as good or better results than an agglomerative hierarchical clustering

approach and also have more efficient run time.

In the following sections, Section 6.2.1, I first discuss the features used in sub-task

clustering and their representations. Then in Section 6.2.2 a sub-task clustering algorithm,

the bisecting K-means algorithm, is described. The clustering results were evaluated with

the evaluation metrics discussed in Section 6.2.3. The experiments and the clustering

results are given in Section 6.2.4. Finally, all the findings are concluded in Section 6.2.5.

Chapter 6: Form Identification

254

6.2.1 Feature representation

Sub-task clustering features are taken from dialog transcription. Each transcribed

word is pre-processed by removing morphological inflections using the Porter's

stemming algorithm. If a set of domain concepts has already been identified, information

from concept annotation can also be utilized. In dialog segmentation algorithms discussed

in Section 6.1.1.1 both a concept label and its value are used together to represent a

concept word. Examples of this joint representation are [DepartureCity]:pittsburgh and

[hour]:one.

However, for a sub-task clustering problem, based on assumption that a list of

concepts occurs in one sub-task is distinguishable from a list of concepts occurs in other

sub-tasks regardless of the values of the concepts, a concept label is more informative

than its value. From this assumption a more abstract representation which focuses on a

concept type rather than its value may be a more suitable representation. Hence, in stead

of representing a concept word with both a concept label and a concept value, only a

concept label is used to make the representation generalized over all different values of

the same concept type. For example, [ArrivalCity]:pittsburgh and [ArrivalCity]:boston

are represented with the same token [ArrivalCity]. This new representation that uses

only a concept label to represent a concept word is referred to as the Label representation

while a concept word representation that uses both a concept label and a word string to

represents a concept word is referred to as the Label+Word representation.

6.2.2 Bisecting K-means clustering algorithm

The bisecting K-means algorithm (Steinbach et al., 2000). is a top-down clustering

algorithm that combines a hierarchical clustering approach and a partitioning approach

together by applying the standard K-means clustering (a partitional clustering) repeatedly

to create hierarchical clusters. The algorithm utilizes cosine similarity between dialog

segments in order to assign the segments into clusters. The algorithm starts with a single

cluster that contains all of the dialog segments in the corpus. Then, at each iteration the

largest cluster is split into two sub-clusters until the desired number of clusters is reached.

The bisecting algorithm, which splits one cluster into two clusters, is as follows:

1. Choose two dialog segments from the cluster randomly and use them as the

initial centroids of the new sub-clusters. Each dialog segment is represented

by a vector; each dimension of the vector represents the frequency of each

token in the segment similar to the context vector used in the TextTiling

algorithm discussed in Section 6.1.2.

Chapter 6: Form Identification

255

2. For each dialog segment in the original cluster, calculate the cosine similarity

between the segment and each centroid of the new sub-clusters. Assign the

dialog segment to the cluster of the most similar centroid.

3. Re-compute the centroid of each new sub-cluster

4. Repeat step 2 and 3 until the assignment in step 2 is stable (the number of

changes in cluster assignment is less than a pre-defined threshold, threshold-

1)

This algorithm is similar to the standard K-means algorithm when K is set to 2. The

algorithm is repeated for several times (B times) and the split that produces the highest

overall similarity is taken. For more detail discussion of the bisecting K-means algorithm,

please refer to (Steinbach et al., 2000). Each cluster in a set of clusters outputted by the

bisecting K-means algorithm corresponds to a sub-task. The algorithm also creates an

etcetera state by combining small clusters (i.e. the clusters that contain less than T

segments) together to capture the sub-dialogs that are not relevant to the task.

Since each dialog segment in the same cluster is an instance of the same sub-task, it is

associated with the same form type. Therefore, by simply extracting a list of concepts

contained in each cluster, a set of slots that is associated with each type of form can be

determined.

6.2.3 Evaluation metrics

To evaluate the performance of each sub-task clustering algorithm, the output clusters

are compared against a set of reference sub-tasks in a domain of interest using the same

set of evaluation metrics used to assess the performance of a concept clustering

algorithm. The metrics include precision, recall and singularity score and are described

in detail in Section 5.3. Equation (5.7), (5.8) and (5.9) can also be used to compute

precision, recall and singularity score for each sub-task respectively when the notion of

items in a cluster is changed from words to dialog segments and Ri is referred to a

reference sub-task instead of a reference concept.

To compare the output clusters with a set of reference sub-tasks, first, a mapping

between each cluster and its corresponding sub-task has to be created. Similar to the

evaluation of concept clustering, a many-to-one mapping between multiple clusters and a

reference sub-task is allowed. Since the clustering algorithm does not assign a sub-task

label to each cluster, a majority voting scheme is used to identify the sub-task that each

cluster represents. Firstly, a sub-task label is assigned to each dialog segment in a cluster.

Then, the sub-task label that occurs most often in the cluster, or the majority sub-task, is

Chapter 6: Form Identification

256

assigned as a sub-task label for that cluster. It is quite straight forward to identify a

concept label for each word in a cluster when a list of concept members of each reference

concept is given. However, determining a sub-task label for each dialog segment in a

cluster is more complicate when dialog segments are obtained from an automatic

segmentation algorithm as these segments may have inaccurate boundaries. A dialog

segment may not correspond to a single sub-task. Moreover, the number of predicted

segments and the number of reference segments (or sub-tasks) may not be the same

which make it more difficult to align the predicted segments with the reference sub-tasks.

Figure 6.17 illustrates the alignments between reference sub-tasks and predicted

segments. In Figure 6.17 (a), since the boundary between segment “a” and segment “b” is

not accurate, segment “a” corresponds to both sub-task “A” and sub-task “B”. The

alignment can be more complicated when the number of predicted segments is different

from the number of reference sub-tasks as shown in Figure 6.17 (b) and Figure 6.17 (c).

In Figure 6.17 (b) where there are fewer predicted segments than reference segments,

segment “i” corresponds to both sub-task “I” and sub-task “J”. On the other hand, when

there are more predicted segments than reference segments as in Figure 6.17 (c), multiple

segments, “y” and “y ”, correspond to a single sub-task “Y”. The latter case is also

problematic since the unit of the numerator in Equation (5.8) is no longer the same as the

unit of the denominator (a predicted segment versus a reference segment).

Figure 6.17: Sample alignments between reference sub-tasks and predicted segments

reference

sub-tasks

predicted

segments

A

B

a

c

b

reference

sub-tasks

predicted

segments

C

X

Y

Z

x

y

z

y'

reference

sub-tasks

predicted

segments

I

K

i

l

k

L

(a) (b) (c)

J

Chapter 6: Form Identification

257

To avoid the complication in aligning predicted segments with reference sub-tasks, I

chose to work on a smaller and unambiguous unit, namely an utterance. It is straight

forward to assign a sub-task label to each utterance of dialog segments in a cluster. A

majority sub-task can be defined as a sub-task that encompasses the greatest number of

utterances in a cluster. However, this voting scheme favors a long sub-task. To resolve

this problem each utterance is assigned a weighted count that is inversely proportional to

the length of the sub-task that it belongs to. Specifically, a weighted utterance count for

each utterance is set to
n

1
; where n is the length of the corresponding sub-task. Therefore,

a majority sub-task is redefined as a sub-task that encompasses the greatest amount of

weighted utterance counts. By using this weighting scheme, the units of both the

numerator and the denominator in Equation (5.8) remain the same, a reference segment.

Equation (5.7) and (5.8) are presented again in Equation (6.12) and (6.13)

respectively with the new notions that make the equations more suitable for calculating

the precision and recall of a given sub-task. Specifically, let Ri be a reference sub-task of

interest and C1, C2, …, Cmi
 be the clusters that represent the sub-task Ri; where mi is the

number of the clusters. The precision and recall of the sub-task Ri are as follows:

i

i

m

1j

j

m

1j

ij

i

C in counts utterance weighted

 R to belong hatt C in counts utterance weighted

)R(precision (6.12)

i

m

1j

ij

i
R in segmentsof number

 R to belong hatt C in counts utterance weighted

)R(recall

i

(6.13)

Singularity score can be calculated using Equation (5.9) without any modification.

Similarly, quality score of each sub-task is still defined as a harmonic mean of the

precision, recall and singularity score.

To compute an overall quality metric over all of the sub-tasks in the reference set, a

macro-average is used to emphasize that every sub-task is equally important. Each sub-

task is assigned an equal weight when the metrics from all of the sub-tasks are averaged

regardless of its size. Macro-average is discussed in detail in Section 5.4.3. The macro-

average can be used to compute an overall metric of every subtask-level metric (e.g.

macro-average precision and macro-average singularity score). The quality score

Chapter 6: Form Identification

258

computed from macro-average precision, macro-average recall and macro-average

singularity score provides a single number that indicates the overall quality of the output

clusters. This number is useful for an end-to-end comparison between two clustering

algorithms.

6.2.4 Experiments and results

The test corpora consist of 24 dialogs from the air travel planning domain and 20

dialogs from the map reading domain. Both task-oriented domains are described in

Section 3.2 and Section 3.4 respectively. Task structure annotation for each dialog

consists of boundaries and label for each task and sub-task and a label for each concept

word. The dialogs from the air travel planning domain were annotated with the task

structure presented in Table 3.3 while the dialogs from the map reading domain were

annotated with the task structure presented in Table 3.5. The annotation was done by a

domain expert. These test corpora are similar to the ones used in dialog segmentation

experiments described previously.

Table 6.35 shows the statistics of the segment types in the air travel domain. Each

segment label in the table presents the full path in the task and sub-task hierarchy with the

ascendant task and sub-task listed on the left. We may refer to each segment type only by

its leaf node in the path (highlighted in bold) for short. The four most frequent segment

types are the four sub-subtasks listed in Table 3.3. <reserve_flight> is a dialog segment

which occurs after a query_flight_info sub-task and a query_flights_fare sub-task and

discusses a make_a_flight_reservation action; please note that it does not correspond to

the entire reserve_flight sub-task. Only these five segment types correspond to actions

and forms. Other three segment types do not contain any action. <create_an_itinerary>

is a dialog segment that is not covered by any other sub-task and corresponds to a closing

sub-dialog. <reserve_car> and <reserve_hotel> are sub-dialogs while related to car and

hotel reservations, do not contribute directly toward any action. For example, a client

may only mention a possibility of getting a car rental without giving specific criteria of

the desired car. Since the result from sub-task clustering will be used to determine

different types of forms in each task-oriented domain, only the segment types that

correspond to actions and forms are focused in the experiments. The infrequent segment

types, which include <create_an_itinerary>, <reserve_car> and <reserve_hotel>, are

excluded from the evaluation.

Chapter 6: Form Identification

259

Segment type Frequency %

<create_an_itinerary><reserve_flight><query_flight_info> 53 40.77%

<create_an_itinerary><reserve_flight><query_flights_fare> 23 17.69%

<create_an_itinerary><reserve_car><query_car_info> 18 13.85%

<create_an_itinerary><reserve_hotel><query_hotel_info> 16 12.31%

<create_an_itinerary><reserve_flight> 11 8.46%

<create_an_itinerary> 6 4.62%

<create_an_itinerary><reserve_car> 2 1.54%

<create_an_itinerary><reserve_hotel> 1 0.77%

Table 6.35: A list of sub-tasks in the air travel domain and their frequencies in the test

corpus

Table 6.36 shows the statistic of the segment types in the map reading domain. There

are only two types of dialog segments in this domain which correspond to the two sub-

tasks: draw_a_segment and grounding.

Segment type Frequency %

<draw_a_route><draw_a_segment> 219 64.22%

<draw_a_route><draw_a_segment><grounding> 122 35.78%

Table 6.36: A list of sub-tasks in the map reading domain and their frequencies in the

test corpus

The bisecting K-means algorithm also creates an etcetera cluster by combining small

clusters together to capture the sub-dialogs that are not relevant to the task. Since an

etcetera cluster represents irrelevant sub-dialogs, it is excluded from the evaluation.

In all experiments, unless specify else where, the bisecting cluster re-assignment

threshold (threshold-1) was set to 5%, the number of bisecting runs (B) was set to 10 and

the minimum cluster size (T) was set to 5. This set of parameters is similar to the one

used in the HMM-based segmentation discussed in Section 6.1.7. The maximum number

of clusters (M) in sub-task clustering experiments is also similar to the maximum number

of HMM states in the HMM-based segmentation. Since the bisecting K-means clustering

algorithm contains a random process as the new centroids of split clusters are chosen

randomly, the performance of a HMM-based segmentation is averaged from 10 runs.

Chapter 6: Form Identification

260

6.2.4.1 Oracle sub-task clustering

The oracle clustering experiment was carried on in order to investigate the

performance of the bisecting K-means clustering algorithm when apply to the segments

that do not contain any boundary error. In oracle sub-task clustering, the input segments

are reference segments manually created by a coding scheme expert. In this experiment,

the reference segments also include information from concept annotation as it has been

shown to be useful for dialog segmentation discussed previously. The Label+Word

representation is used to represent concept words. Pre-defined stop words are removed

from a set of features. The list of pre-defined stop words is discussed in Section 6.1.6.1.

To see the effect of the number of clusters (M) on clustering performance, various M

values were used. For the air travel domain, the values of M range from 2 to 16 to reflect

both the case when M is smaller than the number of the reference sub-task types and the

case when M is larger. Table 6.37 and Figure 6.18 present the oracle clustering

performance when the clustering result is evaluated against 5 reference segment types

discussed earlier. The best result, the one that produces highest quality score, is obtained

when M is equal to 10 and is underlined in Table 6.37. In addition to the evaluation

metrics described in Section 6.2.3, topic recall, which is a ratio between the number of

sub-tasks discovered by the clustering algorithm and the number of sub-task types in the

reference, is also reported.

Number of

clusters (M)

Topic

Recall
Precision Recall

Singularity

score

Quality

score

2 0.400 0.604 0.339 1.000 0.535

4 0.680 0.650 0.573 0.900 0.680

6 0.760 0.664 0.630 0.818 0.693

8 0.900 0.669 0.689 0.785 0.706

10 0.920 0.746 0.723 0.773 0.745

12 0.980 0.741 0.758 0.728 0.738

14 0.980 0.736 0.739 0.690 0.714

16 0.980 0.749 0.723 0.668 0.706

Table 6.37: Oracle clustering performance in the air travel domain

Chapter 6: Form Identification

261

Figure 6.18: The effect of the number of clusters on clustering performance in the air

travel domain

When the clustering algorithm outputs more clusters, the topic recall increases. When

the value of M is lower than the number of sub-tasks in the reference, i.e. M < 5, only the

frequent sub-task types can be identified. For example, when M = 2, only the two most

frequent sub-task types, query_flight_info and query_flights_fare, are discovered. As

clusters are split to produce more clusters, the less frequent sub-tasks could be

discovered. However, the three infrequent segment types, <create_an_itinerary>,

<reserve_car> and <reserve_hotel>, which do not correspond to any action and are

excluded from the evaluation, are hardly identified even when M is set to 16. An

infrequent segment type is more difficult to identify than a frequent segment type.

Oracle clustering performance in the air travel domain

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8 10 12 14 16

Number of clusters

Topic Recall

Precision

Recall

Singularity Score

Quality Score

Chapter 6: Form Identification

262

Sub-task Frequency Precision Recall
Singularity

score

Quality

score

query_flight_info 53 0.937 0.908 0.275 0.513

query_flights_fare 23 0.691 0.704 0.900 0.738

query_car_info 18 0.708 0.894 0.850 0.792

query_hotel_info 16 0.843 0.644 0.944 0.800

reserve_flight 11 0.500 0.464 1.000 0.632

Table 6.38: The qualities of the sub-tasks identified by oracle clustering in the air travel

domain

Table 6.38 shows the performance of the oracle clustering on each sub-task in the air

travel domain when the quality score is optimal (M = 10). The clustering algorithm can

identify a query_flight_info sub-task, which is the most frequent sub-task, with high

precision and recall; however, the sub-task is split into 3 to 4 clusters on average for each

run. Although all of the instances of a query_flight_info sub-task contain a similar set of

concepts, the values of each concept can be different (for example,

[ArrivalCity]:pittsburgh vs. [ArrivalCity]:boston and [DepartTime]:a.m. vs.

[DepartTime]:p.m.). When the number of clusters increases, the clustering algorithm

fails to group all of the segments that belong to a query_flight_info sub-task together.

Those segments are split into multiple clusters; each cluster contains a similar set of

concept values. For example, the segments that have the same arrival city are grouped

together. For a clustering task, where the distribution of concept types is more

importation than the distribution of concept values, a more abstract representation of

concept words, such as the Label representation, may be more appropriate.

Other sub-tasks can be identified with lower precision and recall. Some instances of

these sub-tasks are grouped together into the same cluster. A query_flights_fare sub-

task, a query_car_info sub-task and a query_hotel_info sub-task share some common

concepts and keywords, such as [Fare]:dollar and “rate”. Some of their instances also

contain short closing dialogs that make them similar to a reserve_flight sub-task.

Furthermore, these sub-tasks are shorter and have less number of occurrences than a

query_flight_info sub-task; therefore, provide less context to the clustering algorithm.

On the other hand, these sub-tasks are usually presented by a single cluster and have high

singularity score.

The analysis of topic recall and the observation on the quality of each type of sub-task

identified by oracle clustering reveal that the frequency of the segment type has some

Chapter 6: Form Identification

263

effect on the clustering result. A frequent segment type is likely to be identified reliably

by the clustering algorithm but is subjected to splitting while an infrequent segment type

may not contain enough information for the clustering algorithm to identify the similarity

among its instances and thus more difficult to discover.

Number of

clusters (M)

Topic

Recall
Precision Recall

Singularity

score

Quality

score

2 0.950 0.737 0.730 0.950 0.791

4 1.000 0.906 0.860 0.650 0.787

6 1.000 0.909 0.856 0.447 0.656

8 1.000 0.910 0.872 0.325 0.562

Table 6.39: Oracle clustering performance in the map reading domain

Figure 6.19: The effect of the number of clusters on clustering performance in the map

reading domain

In the map reading domain, the number of clusters (M) was varied from 2 to 8 in the

experiment. The range of M is smaller than the one used in the air travel domain since the

number of sub-tasks is smaller. Table 6.39 and Figure 6.19 show the performance of the

oracle clustering in the map reading domain. When the clustering algorithm outputs more

clusters, topic recall tends to increase together with precision and recall. Singularity

score, on the other hand, tends to decrease. When there is no further improvement in both

precision and recall, quality score is decreased from the decrease in singularity score.

Oracle clustering performance in the map reading domain

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8

Number of clusters

Topic Recall

Precision

Recall

Singularity Score

Quality Score

Chapter 6: Form Identification

264

These observations are quite similar to the ones found in the air travel domain. The best

result is obtained when M is equal to 2 and is underlined in Table 6.39.

Figure 6.20: The qualities of the sub-tasks identified by oracle clustering in the map

reading domain

Figure 6.20 shows the performance of the oracle clustering on each sub-task in the

map reading domain. The graphs for a draw_a_segment sub-task are in darker colors

while the graphs for a grounding sub-task are in lighter colors. When M is equal to 2 the

clustering algorithm can already identify both types of sub-task; however, some

occurrences of a draw_a_segment sub-task are merged into a grounding cluster and

deteriorate the precision of the grounding sub-task and the recall of the

draw_a_segment sub-task. Since the conversations in this domain are quite dynamic,

some instances of a grounding sub-task may contain a partial route segment description

which makes them quite similar to the instances of a grounding sub-task. When M is

larger, those occurrences of a draw_a_segment sub-task are separated into other clusters

which make both the precision of the grounding sub-task and the recall of the

draw_a_segment sub-task increased. Nevertheless, the singularity score is lower for a

draw_a_segment sub-task. Instances of a draw_a_segment sub-task are split into

multiple clusters based on a set of concept values they contain similar to a

query_flight_info sub-task in the air travel domain,

Clustering performance on each sub-task in the map reading domain

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8

Number of clusters

draw_a_segment precision

draw_a_segment recall

draw_a_segment SS

grounding precision

grounding recall

grounding SS

Chapter 6: Form Identification

265

When a cluster is split, it is likely to separate the segments that belong to different

sub-tasks into different clusters; therefore, the new clusters are likely to have higher

purity than the original cluster. As a result, precision usually increases. In the air travel

domain, the recall also increases because the new clusters can discover new sub-tasks

while in the map reading domain the new clusters produce better separation between a

draw_a_segment sub-task and a grounding sub-task. When new sub-tasks are

discovered the splitting does not decrease singularity score. After all of the sub-tasks are

discovered (when M is equal to 8 in the air travel domain and when M is equal to 2 in the

map reading domain), allowing the clustering algorithm to output slightly more number

of clusters could still improve precision and recall as the sub-tasks could be better

separated even though there is no new sub-task to discover. However, this comes at the

expense of lower singularity score. When the number of clusters increases much further,

the clustering algorithm only partitions the clusters into smaller clusters without making a

better separation among the sub-tasks. Both precision and recall are not improved and

quality score is lower from reduction in singularity score caused by splitting sub-tasks.

Based on this observation, the optimal performance could be obtained when all of the

sub-tasks in the reference are identified or when allowing the clustering algorithm to

output slightly more number of clusters.

Summary

The bisecting K-means clustering algorithm achieves quite a good clustering result

when the input segments contain no boundary error producing overall quality score of

0.745 in the air travel domain and 0.791 in the map reading domain when the number of

clusters is optimal. A frequent sub-task can be identified with high precision and recall;

however, it is split into multiple clusters. A more abstract concept word representation

may help reduce the splitting problem. An infrequent sub-task is more difficult to

discover as there is less context to identify the similarity among its instances. Precision

and recall are lower; however, singularity score is quite high since it was usually

presented by a single cluster.

6.2.4.2 Sub-task clustering based on predicted segments

In this experiment, the bisecting K-means algorithm was applied to dialog segments

obtained from an automatic segmentation algorithm. These segments were produced by

the TextTiling boundary predictor, TC4DTr, which utilizes information from concept

annotation together with regularity weights, distance weights and a triangular smoothing

scheme to determine sub-task boundaries as discussed in Section 6.1.6.6. This boundary

predictor achieved good segmentation performances in both the air travel domain and the

Chapter 6: Form Identification

266

map reading domain. The TC4DTr predictor produced more dialog segments when

compared to the number of segments in the reference in the air travel domain (171 vs.

130 segments) while produced fewer dialog segments when compared to the reference in

the map reading domain (291 vs. 341 segments). Besides the input segments all other

settings are similar to the ones used in the oracle clustering discussed above. The

clustering results are shown in Table 6.40. The best result is obtained when M is equal to

12 and is underlined in the table.

Number of

clusters (M)

Topic

Recall
Precision Recall

Singularity

score

Quality

score

2 0.300 0.471 0.253 0.750 0.403

4 0.600 0.498 0.433 0.858 0.545

6 0.720 0.493 0.475 0.785 0.552

8 0.780 0.491 0.479 0.732 0.543

10 0.920 0.480 0.484 0.759 0.545

12 0.920 0.516 0.526 0.753 0.577

14 0.900 0.518 0.521 0.643 0.551

16 0.920 0.514 0.516 0.658 0.553

Table 6.40: Sub-task clustering results in the air travel domain when predicted segments

are used as an input

Since predicted segments may contain some boundary errors, the sub-task clustering

result obtained from predicted segments is not as good as the clustering result obtained

from reference segments. Topic recall and singularity score (SS) are slightly worse, but

precision and recall are considerably lower which make the overall performance in terms

of quality score lower. The performance of the clustering algorithm that uses predicted

segments is compared to the performance of the clustering algorithm that uses reference

segments in Figure 6.21 and Table 6.41. The quality metrics of the oracle clustering are

illustrated in darker colors while the quality metrics of the predicted segment clustering

are illustrated in lighter colors.

Chapter 6: Form Identification

267

Figure 6.21: A performance comparison between a clustering algorithm that uses

reference segments and the one that uses predicted segments in the air travel domain

Sub-task
Oracle clustering (M=12) Predicted segment clustering (M=12)

Precision Recall SS QS Precision Recall SS QS

query_flight_info 0.972 0.915 0.257 0.495 0.801 0.846 0.230 0.438

query_flights_fare 0.816 0.630 0.815 0.741 0.490 0.338 0.889 0.481

query_car_info 0.760 0.839 0.900 0.814 0.433 0.523 0.889 0.559

query_hotel_info 0.675 0.588 0.733 0.596 0.485 0.303 0.938 0.478

reserve_flight 0.494 0.818 0.950 0.690 0.348 0.619 0.900 0.513

Macro-average 0.741 0.758 0.728 0.738 0.516 0.526 0.753 0.577

Table 6.41: The quality of each sub-task identified by the oracle clustering and the

predicted segment clustering in the air travel domain

Table 6.41 shows the quality of each sub-task in the air travel domain identified by

both clustering algorithms. These set of results are obtained when M is equal to 12, which

is the optimal number of clusters producing the best overall quality score for the

predicted segment clustering. Please note that the quality score of the oracle clustering at

M equals 12 is slightly lower than the optimal value obtained when M equals 10. The

Clustering performance in the air travel domain

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8 10 12 14 16

Number of clusters

Precision (oracle)

Recall (oracle)

SS (oracle)

Precision (predicted)

Recall (predicted)

SS (predicted)

Chapter 6: Form Identification

268

quality of a query_flight_info sub-task identified from predicted segments is almost as

good as the one identified from reference segments. Precision is slightly lower mostly

because consecutive utterances that belong to a query_flights_fare sub-task are also

included in the same cluster when the boundaries between a query_flight_info sub-task

and a query_flights_fare are missing. For other sub-tasks, especially

query_flights_fare, query_car_info and query_hotel_info, both precision and recall are

considerably lower. Many boundaries of these sub-tasks are missing as shown in Table

6.19. Even with correct sub-task boundaries as in the oracle clustering, some instances of

these sub-tasks still get merged into the same cluster. When the boundaries among them

are missing, it is more difficult to identify the sub-tasks accurately.

Nevertheless, some types of boundary errors have less negative effect toward the

clustering performance. A missing boundary between two instances of the same sub-task

type is less problematic if the merged segment could be assigned to the right cluster. The

result shows that, although, many boundaries between consecutive instances of a

query_flight_info sub-task are not identified, they do not have much effect on the

clustering quality of a query_flight_info sub-task. Extra boundaries, or false alarms, are

less problematic than missing boundaries since the fragments of the same sub-task could

be grouped together into the same cluster. A query_flight_info sub-task which has more

false alarms than other types of sub-tasks still achieves better clustering quality.

However, too many false alarms could affect the clustering performance since small

fragments do not contain enough context to accurately identify the similarity among the

fragments as occurred with utterance-based segmentation discussed in Section 6.1.7.1.

The sub-task clustering performance in the map reading domain obtained when the

predicted segments are used is shown in Table 6.42 and a comparison between the

predicted segment clustering and the oracle clustering is given in Figure 6.22 and Table

6.43. The quality metrics of the oracle clustering are illustrated with darker colors while

the quality metrics of the predicted clustering are illustrated with lighter colors. Both

precision and recall are considerably lower than when the reference segments are used

regardless of the number of clusters outputted. However, when M is large, the predicted

segment clustering obtains higher singularity score which reduces the difference between

the quality scores of both algorithms. Better overall singularity score comes from higher

singularity score of a grounding sub-task. Nevertheless, the optimal quality score

produced by the predicted segment clustering, which is obtained when M is equal to 4

and is underlined in Table 6.42, is lower than the optimal quality score produced by the

oracle clustering (QS = 0.791 when M is equal to 2).

Chapter 6: Form Identification

269

Number of

clusters (M)

Topic

Recall
Precision Recall

Singularity

score

Quality

score

2 0.500 0.642 0.500 0.500 0.540

4 1.000 0.701 0.651 0.675 0.675

6 1.000 0.714 0.645 0.585 0.641

8 1.000 0.724 0.637 0.502 0.597

Table 6.42: Sub-task clustering results in the map reading domain when predicted

segments are used as an input

Figure 6.22: A performance comparison between a clustering algorithm that uses

reference segments and the one that uses predicted segments in the map reading domain

Sub-task
Oracle clustering (M=4) Predicted segment clustering (M=4)

Precision Recall SS QS Precision Recall SS QS

draw_a_segment 0.876 0.968 0.350 0.593 0.737 0.854 0.350 0.553

grounding 0.935 0.752 0.950 0.862 0.665 0.449 1.000 0.620

Macro-average 0.906 0.860 0.650 0.787 0.701 0.651 0.675 0.675

Table 6.43: The quality of each sub-task identified by the oracle clustering and the

predicted segment clustering in the map reading domain

Clustering performance in the map reading domain

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8

Number of clusters

Precision (oracle)

Recall (oracle)

SS (oracle)

Precision (predicted)

Recall (predicted)

SS (predicted)

Chapter 6: Form Identification

270

The quality metrics of each sub-task in the map reading domain presented in Table

6.43 are obtained when M is equal to 4, which is the optimal number of clusters for the

predicted segment clustering. Please note that the overall quality score of the oracle

clustering at M equals 4 is slightly lower than its optimal value. The quality of a

draw_a_segment sub-task identified from predicted segments is almost as good as the

one identified from reference segments. The precision is slightly lower mostly because

some consecutive utterances that belong to a grounding sub-task are also included in the

same cluster when the sub-task boundary predictor failed to identify a boundary between

a draw_a_segment sub-task and a grounding sub-task. This problem also causes the

recall of a grounding sub-task to be much lower. On the other hand, missing boundaries

between consecutive instances of a draw_a_segment sub-task and false alarm

boundaries have less negative effect on the clustering results.

Summary

The quality of the clusters obtained from predicted segments is lower than the quality

of the clusters obtained from the reference segments as inaccurate segment boundaries

affect the performance of the clustering algorithm. However, some types of boundary

errors have more negative influence on the clustering performance than other types of

errors. A missing boundary between different types of sub-tasks is usually more

problematic than a missing boundary between two consecutive instances of the same type

of sub-task. False alarm boundaries also have less negative effect on the clustering result.

Although, some of the predicted segments have inaccurate segment boundaries, the

quality of some sub-tasks, such as a query_flight_info sub-task and a draw_a_segment

sub-task, identified from the predicted segments is almost as good as the ones identified

from the reference segments.

6.2.4.3 The label representation

In this experiment, the Label representation, which focuses on a concept label rather

than its value as it is more informative for sub-task clustering, is used to represent

concept words. As discussed in Section 6.2.4.1, a more abstract concept word

representation could also reduce the splitting problem that usually occurs with high

frequency sub-tasks. A performance comparison between the two concept word

representations, the one that uses both a concept label and a word string (the Label+Word

representation) and the one that uses only a concept label (the Label representation) is

given in Table 6.44. For both representations, the results are the optimal result obtained

from the oracle clustering. For the Label+Word representation the optimal result is

Chapter 6: Form Identification

271

obtained when M is equal to 10 and is similar to the one presented in Table 6.38 while for

the Label representation the optimal result is obtained when M is equal to 14.

Sub-task
Label+Word (M=10) Label (M=14)

Precision Recall SS QS Precision Recall SS QS

query_flight_info 0.937 0.908 0.275 0.513 1.000 0.906 0.242 0.475

query_flights_fare 0.691 0.704 0.900 0.738 0.930 0.848 0.950 0.897

query_car_info 0.708 0.894 0.850 0.792 0.835 0.706 0.850 0.760

query_hotel_info 0.843 0.644 0.944 0.800 0.775 0.738 0.517 0.630

reserve_flight 0.500 0.464 1.000 0.632 0.523 0.909 0.950 0.724

Macro-average 0.746 0.723 0.773 0.745 0.812 0.821 0.702 0.772

Table 6.44: Clustering results for each sub-task in the air travel domain when different

concept word representations are used by the oracle clustering

The optimal quality score for the Label representation is 0.772 which is slightly better

than the value of 0.745 achieved by the Label+Word representation. The Label

representation achieves higher precision and recall than the Label+Word representation.

However, the singularity score is lower because its optimal result contains more clusters.

When compare singularity scores of both representations at the same M value, the Label

representation has a slightly better singularity score. The quality of each sub-task is also

given in Table 6.44. The Label representation achieves better quality score for a

query_flights_fare sub-task and a reserve_flight sub-task due to higher precision and

recall. For a query_flight_info sub-task and a query_hotel_info sub-task, it achieves

lower quality score mainly from more splitting as the number of clusters is higher. The

quality score of a query_car_info sub-task is also slightly lower.

The Label representation does not improve singularity score as expected. Frequent

sub-tasks still get split into multiple clusters. Although, dialog segments that belong to

the same sub-task should contain a similar set of concepts, some concepts are optional

and do not occur in every instances of the sub-task. For instance, ArrivalAirport and

ArrivalState are optional concepts and do not occur in every query_flight_info sub-

task. A frequent sub-task may get split into multiple clusters based on the optional

concepts and other non-concept words that they contain as the bisecting K-means

clustering algorithm always splits the largest cluster first.

All splitting problems discussed above are the case that a sub-task is represented by

more than one cluster which occurs when the instances of the same sub-task are separated

Chapter 6: Form Identification

272

into multiple clusters and those instances are also a majority sub-task in some of the

clusters. This type of splitting is reflected by singularity score. However, if the instances

of the same sub-task are assigned to multiple clusters but as a minority sub-task in some

of those clusters, there might be only one cluster that represents the sub-task. Singularity

score cannot capture this kind of splitting; nevertheless, the splitting causes the clusters to

be heterogeneous and reduces precision. Recall also decreases as some dialog segments

are assigned to the clusters that do not represent their corresponding sub-task.

The Label representation, which is a more abstract representation, makes it easier to

distinguish some sub-tasks from other sub-tasks if they contain different sets of concepts

and alleviates the second splitting problem. Precision and/or recall are increased for those

sub-tasks. A query_flight_info sub-task, a query_flights_fare sub-task and a

reserve_flight sub-task can be identified with high recall since most of their instances

contain a similar set of concepts. In terms of precision, a query_flight_info sub-task has

a perfect precision (i.e. precision = 1) as it contains a set of concepts that is distinct from

the ones used in other sub-tasks. A query_flights_fare sub-task also has high precision.

However, precision of a reserve_flight sub-task is quite low since the cluster that

represents this sub-task also includes dialog segments from other sub-tasks that contain

similar closing sub-dialogs. A query_hotel_info sub-task and a query_car_info sub-task

have lower recall than other three sub-tasks since some of their instances get merged into

the clusters that represent other sub-tasks. For instance, some instances of a

query_hotel_info sub-task and a query_car_info are assigned to the cluster that

represents a query_flights_fare sub-task as all three sub-tasks share the same concept

Fare.

Sub-task
Label+Word (M=2) Label (M=2)

Precision Recall SS QS Precision Recall SS QS

draw_a_segment 0.911 0.620 0.950 0.775 0.997 0.991 1.000 0.996

grounding 0.555 0.840 1.000 0.773 0.984 0.995 1.000 0.993

Macro-average 0.737 0.730 0.950 0.791 0.991 0.993 1.000 0.994

Table 6.45: Clustering results for each sub-task in the map reading domain when

different concept word representations are used by the oracle clustering

Table 6.45 shows a performance comparison between the two concept word

representations in the map reading domain. For both representations, the results are the

optimal result achieved by the oracle clustering which are obtained when M is equal to 2.

When the Label representation is used all of the quality metrics, precision, recall and

Chapter 6: Form Identification

273

singularity score, are almost perfect for both sub-tasks. The Label representation, which

focuses on the concepts themselves rather than their values, can perfectly distinguish

between a draw_a_segment sub-task and a grounding sub-task since both sub-tasks

contain disjoint sets of concepts. There is no splitting in the optimal result obtained from

the Label representation since the optimal number of clusters is equal to the number of

the reference sub-tasks. However, when the clustering algorithm outputs more clusters,

both sub-tasks are split into many clusters which reduces the singularity score.

Nevertheless, precision and recall for both sub-tasks are still close to perfect.

Table 6.46 shows a performance comparison between the two concept word

representations when predicted segments from the air travel domain are used as an input

of a clustering algorithm. The results are the optimal result obtained when M is equal to

12 for the Label+Word representation and when M is equal to 10 for the Label

representation.

Sub-task
Label+Word (M=12) Label (M=10)

Precision Recall SS QS Precision Recall SS QS

query_flight_info 0.801 0.846 0.230 0.438 0.865 0.844 0.213 0.424

query_flights_fare 0.490 0.338 0.889 0.481 0.464 0.629 0.950 0.619

query_car_info 0.433 0.523 0.889 0.559 0.717 0.049 1.000 0.285

query_hotel_info 0.485 0.303 0.938 0.478 0.416 0.508 1.000 0.578

reserve_flight 0.348 0.619 0.900 0.513 0.377 0.735 0.733 0.529

Macro-average 0.516 0.526 0.753 0.577 0.549 0.553 0.741 0.601

Table 6.46: Clustering results for each sub-task in the air travel domain when different

concept word representations are used by the predicted segment clustering

The Label representation achieves slightly better quality score from higher precision

and recall; however, singularity score is slightly lower. When consider the quality of each

sub-task separately, the Label representation achieves better quality score for a

query_flights_fare sub-task and a query_hotel_info sub-task mainly from higher recall.

On the other hand, a query_car_info sub-task has much lower quality score due to much

lower recall. The recall is lower because many dialog segments that belong to a

query_car_info sub-task get merged into either a query_flights_fare sub-task or a

query_hotel_info sub-task as many boundaries between a query_car_info sub-task and

a query_flights_fare sub-task or a query_hotel_info sub-task are missing as shown in

Table 6.19. Moreover, some instances of these three sub-tasks are quite similar since they

Chapter 6: Form Identification

274

share some common concepts and keywords, such as [Fare] and “rate” as discussed

earlier.

Sub-task
Label+Word (M=4) Label (M=2)

Precision Recall SS QS Precision Recall SS QS

draw_a_segment 0.737 0.854 0.350 0.553 0.816 0.846 1.000 0.881

grounding 0.665 0.449 1.000 0.620 0.705 0.657 1.000 0.761

Macro-average 0.701 0.651 0.675 0.675 0.760 0.752 1.000 0.823

Table 6.47: Clustering results for each sub-task in the map reading domain when

different concept word representations are used by the predicted segment clustering

Table 6.47 shows a performance comparison between two clustering algorithms that

use predicted segments from the map reading domain as an input but use different

concept word representations. The results are the optimal results obtained when M is

equal to 4 for the Label+Word representation and when M is equal to 2 for the Label

representation. The algorithm that uses the Label representation outperforms the

algorithm that uses the Label+Word representation both in terms of the overall

performance (the macro-average) and the performance on each sub-task. The best

performance achieves by the predicted segment clustering that uses the Label

representation is also better than the best performance achieves by the oracle clustering

that uses the Label+Word representation shown Table 6.39. All of the quality metrics,

precision, recall and singularity score, are slightly better. This result confirms that

concept labels are more informative than their values for sub-task clustering and that the

Label representation is a better representation than the Label+Word representation. An

appropriate feature representation provides more useful information to the clustering

algorithm than accurate segment boundaries.

Summary

The Label representation, which uses only a concept label to represent a concept

word, is a better representation than the Label+Word representation, which uses both a

concept label and a word string to represent a concept word, for sub-task clustering. The

Label representation can better distinguish among different types of sub-tasks if they

contain different sets of concepts. If the sets of concepts used in all of the reference sub-

tasks are disjoint, a clustering algorithm that uses the Label representation can achieves a

very good results as in the map reading domain. The performance is almost perfect when

the reference segments are used as an input. The quality of the clusters is still good when

the predicted segments are used. Substantial improvement is achieved when compared to

Chapter 6: Form Identification

275

the quality of the clusters obtained from the algorithm that uses the Label+Word

representation. The result of the clustering algorithm that uses the Label representation

with predicted segments is even better than the result obtained from the oracle clustering

that uses the Label+Word representation. This result confirms that the Label

representation is more suitable for sub-task clustering than the Label+Word

representation. It also demonstrates that an appropriate feature representation provides

more useful information to the clustering algorithm than accurate segment boundaries.

In the air travel domain, the performance gain from the Label representation is

smaller since the sub-tasks contain overlapping sets of concepts. A sub-task can be

identified with high recall if most of its instances contain a similar set of concepts, such

as, a query_flights_fare sub-task and a reserve_flight sub-task. High precision can be

achieved if a sub-task contains a set of concepts that is distinct from the ones used in

other sub-tasks such as a query_flight_info sub-task. For the oracle clustering, the new

concept word representation improves the overall precision in recall. However, frequent

sub-tasks still get split into multiple clusters based on the optional concepts and other

non-concept words that they contain as the bisecting K-means clustering algorithm

always splits the largest cluster first. As a result, the Label representation improves

singularity score just slightly.

In addition to higher overall cluster quality, in all of the experiments, the variances of

the quality metrics of all 10 runs are also lower when the Label representation is used.

6.2.4.4 Slot extraction

In this experiment, the best clustering result obtained when the predicted segments

are used as an input of the clustering algorithm is analyzed to identify a set of slots that is

associated with each type of form. This result is obtained when the Label representation

is used is discussed in detail in the previous section. Table 6.48 shows a list of slots and

their frequencies of each cluster in the air travel domain. For simplicity, only the frequent

slots are presented.

Sets of slots for a flight query form, a hotel query form and a fare query form

extracted from the corresponding clusters are quite acceptable. There are 5 clusters that

represent a query_flight_info sub-task. All frequent slots found in these clusters belong

to a flight query form. Erroneous slots that belong to other types of forms occur only a

few times and are not shown in Table 6.48. A query_flight_info(3) cluster and a

query_flight_info(4) cluster contain most essential slot in a flight query form. However,

other clusters miss some of the necessary slots or contain only a few instances of them

Chapter 6: Form Identification

276

since false alarm boundaries may cause some instances of a query_flight_info sub-task

to be separated into multiple segments. For example, a query_flight_info(1) cluster

misses the departure date related slots. A cluster that corresponds to a query_hotel_info

sub-task contains all of the necessary slots in a hotel query form. It also contains only a

few instances of erroneous slots. A cluster that corresponds to a query_flights_fare sub-

task contains some erroneous slots that belong to a hotel query form and a car query form

as some instances of these forms get merged into the same cluster as discussed earlier.

Erroneous slots that belong to other sub-tasks are highlighted in red.

However, since the recall of a query_car_info sub-task is very low as many of its

instances get merged into either a query_flights_fare sub-task or a query_hotel_info

sub-task, many essential slots, such as [car_rental_company] and [car_category], are

missing. In the reference, a reserve_flight sub-task does not contain any concept as it

only discusses a make_a_flight_reservation action at the end of a dialog when all other

information has been discussed. The extraneous slots come from other types of sub-tasks

that get merged into the cluster as its precision is quite low. The quality of each sub-task

is presented in Table 6.46.

Chapter 6: Form Identification

277

query_flight_info (1) query_flight_info (2) query_flight_info (3) query_flight_info (4)
[arrive_time:minute_number] 63 [airline_company] 79 [airline_company] 39 [depart_time:minute_number] 65

[arrive_time:hour_number] 42 [arrive_time:minute_number] 46 [arrive_loc:city] 17 [depart_time:hour_number] 60

[depart_time:minute_number] 37 [depart_time:hour_number] 40 [arrive_time:minute_number] 15 [arrive_loc:city] 60

[depart_time:hour_number] 36 [depart_time:minute_number] 39 [fare] 14 [arrive_time:minute_number] 52

[depart_time:am_pm] 31 [arrive_time:hour_number] 36 [depart_time:time_period] 12 [depart_time:am_pm] 46

[arrive_loc:city] 31 [arrive_loc:city] 27 [depart_loc:city] 10 [depart_loc:city] 42

[depart_loc:city] 26 [depart_time:am_pm] 23 [arrive_time:hour_number] 10 [arrive_time:hour_number] 35

[arrive_loc:airport] 23 [flight_number] 15 [depart_date:month_number] 10 [depart_date:month_number] 31

[airline_company] 19 [arrive_time:am_pm] 14 [depart_time:minute_number] 9 [airline_company] 30

[arrive_time:am_pm] 18 [arrive_loc:airport] 13 [depart_time:hour_number] 8 [flight_ref] 26

 [depart_loc:city] 13

 [depart_time:time_period] 11

query_flight_info (5) reserve_flight (1) reserve_flight (2) query_flights_fare
[depart_date:month_number] 43 [area] 10 [city] 4 [fare] 257

[depart_date:month] 26 [arrive_loc:city] 6 [car_category] 3 [city] 27

[arrive_loc:city] 24 [arrive_loc:airport] 5 [depart_date:day_of_week] 2 [car_rental_company] 17

[depart_loc:city] 12 [arrive_date:day_of_week] 4 [arrive_loc:city] 2 [hotel_name] 15

[depart_date:year] 12 [airline_company] 3 [hotel_name] 2 [arrive_loc:city] 14

[depart_date:day_of_week] 10 [depart_loc:city] 3 [arrive_time:hour_number] 2 [airline_company] 11

[depart_time:time_period] 10 [fare] 3 [flight_ref:airline_company] 2

query_hotel_info query_car_info
[fare] 75 [car_type] 13

[city] 36 [city] 3

[hotel_name] 33 [state] 1

[area] 28

[arrive_date:month_number] 14

[depart_date:month_number] 10

Table 6.48: A list of slots and their frequencies from each cluster in the air travel domain.

Chapter 6: Form Identification

278

draw_a_segment grounding

[Orientation:direction] 728 [TargetLM:landmark] 309

[Path:Location:landmark] 596 [Location:location_mod] 288

[EndLocation:Location:landmark] 433 [Location:landmark] 207

[Path:Location:location_mod] 416 [Location] 192

[Path:Location] 388 [Orientation:direction] 93

[EndLocation:Location:location_mod] 385 [Location:map_ref] 93

[Orientation:direction_mod] 315 [EndLocation:Location:landmark] 59

[EndLocation:Location] 290

[EndLocation:Location:map_ref] 179

[StartLocation:Location:landmark] 124

[TargetLM:landmark] 119

[Distance:amount] 96

Table 6.49: A list of slots and their frequencies from each cluster in the map reading

domain.

Table 6.49 shows a list of slots and their frequencies of each cluster in the air travel

domain. A list of slots extracted from a draw_a_segment cluster and a list of slots

extracted from a grounding cluster contain all of the necessary slots for a segment

description form and a grounding form respectively. Since both clusters are not

homogenous, they also contain some erroneous slots. Nevertheless, those erroneous slots,

highlighted in red, do not occur as frequent as most of the correct slots that belong to the

forms.

Summary

Essential slots in most of the forms can be identified from clusters of predicted

segments in both the air travel domain and the map reading domain. If the recall of the

sub-task is not too low, all of the essential slots of the corresponding form can be

identified as only multiple instances of a concept, not all of them, is sufficient to identify

the corresponding slot. If a cluster is not homogenous, i.e. precision is not perfect, it may

contain extraneous slots that belong to other form types. However, if the precision is not

too low these extraneous slots will occur only a few times compared to the correct ones.

A query_car_info sub-task has very low recall, therefore, some of the slots can not be

identified. For a reserve_flight sub-task, the corresponding clusters contain extraneous

slots that are quite frequent since the precision is quite low.

Chapter 6: Form Identification

279

6.2.5 Discussion and conclusion

In the previous sections, an unsupervised clustering algorithm, the bisecting K-means

clustering algorithm, has been applied to the problem of sub-task clustering through a

series of experiments. In this section, I will summarize the clustering results and

interesting findings from those experiments.

The quality of the clusters obtained from predicted segments is lower than the quality

of the clusters obtained from the reference segments as inaccurate segment boundaries

affected the performance of the clustering algorithm. However, some types of boundary

errors have more negative influence on the clustering performance than other types of

errors. A missing boundary between different types of sub-tasks is usually more

problematic than a missing boundary between two consecutive instances of the same type

of sub-task. False alarm boundaries also have less negative effect on the clustering result.

Although, some of the predicted segments have inaccurate segment boundaries, the

quality of some sub-tasks that occur frequently, such as a query_flight_info sub-task and

a draw_a_segment sub-task, identified from the predicted segments is almost as good as

the ones identified from the reference segments.

The frequency of the segment type has some effect on the clustering result. A

frequent segment type is likely to be identified reliably by the clustering algorithm but is

subjected to splitting as the bisecting K-means clustering algorithm always splits the

largest cluster first while an infrequent segment type may not contain enough information

for the clustering algorithm to identify the similarity among its instances and thus more

difficult to discover.

Since a list of concepts that occurs in one sub-task is distinguishable from a list of

concepts that occurs in other sub-tasks regardless of the values of the concepts, concept

labels are more informative for sub-task clustering than concept values. The Label

representation, which focuses only on a concept label not its values, is a better

representation than the Label+Word representation, which uses both a concept label and

a word string to represent a concept word. The clustering algorithm that uses the Label

representation achieves a better clustering performance in both domains. When the sets of

concepts used in all of the sub-tasks are disjoint, a clustering algorithm that uses the

Label representation can achieves a very good results as in the map reading domain. With

a more abstract concept word representation, the quality of the clusters obtained from

predicted segments is even better than the quality of the clusters obtained from the

reference segments that use the Label+Word representation. This result demonstrates that

an appropriate feature representation provides more useful information to the clustering

Chapter 6: Form Identification

280

algorithm than accurate segment boundaries. However, when the sub-tasks contain

overlapping sets of concepts as in the air travel domain, the performance gain obtained

from the Label representation is small. In addition to higher overall cluster quality, in all

of the experiments, the variances of the quality metrics of all 10 runs are also lower when

the Label representation is used.

For slot extraction, A set of slots in each form type can be identified by extracting a

list of concepts from the corresponding clustering. When the best clustering result

obtained from predicted segments are analyzed, essential slots for most of the forms can

be identified in both domains. Only moderate sub-task precision and recall are required in

order to accurately identify a set of slots. However, if the recall is too low, some slots

might be missing. On the other hand, if the precision is too low, the cluster might contain

extraneous slots from other form types that are as frequent as the correct slots.

Sub-task clustering still has room for improvement. Since inaccurate segment

boundaries affected the performance of the clustering algorithm, a better dialog

segmentation algorithm will not only improve the quality of the segments but also the

quality of a sub-task clustering results. To reduce the number of splitting in frequent sub-

tasks, different criteria for choosing a cluster to split at each iteration can be

experimented. For example, a criterion based on the overall similarity of a cluster could

be used instead of the one that always chooses to split the largest cluster.

Chapter 7: Conclusion

281

Chapter 7

Conclusion

7.1 Summary of results

In this dissertation, I proposed a form-based dialog structure representation (a three-

level structure of task, sub-task, and concept) suitable for representing the domain-

specific information required to build a task-oriented system and demonstrated that this

representation has all of the required properties.

● Sufficiency

The form-based dialog structure representation can account for 93% of

dialog content in four task-oriented domains (air travel planning, bus schedule

enquiry, map reading and UAV flight simulation) as measured by a dialog

coverage discussed Section 4.1. Some limitations of the form-based

representation are discussed in Section 3.8.

● Generality

The form-based dialog structure representation can be applied to five

disparate task-oriented domains, including air travel planning (information-

accessing), bus schedule inquiry (information-accessing), map reading

(problem-solving), UAV flight simulation (command-and-control), and

meeting, with an exception of the tutoring domain.

● Learnability

The form-based dialog structure representation is learnable by non-expert

annotators and by unsupervised machine learning algorithms. The form-based

representation can be applied reliably by non-expert annotators, producing

high acceptability on task structure designs (bracketed precision > 0.8) in two

disparate domains: air travel planning (an information-access task) and map

reading (a problem-solving task). To show this, I introduced a novel

evaluation procedure called cross-annotator correction suitable for

comparing different markup schemes. High annotation scheme reliability

suggests that the annotation scheme is concrete and unambiguous which

implies learnability. Components of the form-based representation can be

Chapter 7: Conclusion

282

identified with acceptable accuracy through unsupervised machine learning

approaches as summarized below.

The results of both dialog structure acquisition problems, concept identification and

form identification, show that it is feasible to acquire the domain-specific knowledge

necessary for creating a task-oriented dialog system automatically from a corpus of in-

domain conversations using unsupervised learning approaches. With some modifications,

the proposed unsupervised learning approaches are able to learn the structure of a spoken

dialog which captures the required domain-specific information as represented by the

form-based dialog structure representation.

Domain concepts can be identified with acceptable accuracy. The best concept

identification result is obtained from the Kullback-Liebler-based clustering algorithm that

uses an average linkage distance measure. The quality score of 0.70 is achieved when the

automatic stopping criterion is applied. The clustering result has high precision but

moderate recall since the statistical clustering algorithm cannot accurately identify

infrequent concept words due to a sparse data problem. For most statistical clustering

algorithms, we are able to identify automatic stopping criteria that yield close to optimal

results.

Forms that occur frequently can be identified with moderate accuracy. Forms and

their associated slots are identified in three sequential steps: dialog segmentation (sub-

task boundary prediction), sub-task clustering, and slot extraction. To handle fine-grained

segments in spoken dialogs, TextTiling and HMM-based segmentation algorithms are

augmented with a data-driven stop word list and distance weights. With the proposed

modifications, significant improvement on sub-task boundary prediction is achieved.

Subsequent steps of form identification are subjected to propagated errors from its

preceding steps. Since the proposed learning algorithms are based on generalization of

recurring patterns, they can still learn from inaccurate information given that the number

of errors is moderate, so that there are enough correct examples to learn from. The results

show that moderate segmentation accuracy is sufficient for identifying frequent form

types using the bisecting K-mean sub-task clustering algorithm. Similarly, moderate sub-

task clustering accuracy is sufficient for identifying essential slots in each form. Dialog

structure acquisition, as in the case of this thesis, does not require high learning accuracy.

In conclusion, to represent a dialog for a learning purpose (to acquire domain

knowledge necessary for creating a task-oriented dialog system) we based our

representation, a form-based dialog structure representation, on an observable structure.

This observable representation can be generalized for various types of task-oriented

Chapter 7: Conclusion

283

dialogs and can be understood and applied by different annotators. More importantly, the

representation can be learned by unsupervised learning approaches.

7.2 Contributions

This dissertation has presented the work on exploring the feasibility of using an

unsupervised machine learning approach to infer the domain-specific information

required to build a task-oriented dialog system through the observation of in-domain

human-human conversations. The main contributions of this work are:

1. A dialog structure framework based on a form representation that has the

following properties:

 Sufficiency

 The proposed form-based dialog structure representation formally

defines the domain-specific knowledge necessary for building a task-

oriented dialog system based on the notion of form. These

components while already exist, no formal definition has been

specified.

 Generality

 The definitions of domain knowledge components provided in the

proposed form-based dialog structure representation are extended

beyond the common interpretations used specifically for an

information-accessing domain; hence, they are domain-independent

and can be applied to different types of task-oriented dialogs as

demonstrated in Chapter 3.

 Learnability

 To represent a dialog for a learning purpose (acquiring domain

knowledge necessary for creating a task-oriented dialog system), we

based our representation on an observable structure of a dialog. As a

result, this observable representation can be learned through

unsupervised learning approaches.

 A concrete mapping between dialog structure components and dialog

system architecture

2. An unsupervised machine learning approach for inferring domain information

from in-domain conversations that could potentially reduce human effort in

developing a new task-oriented dialog system

Chapter 7: Conclusion

284

● An unsupervised algorithm that can identify and cluster domain concepts

from un-annotated data

● Automatic stop criteria for the Kullback-Liebler-based clustering

algorithm and the mutual information-based clustering algorithm that

yield close to optimal clustering results

● A data-driven approach that identifies less informative words in a text

segmentation problem from word distribution

● An unsupervised segmentation algorithm that can identify the boundaries

between fine-grained segments

3. Annotation assessment based on cross-annotator correction suitable for

assessing inter-annotator agreement when annotators create and use their own

markup schemes and annotation variations are acceptable

7.3 Future directions

Automatic domain knowledge acquisition intended for creating a new dialog system

is a very new research area. This thesis has investigated the feasibility of such approach

which could be extended in many directions as summarized below.

7.3.1 Extending the form-based dialog structure representation

The form-based dialog structure representation only models the observable structure

of a dialog using a simple representation so that the domain-specific information captured

by this representation could be inferred from in-domain conversations through existing

unsupervised learning approaches. This representation works well for many types of task-

oriented domains as shown in Chapter 3. The form-based representation should also be

able to represent other types of task-oriented dialogs that have the following

characteristics: 1) the conversation goal is achieved through the execution of domain

actions, and 2) the dialog participants have to communicate the information required to

perform these actions through dialog.

By assuming that all the required domain-specific information is observable and can

be represented by a simple model, the form-based representation is not suitable for

modeling a complex dialog that has a dynamic structure. These types of dialogs, for

example, the tutoring domain, require a more expressive representation. Nevertheless, I

believe that the components in the form-based dialog structure representation (i.e. task,

sub-task, and concept) are still the keys components of a task-oriented dialog. However,

the relations among these components in some domains may be more complex than the

Chapter 7: Conclusion

285

ones modeled by the form-based representation. For example, a compositional structure

of a dialog may better be described by the purposes of the segments (Grosz and Sidner,

1986) than by the characteristics of a task and domain actions
1
. In each of the segments,

some pieces of domain information are exchanged by the participants, but these pieces of

information can be more complicated than domain entities modeled by concepts.

Some modifications can be applied to the form-based dialog structure representation

to make it accounted for more types of dialogs. Concepts could be extended to model

other kind of domain information not just domain entities, for example, relations between

entities such as equality. For a complex domain that requires multiples forms, the

relations between forms may be required. For instance, different concept values in the

first form may activate different types of subsequent forms. For the type of dialog that the

necessary domain information is not directly reflected in the conversation, a more

complex dialog structure which also models unobservable aspects of the dialog may be

required. A teaching strategy in a tutoring dialog is one example of the information that

cannot be observed directly from the conversation. Different teaching strategies could be

applied to the same question depended on a student’s ability. Even though it is possible to

extend the form-based dialog structure representation to account for more types of

dialogs, other existing dialog representations may be more suitable than forms for some

particular domains and applications. Learnability of an additional component is also

subjected to future research.

7.3.2 Improving the performance of dialog structure acquisition algorithms

The performance of dialog structure acquisition algorithms can be improved along

several dimensions.

7.3.2.1 Improving the proposed unsupervised learning algorithms

All of the unsupervised learning approaches presented in this thesis still have room

for improvement. Typically, adding more useful features and combining different

learning algorithms together can improve the learning performance.

For a concept identification problem, more efficient concept word selection criteria

could be identified by adding new concept word indicators and by combining different

types of criteria together. One additional type of indicator that might be worth

experimenting is a name entity flag (whether a word is a name entity or not). A word that

1
 Executing a domain action can be considered as a specific case of a segment purpose.

Chapter 7: Conclusion

286

is classified as a name entity (for example, location or time expression) is likely to

capture domain information.

For a dialog segmentation problem, both TextTiling and HMM-based segmentation

algorithms, which rely on lexical similarity between dialog segments, have some

difficulty identifying the boundary between two sub-tasks of the same type. Lexical

similarity, which is an efficient feature for identifying the boundary between two sub-

tasks that belong to dissimilar form types, may not provide enough information for

determining the boundary between two instances of the same form type since their

contents are more similar. To solve this problem, additional features that are not sensitive

to the content of the segment, such as a prosodic feature, are necessary. It has been shown

that prosodic features are able to identify a boundary between the segments that contain

quite similar contents (Swerts and Ostendorf, 1997). Since inaccurate segment boundaries

affected the performance of the clustering algorithm, a better dialog segmentation

algorithm will not only improve the quality of the segments but also the quality of a sub-

task clustering results.

To reduce the number of splitting in frequent sub-tasks in a sub-task clustering

problem, different criteria for choosing a cluster to split at each iteration can be

experimented. For example, a criterion based on the overall similarity of a cluster could

be used instead of the one that always chooses to split the largest cluster. A more efficient

clustering algorithm can also improve the performance of the HMM-based segmentation

algorithm since it provides a better state representation that can differentiate between

dialog segments that belong to dissimilar sub-tasks.

The advantages of different algorithms can be combined to improve the performance

of the learning algorithms. For both concept identification and sub-task boundary

detection problems, competitive approaches seem to have complementary advantages.

For concept identification, the statistical approach and the knowledge-based approach

have different strong points. The statistical approaches while able to capture domain-

specific usage of concept words cannot accurately identify infrequent concept words due

to a sparse data problem. The knowledge-based approach, on the other hand, can identify

domain concepts very accurately, but on the condition that the concepts are present in the

knowledge source. One possible combination method is to acquire an initial set of

concepts through a statistical clustering approach then revise these initial concepts with a

knowledge-based clustering approach. A statistical clustering approach allows us to

recover as many potential concepts as possible while a knowledge-based clustering

approach can improve the quality of the initial concepts by adding missing concept

Chapter 7: Conclusion

287

members and removing incorrect concept members. For sub-task boundary detection, the

TextTiling and the HMM-based segmentation algorithm are good at different types of

boundaries. The HMM-based algorithm performs better on very fine-grained segments

boundaries while the TextTiling algorithm performs better on the boundaries between

consecutive sub-tasks of the same type. Therefore, combining the predictions made by

both algorithms could help improve sub-task boundary detection performance.

Since tasks, sub-tasks, and concepts are the components of the same dialog structure,

information about one component may be useful for inferring another component. As

shown in Chapter 6, information from concept annotation can improve both dialog

segmentation and sub-task clustering results. Information from sub-task boundaries and

types of tasks and sub-tasks should also help improve the performance of a concept

identification algorithm. For example, based on an assumption that a list of concepts

occurs in one sub-task is distinguishable from a list of concepts occurs in other sub-tasks,

a similarity score between words that occur in the same type of sub-task should receive

more weight than a similarity score between words that occur in different types of sub-

tasks. More interaction between components such as an iterative approach should also be

considered. To measure the effect of propagated errors when incorporating information

from another dialog structure component in the learning algorithm, the performance when

incorporating predicted components and the performance when incorporating hand-

annotated components should be compared.

7.3.2.2 Learning from a larger corpus

The unsupervised learning approaches investigated in this thesis have been applied to

dialog corpora that are quite small. The limitation came from the amount of annotated

data. Even though all the learning algorithms are unsupervised, reference annotation is

still required in order to evaluate the performance of the proposed algorithms. More

dialog data should improve learning accuracy as it reduces a sparse data problem that the

statistical learning approaches used in this thesis have encountered. Unsupervised

learning algorithms proposed in this thesis and an efficient annotation tool can expedite

the annotation process. Human-annotated data can be obtained by correcting the form-

based dialog structure components that the learning algorithm predicted. It is also

interesting to see the performance gain each learning algorithm can achieve when more

dialog data is available. In addition to the learning accuracy on a specific data set,

different learning algorithms can be compared in terms of the steepness in their learning

curve.

Chapter 7: Conclusion

288

7.3.2.3 Exploring the use of supervised learning algorithms

The investigation in this thesis focuses mainly on unsupervised learning algorithms as

the target domain-specific information (i.e. a list of concepts and sub-tasks) has not been

specified and needs to be inferred from in-domain dialogs. Nevertheless, for a

comparison purpose, it is interesting to see how well an unsupervised learning approach

performs compared to a supervised learning approach on the same dialog structure

acquisition task.

Some supervised learning techniques can be applied to the domain knowledge

acquisition problem if these learning algorithms are trained on dialog data from a

different domain, or if the target dialog structure components are not utilized in the

training. For example, a supervised segmentation algorithm trained on an air travel

domain can be used to identify sub-task boundaries of dialogs in a meeting domain.

Nevertheless, the performance of this supervised algorithm is also depended on the

similarity between the domain that it is trained from and the domain that it is applied to.

If the characteristics of both domains are similar and the learning algorithm uses the

features which are a good indicator in both domains, the performance of the algorithm on

both domains should not be much different. On the other hand, if the characteristics of

both domains are different, cross-domain performance may not be as good due to the

mismatch. It is more difficult to apply a supervised learning algorithm to the clustering

task across domains than to apply it to the segmentation task. In addition to the possible

different in domain characteristics, the sets of labels (e.g. the list of concepts) are also

different. Moreover, some concepts that look similar might have different roles in

different domains. For instance, the numbers “one” to “nine” are quantity in one domain

but are hour_number in another domain.

For the problem of concept clustering, it can also be considered as coordinate term

classification (coordinate terms are words that have the same hypernym) and can utilize

some existing supervised algorithms. A coordinate term classifier (Snow et al., 2005,

2006) was trained on information in the WordNet lexicon database to identified

coordinate terms in a given data set such as newswire. By using this algorithm we should

be able to identify coordinate terms, which are words that belong to the same concept,

from both in-domain conversations and additional text corpora which are related to the

domain of interest such as related information from the web. Other supervised learning

approaches such as named entity extraction and semantic role labeling which were

trained on standard corpora, for example, PropBank (Palmer et al., 2005) for semantic

role labeling, can be used to extract useful features for concept identification and

Chapter 7: Conclusion

289

clustering. For instance, words that are classified as the same entity type, or words that

have the same semantic role for the same verb are more likely to belong to the same

concept.

A semi-supervised learning approach trained on in-domain data might be more

efficient than a supervised learning approach trained on cross-domain data. For a semi-

supervised learning, a small number of annotated instances are provided. For instance, a

couple of concept instances can be annotated and then use as seeds in the concept

clustering algorithm. The algorithm proposed by Zhu et al. (2003) is one example of a

semi-supervised algorithm. For information-accessing tasks, information from the

backend database is a very useful resource for acquiring domain-specific information.

However, the design of the database, such as the list of fields, may not correspond

perfectly to the domain-specific information actually communicated in human-human

conversations. The information from the database can be used as annotated instances for

a semi-supervised learning approach.

Incorporating human feedback into the learning process should also improve the

learning performance. Unsupervised learning can be used first to explore unannotated

data. If additional knowledge from a human is required, active learning will be applied to

select the most informative questions. This approach will require only a minimal amount

of human annotation.

7.3.3 Implementing a dialog system from acquired domain knowledge

Since the data-driven approach presented in this thesis could potentially reduce

human effort in developing a new task-oriented dialog system, it should be implemented

in a practical dialog system. In order to do so, the learning approaches of all dialog

structure components need to be put together into a completed learning system. A human

should also be included in the loop to correct any learning mistake that the system might

produce. This process includes putting all the learning approaches into a single

framework; streamlining all the parts that require human supervision and providing a

helpful interface for annotating the data; presenting the result of the learning system in a

systematic way and optionally allowing a human to revise the result. This may require a

slight modification on the learning approaches to make all of them fit together.

290

References

K. Aas and L. Eikvil. 1999. Text Categorisation: A Survey, Technical Report NR 941,

Norwegian Computing Center.

S. Abney, S. Flickenger, C. Gdaniec, C. Grishman, P. Harrison, D. Hindle, R. Ingria, F.

Jelinek, J. Klavans, M. Liberman, M. Marcus, S. Roukos, B. Santorini, and T.

Strzalkowski. 1991. Procedure for quantitatively comparing the syntactic coverage of

English grammars. In E. Black (Ed.), Proceedings of a workshop on Speech and

natural language, pp. 306-311. Pacific Grove, California, United States: Morgan

Kaufmann Publishers Inc.

J. Alexandersson. 1995. Plan Recognition in Verbmobil. In Proceedings of the IJCAI-95

Workshop on the Next Generation of Plan Recognition Systems. Montreal, Canada.

J. Alexandersson, E. Maier, and N. Reithinger. 1995. A robust and efficient three-layered

dialogue component for a speech-to-speech translation system. In Proceedings of the

seventh conference on European chapter of the Association for Computational

Linguistics, pp. 188-193. Dublin, Ireland: Morgan Kaufmann Publishers Inc.

J. Alexandersson and N. Reithinger. 1995. Designing the Dialogue Component in a

Speech Translation System A Corpus Based Approach. In Proceedings of the 9th

Twente Workshop on Language Technology: Corpus-Based Approaches to Dialogue

Modelling (TWLT9), pp. 35-43. Enschede, the Netherlands.

J. Alexandersson and N. Reithinger. 1997. Learning Dialogue Structures From A Corpus.

In Proceedings of EuroSpeech-97. Rhodes, Greece.

J. F. Allen and C. R. Perrault. 1980. Analyzing intention in utterances. Artificial

Intelligence, 15:143-178.

J. F. Allen, L. K. Schubert, G. Ferguson, P. Heeman, C. H. Hwang, T. Kato, M. Light, N.

G. Martin, B. W. Miller, M. Poesio, and a. D. R. Traum. 1995. The TRAINS project:

a case study in building a conversational planning agent. Journal of Experimental &

Theoretical Artificial Intelligence, 7(1):7 - 48.

A. H. Anderson, M. Bader, E. G. Bard, E. Boyle, G. Doherty, S. Garrod, S. Isard, J.

Kowtko, J. McAllister, J. Miller, C. Sotillo, H. Thompson, and R. Weinert. 1991. The

HCRC map task corpus. Language and Speech, 34(4):351-366.

J. Arguello and C. P. Rosé. 2006. Topic Segmentation of Dialogue. In Proceedings of

Workshop on Analyzing Conversations in Text and Speech.

N. Asher. 1993. Reference to Abstract Objects in Discourse. Dordrecht, the Netherlands:

Kluwer Academic Publishers.

H. Aust, M. Oerder, F. Seide, and V. Steinbiss. 1995. The Philips automatic train

timetable information system. Speech Communication, 17(3-4):249-262.

S. Banerjee, J. Cohen, T. Quisel, A. Chan, Y. Patodia, Z. A. Bawab, R. Zhang, A. Black,

R. Stern, R. Rosenfeld, A. I. Rudnicky, P. Rybski, and M. Veloso. 2004. Creating

Multi-Modal, User-Centric Records of Meetings with the Carnegie Mellon Meeting

Recorder Architecture. In Proceedings of the ICASSP 2004 Meeting Recognition

Workshop. Montreal, Canada.

291

S. Banerjee and A. I. Rudnicky. 2006. You Are What You Say: Using Meeting

Participants’ Speech to Detect their Roles and Expertise. In the NAACL-HLT 2006

workshop on Analyzing Conversations in Text and Speech. New York, NY.

S. Bangalore, G. D. Fabbrizio, and A. Stent. 2006. Learning the Structure of Task-Driven

Human-Human Dialogs. In Proceedings of COLING/ACL 2006. Sydney, Australia.

S. Bangalore, D. Hakkani-Tür, and G. Tur. 2006. Introduction to the Special Issue on

Spoken Language Understanding in Conversational Systems. Speech

Communication: Special Issue on Spoken Language Understanding, 48(3-4):233-238.

R. Barzilay and L. Lee. 2004. Catching the Drift: Probabilistic Content Models, with

Applications to Generation and Summarization. In HLT-NAACL 2004: Proceedings

of the Main Conference, pp. 113-120. Boston, MA.

D. Beeferman, A. Berger, and J. Lafferty. 1999. Statistical Models for Text

Segmentation. Machine Learning, 34(1-3):177-210.

C. Bennett, A. F. Llitjós, S. Shriver, A. Rudnicky, and A. W. Black. 2002. Building

Voicexml-based applications. In Proceedings of ICSLP-2002. Denver, Colorado.

E. Bilange. 1991. A task independent oral dialogue model. In Proceedings of the fifth

conference on European chapter of the Association for Computational Linguistics,

pp. 83-88. Berlin, Germany: Association for Computational Linguistics.

D. Bohus and A. Rudnicky. 2002. LARRI: A Language-Based Maintenance and Repair

Assistant. In Proceedings of IDS-2002. Kloster Irsee, Germany.

D. Bohus and A. I. Rudnicky. 2003. RavenClaw: Dialog Management Using Hierarchical

Task Decomposition and an Expectation Agenda. In Proceedings of Eurospeech2003.

Geneva, Switzerland.

T. Brants. 2000. Inter-Annotator Agreement for a German Newspaper Corpus. In

Proceedings of LREC2000. Athens, Greece.

M. E. Bratman. 1987. Intention, Plans, and Practical Reason. Cambirdge, MA: Harvard

University Press.

M. E. Bratman, D. J. Israel, and M. E. Pollack. 1988. Plans And Resource-Bounded

Practical Reasoning.

E. Brill. 1994. Some advances in rule-based part of speech tagging. In Proceedings of the

Twelfth National Conference on Artificial Intelligence (AAAI-94). Seattle, WA.

P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra, and J. C. Lai. 1992. Class-

based n-gram models of natural language. Comput. Linguist., 18(4):467-479.

T. Bub and J. Schwinn. 1996. VERBMOBIL: the evolution of a complex large speech-to-

speechtranslation system. In Proceedings of ICSLP-96, pp. 2371-2374. Philadelphia,

PA.

S. Carberry. 1990. Plan Recognition in Natural Language Dialogue. Cambridge, MA:

MIT Press.

J. Carletta. 1996. Assessing agreement on classification tasks the kappa statistic.

Computational Linguistics, 22(2):249-254.

J. Carletta, A. Isard, S. Isard, J. C. Kowtko, G. Doherty-Sneddon, and A. H. Anderson.

1996. HCRC Dialogue Structure Coding Manual.

292

J. Carletta, S. Isard, G. Doherty-Sneddon, A. Isard, J. C. Kowtko, and A. H. Anderson.

1997. The reliability of a dialogue structure coding scheme. Computational

Linguistics, 23(1):13-31.

S. F. Chen and J. Goodman. 1996. An empirical study of smoothing techniques for

language modeling. In Proceedings of the 34th annual meeting on Association for

Computational Linguistics, pp. 310-318. Santa Cruz, California: Association for

Computational Linguistics.

A. Chotimongkol and A. Rudnicky. 2002. Automatic Concept Identification in Goal-

Oriented Conversations. In Proceedings of ICSLP 2002. Denver, Colorado.

G. E. Churcher, E. S. Atwell, and C. Souter. 1997. Dialogue Management Systems: a

Survey and Overview, Technical Report 97.6, School of Computer Studies, University

of Leeds.

M. Civit, A. Ageno, B. Navarro, N. Bufi, and M. A. Marti. 2003. Qualitative and

quantitative analysis of annotators' agreement in the development of Cast3LB. In

Proceedings of the Second Workshop on Treebanks and Linguistic Theories. Vaxjo,

Sweden.

P. R. Cohen and C. R. Perrault. 1979. Elements of a plan-based theory of speech acts.

Cognitive Science, 3:177-212.

R. Cole, J. Mariani, H. Uszkoreit, G. B. Varile, A. Zaenen, A. Zampolli, and V. Zue.

1997. Survey of the state of the art in human language technology: Cambridge

University Press.

P. C. Constantinides, S. Hansma, C. Tchou, and A. I. Rudnicky. 1998. A schema-based

approach to dialog control. In Proceedings of ICSLP-1998.

M. Core and J. Allen. 1997. Coding Dialogs with the DAMSL Annotation Scheme. In

AAAI Fall Symposium on Communicative Action in Humans and Machines. Boston,

MA.

D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey. 1992. Scatter/Gather: a

cluster-based approach to browsing large document collections. In Proceedings of the

15th annual international ACM SIGIR conference on Research and development in

information retrieval, pp. 318-329. Copenhagen, Denmark: ACM Press.

I. Dagan, L. Lee, and F. Pereira. 1999. Similarity-based models of word cooccurence

probabilities. Machine Learning, 34(1):43-69.

N. Dahlbäck, A. Jönsson, and L. Ahrenberg. 1993. Wizard of Oz Studies -- Why and

How. Knowledge-Based Systems, 6(4):258-266.

M. H. Degroot. 1986. Probability and Statistics (Second ed.): Addison Wesley.

M. Denecke and A. Waibel. 1997. Dialogue Strategies Guiding Users to their

Communicative Goals. In Proceedings of Eurospeech97, pp. 1339-1342.

Rhodes,Greece.

R. Dhillon, S. Bhagat, H. Carvey, and E. Shriberg. 2004. Meeting Recorder Project:

Dialog Act Labeling Guide, Technical Report TR-04-002, International Computer

Science Institute.

H. Dybkjær, L. Dybkjær, and N. O. Bernsen. 1995. Design, Formalisation and Evaluation

of Spoken Language Dialogue. In Proceedings of the 9th Twente Workshop on

293

Language Technology: Corpus-Based Approaches to Dialogue Modelling (TWLT9),

pp. 67-82. Enschede, the Netherlands.

M. Eskenazi, A. Rudnicky, K. Gregory, P. Constantinides, R. Brennan, C. Bennett, and J.

Allen. 1999. Data Collection and Processing in the Carnegie Mellon Communicator.

In Proceedings of Eurospeech 1999. Budapest, Hungary.

B. D. Eugenio, P. W. Jordan, and L. Pylkkänen. 1998. The COCONUT project: Dialogue

Annotation Manual, ISP Technical Report 98-1. Pittsburgh, Pennsylvania, University

of Pittsburgh.

J. Feng, S. Bangalore, and M. Rahim. 2003. WebTalk: mining Websites for automatically

building dialog systems. In IEEE ASRU '03, pp. 168-173. St. Thomas, U.S. Virgin

Islands.

G. Ferguson, J. Allen, and B. Miller. 1996. Trains-95: Towards a mixed-initiative

planning assistant. In Proceedings of the Third Conference on Artificial Intelligence

Planning Systems (AIPS-96). Edinburgh, Scotland.

A. Ferrieux and M. D. Sadek. 1994. An Efficient Data-Driven Model for Cooperative

Spoken Dialogue. In Proceedings of ICSLP 1994. Yokohama, Japan.

M. Finke, M. Lapata, A. Lavie, L. Levin, L. M. Tomokiyo, T. Polzin, K. Ries, A. Waibel,

and K. Zechner. 1998. CLARITY: Inferring Discourse Structure from Speech. In

Proceedings of Workshop on Applying Machine Learning to Discourse Processing.

AAAI-1998 Spring Symposium Series.

D. H. Fisher. 1987. Knowledge Acquisition Via Incremental Conceptual Clustering.

Machine Learning, 2(2):139-172.

G. Flammia and V. Zue. 1995. Empirical evaluation of human performance and

agreement in parsing discourse constituents in spoken dialogue. In Proceedings of

Eurospeech 1995. Madrid, Spain.

R. Freedman. 2000. Plan-based dialogue management in a physics tutor. In Proceedings

of the sixth conference on Applied natural language processing, pp. 52-59. Seattle,

Washington.

M. Galley, K. McKeown, E. Fosler-Lussier, and H. Jing. 2003. Discourse segmentation

of multi-party conversation. In Proceedings of the 41st Annual Meeting on

Association for Computational Linguistics, Vol. 1, pp. 562-569. Sapporo, Japan:

Association for Computational Linguistics.

A. Garland, N. Lesh, and C. Sidner. 2001. Learning Task Models for Collaborative

Discourse. In Proceedings of Workshop on Adaptation in Dialogue Systems, NAACL

'01. Pittsburgh, Pennsylvania.

M. P. Georgeff and F. F. Ingrand. 1989. Decision-Making in an Embedded Reasoning

System. In Proceedings of the Eleventh International Joint Conference on Artificial

Intelligence. Detroit, MI.

J. J. Godfrey, E. C. Holliman, and J. McDaniel. 1992. SWITCHBOARD: telephone

speech corpus for research and development. In Proceedings of ICASSP'92, pp. 517-

520.

J. C. Gorman, N. J. Cooke, P. W. Foltz, P. A. Kiekel, and M. J. Martin. 2003. Evaluation

of Latent Semantic Analysis-based measures of team communications content. In

294

Proceedings of the Human Factors and Ergonomic Society 47th Annual Meeting,

(HFES 2003).

D. Gross, J. F. Allen, and D. R. Traum. 1993. The TRAINS 91 Dialogues, TRAINS

Technical Note 92-1, Computer Science Department, University of Rochester.

B. J. Grosz. 1978. Discourse analysis. In D. Walker (Ed.), Understanding Spoken

Language, pp. 235-268. North-Holland, New York: Elsevier.

B. J. Grosz and S. Kraus. 1996. Collaborative plans for complex group action. Artificial

Intelligence, 86(2):269-357.

B. J. Grosz, M. E. Pollack, and C. L. Sidner. 1989. Discourse. In Michael I. Posner (Ed.),

Foundations of cognitive science, pp. 437-467. The MIT Press.

B. J. Grosz and C. L. Sidner. 1986. Attention, intentions, and the structure of discourse.

Computational Linguistics, 12(3):175-204.

B. J. Grosz and C. L. Sidner. 1990. Plans for Discourse. In Philip R. Cohen and Jerry L.

Morgan (Eds.), Intentions in Communication, pp. 417-444. Cambridge, MA: MIT

Press.

N. Gupta, G. Tür, D. Hakkani-Tür, S. Bangalore, G. Riccardi, and M. Rahim. 2006. The

AT&T Spoken Language Understanding System. IEEE Transactions on Speech and

Audio Processing, 14(1):213-222.

H. Hardy, K. Baker, H. Bonneau-Maynard, L. Devillers, S. Rosset, and T. Strzalkowski.

2003. Semantic and Dialogic Annotation for Automated Multilingual Customer

Service. In Proceedings of Eurospeech 2003. Geneva, Switzerland.

H. Hardy, A. Biermann, R. B. Inouye, A. Mckenzie, T. Strzalkowski, C. Ursu, N. Webb,

and M. Wu. 2004. Data-Driven Strategies for an Automated Dialogue System. In

Proceedings of ACL '04. Barcelona, Spain.

A. G. Hauptmann and A. I. Rudnicky. 1988. Talking to computers: an empirical

investigation. International Journal of Man-Machine Studies, 28(6):583-604.

M. A. Hearst. 1997. TextTiling: segmenting text into multi-paragraph subtopic passages.

Computational Linguistics, 23(1):33-64.

J. Hirschberg and D. Litman. 1993. Empirical studies on the disambiguation of cue

phrases. Computational Linguistics, 19(3):501-530.

J. R. Hobbs. 1996. On the Relation between the Informational and Intentional

Perspectives on Discourse. In Eduard Hovy and Donia Scott (Eds.), Computational

and Conversational Discourse: Papers from the NATO Advanced Research Working

Group on Burning Issues in Discourse, pp. 139–157. Berlin: Springer Verlag.

A. Jönsson and N. Dahlbäck. 1988. Talking to a Computer is not Like Talking to Your

Best Friend. In Proceedings of The first Scandinavian Conference on Artificial

Intelligence. Tromsø, Norway.

D. Jurafsky, R. Bates, N. Coccaro, R. Martin, M. Meteer, K. Ries, E. Shriberg, A.

Stolcke, P. Taylor, and C. V. Ess-Dykema. 1997. Automatic Detection of Discourse

Structure for Speech Recognition and Understanding. In Proceedings of IEEE

Workshop on Speech Recognition and Understanding. Santa Barbara.

295

H. Kamp. 1981. A Theory of Truth and Semantic Representation. In J. Groenendijk, T.

Janssen and M. Stokhof (Eds.), Formal Methods in the Study of Language, pp. 277-

322. Amsterdam: Mathematisch Centrum.

H. Kamp and U. Reyle. 1993. From Discourse to Logic: Introduction to Modeltheoretic

Semantics of Natural Language, Formal Logic and Discourse Representation Theory.

Dordrecht: Kluwer.

M. Karahan, D. Hakkani-Tür, G. Riccardi, and G. Tur. 2003. Combining Classifiers for

Spoken Language Understanding. In Proceedings of ASRU-2003, 8th biannual IEEE

workshop on Automatic Speech Recognition and Understanding. U.S. Virgin Islands.

P. Kingsbury, S. Strassel, C. McLemore, and R. McIntyre. 1997. CALLHOME American

English Transcripts. Philadelphia: Linguistic Data Consortium.

I. Kruijff-Korbayová, E. Karagjiosova, K. J. Rodríguez, and S. Ericsson. 2003. A

Dialogue System with Contextually Appropriate Spoken Output Intonation. In

Proceedings of the Demo Sessions of the 10th Conference of the European Chapter of

the Association for Computational Linguistics (EACL'03). Budapest, Hungary.

H.-K. J. Kuo and C.-H. Lee. 2001. Simplifying Design Specification For Automatic

Training Of Robust Natural Language Call Router. In Proceedings of ICASSP-2001.

Salt Lake City,. Utah.

L. Lambert and S. Carberry. 1991. A tripartite plan-based model of dialogue. In

Proceedings of the 29th annual meeting on Association for Computational

Linguistics, pp. 47-54. Berkeley, California: Association for Computational

Linguistics.

L. Lambert and S. Carberry. 1992. Modeling negotiation subdialogues. In Proceedings of

the 30th annual meeting on Association for Computational Linguistics, pp. 193-200.

Newark, Delaware: Association for Computational Linguistics.

B. Larsen and C. Aone. 1999. Fast and effective text mining using linear-time document

clustering. In Proceedings of the fifth ACM SIGKDD international conference on

Knowledge discovery and data mining, pp. 16-22. San Diego, California, United

States: ACM Press.

L. B. Larsen and A. Baekgaard. 1994. Rapid Prototyping of a Dialogue System Using a

Generic Dialogue Development Platform. In proceedings of ICSLP-1994, pp. 919-

922. Yokohama, Japan.

S. Larsson and D. R. Traum. 2000. Information state and dialogue management in the

TRINDI dialogue move engine toolkit. Natural Language Engineering, 6(3-4):323-

340.

L. Levin, A. Thyme-Gobbel, A. Lavie, K. Ries, and K. Zechner. 1998. A Discourse

Coding Scheme for Conversational Spanish. In Proceedings of ICSLP-98, pp. 2335-

2338. Sydney, Australia.

G.-A. Levow. 2004. Prosodic Cues to Discourse Segment Boundaries in Human-

Computer Dialogue. In Proceedings of the 5th SIGdial Workshop on Discourse and

Dialogue, pp. 93-96. Boston, MA.

I. Lewin, M. Russell, D. Carter, S. Browning, K. Ponting, and S. Pulman. 1993. A

speech-based route enquiry system built from general-purpose components. In

296

Proceedings of the 3rd European Conference on Speech Communication and

Technology (Eurospeech 1993). Berlin, Germany.

D. Lin. 1998. Automatic retrieval and clustering of similar words. In Proceedings of the

17th international conference on Computational linguistics (COLING-ACL), Vol. 2,

pp. 768-774. Montreal, Quebec, Canada: Association for Computational Linguistics.

D. Litman and J. Allen. 1987. A Plan Recognition Model for Subdialogues in

Conversations. Cognitive Science, 11(2):163-200.

K. E. Lochbaum. 1998. A collaborative planning model of intentional structure.

Computational Linguistics, 24(4):525-572.

W. C. Mann and S. A. Thompson. 1988. Rhetorical Structure Theory: Toward a

functional theory of text organization. Text, 8(3):243-281.

D. Marcu. 1999. A decision-based approach to rhetorical parsing. In Proceedings of the

37th annual meeting of the Association for Computational Linguistics on

Computational Linguistics, pp. 365-372. College Park, Maryland: Association for

Computational Linguistics.

D. Marcu, E. Amorrortu, and M. Romera. 1999. Experiments in constructing a corpus of

discourse trees. In Proceedings of ACL Workshop on Standards and Tools for

Discourse Tagging, pp. 48-57. College Park, MD.

M. F. McTear. 2002. Spoken dialogue technology: enabling the conversational user

interface. ACM Computing Surveys, 34(1):90-169.

G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller. 1990. Introduction to

WordNet: An On-line Lexical Database. International Journal of Lexicography,

3(4):235-244.

J.-U. Möller. 1998. Using unsupervised learning for engineering of spoken dialogues. In

Proceedings of AAAI 1998 Spring Symposium on Applying Machine Learning to

Discourse Processing.

J. D. Moore and M. E. Pollack. 1992. A problem for RST: the need for multi-level

discourse analysis. Comput. Linguist., 18(4):537-544.

J. D. Moore and P. Wiemer-Hastings. 2003. Discourse in Computational Linguistics and

Articial Intelligence. In Arthur C. Graesser, Morton Ann Gernsbacher and Susan R.

Goldman (Eds.), Handbook of Discourse Processes, pp. 439-487. Lawrence Erlbaum

Associates.

M. Moser and J. D. Moore. 1997. On the correlation of cues with discourse structure:

Results from a corpus study. In. Submitted for publication.

National Institute of Standards and Technology (NIST). 1998. The Topic Detection and

Tracking Phase 2 (TDT2) Evaluation Plan Version 3.7.

M. Palmer, D. Gildea, and P. Kingsbury. 2005. The Proposition Bank: An Annotated

Corpus of Semantic Roles. Comput. Linguist., 31(1):71-106.

A. Pargellis, E. Fosler-Lussier, A. Potamianos, and C.-H. Lee. 2001. Metrics for

Measuring Domain Independence of Semantic Classes. In The proceedings of the

Seventh European Conference on Speech Communication and Technology

(Eurospeech '01). Aalborg, Denmark.

297

L. Polanyi. 1996. The Linguistic Structure of Discourse, Technical Report CSLI-96-200.

Stanford CA, Center for the Study of Language and Information, Stanford University.

M. E. Pollack. 1992. The uses of plans. Artificial Intelligence, 57(1):43-68.

M. Purver, P. Ehlen, and J. Niekrasz. 2006. Detecting action items in multi-party

meetings: Annotation and initial experiments. In Steve Renals, Samy Bengio and

Jonathan Fiscus (Eds.), Machine Learning for Multimodal Interaction: Third

International Workshop, MLMI 2006, Bethesda, MD, USA, May 1-4, 2006, Revised

Selected Papers, Vol. 4299, pp. 200-211. Bethesda, MD: Springer.

E. Rasmussen. 1992. Clustering Algorithms. In William B. Frakes and Ricardo Baeza-

Yates (Eds.), Information Retrieval: Data Structures & Algorithms. Prentice Hall.

A. Raux, B. Langner, A. W. Black, and M. Eskenazi. 2003. LET'S GO: Improving

Spoken Dialogue Systems for the Elderly and Non-natives. In Proceedings of

Eurospeech-2003. Geneva, Switzerland.

G. Riccardi and S. Bangalore. 1998. Automatic Acquisition of Phrase Grammars for

Stochastic Language Modeling. In Proceedings Of the 6th Workshop on Very Large

Corpora, pp. 186-198. Montreal, Canada.

C. Rich, C. L. Sidner, and N. Lesh. 2001. Collagen: applying collaborative discourse

theory to human-computer interaction. AI Magazine, 22(4):15-25.

C. P. Rosé, D. Bhembe, S. Siler, R. Srivastava, and K. VanLehn. 2003. The Role of Why

Questions in Effective Human Tutoring. In Proceedings of Artificial Intelligence in

Education 2003. Sidney , Australia .

C. P. Rosé, B. D. Eugenio, L. S. Levin, and C. V. Ess-Dykema. 1995. Discourse

processing of dialogues with multiple threads. In Proceedings of the 33rd annual

meeting on Association for Computational Linguistics, pp. 31-38. Cambridge,

Massachusetts: Association for Computational Linguistics.

C. P. Rosé and B. S. Hall. 2004. A Little Goes a Long Way: Quick Authoring of

Semantic Knowledge Sources for Interpretation. In Proceedings of the Second

International Workshop on Scalable Natural Language Understanding. Boston, MA.

A. I. Rudnicky, E. Thayer, P. Constantinides, C. Tchou, R. Shern, K. Lenzo, X. W., and

A. Oh. 1999. Creating natural dialogs in the Carnegie Mellon Communicator system.

In Proceedings of Eurospeech 1999. Budapest, Hungary.

M. D. Sadek, P. Bretier, and F. Panaget. 1997. ARTIMIS: Natural Dialogue Meets

Rational Agency. In Proceedings of 15th International Joint Conference on Artificial

Intelligence, (IJCAI-97), pp. 1030–1035. San Francisco, CA: Morgan Kaufmann

Publishers.

J. R. Searle. 1975. A taxonomy of illocutionary acts. In Keith Gunderson (Ed.),

Language, Mind and Knowledge, Minnesota Studies in the Philosophy of Science,

Vol. VII. Minneapolis: University of Minnesota Press.

F. Sebastiani. 2002. Machine learning in automated text categorization. ACM Computing

Surveys, 34(1):1-47.

J. M. Sinclair and M. Coulthard. 1975. Towards an analysis of Discourse: The English

used by teachers and pupils: Oxford University Press.

298

S. Singh, D. Litman, M. Kearns, and M. Walker. 2002. Optimizing Dialogue Managment

with Reinforcement Learning: Experiments with the NJFun System. Journal of

Artificial Intelligence Research, 16:105-133.

K.-C. Siu and H. M. Meng. 1999. Semi-Automatic Acquisition of Domain-Specific

Semantic Structures. In Proceedings of Eurospeech-1999. Budapest, Hungary.

R. W. Smith and D. R. Hipp. 1994. Spoken natural language dialog systems: a practical

approach. New York, NY: Oxford University Press.

R. Snow, D. Jurafsky, and A. Y. Ng. 2005. Learning syntactic patterns for automatic

hypernym discovery. In Proceedings of Advances in Neural Information Processing

Systems. Vancouver, Canada.

R. Snow, D. Jurafsky, and A. Y. Ng. 2006. Semantic taxonomy induction from

heterogenous evidence. In Proceedings of the 21st International Conference on

Computational Linguistics and the 44th annual meeting of the ACL, pp. 801-808.

Sydney, Australia: Association for Computational Linguistics.

B. Snyder and M. Palmer. 2004. The English all-words task. In Proceedings of Senseval-

3: Third International Workshop on the Evaluation of Systems for the Semantic

Analysis of Text, pp. 41-43. Barcelona, Spain.

M. Steinbach, G. Karypis, and V. Kumar. 2000. A comparison of document clustering

techniques. In KDD Workshop on Text Mining.

A. Stent. 2000. Rhetorical Structure in Dialog. In Proceedings of the 2nd International

Natural Language Generation Conference (INLG'2000).

A. Stent, R. Prasad, and M. Walker. 2004. Trainable Sentence Planning for Complex

Information Presentation in Spoken Dialog Systems. In Proceedings of ACL 2004.

Barcelona, Spain.

A. Stolcke, N. Coccaro, R. Bates, P. Taylor, C. V. Ess-Dykema, K. Ries, E. Shriberg, D.

Jurafsky, R. Martin, and M. Meteer. 2000. Dialogue act modeling for automatic

tagging and recognition of conversational speech. Computational Linguistics,

26(3):339-373.

M. Swerts and M. Ostendorf. 1997. Prosodic and lexical indications of discourse

structure in human-machine interactions. Speech Communication, 22(1):25-41.

M. Taboada and W. C. Mann. 2006. Rhetorical Structure Theory: looking back and

moving ahead. Discourse Studies, 8(3):423-459.

D. R. Traum, P. Bohlin, J. Bos, S. Ericsson, S. Larsson, I. Lewin, C. Matheson, and D.

Milward. 2000. Dialogue Dynamics and Levels of Interaction, Technical Report

Trindi Project Deliverable D3.1, TRINDI.

D. R. Traum and E. A. Hinkelman. 1992. Conversation Acts in Task-Oriented Spoken

Dialogue. Computational Intelligence, 8(3):575--599.

D. Tsovaltzi and E. Karagjosová. 2004. A View on Dialogue Move Taxonomies for

Tutorial Dialogues. In Proceedings of The 5th SIGdial Workshop on Discourse and

Dialogue. Cambridge, MA.

G. Tür, A. Stolcke, D. Hakkani-Tür, and E. Shriberg. 2001. Integrating prosodic and

lexical cues for automatic topic segmentation. Computational Linguistics, 27(1):31-

57.

299

D. Vilar, M. J. Castro, and E. Sanchis. 2003. Connectionist Classification and Specific

Stochastic Models in the Understanding Process of a Dialogue System. In

Proceedings of Eurospeech 2003.

M. Woszczyna and A. Waibel. 1994. Inferring linguistic structure in spoken language. In

Proceedings of the International Conference on Spoken Language Processing

(ICSLP).

J. P. Yamron, I. Carp, L. Gillick, S. Lowe, and P. v. Mulbregt. 1998. A hidden Markov

model approach to text segmentation and event tracking. In Proceedings of the IEEE

Conference on Acoustics, Speech, and Signal Processing, Vol. 1, pp. 333-336.

Seattle, WA.

Y. Yang and X. Liu. 1999. A re-examination of text categorization methods. In

Proceedings of the 22nd annual international ACM SIGIR conference on Research

and development in information retrieval, pp. 42-49. Berkeley, California, United

States: ACM Press.

N. Yankelovich. 1997. Using Natural Dialogs as the Basis for Speech Interface Design.

In Susann Luperfoy (Ed.), Automated Spoken Dialog Systems. Cambridge, MA: MIT

Press.

X. Zhu, J. Lafferty, and Z. Ghahramani. 2003. Combining Active Learning and Semi-

Supervised Learning Using Gaussian Fields and Harmonic Functions. In Proceedings

of ICML 2003 workshop on The Continuum from Labeled to Unlabeled Data in

Machine Learning and Data Mining.

V. Zue, S. Seneff, J. R. Glass, J. Polifroni, C. Pao, T. J. Hazen, and L. Hetherington.

2000. JUPITER: A Telephone-Based Conversational Interface for Weather

Information. IEEE Transactions on Speech and Audio Processing, 8(1):85-96.

