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Abstract

The web contains a tremendous number of data sets presented visually,
which computers cannot currently read. Most people, however, understand
the data sets with little difficulty, suggesting the potential for applying the
techniques of crowd-sourcing to the problem of understanding web data sets.
In this thesis we study several issues with respect to crowd-sourcing a col-
lection of wrappers, or small programs mapping data sets to their logical
structure, from a crowd of end users. We pay special attention to the major-
ity of users who are not programmers.

We present a prototype system, Mixer, that allows end users to demon-
strate and execute repetitive ad hoc data retrieval actions over multiple data
sources. The evaluation of the prototype suggests that end users, under the
strong assumption that input to the individual query systems, as well as their
output, is fully understood, are able to construct and combine data from
multiple data sources. Furthermore we present another prototype system,
SmartWrap showing that end users, explicitly including non programmers,
can demonstrate actions sufficient to construct for a data set a wrapper, i.e.
the instructions needed to understand the data set. A pilot crowd is able to
construct wrappers for most requested data sets, but gives no guidance that
the wrapped data sets are useful or relevant to anyone. To narrow the search
for relevant data sets we turn to an audience that theory predicts will make
use of additional structure in web pages: blind people. We present the theory
and the results of a preliminary study demonstrating the concrete benefits
non visual users of the web stand to gain from increased structure in web
pages and more specifically from the introduction of web tables in place of
template-driven visual data sets.



Chapter 1

Introduction

There is a vast amount of structured information available in data sets on
the internet, but most of it is not in machine-readable form. Instead, the
information is encoded in a way that is easily decoded visually by web users.
In this thesis, we explore several avenues for gathering and using structured
data sets via a crowd, and present several prototype systems we have built
to investigate those avenues.

At a high level there are three potential paths to a web where a large pro-
portion of data sets are machine readable. First, web authors could encode
machine-readable metadata in the pages. This approach underlay much of
the work on the Semantic Web. While the raw amount of structured meta-
data available on the web appears to be growing [76], the web itself is likely
growing at an even faster rate. One reason many web authors do not choose
to embed metadata in their pages is that they do not perceive any benefit,
monetary or social, in doing so. A second path is for computer systems to
automatically markup web data sets with semantic information. Unfortu-
nately this is currently beyond the current state of the art. In Section 2.5,
we detail some of the results from the literature describing the difficulties and
limitations of current fully automatic approaches. A third approach, studied
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here, is to attempt to connect with a crowd of third-party internet users to
crowd-source a large number of wrappers.

A central concern in crowd-sourcing is understanding and leveraging the
motivations of the crowd in question. In this thesis we detail several proto-
type systems we have built and evaluated in an attempt to understand each
crowd’s potential for contributing to the global goal.

In Chapter 3 we describe the Mixer system, which allows nonprogrammers
to automate repetitive ad hoc information retrieval tasks over one or more
wrapped sites using Programming by Demonstration techniques. The system
was designed for users who had not acquired programming skills and did not
perceive constructing programs as part of their role. We evaluated the system
with a group of administrative assistants. We found that while they were able
to construct the desired result set with the tool, they struggled to connect
the tool conceptually with tasks they encountered outside the lab.

In Chapter 4 we describe the SmartWrap system, which allows nonpro-
grammers to create wrappers for web data sets by demonstrating the first
two rows of a spreadsheet-like interface. We evaluated the system first in the
lab, with a small group of participants, about half of whom had a zero expo-
sure to programming. We found that lab participants exhibited a high level
of success in constructing wrappers for the lab pages. A larger follow-up on
Mechanical Turk found that many turkers were able and willing to construct
wrappers for a relatively modest cost.

Bonnie Nardi [78] quotes the paradigmatic non-programmer1 as saying “I
didn’t have much time, so I did it the long way.” Mixer and SmartWrap were
attempts to extend programmatic capability to people lacking programming
training. Even when such users are able to understand the benefits of the
programs they construct, they struggle to connect those benefits to tasks

1The countersign from the compulsive programmer is “I would rather write programs
to help me write programs than write programs”
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they face in their daily lives. Although they may estimate that a tool such
as Mixer or SmartWrap could save them time on a given task, they perceive
these time savings as a risky proposition and instead choose to perform the
task in a familiar, risk-free but potentially more time-consuming manner.

Fundamentally, using and combining web data sets is not that difficult
for sighted web users. In the aggregate, users spend a lot of time on these
tasks in a way that is theoretically addressable by automation, but for each
individual task the time-savings are not appreciable.

In Chapter 5 we introduce the enTable system, which applies the efforts
of users of SmartWrap towards the problem of improving web accessibility
of data sets for blind internet users. In contrast to sighted users, blind web
users2 do perceive an appreciable difficulty in using the web as it is provided
by web authors. The literature, as detailed in Section 2.7.1, indicates that
using the web through a screen reader takes about 12 to 15 times as much
time as using the web visually. EnTable addresses a part of this discrepancy
by rewriting difficult, incomprehensible template layouts as simple tables.

In Chapter 6 we describe in greater detail the problems that the use of
templates cause for blind access to the web, and how enTable is designed to
address them.

Chapter 6 states the case why wrappers will, in theory, improve the sit-
uation for blind people on the web. The discrepancy between sighted and
non visual use of the web, however, is the result of many barriers for non
visual web use. Chapter 7 attempts to quantify the magnitude of the barrier
resulting from the use of templates to present data sets without machine-
readable metadata. Based on the performance of screen reader users on data
sets with and without appropriate metadata, we estimate that providing ma-
chine access to the structure may cut the time required for non visual access

2the same issues also affect low vision users to a different degree, but we focus here on
people who experience the web aurally, through a screen reader
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by as much as one half. As failure to include machine-readable metadata
inconveniences blind users to the extent demonstrated in Chapter 7, the in-
clusion of machine-readable metadata in web data sets served to American
citizens could potentially (depending on legal interpretations of the Ameri-
can Disabilities Act, which are beyond the scope of this thesis) be stipulated
in existing U.S. law.
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Chapter 2

Related Work

2.1 Forms and Spreadsheets

Malone et al [73] note the potential of semi-structured forms as a means of
expressing human practice and intention in a manner that is amenable to
agent assistance. Their work focuses on structuring email conversations so
that agents can assist in the coordination of human activities, essentially pro-
viding a mechanism for the agent to eavesdrop on the human communication.
VIO [109] complements Malone by providing the reverse: a form mechanism
whereby users are given insight into the actions of the agent, and hence the
opportunity to identify and repair agent errors.

Nardi and Miller [79] build on the work of Lewis and Olson [70] in singling
out spreadsheets, which can be viewed as frameworks for the creation of ad
hoc forms, as an emblematic context where people routinely “program”, in the
sense that they perform nontrivial computational behavior. Nardi and Miller
delineate several specific aspects of spreadsheets which render them particu-
larly acceptable to end user interviewees. First, the computational paradigm
of spreadsheets matches the way the end user conceptualizes the task; Nor-
man [81] characterizes this alignment as bridging the "Gulf of Execution"
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between the user’s conceptualization of the goal and the system’s formalism.
In particular, the high-level functions provided by the spreadsheet shield the
user from the difficult task of "synthesizing" the desired functionality from
simpler primitives. Secondly, spreadsheets compactly represent the entire
task in a single tabular view, often on a single screen.

Cypher [25], coordinating with a group of early adopters to develop a
real-world tool for web automation, reports that the administrative end users
indicated that the only input necessary was a humble CSV. This corroborates
the assertion that users feel comfortable with their ability to provide high-
quality curated spreadsheets – they were more concerned that the tool would
propagate unwelcome actions on the web than that the input CSV contained
flaws.

Google Fusion Tables [44] offers users a low-viscosity path from spread-
sheets to relations featuring more powerful database operations. Users can
simply upload existing spreadsheets into the cloud, and the system will guess
schema information for the uploaded table. When users discover a need to
execute complex queries, or joins, over their Fusion Tables, then they can
“pay” for it “as they go” [72]. That is, they can perform a small amount of
overhead work to enable those operations; users who do not need (or do not
yet know that they need) database operations can continue to treat their ta-
bles as simply spreadsheets in the cloud. Our work complements this effort,
providing a service to the subclass of users who create spreadsheets from web
data, in exchange for which the users provide insight into the content and
composition of the spreadsheets.

2.2 End User Programming

Nardi [78] characterizes end users as users who eschew tasks, such as pro-
gramming, which they perceive as irrelevant or distracting to the task at
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hand: “I didn’t have much time, so I did it the long way.” She poses this
standpoint on the other extreme of a spectrum from that of inveterate pro-
grammers, who say “I would rather write programs to help me write programs
than write programs.” In Nardi’s view, an end user is someone who perceives
the task at hand as the job, and does not view automating the task as part
of that job.

Rode et al [89] provide empirical support for this view in an examination
of automation in the household. They find that women can successfully set
an oven to cook a meal at a selected temperature at a later time, that men
can successfully set a VCR to record a program on a selected channel at
a later time, and that each failed at the alternate task. Abstractly, both
devices allow users to instruct a device to turn on at a specified time and
run for a specified duration, and to set the state of a specific feature: the
channel of the VCR and the temperature of the oven.

Ko et al [66] reiterate the distinction between end users and novice pro-
grammers, defining end user software engineering as software creation per-
formed by anyone for idiosyncratic or ad hoc purposes. This definition sug-
gests that end user programming systems can be helpful even for professional
programmers, who might wish to avoid devoting programming effort towards
“one-off” tasks.

2.3 Programming by Demonstration

The goal of a programming-by-demonstration (PBD) system is to produce a
program based on a handful of demonstrations of the output of the program.
There are several challenges surrounding successful implementation of the
idea, most of which find expression in web automation PBD systems.

One challenge surrounds the issue of how to communicate the induced
program back to the user. Systems which produce code in a general-purpose
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programming language (e.g. Chickenfoot [11]) offer the attractive property
that they allow a user to express any programmatic sequence. On the other
hand, general-purpose programming languages are difficult to understand
and modify without extensive knowledge of the language. Nonprogrammers
might find them incomprehensible and possibly intimidating.

On the other extreme, some systems (e.g. Vegemite [71], Mixer [42])
do not explicitly represent the program to the user at all. This does not
intimidate users. But it does make it difficult for them to understand when
the program makes errors, and very difficult for them to repair the errors.

CoScripter [68] takes a middle approach, coding the induced actions in
a “sloppy” programming language designed to resemble natural language.
Users can readily understand the intent of the instructions, and can make
simple modifications to them. Sloppy interpreters are permissive, attempting
to interpret user requests as formal programming statements. Without full
natural-language understanding (which is known to be hard), however, a sys-
tem is still quite likely to receive input from users which it cannot interpret.

Wrangler [64] takes a hybrid approach. In response to a user action,
Wrangler generates a ranked list of English-like descriptions of possible gen-
eralizations of that action, asking the user to select the appropriate gener-
alization. Users are not required to understand the statements of a formal
programming language, and simultaneously all user actions have a straight-
forward interpretation in the programming system.

Lau [67] examines in depth the application of Machine Learning to PBD
systems. Using a Version Space argument, she shows that the number of
examples a learner needs to unambiguously delineate the proper program
often outstrips by several orders of magnitude the number of examples an
actual user will have the patience to provide. Often the learner will need
several hundred examples and an individual user will want to provide fewer
than a dozen. This order-or-magnitude gap between the sample size required
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by a learner and the sample size provided by users provides part of our
motivation for dividing the work of generating a sample set among a large
crowd of workers. Each crowd worker can be expected to contribute only a
“user-sized” set of training examples while the learning system receives access
to a “learner-sized” set.

Mixed-initiative research focuses on advancing methods for collaboration
between computer agents and people where each party has its own knowledge,
ways of reasoning, and abilities to understand and act in order to advance
toward a common goal [1, 14]. Many issues remain to be answered, including
several interrelated needs with respect to interaction between agent assistants
and people [33]:

Awareness knowledge of problem and goal must be shared by human and
agent

Task roles and responsibilities must be shared between human and agent

Communication both human and agent must be able to express knowledge
and needs.

PBD interfaces present a particular challenge with respect to the aware-
ness issue: the user and the system have a fundamental mismatch with re-
spect to the goal of the interaction. The central goal of a PBD system is
to infer a program from the user’s actions; for the user the construction of
the program is subsidiary, at best, to the goal of completing some task. As
noted above, Rode et al [31] observe that users are far less successful in
performing programming tasks outside their perceived area of responsibility.
Consequently, in our work we attempt to avoid presenting the user with tasks
that feel like programming.

The task issue concerns the division of action between humans and agents.
The principal actions of a PBD session [18] are program demonstration (or
creation), program invocation, and program execution.
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The communication issue arises in a couple of ways from what Cypher
[9] calls the classic challenges of PBD: (1) inferring the user’s intent; and
(2) presenting the created program to the user. The first challenge concerns
the user communicating with the system via the demonstrated actions, and
the second challenge concerns the system communicating the recorded action
sequence to the user.

The first challenge arises because the user’s actions usually insufficiently
delineate a unique program, a point illustrated by Lau et al with an ex-
plicit version space argument [19]. PLOW [2] receives richer input from the
user by eliciting and utilizing natural language explanations for the user’s
actions. Wrangler [16] asks the user to select after each action the statement
in the implementation language corresponding to the level of generalization
required.

As to the second challenge, Modugno and Myers [75] further delineate
the communication role played by the program in PBD systems, as a list of
opportunities presented to the user:

1. the user can confirm that the program will behave as desired;

2. the user can correct or generalize the program; and

3. the user can store all or part of the program for later use or modifica-
tion.

Although many PBD systems outside the web context communicate the
program in forms other than as lines of code, the code approach is the
most common in web PBD systems. Chickenfoot [11] records web actions
as general JavaScript. CoScripter [68] chooses a slightly more user-friendly
approach, representing the program in a “sloppy” or natural programming
language. Query-by-Example and Office-by-Example [110] utilize a form as
a shared communication structure, but require a user to understand and
specify programmatic variable structure within the forms.
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2.4 Tables

Tables are a commonly used mechanism in print material for presenting data
about a series of msotly homogenous items. Wright and Fox [105] summarize
some ergonomic studies with respect to how people use print tables. They
report that some mechanisms for saving space in print tables tends to increase
consultation time of the information in the table. They also find that many
people struggle with information left implicit in the table, and benefit from
more information being explicitly stated.

Wang [60] proposes a table formalism general enough to faithfully repre-
sent the information in about 95% of tables in four different print domains.
This formalism was used by a number of systems. Hu et al [57] report that
even the co-authors had difficulty agreeing on a single ground-truth repre-
sentation for many of the tables under consideration. Jha and Nagy [63]
constructed a notation tool allowing users to associate items in a table with
the formal parts of the schema in Wang’s notation. They report that users
needed over an hour of training in order to create reliable markup for simple
tables.

The specification of the <table/> tag in HTML seems to have followed a
similar evolution. Tabular data was adopted in HTML 3.01, inspired heavily
by the implementation from the CALS Table Group [8], which was created
to be flexible enough to represent tables in a large set of manuals used by
the U.S. military.

2.5 Wrapper Induction

Early wrapper work [37] learned extractors from text representations of the
HTML of pages, but later work consistently showed the value of consider-

1http://www.w3.org/MarkUp/html3/
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ing structural information (from the DOM), visual layout information [5],
and styling information (from CSS). Recent work [46, 27] gets good results
by considering features rendered as XPath [19] expressions, encompassing a
fairly rich set of structural and textual features.

A key question related to wrapper induction is how many instances must
be labeled to induce high-quality wrappers for a set of pages. Cohen, Hurst,
and Jensen [21] report that about two-thirds of attributes in their corpus
could be reliably extracted based on provision of a single labeled example of
the attribute. Approximately 80% could be extracted given at most three
examples. Gulhane et al [46] corroborate the sufficiency of relatively few ex-
amples; they report that their annotators, tasked with fully labeling relations
from a training set until the generated wrapper extracts the remainder of the
training set, labeled an average of 1.6 example relations.

Another key concern is how quickly websites change, rendering previously-
induced wrappers ineffective. Gulhane et al [46] poll wrapped sites periodi-
cally for detectable changes, and derive an estimate that “approximately 2%

of websites experience some sort of page structure change each day,” imply-
ing a site remains without detected change a mean time of 50 days. They
then present an algorithm for distinguishing changes needing new labeled
examples from more innocuous changes. Dalvi et al [26] estimate that the
script generating a given website will change “two or three times per year,”
indicating a mean time between change of 121 to 183 days. Differences in
methodology may account for some of the discrepancy between these esti-
mates, as well as differences in the populations of pages watched.

Most work on wrappers assumes the existence of high-quality labeled
pages created by trained annotators (often the researchers themselves), and
many researchers [20, 46] cite the labeling of examples as a bottleneck in
the scale of the system. A small number of systems present a user interface
designed to make it easier for annotators to label relations in the pages.
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Lixto Visual Designer [5] allows users to point and click on the first example
of an attribute in a page, and then refine the resulting selection by iteratively
adding conjunctive conditions or new disjunctive alternatives. Users would
seem to need a firm grasp on Boolean logic, which nonprogrammers have been
observed to struggle with [45]. Irmak and Suel [61] provide a user interface
for interactively specifying a particular desired selection from the larger set
of tuples available on the page. They leave aside the issue of specifying
the schema and the superset of tuples, suggesting that they expect users to
understand schemas and types. Based on the user’s selection of a tuple, the
system responds with a ranked list of potential sets of tuples and asks the
user to select the most appropriate set.

Wrangler [64] employs a similar interaction in the context of end user
programming of data cleaning scripts. When the user performs a cleaning
operation on a cell of a spreadsheet, Wrangler responds with a ranked list
of generalizations of that cleaning operation and asks the user to choose the
most appropriate generalization. For example, a user who deletes a prefix
consisting of a single token from a cell might be asked to choose whether to
remove only that fixed string from all cells in the column, or to uniformly
remove the first token, or to act only on the first cell, leaving all other cells in
the column unmodified. A user study verified that users familiar with data
management were able to effectively use this technique to clean data more
quickly than when working manually.

2.6 Crowdsourcing and Human Computation

Luis von Ahn kicked [101, 103, 102] off the present wave of interest in models
of human computation by supplying proofs of concept system that internet
users would supply solutions to difficult AI problems in exchange for access
to restricted resources (CAPTCHA) or just for the fun of playing a game
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(ESP game, etc). Gamification as a general strategy for eliciting cognitive
effort from a crowd of human users has proved fruitful, but some problems
are easier to make fun than others.

Quinn and Bederson [85] recast the design space for crowdwork systems
in terms of trade-offs between cost, quality, and speed, or the rate at which
crowdworkers will complete the available tasks. In this formulation, gam-
ification is one of several means to lower cost, increase speed and increase
quality of the crowdworker output.

Understanding the effects of the many parameters of possible crowdwork-
ing configurations is a large subfield of research. Mason and Watts [74]
examined the effects of monetary compensation on Mechanical Turk work-
ers. Among their findings were that increasing payment for a task did tend
to increase the speed with which Turkers completed the task, but did not
generally tend to increase quality of submissions.

MonoTrans [55, 56] explored the possibility of gathering machine transla-
tion data using plentiful monolingual workers instead of more rare bilingual
speakers. By increasing the worker pool, MonoTrans was able to gather data
more cheaply and more quickly than when relying on bilingual speakers, but
careful design was required to avoid a dramatic drop in quality.

2.7 Web Accessibility

The problem of Web Accessibility generally is to make the web more usable
by people with disabilities. Since disability takes many forms [49], the field
is quite broad. Here we focus only on people with visual disabilities.

People with visual disabilities generally make use of several types of as-
sistive technology. People with low vision often use screen magnifiers, such

15



as ZoomText2 or MAGic3, which magnify the screen by a large amount and
allow the user to pan around within the much larger screen surface. People
with little to no vision often use screen readers, such as JAWS4, Windows-
Eyes5 or the free product NVDA6, which read the contents of the web aloud
using a synthesized voice. Screen reader users who read Braille also might
use refreshible Braille displays, which display tactilely the same text as the
screen reader reads; a common use is to disambiguate homophones or to
check the spelling of unfamiliar words.

Two approaches towards web accessibility which are relevant here are as
follows. First, the field’s understanding of how web pages can be made usable
for the visually impaired can be distilled into recommendations to be used7

by web designers. Second, a third-party can re-write, or transcode, a web
page to increase its utility for visually impaired users.

This section proceeds as follows. First, we review some literature es-
tablishing that the web is significantly less usable for people with visual
impairments than for sighted users. Second, we compare some published re-
sults on reading speeds, establishing that website structure is responsible for
a large portion of the performance gap. Third, we review some transcoding
approaches to improving web accessibility. Finally, we briefly describe the
legal status of web accessibility in the United States.

2.7.1 The Screen Reader Performance Gap

The added inconvenience and difficulty for blind web users over sighted users
is persistent and manifest, and stems from numerous causes. Kevin Carey [15]

2http://www.aisquared.com/zoomtext
3http://www.freedomscientific.com/Products/LowVision/MAGic
4http://www.freedomscientific.com/Products/Blindness/JAWS
5http://www.gwmicro.com/Window-Eyes/
6http://www.nvaccess.org/
7or, more often, ignored

16

http://www.aisquared.com/zoomtext
http://www.freedomscientific.com/Products/LowVision/MAGic
http://www.freedomscientific.com/Products/Blindness/JAWS
http://www.gwmicro.com/Window-Eyes/
http://www.nvaccess.org/


argues for quantifying the barriers in terms of the discrepancy between non
visual users of a tool versus their sighted peers, in terms of success rate
at a certain task and time taken to achieve that success. He argues that
concrete measurements can move the conversation from qualitative notions of
equitability and into quantitative discussions of acceptable parameter ranges.
As an additional benefit, barriers with measured impact can be prioritized
relative to each other.

Several studies measure the performance differential of plausible tasks by
blind users relative to control sighted users. Most of them report the same
metrics of time on task and success rate. Gunderson and Mendelson [47]
compare the time on task between pairs of sighted and people with low vi-
sion, matched by computer expertise; all participants eventually succeeded
on all tasks. They report that the visually impaired participants spent 50%-
200% more time on most tasks than their sighted peers, but that HTML
tables presented a clear outlier. For lookups in a table, visually impaired
users took about 1000% more time: “the table lookup task was trivial for the
sighted subjects, but almost impossible for the visually impaired subjects.”
Pernice and Nielsen [84] conducted a large study, asking 60 participants,
equal parts with full, low, and no vision, to complete four tasks. They report
that the average blind participant successfully completed half a task and de-
voted 16:46 completing it. The average low vision participant successfully
completed about 0.9 of a task in 15:26. The average sighted participant suc-
cessfully completed about 3 tasks in about 7:14. A simulated user working
at the reported rates for blind, low vision, and sighted participants would
successfully complete in one hour 1.8, 3.3 and 26 tasks, respectively. This
gives a rough estimate that blind people expend about 14.5 times as much
time on tasks relative to sighted users, and people with low vision expend
about 8 times as much time. Takagi et al [95] report that 5 blind partici-
pants complete a task in an average of 536.6 seconds, about 12 times as long
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as the 5 sighted participants, who completed a task in an average of 43.6
seconds. Craven and Brophy [24] presented 40 participants, half sighted and
half visually impaired, with four tasks and report that the visually impaired
participants spent between 1.4 and 4 times as long as sighted participants.

Estimation of relative task performance rates for sighted and visually
impaired people is complicated by the necessity to simulate a plausible work-
load for comparison, over which results are aggregated. This is analogous
to the problems encountered in benchmarking computation or database sys-
tems, where the results can vary greatly depending on the tasks used for
evaluation. Carey [15] touches on this issue, arguing that equitability im-
plies minimizing the performance gap for people with disabilities relative to
their peer group, where the peer group will vary with the intended audience
of a piece of software or intervention. Gunderson and Mendelson [47] asked
their participants to complete one web search, three tasks using the search
forms of various sites, and one task involving lookups in a page marked up as
an HTML <table/>; the last task generated the largest differential between
the sighted and low vision participants. Pernice and Nielsen [84] presented
their participants with one fact-finding task, one web shopping task, one in-
formation retrieval task, and one product comparison task. Takagi et al [95]
examined two web shopping tasks. Here, we focus on lookups within data sets
presented on a single web page, which are trivial visually but laborious with
a screen reader. The literature cited here will serve as a baseline. Since data
sets comprise a significant portion of the work load of web users, improve-
ments to data set lookups will have a significant impact on the aggregate
performance gap.
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type of reading sighted speed [16] blind speed [3, 29, 93]
Scanning 600 Wpm
Skimming 450 Wpm 500-580 Wpm
Reading 300 Wpm 290-350 Wpm

Table 2.1: A table summarizing research results about reading rates in
sighted and blind people

2.7.2 Visual and Audio Reading

At first blush, it seems plausible that a significant part of the slower perfor-
mance of blinded internet users in comparison to sighted internet users stems
from the slower comprehension of web sites through the auditory channel
than through the visual channel. Research on reading rates, however, does
not support this notion.

Table 2.1 summarizes some research results on reading rates, juxtaposing
results from research into sighted reading with those from research into listen-
ing speeds for blind people. The research is reported in different units, and
were converted for comparison using the formulae provided by Carver [16].
The second column comes from Carver’s summary8 of several decades of re-
search into reading [16]. Asakawa et al [3] report that blind participants were
able to understand synthesized speech with 90% recall at a speed of about
300 Wpm, and to aurally skim with 50% recall at about 500 Wpm. Dietrich
et al [29] similarly report that blind participants were able to understand
speech at about 290 Wpm with about 90% recall, and speech at about 580
Wpm with about 50% recall. Dietrich et al additionally report from fMRI
studies of the participants that blind people may process ultra-fast spoken
text using a part of the visual cortex which is devoted to visual processing in
sighted people. Stent et al also find that experienced users of screen readers
can recall more than 90% of text at 300-350 wpm, and recall at leat 50% of

8The data come from Carver’s Table 2.2; Carver uses the portmanteau “rauding” to
describe reading with full understanding (“auding”)
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text at around 500 wpm.
There are many limitations with attempting to do any direct comparisons

of the numbers in Table 2.1. To name only one caveat among many, the read-
ing rates from Carver and Stent are for English text, the listening rates from
Asakawa are for Japanese speech, and those from Dietrich are for German
speech. Here, we will take the data as merely indicative that it is difficult to
stipulate that the discrepancy between the speed of reading versus listening
is large enough to cause the discrepancy described above.

2.7.3 Transcoding for Web Accessibility

Many research projects have pursued a transcoding approach where websites
presenting accessibility challenges are re-written in a more usable form. The
Accessibility Commons [65] proposes to serve all of the transcoding meta-
data packages to screen reader clients from a unified architecture; the paper
also presents useful pointers to the various projects they propose to unify.
AccessMonkey [7] extends the GreaseMonkey9 tool, which allows arbitrary
re-writes of web pages written in the JavaScript programming language, and
allows users to apply a collection of scripts improving the accessibility of
various pages.

The Social Accessibility project [90] used a crowd to fix accessibility prob-
lems on websites, and reported large numbers of users were willing to con-
tribute their work to the project. The problems addressed by Social Acces-
sibility are the specification of appropriate alternative text for images, the
redesignation as semantic headers of header text with shared visual styling,
and adjustments of reading order. All of these improvements bear on the
abilities of screen reader users to reach the desired content more quickly.

9http://wiki.greasespot.net/Greasemonkey
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2.7.4 Web Accessibility and U.S. Law

United States law requires providers of certain types of services to accom-
modate people with disabilities. The following account draws heavily from
Peter Blanck’s book [10] focused on web accessibility for persons with cogni-
tive disabilities.

The Rehabiliation Act of 197310 was augmented in 1986 with the addi-
tion of Section 508, providing that U.S. federal and state governments should
make use of information technology accessible to everyone, including those
with visual and other disabilities. The original Section 508 included little
mechanism for enforcement or oversight, and in 1998 was amended (as part
of the Federal Electronic and Information Technology Accessibility Compli-
ance Act). The new Section 508 included concrete requirements for accessi-
ble websites and charged the Access Board with reviewing and revising those
standards for the information technology decisions of governmental entities.
The standards published by the Access Board also served as inspiration and
guidance for the standardization of accessibility guidelines at W3C, first pub-
lished [17] in 1999 and revised [14, 88] in 2008.

The WCAG 2.0 Standard [14, 23, 22] sets forth several guidelines at three
increasing levels of conformance, “A”, “AA” and “AAA”. At the minimum “A”
level of conformance, Guideline 1.3.1 stipulates that “Information, structure,
and relationships conveyed through presentation can be programmatically
determined or are available in text.” To conform, WCAG puts forth the
technique “H51: Using table markup to present tabular information” [22],
described in the accompanying draft as follows:

The objective of this technique is to present tabular informa-
tion in a way that preserves relationships within the information
even when users cannot see the table or the presentation format

1029 U.S.C §701
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is changed. Information is considered tabular when logical rela-
tionships among text, numbers, images, or other data exist in two
dimensions (vertical and horizontal). These relationships are rep-
resented in columns and rows, and the columns and rows must be
recognizable in order for the logical relationships to be perceived.

Under a narrow reading, the technique would apply only when the author
presents the data using rows and columns. Under a broader reading, the
technique applies whenever a logical relational structure exists within the
pieces of data presented. In Chapter 6 we present the argument that the
broader definition would be assistive to people who use screen readers, and in
Chapter 7 we empirically demonstrate the assistance provided by conveying
the relational structure to the screen reader program.

When the HTML <table/> tag is used, WCAG 2.0 provides several other
techniques for compliance:

H39 Using caption elements to associate data table captions with data tables

H43 Using id and headers attributes to associate data cells with header cells
in data tables

H63 Using the scope attribute to associate header cells and data cells in
data tables

H73 Using the summary attribute of the table element to give an overview
of data tables

H79 Identifying the purpose of a link in a data table using the link text
combined with its enclosing table cell and associated table header cells

But, again, these techniques do not apply to data which are not contained
in a “tabular” data table.
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The requirements of Section 508 that websites conform to WCAG 2.0
(conformance level “AA”) apply only to governmental websites. Title III
of the Americans with Disabilities Act of 199011 requires all public accom-
modations and commercial facilities to provide reasonable accommodation
to people with disabilities. Many early legal cases testing the reach of the
ADA focused on the standing of the plaintiffs, i.e. determining whether they
qualified to a strict definition of having a disability. For example, in Sut-
ton v United Airlines12 the court found that the legally blind plaintiffs could
not seek claims of wrongful termination by virtue of their visual disability
because, after correction, their vision was normal. As people with normal
(corrected) vision they had no standing to file claims under the ADA, even
though the court did not contest that they were fired based on their visual
disability. In 2008, Congress passed the ADA Amendments Act, directing
courts to interpret broadly the definitions of disability.

The National Council on Disability (NCD), an independent federal agency,
holds the view [40] that the ADA requires all public commercial websites to
be accessible to people with disabilities. Wicker and Santoso [104] argue in
the Communications of the ACM that the right to equal access to websites
is part of the general human rights, including those guaranteed to Americans
by the ADA.

The courts, however, disagree with the NCD’s assertion that all com-
mercial websites are subject to the accessibility requirements of the ADA.
Instead, they find the act applies more narrowly to entities that operate a
“place of public accommodation,” as stated (and partially enumerated) in the
text of the Act. Courts found13 that the ADA did not require southwest.com
to be accessible, because it was not a place of public accommodation enu-
merated in the ADA. However, courts have held that the websites of the

1142 U.S.C. §§12181-12189
12Sutton v United Airlines (10th Cir 1999) 527 U.S. 471
13Access Now, Inc. v Southwest Airlines, Co. (SD Fla. 2002) 227 F. Supp. 2d 1312
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corporations Target14 and Disney15 must be accessible to people with visual
impairments, by virtue of the websites having a connection, or “nexus”, to
a physical place of public accommodation. Both Target and Disney settled
with the plaintiffs and agreed to incorporate accessibility standards into their
websites. Target additionally entered into an agreement16 with the National
Federation of the Blind to test and certify the redesigned websites.

Different courts have decided differently about the applicability of the
ADA to commercial websites, and the final determination may eventually be
decided by the US Supreme Court [10], or by Congressional amendment to
the statute. Even in the absence of clear US law, however, some companies
choose to increase the accessibility of their websites in the wake of legal
decisions. For example, after the Target decision, Amazon entered into an
agreement with the National Federation of the Blind to make its website more
accessible17. Similarly, after the Disney decision, Charles Schwab18 entered
an agreement to conform to WCAG standards.

The above discussion concerns the applicability of the ADA to commercial
websites. Although courts have stopped short of affirming the NCD’s view
that the ADA applies to all commercial websites, they have admitted that
the ADA applies to some of them, e.g. those with a nexus to a physical
place of public accommodation. The following paragraphs summarize some
court findings with respect to what the ADA may require when it does apply.
In each paragraph, we summarize the legal findings, then extrapolate their
relevance to the web context.

14National Federation of the Blind v Target Corporation (CA Sup. 2006) 452 F. Supp.
2d 946

15Shields v Walt Disney Parks and Resorts U.S., Inc. (CD Cal. 2011) 279 FRD 529
16http://pressroom.target.com/news/target-nfb-settlement
17http://www.dralegal.org/impact/cases/amazoncom-structured-negotiations
18http://lflegal.com/2012/05/schwab-agreement/
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Accessibility rights can overrule aesthetic concerns In Colorado Cross-
Disability Coalition v Holister19 the defendants claimed that making the
stately front stairways of their stores accessible for wheelchair users would
impact their efforts to create a “brand design to convey a certain ambience
and appearance to make the store inviting as a whole.” They argued, since
wheelchair users could make use of a side door, that there was no ADA vi-
olation. The court found that the ADA requires “equal enjoyment” of the
store’s experience by people with disabilities, and thus that the entryway
must be made accessible unless plaintiffs could show that it is “structurally
impractical to do so.” In the web context, this would seem to imply that
reasonable accommodation means nearly anything short of changes that are
demonstrably technically infeasible.

The ADA can compel providers to undertake nontrivial efforts to

support accessibility In State of Arizona v Harkins Amusement20 the
defendants claimed that providing captions and narratives to movies shown
at their theater chain would alter the content of its services. The Ninth
Circuit court found that a public accommodation must provide auxiliary
aids to provide equal experiences to people with hearing disabilities unless
they could show that doing so would create unreasonable burden or cost.
In the web context, this would imply that extra effort to make webpages
understandble by screen reader users could be compelled, unless they could
be proven to be prohibitively expensive.

The ADA’s requirement of equal enjoyment goes beyond the mini-

mum of bare accessibility In Baughman v Disney21, the defendant, Dis-
19Colorado Cross-Disability Coalition, et al v Abercrombie & Fitch, et al, and J.M.

Hollister Co. (D Colo 2011) 835 F Supp 2d 1077
20State of Arizona v Harkins Amusement (9th Cir 2010) 603 F.3d 666
21Baughman v Disney (9th Cir 2012) 685 F.3d 1131

25



ney, argued that providing the same services to everyone in their amusement
park ought to suffice under the terms of the ADA, even if access by a pa-
tron in a wheelchair is made “uncomfortable or difficult” by its policies. The
court disagreed, summarizing Disney’s argument as stating “any discomfort
or difficulty [the plaintiff] may suffer is too darn bad.” The opinion continues
“Disney is obviously mistaken. If it can make Baughman’s experience less
onerous ... it must take reasonable steps to do so.” In the web context, this
would imply that simply providing a website that works for most users, pre-
sumably sighted and able to use a mouse, would be insufficient to conform
with the ADA. Rather, steps which can provably make websites less onerous
for people with disabilities, so long as they do not incur unreasonable costs,
must be taken. In the Target case, cited above, the court drew precisely
this analogy to argue that blind web users must be accommodated under the
ADA.

Users’ accessibility concerns can override rightsholders’ copyright

claims The United States Copyright Act22 generally holds that content cre-
ators hold exclusive rights to their creations for a certain period of time. In
1996, however, the Chafee Amendment23 was passed, excepting from copy-
right claims works for “blind or other people with disabilities.” Based on
the provisions of the Chafee Amendment, the National Library Service for
the Blind and Physically Handicapped24 is permitted to record any “nondra-
matic” written material as audio for use by people unable to use print, even
when such material would otherwise be covered by copyright. In Authors
Guild v HathiTrust25 the courts affirmed that HathiTrust, a partnership be-
tween several university libraries and Google, had the right to digitize other-

2217 U.S.C. §§101-810
2317 U.S.C. §121
24http://www.loc.gov/nls/
25Authors Guild v HathiTrust (2d Cir 2014) 755 F.3d 87
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wise copyrighted material on a mass scale. In the web context, these findings
indicate that it would be legal for a third-party to alter a website to make it
accessible, despite the copyright claims of the website’s author. Use of the
third-party alteration, however, may be limited only to blind or other people
with disabilities.

The United States statutes discussed above regulate websites doing busi-
ness with United States citizens, regardless of where the websites are hosted.
Thus when a website is determined to be subject to the ADA, it does not
matter where the server is located, e.g. Target could not evade ADA provi-
sions by hosting its website in Canada. We close this discussion by briefly
noting disability law outside the United States.

Similarly to the provisions of Section 508, several countries, including
India, Japan, and Hong Kong, require that governmental websites be ac-
cessible by people with disabilities [10]. The European Commission has a
Mandate 376, requiring that governmental IT acquisitions be usable by peo-
ple with disabilities. The Canadian Charter of Rights and Freedoms asserts
that the government shall not discriminite against its citizens in provision of
information. In Jodhan v Canada26 the court found that the government’s
inaccessible websites had discriminated against the needs of the blind plain-
tiff.

Australia’s Disability Discrimination Act seems to go further, prohibiting
discrimination on grounds of disability by all commercial entities [10]. In
Maguire v SOCOG27, the court found that the Olympic Organising Commit-
tee’s inaccessible website had discriminated against the blind defendant.

The United Nations Convention on the Rights of Persons with Disabilities,
from 2008, affirms that web equality is “indispensable to other fundamental
human rights such as freedom of speech.” [10]. Many countries28 have signed

26Jodhan v Attorney General of Canada (2010) 2010 FC 1197
27Maguire v Sydney Organising Committee for the Olympic Games (2000) No. H 99/115
28the United States is not among them
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and ratified the treaty. The Marrakesh Treaty, negotiated in 2013, provides
for exceptions to copyright similar to those provided by the Chafee Amend-
ment, but for use by people outside the United States. Harpur and Suzor [50]
discuss this treaty in the context of addressing the “book famine” whereby,
worldwide, people who cannot use print have access to only 1% of all pub-
lished books. They conclude that signatories to the Marrakesh Treaty “will
be obliged to introduce a minimum baseline exception that allows visually-
impaired people to receive, make, and use accessible copies of works” but
that more international coordination is needed in the face of the vast scope
of the book famine.
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Chapter 3

Mixer

3.1 Introduction

As the size and richness of the web has steadily increased over the last decade,
users have ratcheted up their expectations for the scope of information easily
available from the web. Web interfaces, in contrast, usually permit access
to the information they expose in a highly constrained manner. The gap
between the form of the information required and the form provided by the
deployed interfaces is bridged in practice by human intelligence. In par-
ticular, office workers in an administrative capacity are regularly assigned
mundane, repetitive data integration tasks, entailing the gathering of infor-
mation from several sources into an ad hoc report, often in response to an
email [98]. Administrators do not consider these tasks difficult, but they
do consider them very tedious. The repetitive and procedural structure of
the tasks makes them ripe for automation; however, the actions taken in re-
sponse to the retrieved information generally require human judgment. This
combination of automation and human judgment invites a mixed-initiative
approach that weds the administrator’s understanding of the desired report
with a programmatic agent actually performing the bulk of the mundane
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retrieval.
As an example, suppose a university dean wishes to investigate previous

collaborations between her university and a certain research lab, and further
that she has assigned her assistant the task of finding all professors in the
university who have published a paper with someone from the lab. The
straightforward solution is to look up in turn each professor’s publications
in a digital library and store all of their collaborators from the lab in some
intermediate location, such as a column of a spreadsheet. This solution, while
effective, illustrates well the tedium involved, as it requires the administrator
to perform the same series of clicks and copies and pastes, each time with
different input, until the output report is complete.

The tedious, repetitive nature of the tasks evokes the concept of pro-
gramming by demonstration (PBD). The application of PBD to administra-
tive data integration tasks follows from the insight that once the user has
shown how to look up a single example, the system has sufficient informa-
tion about the procedure to look up the rest of the examples. In an effort
to realize the promise of PBD in facilitating administrative data integration
tasks, we developed Mixer, a Mixed-Initiative PBD system that allows users
to train an agent to perform the tasks. Our current implementation builds
on our previous Wizard-of-Oz study, which demonstrates the effectiveness of
a spreadsheet-like user-created form as a medium of communication between
a human user and a simulated computer agent. Users were quite successful in
using the mocked-up system, but they struggled with the following issues: (1)
specifying 1-to-many relationships in a manner usable by the agent, (2) spec-
ifying precision in the retrieved report, and (3) selecting meaningful segments
of text on the page. Mixer as presented here addresses these shortcomings,
and also incorporates insights from other explorations of web PBD [68, 71].
Mixer presents several innovations over previous approaches. First, Mixer
presents a unified modeless interface for integrating data, whether that data
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come from one or several data sources. Additionally, Mixer leverages the in-
sights of Mixed-Initiative design to facilitate collaboration between the user
and the agent to accomplish the user’s goal.

To evaluate our design decisions, we conducted an evaluation with real ad-
ministrators. The administrators were asked to retrieve multiple items from
a single data source and to link information across multiple data sources.
The evaluation results show that: (i) Using the Mixer table based interface,
administrators can conceive of, create, and use forms that effectively commu-
nicate to the Mixer agent both the information they want and the information
the agent needs to automate the task; and (ii) administrators recognized the
value of automating this type of mundane task and indicated they would
incorporate a mixed-initiative tool like Mixer into their work practices.

The remainder of this chapter is organized as follows. First, we describe
the design of Mixer. We then describe the study performed and the results
obtained. Next, we discuss the implications of the present study. Lastly, we
situate this work within the related work in the literature, and conclude.

3.2 Design

At a high-level, interaction with Mixer requires the user to construct the
first row of a table, and in doing so, the user demonstrates to the agent what
information they want and where this information can be found. When this
row is complete, the user releases the agent to follow the pattern until the
retrieval is complete. If the user desires a subset of this information, they can
export the resulting table to a spreadsheet and use the spreadsheet to make
the subset they desire selectable. Below we detail an example, depicted in
Figure 3.1, of how the interaction works. In the example, the user looks up
the names and affiliations of the coauthors of a particular researcher using an
online interface which allows accessing this information for one publication
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Figure 3.1: A user interacting with Mixer to extract the coauthors of a
researcher based on the researcher’s papers on the ACM Digital Library

32



at a time.
Users begin using Mixer by navigating their browser to the first page

they wish to retrieve information from (referred to as the target page). In
this example the page contains a listing of the publications of the researcher,
with a brief description of each publication and a link to a detailed record
of the publication. Once there, the user clicks on the Mixer button appear-
ing within the browser’s chrome. This click causes two actions. First, the
Mixer workspace (referred to as workspace) appears in a frame to the right
of the target page. Second, Mixer augments the target page, highlighting
any element the agent can accept as an input in orange.

To add an element to the workspace, the user right-clicks the element and
selects “Copy to Mixer” in a context menu. In response, Mixer constructs
a new column in the workspace, gives it a heading, fills in the first row
with the element the user selected, and fills in the remaining rows with all
elements that match the user’s selection (Figure 3.1A). In this case the user
selects the title of the first publication on the list and the agent adds the
title “paper title”, adds the user-selected publication, and adds all of the
remaining publications to the column. The cell at the top of the filled-in
column has a white background, indicating a human selection while the cells
below have an orange background, indicating that the agent selected these
elements. In this example, the user only needs the publication title from the
first page; however, if the user required additional elements from this page,
right-clicking and selecting “Copy to Mixer” would cause the agent to create
additional columns. Earlier Mixer interface designs allowed users to simply
copy and paste elements from the target page to the workspace. However, we
observed that people had trouble understanding what was “legally” selectable
since they could never see the underlying data scheme. In addition, they had
trouble copying and pasting text that appeared as a link. In the current
design, the highlighted elements on the target page are intended to clarify
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what can be selected and the right-click action allows users to add an element
that is a link, without navigating away from the target page.

In our previously reported evaluation of the Mixer interaction design, we
noted that some participants struggled to create an effective table. Using the
example of the publications, many would copy and paste the first publication
title into the top of the first column and then they would copy and paste the
second title on the list to the top of the second column. To prevent users
from making this mistake, Mixer automatically fills in the first column as
soon as the first element is selected. Now that the user has a column with
all of the publication titles, the user next needs to demonstrate that they
also want authors to go with each publication. To advance the task, the user
navigates through the publication link causing the target page to change
from the publication listing to the publication detail page.

Mixer detects that the user’s action depends on the contents of a cell in
the workspace, i.e. the link corresponds to the first publication. Accordingly,
Mixer begins an implicit loop over all publications in the column. An addi-
tional wrinkle which does not appear in the demonstrated task, is when a user
must type input from the workspace into a query form on a separate page.
In such cases, Mixer prevents direct typing because the agent needs to be
shown an explicit connection between the contents of a cell in the workspace
and the input to a query. When a cell’s contents are copied to the clipboard
and then pasted into a form’s widget, Mixer is able to deduce the connection.
When the cell’s contents are simply typed into the widget, however, Mixer
cannot be certain that the query input in fact comes from the workspace
entry rather than from elsewhere in the page; to avoid this problem, Mixer
issues a warning to the user when directly typing into a query form. In a
more extreme case, the administrator might modify the contents (e.g. strip-
ping off the first name and using only the last name), making the matching of
the contents to the workspace quite difficult. This tension between re-using
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a variable by value and by reference has a long history in PBD, see e.g. the
discussion of distinguishing constants from variables in Myers [77].

Mixer augments the publication detail page: selectable elements are high-
lighted in orange. These elements include the publication’s authors’ names,
as well as the venue where the publication appeared (Figure 3.1B). The user
right-clicks the author’s name and selects “Add to Mixer.” In response, Mixer
creates a new column, adds the title “author name”, fills in the first row with
the selected author name, fills in subsequent cells with additional coauthor
names available from the current page, and fills in the remaining rows with
a dashed line, indicating that the agent thinks the user wants this informa-
tion for subsequent publications. Similarly, the user adds “author affiliation”
information to the table from the same page.

To release the agent to complete the table, the administrator clicks the
“Fill Table” button to the right of the last column. In response, Mixer infers
and executes a program. In this example the program contains a loop over all
publications in the publication listing. Mixer iterates over each publication,
one by one. For each publication, Mixer navigates through the link using
exactly the same action sequence which the administrator demonstrated,
modified only to correspond to the present publication. As each detail page
is visited and its result integrated, the browser view shows exactly what is
happening, giving the administrator confidence that the result is the same
as if the task were performed manually. When the table is complete, Mixer
plays a chime, letting the user know the agent is finished (Figure 3.1C).

Administrators frequently want to collect information about a subset of
items that meet some criterion, for example the students who were currently
failing a particular course. Since administrators are familiar with spread-
sheets, we postulated that they would be able to conceptualize the filtering
task as composed of the subtasks of retrieving the desired information about
the whole group, then sorting on the selection attribute and cutting out all
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nonqualifying rows. This functionality is present and familiar in modern
spreadsheets, so Mixer does not re-implement it, but rather expects the user
to use a separate spreadsheet tool (our experiments used Google Docs).

Our previous simulation of the Mixer interface [108] illuminated the way
for the present implementation; however, as noted by Sundström et al [94],
the Wizard-of-Oz methodology only allowed a certain level of familiarity with
the algorithmic material. The actual implementation explored some new de-
sign potential and constraints. One notable example is that the implemen-
tation must take into consideration the time taken for the actual retrieval,
balancing the time consumed by the network latency inherent in retrieving
information from the web with the user’s valuable time and attention. The
implemented system, unlike the Wizard-of-Oz mockup, does not begin with
access to the retrieved data. Instead the user must wait while Mixer replays
the demonstrated actions necessary for retrieval. The present design replays
the actions in front of the user’s eyes; this furthers communication between
the user and the agent in that the user understands what is happening and
why it is taking time. Relatedly, the present design fills in as much of the
table as it can as soon as the user selects a piece of data for inclusion. This
refinement allows Mixer to communicate more effectively its understanding
of the table as the table is constructed. We thereby lessen some of the issues
participants encountered with our previous design, as to how to construct
the table.

Additionally, constructing the table as soon as data is available allows
more efficient use of the user’s time. Specifically, in the previous design users
engaged a tool we called the "resolver" to help specify if they wanted a single
element, a subset of element, or all elements within a column. In an actually
executing system, however, this means the user must make resolver decisions
periodically throughout the retrieval process, with lags of unknown length
between decisions. In addition, in designing the resolver tool we struggled to
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find a way for users to precisely specify what they specifically wanted that
did not feel like programming. The current design takes a different tack. It
drives users to collect a complete set of data, and then allows them to export
the table they have made to a spreadsheet, where they can use the familiar
tools of spreadsheets to sort and perform calculations. This design choice
gains significant ease of use at the cost of making precision more laborious.

Two other changes from the previous design bear mention. First, whereas
the previous design presented the user with the target page and invited her
to select any page element, the current design instead pre-highlights the
selectable elements on the page. This clearly communicates to the user which
actions Mixer will understand, but decreases the ability of a user to apply
Mixer to novel pages. Second, we constrain the user to copy and paste data
from the workspace into a query page, rather than typing.

3.3 Study

We recruited administrators to perform a user study aimed at substantiating
the following hypotheses:

• H1: Mixer’s table-based workspace interface provides an effective method
of communication between the human and the agent for data integra-
tion tasks:

– Administrators can conceive of and express information demands
through designing and demonstrating the form of the information
in the workspace.

– Administrators can make sense of, and work with, information
retrieved in collaboration with an agent and presented in the
workspace.
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• H2: Administrators will recognize the benefit of automated data inte-
gration and would be interested in using this interface for their work.

In order to test these hypotheses we culled administrative tasks from
the suggestions of participants in our previous Wizard-of-Oz study of the
Mixer interface [108]. To accommodate privacy concerns, we shifted the
tasks to different real-world domains, where we selected isomorphic tasks
which pilot participants demonstrated could realistically complete within a
90 minute experiment. Because Mixer is not intended as a walk-up-and-use
system, participants were provided with a grounding introductory spiel and
an experimenter-directed training task. After the completion of those tasks,
the participants were asked to think-aloud while completing the remaining
experimental tasks. The experimenter provided no assistance to the partici-
pants during the completion of the tasks.

We recruited N = 12 administrator volunteers for an experimental session
lasting about 90 minutes. They were paid $15/hour for their time. Volunteers
were asked if they had experience with programming, and those who did
were disqualified from participation. We began by introducing the tool and
acquainting the users with its goals and concepts. The experimenter then
introduced participants to the concept of the thinkaloud experimental setup.

Next users completed a preliminary survey detailing their background
level of computer usage and expertise. To ensure that users understood the
task we asked them to take three minutes to complete as much of a task as
they could manually, specifically by copying and pasting directly from the
Association for Computing Machinery (ACM) website into a spreadsheet.

Then, to illustrate the use of the system, the participant performed a
representative Mixer task with minute direction from the experimenter. The
training task was:

• Task 0: Find all researchers from Institution X who published in the
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latest conference of Conference Z

Then, one by one, we asked them to respond to messages in a pre-loaded
email account. Each message contained a request from a contrived boss for
the completion of an experimental task; users indicated completion of the
task by replying to the email with their best attempt at the answer. During
the completion of the tasks, the participants’ actions and audio were recorded
using Camtasia for later analysis.

• Task 1: Find all researchers from Institution Y who published in the
latest conference of Conference W

• Task 2: Find all coauthors of Researcher R in the last three years

• Task 3: Find email addresses for all members of Club C

• Task 4: Find all coauthors of Researcher S in the last three years

The tasks were mostly from the ACM domain in order to minimize the
amount of domain knowledge presupposed or learned in-experiment on the
part of the participant. Task 1 was chosen as an isomorph of the demon-
stration task to cement the participant’s understanding of the process of
extracting a subset, then using spreadsheet functionality to select the ap-
propriate subset. Task 2 has the same form, but the web interactions are
novel, sometimes changing which pieces of information require a new server
response. Task 4 is a repeat of Task 2 with different parameters, but intro-
duces a minor complicated factor that Researcher S’s first paper is published
alone (i.e. the only coauthor is the first author). Task 3 is completely novel
in the sense that the output of one website is used as the input of another.
Participants were not instructed how to use Mixer to combine data from
multiple websites, nor were they alerted that Task 3 had any characteristic
different from the rest.
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Additionally, Tasks 2 and 4 had two different solution paths. The ACM
listing of an author’s publications lists all publications with links to pages
about the individual papers; alongside the link is a listing of metadata about
the paper including authors and publication date. Thus the problem may
be solved within a single page, since all needed information is present in
the page. Alternately, the problem can be solved by extracting the required
metadata from each publication’s page in turn.

Following completion of the tasks, participants answered a post-study
questionnaire containing the TAM3 [100] (Technology Acceptance Model 3)
instrument. TAM3 measures a new technology’s perceived usefulness and
perceived ease of use. Previous research shows a strong relationship between
these two perceptions and eventual system use. TAM3 responses were made
on a 7-point Likert scale (1 = “extremely unlikely to use,” 4 = “neither,” 7 =
“extremely likely to use”).

3.4 Findings

After the participant had correctly communicated the desired behavior to
Mixer, Mixer turned control back over with a filled table of data. In 42
(about 88%) of the tasks the participant was able to correctly filter the data
and direct the completed form to the experiment’s simulated boss. In one
case, a participant was unable to do so for Task 1 and gave up; that same
participant was able to correctly marshal the data in the subsequent tasks.
In four cases, participants needed one or two more attempts to effect the
correct answer. In one case, a participant needed five attempts.

Our 12 participants successfully completed all tasks. They eventually
constructed all of the necessary tables with the agent’s help. Because the ex-
periment required the participants to thinkaloud as they worked, the amount
of time participants took to accomplish the task is not meaningful; instead,
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Figure 3.2: Number of attempts to construct the correct workspace

we record the number of attempts they made before they were able to pro-
ductively turn control over to Mixer. We counted an attempt every time the
participant started over with a fresh workspace during the completion of a
task. All participants’ number of attempts are presented in Figure 3.2.

Participants exhibited some difficulty constructing a workspace table con-
taining all of the information required to complete the task. 17 task attempts
failed due to missing query attributes, for example by failing to include stu-
dents’ names when only email addresses were strictly required. Two partic-
ipants successfully extracted a spreadsheet, only to find that missing selec-
tion attributes precluded them from sorting and filtering down to the correct
answer. They immediately re-demonstrated the correct workspace without
error.

Two participants constructed a table without an attribute explicitly re-
quested, then corrected their oversight. Of the overlooked attributes of all
categories, only one instance occurred in the final task. Several participants
appeared to struggle with Mixer’s expectation that the user would only pro-
vide information in the first row, leaving Mixer in charge of filling subsequent
rows. Three participants, all in Task 3, tried to continue filling subsequent
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Figure 3.3: Participants’ ratings of Mixer along TAM constructs

rows before clicking on “Fill Table.”
Two participants, again in Task 3, attempted to search multiple email

addresses at once by pasting all the names, separated by spaces, into the
search box; in response, the directory application returned no results and
the participants started over. One participant attempted to explicitly select
a column of attributes from the target page.

Another common breakdown occurred with respect to participants’ deci-
sion to invoke the program by pressing the “Fill Table” button. One partic-
ipant chose to restart Task 1 after exporting a table with unfilled cells, i.e.
failing to invoke the program at all. Four participants discovered a solution
to Task 2 that did not require the use of the “Fill Table” button to com-
plete the task. They then expressed confusion that the “Fill Table” button
was inactive. Two of the confused participants precipitously restarted after
encountering the confusion. All four participants used the same approach
on Task 4 and did not hesitate to complete the task without using the “Fill
Table” button. Three additional users discovered this approach while com-
pleting Task 4. Each expressed confusion that the invocation button had no
effect, but all pressed onward and successfully completed the task.

42



Eight participants encountered the dialog box warning against typing
in a query field. One successfully circumvented the dialog, typing in the
information and thereby causing the task attempt to fail. One user attempted
to select data not recognized by the wrapper and send it to Mixer.

Figure 3.3 shows participants’ responses to the TAM instrument. The
Cronbach alpha scores, all above 0.8, indicate that the scores are internally
reliable, in the sense that answers to multiple questions seem to measure the
same underlying construct.

Many users expressed pleasant surprise at the capabilities of Mixer, using
adjectives like “cool”, “awesome”, and “brilliant.” One user said “I want this
program. Even if it can’t find everybody” and another asked “When can I get
this?” All of these laudatory quotes came immediately after the user was able
to successfully complete Task 3. Two users praised the visibility of Mixer’s
practice of showing each visited page as the table is filled. Two participants
expressed displeasure at the use of Google Docs for the spreadsheet export;
they claimed to be more proficient with Microsoft Excel. During the closing
interview, several participants inquired when Mixer would be available to
them for their jobs.

3.5 Conclusions

Administrators could successfully use Mixer to automate tedious informa-
tion retrieval tasks. They were successful at creating the first row of a table
as a way of communicating to an agent the information they wanted. At
first, many administrators struggled to complete a task. Sometimes this was
caused by software bugs in Mixer, and sometimes it was caused by partici-
pants struggling to conceive of tables the agent could act upon. The agent
often needs more context (additional columns) to complete an action than
the administrator strictly needs to complete their task. Administrators strug-
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gled with including this context, indicating that, initially, they had trouble
seeing the problem from the agent’s perspective. However, the reduction in
the number of attempts needed to successfully complete a task from the first
task to the fourth task (Figure 3.2) provides some evidence that administra-
tors can quickly learn to conceive of the tables in a way that allows the agent
to assist them with their task.

Mixer supports two types of tasks: repeated retrieval from within a single
data source, and retrieval from across more than one data source. We ex-
pected that working with more than one data source would be more difficult,
but we did not see evidence for this. A comparison of the number of attempts
made on Task 3, which required participants to connect two data sources, to
the other three tasks that all use a single data source (Figure 3.2) does not in-
dicate that participants found the multiple data-source task more difficult. In
addition, we see nothing in the utterances during the thinkaloud to indicate
that participants made any kind of distinction between these tasks. Though
administrators struggled with the fact that Mixer requires copying and past-
ing into forms instead of typing, they did not seem to find demonstrating a
link between data sources challenging. This finding is especially interesting
in the light that, as indicated above, participants were not supplied with any
hints to how to effect a link between multiple data sources.

The use of wrappers to augment the target page with a highlight indi-
cating a legally selectable element provides a design advance. The highlights
were intended to help users understand the limitations of the agent’s com-
munication ability and to help negotiate the problem space between human
and agent. In our previous iterations of the interface, we allowed users to
copy and paste from the target page directly into the workspace table, and
this often lead to breakdowns. Participants seemed to have no trouble un-
derstanding how to use these highlights and never expressed any utterances
or opinions that this limited their ability to use Mixer to automate their
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work. We think this technique could be used in many other mixed-initiative
interfaces, where users struggle to understand the scope of what the agent
can do.

Mixer’s interaction design specifically avoids the challenge of precise spec-
ification: the need to communicate that the user wants only a subset from
within a larger set of data. Instead, the agent retrieves the larger set and en-
courages users to use a spreadsheet to filter down to the precise information.
The fact that participants were able to correctly do so using a spreadsheet
corroborates the notion that end users can conceive of the task as a nested
table, and furthermore that the unnesting of the table into a spreadsheet
table is an intuitive concept for administrators.

TAM produced very high ratings for Mixer for Perceived Ease of Use,
Perceived Usefulness, and Behavioral Intention (to use). Scores of 6 or above
on a seven-point scale give us confidence that administrators recognize the
value of automating their tedious information retrieval tasks and that they
would likely use Mixer in their work. Additionally, users gave a high TAM
score to the quality of Mixer’s output. This may be due in part to Mixer
showing exactly which pages contributed to the result as it filled in the table.
Several participants singled out this aspect independently for praise.

Mixer’s interaction design specifically deemphasizes and to a certain ex-
tent even hides the fact that users are engaged in a programming task when
they construct the first row of the table. This is a radical departure from
most work in the web PBD community. We speculate that systems that
similarly deemphasize the programming aspect of the task will generally be
more likely to succeed with nonprogrammers. Much more work would need
to be done to rigorously evaluate this speculation, though the fact that ad-
ministrators with no programming experience could successfully use Mixer
and their high TAM scores reflect positively, as does the fact that nonpro-
grammers have struggled with other PBD systems. In the same vein, more
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work would need to be done to show that the administrators’ resistance to
programming stems from the sense that the work is perceived to fall outside
the scope of what their job should be. We can suggest that this is a rich
direction for further research on PBD interfaces.

In terms of PBD, Mixer embraces the notion that administrators would be
disinclined to use a tool that feels like programming. The most obvious Mixer
design decision in this line is that the user does not see the program as lines
of code, nor as an equivalent data-flow representation of the procedure. A
more subtle example is the way Mixer enforces copying and pasting as, from
the user’s perspective, an arbitrary constraint, rather than asking the user
to understand the programming concept of using a variable as opposed to its
value. Consequently, in terms of PBD systems, Mixer is near one extreme of
the spectrum, ranging from those that expect the user to construct an explicit
model of the program as a sequence of low-level actions, to those that do not.
The success of our participants in using Mixer, as well as their recognition
of its relevance and applicability to their jobs, seems to lend credence to this
notion: the less end users feel like they are engaging in “programming” while
using a PBD system, the less likely they seem to be to eschew the system as
unrelated to their realm of responsibility.
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Chapter 4

SmartWrap

4.1 Introduction

The fact that most websites lack semantic markup sharply limits the ability
of screen reader software to facilitate coherent and efficient interaction with
the web. In particular, many commercial screen readers provide various
navigation and orientation facilities for use with sequences of records marked
up using the HTML <table/> tag. These facilities, however, can not be used
when there is no <table/> tag, and, without those facilities, using a screen
reader to perform even relatively simple lookups in a relation page presents
serious usability challenges [47]. For large portions of the web, the <table/>
navigation facilities provided by screen readers cannot be used effectively.
Empirically, the <table/> tag correlates poorly with occurrences of tabular
data. Only a tiny percentage of instances of the <table/> tag correspond
to datasets [13]; conversely, as we show below, many datasets do not make
semantic use of the <table/> tag in a way screen readers can understand.

Over the last several years, Web researchers have taken many varied ap-
proaches to “filling in” the semantic information missing from webpages, in-
cluding richer semantic standards for use by web authors, fully automatic
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approaches to understanding webpage semantics, and supervised extraction
systems. Here, we explore the possibility of asking the vast numbers of web
users, most of whom lack training in programming, to supply semantic labels
for web datasets. Specifically, we leverage the fact that many internet users
frequently manually scrape a dataset from a webpage into a spreadsheet, for
example as part of the execution of ad hoc administrative tasks [98]. Our
goal is to use the information gleaned from observing users’ manual scraping
tasks to inject semantics into the scraped pages, thereby improving the pages
for screen reader navigation.

Towards that goal, we have developed SmartWrap, an experimental in-
terface that reconstructs dataset semantics from the actions of manually
scraping a page, and we have deployed the interface to a pilot crowd of
workers on Mechanical Turk. The design of SmartWrap draws from hu-
man factors research, and is specifically designed to address the difficulty
most users, especially those without programming training, face with re-
spect to abstractions [9]. The tool communicates to the user through a
spreadsheet-like interface, observing the familiar, concrete action of man-
ually scraping a dataset from a webpage into a spreadsheet. SmartWrap
applies programming-by-example techniques to the scraped locations of the
page, and creates a reusable program, called a wrapper, for the page. The
wrapper can extract the structured dataset from the contents of present and
future instances of the page, as well as from other pages generated from the
same web template.

Our long term goal is to construct a system where contributed wrap-
pers are used to dynamically improve the accessibility of a growing set of
datasets, based on contributions from a crowd of end users. This paper lays
the groundwork for that system, focusing on a study of the ability and limita-
tions of using crowdworkers to gather semantic information about datasets on
the web. We leave to future work many important aspects of the completed
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system, including the questions of how best to use the semantic information
to improve websites, how to apply the semantic information to additional
pages from the same template, and how to encourage contribution to the set
of wrappers.

We begin by providing a description of the design of the SmartWrap
tool in Section 4.3. Afterwards, our exposition follows three distinct use
cases we envision with respect to crowdsourcing wrappers for screen reader
use. First, a screen reader user may ask a helpful colleague for assistance
with a particular website. In Section 4.4.2 we present evidence from a user
study showing that most nonprogrammers are able to successfully construct a
wrapper using the tool. Second, a screen reader user could contribute funding
towards the construction of a desired wrapper, to be paid to a crowdworker
who contributes it. In Section 4.4.4 we present evidence from a larger pilot
study performed on Mechanical Turk, from which we derive an estimate of
the costs of getting a wrapper from a crowd of turkers. This estimate shows
that a wrapper can be so obtained for a modest cost. Third, screen reader
users may simply be able to request a wrapper from a crowd of volunteers.
In Section 4.4.5 we present an indication that some web users will use the
tool voluntarily and without remuneration. We close with the Discussion
(Section 4.5), a discussion of Related Work (Section 4.6), and Conclusions
(Section 4.7).

4.2 Datasets on the Web

Many webpages present one or more datasets, where each dataset is a se-
quence of records from a (potentially abstract) database. For example, a
webpage displaying books may contain a title, author, and cover image for
each book. The webpage’s author chooses a visual layout intended to support
the task of the typical user, usually presumed to be sighted. Many layouts
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are possible and in wide use on the web. In the book example, the page
might place cover, title, and author in consecutive cells (Figure 4.1a), or it
might place the cover on the left with title and author stacked to the right
(Figure 4.1d). A visual inspection of Figure 4.1 readily reveals that all depict
the same underlying dataset. Web designers may choose between different
visual layouts for aesthetic reasons. Screen readers, however, attach special
semantics to the <table/> tag, allowing users to use navigation commands
only when that tag is used.

Historically, the <table/> tag was introduced into HTML to present
tabular data, but was also adopted by web designers as an expedient way to
arrange content visually in a grid. This practive gave rise to two problems
affecting screen reader users. Firstly, the <table/> tag is widely [13] over-
used to arrange content visually. Secondly, the <table/> tag is under-used
in the sense that a dataset is depicted using some pleasing layout, as in
Figure 4.1b-e, which does not allow a screen reader user to use the table
navigation commands. An understanding of how the dataset is arranged
in the HTML can allow the dataset to be re-written to a more navigable
<table/> tag for screen reader users.

A wrapper extracts the underlying dataset based on how individual ele-
ments are laid out in the HTML, essentially reversing the rendering process.
A wrapper is reusable when it can be used to annotate different data pre-
sented through the same layout. For an end-user to make a wrapper, they
must abstract away the layout design and see the underlying dataset. Fig-
ure 4.1 illustrates some common visual layouts. Note that while each is
visually distinct, they all use the same schema of title, author, and cover
image. Also, all may be constructed through various web technologies, e.g.
the HTML <table/> tag or CSS. We make use of a rough taxonomy of vi-
sual layouts, including tables, lists, and grids, as summarized in Figure 4.1
and its caption. These layouts make consistent use of the two-dimensional
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Figure 4.1: Visual layouts possible for the same data. Clockwise from top
left, (a) is a simple table with records arranged vertically and fields arranged
horizontally, with fields aligned vertically; (b) is a simple list, with fields
arranged vertically; (c) is a simple grid, with horizontal records containing
vertically arranged fields, wrapping onto subsequent lines of records; (d)
is a formatted list, with formatted records arranged vertically; and (e) a
formatted grid, with formatted records arranged horizontally. Variations of
(d) and (e) are possible.

layout of the page, and of text formatting, to facilitate visual navigation
of the dataset. A wrapper can inform a screen reader how to navigate the
dataset when a <table/> tag was not used, but would have been appropri-
ate semantically. Conversely, a correct wrapper can instruct a screen reader
to disregard over-used <table/> tags which do not correspond to wrapped
datasets.

Two additional complicating features occur in many web datasets. First,
many pages may contain multiple datasets. For example, a webpage might
present a list of winter boots based on the user’s search query, and on the
same page, might present a list of other recommended winter clothing that
is not shoes. Second, many layouts show nested items. For example, a book
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can have two or more authors. In this case the underlying dataset differs from
the previous book examples in that the author has a one-to-many structure.

Understanding the underlying dataset within the visual layout is an ab-
stract task, but it has a concrete parallel in the common internet task of
manually scraping the dataset into a spreadsheet. Many users perform this
task [98], for example to sort the data or to combine it with more data from
another source. The actions involved in copying all data from a dataset to
the corresponding cells of a spreadsheet provides a complete mapping of lo-
cations within the webpage to parts of the underlying relation. So the fact
that users do, in practice, manually scrape datasets into usable spreadsheets
indicates that they are able to locate the relevant data and to formulate it
as a table.

A fair amount of research supports the notion that end users strongly
prefer dealing with tasks presented concretely rather than abstractly. End
users are known to struggle with abstraction [9]. Moreover, users decline
to understand abstractions when they do not perceive them as part of their
social or professional role [89]. Even experts disagree when identifying the
parts of tables [57]. Schemas in particular are difficult: Jha and Nagy [63]
found that users without programming training needed almost an hour of
training in order to specify a schema. Any attempt to construct wrappers
with end users must address these conceptual hurdles.

4.3 Design Process and Design

We wanted to ground our design in the actual, but unknown, distribution
of visual layouts of datasets that present accessibility problems for screen
reader users. We approximated this distribution by gathering a collection of
web pages from workers on MTurk, who were asked to identify web pages
appropriate for scraping. Specifically, we paid turkers to submit examples of
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pages that contained ”many similar items which you might want to copy to
a spreadsheet,” with the reminder that the items might be structured ”as a
chart or table or list.” Turkers provided 375 examples, which we analyzed
to identify different layouts, or patterns designers repeatedly used to convert
a dataset into a design users could understand visually. We categorized the
layouts of the pages from turkers according to the taxonomy presented above
(see Table 4.1). Notably, Table 4.1 shows that turkers, even when primed
to think of spreadsheets, provided many examples of datasets that did not
use a table layout. Turkers’ perception of datasets which do not use a table
layout attests to the <table/> tag under-use problem described above.

As an additional source of datasets appropriate for scraping, we developer
market ODesk1 over 8 months. Some of these postings contained external
links to websites, which we manually examined to determine if they contained
scrapable websites. From this source we attained an additional 415 datasets.
These datasets have a layout distribution broadly similar to the datasets from
turkers, but have fewer simple layouts and tables (which can be scraped
by copy-and-paste, without paying an ODesk worker) and more “difficult”
scraping pages like formatted grids and lists.

We wanted to make a tool that allows end users to express the mapping
between the various types of layouts and the underlying dataset, so that
mapping could be used to improve the accessibility of the dataset. The
variety of layouts used led us to expect that some layouts, e.g. simple tables,
would be easier to map than others, such as grids. We also expected that
nesting and the use of multiple datasets would be harder for users.

Our goals led us to two requirements. First, we wanted to make a tool
that could be used by people not formally trained in programming, so that
the task of supplying semantics for datasets is not limited to the relatively

1http://www.odesk.com; on ODesk employers may solicit (and approve or reject) bids
from freelance developers for (usually small) bespoke development tasks
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Table 4.1: Distribution of visual layouts in examples.
Display-table pattern MTurk% ODesk%
Simple Table 39% 16%
Formatted List 32% 48%
Simple List 18% 4%
Simple Grid 9% 6%
Formatted Grid 2% 26%

Other Features MTurk% ODesk%
Nesting 3% 5%
Multiple Tables 17% 11%

small number of programmers. Second, the interface needed to create a
shared understanding between the user and the tool on what the tool could
and did understand in order for the user to successfully express the layout
as a dataset. These requirements led us to modify the interactions specified
previously [30, 99], where some users struggled to understand which fields
shared a column and less technical users seemed to struggle to complete the
tasks.

We implemented SmartWrap as a Firefox extension. The tool analyzes
visited pages while it is active. The tool sees the same content as the user,
without awareness of whether or how the user is authenticated. The tool
uses a spreadsheet metaphor for laying out the dataset. Previous research
has indicated that users show great facility, and even engage in programmatic
activity, with spreadsheets [79] and constructed forms [73].

When the user encounters a page they wish to wrap, they press a button
in the browser chrome. The tool then opens a sidebar to the right of the
target window showing a spreadsheet-like interface ready to be filled with
data (right side of Figure 4.2). The left pane maintains an unaltered view
of the target, allowing the user to keep an overview of both the page being
wrapped and the state of the wrapper construction. In addition, the outline
of the spreadsheet shows a blank first and second row for a single column,
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Figure 4.2: The design places a spreadsheet interface to the right of the
original webpage. The user maneuvers the blue box (a) to drag the data
into the appropriate box (b) of the spreadsheet, working in any order. The
selected data is shown in the spreadsheet (c) and also by the highlighting
introduced into the webpage (d). When the spreadsheet is complete, the
user can choose to Preview (e) the collaboratively constructed wrapper.
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Figure 4.3: When the user presses the Preview button (a) the system re-
sponds by (i) extrapolating the wrapper for the webpage (ii) applying the
wrapper to scrape the current page and (iii) presenting the output (b) of the
wrapper. The user may then examine that the output matches what they
expect. The original page is still open in another tab (c) and the user may
review that the highlighting (see Figure 4.2(d)) covers all expected cells.
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helping to communicate the user’s task of constructing the first two rows to
communicate the dataset to the agent.

Our system needed to communicate to the user which elements on the
target page the tool could understand. Instead of allowing the user to select
any text and struggling to generalize from the user’s selection, SmartWrap
displays a blue box that enumerates only those selections that the agent can
comprehend. The tool allows the selection of any HTML element. This high-
lighting mechanism provides a kind of ”feed-forward” mechanism precluding
the user from making unproductive choices.

To select an item, the user clicks and drags the blue-boxed item over
to the right-hand pane, and drops it into the appropriate cell. After the
drop, SmartWrap provides two forms of feedback. First, the spreadsheet
incorporates the content and provides an additional column for the user to
drop new content into. Simultaneously, an orange highlight appears, letting
users know which elements on the target page have been incorporated into
the wrapper (Figure 4.2d).

Using the same drag-and-drop procedure, the user populates the remain-
ing fields into the spreadsheet, including column headings and a table name,
if available. Column headings and a table name are optional and can be
typed or dropped from the target page. SmartWrap allows the user to work
in any order they choose. The tool supports Undo operations to fix mistakes
or explore alternatives.

When the user is satisfied that the two rows of the spreadsheet correspond
accurately with two of the rows of the underlying dataset, they initiate the
construction of the wrapper by selecting the ”Preview” button (Figure 4.2e).
In response, the tool sends the examples to a server, which extrapolates a
wrapper for the page, as described below. The tool immediately runs the
wrapper on the webpage and extracts the remaining rows of the underlying
table. It then displays the extracted result (Figure 4.3b) in a new tab in
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the left-hand pane of the browser window. The user can easily check that
the output of the wrapper visually matches the examples in the spreadsheet.
Additionally, all of the fields of the dataset are highlighted in the original
webpage, so the user can switch to that tab (Figure 4.3c) and scan to make
sure all the extracted fields are as expected.

If the user is satisfied that the wrapper has extracted the correct informa-
tion, they can endorse the wrapper by selecting the ”Save and Close” button
(Figure 4.3c). In response, the tool uploads the constructed wrapper to a
central server and makes it available to anyone wishing to use the wrapper.
Note that the user does not see any representation of the wrapper itself, but
only the output of running it on the current page. We insulate the user
from the wrapper program code representation because evaluating the out-
put of a program on a concrete example is much easier than establishing the
correctness of that program.

The construction of a wrapper by the server currently uses a simple heuris-
tic, which is not original to SmartWrap, to generalize the spreadsheet con-
tents into reusable rules for extracting a full dataset from the page. The
generalization begins with the assumption that the transformation acts in
the same way on each record. The server locates the path of the HTML
element containing each record and then the relative path from there to each
field’s contents within the record. Further records are located by reusing
these paths on the rest of the document. This heuristic works for a broad
collection of pages, including those used in the lab study. Based on data
from the larger turk study, we estimate the proportion of dataset pages that
conform to the heuristic, and present the results below.
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4.3.1 The Heuristic

Briefly, the heuristic calculates the prefix shared by the XPaths of all ex-
tracted cells and then calculates the suffix to reach each cell from that shared
prefix. What follows is a more careful exposition of the algorithm.

The heuristic uses several properties of the DOM tree.

Definition 1. A (directed) tree with root R is a (directed) graph (N,E)

where each n ∈ N has a unique path from R to n.

The internal nodes of the DOM tree are called elements, and all text
in the DOM tree is contained in leaf nodes, also called text nodes. The
DOM model additionally defines leaf nodes called attributes, overloading the
relational terminology; in the following, we use the term “attribute” to refer
to attributes of a tuple and will use the term “attribute node” to refer to
DOM attributes if the need arises.

Definition 2. In a tree with root R the subtree rooted at N dominates a set
of nodes A iff for every a ∈ A the unique path from a to the root of the tree
passes through N .

For each relation labeled in the page, the algorithm receives as input

A partial schema An ordered list of columns, each containing a unique ID
and possibly a label

The tuples An ordered list of mappings from a subset of the column IDs
to elements in the DOM; each element is labeled with an unambiguous
XPath describing the path in the DOM from the root through the
ordered nodes (addressed by number) of the tree to the mapped element

For each extracted relation, the algorithm returns as output

A relation XPath An XPath whose result set when applied to the docu-
ment is a single element, used to locate the relation
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A tuple XPath An XPath whose result set when applied to the document
is a list of elements, each used to locate a tuple of the relation

Attribute XPaths A mapping from the column IDs to XPath expressions;
each expression is used to locate an attribute within the tuple subtree

To perform the extraction, the algorithm proceeds by locating the relation
node, then locating tuple nodes which are contained in the relation node, and
then locating attribute nodes which are contained within a tuple node.

To compute the XPaths, the algorithm relies on repeated application
of a function LongestXPathPrefix, which takes as input a set of XPaths
and returns the prefix of the longest XPath which (1) is also a prefix of
the remaining XPaths, (2) ends in the character ’/’ (this is the path-step
separator for XPath expressions) and (3) is the longest prefix meeting these
criteria.

The table prefix is computed as simply the LongestXPathPrefix of the
set of all XPaths from all labeled attributes. The tuple XPath is the table
prefix concatenated with the first element occurring after the prefix (if it
weren’t the table prefix could have been longer). The attribute selector for
each column is just the suffix of the XPath for the attribute in that column,
which occurs after the tuple XPath. Currently, the algorithm simply takes
the first suffix; an exception is thrown and logged if the second row disagrees,
but no attempt is made to automatically reconcile the discrepancy.

4.3.2 Method

Our central goal is to engage with a crowd that can and will supply semantics
for a large number of datasets with usability problems. To evaluate our
progress towards this goal, we evaluate a number of specific hypotheses. First,
we want to check that most users will be able to supply semantics using the
SmartWrap tool, not just programmers.
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H1 Programmers and non-programmers will be able to deconstruct a layout
into a spreadsheet detailing the dataset.

Previous research predicts a positive answer to H1: end users routinely in-
teract successfully with spreadsheets [79] and with datasets on the web [98],
and previous systems have evaluated the performance of small groups of users
with web datasets [30, 99]. We evaluate H1 for a larger group.

Second, we want to check that the process of supplying semantics is not
overly taxing for the user, and thus too expensive to be practical.

H2 Programmers and non-programmers can create wrappers with the tool
in modest time and will be willing to do so for modest cost.

H2 has guided our design, and we provide cost estimates from a deployment
on Mechanical Turk. Additionally, we informally compare the costs of using
the crowd versus employing programmers for wrapper construction. A cen-
tral part of H1 and H2 is that nonprogrammers will be able to participate
in wrapper construction; this does not mean, however, that we expect the
performance of programmers and nonprogrammers to be identical. In fact,
we expect programmers to have greater facility creating wrappers, especially
for tasks requiring more abstractions [9] such as those exhibiting nesting or
multiple datasets.

Finally, we want to study whether it is feasible to expect users to con-
tribute wrappers without being paid. We present some tentative evidence
that users can and will do so.

H3 Crowdworkers will be willing to contribute wrappers for webpages with-
out monetary remuneration.

The Social Accessibility project [90] found that a significant number of sighted
users were willing to contribute improvements for websites when those im-
provements aided the accessibility of the pages, suggesting a positive answer
for H3.
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4.4 Evaluation

4.4.1 Lab Study

In order to acquire fine-grained information towards evaluating H1, we per-
formed a lab study with participants recruited locally. For the lab study
tasks, we manually selected a subset of eleven webpages to wrap contain-
ing a broad selection of the layouts. We expected that simple tables would
be easy to transfer into spreadsheets, so we selected several as introductory
tasks (tasks 1-4), allowing users to gain confidence in the use of the tool.
Although tasks 1-4 were all simple tables, they differed in that tasks 3 and
4 contained significantly more columns. Tasks 5-7 were lists. Task 8 was a
grid. Task 9 was a formatted table, but with the added complication that
the page contained multiple tables. Tasks 10 and 11 were simple tables that
exhibited nesting.

We recruited 30 participants to come to our lab. Participants were re-
cruited from a website that maintains contact with local people interested
in participating in research studies. The website requires participants to be
over 18 for reasons of consent, and this was our only exclusion criterion.
All participants were sighted but were not asked further about their vision.
Each participant took a brief survey (based on an instrument measuring
technical skill developed by the European Union [32]) about their techni-
cal background, including exposure to programming and/or programming
instruction. Each participant was given a brief introduction to the tool,
and then asked to watch a series of short training videos describing use of
the tool. We asked participants to proceed through the tasks 1 through 11
sequentially, allowing them to review the videos.

While they performed the tasks, we asked participants to ”think aloud”
in order to capture both their understanding of the task and their sense of
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how the tool worked. We recorded all screen actions and narratives, and
coded the recordings to analyze participants’ performance on the tasks. We
asked participants to strive for completeness and accuracy in the extracted
spreadsheets, but told them that they could skip a task if they felt frustrated
after several attempts. We never asked them to complete the tasks as quickly
as possible.

4.4.2 Lab Findings

The 30 participants exhibited a fairly diverse array of technical backgrounds.
All reported basic computer skills, including opening programs and using
copy and paste. Twenty-five (25) of the participants (83%) reported using a
formula in a spreadsheet. Twelve (40%) reported having written a program.
We asked about experience with a variety of technical phenomena, but a
Principal Components Analysis found that the self-report of having written
a program was highly correlated (ρ ≈ 0.89) with the first principal compo-
nent, which accounts for about 30% of the total variation. In what follows,
we concentrate on comparing programmers and nonprogrammers, based on
survey responses. To reiterate, we use a very low bar for distinguishing pro-
grammers from nonprogrammers, where it suffices to have written – ever –
a single program. Of the 12 programmers, 7 reported having used advanced
techniques, like recursion.

Over the course of the study, participants spent 1106 minutes attempting
252 tasks. Of the attempted tasks, 222 tasks (88%) were completed correctly,
in the sense that participants successfully placed two rows of data into the
spreadsheet interface. The other 30 were abandoned. The mean time spent
on a wrapper was 4:24 and the median was 3:10; these measurements in-
clude the time spent on a task before abandonment. 72% of the tasks were
completed in less than 5 minutes, and 94% in less than 10 minutes.
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Task Succ. time attempts fields dragged /
extracted

T1: simple 90% 3:43 ± 3:45 1.2 ± 0.56 4 / 134
T2: simple 92% 4:18 ± 4:44 1.3 ± 0.48 6 / 150
T3: simple 92% 3:23 ± 1:13 1.0 ± 0 18 / 477
T4: simple 60% 6:05 ± 3:55 1.4 ± 0.79 18 / 594
T5: list 90% 2:37 ± 1:49 1.5 ± 1.3 8 / 100
T6: list 94% 4:26 ± 2:25 2.0 ± 1.3 14 / 105
T7: list 94% 3:16 ± 2:04 1.7 ± 1.5 6 / 324
T8: grid 87% 4:12 ± 3:44 1.9 ± 1.7 4 / 38
T9: multi 80% 5:29 ± 4:17 1.8 ± 1.2 12 / 102
T10: nested 73% 5:39 ± 2:37 2.0 ± 1.0 14 / 1050
T11: nested 43% 2:51 ± 1:30 1.3 ± 0.8 6 / 741

Table 4.2: Summary of participant completion of the individual tasks. The
final column shows how many fields the participant had to drag for the most
complete spreadsheet and how many total fields were extracted into that
spreadsheet.

Participant successfully completed an average of 8 tasks, with a standard
deviation of 3 tasks. Two participants, both nonprogrammers who reported
having used a formula in a spreadsheet, spent 35 minutes on 4 and 3 tasks
respectively without completing any tasks, and are removed from the sub-
sequent quantitative analyses as outliers. Programmers were more success-
ful overall than nonprogrammers: 97% of attempted tasks were successful
versus 83% of tasks attempted by nonprogrammers. The increased success
rate of programmers was particularly marked in the tasks involving multiple
datasets and nesting. The baseline improvement for being a programmer was
14% (97% - 83%), and for Tasks 9, 10, and 11 it was 31% (78% - 57%). An
independent samples t-test rejects the null hypothesis that the difference in
success rate is zero: t(83) = 2.08, p = 0.04. This is unsurprising, as we expect
programmers to cope better with the abstractions involved in the later tasks.

The design of the study allowed participants to abandon a task at any
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Outcome Hazard Ratio (HR) log HR SE
success 1.63 (p < 0.01) 0.49 0.17
abandonment 0.21 (p < 0.01) −1.56 0.55

Table 4.3: coefficients of the competing risks analysis, showing the ratio of
hazard for exposure to programming

time. To control for individual and systematic persistence, we model the
study as a proportional hazards competing risk model [96], where after each
attempt the task is “at risk” of either ending in success, or being abandoned
by the participant. The independent variables in the model are whether or
not the participant is a programmer, and which task is being attempted;
a random effect is introduced for each participant to control for individual
variability.

Table 4.3 shows the results of the competing risks analysis. The second
column shows the multiplier for the “hazard function” of terminating the task
by success, or by abandonment. Programmers do indeed have both a reduced
rate of abandonment (more persistent) and an increased rate of success (more
skilled) at tasks. Specifically, a programmer has about a 79% reduction
(1−79% = 0.21) in the hazard of abandoning a task, and a 63% greater (1+
63% = 1.63) chance of succeeding on a given task attempt, both statistically
significant at the p < 0.01 level. The model also estimates the base hazard
rate, estimating that about 50% of tasks attempted by nonprogrammers
succeed on the first attempt, versus 70% of tasks attempted by programmers.

The think aloud transcripts revealed some conceptual difficulties encoun-
tered by the participants. Many were initially confused that the target page
continued to act like a normal webpage, navigating to a new page when a link
was clicked, or, in Task 4, sorting a table when a table header was clicked.
Most participants eventually learned this behavior. Several participants vo-
calized doubt whether some web elements, like images and links, belonged
in the spreadsheet. Four participants expressed pleasant surprise when they
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were able to place images in the spreadsheet. Many participants expressed
frustration that SmartWrap’s blue box only allowed them to select whole
HTML elements2, and not the cell contents they wanted.

Many participants became frustrated with the tool at some point while
completing the tasks. One participant complained about the blue selector
“boxes becoming big and small,” finding them “confusing and irritating.”
Eleven (11) participants expressed frustration when they felt they had cor-
rectly communicated the dataset to SmartWrap but the tool was not able
to extract the table. Two participants were especially annoyed that the se-
lection did not allow construction of the precise dataset they wanted; one
commented “it was really infuriating that I couldn’t select certain pieces of
text.” Another participant commented “it was fun at first, but then it got
frustrating.” Conversely, five participants expressed relief when the tool suc-
cessfully extracted a table. Ten participants volunteered praise for the tool
in the think aloud. Two participants stated that they would envision using
the tool in their daily lives.

4.4.3 Mechanical Turk Study

To evaluate whether crowdworkers would contribute wrappers for modest
cost, we ran a larger study on Mechanical Turk. In addition to the 386
webpages gathered from turkers, we also asked the crowd to wrap the the
415 webpages posted on ODesk.

We invited workers on Amazon’s Mechanical Turk to extract datasets
from the gathered websites into the spreadsheet interface. These partici-
pants had no training, but did have access to the training videos. For each
task, the worker was presented with a link to a website, chosen randomly

2An example can be seen in Figure 4.2, where the user has selected the text “by William
Peter Blatty” but would have preferred the text “William Peter Blatty;” there is no element
boundary between the word “by” and the name
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from the collection of sites, and offered $0.10 to extract the dataset. Work-
ers were permitted to label websites as non-datasets, and to report errors
encountered. The task description promised workers a bonus for datasets
correctly extracted. The amount of the bonus was not specified, but we paid
$0.30. Workers who completed at least one task were offered payment to
complete the same survey as the lab participants regarding their technical
background. The spreadsheets submitted by workers were evaluated on a
three-point scale with values 0 for wholly incorrect or empty spreadsheets, 1
for plausible spreadsheets with incorrect cells or merged columns, and 2 for
high-quality spreadsheets, which well matched the underlying dataset of the
linked webpage.

4.4.4 Mechanical Turk Findings

In the MTurk study, 241 workers completed 4133 tasks, approximately three
quarters of which (2811) contained extracted datasets. About 58% of the
surveyed workers reported having written a program. Based on MTurk’s
report of times when workers accepted and submitted a task (though of
course they could be multitasking during that interval), workers spent about
15466 minutes working on the extracted datasets. The average time per
dataset was about 5 minutes, and 87% of datasets were submitted less than
10 minutes after being accepted. A small number of workers contributed a
large amount of the work; about 70% of the tasks were completed by the 15
workers who each completed at least 50 tasks.

Turkers were less likely to indicate a page using a table layout as a
non-dataset (t(1307)=-8.68, p<0.001), and more likely to mark lists as non-
datasets (t(1434)=9.90, p<0.001).

We judge the submitted spreadsheets as incorrect 17% of the time, plau-
sible 38% of the time, and high-quality 45% of the time. Unlike in the lab
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dataset quality # needed cost
table 89% ± 2% 74% ± 5% 1.5 ± 0.1 $0.45 ± $0.15
list 81% ± 2% 28% ± 5% 4.5 ± 0.8 $1.00 ± $0.40
grid 86% ± 2% 11% ± 6% 13 ± 7 $3.05 ± $1.85

Table 4.4: Estimates of the costs to have a 95% chance of receiving at least
one high quality response. The first column lists the percentage of turk
responses that saw a dataset in the page, bracketed by the margin of error.
The second column estimates the probability that a worker’s response will
be high-quality, conditioned on being treated as a dataset. The third column
estimates the number of assignments needed to encounter at least one high-
quality response. The fourth column estimates the cost of the expected
number of responses, assuming workers are paid with the policy employed in
the study.

study, there was no significant difference between the success rates of turkers
who reported programming experience and those who did not.

Simple tables were more likely to be transcribed with high quality (t
(452)=14.32, p<0.001) than non-tables, affirming the decreased cognitive
burden of placing a table in a spreadsheet. Lists (t(521)=-5.58, p<0.001)
and grids (t(117)=-8.66, p<0.001) were both significantly less likely to be
transcribed with high quality.

These observations allow us to make some estimates of the costs of elicit-
ing high quality wrappers from MTurk workers, as shown in Table 3. These
cost estimates assume the same payment structure as in the study, and could
be decreased in several ways, e.g. by paying less (or not at all) for merely
plausible wrappers. As shown in Table 3, for pages with a table layout, peo-
ple would need to make 2 wrapper requests to be 95% sure of receiving a
high quality wrapper (∼$0.45). With a list layout, people would need about
6 requests (∼$1.00). A grid would require about 20 requests (∼$3.05). A
wrapper for a list is an order of magnitude more expensive than a wrapper
for a table, and a grid yet another order of magnitude more expensive.

68



Datasets exhibiting nesting were less likely to be successfully wrapped.
Nesting seems to add about an order of magnitude to the number of requests
required. Since the number of pages using grid layouts and nesting is small,
both estimates exhibit a fairly large variance.

Table 4.4 provides an estimate of how many attempts to wrap a page the
crowd would need to make to have a high probability of success, assuming
the page is a dataset wrappable by the tool. By counting all pages as fail-
ures if they did not result in a success, even after being attempted in the
numbers needed, we can roughly estimate the proportion of datasets which
can be wrapped using the SmartWrap tool. The figures in Table 4.4 yield
an estimate of 62% ± 16% over the distribution of layouts present in the
collection of layouts provided by turkers, and an estimate of 58%± 25% over
the distribution of layouts extracted from ODesk.

For a rough point of comparison for the costs entailed by Figure 4.4, we
posted job advertisements on ODesk for programmers to construct a wrapper
for a simple table. The programmers who successfully completed our task
charged an hourly rate of $8.89 and billed an average completion time of 70
minutes, yielding an estimate of about $9.76.

4.4.5 Voluntary Usage

In order to complete the Mechanical Turk tasks, turkers were given access
to the tool, and some continued to use the tool for other purposes, for which
they received no payment. We observed 427 such voluntary usages of the
tool, i.e. for every ten paid usages we saw about one voluntary usage. This
set of voluntary usages visited a total of 194 different web domains. Of this
set of visited web domains, 5 web domains were visited with more than 10
distinct wrapped pages per web domain, and 143 web domains were visited
exactly once. The web domains with more than 10 distinct wrapped pages
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account for about 30% of the voluntary usages. The voluntary usages repre-
sented a large variety of tasks, including scraping account information from
Mechanical Turk itself, scraping open access journal citations, and scraping
dozens of children’s birthday party providers in Canada. Given access to the
tool, turkers chose to exploit the tool to solve their own scraping problems.

4.5 Discussion

The overall success rate in Table 4.2 lends support for hypothesis H1, sug-
gesting that most people will be able to use a tool such as SmartWrap to
make an effective wrapper. Our lab study indicates people with program-
ming experience would experience a higher rate of success, partially due to
increased persistence and ability to abstract; however, this did not seem to
be the case with crowdworkers, who may be more motivated to complete sim-
ple tasks than more complex tasks. Alternately, turkers unable to complete
SmartWrap tasks, regardless of technical ability, may have self-selected out
of the sample.

The overall short amounts of time spent on each task lend support for
H2. Extrapolating from the data suggests that about 87% of web pages con-
taining datasets could be wrapped by an end-user in under 10 minutes. The
participation rates in the MTurk study provide evidence that crowdworkers
will be willing to provide requested wrappers for reasonable costs. Although
the labor costs of crowdsourcing a wrapper are nontrivial, in the worst case
rising to five dollars for a single page, we reiterate that wrappers are shared
between users. So costs could be shared among users of the wrapper, and
potentially also with a funding agency. Finally, the funding use case (see
Section 4.1) provides a potentially potent method for matching crowd efforts
to the pages screen reader users actually want to use, since someone offering
to pay for a wrapper for a page provides a valuable demand price signal. We

70



leave this line of reasoning to future work.
We did not expect turkers to voluntarily perform scraping tasks in the

numbers that we observed, as we had not invited or solicited anyone to use
the tool outside of the paid tasks. We surmise they conceived a task from
outside the assigned task, possibly to leverage the tool towards accomplish-
ing another MTurk task, and attempted to use the tool for that task. We
submit this voluntary engagement with the tool as tentative evidence for
H3, specifically that a small crowd of end users will contribute wrappers to
SmartWrap without payment. In the study, users did so apparently because
they value its assistance with the mundane manual scraping task, but we
speculate that they may also be willing to do so to improve accessibility of
scraped webpages [90].

We close the discussion by reflecting on some open design issues uncovered
in the lab study. A design choice that caused participants pain was the use of
the blue box to delineate the selectable elements of the page. The blue box
technique is clearly less expressive than allowing users to select an arbitrary
range in the DOM, but is much easier to use. On the one hand, participants
found it to be a usable means of selecting elements without grappling with
the DOM structure of the page. On the other hand, several participants did
remark on having to settle for a different dataset than the one they wanted
because the text they wanted was not selectable. The blue box interface
presented here seems to meet well the needs of new or casual users, being
easy to pick up and precluding selections that are not interpretable by the
tool. In future versions of the tool, advanced or experienced users might
appreciate an additional mechanism to select richer parts of the page. Users’
struggle to disambiguate an element from its ancestor elements indicate that
the selection behavior should try to assist the user more.

Several lab participants did not think the tool could be used for nested
structures. One possible way to inform users that they can build spread-
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sheets with nesting is simply to add such structures to the training videos.
This approach could also clarify that images and links can be placed in the
spreadsheet. But many users will not use or attend to the documentation.
Another way to encourage nesting behavior would be to have the tool as-
sist with it. For example, when detecting that the same element has been
dragged into two consecutive rows, the tool could ask the user whether the
two cells should be merged, making it clear that the cell nests the other
columns of the spreadsheet. We intend to return to this issue in future work,
with more information about how often the issue occurs in the distribution
of pages screen reader users actually wish to access.

4.6 Related Work

A table navigation mode was introduced by Oogane and Asakawa in 1998 [82],
allowing screen readers to move their cursor about within the two-dimensional
structure of an HTML <table/> structure. As a testament to its utility, the
table navigation mode was subsequently adopted in nearly every commercial
screen reader. Without its availability, tabular data is extremely difficult
to navigate and understand through a screen reader. In the tasks stud-
ied by Gunderson and Mendelson [47], presented to screen reader users and
to a control group of sighted users, the task involving lookups in tabular
data (without table navigation mode, which had not yet been introduced)
produced the most difficulty for screen reader users. Clearly, if the screen
reader cannot reproduce the two-dimensional structure, then its user cannot
make use of table navigation mode to move about within that structure. By
restoring the relational semantics to the dataset, we hope to extend to screen
reader users the manifest benefits of table navigation mode for datasets not
presented with a clean <table/> markup.

Many research projects have pursued a transcoding approach where web-
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sites presenting accessibility challenges are re-written in a more usable form.
The Accessibility Commons [65] proposes to serve all of the transcoding meta-
data packages to screen reader clients from a unified architecture; the paper
also presents useful pointers to the various projects they propose to unify.
AccessMonkey [7] extends the GreaseMonkey3 tool, which allows arbitrary
re-writes of web pages written in the JavaScript programming language, and
allows users to apply a collection of scripts improving the accessibility of
various pages. SmartWrap can be viewed as an IDE for developing one spe-
cific, but very common, type of AccessMonkey script. AccessMonkey scripts
are typically constructed by JavaScript programmers, whereas SmartWrap
is designed for use by nonprogrammers. The Social Accessibility project [90]
used a crowd to fix accessibility problems on websites, and reported large
numbers of users were willing to contribute their work to the project.

Several projects mine large amounts of relational data from the web for
programmatic use, but usually divorce the machine-readable relation from
the source webpage, making it difficult to use it to improve the webpage.
Freebase [39] publishes facts about a large number of entities, culled from a
large number of web sources. Freebase facts are gathered by contributors or
by bots written by contributors. Website authors can also choose to publish
their own data using machine-readable markup such as microdata [52] or
RDFa [51], and are increasingly doing so [76], although screen readers do not
at present generally make use of the markup. Embedding machine-readable
markup generally requires a fair amount of technical knowledge and commit-
ment. With even more technical knowledge, Computer science researchers
develop systems that understand (and can annotate) large numbers of web-
sites, e.g. web tables [13, 1] or lists [31], leveraging the vast size of the web
to discover many examples automatically. Our work focuses on gathering
relational data from casual and/or nontechnical users.

3http://wiki.greasespot.net/Greasemonkey
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Wrapper Induction is the problem of constructing a reusable wrapper
based on example labels provided by an annotator. Many researchers [36, 38]
have studied the induction of wrappers for a distribution of pages with the
assumption that several representatives have been perfectly labeled, presum-
ably by trained annotators. Given a sufficient number of high-quality exam-
ples, modern systems [46, 26] are able to generate and maintain wrappers for
a large number of pages. But these systems require a large number of ex-
pensive annotation effort to function, effort which the systems will naturally
devote to more strategically important pages. Our work seeks to generate
data for these systems more cheaply, and more diversely, by empowering
everyday end users to express wrappers for currently unwrapped datasets.
There is a potential synergy between work in Wrapper Induction and work
like ours in Accessibility, where volunteers to improve accessibility can supply
data to induction systems whose improved models can further improve the
accessibility of other pages.

A number of systems have been advanced to enable end users to program
wrappers. Lixto [5] is an intelligent assistant for a database administra-
tor constructing XML from an HTML web page. Thresher [54] assists the
user with constructing RDF by example, using context menus and wizards.
These early systems were largely not tested with nontechnical end users. In
Dontcheva et al’s [30] summaries framework, a user who wants to gather a set
of records, each corresponding to a single web page, into a coherent whole,
locates and labels the elements corresponding to the parts of a single record.
The system responds by coloring the fields, and then is able to extract ad-
ditional records from pages of the same type. Toomim et al’s [99] reform
system offers users a selection of potential data visualizations, e.g. a map, a
timeline, etc, each with a fixed schema. The user then provides positive and
negative examples of the fields of the records, and the system interactively
updates the current predicted fields. The user evaluations showed that most
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users understood the concepts involved, but that less technical users strug-
gled with some aspects of the tools, e.g. the use of colors to indicate that data
were in the same column. Our work refines this line of work, validates it on
a larger set of users, and examines it in the context of wrapper construction
for accessibility.

A few projects showcase end users’ facility with placing data into use-
ful spreadsheets. The CrowdDB [35] project extends SQL to allow some
attributes or tuples to come from crowdworker responses, presented as a fil-
lable form. CrowdFill [83] and AskSheet [86] use a spreadsheet interface to
allow a requester to specify constraints over a set of fields for the crowd to
fill, from which they produce data acquisition strategies that cost less than
simply filling all blank cells. Our work overlaps but differs in that we al-
low users to specify the schema, we acquire a whole page’s content as one
relation, and we require that users provide the relation together with the
webpage from whence it came.

A good amount of work attests to the ability of nontechnical end users and
crowdworkers to accomplish data tasks. Data Wrangler [64, 48] offers users
a Programming by Demonstration interface to cleaning data in the cells of a
spreadsheet. Several systems [107, 34] ask crowdworkers to supply or refine
typing information about columns for schema matching, providing mecha-
nisms for limiting the number of tasks required. CrowdFind [28] asks crowd-
workers to identify tuples characterized by a given predicate. MIXER [42]
allows end users to demonstrate how online datasets can be joined together,
then replays the user actions to construct a complete table. Potluck [58] and
Vegemite [71] provide drag-and-drop visual metaphors for combining web
data sources. These systems also make use of wrapped datasets, indicating
another potential use for accessibility-improving wrappers.
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4.7 Conclusions and Future Work

We have presented the design of SmartWrap, a tool enabling end users to
construct a reusable wrapper simply by demonstrating some of the actions
of a standard manual scraping task into a spreadsheet. The studies demon-
strated that end users can successfully make use of the tool for a broad array
of common layouts in use on the web, explicitly establishing that people
without programming training can construct many types of wrappers. The
cost estimates suggest that wrappers can be acquired from the crowd for
modest cost. Finally, the voluntary usage of the tool suggests that users may
contribute wrappers without remuneration, motivated either by a desire to
improve the accessibility of the web or by a desire to save labor scraping the
page.

The data demonstrate that a relatively small change (e.g. extracting data
from a table as opposed to a grid) changes the difficulty of the task for end
users. This increases the number of crowdworkers required to accomplish the
task, and hence the cost, by an order of magnitude. Not surprisingly, crowd-
workers produce lower quality results compared to laboratory participants.
However, to our surprise, crowdworkers who reported higher technical skill
did not construct significantly more high-quality wrappers than others.

The present work demonstrates the feasibility of employing crowd labor
to produce reusable wrappers for web datasets, but leaves to future work the
challenging issues of delivering those wrappers to screen reader users. We
are currently in the process of prototyping a complementary tool that uses
the contributed wrapped to improve the accessibility of web datasets. The
prototype attempts to address the issue of how non visual web users can
express that a particular dataset lacks the proper semantics. Encouraged by
the present work, we hope that some prototype users who report problem
datasets will be able to get more manageable table structures from the crowd.
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We hope work on the prototype will indicate a path towards the ”virtuous
cycle,” where reports of inaccessible datasets actually get addressed, leading
to a gradual expansion of the set of wrapped and consequently more accessible
datasets. Additionally, by engaging with screen reader users, the prototype
will allow more direct study of the distribution of web datasets presented
visually, which in the present work has been only roughly approximated by
asking turkers and by observing postings on ODesk. Lastly, we intend to
use the prototype to continue study of hypothesis H3, specifically whether a
crowd of users will lend their eyes to provide wrappers for webpages for the
purposes of improving accessibility of web datasets.
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Chapter 5

enTable

5.1 Introduction

Most data-driven web pages communicate semantic information visually.
Web sites employ complex CSS and javascript in order to provide aestheti-
cally compelling pages that are easy to parse visually. In order to commu-
nicate these pages to blind users, screen readers face the daunting task of
reverse-engineering the web designer’s intention and rendering it as a stream
of spoken text. In general, understanding web pages is beyond the capability
of computers, and so screen readers address some important special cases
where the intended semantics are roughly aligned with the structure. For ex-
ample, screen readers provide sophisticated mechanisms for navigating and
understanding web data that makes straightforward use of the <table/> tag.
Many web pages that present data, however, do not use the simple <table/>
layout [4].

Figure 5.1 shows the first row of data relating to a set of products, laid
out as a grid of boxes. The grid layout makes it easy for sighted users to
visually compare the products on the page. When accessed with a screen
reader, however, the grid layout is disorienting and difficult to navigate. For
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Figure 5.1: A web page presenting a data set as presented by the web author,
using a grid layout

example, there is no way to scan across the prices of the different products.
Figure 5.2 presents the same information using a <table/> layout. The
layout is a straightforward use of the <table/> tag in the sense that each row
contains information about one product and each column contains exactly
one attribute about that product. The table layout is substantially easier
to access and understand using a screen reader. Users can move the cursor
quickly and logically around the table. For example, they can scan down
the column of prices to quickly compare several products or to screen out
items outside their price range. Screen reader users can move within the
logical structure of the table, skipping over the intervening content without
devoting attention to it. EnTable effects this transformation by rewriting
complex template layouts as simple tables. This transformation cannot be
accomplished automatically by current technology [4], so EnTable employs
the eyes of sighted users.
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Figure 5.2: The same data set as in Figure 5.1 using a straightforward
<table/> tag layout, which is easier to understand and navigate using a
screen reader

5.2 Architecture

Sighted users are able to take advantage of the semantic information de-
signers implicitly build in the visual layout of pages. Unfortunately, neither
computers nor blind users can easily extract the meaning of these layouts.
Since algorithmic extraction of data sets from HTML is beyond the current
state of the art [4], we turn to the processing power of people. In common
with crowdsourcing projects like Social Accessibility refsocialAccessibility,
EnTable employs a crowd of sighted users to re-write web pages to be more
useful for screen reader users. Figure 5.3 depicts the workflow of the EnTable
system.

Figure 5.3 illustrates the three main components of this socio-technical
system. EnTable users make requests for specific pages to be added and
view rewritten web pages using a proxied environment provided by a browser
extension. EnTable stores page descriptions in a central server-side reposi-
tory. Sighted crowdworkers contribute table descriptions using the Smart-
Wrap browser extension. Our previous work [41] describes the SmartWrap
extension and demonstrates that a large population of crowdworkers can ef-
fectively and inexpensively provide table descriptions of pages that use com-
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Figure 5.3: When an EnTable user detects a page with a confusing template,
they submit a request to EnTable. EnTable forwards the request to a sighted
crowdworker, who uses the SmartWrap interface (See Figure 5.4) to mark up
the template as a table. The table description is stored in a repository,
allowing all subsequent visitors to access this page as a table

plex templates for layouts. One major challenge in the SmartWrap work
is that table descriptions are small programs, equivalent to nested sets of
XPath or CSS selectors, and most crowdworkers are not programmers. The
SmartWrap interface, shown in Figure 5.4 works with nonprogrammers, by
leveraging users’ familiarity with spreadsheets. SmartWrap extrapolates the
required selectors based on example elements provided by the user as the
contents of the first two rows of a spreadsheet.

The reported version of the EnTable extension supplies two novel func-
tions. First, it allows screen reader users to submit requests for specific
pages. Sighted crowdworkers then use SmartWrap to generate table descrip-
tions of these pages [2]. Second, upon subsequent visits to the requested
page, EnTable users can access the page as a table.
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Figure 5.4: The SmartWrap interface. Sighted users drag-and-drop the infor-
mation from the first two rows of the data set into a table. Based on the two
example rows, SmartWrap extrapolates the pattern and presents the com-
plete table for the user’s approval. The extrapolated patterns are stored in
the repository, so they can be used on different pages from the same website.

5.3 Conclusions and Future Work

EnTable provides an end-to-end system allowing screen reader users to re-
port problematic data sets and view data sets that have been improved by
informants. For small demonstration purposes, the demonstrator can sup-
ply semantic information for all reported pages. In a full-scale deployment,
however, it is obviously infeasible for a small team to handle all requests.
Previous work suggests [41, 91] that a substantial number of sighted users
are willing to provide voluntary labor to benefit blind users. Whether suffi-
cient numbers of screen reader problem reporters and sighted informants will
participate to sustain the approach is an empirical question that the system
allows us to study.

The implementation of the EnTable system also enables the study of
several additional issues which we intend to address in future work. First
is the question of how much benefit the rewriting of data sets in the more
semantic form of a <table/> offers to screen reader users. But the difficult
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part of the EnTable system is the acquisition of semantic information from
sighted informants, after which the rewriting with a <table/> tag is just a
matter of formatting the information in relational form. Screen reader users
may benefit more from some other structure (or from the ability to switch
among several different views of the data set), and the implementation of the
present system provides a platform for comparing various alternatives.
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Chapter 6

Wrappers as an Assistive

Technology

6.1 Wrappers

In this thesis, we use the term wrapper to refer to a small piece of code that
maps the contents of a web page into a single nested relation [69]. Essentially
a wrapper reverse engineers the code that renders a result set from a database
into a web page.

A wrapper allows a computer system such as Mixer to understand the low-
level relation encoded in the web page. Mixer allows end users to combine and
manipulate these low-level relations towards the accomplishment of a higher-
level task, such as looking up information about a homogeneous set of items.
SmartWrap complements Mixer by providing end users the capability to
construct low-level wrappers for individual pages. SmartWrap also facilitates
accomplishment of the higher-level task of scraping an entire relation at a
time into a spreadsheet.

While end users do perceive the value of systems like Mixer and Smart-
Wrap in the abstract, they struggle to apply them to novel concrete tasks.
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One reason for the struggle is that sighted people perceive the low-level task
of simply understanding the web page as trivial. Because it is so easy to un-
derstand the relation in the web page, users perceive explaining that relation
to a system as a waste of time.

Blind users of the web, in contrast, do struggle to understand the content
of web pages. Estimates from the literature estimate that blind people take
about 12 to 15 times as long to accomplish tasks on the web as sighted
people [95, 84] (see also Section 2.7.1). A large part of this discrepancy is
that they are operating non visually in a visual environment: web pages are
created for sighted users by sighted developers, who are often unaware of
how their design choices impact non visual access. Wrappers have potential
to improve the situation by assisting blind users with a large number of low-
level tasks, i.e. understanding the relation encoded in individual pages. The
next section describes the potential assistance provided by wrapped pages in
greater detail.

A similar situation obtains in the physical environment. Blind people
have no problem with planning a high-level task, like going to the bank, but
have profound difficulty executing low-level parts of the task. For example,
they cannot see a tripping hazard in their path or a closed sidewalk. Blind
people employ a variety of assistive technologies to aid them with these low-
level aspects of navigation in physical space, such as a cane or a trained
guide dog. When a blind person uses, for instance, a guide dog, the person
remains in control of understanding and proceeding towards the high-level
task. The person knows the way to the bank; the dog does not. The dog
only has responsibility to detect and communicate cues about the physical
environment, such as curbs, steps, or hazards.

A screen reader is an assistive technology that serializes web pages as
spoken text. Blind people who use screen readers do not expect the screen
reader to understand the high-level task they are trying to accomplish. The
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blind person remains in charge of the high-level task, and the screen reader’s
responsibility is to provide informative cues about the information contained
on the web page.

But the screen reader can only provide cues that it is able to understand.
In the next section, we describe concretely how the screen reader’s inability
to decode the relation on a page can complicate a blind person’s ability to
understand and interact with that page. The same software constraints that
prevent programs from reading relations on web pages cause tremendous
difficulty for blind people, because the software they use, i.e. the screen
reader, cannot read the relation either.

The accessibility space provides an opportunity to decouple the low-level
task of identifying the parts of the relation in a web page from the higher-
level task of understanding and manipulating the contents of the relation.
Like a computer program, a blind person views the web without recourse to
the miraculous machinery of the human eye. Unlike a computer program,
however, the blind person can use their human brain to decode the informa-
tion presented on the page, even when the structure of the web page makes
that task capriciously difficult.

Because blind people would benefit from the presence of wrappers, they
may present a resource for solving additional unsolved problems in the Smart-
Wrap work. For example, they can detect web pages that contain data sets
that should be wrapped, by requesting a wrapper for the page. Additionally,
they can detect when web pages have changed so that a contributed wrap-
per fails to match the relation on the page. These capabilities, however, are
contingent on the actual and perceived value of wrappers for blind people.
In the following section, we present the theoretical account of why wrappers
would be assistive for blind people using data on the web. In Chapter 7 we
describe a study to empirically establish and quantify the benefit provided
by wrappers for screen reader users.
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6.2 Wrappers and Accessibility

The fact that blind people cannot see the computer screen is a simple fact
with many ramifications that are not so easily grasped by sighted people.
Here we briefly describe some of the consequences, with a focus on presenta-
tions of structured data and tables on web pages.

Most blind people who use the internet make use of assistive technology
called a screen reader. A screen reader speaks the contents of web pages,
serializing the structured content as speech. In the most usual case, a single
synthesized voice speaks the contents located at the screen reader user’s vir-
tual cursor,1 which the user maneuvers with screen reader keystrokes. The
movements of the virtual cursor are analogous to the eye movements sighted
people use to move their attention across text, but have several limitations.
First, screen reader keystrokes require more attention and conscious explo-
ration than sighted exploration of the same page [43]. Second, the targets to
which the cursor can be reliably moved are limited by the structure encoded
in the web page. We focus on this second limitation, and work through a
concrete example.

Figure 6.1 shows a result set of products on a shopping site as the site
presents it in 2015. Sighted users are able to readily gather a lot of informa-
tion just by glancing at the page, like that there are several products listed
with pictures and some information about them. Moreover, sighted users
can quickly look around the page to answer any questions they want. For
example, a sighted user interested in comparing the item ratings can visually
scan across the bottom of each item.

In contrast, screen reader users maneuver the screen reader cursor around
the page using keyboard actions. To scan across item ratings, for example, a

1the cursor is often likened to “the end of a soda straw,” through which the screen
reader user is trying to understand the whole of the document around the cursor [33].

87



screen reader user has to recognize that ratings are the fifth or sixth attribute
of each item, then maneuver the cursor that many times for each item. Screen
reader users perform exactly this type of action, which Yesilada et al [106]
call “specific reading patterns”, often when consulting data on the web. To
use a specific reading pattern, the screen reader user has to learn the pattern,
and then mechanically apply the pattern to move within the data set.

The way the page is coded can have a large effect on how the screen
reader user can move around within it. Figure 6.2 shows the same informa-
tion presented using the html <table/> tag. While the difference between
Figure 6.1 and Figure 6.2 is minor for sighted users, it can have a significant
impact for screen reader users. Figure 6.3 shows the transcript of the text
that a screen reader vocalizes for the information shown in Figure 6.1 and
Figure 6.2. The bolded text depicts text vocalized for the tabular layout of
Figure 6.2 but not for the grid layout of Figure 6.1.

The bolded cues in Figure 6.3 assist screen reader users in three important
ways. First, the very first line informs the user that the page is organized as a
table. This knowledge allows the user to skip a lot of the exploratory activity
often devoted to understanding the page organization. Second, the explicit
specification of where rows begin and end helps the user better determine how
to segment the information. Without this information, users must memorize
that ratings belong to the preceding, not the following, listed item. Third,
the bolded cues explicitly identify which field is which.

An additional benefit of the table structure is that users can use table
commands to move their cursor along the rows and columns of the table.
Oogane and Asakawa [82] introduced table navigation mode in 1998. As a
testament to its utility, the mode was subsequently adopted in nearly every
commercial screen reader. Using table navigation mode, comparing ratings
of the items becomes a simple matter of moving the cursor up and down in
Column 8.
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Figure 6.1: A web page presenting a data set as presented by the web author,
using a grid layout

Figure 6.2: A web page presenting the same information as Figure 6.1, using
a tabular layout
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table with 22 rows and 9 columns
row 1 column 1 Picture
column 2 Product Number
column 3 Video
column 4 Product Info
column 5 Product Name
column 6 Regular Price
column 7 Featured Price
column 8 Rating
column 9 Reviews
row 2 Picture column 1
link graphic George Foreman 5 Serving 180 Nonstick Grill w/Griddle Plate - K41713
Product Number column 2
link K41713
Video column 3
link VIDEO
Product Info column 4
Best Seller
Product Name column 5
link George Foreman 5 Serving 180 Nonstick Grill w/Griddle Plate
Regular Price column 6
QVC Price: $77.00
Featured Price column 7
Featured Price: $69.98
Rating column 8
4.2 of 5 Stars
Reviews column 9
(11 reviews)
row 3 Picture column 1
link graphic George Foreman 5 Serving Evolve Grill w/Sear Function & Addl.
Plates - K39987
Product Number column 2
link K39987
Video column 3
link VIDEO
Product Info column 4
Best Seller
Product Name column 5
link George Foreman 5 Serving Evolve Grill w/Sear Function & Addl.
Plates
Regular Price column 6
QVC Price:$130.00
Featured Price column 7
Rating column 8
3.8 of 5 Stars
Reviews column 9
(215 reviews)

Figure 6.3: A transcript of the screen reader’s vocalizations of the information
in Figures 6.1,6.2; the structure information in bold is only spoken when the
information is presented as a <table/> as in Figure 6.2.
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Table navigation mode allows the screen reader user to move within the
logical structure of the table. The screen reader is able to facilitate this
logical movement because the <table/> tag expresses the logical structure
in machine readable form. In the grid layout of Figure 6.1, each item is
enclosed in a <div/> tag, and the screen reader has no way of knowing that
this tag delineates an item. In the table layout of Figure 6.2, each item is
delineated by a row element, allowing the screen reader to treat the item
as a logical row. Only when the semantics of the document are encoded in
machine readable form is it possible for the screen reader, which is after all
software running on the user’s computer, to let the user exploit that structure.

In the absence of tabular structure, screen reader users employ a number
of strategies to navigate and understand data presented on web pages. The
simplest possible, but very slow, strategy is to read through the entire page.
The simple reading strategy can be sped up a bit with a little effort by
skipping past each item once the user decides it is not relevant. The “reading
pattern” strategy, described above, is faster again but requires more effort
from the user. A much faster strategy is to use the find operation of the
browser. The find operation requires a fair amount of effort, since the user
needs to correctly predict a string occurring near the value sought. We
expect that the ability to move logically in a table will assist screen reader
users because it permits a movement strategy which is simultaneously fast
and simple to use. Figure 6.4 depicts conceptually the strategies described
in this paragraph.
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Figure 6.4: Several techniques for navigating around a web page in a screen
reader
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Chapter 7

enTable Evaluation

7.1 Introduction

The digitization of vast amounts of information into today’s internet has been
a tremendous boon to people who cannot access printed material. Whereas
print documents are, in practice, only infrequently transcribed into accessible
forms (e.g. Braille), digital documents are available to anyone who has access
to the internet. People who are blind or have other visual impairments are
able to use assistive technologies, such as a screen reader or a screen magnifier,
to view information that would have been practically unavailable in a print-
centric world.

Digitization, however, is not merely a binary state of digitized or not.
We can digitize a print document in many ways, on a continuum we may
call accessibility. As a minimally accessible example, we could provide the
pages of a print document as digital images. The page images would allow a
sighted person to read the document, but (barring perfect OCR) would not
make it possible for a blind person to read it, nor for a sighted person to
perform searches on the text of the document. A more accessible iteration
of the document might render all the text of the document, in linear order,
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as machine-readable text. For documents containing primarily running text,
such as a novel, the linear rendering provides equal access for sighted and
visually impaired people. But for documents containing a large amount of
structured data, like bank statements, tax tables, or fantasy sports statistics,
a linear ordering of the page contents quickly becomes a bewildering blur of
words and numbers. We illustrate this point in greater detail below.

To make a more accessible iteration of the document we insist that in-
formation presented as tables in the print version be presented in equivalent
form to people who cannot see the page. Here, intuition starts to fail. What
would constitute an equivalent form? And how could we tell if we’ve found
one?

Oogane and Asakawa [82] provide an invaluable and surprisingly intuitive
answer: for blind people, an equivalent form to a table is a table. Just as
the horizontal and vertical alignment properties of the rows and columns of
a print table allow the eye to explore the logical relationships entailed by the
table, a blind user of the table can understand and enjoy the relationships of
the table by being empowered to move the cursor about the two-dimensional
horizontal and vertical, i.e. logical, axes of the table. Oogane and Asakawa
implemented this feature for instances of the html <table/> tag, and subse-
quently, as a testament to its utility, the feature was soon adopted in every
major screen reader product.

In this chapter we argue that the utility of permitting tabular movement,
as proposed by Oogane and Asakawa for instances of the <table/> tag,
applies to a larger class of semantic structures encountered on the web. Tables
are a typographic convention for communicating a set of logical relationships
between the rows and columns of the table. It has, however, become common
on the web for authors to make use of non-tabular layouts to present datasets.
These non-tabular layouts effectively communicate the logical structure to
sighted users, but users of screen readers are not able to reconstruct the
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logical structure. As a result, consulting data sets is a significantly more
difficult and time consuming task for blind users than for sighted users of the
internet. This chapter quantifies this discrepancy and estimates the efficacy
of efforts to augment web data sets with structural information.

This chapter is structured as follows. We begin by describing in greater
detail how datasets presented without tables obscure the structural relation-
ships in a screen reader. We then describe a preliminary study to understand
the magnitude of this effect on expert screen reader users. We present the
quantitative results of the study, suggesting that rewriting web data sets as
tables augments the efficiency and effectiveness of screen reader users looking
up information on the web. We then present some qualitative observations
from the study that have implications for the insertion of assistive tables in
web data sets, as well as for the design of screen readers.

7.2 Background

People who cannot see the screen at all typically use an assistive technology
called a screen reader, which serializes the contents of web pages as a stream
of audio text. Browsing using a screen reader is consistently slower than
browsing visually, as attested by several studies. Researchers have compared
the performance of sighted and blind users on plausible internet tasks. While
the precise results will depend on the specific tasks used, here we draw out
some estimates from the literature to understand the order of magnitude of
the gap. Pernice and Nielsen [84] asked groups of sighted and blind users,
each with 20 participants, to complete four tasks. The average blind par-
ticipant completed half a task in about 17 minutes, or about 1.8 tasks per
hour. The average sighted participant completed about three tasks in about
7 minutes, or about 26 tasks per hour, yielding an estimate that blind partic-
ipants take about 15 times as much time as sighted participants. Takagi et
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al [95] report that 5 blind participants complete a task in an average of 536.6
seconds, about 12 times as long as the 5 sighed participants, who complete a
task in an average of 43.6 seconds. Craven and Brophy [24] asked 20 visually
impaired and 20 sighted participants to complete four tasks, and report that
the visually impaired participants spent between 1.4 and 4 times as long as
sighted participants on the tasks.

It is initially plausible that some part of the speed disadvantage of screen
readers is due to listening to speech simply being slower than visual read-
ing. But in fact, screen reader users routinely [3, 93] set their screen reader
speeds to around 300 words per minute (wpm), or roughly the rate at which
university-educated sighted people read visually [16]. Furthermore, expert
screen reader users exhibit what amounts to a superpower, in the ability
to understand and transcribe the majority of synthesized speech at rates of
500 wpm and above [3, 93, 29]. There is some evidence that blind people
repurpose a part of the visual cortex, active during visual processing in the
brains of sighted people, to accomplish this feat [29]. The faster rate of 500
wpm is roughly equivalent to the speeds employed by sighted people in skim-
ming [16]. Thus if web use were simply a matter of reading or skimming web
pages, then we would expect screen reader use and visual browsing to take
about the same amount of time.

Sighted internet users, however, typically do not read or even skim most
browsed pages [80]. Instead, they scan at rates of 600 wpm [16] or higher,
seemingly beyond, alas, the superpowers honed by regular screen reader users.
People scanning typically have little ability to reproduce the text scanned.
They do, however, acquire a great deal of orientational information about
the document – for example that the document contains a banner and a
sidebar that are ancillary to the main content – which they subsequently use
to choose which parts of the document to attend to in order to accomplish
the task at hand. In contrast, blind web users devote a large amount of time
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and effort [43, 95] simply exploring and understanding the structure of the
document before they even begin to address the main content.

Visual scanning of web pages is automatic and feels practically effort-
less. Manipulating the screen reader cursor around the page, in contrast, is
an intentional and relatively laborious affair. To pull it off, screen reader
users employ a variety of strategies [12, 2, 106], and devote time and ef-
fort to selecting and executing the appropriate strategy for the page under
consideration.

The design of a web page can significantly assist or impede the effective-
ness of screen reader users’ strategies. In general, explicit structure, such as
headings, assists screen reader users. Noise, such as images without infor-
mative alternative text, impedes their efforts. These design constraints have
been standardized by the World Wide Web Consortium [17, 14]

The WCAG standard provides guidelines for web authors to make their
sites accessible. Many web sites do not conform to the guidelines, and ex-
hibit many usability problems for screen reader users. A number of systems
have been proposed to rewrite, or transcode, web sites in a way that improves
their accessibility. Such systems rest on two propositions. First, the transcod-
ing must be possible to perform at a large scale. Second, the transcoding
should be helpful for screen reader users. Dante [106] inserts headings and
other reachable landmarks into web sites. The annotations are derived au-
tomatically where possible, and are solicited from ontology experts. Social
Accessibility [90] inserts headings and alternative text for images, as well as
reordering the elements of the page to better match the visual experience
of the page. The Social Accessibility project constructed a user-friendly in-
terface for end users to provide annotations, and found that a significant
number of internet users were willing to contribute a small amount of effort
towards improving sites for blind people. SmartWrap [41] demonstrated that
end users are able to provide structural information about datasets, allowing
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them to be re-written in more accessible forms.
To understand the benefits provided by the transcoding systems, the re-

searchers have compared screen reader users’ interactions with the transcoded
and untranscoded versions of the sites. Yesilada et al [106] found that blind
participants rated improved pages significantly better than original pages on
a scale measuring cognitive workload involved in accessing them. Takagi et
al [95] find that improved pages allowed blind participants to better focus
their efforts on the main content of the page, but they did not detect an
improvement in the net time on task. Their analysis indicates that many
participants were not able to recognize and exploit the accessibility improve-
ments in the experiment. The present work quantifies the potential benefits
to screen reader users of adding structural information to datasets, whether
from a system like [41] or by the web authors.

7.3 Method

The specification for tables in HTML [87] attempted to provide a simple
mechanism which was sufficiently flexible to represent the rich variety of
tables found in existing print documents. In doing so, the specification also
formalized one of the most powerful and predictable mechanisms for layout
in the early web. Web designers made heavy use of the <table/> tag for
both purposes. The use of the <table/> tag in practice gave rise to two
problems with regard to tabular data for visually impaired web users.

1. [<table/> tag overuse] The <table/> tag is widely abused to effect a
grid-like layout rather than to represent tabular data.1

1The W3C explicitly recommends against using the <table/> tag for layout: “Tables
should not be used as layout aids. Historically, many Web authors have tables in HTML
as a way to control their page layout making it difficult to extract tabular data from such
documents.” [53]
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2. [<table/> tag underuse] Conversely, designers frequently present tab-
ular information (e.g. the results of a database query) using repeating
templates rather than the <table/> tag.

The study reported here is designed to measure and disentangle the effects
of these two phenomena with respect to the ability of screen reader users to
understand and use tabular data.

We recruited N = 19 experienced screen reader users to complete a study
using a screen reader. Participants were paid for their time. We offered par-
ticipants the option of using their own computer setup at a place convenient
to them, or they could choose to come to our lab and use a computer with
JAWS installed. Participants were encouraged to adjust the settings of the
screen reader to suit their preferences. Participants were asked to complete a
brief survey of questions with respect to their expertise using a screen reader,
after which they were asked to perform some factual lookup tasks. After they
finished the tasks, we conducted a brief interview to follow up on any behav-
iors observed during the tasks. The tasks and interviews were recorded on
video for subsequent analysis.

We constructed a series of 12 lookup tasks on web pages, and asked
participants to complete them. Each participant began with a single practice
task.2 This practice task gave them a chance to get used to the mechanical
process of reading a question, following a link to a web page, looking up
the answer in that page, returning to the question page and submitting the
answer in a simple form. The participant was asked to find the answer to each
question within the limits of a single page, without following any outgoing
links or filling any forms. Participants who strayed from the task page were
reminded of this artificial constraint and asked to return to the page. After
the practice task, the participant proceeded through the tasks one by one, in

2The practice task asked participants to look up the population of Istanbul in a
Wikipedia table listing statistics about many cities.
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an ordering which counterbalanced task order as well as condition order. The
time from when the user first reached the question page until they submitted
the answer was recorded. Time spent on pages reached by outgoing links was
manually subtracted from the recorded time. Additionally we graded each
answer as correct or not. Observations from the practice task were discarded.

We constructed the tasks using web pages captured from the web in 2015.
The independent variable is the structure used by the web page. In the con-
trol, or “raw” condition, the web page is presented as originally captured from
the web. All captured web pages present a single page of tabular data using
a repeating template, not a <table/> tag. In the “fix underuse” condition
the template presenting the information are replaced with a <table/> tag
structures depicting the same information, with descriptive headers for all
columns. In the “fix overuse” condition, the web page is additionally manip-
ulated to remove all uses of the <table/> tag that do not present tabular
data. The introduced data tables were generated by crowdworkers using the
SmartWrap [41] tool. Each task existed in all three forms, and the appropri-
ate one was shown to each participant.

Based on the video, we also labeled tasks as to whether participants used
the various strategies described above, such as utilizing table structure or
searching for text using a find operation. We expect the use of strategies
to affect participant performance in two ways. First, the widespread and
creative use of the browser find operation [106] may confound our measure-
ments. We account for this by regarding the find operation as a blocking
factor. Half of the tasks we constructed in such a way that the question
contained a string which could be used to located the required information.
In the analysis, we refer to these tasks as “findable.” The other half did not
have such a string. Second, our experimental manipulation introduces table
structures into the page, but there is a distinct possibility that some partic-
ipants will not recognize or use the introduced structure [95]. By observing
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Table 7.1: Task types for the tasks. Tasks types with an asterisk were con-
structed to be findable.
Task Type Description Example Question
key-value* Given a key, lookup a

value corresponding to
the key

Find the phone number of a
practice with name "Lavan Le-
gal"

value-key* Given a value, lookup
the key

Find the name of a player born
in Akron OH

inequality Find a key with value
greater (or less) than a
provided value

Find the name of a company
with over 100 applicants

null value* Look for a value not
listed in the page (cor-
rect answer is null)

How many years of experience
does Dr. David Pier have?

intersection Look for an item meeting
two criteria

Find the brand of a grill rated 5
stars for under $100

google Locate a URL based on
information in the snip-
pet

Find the URL of a site promis-
ing both quotes and poems from
Maya Angelou

the participants’ completion of the tasks we are able to directly observe use
of tables, not just presence of tables. We expect use of tables to play a me-
diating role in improving participant performance. Similarly, we expect the
confounding use of the find operation to play a mediating role in the effect
of the availability of the find in “findable” tasks.

The tasks were designed to explore a range of issues which we expected
to play a role in the utility of using data tables, using several task types as
summarized in Table 7.1. The first two task types were chosen to be relatively
simple. The inequality task type is not solvable by the find operation because
there is no predictable string to search for. The null value task type is
difficult because non-table layouts are often difficult to disambiguate between
a misplaced and a missing field. Participants were instructed to enter “no
answer found” when they believe the page did not contain an answer to
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the question. The intersection task is made more difficult by necessitating
repeated analysis of records in more than one field. The google task type
was included to see how users interacted with familiar pages.

Within each task type, questions were constructed to be as natural as
possible, while having a unique and unambiguous answer. When grading
tasks, we counted multiple variations on the answer as correct. Additionally,
we counted it as correct when the participant retrieved the wrong field of
the right tuple, e.g. an address when the question asked for a phone number.
Information from the wrong tuple was counted incorrect. As a baseline to
validate that the questions were mostly unambiguous and also trivial for
sighted users, we asked crowd workers on Mechanical Turk to complete the
same tasks using the same web forms.

Based on the time spent on each task and whether or not the answer
was correct, we compare the effectiveness and efficiency of participants in
the different conditions. We hypothesize that introducing data tables will
increase the effectiveness of participants, i.e. it will help them find more cor-
rect answers. We also hypothesize that introducing data tables will increase
the efficiency of participants, allowing them to find an answer in less time.
We expect that removing non-data tables will further augment participants’
efficiency. Finally, and most fundamentally, we expect that screen reader
users will find and make use of the data tables we put in the experimental
conditions.

Hypotheses:

H0 Screen reader users will recognize and use tables when performing data
lookup tasks

H1 Use of data tables will increase the efficiency of screen reader users on
data lookup tasks

H2 Use of data tables will increase the effectiveness of screen reader users
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on data lookup tasks

H3 Removal of non-data tables will increase the efficiency of screen reader
users on data lookup tasks

7.4 Study Demographics

The 19 screen reader users who participated in the study were all blind. Two
participants had a very small amount of residual vision. One participant
used voice commands to control the screen reader, and the rest were able to
use a keyboard.

Ten participants chose to work on a computer provided by the experi-
menter. Nine participants chose to work on their own computers; four in
their home, four in their workplace, and one brought a laptop to a pub-
lic library. All participants reported regularly using a screen reader on a
computer and on a mobile device.

16 participants indicated that JAWS was their primary desktop screen
reader; two indicated VoiceOver, and one indicated System Access. All par-
ticipants except for one were able to use their primary screen readers for the
study; the one exception was a Mac user who reported using JAWS regularly
and used JAWS for the study. This participant was also the only one who
did not use their preferred browser for the study, using Internet Explorer
instead of Safari. One other participant preferred and used Safari. Four par-
ticipants preferred and used Firefox, and twelve preferred and used Internet
Explorer. One participant preferred and used the separate browser provided
by System Access. These demographics are broadly similar to those found
by WebAIM.3

Six participants reported slight or no customization in their screen reader
3http://webaim.org/projects/screenreadersurvey6/
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configurations. Nine participants reported customizing their settings “some-
what,” and three of them did not use their own, customized computer for the
study. Four participants reported their settings “very customized” and also
did not use their own computer.

10 participants reported their screen reader proficiency as Intermediate,
and 9 as Advanced. 11 rated their internet proficiency as Intermediate, and
8 as Advanced. No one identified as a Beginner. All participants reported
familiarity with table commands.

Participants were encouraged to configure the screen reader to suit their
preferences. The median speech rate used by participants was around 300

wpm, roughly equivalent to the sighted reading rate. Four participants who
used a slower speech rate of around 180 wpm may have done so because
they did not adjust the rate from its default on a computer provided by the
experimenter.

7.5 Quantitative Results

The 19 participants completed 210 tasks, responding with the correct answer
in 160 tasks and an incorrect answer in 50, or about 76% correct. The median
time spent on a task was 150 seconds. In the sighted baseline, 68 sighted
people completed the same tasks with median time on a task of 42 seconds
and got about 91% right. Table 7.2 breaks these measurements down across
the conditions and findable tasks.

In 144 tasks participants were using pages with data tables. In 78 of
these, or 54%, participants used at least one table operation. Participants
attempted to use the find operation in 121 tasks, or about 58% of tasks.
They successfully found at least one string in 98 tasks, or about 47% of
tasks. Table 7.3 summarizes the use of these strategies across condition and
findable tasks.
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Table 7.2: Summary of participants’ performance on the tasks

Condition Find-able Num Median time (s) % correct
untranscoded no 31 265 65
fix underuse no 32 188 75
fix overuse no 41 192 66
untranscoded yes 35 141 89
fix underuse yes 37 146 81
fix overuse yes 34 147 82

Table 7.3: Summary of strategies participants used on the tasks

Condition Find-able % used table % tried find % used find
untranscoded no 0 61 45
fix underuse no 56 34 21
fix overuse no 58 41 29
untranscoded yes 0 80 71
fix underuse yes 48 70 62
fix overuse yes 52 58 50

A Shapiro-Wilk test rejects the null hypothesis that overall time on task
is normally distributed (W ≈ 0.86, p < 0.001). In the following, we analyze
the logarithm (base 2) of the time on task.

Figure 7.1 shows the time participants spent on tasks in the various con-
ditions. The figure suggests that participants spend less time on findable
tasks than unfindable tasks. A t-test confirms this is statistically signif-
icant (t208 ≈ 5.2, p < 0.001). A Sobel test indicates that searching for
part of the question mediates the effect on time of the availability of find
(z ≈ −4.48, p < 0.001), i.e. findable tasks are only faster if participants per-
form the find action with a good string from the question. The mediation
analysis recommended by Imai et al [59, 97] agrees (p� 0.001).

Figure 7.1 also suggests that participants complete unfindable tasks in
the original condition more slowly than tasks in the two fixed conditions,
but faster in findable tasks. The effects for the findable tasks are not sta-
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Figure 7.1: Time spent on task compared across condition and findable tasks
(log scale)
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tistically significant. For unfindable tasks, t-tests confirm that tasks in the
original condition take less time than those in the fix underuse condition
(t61 ≈ 2.58, p < 0.05) and those in the fix overuse condition (t62 ≈ 2.4, p <

0.05). Adjusting via the Bonferroni correction for the six pairwise compar-
isons suggested by Figure 7.1 makes these differences less compelling. Using
the mediation analysis as before indicates that presence of tables is mediated
by use of tables (p < 0.05), when use of find is taken into account. In other
words, participants are only faster on tasks with tables when they actually
make use of the tables.

Figure 7.2: Time spent on task compared by table use and findable tasks
(log scale)

Figure 7.2 shows the time spent on tasks broken down by whether tables
were actually used. As before, there is no statistical difference for findable
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Table 7.4: Fixed effects of a regression for log time on task versus table use
and find use

Factor Coefficient p value
intercept 7.71± 0.12 � 0.001
table use −0.49± 0.12 � 0.001
find use −0.98± 0.14 � 0.001
non-data tables −0.05± 0.11 > 0.05
use table and find 0.64± 0.23 < 0.01

tasks. For unfindable tasks, participants who used tables were statistically
faster than those who did not (t86 ≈ 4.11, p� 0.001).

Table 7.4 shows the fixed effects for a regression of log task time on
table use and find use. The model also includes a random effect for each
task. Based on the estimates in Table 7.4 the effect of using tables, holding
all other factors constant, is a time reduction of 23% to 35%. Adding a
factor for the presence of non-data tables to the model does not identify a
statistically significant effect.
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Figure 7.3: Percent correct compared across condition and findable tasks,
with standard error
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Figure 7.3 shows the effectiveness of participants in the various condi-
tions. Again, findable tasks appear to be easier than unfindable tasks, and
a t-test confirms this (t196 ≈ −2.7, p < 0.01). A mediation analysis does not
find that presence of a search-able string is mediated by actual use of that
string; findable tasks appear to be easier whether or not users perform an ap-
propriate search. No other differences suggested in Figure 7.3 are statistically
significant. The effect on accuracy of table availability is again mediated by
actual usage of the table (p < 0.01). Figure 7.4 compares the effectiveness of
participants who used tables to the effectiveness of those who did not.

Figure 7.4: Percent correct compared by table use and findable tasks, with
standard error

Figure 7.4 suggests that using tables helps participants locate a correct
answer in all types of tasks. A Bayesian estimate of the difference, which pro-
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Table 7.5: Fixed effects of a regression for correctness on task versus table
use and find use

Factor Coefficient p value
intercept 0.39± 0.34 > 0.05
table use 0.79± 0.38 < 0.05
find use 1.14± 0.43 < 0.01
non-data tables 0.35± 0.36 > 0.05

Table 7.6: Coefficients of a proportional hazard model viewing correct task
completions as events and incorrect tasks as (right) censored

Factor Coefficient exp(coeff) p value
table use 0.75± 0.2 2.13 < 0.001
find use 1.41± 0.21 4.12 � 0.001
find and table use −0.83± 0.35 0.43 < 0.05

ceeds by drawing from the posterior distribution assuming the probability of
being correct is drawn from an uninformative conjugate beta distribution,
finds a 93% probability that the effect is positive. Table 7.5 shows the coeffi-
cients of a logistic regression with a random effect for task on task correctness.
This model estimates the marginal effect of using tables as an improvement
to effectiveness of 3–22%.

The preceding analyses model time on task and task correctness inde-
pendently. A non-parametric survival model [6] allows both measurements
to be modeled jointly, viewing an incorrect response as “censoring” a correct
response the participant might have reached had they recognized their error.
Table 7.6 shows the coefficients of a proportional hazard model, indicating
that use of table roughly doubles the “hazard” of successfully completing a
task, where use of find quadruples the hazard. This model estimates that use
of tables reduces the median time to a successful task completion by 21–47%.

By consulting the baseline of sighted users, we can compare the time spent
completing the tasks by each screen reader user to an average sighted peer
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who experienced exactly the same pages as they did. Using this analysis, we
find that screen reader users who did not use tables took about 5.8 times
as long to complete the tasks. In contrast, screen reader users who did use
tables took about 3.1 times as long, a reduction of about 2.7.

7.6 Qualitative Results

As noted above, data tables only assist screen reader users when users are
aware of and make use of the tables. Here we discuss some observations with
respect to how users found and explored tables.

Screen readers provide a command with which users can directly to the
next table in the document. In response the cursor will move to the next
table, and if there is no such table the screen reader will pronounce “there
are no tables on this page.” Participants attempted to jump to a table in
6 of 66 pages in the original condition, and in 18 of 144 pages when there
was a table to find. Several participants made use of a table in the page to
find where their cursor had been after re-reading the question. We observed
this pattern of immediately jumping back to a table in 8 tasks, and we never
observed it when there was no table in the page.

Screen readers announce the presence of a table when a user moves the
cursor into the table from above. When the user somehow moves the cursor
into the middle of the table, for example by using the find operation, the
user may not be aware that there is a table in the page. Some users will
spontaneously attempt table commands to “probe” whether there is some
structure they might be able to leverage. Several participants commented
that they got the feeling that a certain page “feels like a table.” When such
a probe fails, the screen reader announces “not in a table.” We observed
failed probes in 13 tasks without tables. We observed at least 9 instances of
successful probes in pages with tables. One participant characterized table
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probing as follows "if I think it’s data that I’m looking for, and it would make
sense in a table, I got nothing to lose by hitting the letter T a few times just
to see." Another participant noted that probing for table structure can be
useful to rule out the possibility of using table commands: "okay this list
is not in a table so therefore using table commands will be useless, it’s not
going to help."

In the interviews, we asked participants when they do or do not use tables.
One participant said "I love tables ... when I know they’re there." Partic-
ipants were only informed about a table’s presence when they maneuvered
the screen reader cursor through the beginning of the table. As a result,
they frequently were unaware when a table was there. As a participant said,
"I would only look for a table if I knew it was there." Several participants
suggested that in the web overall they expect informative tables to be very
scarce. Reflecting on the tasks, one reported "I didn’t figure out soon enough
that they were in a table, I just assumed it wasn’t because that’s been my
experience with other, like Amazon, or you know, Home Depot, or wherever
I’m looking for stuff." According to another participant, "a lot of websites
are constructed this way [using templates], and you just have to live with
doing the down arrow." One participant could not come up with a site using
tables: "I’m trying to think of a site that I go to, where they do columns
and stuff, and I can’t think of anything at the moment."

Several participants reported an aversion to using tables. One said flatly
"if I had my preference, I do like the up and down, I prefer not to have to
do tables, but I will." Another participant, who assists other blind people
in learning screen reader skills, said "I don’t know whether their level of
JAWS, do they know those table keys or not, I’m finding a lot don’t." One
participant said "I get annoyed with tables sometimes, because there are a
lot of tables that don’t always work the way they should."

The quantitative results above point to the crucial role of the find oper-
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ation in data lookups with a screen reader. Here we describe a few common
issues that limited participants’ ability to make successful use of the find
operation.

The most common failure of the find operation in our study was to search
for the comparison value of an inequality. For example, in response to the
question “What is the name of a book requested by over 5000 people?” partic-
ipants would unsuccessfully search for the string “5000”. We had intentionally
introduced these types of question in the construction of unfindable tasks.
We observed these types of search errors in 20 tasks. Several participants
recalled these tasks in the interview and speculated that they would like to
have a find feature for finding values above or below a certain threshold.

Misspellings of the search string were also common. For example, partic-
ipants searched for “Istambul” instead of “Istanbul” and “Akrin” instead of
“Akron”. We observed 11 such misspelled find searches.

Another common failure was when the search string failed to exactly
match the target string on the page. In 6 tasks, participants included a
trailing space in the search string. For example, a search for the string
“Akron” failed to locate the target string “Akron, OH”. In 3 tasks, including
an extra word made the search too restrictive. For example, a search for
the string “David Pier” did not find the target string “David H. Pier”. In 2

tasks, users searched for a different form of the word than appeared in the
document, e.g. searching for “requested” when “requesting” was used in the
document. Many participants preemptively worked around these issues. In
65 search attempts for a two word phrase, participants used only a single
word in $$ of them. In 35 tasks, participants searched for only a substring
of the word they were looking for, e.g. “peop” for people or “applic” for
applicants or applications.

In 11 tasks, participants searched for strings that were insufficiently dis-
criminative to aid them, e.g. “2015”. In another 10 tasks participants
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searched for strings they conjectured might appear in the document, which
did not. For example, a user searched for “*****” to try to find a 5 star
rating.

Several participants commented that tables feel faster to them, which one
participant summarized by saying "you can move through the down arrow
... you just keep going boom-boom-boom." Some participants noted that
tables communicate the structure of the data. One described the ability to
ask the screen reader the row and column headers of the current cell: "Even
though you’re nowhere near the title of the column, you still know that that
column, when you right arrow it’s going to announce the title of the column
that you’re right-arrowing into, and also sometimes the title of the row that
you’re on."

Several participants emphasized that the screen reader’s ability to pro-
vide contextual information was only as good as the structure provided by
the page. One participant qualified that "headings are nice ... as long as
they’re intentional." Another said "Graphically [pages] look great but if the
encoding behind it, isn’t really there, then JAWS doesn’t know, you know?"
In the absence of tables, one participant complained "if it’s just a big list of
stuff, then often, I usually have to, after I find what I’m looking for, then I
have to go back to the beginning of the list, and check the pattern." A few
participants mentioned table features that can make tables confusing. One
participant reported that some tables redundantly "repeat a line that really
only says something once it says it twice when I arrow down in that table,
you know, it’s not a perfect science." Another participant reported that cells
that span more than one row or column are confusing: "it doesn’t feel like a
maze, right, if it’s a chessboard, but once there are cells of different sizes, it
would be easy to keep track of it if I can touch it, but if I can’t then it’s very
hard to keep track in my mind, that there is a row there, if there were three
rows and then a rowspan, I might not realize that there’s a middle row."
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7.7 Discussion

As shown in Table 7.3, in over half of the tasks where tables were made
available, participants put the table structure to use. This indicates that in-
troduced tabular structure into data sets would likely be used by many screen
reader users, in confirmation of H0. This is corroborated by the prevalence
of participants attempting to jump to and probe tables.

The mediation analyses above provide formal confirmation of the pedantic
point that the presence of tables does not necessarily provide any assistance
to screen reader users. Instead, they have to use them. In fact, several
participants ignored the tables entirely. The mediation analysis confirms
that those participants took as much time, and were as accurate, as those
who saw pages without tables in them. Similarly, the availability of the
find operation in findable tasks made participants faster only insofar as they
actually performed the search. The mediated effect did not hold for task
accuracy. Participants who did not search on findable tasks still seemed to
find them somewhat easier. We speculate that it is easier to recognize a tuple
containing a word in the question than it is to recognize a question matching
a more complex predicate, such as an inequality.

The model summarized in Table 7.4 suggests support for H1, i.e. that use
of tables helps screen reader users accomplish lookup tasks more efficiently.
That model estimates that screen reader users who have access to and use
tables are 23% to 35% faster than those who do not.

The model summarized in Table 7.5 suggests support for H2, i.e. that use
of tables helps screen reader users be more effective at lookup tasks. That
model estimates that screen reader users who have access to and use tables
are 3–22% more accurate than those who do not.

A survival analysis combines these two effects, and estimates that screen
reader users who have access to and use tables will spend 21–47% as much
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time successfully completing lookup tasks than those who do not. By match-
ing our participants to sighted peers who saw the same task conditions, we
estimate that use of tables reduced the slowdown for using a screen reader
from about 5.8× to about 3.1×.

Contrary to H3, we do not find any evidence that removing non-data
tables affects either the effectiveness or efficiency of screen reader users on
these tasks. Our tasks were constructed from data sets from the real web, and
it may be the case that non-data tables are just not a big problem in today’s
web for screen reader users, either because of clever screen reader heuristics,
or because users can quickly discriminate between data and non-data tables.
We did not focus on locating web sites that made egregious overuse of the
<table/> tag, instead we identified sites that presented data sets without the
<table/> tag then removed any non-data tables they happened to use. A
study focusing more narrowly on identifying sites that dramatically overuse
the <table/> tag may be able to find a significant impediment they present.

The analysis of participant failure in the use of the find operations points
to some opportunities for improving the find operation for screen reader
users, and potentially for sighted browser users as well. Several participants
brought up the possibility of a feature providing search for a particular type
(i.e. a number) meeting a particular criterion (i.e. greater than some number).
The other find failures point to the very strict nature of exact string search
in the browser, especially in contrast to the features available in web search
engines. In a web search engine, adding words makes a search less restrictive,
added whitespace is ignored, and many morphological forms of search terms
are automatically simultaneously searched; the results are then presented
in rank order based on the extent they match the query. Web searchers
can disable these features by enclosing the query in quotes, but fewer than
6% of searches do so [62]. In exact string search (roughly equivalent to
a quoted web search) adding words and whitespace makes a search more
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restrictive, and only the queried morphological form is located; the results
are presented in strict document order. Participants in our study encountered
all of these drawbacks as they attempted to use the find operation to look
up information in the task data sets. Finally, web search engines regularly
suggest the correction for typos and misspelled words.

The present work measures the utility for screen reader users of having
access to data sets presented using the <table/> tag. In broad strokes, we
could say that screen reader users would be better off if all data sets were
written as tables tomorrow. Such a dramatic transformation of the web,
however, would have the obvious downside that it make the web harder to
use for the majority of its users, the sighted. There are at least two hybrid
approaches that could extend to screen reader users the benefits quantified
here without disturbing the existing visual aesthetics of the web.

The first hybrid approach is that web authors could markup their data
sets as tables using a machine-readable formalism such as RDFa or micro-
data. To provide the benefits, demonstrated here, of table movement in these
marked-up data sets, screen reader developers would need to also allow table
navigation mode within them. The present study was predicated on the ob-
servation that at present the <table/> structure is the only representation of
the data set concept that is shared between the capabilities of web authoring
tools, web browsers, and screen readers.

We have explored the second hybrid approach in our previous work on
SmartWrap [41]. In that work, we describe the SmartWrap tool, which
empowers end users, explicitly including non-programmers, to construct a
wrapper for a web data sets in minutes. A wrapper is a small program which
contains exactly the information needed to transform, or “wrap”, the contents
of a data set into an alternative form, such as a table. Given a wrapper, a
page can exist in its current form for sighted people but be re-rendered in
a different, tabular view for screen reader users. When the underlying page
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template changes, SmartWrap can be used again to generate a new wrapper
promptly.

The present work focuses narrowly on the direct benefits to screen reader
users provided by having access to data sets in tabular form. To be sure,
there is tremendous potential indirect benefit to screen reader users, and to
everyone, of stipulating access to web data sets in machine-readable form.
The Semantic Web [92] proposes encoding all web information in machine-
readable form, unlocking the potential to build semantic agents that can
understand and execute high-level queries. But high-level queries are built up
from lower-level queries. Here we study, and quantify, the benefits provided
by machine-readable markup to a human operator in directing a general-
purpose semantic agent, i.e. the screen reader, in completing a low-level data
query. Whatever larger potential benefit a machine-readable web promises,
blind internet users are a growing constituency who can benefit from them
now.

7.8 Conclusions

In this chapter, we have provided evidence that screen reader users make use
of tables as data sets when they are provided in tabular form. We evaluated
screen reader user performance on web data sets that had been transcoded
as tables, and found that users could understand and use the information in
this form. Furthermore, we find that consulting the resulting tables is much
faster and somewhat more accurate than the original data sets as observed
on the web. Contrary to our initial expectations, we do not find any evidence
for or against the proposition that non-data tables impede the performance
of lookup tasks on web data sets.

We see some evidence that screen reader users decide to probe for tabular
structure in data sets based on an informal sense that the page “feels like a
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table.” This presents an initial indication that screen reader users can detect
and report pages that contain data sets but do not use a <table/> tag. We
are currently in the process of building and evaluating a companion system
that mediates between screen reader users, who report pages without tabular
structure, and users of the SmartWrap [41] system, who provide a wrapper
for those pages on a paid or volunteer basis.
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Chapter 8

Conclusion

In Chapter 4 we described the SmartWrap system, which allows non-programmers
to create wrappers for web data sets with little time and effort. In Chapters 3
and 5 we described two application areas for wrappers.

The fundamental point of having a wrapper for a data set is so that a
computer can understand the data set. A human visually looking at a data
set does not need a wrapper in order to understand it; they can just read
it. In this thesis, we have attempted to identify populations of people who
interact with data sets in a matter mediated by a computer.

In Chapter 3, the Mixer system addresses the needs of non programmers
who face repetitive data retrieval tasks. People who look up different pieces
of information, e.g. names from a list of people, on the same web page or set
of web pages, are potential Mixer users. Mixer allows them to automate the
mechanics of the lookups using programming by demonstration. Chapter 3
shows that administrative end users can effectively demonstrate the actions
necessary to successfully generate the desired result. A key issue with the
Mixer system is that users have to choose to automate the task using Mixer.
We have shown that they are able to do so, but not that they will recognize a
Mixer-appropriate task in the wild, and use Mixer for it. We simply assume
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that the value provided by the automation will be sufficiently compelling
that end users will choose to complete the tasks in a way mediated by the
Mixer system, rather than directly.

In Chapter 5, the enTable system addresses the needs of people who use
screen readers to access the web. In contrast to potential Mixer users, screen
reader users have no choice but to use the web in a mediated fashion. They
either access the web mediated by the screen reader, or they do not access the
web at all. In Chapter 7 we demonstrate empirically that use of a wrapper
can concretely improve the experience of users using the web mediated by a
screen reader.

Whereas Mixer has potential to cause a revolutionary change to the way
end users accomplish repetitive lookup tasks, enTable is positioned to provide
an evolutionary improvement to how screen reader users consult data sets on
the web. The revolutionary change of Mixer has potential for high reward [18]
but is accompanied by high risk of low user adoption. In contrast, screen
readers are used regularly by millions of people today. While the potential
reward is more modest, it also comes at lower risk: a wrapper contributed
for a page of interest to a screen reader user will help that user achieve their
goals. Moreover, wrappers produced to assist screen reader access can be
applied to web automation problems. So working with screen reader users
provides a way to work concretely with an existing user base to work out the
issues with a crowd-based wrapper construction system, while allowing those
wrappers to be used by other, more speculative systems.

More generally, the data sets considered in this thesis are an example
from a wider class of issues where digital information is incompletely marked
up for their semantics. Web authors do as much work as necessary to provide
information in a form usable by their intended audience. The tools used for
communication dictate how much semantic information must be included.
For example, links on the web are nearly always marked up with the seman-
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tics of a link (rather than, say as blue text) because web browsers have to
know the target location in order to do the right thing when a user activates
the link. Template-based data sets, in contrast, are only specified in terms of
their content and constraints on the layout. The semantic information that
the data set is a data set, i.e. that it has a specified structure of tuples and
attributes, is generally not included because web browsers are not expected
to do anything useful with that information. But, as shown in in Chapter 7,
screen readers do something useful with an explicit representation that part
of a page contains a data set: they allow the user to move or scan around
the logical structure of the data set. Studying screen reader access to infor-
mation gives a window into limitations to the semantics encoded in digital
representations.

Another interesting facet of screen readers is that their users have access
to human intelligence (i.e. their own) and show great facility in pragmatically
switching views of the web (e.g. reading through all the text of a document
versus reading only the text of the links in it) until they find the information
they want. Thus the degree to which a particular view is used can provide
implicit feedback on how useful it is. A widely used wrapper is more likely
to be correct and useful than one which is not used or is frequently ignored.

From a software engineering perspective, the existence of an existing user
base provides a concrete target to work towards. It allows us to use under-
stood methodologies for developing for and testing with user groups. Since
expert screen reader users understand their goals, they can provide more
concrete and better feedback about features and flaws of the system under
development. As described above, the wrappers contributed for enTable use
can also be used by Mixer users who want to automate tasks over wrapped
pages.
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