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Abstract
Recent years have witnessed impressive success in natural language processing

(NLP) thanks to the advances of neural networks and the availability of large amounts
of labeled data. However, many NLP systems predominately have focused on high-
resource languages (e.g., English, Chinese) that have large, computationally accessi-
ble collections of labeled data for training. While the achievements on high-resource
languages are exciting, there are more than 6,900 languages in the world and the ma-
jority of them have far fewer resources for training deep neural networks. In fact,
it is often expensive, or sometimes infeasible, to collect labeled data written in all
possible languages. As a result, this data scarcity issue limits the generalization of
NLP systems in many multilingual scenarios. Moreover, as models may be used to
process text from a wide range of domains (e.g., social media or medical articles),
the data scarcity issue is further exacerbated by the domain shift between the training
and test data.

In this thesis, with the goal of improving the generalization ability of NLPmodels
to alleviate the aforementioned challenges, we exploit word and phrase alignment to
train neural NLPmodels (e.g., neural machine translation or contextualized language
models), and provide evaluation methods for examining the generalization capabili-
ties of such models over diverse application scenarios. This thesis contains two parts.
The first part explores cross-lingual generalization for language understanding. In
particular, we examine the ability of pre-trained multilingual representations to trans-
fer learned knowledge from a high-resource language to other languages. To this end,
we first introduce a multi-task benchmark for evaluating the cross-lingual general-
ization capabilities of multilingual representations across 40 languages and 9 tasks.
Second, we leverage word and sentence alignments from parallel data to improve the
multilingual representations for language understanding tasks such as those included
in our benchmark. The second part of the thesis is devoted to leveraging alignment
information for machine translation, a popular and useful language generation task.
In particular, we focus on learning to translate aligned words and phrases between
two languages with fewer parallel sentences. To accomplish this goal, we exploit
techniques to obtain aligned words and phrases from monolingual data, knowledge
bases or crowdsourcing and use them to improve translation systems.
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Chapter 1

Introduction

Over the past decade, the success of NLP systems has been mostly driven by deep neural network
models and supervised learning approaches on a large amount of labeled data. For example,
neural machine translation (NMT) [18] trained on billions of parallel sentences has become the
de facto paradigm of many commercial translation systems such as Google’s multilingual NMT
system [3, 89] and Microsoft’s NMT system [77]. Among these exciting NLP research develop-
ments, this thesis particularly focuses on multilingual learning approaches and investigates two
main categories of multilingual NLP tasks – machine translation (MT) and cross-lingual lan-
guage understanding. Machine translation is the task of translating text from a source language
to another target language. The broad genre of cross-lingual language understanding includes a
variety of sub-tasks that make predictions over words, phrases, or sentences written in different
languages. Figure 1.1a gives an example of Chinese-to-English translation, and Figure 1.1b gives
an example of cross-lingual sentiment analysis, a popular cross-lingual language understanding
task that predicts whether an input sentence contains positive or negative opinions regarding a par-
ticular subject. We kindly refer the reader to the problem definition of both tasks in Section 2.1.

In NLP, most existing systems are English-based or developed for high-resource languages.
Given this limitation, there is a pressing urgency to build systems that serve all of the human
languages to overcome language barriers and enable universal information access for the world’s
citizens [3, 10, 150]. On the other hand, most existing NLP systems still require a large amount
of labeled data for training in order to generalize to diverse unseen data at the test time, and even
then generalization is far from certain. In practice, the distributional shift between the training
and test data is ubiquitous, especially when NLP systems are deployed to deal with real text data
written in different languages (e.g., Nepali or Swahili) or coming from diverse domains (e.g.,
social media or medical articles). This poses several challenges for the generalization ability of
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今天天气很好！

The	weather	today	is	good!

(a) Chinese to English Translation

�������

The	weather is bad!

positive

negative

(b) Cross-lingual Sentiment Analysis

Figure 1.1: Examples of machine translation (left) and cross-lingual sentence classification (right)

neural network models as follows:

(1) NLP models suffer from data scarcity in multiple languages. One issue related to the
discrepancy of data distributions at the training and testing stages is the languages represented in
the text. There are about 6,900 living languages in the world [52], while a largemajority of labeled
datasets are created for English. First of all, it is not efficient to train and maintain separate models
for individual languages. At the same time, building NLP systems for most of these languages
is challenging due to a stark lack of data. Especially for low-resourced languages, we do not
have enough labeled data to train neural models to achieve strong performance. Luckily many
languages have similarities in syntax or vocabulary, and multilingual learning approaches that
train on multiple languages while leveraging the shared structure of the input space have begun
to show promise as ways to alleviate this data scarcity issue. Over the last few years, there has
been a move towards general-purpose multilingual representations that are applicable to many
tasks, both on the word level [13, 57, 125] or the full-sentence level [39, 47]. Despite the fact
that such representations are intended to be general-purpose, evaluation of them has been often
performed on a very restricted set of tasks and languages. On the other hand, such representations
are often trained on large collections of multilingual raw text with the hope of implicitly learning
which words and sentences correspond to each other across languages. As a result, training such
representations requires huge amounts of computational power and large collections of raw text,
which may not be easily accessible to many research groups.

(2) Neural machine translation models are highly susceptible to domain shift. Due to the
intrinsic flexibility of natural language, a sentence in one language can be translated into many
semantically equivalent sentences in another language. Some of these translations may be more
preferable than others depending on the domain (e.g., medical article or news report) of the input
text. In particular, it has also been noted that NMT models trained on corpora in a particular

2



domain tend to perform poorly when translating sentences in a significantly different domain
[35, 97]. For example, in highly sensitive scenarios such as translation of medical reports [35, 88],
if amodel is trained on a biased or out-of-distribution dataset that does not accurately represent the
real use case, then deploying this model directly without any adaptations could result in skewed
predictions, such as translating a medical term “wirkstoff aripiprazol” in German as “a formula”
in English rather than the correct translation “substance aripiprazole”. This domain mismatch
issue becomes even more problematic if we do not have many training sentences in the target
domain. Learning how to translate these domain-specific words or phrases without many training
sentences in the target domain remains a big issue for neural machine translation.

This thesis is concerned with solutions to the aforementioned data discrepancy issues that
leverage word and phrase alignment for multilingual learning in both language understanding
and generation. In the first part, we investigate the cross-lingual generalization capability of pre-
trained multilingual models for a wide range of NLP tasks. We then leverage parallel sentences
between two languages to learn a shared language embedding space that aligns multilingual text
data based on their semantics at different granularities. In the second part, when parallel sentences
in the target domain are not easily accessible, we investigate methods to extract word or phrase
translations from monolingual sentences, knowledge bases, or crowdsourcing, and leverage these
aligned words or phrases between two languages to improve the machine translation quality.

1.1 Main Contributions

In this section, we summarize the core contributions of this thesis.
Cross-lingual Generalization Benchmark. (Chapter 3) Much recent progress in applica-

tions of machine learning models to NLP has been driven by benchmarks that evaluate models
across a wide variety of tasks. However, these broad-coverage benchmarks have been mostly
limited to English, and despite an increasing interest in multilingual models, a benchmark that
enables the comprehensive evaluation of such methods on a diverse range of languages and tasks
is still missing. To this end, we introduce the Cross-lingual TRansfer Evaluation of Multilin-
gual Encoders (XTREME) benchmark, a multi-task benchmark for evaluating the cross-lingual
generalization capabilities of multilingual representations across 40 languages and 9 tasks. We
demonstrate that while models tested on English reach human performance on many tasks, there
is still a sizable gap in the performance of cross-lingually transferred models, particularly on
syntactic and sentence retrieval tasks. There is also a wide spread of results across languages.
We released the benchmark to encourage research on cross-lingual learning methods that transfer
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linguistic knowledge across a diverse and representative set of languages and tasks.
Cross-lingual Representation Learning for Language Understanding. (Chapter 4) One

of themain experimental findings in the previous chapter is that pre-trained cross-lingual encoders
such asmBERT [51] are effective at enabling transfer learning of NLP systems from high-resource
languages to low-resource languages. This success comes despite the fact that there is no explicit
objective to align the contextual embeddings of words/sentences with similar meanings across
languages together in the same space. In this chapter, we present a new method for learning mul-
tilingual encoders, AMBER (Aligned Multilingual Bidirectional EncodeR). AMBER is trained
on additional parallel data using two explicit alignment objectives that align the multilingual rep-
resentations at different granularities. We conduct experiments on zero-shot cross-lingual transfer
learning for different tasks including sequence tagging, sentence retrieval and sentence classifi-
cation. Experimental results show that AMBER obtains gains of up to 1.1 average F1 score on
sequence tagging and up to 27.3 average accuracy on retrieval over a state-of-the-art XLMR-large
model which has 3.2x the parameters of AMBER.

Leveraging Word Alignments for Domain Adaptation of Machine Translation. (Chap-
ter 5) In contrast to Chapter 4, we investigate methods to align words written in two languages
without parallel sentences, and demonstrate its usage for domain adaptation of neural machine
translation (NMT). It has been previously noted that NMT is very sensitive to domain shift. In
this chapter, we argue that this is a dual effect of the highly lexicalized nature of NMT, resulting in
failure for sentences with large numbers of unknown words, and lack of supervision for domain-
specific words. To remedy this problem, we propose an unsupervised adaptation method that fine-
tunes a pre-trained out-of-domain NMT model using a pseudo-in-domain corpus. Specifically,
we perform lexicon induction to extract an in-domain lexicon, and construct a pseudo-parallel in-
domain corpus by performing word-for-word back-translation of monolingual in-domain target
sentences. In five domains over twenty pairwise adaptation settings and two model architectures,
our method achieves consistent improvements without using any in-domain parallel sentences,
improving up to 14 BLEU over unadapted models, and up to 2 BLEU over strong back-translation
baselines.

Leveraging Aligned Entities for Machine Translation. (Chapter 6) The previous chap-
ter has shown that machine translation models usually generate poor translations for words or
phrases that are infrequent or even unseen in the training corpus. These infrequent words are
often named entities that contain key information of the sentences. Earlier named entity trans-
lation methods mainly focus on phonetic transliteration, which ignores the sentence context for
translation and is limited in domain and language coverage. To address this limitation, we propose
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DEEP, aDEnoisingEntity Pre-training method that leverages large amounts of monolingual data
and a knowledge base to improve named entity translation accuracy within sentences. Besides,
we investigate a multi-task learning strategy that finetunes a pre-trained neural machine transla-
tion model on both entity-augmented monolingual data and parallel data to further improve entity
translation. Experimental results on three language pairs demonstrate that DEEP results in sig-
nificant improvements over strong denoising auto-encoding baselines, with a gain of up to 1.3
BLEU and up to 9.2 entity accuracy points for English-Russian translation.

Leveraging Phrase Alignment from Crowdsourcing for Machine Translation. (Chap-
ter 7) The previous two chapters have explored methods to extract aligned words or phrases from
existing sources such as monolingual data or knowledge base without actively quantifying the
importance of aligned words or phrases. In this chapter, we explore an active learning setting
where we can actively select in-domain data for human translation, and gradually fine-tune a pre-
trained out-of-domain NMTmodel on the newly translated data. Existing active learning methods
for NMT usually select sentences based on uncertainty scores, but these methods require costly
translation of full sentences even when only one or two key phrases within the sentence are infor-
mative. To address this limitation, we re-examine previous work from the phrase-based machine
translation (PBMT) era that selected not full sentences, but rather individual phrases. However,
while incorporating these phrases into PBMT systems was relatively simple, it is less trivial for
NMT systems, which need to be trained on full sequences to capture larger structural properties
of sentences unique to the new domain. To overcome these hurdles, we propose to select both full
sentences and individual phrases from unlabelled data in the new domain for routing to human
translators. In a German-English translation task, our active learning approach achieves consis-
tent improvements over uncertainty-based sentence selection methods, improving up to 1.2 BLEU
score over strong active learning baselines.

1.2 Thesis Outline

We begin by giving an overview of prior work in Chapter 2 and outline some general techniques
used throughout the thesis. The next 5 chapters are divided into two parts. The first part (Chap-
ter 3, 4) explores methods for zero-shot cross-lingual generalization of natural language under-
standing tasks. The second part (Chapter 5, 6, 7) shifts the focus towards machine translation
– the typical language generation task between two languages – through the lens of translating
in-domain words or phrases in an domain adaptation setting. Finally, we conclude this thesis and
discuss future research directions in Chapter 8.
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Chapter 2

Background

In this chapter, we provide some background knowledge about the multilingual learning problems
in this thesis. Section 2.1 situates this thesis in the context of prior work. Section 2.2 introduces
neural network models for representation multilingual text. Section 2.3 highlights several popular
pre-training methods of neural network models.

2.1 Prior Work

We start with a brief history of machine translation research (Section 2.1.1) and point out related
research on multilingual neural machine translation and domain adaptation of neural machine
translation. We then highlight the close connection of multilingual neural machine translation to
cross-lingual language understanding (Section 2.1.2).

2.1.1 Machine Translation

Earlier research on machine translation dates back to the 1950s. In 1954, A group of researchers
at GeorgetownUniversity and IBM released a public demonstration of their Georgetown-IBMma-
chine translation system, a rule-based system containing 6 grammar rules and 250 lexical items in
its vocabulary. The concept of “interlingual machine translation” that seeks a “language indepen-
dent representation” was later introduced by Richens [147]. Pioneering studies also include rule-
based machine translation, dictionary-based machine translation, etc. Since the 1980s, statistical
machine translation (SMT) [25, 176] had attracted more attention due both to methodological ad-
vances and less expensive computational power. We refer the reader to Koehn [96] for a detailed
description of related methods. As the computational power such as GPU and TPU became more

7



English

Japanese

Korean Japanese

English

Korean
Training

Zero-shot Prediction

Korean
Multilingual
Encoder-
Decoder

English
? ?

Multilingual
Encoder-
Decoder

(a) Zero-shot Translation

English

Fine-tuning

Zero-shot Prediction

Korean label
? ?

label

English

Japanese

Korean

Japanese

English

Korean

Pre-training

Multilingual
Encoder

Multilingual
Encoder

Multilingual
Encoder

(b) Zero-shot Cross-lingual Language Understand-
ing

Figure 2.1: Examples: (a) Training a multilingual encoder-decoder model on English-to-Korean,
Japanese-to-English and Korean-to-Japanese parallel data, and performing zero-shot prediction
for Korean-to-English translation. (b) Pre-training a multilingual encoder model on raw text in
English, Korean and Japanese, fine-tuning the pre-trainedmultilingual encoder on English labeled
data, and performing zero-shot prediction on Korean data.

.

accessible, neural machine translation (NMT) [34, 92, 161] was proposed to learn continuous lan-
guage representations from a large number of parallel sentences between two languages. Typical
NMT models adopt an encoder-decoder model architecture where the encoder summarizes the
information of an input source sentence and the decoder generates a corresponding translation in
the target language. Bahdanau et al. [18] later introduced the attention mechanism that models the
pairwise dependency between the target and source words. Thanks to the attention mechanism,
NMT has demonstrated impressive performance when trained on large-scale corpora [23] and be-
came widely used in many commercial systems. Since the advent of neural machine translation,
a large number of variants have been developed. We introduce the formal definition of machine
translation and highlight the two threads of neural machine translation research closely related to
this thesis below.
Problem Definition: Given an input sentence G = [G0, G1, . . . , G# ] in the source language, a
machine translation model is trained to predict an output translation H = [H0, H1, . . . , H"] in
the target language. Neural machine translation adopts an encoder-decoder model architecture,

8



where the encoder and decoder can be instantiated by a Transformer model or a recurrent neural
network (RNN) model. Given a parallel corpus D-. of (G, H) pairs, the NMT model is trained
by maximum log-likelihood estimation (MLE) of the correct translation given the source input.
This optimization problem is also equivalent to minimizing a cross-entropy loss over all training
pairs as follows.

LMLE = −
∑

(G,H)∼D-.

log %\ (H |G), (2.1)

where \ denotes the model parameters. The training process usually splits the whole training
data into mini-batches of sentence pairs and adopts stochastic gradient descent or its variants to
iteratively process each mini-batch.
Multilingual Neural Machine Translation: One particular thread is to extend the traditional
bilingual translation from one language to one other language to multilingual machine transla-
tion in which a neural network model is trained to translate between multiple languages, e.g., one-
to-many [50], many-to-one [106], or many-to-many [59] translations. An early attempt in [50]
modified an attention-based encoder-decoder model by adding a separate decoder for each tar-
get language and sharing the encoder for a single source language. In [121], multiple encoders
and decoders are trained in a multi-task setting for many-to-many translations. Different from
these methods that share only parts of the network, Google’s multilingual machine translation
system [89] proposed to build a shared vocabulary of subwords [157] across languages and train
a single encoder-decoder model on large collections of parallel sentences written in multiple lan-
guage pairs. Due to the shared model architecture across languages, the system demonstrated
promising zero-shot results on translating between language pairs that it had never seen in the
combination of the training data. Since then, in addition to sharing an encoder-decoder archi-
tecture for multilingual language generation tasks, similar ideas of sharing an encoder architec-
ture across languages have also been applied to cross-lingual understanding tasks (e.g., sentence
classification, sequence tagging). Figure 2.1 shows the comparison of zero-shot predictions by
multilingual encoder-decoder models for translation and multilingual encoder models for cross-
lingual understanding. Although prior work has examined the zero-shot translation of multilin-
gual encoder-decoder models, zero-shot evaluation of multilingual encoders for language under-
standing has often been restricted to a disparate set of tasks and typologically similar languages.
One of the targets of this thesis is to provide one step further towards understanding the zero-shot
cross-lingual generalization of these pre-trained multilingual encoders on a variety of NLP tasks
across a diverse set of languages (Chapter 3).

9



Domain Adaptation of NeuralMachine Translation: The other thread of research is to enhance
the domain robustness of neural machine translation models. It has been noted that NMT models
trained on corpora in a particular domain tend to perform poorly when translating sentences in a
significantly different domain [35, 97]. As noted by Chu and Wang [35], there are two important
distinctions to make in domain adaptation methods for MT. The first is data requirements; super-
vised adaptation relies on small amounts of in-domain parallel data, and unsupervised adaptation
has no such requirement. There is much work on supervised domain adaptation. Luong andMan-
ning [120] propose training a model on an out-of-domain corpus and do fine-tuning with small
sized in-domain parallel data to mitigate the domain shift problem. Instead of naively mixing out-
of-domain and in-domain data, Britz et al. [24] circumvent the domain shift problem by learning
domain discrimination and translation jointly. Joty et al. [90] and Wang et al. [172] address the
domain adaptation problem by assigning higher weights to out-of-domain parallel sentences that
are close to the in-domain corpus. Despite the effectiveness of these supervised adaptation meth-
ods, one of the targets of this thesis is to reduce the heavy reliance on in-domain parallel sentences
for adaptation. In particular, we focus on translating infrequent words or phrases in the target do-
main by leveraging alignment information from monolingual in-domain sentences (Chapter 5),
knowledge bases (Chapter 6) and crowdsourcing (Chapter 7). There is also a distinction between
model-based and data-basedmethods. Model-based methods make explicit changes to the model
architecture such as jointly learning domain discrimination and translation [24], interpolation of
language modeling and translation [49, 71], and domain control by adding tags and word features
[95]. On the other hand, data-based methods perform adaptation either by combining in-domain
and out-of-domain parallel corpora for supervised adaptation [60, 120] or by generating pseudo-
parallel corpora from in-domain monolingual data for unsupervised adaptation [44, 156]. The
thesis mainly focus on data-based methods, e.g., creating data for adaptation during pre-training
(Chapter 6) or fine-tuning (Chapter 5, Chapter 7).

2.1.2 Cross-lingual Language Understanding

With the advent of multilingual neural machine translation, concurrently there are several at-
tempts that leverage multilingual raw text to learn cross-lingual representations, both traditional
non-contextualized word embeddings [57] and the more recent contextualized word representa-
tions [47]. In the following, we first introduce the formal definition of the cross-lingual language
understanding task and then highlight the techniques of cross-lingual representation learning as
well as several applications of cross-lingual representations in language understanding.
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Problem Definition: Given a labeled dataset (G, H) ∼ DB in a high-resource language B, we aim
to train a predictionmodel (i.e., \ : G ↦→ H) that is able tomake predictions for G written in both the
source language B and the target language C. First we pre-train the model on text written in both B
and C with a pre-training objective (Section 2.3). We then finetune the model on a labeled dataset
written in the source language for a downstream task. To test the cross-lingual generalization
performance, we directly apply the finetuned model to predict the input data G written in the
target language C. We call this zero-shot cross-lingual prediction (Figure 2.1b) as we do not train
the model on any labeled data in the target language.
Cross-lingual Representation Learning: Traditional non-contextualized word emebddings are
often learned in two steps. First, the source and target word emebddings are obtained separately
from learning on available monolingual source and target sentences using techniques such as
continuous bag-of-words or skip-gram [126]. We can then perform supervised [183] or unsu-
pervised [40] learning of a mapping that transforms source embeddings to the target space. In
contrast, according to Doddapaneni et al. [48], multilingual contextualized representations are
trained mainly by three categories of objectives: monolingual objective that relies on monolin-
gual raw text, parallel-corpora objective that relies on parallel corpora, and parallel-resource
objective that relies on parallel resources like word alignments. The most notable monolingual
objective is masked language modeling (MLM), the key technique behind popular pre-trained
representations such as mBERT [47] and XLM-R [42] (Section 2.3). In addition, there are sev-
eral attempts to use parallel corpora to align representations of similar text across languages in
a shared multilingual encoder space. These objectives are either word-level (e.g., TLM [39],
CAMLM [136], CLMLM [87], HICTL [177], CLWA [83]) or sentence-level (e.g., XLCO [31],
HICTL, CLSA [83]). In Chapter 4, we introduce two parallel-corpora objectives and compare
them with a popular monolingual objective and dictionary-based objectives.
Applications of Cross-lingual Representations: Cross-lingual representations are an essential
tool for cross-lingual transfer in downstream language understanding applications. In particular,
cross-lingual contextualized word representations have proven effective in reducing the amount of
supervision needed in a variety of cross-lingual NLP tasks such as sequence labeling [140], ques-
tion answering [16], parsing [173], sentence classification [182] and retrieval [187]. This thesis
leverages cross-lingual representations in multiple ways. In Chapter 5, we use traditional cross-
lingual embedding to perform lexicon induction from monolingual in-domain data. In Chap-
ter 7, we use multilingual contextualized representations for retrieving similar sentences across
domains. In Chapter 6, we leverage pre-trained cross-lingual representations for machine trans-
lation.
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2.2 Multilingual Neural Network Models

Neural networks have demonstrated an impressive ability to learn features automatically from
data without manual design. Formally, for text data, we tokenize a text sentence into a sequence
of words (or subwords) and denote it as G = [G0, G1, . . . , G# ] where each word G8 comes from a
fixed vocabulary V and can be represented as a one-hot vector. A neural network model takes
a text sentence as inputs and produce a sequence of hidden vectors for each words (i.e., H =

[h0, h1, . . . , h# ], h8 ∈ R3), or a single fixed-size vector hB ∈ R3 . Below we describe a parametric
model for encoding the text data and a widely-used tokenization technique.
Transformer Architecture: Vaswani et al. [166] proposed the Transformer architecture to en-
code a word token sequence based on the idea of self-attention. The key idea of self-attention
is to model the pairwise relations between all tokens in the sequence. Specifically for an input
sequence of word embeddingsX, we use three different linear projections to obtain three matrices
– queries &, keys  and values + in Equation (2.2), where the dimension of each vector in these
matrices is 3. The keys and queries are compared to compute the attention scores that capture the
relations between each pair of tokens, and then we derive an output embedding by an average of
the values weighted by the attention scores followed by a softmax function in Equation (2.3).

& = ,&-,  = , -, + = ,+- (2.2)

�CC4=C8>=(&,  ,+) = softmax
(
& )
√
3

)
+ (2.3)

The weighted average over the values& does not consider the order of the sequence. To inject
some information about the position of the tokens in the sequence, position embeddings are added
to the input embeddings before the self-attention operations. There are many choices of learned
or fixed position embeddings (see Gehring et al. [63] for more details). Due to an impressive
performance in terms of modeling power and training speed, Transformer networks are widely
used in many NLP models.
Tokenization: Processing unknown words has been intensively studied in machine translation.
Recently several subword tokenization techniques that tokenize words into smaller frequent sub-
word units have been proposed. For example, the word ‘lower’ could be segmented into two
smaller units ‘low’ and ‘er’. Notably among these techniques, Sennrich et al. [157] proposed a
segmentation method based on the byte pair encoding (BPE) algorithm [61]. The idea behind
BPE is to iteratively replaces the most frequent pair of character n-grams in a sequence with a
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single, unused character n-grams. Specifically, we first initialize the symbol vocabulary with the
character vocabulary. Each word is then represented as a sequence of characters plus a special
end-of-word symbol ‘·’ which is used to restore the original tokenization. We then iteratively
count all symbol pairs and replace each occurrence of the most frequent pair (‘A’, ‘B’) with a
new, merged symbol ‘AB’. The number of the merge operations is a hyperparameter that deter-
mines the number of new symbols in the vocabulary, thus the final vocabulary size equals the
size of the initial vocabulary size plus the number of the merge operations. Algorithm 1 shows a
Python implementation.

2.3 Pre-training of Neural Network Models

While the modeling power of Transformer networks is exciting, training such large neural net-
works relies on a large amount of data. This poses a challenge for downstream applications for
which there are few labeled data inmany languages. To address this challenge, several studies have
proposed to pre-train neural networks on large collections of freely available raw data in multiple
languages. These pre-training techniques can be grouped into two categories: pre-training of en-
coder models and pre-training of encoder-decoder models. A typical encoder model is a neural
network model (e.g., Transformer) that takes in a sequence of word tokens and produces a se-
quence of hidden vectors for words. Encoder models are usually used for language understanding
tasks (e.g., sequence labeling). In contrast, an encoder-decoder model adds another neural net-
work (e.g., Transformer) as a decoder on top of an encoder model. This allows encoder-decoder
models to handle language generation tasks (e.g., machine translation). In the following, we pro-
vide several pre-training methods for these two types of models.

2.3.1 Pre-training of Encoder Models

Notably, mBERT [47], XLM [39] and XLM-R [42] have demonstrated impressive power of learn-
ing from raw text data in more than 100 languages and have led to state-of-the-art results on a
variety of multilingual NLP tasks. The key idea is to pre-train a Transformer encoder network
on a large number of unlabeled data or a small number of parallel sentences, and then fine-tune
it on a small number of labeled data for adaptation to downstream tasks. We highlight a tradi-
tional language modeling objective and two popular pre-training language modeling objectives –
masked language modeling (MLM) and translation language modeling (TLM).
Language Modeling: Traditional language models are trained left-to-right or right-to-left by
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optimizing the prediction of the next word token given the preceding tokens. The formal definition
is as follows:

ℓMLM(G) = −
|G |∑
C=1

log %\ (GC |G<C), (2.4)

where G<C denotes the proceding tokens before the C-th word in G.
Masked Language Modeling: Different from traditional language models, MLM first randomly
masks some percentage of the input tokens and then predicts those masked tokens conditioned on
the surrounding context. Specifically, a fraction (e.g., 15%) of input tokens are selected randomly
for prediction. These tokens are replaced by a [MASK] token 80% of the time, or replaced by a
random token 10% of the time or kept unchanged 10% of the time. During prediction, the final
hidden vectors of those masked tokens are fed into an output softmax layer over the vocabulary,
as in a traditional language model. Finally, the whole neural network is optimized with a cross-
entropy loss. Formally, a masked language modeling objective takes a word sequence from a
monolingual corpus (e.g., G ∈ D-), and optimizes the prediction of randomly masked tokens as
follows:

ℓMLM(G) = −EB∼[1,|G |] log %\ (GB |G\B), (2.5)

where GB are the masked tokens randomly sampled from G, and G\B indicates all the other tokens
except the masked ones.
Translation Language Modeling: In the standard monolingual setting, while a mix of mono-
lingual corpora contains sequences written in multiple languages, each sequence G only contains
word tokens in one of these languages. In contrast, Conneau and Lample [39] proposed a transla-
tion language modeling (TLM) objective that uses parallel corpora for pre-training multilingual
models. Formally, a TLM objective takes a concatenation of a source-target sentence pair (i.e.,
I = [G; H]) from a parallel corpus (G, H) ∈ D-. , and optimizes the prediction of randomlymasked
tokens in I in a similar way as MLM:

ℓMLM(I) = −EB∼[1,|I |] log %\ (IB |I\B). (2.6)

2.3.2 Pre-training of Encoder-Decoder Models

Pre-training of encoder-decoder models has been shown effective in low-resource and medium-
resource language translations by many recent works [39, 114, 119, 160], where different pre-
training objectives are proposed to leverage large amounts of monolingual data for translation.
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These methods adopt a denoising auto-encoding framework, which encompasses several different
works in data augmentation on monolingual data for MT [44, 81, 101, 155]. In the following, we
introduce the denoising auto-encoding framework.
Denoising Auto-Encoding (DAE) Given a set of monolingual text segments for pre-training,
i.e., H ∈ D. , a sequence-to-sequence denoising auto-encoder is pre-trained to reconstruct a text
segment H from its noised version corrupted by a noise function 6(·). Formally, the DAE objective
is defined as follows:

LDAE(D. ) =
∑
H∈D.

log %\ (H | 6(H)), (2.7)

where \ denotes the model’s learning parameters. For notation simplicity, we drop \ in the rest of
the chapters. This formulation encompasses several different previous works in data augmentation
for MT, such as monolingual data copying [44], where 6(·) is the identity function, back trans-
lation [155], where 6(·) is a backwards translation model, as well as heuristic noising functions
[110, 119, 160] that randomly sample noise according to manually devised heuristics.

In particular, the mBARTmethod [119] is a recently popular method with two types of heuris-
tic noise functions being used sequentially on each text segment. The first noise function randomly
masks spans of text in each sentence. Specifically, a span length is first randomly sampled from
a Poisson distribution (_ = 0.35) and the beginning location for a span in H is also randomly
sampled. The selected span of text is replaced by a mask token. This process repeats until 35%
of words in the sentence are masked. The second noise function is to permute the sentence order
in each text segment with a probability.
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Algorithm 1 Learning BPE operations

impo r t re , c o l l e c t i o n s

de f g e t _ s t a t s ( vocab ) :
p a i r s = c o l l e c t i o n s . d e f a u l t d i c t ( i n t )
f o r word , f r e q i n vocab . i t ems ( ) :

symbols = word . s p l i t ( )
f o r i i n r ange ( l e n ( symbols ) −1 ) :

p a i r s [ symbols [ i ] , symbols [ i +1 ] ] += f r e q
r e t u r n p a i r s

de f merge_vocab ( p a i r , v_ in ) :
v_ou t = {}
bigram = r e . e s c ape ( ’ ’ . j o i n ( p a i r ) )
p = r e . compi l e ( r ’ ( ? < ! \ S ) ’ + bigram + r ’ ( ? ! \ S ) ’ )
f o r word i n v_ in :

w_out = p . sub ( ’ ’ . j o i n ( p a i r ) , word )
v_ou t [ w_out ] = v_ in [ word ]

r e t u r n v_ou t

vocab = { ’ l o w </w> ’ : 5 , ’ l o w e r </w> ’ : 2 ,
’ n e w e s t </w> ’ : 6 , ’w i d e s t </w> ’ :3}

num_merges = 10
f o r i i n r ange ( num_merges ) :

p a i r s = g e t _ s t a t s ( vocab )
b e s t = max ( p a i r s , key= p a i r s . g e t )
vocab = merge_vocab ( be s t , vocab )
p r i n t ( b e s t )
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Chapter 3

Cross-Lingual Generalization Benchmark

In this chapter, we explore the cross-lingual generalization problem – one main data discrepancy
problem in which training and test data might be written in different languages. To fully un-
derstand this problem, We first propose a benchmark XTREME to evaluate the zero-shot cross-
lingual generalization ability of multilingual neural network models trained with the (masked)
language modeling objectives. Later on in Chapter 4, we will introduce two explicit cross-lingual
alignment objectives to align cross-lingual contextualized representations both at the word level
and sentence level.

The content in this chapter and follow-up work has been reported in the following papers:
• Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham Neubig, Orhan Firat, and Melvin
Johnson. XTREME:AMassivelyMultilingualMulti-task Benchmark for EvaluatingCross-
lingual Generalisation. In Proceddings of International Conference on Machine Learning
(ICML) 2020. [82]

• Sebastian Ruder, NoahConstant, Jan Botha, Aditya Siddhant, Orhan Firat, Jinlan Fu, Pengfei
Liu, Junjie Hu, Graham Neubig, and Melvin Johnson. XTREME-R: Towards More Chal-
lenging and Nuanced Multilingual Evaluation. arXiv preprint arXiv:2104.07412 2021, un-
der review. [151]

3.1 Overview

Over the last few years, there has been a move towards general-purpose multilingual representa-
tions that are applicable to many tasks, both on the word level [13, 57, 125] or the full-sentence
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level [39, 47]. Despite the fact that such representations are intended to be general-purpose,
evaluation of them has often been performed on a very limited and often disparate set of tasks—
typically focusing on translation [39, 66] and classification [41, 154]—and typologically similar
languages [40].

To address this problem and incentivize research on truly general-purpose cross-lingual rep-
resentation and transfer learning, we introduce the Cross-lingual TRansfer Evaluation of Multi-
lingual Encoders (XTREME) benchmark. XTREME covers 40 typologically diverse languages
spanning 12 language families and includes 9 tasks that require reasoning about different levels
of syntax or semantics.1 In addition, we introduce pseudo test sets as diagnostics that cover all 40
languages by automatically translating the English test set of the natural language inference and
question-answering dataset to the remaining languages.

XTREME focuses on the zero-shot cross-lingual transfer scenario, where annotated training
data is provided in English but none is provided in the language to which systems must transfer.2

We evaluate a range of state-of-the-art machine translation (MT) and multilingual representation-
based approaches to performing this transfer. We find that while state-of-the-art models come
close to human performance in English on many of the tasks we consider, performance drops
significantly when evaluated on other languages. Overall, performance differences are highest
for syntactic and sentence retrieval tasks. Further, while models do reasonably well in most lan-
guages in the Indo-European family, we observe lower performance particularly for Sino-Tibetan,
Japonic, Koreanic, and Niger-Congo languages.

In sum, our contributions are the following: (i) We release a suite of 9 cross-lingual bench-
mark tasks covering 40 typologically diverse languages. (ii) We provide an online platform and
leaderboard for the evaluation of multilingual models. (iii) We provide a set of strong baselines,
which we evaluate across all tasks, and release code to facilitate adoption. (iv) We provide an
extensive analysis of limitations of state-of-the-art cross-lingual models.

1By typologically diverse, wemean languages that span awide set of linguistic phenomena such as compounding,
inflection, derivation, etc. which occur in many of the world’s languages.

2This is done both for efficiency purposes (as it only requires testing, not training, on each language) and practical
considerations (as annotated training data is not available for many languages).
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Task Corpus |Train| |Dev| |Test| Test sets |Lang.| Task Metric Domain

Classification
XNLI 392,702 2,490 5,010 translations 15 NLI Acc. Misc.
PAWS-X 49,401 2,000 2,000 translations 7 Paraphrase Acc. Wiki / Quora

Struct. pred.
POS 21,253 3,974 47-20,436 ind. annot. 33 (90) POS F1 Misc.
NER 20,000 10,000 1,000-10,000 ind. annot. 40 (176) NER F1 Wikipedia

QA
XQuAD

87,599 34,726
1,190 translations 11 Span extraction F1 / EM Wikipedia

MLQA 4,517–11,590 translations 7 Span extraction F1 / EM Wikipedia
TyDiQA-GoldP 3,696 634 323–2,719 ind. annot. 9 Span extraction F1 / EM Wikipedia

Retrieval
BUCC - - 1,896–14,330 - 5 Sent. retrieval F1 Wiki / news
Tatoeba - - 1,000 - 33 (122) Sent. retrieval Acc. misc.

Table 3.1: Characteristics of the datasets in XTREME for the zero-shot transfer setting. For tasks
that have training and dev sets in other languages, we only report the English numbers. We report
the number of test examples per target language and the nature of the test sets (whether they are
translations of English data or independently annotated). The number in brackets is the size of
the intersection with our selected languages. For NER and POS, sizes are in sentences. Struct.
pred.: structured prediction. Sent. retrieval: sentence retrieval.

3.2 XTREME

3.2.1 Design principles

Given XTREME’s goal of providing an accessible benchmark for the evaluation of cross-lingual
transfer learning on a diverse and representative set of tasks and languages, we select the tasks
and languages that make up the benchmark based on the following principles:
Task difficulty Tasks should be sufficiently challenging so that cross-language performance falls
short of human performance.
Task diversity Tasks should require multilingual models to transfer their meaning representa-
tions at different levels, e.g. words, phrases and sentences. For example, while classification tasks
require sentence-level transfer of meaning, sequence labeling tasks like part-of-speech (POS) tag-
ging or named entity recognition (NER) test the model’s transfer capabilities at the word level.
Training efficiency Tasks should be trainable on a single GPU for less than a day. This is to make
the benchmark accessible, in particular to practitioners working with low-resource languages
under resource constraints.
Multilinguality We prefer tasks that cover as many languages and language families as possible.
Sufficient monolingual data Languages should have sufficient monolingual data for learning
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useful pre-trained representations.
Accessibility Each task should be available under a permissive license that allows the use and
redistribution of the data for research purposes.

3.2.2 Tasks

XTREME consists of nine tasks that fall into four different categories requiring reasoning on
different levels of meaning. We give an overview of all tasks in Table 3.1, and describe the task
details as follows.
XNLI The Cross-lingual Natural Language Inference corpus [41] asks whether a premise sen-
tence entails, contradicts, or is neutral toward a hypothesis sentence. Crowd-sourced English data
is translated to ten other languages by professional translators and used for evaluation, while the
MultiNLI [179] training data is used for training.
PAWS-X The Cross-lingual Paraphrase Adversaries from Word Scrambling [188] dataset re-
quires to determine whether two sentences are paraphrases. A subset of the PAWS dev and test
sets [195] was translated to six other languages by professional translators and is used for evalu-
ation, while the PAWS training set is used for training.
POS We use POS tagging data from the Universal Dependencies v2.5 [134] treebanks, which
cover 90 languages. Each word is assigned one of 17 universal POS tags. We use the English
training data for training and evaluate on the test sets of the target languages.
NER For NER, we use the Wikiann [137] dataset. Named entities in Wikipedia were au-
tomatically annotated with LOC, PER, and ORG tags in IOB2 format using a combination of
knowledge base properties, cross-lingual and anchor links, self-training, and data selection. We
use the balanced train, dev, and test splits from Rahimi et al. [143].
XQuAD The Cross-lingual Question Answering Dataset [16] requires identifying the answer
to a question as a span in the corresponding paragraph. A subset of the English SQuAD v1.1
[144] dev set was translated into ten other languages by professional translators and is used for
evaluation.
MLQA The Multilingual Question Answering [111] dataset is another cross-lingual question
answering dataset similar to XQuAD. The evaluation data for English and six other languages
were obtained by automatically mining target language sentences that are parallel to sentences
in English from Wikipedia, crowd-sourcing annotations in English, and translating the question
and aligning the answer spans in the target languages. For both XQuAD and MLQA, we use the
SQuAD v1.1 training data for training and evaluate on the test data of the corresponding task.
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TyDiQA-GoldP We use the gold passage version of the Typologically Diverse Question Answer-
ing [37] dataset, a benchmark for information-seeking question answering, which covers nine lan-
guages. The gold passage version is a simplified version of the primary task, which uses only the
gold passage as context and excludes unanswerable questions. It is thus similar to XQuAD and
MLQA, while being more challenging as questions have been written without seeing the answers,
leading to 3× and 2× less lexical overlap compared to XQuAD and MLQA respectively. We use
the English training data for training and evaluate the test sets of the target languages.
BUCC The goal of the second and third shared task of the workshop on Building and Using
Parallel Corpora [201, 202] is to extract parallel sentences from a comparable corpus between
English and four other languages. The dataset provides train and test splits for each language. For
simplicity, we evaluate representations on the test sets directly without fine-tuning and calculate
similarity using cosine similarity.3

Tatoeba We use the Tatoeba dataset [11], which consists of up to 1,000 English-aligned sentence
pairs covering 122 languages. We find the nearest neighbor using cosine similarity and calculate
the error rate.

3.2.3 Languages

As noted in Section 3.2.1, we choose our target languages based on availability of monolingual
data, and typological diversity. We use the number of articles in Wikipedia as a proxy for the
amount of monolingual data available online. In order to strike a balance between language diver-
sity and availability of monolingual data, we select all languages out of the top 100 Wikipedias4

with the most articles as of December 2019.5 We first select all languages that appear in at
least three of our benchmark datasets. This leaves us with 19 languages, most of which are Indo-
European or major world languages. We now select 21 additional languages that appear in at least
one dataset and come from less represented language families. Wherever possible, we choose at
least two languages per family.6

In total, XTREME covers the following 40 languages (shown with their ISO 639-1 codes for
brevity) belonging to 12 language families and two isolates: af, ar, bg, bn, de, el, en, es, et, eu,
fa, fi, fr, he, hi, hu, id, it, ja, jv, ka, kk, ko, ml, mr, ms, my, nl, pt, ru, sw, ta, te, th, tl, tr, ur, vi, yo,
and zh. We provide a detailed overview of these languages in terms of their number of Wikipedia

3Results can be improved using more sophisticated similarity metrics [11].
4https://meta.wikimedia.org/wiki/List_of_Wikipedias
5This also has the benefit that they are covered by state-of-the-art methods such as mBERT and XLM.
6For the Austro-Asiatic, Kartvelian, and Kra-Dai families as well as for isolates, we only obtain one language.
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articles, linguistic features, and coverage in XTREME in the appendix.

While XTREME covers these languages in the sense that there is gold standard data in at least
one task in each language, this does not mean that it covers all aspects of each language that are
necessary for transfer. Languages may reveal different characteristics based on the task, domain,
and register in which they are used. XTREME thus only serves as a glimpse into a model’s true
cross-lingual generalization capability.

3.2.4 Pseudo test data for analyses

XTREME covers 40 languages overall. Evaluation across the majority of languages is only pos-
sible for a subset of tasks, i.e. POS, NER, and Tatoeba. As additional diagnostics and to enable a
broader comparison across languages for a more diverse set of tasks, we automatically translate
the English portions of a representative classification and QA task to the remaining languages
using an in-house translation system.7 We choose XNLI and XQuAD as both have test sets that
are translations of the English data by professional translators.

We first verify that performance on the translated test sets is a good proxy for performance on
the gold standard test sets. We report the detailed results in the appendix. For XQuAD, the auto-
matically translated test sets underestimate mBERT’s true performance by 3.0 F1 / 0.2 EM points,
similar to the 2.6 F1 points reported by Agić and Schluter [1] when translating the test data to
other languages.8 For XNLI, the automatically translated test sets overestimate the true prediction
accuracy by 2.4 points. In order to measure the translation quality between the human-translated
test data and our pseudo test data, we compute the BLEU score, and the chrF score [142], which
is suitable for measuring the translation quality of some languages such as Chinese and Russian.
For the 14 languages in XNLI, we obtain average scores of 34.2 BLEU and 58.9 chrF scores on
our pseudo test data compared to the reference translations, which correlate with a Pearson’s d
of 0.57 and 0.28 respectively with mBERT performance.

Translating the English data to the remaining languages yields 40-way parallel pseudo test
data that we employ for analyses in Section 3.4.

7Details of our translation system are provided in the appendix.
8Note that even human translated test sets may underestimate a model’s true cross-lingual generalization ability

as such translationese has been shown to be less lexically diverse than naturally composed language [98].
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3.3 Experiments

3.3.1 Training and evaluation setup

XTREME focuses on the evaluation of multilingual representations. We do not place any restric-
tion on the amount or nature of the monolingual data used for pretraining multilingual representa-
tions. However, we request authors to be explicit about the data they use for training, in particular
any cross-lingual signal. In addition, we suggest authors should not use any additional labeled
data in the target task beyond the one that is provided.

For evaluation, we focus on zero-shot cross-lingual transfer with English as the source lan-
guage as this is the most common setting for the evaluation of multilingual representations and
as many tasks only have training data available in English. Although English is not generally the
best source language for cross-lingual transfer for all target languages [113], this is still the most
practically useful setting. A single source language also facilitates evaluation as models only need
to be trained once and can be evaluated on all other languages.9

Concretely, pretrained multilingual representations are fine-tuned on English labeled data of
an XTREME task. The model is then evaluated on the test data of the task in the target languages.

3.3.2 Baselines

We evaluate a number of strong baselines and state-of-the-art models. The approaches we con-
sider learn multilingual representations via self-supervision or leverage translations—either for
representation learning or for training models in the source or target language. We focus on mod-
els that learn deep contextual representations as these have achieved state-of-the-art results on
many tasks. For comparability among the representation learning approaches, we focus on mod-
els that learn a multilingual embedding space between all languages in XTREME. We encourage
future work to focus on these languages to capture as much language diversity as possible.
mBERT Multilingual BERT [47] is a transformer model [166] that has been pretrained on the
Wikipedias of 104 languages using masked language modeling (MLM).
XLM XLM [39] uses a similar pretraining objective as mBERT with a larger model, a larger
shared vocabulary, and trained on the same Wikipedia data covering 100 languages.
XLM-R XLM-R Large [42] is similar to XLM but was trained on more than a magnitude more

9Future work may also consider multi-source transfer, which is interesting particularly for low-resource lan-
guages, and transfer to unknown languages or unknown language-task combinations.
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data from the web covering 100 languages.
MMTE The massively multilingual translation encoder is part of an NMT model that has been
trained on in-house parallel data of 103 languages extracted from the web [10]. For transfer, we
fine-tune the encoder of the model [158].
Translate-train For many language pairs, an MT model may be available, which can be used
to obtain data in the target language. To evaluate the impact of using such data, we translate the
English training data into the target language using our in-house MT system. We then fine-tune
mBERT on the translated data. We provide details on howwe align answer spans in the source and
target language for the QA tasks in the appendix. We do not provide translation-based baselines
for structured prediction tasks due to an abundance of in-language data and a requirement for
annotation projection.
Translate-train multi-task We also experiment with a multi-task version of the translate-train
setting where we fine-tune mBERT on the combined translated training data of all languages
jointly.
Translate-test Alternatively, we train the English BERT-Large [47]model on the English training
data and evaluate it on test data that we translated from the target language to English using our
in-house MT system.
In-languagemodel For the POS, NER, and TyDiQA-GoldP tasks where target-language training
data is available, we fine-tune mBERT onmonolingual data in the target language to estimate how
useful target language labeled data is compared to labeled data in a source language.
In-language few-shot In many cases, it may be possible to procure a small number of labeled
examples in the target language [54]. To evaluate the viability of such an approach, we additionally
compare against an mBERT model fine-tuned on 1,000 target language examples for the tasks
where monolingual training data is available in the target languages.
In-language multi-task For the tasks where monolingual training data is available, we addi-
tionally compare against an mBERT model that is jointly trained on the combined training data
of all languages.
Human performance For XNLI, PAWS-X, and XQuAD, we obtain human performance esti-
mates from the English datasets they are derived from, MNLI, PAWS-X, and SQuAD respectively
[131, 144, 195].10 For TyDiQA-GoldP, we use the performance estimate of Clark et al. [37]. For
MLQA, as answers are annotated using the same format as SQuAD, we employ the same human
performance estimate. For POS tagging, we adopt 97% as a canonical estimate of human per-

10Performance may differ across languages due to many factors but English performance still serves as a reason-
able proxy.
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Table 3.2: Hyper-parameters of baseline and state-of-the-art models. We do not use XLM-15 and
XLM-R-Base in our experiments.

Model Parameters Langs Vocab size Layers

BERT-large 345M 1 28,996 24
mBERT 172M 104 119,547 12
MMTE 192M 103 64,000 6
XLM-15 250M 15 95,000 12
XLM-100 570M 100 200,000 12
XLM-R-Base 270M 100 250,002 12
XLM-R-Large 550M 100 250,002 24

formance based on Manning [123]. We are not able to obtain human performance estimates for
NER as annotations have been automatically generated and for sentence retrieval as identifying a
translation among a large number of documents is too time-consuming.

3.3.3 Hyper-parameters

Table 4.1 summarizes the hyper-parameters of baseline and state-of-the-art models. We refer
to XLM-100 as XLM, and XLM-R-large as XLM-R in our paper to simplify the notation. All
hyper-parameter tuning is done on English validation data. We encourage authors evaluating on
XTREME to do the same.
mBERT We use the cased version, which covers 104 languages, has 12 layers, 768 hidden
units per layer, 12 attention heads, a 110k sharedWordPiece vocabulary, and 110M parameters.11

The model was trained using Wikipedia data in all 104 languages, oversampling low-resource
languages with an exponential smoothing factor of 0.7. We generally fine-tune mBERT for two
epochs, with a training batch size of 32 and a learning rate of 2e-5. For training BERT models on
the QA tasks, we use the original BERT codebase. For all other tasks, we use the Transformers
library [180].
XLM and XLM-R We use the XLM and XLM-R Large versions that cover 100 languages, use
a 200k shared BPE vocabulary, and that have been trained with masked language modeling.12 We
fine-tune both for two epochs with a learning rate of 3e-5 and an effective batch size of 16. In

11https://github.com/google-research/bert/blob/master/multilingual.md
12https://github.com/facebookresearch/XLM
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Model Avg
Pair sentence Structured prediction Question answering Sentence retrieval

XNLI PAWS-X POS NER XQuAD MLQA TyDiQA-GoldP BUCC Tatoeba

Metrics Acc. Acc. F1 F1 F1 / EM F1 / EM F1 / EM F1 Acc.

Cross-lingual zero-shot transfer (models are trained on English data)

mBERT 59.6 65.4 81.9 70.3 62.2 64.5 / 49.4 61.4 / 44.2 59.7 / 43.9 56.7 38.7
XLM 55.5 69.1 80.9 70.1 61.2 59.8 / 44.3 48.5 / 32.6 43.6 / 29.1 56.8 32.6
XLM-R Large 68.1 79.2 86.4 72.6 65.4 76.6 / 60.8 71.6 / 53.2 65.1 / 45.0 66.0 57.3
MMTE 59.3 67.4 81.3 72.3 58.3 64.4 / 46.2 60.3 / 41.4 58.1 / 43.8 59.8 37.9

Translate-train (models are trained on English training data translated to the target language)

mBERT - 74.0 86.3 - - 70.0 / 56.0 65.6 / 48.0 55.1 / 42.1 - -
mBERT, multi-task - 75.1 88.9 - - 72.4 / 58.3 67.6 / 49.8 64.2 / 49.3 - -

Translate-test (models are trained on English data and evaluated on target language data translated to English)

BERT-large - 76.5 84.4 - - 76.3 / 62.1 72.9 / 55.3 72.1 / 56.0 - -

In-language models (models are trained on the target language training data)

mBERT, 1000 examples - - - 87.6 77.9 - - 58.7 / 46.5 - -
mBERT - - - 89.8 88.3 - - 74.5 / 62.7 - -
mBERT, multi-task - - - 91.5 89.1 - - 77.6 / 68.0 - -

Human - 92.8 97.5 97.0 - 91.2 / 82.3 91.2 / 82.3 90.1 / - - -

Table 3.3: Overall results of baselines across all XTREME tasks. Translation-based baselines are
not meaningful for sentence retrieval. We provide in-language baselines where target language
training data is available. Note that for the QA tasks, translate-test performance is not directly
comparable to the other scores as a small number of test questions were discarded and alignment
is measured on the English data.

contrast to XLM, XLM-R does not use language embeddings. We use the Transformers library
for training XLM and XLM-R models on all tasks.

3.3.4 Results

Overall results We show the main results in Table 3.3. XLM-R is the best-performing zero-shot
transfer model and generally improves upon mBERT significantly. The improvement is smaller,
however, for the structured prediction tasks. MMTE achieves performance competitive with
mBERT on most tasks, with stronger results on XNLI, POS, and BUCC.

If a strong MT system is available, translating the training sets provides improvements over
using the same model with zero-shot transfer. Translating the test data provides similar benefits
compared to translating the training data and is particularly effective for the more complex QA
tasks, while being more expensive during inference time. While using an MT system as a black
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Model XNLI PAWS-X XQuAD MLQA TyDiQA-GoldP Avg POS NER

mBERT 16.5 14.1 25.0 27.5 22.2 21.1 25.5 23.6
XLM-R 10.2 12.4 16.3 19.1 13.3 14.3 24.3 19.8
Translate-train 7.3 9.0 17.6 22.2 24.2 16.1 - -
Translate-test 6.7 12.0 16.3 18.3 11.2 12.9 - -

Table 3.4: The cross-lingual transfer gap (lower is better) of different models on XTREME tasks.
The transfer gap is the difference between performance on the English test set and the average
performance on the other languages. A transfer gap of 0 indicates perfect cross-lingual transfer.
For the QA datasets, we only show EM scores. The average gaps are computed over the sentence
classification and QA tasks.

box leads to strong baselines, the MT system could be further improved in the context of data
augmentation.

For the tasks where in-language training data is available, multilingual models trained on
in-language data outperform zero-shot transfer models. However, zero-shot transfer models nev-
ertheless outperform multilingual models trained on only 1,000 in-language examples on the
complex QA tasks as long as more samples in English are available. For the structured predic-
tion tasks, 1,000 in-language examples enable the model to achieve performance that is similar
to being trained on the full labeled dataset, similar to findings for classification [54]. Finally,
multi-task learning on the Translate-train and In-language setting generally improves upon single
language training.

Cross-lingual transfer gap For a number of representative models, we show the cross-lingual
transfer gap, i.e. the difference between the performance on the English test set and all other
languages in Table 3.4.13 While powerful models such as XLM-R reduce the gap significantly
compared to mBERT for challenging tasks such as XQuAD and MLQA, they do not have the
same impact on the syntactic structured prediction tasks. On the classification tasks, the transfer
learning gap is lowest, indicating that there may be less headroom for progress on these tasks.
The use of MT reduces the gap across all tasks. Overall, a large gap remains for all approaches,
which indicates much potential for work on cross-lingual transfer.

13This comparison should be taken with a grain of salt, as scores across languages are not directly comparable
for the tasks where test sets differ, i.e. POS, NER, MLQA, and TyDiQA-GoldP and differences in scores may not be
linearly related.
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3.4 Analyses

We conduct a series of analyses investigating the limitations of state-of-the-art cross-lingual mod-
els.

Best zero-shot model analysis We show the performance of the best zero-shot transfer model,
XLM-R Large broken down by task and language in Figure 3.1a. The figure illustrates why
it is important to evaluate general-purpose multilingual representations across a diverse range
of tasks and languages: On XNLI, probably the most common standard cross-lingual evalua-
tion task, and PAWS-X, scores cluster in a relatively small range—even considering pseudo test
sets for XNLI. However, scores for the remaining tasks have a significantly wider spread, par-
ticularly as we include pseudo test sets. For TyDiQA-GoldP, English performance is lowest in
comparison; the high performance on members of the Austronesian and Uralic language fami-
lies (Indonesian and Finnish) may be due to less complex Wikipedia context passages for these
languages. Across tasks, we generally observe higher performance on Indo-European languages
and lower performance for other language families, particularly for Sino-Tibetan, Japonic, Kore-
anic, and Niger-Congo languages. Some of these difficulties may be due to tokenization and an
under-representation of ideograms in the joint sentencepiece vocabulary, which has been shown
to be important in a cross-lingual model’s performance [16, 42]. We observe similar trends for
mBERT, for which we show the same graph in the appendix.

Correlation with pretraining data size We calculate the Pearson correlation coefficient d of the
model performance and the number ofWikipedia articles (see the appendix) in each language and
show results in Figure 3.2.14 For mBERT, which was pretrained on Wikipedia, we observe a high
correlation for most tasks (d ≈ 0.8) except for the structured prediction tasks where d ≈ 0.35.
We observe similar trends for XLM and XLM-R, with lower numbers for XLM-R due to the
different pretraining domain (see Table 3.5). This indicates that current models are not able to
fully leverage the information extracted from the pretraining data to transfer to syntactic tasks.

Analysis of language characteristics We analyze results based on different language fami-
lies and writing scripts in Figure 3.3. For mBERT, we observe the best transfer performance
on branches of the Indo-European language family such as Germanic, Romance and Slavic lan-
guages. In contrast, cross-lingual transfer performance on low-resource language families such
as Niger-Congo and Kra-Dai is still low. Looking at scripts, we find that the performance on
syntactic tasks differs among popular scripts such as Latin and ideogram scripts. For example in

14We observe similar correlations when using the number of tokens in Wikipedia instead.
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(a) XLM-R

(b) mBERT

Figure 3.1: An overview of XLM-R’s and mBERT’s performances on the XTREME tasks across
all languages in each task. We highlight an estimate of human performance, performance on the
English test set, the average of all languages excluding English, and the family of each language.
Performance on pseudo test sets for XNLI andXQuAD is shownwith slightly transparentmarkers.
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(a) (b)

Figure 3.2: Performance of mBERT across tasks and languages in comparison to the number
of Wikipedia articles for each language. We show tasks with a Pearson correlation coefficient
d > 0.7 on the left and others on the right. Numbers across tasks are not directly comparable.
We remove the G axis labels of overlapping languages for clarity. We additionally plot the linear
fit for each task (curved due to the logarithmic scale of the G axis).

XNLI PAWS-X POS NER XQuAD MLQA TyDiQA-GoldP BUCC Tatoeba

mBERT 0.79 0.81 0.36 0.35 0.80 0.87 0.82 0.95 0.68
XLM 0.80 0.76 0.32 0.29 0.74 0.73 0.52 0.61 0.68
XLM-R 0.75 0.79 0.22 0.27 0.50 0.76 0.14 0.36 0.49

Table 3.5: Pearson correlation coefficients (d) of zero-shot transfer performance and Wikipedia
size across datasets and models.

the NER task, mBERT performs better on data in Latin script than that in Chinese or Japanese
ideograms. This indicates that the current models still have difficulty transferring word-level
syntactic information across languages written in different scripts.

Errors across languages For XNLI and XQuAD where the other test sets are translations from
English, we analyze whether approaches make the same type of errors in the source and target
languages. To this end, we explore whether examples that are correctly and incorrectly predicted
in English are correctly predicted in other languages. On the XNLI dev set, mBERT correctly
predicts on average 71.8% of examples that were correctly predicted in English. For examples that
were misclassified, the model’s performance is about random. On average, predictions on XNLI
are consistent between English and another language for 68.3% of examples. On the XQuAD test
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(a) mBERT (b) mBERT

(c) XLM-R (d) XLM-R

Figure 3.3: Performance of mBERT (a,b) and XLM-R (c,d) across tasks grouped by language
families (left) and scripts (right). The number of languages per group is in brackets and the
groups are from low-resource to high-resource on the x-axis. We additionally plot the 3rd order
polynomial fit for the minimum and maximum values for each group.
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trigram,
seen

trigram,
unseen

4-gram,
seen

4-gram,
unseen

en 90.3 63.0 88.1 67.5
avg w/o en 50.6 12.1 44.3 18.3

difference 39.7 50.9 43.7 49.2

Table 3.6: Accuracy of mBERT on POS tag trigrams and 4-grams in the target language dev
data that appeared and did not appear in the English training data. We show the performance on
English, the average across all other languages, and their difference.

set, mBERT correctly predicts around 60% of examples that were correctly predicted in English
and 20% of examples that were incorrectly predicted. While some of these are plausible spans,
more work needs to focus on achieving consistent predictions across languages.

Generalization to unseen tag combinations and entities We analyze possible reasons for the
less successful transfer on structured prediction tasks. The Universal Dependencies dataset used
for POS tagging uses a common set of 17 POS tags for all languages, so a model is not required to
generalize to unseen tags at test time. However, a model may be required to generalize to unseen
tag combinations at test time, for instance due to differences in word order between languages.
We gauge how challenging such generalization is by computing a model’s accuracy for POS tag
n-grams in the target language dev data that were not seen in the English training data. We
calculate values for tag trigrams and 4-grams and show accuracy scores for mBERT in Table
3.6. We observe the largest differences in performance for unseen trigrams and 4-grams, which
highlights that existing cross-lingual models struggle to transfer to the syntactic characteristics
of other languages. For NER, we estimate how well models generalize to unseen entities at test
time. We compute mBERT’s accuracy on entities in the target language dev data that were not
seen in the English training data. We observe the largest difference between performance on seen
and unseen entities for Indonesian and Swahili. Isolating for confounding factors such as entity
length, frequency, and Latin script, we find the largest differences in performance for Swahili
and Basque. Together, this indicates that the model may struggle to generalize to entities that are
more characteristic of the target language. We show the detailed results for both analyses in the
appendix.

Generalization to unseen entities We show the performance of mBERT on entities in the target
language NER dev data that were seen and not seen in the English NER training data in Table

32



af de el en es et eu fi fr he hu id it ka ms nl pt ru sw tr vi

(a) Seen 94.7 88.3 91.4 91.9 76.3 88.3 83.6 85.3 90.5 78.2 90.7 89.4 88.4 92.3 88.6 93.5 88.6 83.9 96.3 85.2 91.4
(b) Not seen 82.1 80.2 74.8 84.6 80.4 78.9 69.4 79.8 80.1 56.5 78.3 58.0 81.5 70.2 75.0 82.9 82.3 68.5 66.6 73.7 73.4

(a) − (b) 12.6 8.1 16.5 7.2 -4.1 9.4 14.1 5.5 10.4 21.7 12.3 31.5 6.9 22.1 13.6 10.6 6.4 15.4 29.7 11.6 18.0

(c) Short 86.5 82.9 80.3 88.2 86.6 81.7 72.5 83.9 88.6 66.3 83.7 85.8 87.2 72.5 89.1 87.6 87.8 78.0 65.7 83.1 84.6
(d) Latin 83.6 81.2 87.5 86.2 80.0 79.5 70.3 80.3 81.1 77.2 79.9 61.8 82.6 89.6 76.3 84.2 83.0 83.8 70.0 75.0 74.9
(e) Freq 87.3 80.6 81.9 91.6 83.4 79.4 68.8 85.7 77.3 66.8 86.0 56.5 88.8 74.3 81.3 87.1 84.4 76.5 49.1 81.9 78.6

min((a) − (c–e)) 7.4 5.4 3.9 0.3 3.7 6.6 11.0 0.4 1.9 1.0 4.7 3.6 0.4 2.7 0.5 5.9 0.8 0.1 26.4 2.2 6.8

Table 3.7: Comparison of accuracies for entities in the target language NER dev data that were
seen in the English NER training data (a); were not seen in the English NER training data (b);
only consist of up to two tokens (c); only consist of Latin characters (d); and occur at least twice
in the dev data (e). We only show languages where the sets (a–e) contain at least 100 entities
each. We show the difference between (a) and (b) and the minimum difference between (a) and
(c-e).

3.7. For simplicity, we count an entity as occurring in the English training data if a subset of at
least two tokens matches with an entity in the English training data. As most matching entities in
the target language data only consist of up to two tokens, are somewhat frequent, and consist only
of Latin characters, we provide the performance on all entities fitting each criterion respectively
for comparison. For all target languages in the table except Spanish, entities that appeared in the
English training data are more likely to be tagged correctly than ones that did not. The differences
are largest for two languages that are typologically distant to English, Indonesian (id) and Swahili
(sw). For most languages, entities that appear in the English training data are similarly likely to
be correctly classified as entities that are either frequent, appear in Latin characters, or are short.
However, for Swahili and Basque (eu), mBERT does much better on entities that appeared in the
English training data compared to the comparison entities. Another interesting case is Georgian
(ka), which uses a unique script. The NER model is very good at recognizing entities that are
written in Latin script but performs less well on entities in Georgian script.

Sentence representations across all layers For sentence retrieval tasks, we analyze whether the
multilingual sentence representations obtained from all layers are well-aligned in the embedding
spaces. Without fine-tuning on any parallel sentences at all, we explore three ways of extracting
the sentence representations from all the models: (1) the embeddings of the first token in the
last layer, also known as [CLS] token; (2) the average word embeddings in each layer; (3) the
concatenation of the average word embeddings in the bottom, middle, and top 4 layers, i.e., Layer
1 to 4 (bottom), Layer 5 to 8 (middle), Layer 9 to 12 (top). Figure 3.4 shows the F1 scores
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Figure 3.4: Comparison of mBERT’s sentence representations by averaging word embeddings in
each layer in the BUCC task.

of the average word embeddings in each layer of mBERT in the BUCC task. We observe that
the average word embeddings in the middle layers, e.g., Layer 6 to 8, perform better than that
in the bottom or the top layers. In Table 3.8, we show the performance of these three types of
sentence embeddings in the BUCC task. The embeddings of the CLS token perform relatively
bad in cross-lingual retrieval tasks. We conjecture that the CLS embeddings highly abstract the
semanticmeaning of a sentence, while they lose the token-level informationwhich is important for
matching two translated sentences in two languages. With respect to the concatenation of average
word embeddings from four continuous layers, We also observe that embeddings from the middle
layers perform better than that from the bottom and top layers. Average word embeddings in the
middle individual layer perform comparative to the concatenated embeddings from the middle
four layers.

3.5 Related Work

Cross-lingual Representations: Early work focused on learning cross-lingual representations
using either parallel corpora [68, 122] or a bilingual dictionary to learn a linear transformation
[57, 125]. Later approaches reduced the amount of supervision required using self-training [13]
and unsupervised strategies such as adversarial training [40], heuristic initialisation [14], and
optimal transport [192]. Building on advances in monolingual transfer learning [47, 79, 124,
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Type de fr zh ru

CLS 3.88 4.73 0.89 2.15
Layer 6 51.29 56.32 41.38 38.81
Layer 7 62.51 62.62 49.99 51.84
Layer 8 64.32 62.46 50.49 53.58
Layer 1-4 6.98 12.3 12.05 4.33
Layer 5-8 63.12 63.42 52.84 51.67
Layer 9-12 53.97 52.68 44.18 43.13

Table 3.8: Three types of sentence embeddings from mBERT in BUCC tasks: (1) CLS token
embeddings in the last layer; (2) Average word embeddings in the middle layers, i.e., Layer 6, 7,
8; (3) the concatenation of average word embeddings in the continuous four layers, i.e., Layer 1-4
(bottom layers), Layer 5-8 (middle layers), Layer 9-12 (top layers).

139], multilingual extensions of pretrained encoders have recently been shown to be effective for
learning deep cross-lingual representations [39, 55, 140, 182].

Cross-lingual Evaluation: One pillar of the evaluation of cross-lingual representations has been
translation, either on the word level (bilingual lexicon induction) or on the sentence level (machine
translation). In most cases, evaluation has been restricted to typologically related languages and
similar domains; approaches have been shown to fail in less favorable conditions [66, 74, 168].
Past work has also reported issues with common datasets for bilingual lexicon induction [45, 93]
and a weak correlation with certain downstream tasks [66]. Translation, however, only covers one
facet of a model’s cross-lingual generalization ability. For instance, it does not capture differences
in classification performance that are due to cultural differences [128, 159].

On the other hand, cross-lingual approaches have been evaluated on a wide range of tasks,
including dependency parsing [152], named entity recognition [143], sentiment analysis [20],
natural language inference [41], document classification [154], and question answering [16, 111].
Evaluation on a single task is problematic as past work has noted potential issues with standard
datasets: MLDoc [154] can be solved by matching keywords [16], while MultiNLI, the dataset
from which XNLI [41] was derived, contains superficial cues that can be exploited [72]. Eval-
uation on multiple tasks is thus necessary to fairly compare cross-lingual models. Benchmarks
covering multiple tasks like GLUE [171] and SuperGLUE [170] have arguably spurred research
in monolingual transfer learning. In the cross-lingual setting, such a benchmark not only needs
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to cover a diverse set of tasks but also languages. XTREME aims to fill this gap.

3.6 Discussion and Future Work

As we have highlighted in our analysis, a model’s cross-lingual transfer performance varies sig-
nificantly both between tasks and languages. XTREME is a first step towards obtaining a more
accurate estimate of a model’s cross-lingual generalization ability. While XTREME is still in-
herently limited by the data coverage of its constituent tasks for many low-resource languages,
XTREME nevertheless provides significantly broader coverage and more fine-grained analysis
tools to encourage research on cross-lingual generalization ability of models. We have released
the code for XTREME and scripts for fine-tuning models on tasks in XTREME, which should
be to catalyze future research. Since the release of our benchmark and code repository, there are
several follow-up works built on XTREME. Notably, a series of pre-training techniques and mul-
tilingual contextualized representations have been released, including mT5 [185], InfoXLM [31],
MARGE [109]. In addition, a series of multilingual datasets have been curated and followed the
similar setups as XTREME, such as XCOPA [141], LAReQA [149], [115]. Moreover, XTREME
also encourages a thread of more fine-grained analysis of cross-lingual generalization of multi-
lingual representations [105, 151, 174, 196].
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Chapter 4

Leveraging Word and Sentence Alignment
for Language Understanding

In the previous chapter, we propose a benchmark for evaluating the cross-lingual generalization
of pre-trained multilingual encoders. As shown by the results in the previous chapter, pre-trained
cross-lingual encoders such as mBERT [47] and XLM-R [42] have proven impressively effec-
tive at enabling transfer-learning of NLP systems from high-resource languages to low-resource
languages. This success comes despite the fact that there is no explicit objective to align the
contextual embeddings of words/sentences with similar meanings across languages together in
the same space. In this chapter, we present a new method for learning an Aligned Multilingual
Bidirectional EncodeR (AMBER). AMBER is trained on additional parallel data using two ex-
plicit alignment objectives that align the multilingual representations at different granularities.
We conduct experiments on zero-shot cross-lingual transfer learning for different tasks includ-
ing sequence tagging, sentence retrieval and sentence classification. Experimental results on the
tasks in the XTREME benchmark [82] show that AMBER obtains gains of up to 1.1 average
F1 score on sequence tagging and up to 27.3 average accuracy on retrieval over the XLM-R-
large model which has 3.2x the parameters of AMBER. Our code and models are available at
http://github.com/junjiehu/amber.

This work is first appeared in:

• Junjie Hu, Melvin Johnson, Orhan Firat, Aditya Siddhant, and Graham Neubig. Explicit
Alignment Objectives for Multilingual Bidirectional Encoders. In Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies.
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4.1 Overview

Some attempts at training multilingual representations [42, 47] simply train a (masked) language
model on monolingual data frommany languages. These methods can only implicitly learn which
words and structures correspond to each-other across languages in an entirely unsupervised fash-
ion, but are nonetheless quite effective empirically [43, 91]. On the other hand, some methods
directly leverage multilingual parallel corpora [39, 55, 87, 124], which gives some degree of su-
pervision implicitly aligning the words in the two languages. However, the pressure on the model
to learn clear correspondences between the contextualized representations in the two languages
is still implicit and somewhat weak. Because of this, several follow-up works [27, 152, 175] have
proposed methods that use word alignments from parallel corpora as the supervision signals to
align multilingual contextualized representations, albeit in a post-hoc fashion.

In this chapter, we propose a training regimen for learning contextualized word representa-
tions that encourages symmetry at both the word and sentence levels at training time. Our word-
level alignment objective is inspired by work in machine translation that defines objectives en-
couraging consistency between the source-to-target and target-to-source attention matrices [38].
Our sentence-level alignment objective encourages prediction of the correct translations within a
mini-batch for a given source sentence, which is inspired by work on learning multilingual sen-
tence representations [178, 187]. In experiments, we evaluate the zero-shot cross-lingual transfer
performance of AMBER on four different NLP tasks in the XTREME benchmark [82] including
part-of-speech (POS) tagging, paraphrase classification, and sentence retrieval. We show that
AMBER obtains gains of up to 1.1 average F1 score on cross-lingual POS tagging, up to 27.3
average accuracy score on sentence retrieval, and achieves competitive accuracy in paraphrase
classification when compared with the XLM-R-large model. This is despite the fact that XLM-
R-large is trained on data 23.8x as large1 and has 3.2x parameters of AMBER. This shows that
compared to large amounts of monolingual data, even a small amount of parallel data leads to
significantly better cross-lingual transfer learning.

4.2 Cross-lingual Alignment

This section describes two objectives for training contextualized embeddings. We denote the
monolingual and parallel data as D" and D-. respectively, where " can be either the source

1AMBER is trained on 26GB parallel data and 80GBmonolingualWikipedia data, while XLM-R-large is trained
on 2.5TB monolingual CommonCrawl data.
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language - or the target language . .

4.2.1 Sentence Alignment

Our first proposed objective encourages cross-lingual alignment of sentence representations. For
a source-target sentence pair (G, H) in the parallel corpus, we separately calculate sentence em-
beddings denoted as cG , cH by averaging the embeddings in the final layer as the sentence embed-
dings.2 We then encourage the model to predict the correct translation H given a source sentence
G. To do so, we model the conditional probability of a candidate sentence H being the correct
translation of a source sentence G as:

%(H |G) = 4c
)
G cH∑

H′∈D"∪D-.
4c

)
G cH′

, (4.1)

where H′ can be any sentence in any language. Since the normalization term in Equation (4.1) is
intractable, we approximate %(H |G) by sampling H′ within a mini-batch B rather thanD" ∪D-. .
We then define the sentence alignment loss as the average negative log-likelihood of the above
probability:

ℓSA(G, H) = − log %(H |G). (4.2)

4.2.2 Bidirectional Word Alignment

Our second proposed objective encourages alignment of word embeddings by leveraging the at-
tention mechanism in the Transformer model. Motivated by the work on encouraging the con-
sistency between the source-to-target and target-to-source translations [38, 78], we create two
different attention masks as the inputs to the Transformer model, and obtain two attention matri-
ces in the top layer of the Transformer model. We compute the target-to-source attention matrix
AH→G as follows:

g;H8 = Attn(Q = g;−1H8 ,KV = g;−1[H<8 ;G] ;,
;), (4.3)

g;G 9 = Attn(Q = g;−1G 9
,KV = g;−1G ;, ;), (4.4)

Attn(QKV;,) = softmax(QW@ (KW: )) )VWE, (4.5)

�H→G [8, 9] = g!H8 · g
!
G 9
, (4.6)

2In comparison, mBERT encodes a sentence pair jointly, then uses the CLS token embedding to perform its next
sentence prediction task.
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where g;HC is the embedding of the C-th word in H on the ;-th layer, �H→G [8, 9] is the (8, 9)-th value
in the attention matrix from H to G, and, = {W@,W: ,WE} are the linear projection weights for
&,  ,+ respectively. We compute the source-to-target matrix AG→H similarly by switching G and
H as follow:.

g;G 9 = Attn(Q = g;−1G 9
,KV = g;−1[G< 9 ;H] ;,

;), (4.7)

g;H 9 = Attn(Q = g;−1H8 ,KV = g;−1H ;, ;), (4.8)

Attn(QKV;,) = softmax(QW@ (KW: )) )VWE, (4.9)

�G→H [ 9 , 8] = g!G 9 · g
!
H8
. (4.10)

To encourage the model to align source and target words in both directions, we minimize the
distance between the forward and backward attention matrices. Similarly to Cohn et al. [38], we
maximize the trace of two attention matrices, i.e., tr (AH→G

)AG→H). Since the attention scores
are normalized in [0, 1], the trace of two attention matrices is upper bounded by min( |G |, |H |),
and the maximum value is obtained when the two matrices are identical. Since the Transformer
generates multiple attention heads, we average the trace of the bidirectional attention matrices
generated by all the heads denoted by the superscript ℎ.

ℓWA(G, H) = 1 − 1
�

�∑
ℎ=1

tr (Aℎ
H→G

)Aℎ
G→H)

min( |G |, |H |) . (4.11)

Notably, in the target-to-source attention in Eq (4.3), with attention masking we enforce a
constraint that the C-th token in H can only perform attention over its preceding tokens H<C and the
source tokens in G. This is particularly useful to control the information access of the query token
HC , in a manner similar to that of the decoding stage of NMT. Without attention masking, the
standard Transformer performs self-attention over all tokens, i.e., & =  = gℎI , and minimizing
the distance between the two attention matrices by Equation (4.11) might lead to a trivial solution
whereW@ ≈W: .

4.2.3 Combined Objective

Finally we combine the masked language modeling objective with the alignment objectives and
obtain the total loss in Equation (4.12). Notice that in each iteration, we sample a mini-batch of
sentence pairs from D" ∪ D-. .

L = E(G,H)∈D"∪D-.
ℓMLM( [G; H]) + E(G,H)∈D-.

[ℓSA(G, H) + ℓWA(G, H)], (4.12)
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Model Data Langs Vocab Layers Parameters Ratio

AMBER Wiki & MT 104 120K 12 172M 1.0
mBERT Wiki 104 120K 12 172M 1.0
XLM-15 Wiki & MT 15 95K 12 250M 1.5x
XLM-100 Wiki 100 200K 12 570M 3.3x
XLM-R-base CommonCrawl 100 250K 12 270M 1.6x
XLM-R-large CommonCrawl 100 250K 24 550M 3.2x
Unicoder CommonCrawl & MT 100 250K 12 270M 1.6x

Table 4.1: Details of baseline and state-of-the-art models.

where ℓMLM denotes a masked language model objective (Section 2.3).

4.3 Experiments

4.3.1 Training setup

Following the setting of Hu et al. [82], we focus on the zero-shot cross-lingual transfer setting
where we fine-tunemodels on English annotations and apply themodels to predict on non-English
data.
Models: Table 4.1 shows details of models in comparison. We adopt the same architecture as
mBERT for AMBER. Notably, AMBER, XLM-15 and Unicoder are trained on the additional
parallel data, while the others are trained only on monolingual data. Besides, XLM-R-base/large
models have 2.6x/4.8x the parameters of AMBER and are trained on the larger CommonCrawl
corpus. We use a simple setting for our AMBER variants in the ablation study to show the effec-
tiveness of our proposed alignment objectives without other confounding factors such as model
sizes, hyper-parameters and tokenizations in different existing studies.
Pre-training: We train AMBER on the Wikipedia data for 1M steps first using the default hyper-
parameters as mBERT3 except that we use a larger batch of 8,192 sentence pairs, as this has
proven effective in Liu et al. [118]. We then continue training the model by our objectives for
another 1M steps with a batch of 2,048 sentence pairs fromWikipedia corpus and parallel corpus
which is used to train XLM-15 [39]. We use the same monolingual data as mBERT and follow

3https://github.com/google-research/bert
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Conneau and Lample [39] to prepare the parallel data with one change to maintain truecasing.
We set the maximum number of subwords in the concatenation of each sentence pair to 256 and
use 10k warmup steps with the peak learning rate of 1e-4 and a linear decay of the learning rate.
We train AMBER on TPU v3 for about 1 week.

4.3.2 Datasets

Cross-lingual Part-Of-Speech (POS) contains data in 13 languages from the Universal Depen-
dencies v2.3 [134].
PAWS-X [188] is a paraphrase detection dataset. We train on the English data [195], and evaluate
the prediction accuracy on the test set translated into 4 other languages.
XNLI [41] is a natural language inference dataset in 15 languages. We trainmodels on the English
MultiNLI training data [179], and evaluate on the other 14.
Tatoeba [11] is a testbed for parallel sentence identification. We select the 14 non-English lan-
guages covered by our parallel data, and follow the setup in Hu et al. [82] finding the English
translation for a given non-English sentence with maximum cosine similarity.

4.3.3 Result Analysis

In Table 4.2, we show the average results over all languages in all the tasks, and show detailed
results for each language in Appendix B.2. First, we find that our re-trained mBERT (AMBER
with MLM) performs better than the publicly available mBERT on all the tasks, confirming the
utility of pre-training BERT models with larger batches for more steps [118]. Second, AMBER
trained by the word alignment objective obtains a comparable average F1 score with respect to
the best performing model (Unicoder) in the POS tagging task, which shows the effectiveness of
the word-level alignment in the syntactic structure prediction tasks at the token level. Besides, it
is worth noting that Unicoder is initialized from the larger XLM-R-base model that is pre-trained
on a larger corpus than AMBER, and Unicoder improves over XLM-R-base on all tasks. Third,
for the sentence classification tasks, AMBER trained with our explicit alignment objectives ob-
tain a larger gain (up to 2.1 average accuracy score in PAWS-X, and 3.9 average accuracy score
in XNLI) than AMBER with only the MLM objective. Although we find that AMBER trained
with only the MLM objective falls behind existing XLM/XLM-R/Unicoder models with many
more parameters, AMBER trained with our alignment objectives significantly narrows the gap
of classification accuracy with respect to XLM/XLM-R/Unicoder. Finally, for sentence retrieval
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Model POS PAWS-X XNLI Tatoeba

mBERT (public) 68.5 86.2 65.4 45.6
XLM-15 68.8 88.0 72.6 77.2
XLM-100 69.5 86.4 69.1 36.6
XLM-R-base 68.8 87.4 73.4 57.6
XLM-R-large 70.0 89.4 79.2 60.6
Unicoder 71.7 88.1 74.8 72.2

AMBER (MLM) 69.8 87.1 67.7 52.6
AMBER (MLM+TLM) 70.5 87.7 70.9 68.2
AMBER (MLM+TLM+WA) 71.1 89.0 71.3 68.8
AMBER (MLM+TLM+WA+SA) 70.5 89.2 71.6 87.9

Table 4.2: Overall results on POS, PAWS-X, XNLI, Tatoeba tasks. Bold numbers highlight the
highest scores across languages on the existing models (upper part) and AMBER variants (bottom
part).

tasks, we find that XLM-15 and Unicoder are both trained on additional parallel data, outper-
forming the other existing models trained only on monolingual data. Using additional parallel
data, AMBER with MLM and TLM objectives also significantly improves over AMBER with the
MLM objective by 15.6 average accuracy score, while combining our word-level alignment ob-
jective yields a marginal improvement over AMBER with MLM and TLM objectives. However,
adding the sentence-level alignment objective, AMBER trained by the combined objective can
further improve AMBER with the MLM and word-level alignment objectives by 19.1 average ac-
curacy score. This confirms our intuition that the explicit sentence-level objective can effectively
leverage the alignment supervision in the parallel corpus, and encourage contextualized sentence
representations of aligned pairs to be close according to the cosine similarity metric.

4.3.4 How does alignment help by language?

In Figure 4.1, we investigate the improvement of the alignment objectives over the MLM ob-
jective on low-resource and high-resource languages, by computing the performance difference
between AMBER trained with alignment objectives and AMBER (MLM). First, we find that AM-
BER trained with alignment objectives significantly improves the performance on languages with
relatively small amounts of parallel data, such as Turkish, Urdu, Swahili, while the improvement
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Methods en bg de el es fr Avg.

Cao et al. [27] 80.1 73.4 73.1 71.4 75.5 74.5 74.7
AMBER (full) 84.7 74.3 74.2 72.5 76.9 76.6 76.5

Table 4.3: F1 scores of AMBER trained with all objectives and Cao et al. [27] on 6 languages on
XNLI.

on high-resource languages is marginal. Through a further analysis (Appendix B.2), we observe
that AMBER (MLM) performs worse on these low-resource and morphologically rich languages
than on high-resource Indo-European languages, while AMBER trained with alignment objec-
tives can effectively bridge the gap. Moreover, AMBER trained with our word-level alignment
objective yields the highest improvement on these low-resource languages on the POS task, and
AMBER trained with sentence-level alignment performs the best on XNLI.

4.3.5 Alignment with Attention vs Dictionary

Recent studies [27, 175] have proposed to use a bilingual dictionary to align cross-lingual word
representations. Compared with these methods, our word-level alignment objective encourages
themodel to automatically discover word alignment patterns from the parallel corpus in an end-to-
end training process, which avoids potential errors accumulated in separate steps of the pipeline.
Furthermore, an existing dictionary may not have all the translations for source words, especially
for words with multiple senses. Even if the dictionary is relatively complete, it also requires a
heuristic way to find the corresponding substrings in the parallel sentences for alignment. If we
use a word alignment tool to extract a bilingual dictionary in a pipeline, errors may accumulate,
hurting the accuracy of the model. Besides, Wang et al. [175] is limited in aligning only fixed
contextual embeddings from the model’s top layer. Finally, we also compare AMBER trained
with all the objectives and Cao et al. [27] on a subset of languages on XNLI in Table 4.3. We find
that our full model obtains a gain of 1.8 average F1 score.

4.4 Related Work

Cross-lingual Alignment: While cross-lingual alignment is a long-standing challenge dating
back to the early stage of research in word alignment [26], cross-lingual embeddings [42, 47, 57,
184] are highly promising in their easy integration into neural network models for a variety of
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Figure 4.1: Performance difference between AMBER trained with alignments on parallel data
and AMBER (MLM). Languages are sorted by no. of parallel data (Million) used for training
AMBER with alignments.

cross-lingual applications. In particular, to improve cross-lingual transfer, some attempts directly
leverage multilingual parallel corpus to train contextualized representations [39, 55, 87, 124] with
the hope of aligning words implicitly. The other line of work uses word alignments from parallel
corpora as the alignment supervision in a post-hoc fashion [27, 175]. Notably, AMBER does not
rely on any word alignment tools, and explicitly encourages the correspondence both on the word
and sentence level.

4.5 Discussion and Future Work

In this chapter, we demonstrate the effectiveness of our proposed explicit alignment objectives
in learning better cross-lingual representations for downstream tasks. Nonetheless, several chal-
lenging and promising directions can be considered in the future. First, most existing multilingual
models tokenize words into subword units, which makes the alignment less interpretable. How to
align a span of subword units with meaningful semantics at the phrase level deserves further in-
vestigation. Second, several studies [64, 112] have shown that attention may fail to capture word
alignment for some language pairs, and a few works [6, 108] proposed neural word alignment
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to improve the word alignment quality. Incorporating such recent advances into the alignment
objective is one future direction. Third, how to fine-tune a well-aligned multilingual model on
English annotations without catastrophic forgetting of the alignment information is a potential
way to improve cross-lingual generalization on the downstream applications.
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Chapter 5

Leveraging Word Alignment for Domain
Adaptation of Machine Translation

In the previous chapter, we introduce methods to leverage word and sentence alignments for mul-
tilingual language understanding tasks. In this chapter, we switch our focus to the other data
discrepancy problem – domain shift for language generation, and use neural machine transla-
tion (NMT), i.e., a typical language generation task, as a concrete example. In particular we
focus on translations of out-of-vocabulary (OOV) words and propose an unsupervised adaptation
method which fine-tunes a pre-trained out-of-domain NMTmodel using a pseudo-in-domain cor-
pus. Later on, in Chapter 7, we extend the adaption setting by introducing human translations with
a limited amount of annotation budget, and propose a hybrid active learning strategy to improve
the domain robustness of NMT. This work has been published in:

• Junjie Hu,MengzhouXia, GrahamNeubig, JaimeCarbonell. DomainAdaptation ofNeural
Machine Translation by Lexicon Induction. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics 2019 [81].

5.1 Overview

Previous work in the context of phrase-based statistical machine translation [46] has noted that
unseen (OOV) words account for a large portion of translation errors when switching to new
domains. However, this problem of OOV words in cross-domain transfer is under-examined in
the context of NMT, where both training methods and experimental results will differ greatly. In

Code/scripts are released at https://github.com/junjiehu/dali.
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this chapter, we try to fill this gap, examining domain adaptation methods for NMT specifically
focusing on correctly translating unknown words. Specifically, we tackle the task of data-based,
unsupervised adaptation, a strict unsupervised setting where we have no in-domain parallel sen-
tences.

To remedy this problem, we propose a new data-based method for unsupervised adaptation
that specifically focuses on the unknown word problem: domain adaptation by lexicon induc-
tion (DALI). Our proposed method leverages large amounts of monolingual data to find transla-
tions of in-domain unseen words, and constructs a pseudo-parallel in-domain corpus via word-
for-word back-translation of monolingual in-domain target sentences into source sentences. More
specifically, we leverage existing supervised [183] and unsupervised [40] lexicon induction meth-
ods that project source word embeddings to the target embedding space, and find translations
of unseen words by their nearest neighbors. For supervised lexicon induction, we learn such a
mapping function under the supervision of a seed lexicon extracted from out-of-domain parallel
sentences using word alignment. For unsupervised lexicon induction, we follow Conneau et al.
[40] to infer a lexicon by adversarial training and iterative refinement.

In the experiments on German-to-English translation across five domains (Medical, IT, Law,
Subtitles, and Koran), we find that DALI improves both RNN-based [18] and Transformer-based
[166] models trained on an out-of-domain corpus with gains as high as 14 BLEU. When the
proposedmethod is combinedwith back-translation, we can further improve performance by up to
4 BLEU. Further analysis shows that the areas in which gains are observed are largely orthogonal
to back-translation; our method is effective in translating in-domain unseen words, while back-
translation mainly improves the fluency of source sentences, which helps the training of the NMT
decoder.

5.2 Domain Adaptation by Lexicon Induction

Our method works in two steps: (1) we use lexicon induction methods to learn an in-domain
lexicon from in-domain monolingual source data Dsrc-in and target data Dtgt-in as well as out-of-
domain parallel data Dparallel-out, (2) we use this lexicon to create a pseudo-parallel corpus for
MT.
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5.2.1 Lexicon Induction

Given separate source and target word embeddings, X, Y ∈ R3×# , trained on all available mono-
lingual source and target sentences across all domains, we leverage existing lexicon induction
methods that perform supervised [183] or unsupervised [40] learning of a mapping 5 (X) =WX
that transforms source embeddings to the target space, then selects nearest neighbors in embed-
ding space to extract translation lexicons.

SupervisedEmbeddingMapping Supervised learning of themapping function requires a seed
lexicon of size =, denoted as ! = {(B, C)8}=8=1. We represent the source and target word embeddings
of the 8-th translation pair (B, C)8 by the 8-th column vectors ofX(=) ,Y(=) ∈ R3×= respectively. Xing
et al. [183] show that by enforcing an orthogonality constraint on W ∈ $3 (R), we can obtain a
closed-form solution from a singular value decomposition (SVD) of Y(=)X(=)) :

W∗ = arg max
W∈$3 (R)

‖Y(=) −WX(=) ‖� = UV)

UΣV) = SVD(Y(=)X(=)) ). (5.1)

In a domain adaptation setting we have parallel out-of-domain data Dparallel-out, which can
be used to extract a seed lexicon. Algorithm 2 shows the procedure of extracting this lexicon.
We use the word alignment toolkit GIZA++ [135] to extract word translation probabilities %(C |B)
and %(B |C) in both forward and backward directions from Dparallel-out, and extract lexicons !fw =
{(B, C), ∀%(C |B) > 0} and !bw = {(B, C), ∀%(B |C) > 0}. We take the union of the lexicons in both
directions and further prune out translation pairs containing punctuation that is non-identical. To
avoid multiple translations of either a source or target word, we find the most common translation
pairs in Dparallel-out, sorting translation pairs by the number of times they occur in Dparallel-out in
descending order, and keeping those pairs with highest frequency in Dparallel-out.

Unsupervised EmbeddingMapping For unsupervised training, we follow Conneau et al. [40]
in mapping source word embeddings to the target word embedding space through adversarial
training. Details can be found in the reference, but briefly a discriminator is trained to distinguish
between an embedding sampled from WX and Y, and W is trained to prevent the discriminator
from identifying the origin of an embedding by makingWX and Y as close as possible.
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Algorithm 2 Supervised lexicon extraction
Input: Parallel out-of-domain data Dparallel-out

Output: Seed lexicon ! = {(B, C)}=
8=1

1: Run GIZA++ on Dparallel-out to get !fw, !bw
2: !6 = !fw ∪ !bw
3: Remove pairs with punctuation only in either B and C from !6

4: Initialize a counter � [(B, C)] = 0 ∀(B, C) ∈ !6
5: for (src, tgt) ∈ Dparallel-out do
6: for (B, C) ∈ !6 do
7: if B ∈ src and C ∈ tgt then
8: � [(B, C)] = � [(B, C)] + 1
9: Sort � by its values in the descending order
10: ! = {}, ( = {}, ) = {}
11: for (B, C) ∈ � do
12: if B ∉ ( and C ∉ ) then
13: ! = ! ∪ {(B, C)}
14: ( = ( ∪ {B}, ) = ) ∪ {C}
15: return !

Induction Once we obtain the matrix W either from supervised or unsupervised training, we
map all the possible in-domain source words to the target embedding space. We compute the
nearest neighbors of an embedding by a distance metric, Cross-Domain Similarity Local Scaling
(CSLS; Conneau et al. [40]):

CSLS(Wx, y) = 2 cos(Wx, y) − A) (Wx) − A( (y)

A) (Wx) = 1
 

∑
y′∈N) (Wx)

cos(Wx, y′)

where A) (Wx) and A( (y)measure the average cosine similarity between their nearest neighbors
in the source and target spaces respectively.

To ensure the quality of the extracted lexicons, we only consider mutual nearest neighbors,
i.e., pairs of words that are mutually nearest neighbors of each other according to CSLS. This
significantly decreases the size of the extracted lexicon, but improves the reliability.
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5.2.2 NMT Data Generation and Training

Finally, we use this lexicon to create pseudo-parallel in-domain data to train NMTmodels. Specif-
ically, we follow Sennrich et al. [156] in back-translating the in-domain monolingual target sen-
tences to the source language, but instead of using a pre-trained target-to-source NMT system, we
simply perform word-for-word translation using the induced lexicon !. Each target word in the
target side of ! can be deterministically back-translated to a source word, since we take the near-
est neighbor of a target word as its translation according to CSLS. If a target word is not mutually
nearest to any source word, we cannot find a translation in ! and we simply copy this target word
to the source side. We find that more than 80% of the words can be translated by the induced
lexicons. We denote the constructed pseudo-parallel in-domain corpus as Dpseudo-parallel-in.

During training, we first pre-train anNMT system on an out-of-domain parallel corpusDparallel-out,
and then fine-tune the NMT model on a constructed parallel corpus. More specifically, to avoid
overfitting to the extracted lexicons, we sample an equal number of sentences from Dparallel-out,
and get a fixed subset�′parallel-out, where |�

′
parallel-out | = |Dpseudo-parallel-in |. We concatenate�′parallel-out

with Dpseudo-parallel-in, and fine-tune the NMT model on the combined corpus.

5.3 Experimental Results

5.3.1 Data

We follow the same setup and train/dev/test splits of Koehn and Knowles [97], using a German-to-
English parallel corpus that covers five different domains. Data statistics are shown in Table 5.1.
Note that these domains are very distant from each other. Following Koehn and Knowles [97], we
process all the data with byte-pair encoding [157] to construct a vocabulary of 50K subwords. To
build an unaligned monolingual corpus for each domain, we randomly shuffle the parallel corpus
and split the corpus into two parts with equal numbers of parallel sentences. We use the target
and source sentences of the first and second halves respectively. We combine all the unaligned
monolingual source and target sentences on all five domains to train a skip-gram model using
fasttext [22]. We obtain source and target word embeddings in 512 dimensions by running 10
epochs with a context window of 10, and 10 negative samples.
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Corpus Words Sentences W/S
Medical 12,867,326 1,094,667 11.76
IT 2,777,136 333,745 8.32
Subtitles 106,919,386 13,869,396 7.71
Law 15,417,835 707,630 21.80
Koran 9,598,717 478,721 20.05

Table 5.1: Corpus statistics over five domains.

5.3.2 Main Results

We first compare DALI with other adaptation strategies on both RNN-based and Transformer-
based NMT models.

Table 5.2 shows the performance of the two models when trained on one domain (columns)
and tested on another domain (rows). We fine-tune the unadapted baselines using pseudo-parallel
data created by DALI. We use the unsupervised lexicon here for all settings, and leave a compar-
ison across lexicon creation methods to Table 5.3. Based on the last two columns in Table 5.2,
DALI substantially improves both NMT models with average gains of 2.79-7.54 BLEU over the
unadapted baselines.

We further compare DALI with two popular data-based unsupervised adaptation methods that
leverage in-domain monolingual target sentences: (1) a method that copies target sentences to the
source side (Copy; Currey et al. [44]) and (2) back-translation (BT; Sennrich et al. [156]), which
translates target sentences to the source language using a backward NMT model. We compare
DALI with supervised (DALI-S) and unsupervised (DALI-U) lexicon induction. Finally, we (1)
experiment with when we directly extract a lexicon from an in-domain corpus using GIZA++
(DALI-GIZA++) and Algorithm 2, and (2) list scores for when systems are trained directly on
in-domain data (In-domain). For simplicity, we test the adaptation performance of the LSTM-
based NMT model, and train an LSTM-based NMT with the same architecture on out-of-domain
corpus for English-to-German back-translation.

First, DALI is competitive with BT, outperforming it on the medical domain, and underper-
forming it on the other three domains. Second, the gain from DALI is orthogonal to that from BT
– when combining the pseudo-parallel in-domain corpus obtained from DALI-U with that from
BT, we can further improve by 2-5 BLEU points on three of four domains. Second, the gains
through the usage of both DALI-U and DALI-S are surprisingly similar, although the lexicons
induced by these two methods have only about 50% overlap. Detailed analysis of two lexicons
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Domain Method Medical IT Subtitles Law Koran Avg. Gain

Medical
LSTM

Unadapted 46.19 4.62 2.54 7.05 1.25 3.87
+4.31

DALI - 11.32 7.79 9.72 3.85 8.17

XFMR
Unadapted 49.66 4.54 2.39 7.77 0.93 3.91

+4.79
DALI - 10.99 8.25 11.32 4.22 8.70

IT
LSTM

Unadapted 7.43 57.79 5.49 4.10 2.52 4.89
+5.98

DALI 20.44 - 9.53 8.63 4.85 10.86

XFMR
Unadapted 6.96 60.43 6.42 4.50 2.45 5.08

+5.76
DALI 19.49 - 10.49 8.75 4.62 10.84

Subtitles
LSTM

Unadapted 11.36 12.27 27.29 10.95 10.57 11.29
+2.79

DALI 21.63 12.99 - 11.50 10.17 16.57

XFMR
Unadapted 16.51 14.46 30.71 11.55 12.96 13.87

+3.85
DALI 26.17 17.56 - 13.96 13.18 17.72

Law
LSTM

Unadapted 15.91 6.28 4.52 40.52 2.37 7.27
+4.85

DALI 24.57 10.07 9.11 - 4.72 12.12

XFMR
Unadapted 16.35 5.52 4.57 46.59 1.82 7.07

+6.17
DALI 26.98 11.65 9.14 - 5.15 13.23

Koran
LSTM

Unadapted 0.63 0.45 2.47 0.67 19.40 1.06
+6.56

DALI 12.90 5.25 7.49 4.80 - 7.61

XFMR
Unadapted 0.00 0.44 2.58 0.29 15.53 0.83

+7.54
DALI 14.27 5.24 9.01 4.94 - 8.37

Table 5.2: BLEU scores of LSTM based and Transformer (XFMR) based NMT models when
trained on one domain (columns), and tested on another domain (rows). The last two columns
show the average performance of unadapted baselines and DALI, and the average gains.

can be found in Section 5.3.5.

5.3.3 Word-level Translation Accuracy

Since our proposed method focuses on leveraging word-for-word translation for data augmenta-
tion, we analyze the word-for-word translation accuracy for unseen in-domain words. A source
word is considered as an unseen in-domain word when it never appears in the out-of-domain
corpus. We examine two questions: (1) How much does each adaptation method improve the
translation accuracy of unseen in-domain words? (2) How does the frequency of the in-domain
word affect its translation accuracy?

To fairly compare various methods, we use a lexicon extracted from the in-domain parallel
data with the GIZA++ alignment toolkit as a reference lexicon !6. For each unseen in-domain
source word in the test file, when the corresponding target word in !6 occurs in the output, we
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Medical Subtitles Law Koran

Unadapted 7.43 5.49 4.10 2.52
Copy 13.28 6.68 5.32 3.22
BT 18.51 11.25 11.55 8.18
DALI-U 20.44 9.53 8.63 4.90
DALI-S 19.03 9.80 8.64 4.91
DALI-U+BT 24.34 13.35 13.74 8.11
DALI-GIZA++ 28.39 9.37 11.45 8.09
In-domain 46.19 27.29 40.52 19.40

Table 5.3: Comparison among different methods on adapting NMT from IT to {Medical, Subti-
tles, Law, Koran} domains, along with two oracle results

consider it as a “hit” for the word pair.

First, we compare the percentage of successful in-domain word translations across all adap-
tation methods. Specifically, we scan the source and reference of the test set to count the number
of valid hits �, then scan the output file to get the count �C in the same way. Finally, the hit per-
centage is calculated as �C

�
. The results on experiments adapting IT to other domains are shown

in Figure 5.1. The hit percentage of the unadapted output is extremely low, which confirms our
assumption that in-domain word translation poses a major challenge in adaptation scenarios. We
also find that all augmentation methods can improve the translation accuracy of unseen in-domain
words but our proposed method can outperform all others in most cases. The unseen in-domain
word translation accuracy is quantitatively correlated with the BLEU scores, which shows that
correctly translating in-domain unseen words is a major factor contributing to the improvements
seen by these methods.

Second, to investigate the effect of frequency of word-for-word translation, we bucket the un-
seen in-domain words by their frequency percentile in the pseudo-in-domain training dataset, and
calculate the average translation accuracy of unseen in-domain words within each bucket. The
results are plotted in Figure 5.2 in which the x-axis represents each bucket within a range of fre-
quency percentile, and the y-axis represents the average translation accuracy. With the increasing
frequency of words in the pseudo-in-domain data, the translation accuracy also increases, which is
consistent with our intuition that the neural network would be able to remember high-frequency
tokens better. Since the absolute value of the occurrences is different among all domains, the
numerical values of accuracy within each bucket vary across domains, but all lines follow the
ascending pattern.
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Figure 5.1: Translation accuracy of in-domain words of the test set on several data augmentation
baseline and our proposed method with IT as the out domain

5.3.4 When do Copy, BT and DALI Work?

From Figure 5.1, we can see that Copy, BT and DALI all improve the translation accuracy of
in-domain unseen words. In this section, we explore exactly what types of words each method
improves on. We randomly pick some in-domain unseen word pairs which are translated 100%
correctly in the translation outputs of systems trained with each method. We also count these
word pairs’ occurrences in the pseudo-in-domain training set. The examples are demonstrated in
Table 5.5.

We find that in the case of Copy, over 80% of the successful word translation pairs have the
same spelling format for both source and target words, and almost all of the rest of the pairs share
subword components. In short, and as expected, Copy excels on improving the accuracy of words
that have identical forms on the source and target sides.

As expected, our proposedmethodmainly increases the translation accuracy of the pairs in our
induced lexicon. It also leverages the subword components to successfully translate compound
words. For example, “monotherapie” does not occur in our induced lexicon, but the model is still
able to translate it correctly based on its subwords “mono@@” and “therapie” by leveraging the
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Figure 5.2: Translation accuracy of in-domain unseen words in the test set with regards to the
frequency percentile of lexicon words inserted in the pseudo-in-domain training corpus.

BT-S es ist eine Nachricht , die die aktive
Substanz enthält .

BT-T Invirase is a medicine containing
the active substance saquinavir .

Test-
S

ABILIFY ist ein Arzneimittel , das
den Wirkstoff Aripiprazol enthält .

Test-T Prevenar is a medicine containing
the design of Arixtra .

Table 5.4: An example that shows why BT could translate the OOVword “Arzneimittel” correctly
into “medicine”. “enthált” corresponds to the English word “contain”. Though BT can’t translate
a correct source sentence for augmentation, it generates sentences with certain patterns that could
be identified by the model, which helps translate in-domain unseen words.

successfully induced pair “therapie” and “therapy”.

It is more surprising to find that adding a back-translated corpus significantly improves the
model’s ability to translate in-domain unseen words correctly, even if the source word never oc-
curs in the pseudo-in-domain corpus. Even more surprisingly, we find that the majority of the
correctly translated source words are not segmented at all, which means that the model does not
leverage the subword components to make correct translations. In fact, for most of the correctly
translated in-domain word pairs, the source words are never seen during training. To further ana-
lyze this, we use our BTmodel to do word-for-word translation for these individual words without
any other context, and the results turn out to be extremely bad, indicating that the model does not
actually find the correspondence of these word pairs. Rather, it relies solely on the decoder to
make the correct translation on the target side for test sentences with related target sentences in
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Type Word Pair Count

Copy (tremor, tremor) 452
(347, 347) 18

BT (ausschuss, committee) 0
(apotheker, pharmacist) 0
(toxizität, toxicity) 0

DALI (müdigkeit, tiredness) 444
(therapie, therapy) 9535
(monotherapie, monotherapy) 0

Table 5.5: 100% successful word translation examples from the output of the IT to Medical adap-
tation task. The Count column shows the number of occurrences of word pairs in the pseudo-in-
domain training set.

the training set. To verify this, Table 5.4 demonstrates an example extracted from the pseudo-
in-domain training set. BT-T shows a monolingual in-domain target sentence and BT-S is the
back-translated source sentence. Though the back translation fails to generate any in-domain
words and the meaning is unfaithful, it succeeds to generate a similar sentence pattern as the
correct source sentence, which is “... ist eine (ein) ... , die (das) ... enthält .”. The model can
easily detect the pattern through the attention mechanism and translate the highly related word
“medicine” correctly.

From the above analysis, it can be seen that the improvement brought by the augmentation of
BT and DALI is largely orthogonal. The former utilizes the highly related contexts to translate
unseen in-domain words while the latter directly injects reliable word translation pairs into the
training corpus. This explains why we get further improvements over either single method alone.

5.3.5 Lexicon Coverage

Intuitively, with a larger lexicon, we would expect a better adaptation performance. In order to
examine this hypothesis, we do experiments using pseudo-in-domain training sets generated by
our induced lexicon with various coverage levels. Specifically, we split the lexicon into 5 folds
randomly and use a portion of it comprising folds 1 through 5, which correspond to 20%, 40%,
60%, 80% and 100% of the original data. We calculate the coverage of the words in the Medical
test set comparing with each pseudo-in-domain training set. We use each training set to train a
model and get its corresponding BLEU score. From Figure 5.3, we find that the proportion of the
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Figure 5.3: Word coverage and BLEU score of the Medical test set when the pseudo-in-domain
training set is constructed with different level of lexicon coverage.

Source ABILIFY ist ein Arzneimittel , das den Wirkstoff Aripiprazol enthält . BLEU
Reference abilify is a medicine containing the active substance aripiprazole . 1.000
Unadapted the time is a figure that corresponds to the formula of a formula . 0.204
Copy abilify is a casular and the raw piprexpression offers . 0.334
BT prevenar is a medicine containing the design of arixtra . 0.524
DALI abilify is a arzneimittel that corresponds to the substance ariprazole . 0.588
DALI+BT abilify is a arzneimittel , which contains the substance aripiprazole . 0.693

Table 5.6: Translation outputs from various data augmentation method and our method for
IT→Medical adaptation.

used lexicon is highly correlated with both the known word coverage in the test set and its BLEU
score, indicating that by inducing a larger and more accurate lexicon, further improvements can
likely be made.

5.3.6 Semi-supervised Adaptation

Although we target unsupervised domain adaptation, it is also common to have a limited amount
of in-domain parallel sentences in a semi-supervised adaptation setting. To measure the efficacy
of DALI in this setting, we first pre-train an NMT model on a parallel corpus in the IT domain,
and adapt it to the medical domain. The pre-trained NMT obtains 7.43 BLEU scores on the
medical test set. During fine-tuning, we sample 330,278 out-of-domain parallel sentences, and
concatenate them with 547,325 pseudo-in-domain sentences generated by DALI and the real in-
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domain sentences. We also compare the performance of fine-tuning on the combination of the
out-of-domain parallel sentences with only real in-domain sentences. We vary the number of
real in-domain sentences in the range of [20K, 40K, 80K, 160K, 320K, 480K]. In Figure 5.4a,
semi-supervised adaptation outperforms unsupervised adaptation after we addmore than 20K real
in-domain sentences. As the number of real in-domain sentences increases, the BLEU scores on
the in-domain test set improve, and fine-tuning on both the pseudo and real in-domain sentences
further improves over fine-tuning sorely on the real in-domain sentences. In other words, given a
reasonable number of real in-domain sentences in a common semi-supervised adaptation setting,
DALI is still helpful in leveraging a large number of monolingual in-domain sentences.

5.3.7 Effect of Out-of-Domain Corpus

The size of data that we use to train the unadapted NMT and BT NMT models varies from hun-
dreds of thousands to millions, and covers a wide range of popular domains. Nonetheless, the
unadapted NMT and BT NMT models can both benefit from training on a large out-of-domain
corpus. We examine the question: how does fine-tuning on weak and strong unadapted NMT
models affect the adaptation performance? To this end, we compare DALI and BT on adapting
from subtitles to medical domains, where the two largest corpora in subtitles and medical do-
mains have 13.9 and 1.3 million sentences. We vary the size of the out-of-domain corpus in a
range of [0.5, 1, 2, 4, 13.9] million, and fix the number of in-domain target sentences to 0.6 mil-
lion. In Figure 5.4b, as the size of out-of-domain parallel sentences increases, we have a stronger
upadapted NMT which consistently improves the BLEU score of the in-domain test set. Both
DALI and BT also benefit from adapting a stronger NMT model to the new domain. Combin-
ing DALI with BT further improves the performance, which again confirms our finding that the
gains from DALI and BT are orthogonal to each other. Having a stronger BT model improves the
quality of synthetic data, while DALI aims at improving the translation accuracy of OOV words
by explicitly injecting their translations.

5.3.8 Effect of Domain Coverage

We further test the adaptation performance of DALI when we train our base NMT model on the
WMT14 German-English parallel corpus. The corpus is a combination of Europarl v7, Com-
mon Crawl corpus and News Commentary, and consists of 4,520,620 parallel sentences from a
wider range of domains. In Table 5.7, we compare the BLEU scores of the test sets between the
unadapted NMT and the adapted NMT using DALI-U. We also show the percentage of source
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Figure 5.4: Effect of training on increasing number of in-domain (a) and out-of-domain (b) par-
allel sentences

words or subwords in the training corpus of five domains being covered by the WMT14 corpus.
Although the unadapted NMT system trained on the WMT14 corpus obtains higher scores than
that trained on the corpus of each individual domain, DALI still improves the adaptation perfor-
mance over the unadapted NMT system by up to 5 BLEU score.

5.3.9 Qualitative Examples

Finally, we show outputs generated by various data augmentation methods. Starting with the un-
adapted output, we can see that the output is totally unrelated to the reference. By adding the

Domain Base DALI Word Subword
Medical 28.94 30.06 44.1% 69.1%
IT 18.27 23.88 45.1% 77.4%
Subtitles 22.59 22.71 35.9% 62.5%
Law 24.26 24.55 59.0% 73.7%
Koran 11.64 12.19 83.1% 74.5%

Table 5.7: BLEU scores of LSTM based NMT models when trained on WMT14 De-En data
(Base), and adapted to one domain (DALI). The last two columns show the percentage of source
word/subword overlap between the training data on the WMT domain and other five domains.
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copied corpus, words that have the same spelling in the source and target languages e.g. “abil-
ify” are correctly translated. With back translation, the output is more fluent; though keywords
like “abilify” are not well translated, in-domain words that are highly related to the context like
“medicine” are correctly translated. DALI manages to translate in-domain words like “abilify”
and “substance”, which are added by DALI using the induced lexicon. By combining both BT
and DALI, the output becomes fluent and also contains correctly translated in-domain keywords
of the sentence.

5.4 Related Work

Data Augmentation: Early studies on data-based methods such as self-enhancing [101, 153]
translate monolingual source sentences by a statistical machine translation system, and continue
training the system on the synthetic parallel data. Recent data-based methods such as back-
translation [156] and copy-based methods [44] mainly focus on improving fluency of the output
sentences and translation of identical words, while our method targets OOV word translation.
In addition, there have been several attempts to do data augmentation using monolingual source
sentences [33, 191]. Besides, model-basedmethods changemodel architectures to leveragemono-
lingual corpus by introducing an extra learning objective, such as auto-encoder objective [30] and
language modeling objective [145]. Another line of research on using monolingual data is unsu-
pervised machine translation [15, 102, 103, 189]. These methods use word-for-word translation
as a component, but require a careful design of model architectures, and do not explicitly tackle
the domain adaptation problem. Our proposed data-based method does not depend on model
architectures, which makes it orthogonal to these model-based methods.
Out-of-VocabularyWordTranslations: Daumé III and Jagarlamudi [46] induce lexicons for un-
seen words and construct phrase tables for statistical machine translation. However, it is nontrivial
to integrate lexicon into NMTmodels that lack explicit use of phrase tables. With regard to NMT,
Arthur et al. [17] use a lexicon to bias the probability of the NMT system and show promising
improvements. Luong andManning [120] propose to emit OOV target words by their correspond-
ing source words and do post-translation for those OOV words with a dictionary. Fadaee et al.
[56] proposes an effective data augmentation method that generates sentence pairs containing rare
words in synthetically created contexts, but this requires parallel training data not available in the
fully unsupervised adaptation setting. Arcan and Buitelaar [9] leverage a domain-specific lexicon
to replace unknown words after decoding. Zhao et al. [197] design a contextual memory module
in an NMT system to memorize translations of rare words. Kothur et al. [99] treats an annotated
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lexicon as parallel sentences and continues training the NMT system on the lexicon. Though all
these works leverage a lexicon to address the problem of OOV words, none specifically target
translating in-domain OOV words under a domain adaptation setting.

5.5 Discussion and Future Work

In this chapter, we propose a data-based, unsupervised adaptation method that focuses on do-
main adaption by lexicon induction (DALI) for mitigating unknown word problems in NMT. We
conduct extensive experiments to show consistent improvements of two popular NMT models
through the usage of our proposed method. Further analysis shows that our method is effective
in fine-tuning a pre-trained NMT model to correctly translate unknown words when switching to
new domains.

62



Chapter 6

Leveraging Aligned Entities for Machine
Translation

In the previous chapter, we have shown that neural machine translation models usually perform
poorly on out-of-vocabulary words when switching domains. We also discover that many of
these out-of-vocabulary words are infrequent named entities. Earlier named entity translation
methods mainly focus on phonetic transliteration, which ignores the sentence context for trans-
lation and is limited in domain and language coverage. To address this limitation, we propose a
DEnoising Entity Pre-training method (DEEP) that leverages large amounts of monolingual data
and a knowledge base to improve named entity translation accuracy within sentences. Besides,
we investigate a multi-task learning strategy that fine-tunes a pre-trained neural machine trans-
lation model on both entity-augmented monolingual data and parallel data to further improve
entity translation. Experimental results on three language pairs demonstrate that DEEP results in
significant improvements over strong denoising auto-encoding baselines, with a gain of up to 1.3
BLEU and up to 9.2 entity accuracy points for English-Russian translation.1 This work is written
in:

• Junjie Hu, Hiroaki Hayashi, Kyunghyun Cho, Graham Neubig. DEEP: DEnoising Entity
Pre-training for Neural Machine Translation. (Under review).
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Krasnodar (Q3646)
Language Label Description
English Krasnodar capital of Krasnodar region (Krai) in Southern Russia
Russian Краснодар город на юге России, административный центр

Краснодарского края::

Language Label ...
English Saratov ...
Russian Саратов ...

::

Saratov (Q5332)
Language Label ...
English Ulyanovsk ...
Russian Ульяновск ...

::

Ulyanovsk (Q5627)

Магазины нового формата заработали в Краснодарe , Саратовe и Ульяновскe .

Entity Recognition and Linking

Pre-training with DEEP

Магазины нового формата заработали в Краснодарe , Саратовe и Ульяновскe .

[MT] These new format stores have opened for business in Krasnodar, Saratov, and Ulyanovsk.

Multi-task Finetuning

Магазины нового формата заработали в Краснодарe , Саратовe и Ульяновскe .

[DEEP] Магазины нового формата заработали в Krasnodar , Saratov и Ulyanovsk .

[DEEP] Магазины нового формата заработали в Krasnodar , Saratov и Ulyanovsk .

Figure 6.1: General workflow of our method. Entities in a sentence is extracted and linked to
Wikidata, which includes their translations in many languages. DEEP uses the noise function
5 (H,KB) that replaces entities with the translations for pre-training. DEEP is also employed
during fine-tuning in a multi-task learning manner.

6.1 Overview

A proper translation of named entities is critically important for accurately conveying the content
of text in a number of domains, such as news or encyclopedic text [4, 5, 94]. In addition, a
growing number of new named entities (e.g., person name, location) appear every day, and as a
consequence many of these entities may not exist in the parallel data traditionally used to trainMT
systems. As a consequence, even state-of-the-art MT systems struggle with entity translation. For
example, Laubli et al. [104] note that a Chinese-English news translation system that had allegedly
reached human parity still lagged far behind human translators on accurate translations of entities,
and this problem will be further exacerbated in the settings of cross-domain transfer or in the case
of emerging entities.

Because of this, there have been a number of methods proposed specifically to address the
problem of translating entities. As noted by Liu [117], earlier studies on named entity translation

1All code/data/models will be released upon acceptance.
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largely focused on rule-based methods [169], statistical alignment methods [84, 85] and Web
mining methods [86, 181, 186]. However, these methods have two main issues. First, as they
generally translate a single named entity without any context in a sentence, it makes it difficult
to resolve ambiguity in entities using context. In addition, the translation of entities is often
performed in a two-step process of entity recognition then translation, which complicates the
translation pipeline and can result in cascading errors [29, 84, 85].

In this chapter, we focus on a simple yet effective method that improves named entity trans-
lation within context. Specifically, we do so by devising a data augmentation method that lever-
ages two data sources: monolingual data from the target language and entity information from a
knowledge base (KB). Our method also adopts a procedure of pre-training and fine-tuning neural
machine translation (NMT) models that is used by many recent works [119, 120, 132, 160]. In
particular, pre-trainingmethods that use monolingual data to improve translation for low-resource
and medium-resource languages mainly rely on a denoising auto-encoding objective that attempts
to reconstruct parts of text [160] or the whole sentences [119] from noised input sentences without
particularly distinguishing named entities and other functional words in the sentences. In contrast,
our method exploits an entity linker to identify entity spans in the monolingual sentences and link
them to a KB (such as Wikidata [167]) that contains multilingual translations of these entities.
We then generate noised sentences by replacing the extracted entity spans with their translations
in the knowledge base and pre-train our NMT models to reconstruct the original sentences from
the noised sentences. To further improve the entity translation accuracy and avoid forgetting the
knowledge learned from pre-training, we also examine a multi-task learning strategy that fine-
tunes the NMT model using both the denoising task on the monolingual data and the translation
task on the parallel data.

In the experiments on English-Russian, English-Ukrainian and English-Nepali translations,
DEEP outperforms the strong denoising auto-encoding baseline with respect to entity transla-
tion accuracy, and obtains comparable or slightly better overall translation accuracy as measured
by BLEU. A fine-grained analysis shows that our multi-task fine-tuning strategy improves the
translation accuracy of the entities that do not exist in the fine-tuning data.

6.2 Denoising Entity Pre-training

Our method adopts a procedure of pre-training and fine-tuning for neural machine translation.
First, we apply an entity linker to identify entities in a monolingual corpus and link them to
a knowledge base (Section 6.2.1). We then utilize entity translations in the knowledge base to
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create noisy code-switched data for pre-training (Section 6.2.2). Finally, we examine a multi-task
learning strategy to further improve the translation of low-frequency entities (Section 7.4).

6.2.1 Entity Recognition and Linking

The goal of this part is to identify entities in each monolingual segment and obtain their transla-
tions. To this end, we useWikidata [167] a multilingual knowledge base that covers 94M entities.2

Each entity is represented in surface forms from different languages in which a Wikipedia article
exists. Therefore, linking an entity mention C in a target-language segment H to an entity 4 in
Wikidata allows us to obtain the multilingual translations of the entity, that is,

∀C ∈ H, ∃4 ∈ KB : )4 = surface(4,KB), C ∈ )4, (6.1)

where)4 denotes a set of multilingual surface forms of 4. We can define the translate operation as:
B = lookup()4, -) which simply looks for the surface form of 4 in the source language - . Note
that this strategy relies on the fact that translations in higher-resource languages are included in)4,
which we adopt by using English in our experiments. In general, however, )4 does not universally
cover all the languages of interest. For entity recognition and linking, we use SLING [148],3

which builds an entity linker for arbitrary languages available in Wikipedia.

6.2.2 Entity-based Data Augmentation

After obtaining entity translations from the KB, we attempt to explicitly incorporate these trans-
lations into the monolingual sentences for pre-training. To do so, we design an entity-based noise
function that takes in a sentence H and the KB, i.e., 5 (H,KB). First, we replace all detected entity
spans in the sentence by their translations from the KB:

replace(H,KB) = swap(B, C, H), ∀C ∈ H, (6.2)

where the swap() function swaps occurrences of one entity span C in H with its translation B in the
source language. For example, in the second box of Figure 6.1, the named entities “Краснодаре,
Саратове and Ульяновске” in Russian are replaced by their English translations “Krasnodar,
Saratov, andUlyanovsk”. After the replacement, we create a noised code-switched segment which
explicitly includes the translations of named entities in the context of the target language. For

2Statistics as of June 14, 2021.
3https://github.com/google/sling.
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some segments that contain fewer entities, their code-switched segments may be similar to them,
which potentially results in an easier denoising task. Therefore, we further add noise to these
code-switched segments. To do so, if the word count of the replaced entity spans is less than a
fraction (35%) of the word count in the segment, we then randomly mask the other non-entity
words to make sure that about 35% of the words are either replaced or masked in the noised
segment. Finally, we follow Liu et al. [119] to randomly permute the sentence order in H. We
then train a sequence-to-sequence model to reconstruct the original sentence H from its noised
code-switched sentence as follows:

LDEEP(D. ,KB) =
∑
H∈D.

log %(H | 5 (H,KB)). (6.3)

6.2.3 Multi-task fine-tuning

After pre-training, we continue fine-tuning the pre-trained model on a parallel corpus (G, H) ∈
D-. for machine translation.

LMT(D-. ) =
∑

(G,H)∈D-.

log %(H | G). (6.4)

To avoid forgetting the entity information learned from the pre-training stage, we examine a
multitask learning strategy to train the model by both the pre-training objective on the mono-
lingual data and the translation objective on the parallel data. Since monolingual segments are
longer text sequences than sentences inD-. and the size ofD. is usually larger than that ofD-. ,
simply concatenating both data for multi-task fine-tuning leads to a bias toward denoising longer
sequences rather than actually translating sentences. To balance the two tasks, in each epoch we
randomly sample a subset of monolingual segmentsD′

.
fromD. , where the total subword count

of D′
.
equals to that of D-. , i.e.,

∑
H∈D ′H |H | =

∑
(G,H)∈D-.

max( |G |, |H |). We then examine the
multitask fine-tuning as follows:

LMulti-task = LMT(D-. ) + LPre-train(D′. ), (6.5)

where the pre-training objective LPre-train is either DAE defined in Equation 2.7 or DEEP with
DEEP having an additional input of a knowledge base. Notice that with the sampling strategy for
the monolingual data, we double the batch size in the multi-task fine-tuning setting with respect to
that in the single-task fine-tuning setting. Therefore, we make sure that the models are fine-tuned

67



Lang. Token Para.
Entity

Type Count N

Ru 775M 1.8M 1.4M 337M 123
Uk 315M 654K 524K 140M 149
Ne 19M 26K 17K 2M 34

Table 6.1: Statistics of Wikipedia corpora in Russian (Ru), Ukrainian (Uk) and Nepali (Ne) for
pre-training. # denotes the average subword count of entity spans in a sequence of 512 subwords.

on the same amount of parallel data in both the single-task and multi-task settings, and the gains
from the mutlitask setting sorely come from the additional task on the monolingual data.

To distinguish the tasks during fine-tuning, we replace the start token (“[BOS]”) in a source
sentence or a noised segment by the corresponding task tokens for the translation or denoising
task (i.e., “[MT]”, “[DAE]” or “[DEEP]”). We initialize the additional task embeddings by the
start token embedding and append these task embeddings to the word embedding matrix of the
encoder.

6.3 Experimental Setting

Pre-training Data: We conduct our experiments on three language pairs: English-Russian,
English-Ukrainian and English-Nepali. We use Wikipedia articles as the monolingual data for
pre-training and report the data statistics in Table 6.1. We tokenize the text using the same sen-
tencepiece model as Liu et al. [119], and train on sequences of 512 subwords.

fine-tuning & Test Data: We use the news commentary data from the English-Russian trans-
lation task inWMT18 for fine-tuning and evaluate the performance on theWMT18 test data from
the news domain. For English-Ukrainian, we use the TED Talk transcripts from July 2020 in the
OPUS repository [162] for fine-tuning and testing. For English-Nepali translation, we use the
FLORES dataset in Guzmán et al. [74] and follow the paper’s setting to fine-tune on parallel data
in the OPUS repository. Table 6.2 shows the data statistics of the parallel data for fine-tuning.
Notice that from the last four columns of Table 6.2, the entities in the pre-training data cover at
least 87% of the entity types and 91% of the entity counts in both fine-tuning and test data except
the En-Ne pair.
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Lang. Train Dev Test
PF / F PT / T

Type Count Type Count

En-Ru 235K 3.0K 3.0K 88% 94% 88% 91%
En-Uk 200K 2.3K 2.5K 87% 94% 91% 94%
En-Ne 563K 2.6K 2.8K 35% 25% 44% 27%

Table 6.2: Statistics of the parallel train/dev/test data for fine-tuning. Type and Count under PF/F
(PT/T) show the percentage of entity types and counts in the fine-tuning (test) data that are covered
by the pre-training data.

Architecture: Weuse a standard sequence-to-sequence Transformermodel [165] with 12 layers
each for the encoder and decoder. We use a hidden unit size of 512 and 12 attention heads.
Following Liu et al. [119], we add an additional layer-normalization layer on top of both the
encoder and decoder to stabilize training at FP16 precision. We use the same sentencepiece
model and the vocabulary from Liu et al. [119].

Methods in Comparison: We compare methods in the single task and multi-task setting as
follows:
• Random → MT: We include a comparison with a randomly initialized model without pre-
training and fine-tune the model for each translation task.

• DAE→MT: We pre-train a model by DAE using the two noising functions in Liu et al. [119]
and fine-tune the model for each translation task.

• DEEP → MT: We pre-train a model using our proposed DEEP objective and fine-tune the
model on the translation task.

• DAE→ DAE+MT: We pre-train a model by the DAE objective and fine-tune the model for
both the DAE task and translation task.

• DEEP→ DEEP+MT: We pre-train a model by the DEEP objective and fine-tune the model
for both the DEEP task and translation task.

Learning &Decoding: We pre-train all models for 50K steps first using the default parameters
in Liu et al. [119] except that we use a smaller batch of 64 text segments, each of which has 512
subwords. We use the Adam optimizer (n=1e-6, V2=0.98) and a polynomial learning rate decay
scheduling with a maximum step at 500K. All models are pre-trained on one TPUv3 (128GB) for
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approximately 12 hours for 50K steps.4 We then reset the learning rate scheduler and continue
fine-tuning our pre-trained models on the MT parallel data for 40K steps. We set the maximum
number of tokens in each batch to 65,536 in the single task setting and double the batch size in
the multi-task setting. We use 2,500 warm-up steps to reach a maximum learning rate of 3e-5,
and use 0.3 dropout and 0.2 label smoothing. After training, we use beam search with a beam
size of 5 and report the results in BLEU following the evaluation in Liu et al. [119].

6.4 Discussion

6.4.1 Corpus-level Evaluation

In Table 6.3, we compare all methods in terms of BLEU on the test data for three language pairs.
First, we find that all pre-training methods significantly outperform the random baseline. In par-
ticular, our DEEP method obtains a substantial gain of 3.5 BLEU points in the single task setting
for the low-resource En-Ne translation. Second, we observe improvements with the multi-task
fine-tuning strategy over the single-task fine-tuning for all language pairs. Our DEEP method
outperforms the DAE method for En-Ru translation by 1.3 BLEU points in the multi-task set-
ting. It is also worth noting that DEEP obtains higher BLEU points than DAE at the beginning of
the multi-task fine-tuning process, however the gap between both methods decreases as the fine-
tuning proceeds for longer steps (See Figure 6.2). One possible reason is that models trained by
DEEP benefit from the entity translations in the pre-training data and obtain a good initialization
for translation at the beginning of the fine-tuning stage. As the multitask fine-tuning proceeds, the
models trained by both DAE and DEEP rely more on the translation task than the denoising task
for translating a whole sentence. Thus the nuance of the entity translations might not be clearly
evaluated according to BLEU.

6.4.2 Entity Translation Accuracy

Since corpus-level metrics like BLEU might not necessarily reveal the subtlety of named entity
translations, in the section we perform a fine-grained evaluation by the entity translation accuracy
which counts the proportion of entities correctly translated in the hypotheses. Specifically, we first
use SLING to extract entities for each pair of a reference and a hypothesis. We then count the
translation accuracy of an entity as the proportion of correctly mentioning the right entity in the

4As we show in Figure 6.9, models pre-trained for 50K steps have provided a reasonably good initialization.
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Figure 6.2: BLEU scores for 3 language pairs over various fine-tuning steps.

Pre-train→ fine-tune En-Uk En-Ru En-Ne

Random→MT 17.1 15.0 7.7
DAE→MT 19.5 18.5 10.5
DEEP→MT 19.4 18.5 11.2

DAE→ DAE+MT 19.7 18.9 11.6
DEEP→ DEEP+MT 19.7 19.6 11.5

Table 6.3: BLEU in single- and multi-task settings.

hypotheses, followed by macro-averaging to obtain the average entity translation accuracy. We
show the results in Table 6.4. First, our method in both single- andmulti-task settings significantly
outperformed the other baselines. In particular, the gains from DEEP are much clear for the En-
Uk and En-Ru translations. One possible reason is that Russian or Ukrainian entities extracted
from the pre-training data have a relatively higher coverage of the entities in both the fine-tuning
and test data as reported in Table 6.2. However, SLING might not detect as many entities in
Nepali as in the other languages. We believe that future advances on entity linking in low-resource
languages could potentially improve the performance of DEEP further. We leave this as our future
work.

6.4.3 Fine-grained Analysis on Entity Translation Accuracy

In this section, we further analyze the effect on different categories of entities using our method.
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Pre-train→ fine-tune En-Uk En-Ru En-Ne

Random→MT 49.5 31.1 20.9
DAE→MT 56.7 37.7 26.0
DEEP→MT 57.7 40.6 28.6

DAE→ DAE+MT 58.8 47.2 27.9
DEEP→ DEEP+MT 61.9 56.4 28.3

Table 6.4: Entity translation accuracy in single- and multi-task settings.
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Figure 6.3: Entity translation accuracy scores aggregated over different entity sets for Russian.
PFT, PT, FT data correspond to entities appearing in (i) pre-training, fine-tuning and test data,
(ii) only pre-training and test data (iii) only fine-tuning and test data.

Performance of Entity Groups over fine-tuning: The model is exposed to some entities more
often than others at different stages: pre-training, fine-tuning and testing, which raises a question:
how is the entity translation affected by the exposure during each stage? To answer this question,
we divide the entities appearing in the test data into three groups:
• PFT: entities appearing in the pre-training, fine-tuning, and test data.
• PT: entities only in the pre-training and test data.
• FT: entities only in the fine-tuning and test data.

We show the English-to-Russian entity translation accuracy scores for each group over fine-tuning
steps in Figure 6.3. Overall, accuracies are higher for the entities that appear in the fine-tuning
data (PFT, FT), which is due to the exposure to the fine-tuning data. Our proposed method
consistently outperformed baseline counterparts in both single- and multi-task settings. The dif-
ferences in accuracy are particularly large at earlier fine-tuning steps, which indicates the utility
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of our method in lower-resource settings with little fine-tuning data. The effect of multi-task fine-
tuning is most notable for entities in PT. Multi-task fine-tuning continuously exposes the model
to the pre-training data, which as a result prevents the model from forgetting the learned entity
translations from PT.

Performance according to Entity Frequency: We further analyze the entity translation ac-
curacy scores using entity frequencies in each group introduced above. This provides a more
fine-grained perspective on how frequent or rare entities are translated. To do so, we take the
translated hypotheses from a checkpoint with 40K steps of fine-tuning, bin the set of entities in
three data (i.e. PFT, PT, FT) according to frequencies in each of the data. We then calculate the
entity translation accuracy within each bin by comparing them against reference entities in the
respective sentences.

Russian: Figure 6.4 shows the accuracy gain of each pre-trainingmethodologies fromRandom
→MT (i.e. no pre-training) on test data, grouped by the entity frequency bins in pre-training and
fine-tuning data. Note that leftmost column and the bottom row represent PT, FT, respectively.
As observed earlier, the proposed method improves more over most frequency bins, with greater
differences on entities that are less frequent in fine-tuning data. This tendency is observed more
significantly for the multi-task variant (DEEP→DEEP +MT), where the gains are mostly from
entities that never appeared in fine-tuning data (i.e. leftmost column). Multi-task learning with
DEEP therefore prevents the model from forgetting the entity translations learned at pre-training
time.

Ukrainian: As seen in Figure 6.7, the general trend for the entity translation accuracy according
to entity groups are similar to that of Russian. Notice that empty cells in the heatmaps are due
to no entities that meet the conditions in those cells. While DEEP achieves the highest accuracy
in FT, the results for FT is less reliable due to a small sample size of entities in FT. In terms
of the gain from Random → MT according to the entity frequency, we observe a consistent
improvement of our multi-task DEEP on translating low-frequent entities in the fine-tuning data
(See the left bottom of Figure 6.5).

Nepali: While outperforming at the beginning of fine-tuning, Figure 6.8 shows that DEEP→
DEEP+MT eventually under-performed for translations of entities in PFT data. Moreover, the
accuracy is considerably lower on entities in PT, which suggests that the degree of forgetting is
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Figure 6.4: Gain from Random→MT in entity translation accuracy for each model.
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Figure 6.5: Gain from Random → MT in entity translation accuracy for Ukrainian for each
model.

much more conspicuous in Nepali. The gain from Random → MT with respect to the entity
frequency exhibited a different trend from Russian and Ukrainian. Figure 6.6 shows the results.
In the single-task setting, DEEP improves the translations of frequent entities appearing in both
the pre-training and fine-tuning data. Despite the multi-task learning that introduces additional
exposure to entities that are more frequent in the pre-training data, the largest gain comes from
entities that are less frequent in the pre-training data but frequent in the fine-tuning data.

6.4.4 Optimization Effects on DEEP

fine-tuning Data Size vs Entity Translation: While DEEP primarily focuses on the applica-
tion in a low-resource setting, the evaluation with more resources can highlight potential use in
broader scenarios. To this end, we expand the fine-tuning data for English-Russian translation
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Figure 6.6: Gain from Random→MT in entity translation accuracy for Nepali for each model.
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Figure 6.7: Entity translation accuracy aggregated over different entity sets for Ukrainian.
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Figure 6.8: Entity translation accuracy aggregated over different entity sets for Nepali.
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Methods
0.24M 4.25M

BLEU Acc. BLEU Acc.

Random→MT 15.0 31.1 15.7 39.4
DAE→MT 18.5 37.7 16.3 53.7
DEEP→MT 18.5 40.6 17.2 53.9

Table 6.5: Model comparisons across different fine-tuning data sizes. The results on the right are
obtained after fine-tuning on the combined news commentary and ParaCrawl data.

with an additional 4 million sentence pairs from ParaCrawl [19], a parallel data collected from
web pages. Although web pages might contain news text, the ParaCrawl data cover more general
domains. We fine-tune models on the combined data and evaluate with BLEU and entity trans-
lation accuracy. Table 6.5 shows the model comparisons across different fine-tuning data sizes.
When the model is initialized with pre-training methods, we observed decreased BLEU points
and the increased entity translation accuracy scores. On the one hand, this is partly due to the
discrepancy in terms of domains between our fine-tuning data (news) and ParaCrawl. Regardless,
DEEP is consistently equal to or better than DAE in all tested settings.

Pre-training Steps vs Entity Translation: Since DEEP leverages entity-augmented monolin-
gual data, themodel trained byDEEP revisits more entities in different contexts as the pre-training
steps increase. To analyze the efficiency of learning name entity translations during the pre-
training stage, we focus on the question: how many pre-training steps are needed for named en-
tity translation? To examine this question, we take the saved checkpoints trained by DEEP from
various pre-training steps, and apply the single-task fine-tuning strategy on the checkpoints for
another 40K steps. We plot the entity translation accuracy and BLEU of the test data in Figure 6.9.
We find that the checkpoint at 25K steps has already achieved a comparable entity translation ac-
curacy with respect to the checkpoint at 150K steps. This shows that DEEP is efficient to learn
the entity translations as early as in 25K steps. Besides, both the BLEU and entity translation
accuracy keeps improving as the pre-training steps increase to 200K steps.

6.4.5 Qualitative Analysis

In this section, we select two examples that contain entities appearing only in the pre-training
and testing data. The first example contains three location names. We find that the model trained
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Figure 6.9: English-to-Russian BLEU and Entity translation accuracy scores after fine-tuning
with respect to variable pre-training steps. fine-tuning is performed for 40K steps.

by the single-task DAE predicts the wrong places which provide the wrong information in the
translated sentence. In addition, the model trained by the multitask DAE just copies the English
named entities (i.e., “Krasnodar”, “Saratov” and “Ulyanovsk”) to the target sentence without
actual translation. In contrast, our method predicts the correct translation for “Krasnodar” in both
single-task and multi-task setting, while the multi-task DEEP translates all entities correctly. In
the second example, although our method in the single-task setting predicts wrong for all the
entities, the model generates partially correct translations such as “Барнале” for “Барнауле” and
“Красно @-@ Молгскиском” for “Красноармейском”. Notice that DEEP in the multi-task
setting translates the correct entities “asphalt” and “Krasnoarmeyskiy” which convey the key
information in this sentence. In contrast, the translation produced by the multi-task DAE method
literally means “Барнаул (Barnaul), новый (new) миф (myth) на (at) Krasnoarmey Prospekt,
выращивающий (grow)Krasnoarmeski.”, which is incomprehensible due to the entity translation
errors.

6.5 Related Work

Named Entity Translation: Earlier studies on named entity translation [8, 94] focus on rule-
based methods using phoneme or grapheme [4, 169], statistical methods that align entities in par-
allel corpus [84, 85, 193] andWeb mining methods built on top of a search engine [86, 181, 186].
Recently, neural models have been applied for named entity translations. Finch et al. [58], Grund-
kiewicz and Heafield [70], Hadj Ameur et al. [75] used neural machine translation to transliterate
named entities. Torregrosa et al. [163], Ugawa et al. [164] integrated named entity tags to neural
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Src: These new format stores have opened for business in Krasnodar, Saratov, and Ulyanovsk.
Ref: Магазины нового формата заработали в Краснодаре, Саратове и Ульяновске.

1© Эти новые форматовые магазины открылись для бизнеса в Анридаре, Кристофе и Куьянме.
2© Эти новые формат @-@ магазины открылись для бизнеса в Краснодаре, Сараабане и в Уругянском университете.
3© Эти новые магазины форматов открылись для бизнеса в Krasnodar, Saratov и Ulyanovsk.
4© Эти новые форматные магазины открылись для бизнеса в Краснодаре, Саратове и Ульяновске.

Src: In Barnaul, the new asphalt on Krasnoarmeyskiy Prospekt is being dug up
Ref: В Барнауле вскрывают новый асфальт на проспекте Красноармейском

1© В Барнауле новое, как разворачивающееся на железнополярном Происсе, растет.
2© В Барнале, новое, как разразилось на Красно @-@Молгскиском Просвещении, растет.
3© Барнаул, новый миф на Krasnoarmey Prospekt, выращивающий Krasnoarmeski.
4© В Барнауле новый асфальт на Красноармейском проспекте выращивание растет.

Table 6.6: Qualitative comparison among four pre-training methods on named entity translations.
1©: DAE→MT, 2©: DEEP→MT, 3©: DAE→ DAE+MT, 4©: DEEP→ DEEP+MT.

machine translation models. In this chapter, without changing model architectures, we focus on
data augmentation methods to improve named entity translation within context. In addition, while
recent work shows that continue fine-tuning a pre-trained encoder with the same pre-training ob-
jective improves language understanding tasks [73], this fine-tuning paradigm has not been ex-
plored for pre-training of a sequence-to-sequence model. Besides, previous works on multitask
learning for MT focus on language modeling [49, 71, 191, 200], while we examine a multi-task
fine-tuning strategy with an entity-based denoising task in this work and demonstrate substantial
improvements for named entity translations.

6.6 Discussion and Future Work

In this chapter, we propose an entity-based pre-training method for neural machine translation.
Our method improves named entity translation accuracy as well as BLEU score over strong de-
noising auto-encoding baselines in both single-task and multi-task settings. Despite the effective-
ness, several challenging and promising directions can be considered in the future. First, recent
works on integrating knowledge graphs [198, 199] in neural machine translation have shown
promising results for translation. Our method links entities to a multilingual knowledge base
which contains rich information of the entities such as entity description, relation links, alias.
How to leverage these richer data sources to resolve entity ambiguity deserves further investiga-
tion. Second, fine-tuning pre-trained models on in-domain text data is a potential way to improve
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entity translations across domains.
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Chapter 7

Leveraging Phrase Alignment for Machine
Translation

In this chapter, we further explore the application scenario where we have a limited budget to
annotate a small amount of in-domain phrases or sentences for domain adaptation of NMT. This
work first appeared in:

• Junjie Hu, Graham Neubig. Phrase-level Active Learning for Neural Machine Translation.
arXiv preprint arXiv:2106.11375 2021 (Under review).

7.1 Overview

One typical way to address the domain shift problem for machine translation is adding in-domain
data to the MT training process [36, 120]. However, this data may not be available a priori, and
hiring professional translators with knowledge of specific domains (such as medicine or law) is
usually costly. As a result, active learning approaches [21, 62, 76] have been widely adopted to
reduce the annotation cost by translating a smaller representative subset of the in-domain data,
with the hope that models trained on this translated subset approximate those trained on a much
larger labeled set. In general, active learning (AL) approaches iterate between two steps: data
selection/annotation, and model update. With regards to data selection for machine translation,
most existing works [76, 138, 190] focus on selecting sentences that are most useful for training
either phrase-based machine translation (PBMT) or neural machine translation (NMT) models.

However, even the most informative sentences inevitably involve segments that the MT sys-
tem can already translate well, and asking the translator to also translate these segments is not
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Figure 7.1: Overview of the active learning process

cost-effective. There have been a few works used in conjunction with older PBMT models that
ameliorate this problem through phrase-based selection techniques [21, 46, 127], which select
only individual phrases, maximizing information gain. However, while these translated phrases
can be easily integrated into PBMT by adding them to the existing phrase table, incorporating
them into NMT models is less simple because NMT has no concept of a “phrase table” and must
be trained on full sentences similar to those that must be translated.

In this chapter, we propose amethod for incorporating phrase-based active learning into NMT.
Specifically, we first describe sentence-based and phrase-based selection strategies, then propose
a hybrid strategy that combines both methods. We also describe several ways to incorporate
this translated data into the training of NMT systems. We conduct experiments on German-
English translation by adapting NMT models trained on WMT parallel data to the medicine and
IT domains. Experimental results show that the hybrid selection strategy obtains more stable
translation performance than either phrase-based or sentence-based selection strategy.

7.2 Problem Definition

In the setting of active learning for domain adaptation, we are given an out-of-domain labelled
corpus (G, H) ∈ L and an in-domain unlabelled corpus G ∈ U. We define a phrase as a contiguous
sequence of words up to some length limit # , and denote a set of possible phrases in a sentence
G by ∪=∈[1,#]=-gram(G), where we set # = 4 in all experiments below. To obtain translations
of unlabelled data, we assume access to professional translators O(·) who can translate source-
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side sentences S and/or phrases P selected from U, i.e., O(G) ∀G ∈ S ⊂ U, and O(?) ∀? ∈
P ⊂ PU = ∪G∈U ∪=∈[1,#] =-gram(G). We assume that translating sentences or phrases requires
cost 2(·), and annotation must be performed within a fixed budget � =

∑
G∈S 2(G) +

∑
?∈P 2(?).

This active learning procedure consists of two main steps: selection/translation (Section 7.3) and
fine-tuning (Section 7.4).

Algorithm 3 Active Learning for Domain Adaptation of Machine Translation
1: procedure ActiveAdaptation(U,L, �)
2: Inputs: the unlabelled setU, the labelled set L, and a budget �.
3: Train a MT model \ on L.
4: S,P ← Selection(U,L, �)
5: Translate S by LB = {(G,O(G)) |G ∈ S}
6: Translate P by L? = {(?,O(?)) |? ∈ P}
7: LA ← Obtain parallel data from L (Section 7.4)
8: Fine-tune \ on LB ∪ L? ∪ LA
9: return \

Algorithm 4 Hybrid Phrase/Sentence Selection
1: procedure Selection(U,L, �)
2: Inputs: the unlabelled setU, the labelled set L, and a budget �.
3: Initialize S = {}, P = {}
4: Allocate the budget: �B, �? ← �

5: while
∑
G∈S 2(G) < �B do

6: G ← argmaxG∈U q(G, ·)
7: U = U \ {G}
8: S = S ∪ {G}
9: Construct PU ,PL by strategies (Section 7.3.2)
10: while

∑
?∈P 2(?) < �? do

11: ? ← argmax?∈PU occ(?,U)
12: PU = PU \ {?}
13: P = P ∪ {?}

return S,P
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7.3 Active Selection Strategies

7.3.1 Sentence Selection Strategies

Existing sentence-based active learning methods usually define a sentence-level scoring function
q(G, ·), and select sentences with the top scores. Following Zeng et al. [190], we categorize these
methods into two classes: data-driven and model-driven methods. Data-driven methods only rely
on the unlabeled data U and the labeled data L, i.e., q(G,U,L), and usually score sentences
based on the trade-off between the density and diversity of the selected sentences. The density
of the selected sentences determines whether these sentences frequently exist in the unlabeled
data, while the diversity of the selected sentences determines whether these sentences cover the
variety of the unlabeled data. In contrast, model-driven approaches usually estimate the prediction
uncertainty of a source sentence given the current MT model \, i.e., q(G, \,U,L), and select
sentences with high uncertainty for training the model. Before getting to our proposed phrase-
based strategies in Section 7.3.2 we highlight several existing sentence selection strategies.

Random Sampling: One easy strategy is randomly sampling sentences from the unlabeled
data U for annotation. Although it is simple, this method is an unbiased approximation of the
data distribution in U. Therefore, this method remains a strong baseline in the active learning
literature [62, 127, 190] if the annotation budget is sufficiently large.

Cosine Similarity between Sentence Embeddings (CSSE): Zhang et al. [194] propose to
measure the distance between sentence embeddings. This method takes each unlabeled sentence,
estimates its distance in embedding space from the labeled sentences in the out-of-domain corpus,
and iteratively selects sentences that are more distant from sentences in the labeled data. In our
instantiation of this method, we leverage the pre-trained mBERT model [47] to extract sentence
representation eG of a particular sentence G,1 and measure a ratio-based distance [12] which is
the ratio between the cosine similarity of (eG , eG ′) and the average cosine similarity with their :
nearest neighbors:

ratio(eG , eG ′) =
cos (eG , eG ′)∑

I∈NN: (G)

cos (eG ,eI)
2: + ∑

I∈NN: (G ′)

cos (eG′ ,eI)
2:

, (7.1)

1We average the word representations from the 7th layer of the mBERT model as the sentence embedding,
because the middle-layer representations have proven effective in cross-lingual retrieval tasks [82, 140].
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where : is the number of nearest neighbors.
We then compute the margin-based distance between each in-domain sentence and its nearest

out-of-domain neighbor within a randomly sampled subset of labeled sentences L′:

q(G, ·) = dist(G,L′) = min
G ′∈L ′

ratio(eG , eG ′). (7.2)

We approximate the distance between G and out-of-domain corpus L using a subset L′ for
efficiency purposes, because the out-of-domain L is usually large. Next we use the minimal
distance dist(G,L′) as our scoring function q(G, ·), and select the unlabeled sentence with the
largest distance from (sub-sampled) sentences in the out-of-domain corpus.

RoundTrip Translation Likelihood (RTTL): Onemodel-drivenmethod is based on amethod
referred to as “round trip translation” [76, 190]. The labeled data L is used to train two MT
models \src-tgt, \tgt-src that translate between the source and target languages in two directions.
Each unlabeled source sentence G ∈ U is first translated to Ĥ in the target language by \src-tgt, and
then Ĥ is translated to Ĝ by \tgt-src. This method assumes that if this round-trip translation process
fails to recover some of the content on the source side then this is an indication that the sentence
may be difficult for the current model and is a good candidate for human annotation. Haffari et al.
[76] use a scoring function that computes the similarity between the original sentence G and Ĝ
using the sentence-level BLEU score [28], while Zeng et al. [190] estimate the likelihood of the
original source sentence G given Ĥ by the reverse MT model \tgt-src.

Ĥ ≈ argmax
H

%\src-tgt (H |G) (7.3)

q(G, ·) = log %\tgt-src (G | Ĥ) (7.4)

7.3.2 Phrase Selection Strategies

A few existing phrase-based active learning methods [21, 127] have been proposed to improve
PBMT systems. These methods first determine the possible set of phrases in a sentence, select
phrases to be translated according to a scoring metric, and incorporate these in the training of the
PBMT system. In the following paragraphs, we introduce two phrase-based selection strategies,
and discuss how to integrate this data into NMT in Section 7.4.

=-gram Frequency (NGF) [21]: The most straightforward phrase selection strategy is to select
the most frequent phrases in the unlabelled data that do not appear in the already labeled data.
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First we extract two sets of possible =-grams (= ≤ 4) from sentences in U and L, which are
defined as PU = ∪G∈U ∪=∈[1,#] =-gram(G), and PL = ∪(G,H)∈L ∪=∈[1,#] =-gram(G). We then
select the most frequent in-domain phrases from P* by

? = argmax
?∈PU ,?∉PL

occ(?,U), (7.5)

where occ(?) counts the occurrences of ? inU.

Semi-Maximal Phrases (NGF-SMP): The two phrase sets PU ,PL extracted by the =-gram
Frequency method contain many substrings that also occur in some longer strings. For example,
? = “eines der” always co-occurs with the longer ?′ = “eines der besten” in the WMT14 German-
English dataset. To identify the longer strings, Miura et al. [127] proposed the following semi-
order relation, which defines the relation between a phrase ?′ and its sub-string ? satisfying the
condition that ?′ occurs at least half the time of ? in the corpusU.

?�∗?′⇔ ∃U, V : U?V = ?′ ∧ occ(?,U)
2

< occ(?′,U) (7.6)

A phrase ? is called a semi-maximal phrase if there does not exist a phrase ?′ in U such
that ?�∗?′. Therefore, a compact subset of phrases P′U can be constructed by containing only
semi-maximal phrases in the phrase set PU inU:

P′U = {? |�?
′ ∈ PU , ?�

∗
?′ ∧ ? ∈ PU}. (7.7)

By using semi-maximal phrases in P′U rather than all phrases in PU , we remove a large
number of phrases that are included in a longer phrase more than half the time, and reduce the
redundancy of the selected phrases. Next we can select phrases similarly using Equation (7.5) by
replacing the original phrase set PU with the sub-set P′U .

7.3.3 Hybrid Selection Strategy

Phrase-based selection has its benefits, such as efficient annotation of core vocabulary from the
target domain. However, at the same time, it lacks the ability to identify larger sentence struc-
tures that may nonetheless be unique to the target domain. Modeling this structure is particularly
important for NMT (in contrast to PBMT), as NMT directly learns both lexical and syntactic
transformations within the same model.

Because of this, we propose a simple yet novel hybrid selection strategy that leverages the
benefits of both sentence-based and phrase-based selection strategies. Specifically, we allocate
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our budget in a way to annotate sentences with �B words from our set of sentences and �? words
from our set of phrases. Depending on the specific sentence-based and phrase-based selection
strategies chosen in the hybrid selection strategy, it is non-trivial to determine which selection
strategy improves the in-domain translation performance more than the other one before actual
finetuning. Therefore, in our implementation, we assume that we have no prior knowledge about
which selection strategies will be most effective, and simply evenly distribute the annotation bud-
get into the sentence-based and phrase-based strategies. We leave more sophisticated allocation
strategies as future work, and we discuss some potential avenues briefly in Section 7.7.

7.4 Training with Sentences and Phrases

After data selection, we fine-tune the base NMT model on the newly translated data. This is
essentially an extreme form of domain adaptation where we adapt a base NMT model trained
on out-of-domain data to a new domain. Specifically, we adopt a strategy of mixed fine-tuning
[120], which continues training a pre-trained out-of-domain model on both in-domain data and
a certain amount of out-of-domain data to prevent overfitting to relatively small in-domain data.
Compared to the standard domain adaptation setting where we have only a small number of in-
domain sentences, our phrase-level active learning setting has the additional difficulty of having
to use short translations of individual phrases. In the following, we describe both methods to
choose which data to use in mixed fine-tuning, and how to incorporate phrasal translations.

7.4.1 Data Mixing

For data mixing, we sample a subset LA of data directly from the labeled set L′, and concate-
nate LA with the newly annotated sentences LB and phrases L? for mixed fine-tuning (Line 8
in Algorithm 3). Specifically, we define a distribution function k over L′, and either sample by
(G, H) ∼ k or greedily take the most likely data by (G, H) = argmax(G,H)∈L ′ k(G, H) iteratively for
" times to obtain the subset LA of " parallel data.

Random Sampling: The most simple way to select out-of-domain data is to randomly sample
sentences from the out-of-domain corpus L′, i.e., (G, H) ∼ Uniform(L′). Although it is simple,
this has been popularly used in the literature of domain adaption for NMT [35].

87



Retrieve Similar Sentences: Recently Aharoni and Goldberg [2] showed that pre-trained lan-
guage models implicitly learn sentence embeddings that cluster by domains, and proposed a data
selection method that has proven more effective than methods based on the likelihood of an in-
domain language model [129]. Since our base NMT model is pre-trained on out-of-domain cor-
pus, we need to adapt the model to the domain of the unlabeled data. Instead of random sampling,
we adopt the selection method in Aharoni and Goldberg [2] to retrieve parallel sentences from
L′ that are close to the in-domain sentences inU. To do so, we leverage the contextualized sen-
tence representations, and measure the distance of a source sentence in L′ w.r.t. the unlabeled
corpus U by ratio(G,U), ∀G ∈ L′. Next, we iteratively retrieve labeled data from L′ that have
the smallest distance scores to their nearest neighbors, i.e., (G, H) = argmax(G,H)∈L ′ ratio(G,U).

7.4.2 Incorporating Phrasal Translations

In addition to obtaining real parallel data from L′ for mixed fine-tuning, we create synthetic par-
allel data (Ĝ, Ĥ) by incorporating phrasal translations into existing context from L′. Specifically,
for an unlabeled sentence G ∈ U containing a newly annotated phrase ?G , we retrieve the similar
sentence pair (G∗, H∗) from L′ by

(G∗, H∗) = argmax
(G ′,H′)∈L ′

ratio(eG , eG ′) (7.8)

We then alter (G∗, H∗) with the newly annotated phrase pair (?G , ?H) to create synthetic sen-
tence pair (Ĝ, Ĥ). Similar to data mixing, we concatenate the set of synthetic data with the anno-
tated sentences LB and phrases L? for mixed fine-tuning.

Switch Phrases: Inspired by existing data augmentation methods [56], we examine a data aug-
mentation method that switches out phrases in the out-of-domain sentence pairs in L′ by the
newly annotated phrase pairs from U. First, we define the following operation Switch(G, ?, 8)
that returns a new sentence by substituting the phrase at the 8-th position in G∗ by ?G .

Switch(G∗, ?G , 8) = [G∗<8; ?G; G∗≥8+|? |] (7.9)

Next, we enumerate all possible positions in G∗ for switching phrases, and then apply the
in-domain language model trained onU to select the most probably synthetic sentence by
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Ĝ = argmax
G ′=Switch(G∗,?G ,8)

∀0≤8< |G∗ |−|? |, ?G∈∪=∈[1,# ]=-gram(G)

%LM(G′), (7.10)

where ?G is a phrase in the unlabeled sentence G.
To synthesize the corresponding Ĥ from the retrieved target sentence H∗, we apply a word

alignment model trained on L to find the index 9 for the translation of the replaced phrase G∗
8:8+|?G |

in H∗, and substitute the phrase at the 9-th position in H∗ by ?H to obtain Ĥ = Switch(H∗, ?H, 9).

Contextualized Phrases: The other idea is to augment the context of a newly annotated phrase
pair (?G , ?H), since a phrase ?G lacks larger sentence structure. Specifically, we define the con-
textualized operation that augments a phrase ?G in G by appending it to the retrieved sentence
G∗.

Contextualize(G∗, ?G) = [G∗, ?G] (7.11)

We then enumerate all annotated phrases in G, and apply an in-domain language model to find
the most probable annotated phrase pair (?G , ?H) that synthesizes Ĝ. The corresponding Ĥ can be
obtained by Contextualize(H∗, ?H).

Ĝ = argmax
G ′=[G∗,?G]

∀?G∈∪=∈[1,# ]=-gram(G)

%LM(G′) (7.12)

7.5 Experiments

7.5.1 Experimental Setting

Dataset: We use theWMT14German-English data as the out-of-domain labeled data for training
our base NMTmodel, and take the source sentences of two parallel corpora in themedicine and IT
domains [97] as the unlabeled data. As pointed out in Aharoni and Goldberg [2], there is overlap
between the training data and the test data in the original split of the two corpora provided by
Koehn and Knowles [97], so we follow them in removing the duplicated sentences in the in-
domain data, and re-splitting two new test sets in order to prevent the model from memorizing
the selected in-domain training data that could potentially be included in the test data. Table 7.1
shows the data statistics.
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Data Domain Lang #Sentences #Words Vocab Avg Len

L WMT14
De

4.4M
108.0M 1.9M 24.4

En 114.5M 955.3K 25.8

U
Medicine De 227.2K 3.8M 114.3K 16.8

IT De 190.6K 2.1M 114.6K 11.5

Table 7.1: Data statistics of the out-of-domain labeled data in WMT14 and the in-domain unla-
beled data in the medicine and IT domains.

Model: As our NMT model, we use a 6-layer 512-unit Transformer network [166] implemented
in Fairseq,2 and use a subword vocabulary of 5,000 for both languages constructed by Byte
Pair Encoding [157].
Training: We train the base model with Adam for 10 epochs with 4K warmup steps and a peak
learning rate of 1e-3, and decay the learning rate based on the inverse square root of the number
of update steps [166].

For active learning, we set our annotation budgets by number of words translated (following
the prevailing translation market practice to charge for jobs by the word), and investigate the
budgets from 2.5K words up to 40K words.3 After data selection (Section 7.3), we obtain a set
LA of " parallel sentences (Section 7.4), and set the size " = |L? | where L? is selected by
NGF-SMP. We then fix LA for mixed fine-tuning in all experiments, and continue fine-tuning the
base model on a mixture of the newly-translated data and LA for 5 more epochs.

7.5.2 Word-level Translation Accuracy

Since our selection and mixed fine-tuning methods focus on leveraging phrasal translations for
domain adaptation, we perform a fine-grained analysis on the word-level translation accuracy of
the NMT systems due to the domain shift. A source word is defined as an unseen in-domain word
when it never appears in the out-of-domain corpus. If phrase selection strategies select more in-
domain words, we would expect a higher translation accuracy of such in-domain words by the
adapted NMT systems using phrase selection. As a result, we compare the translation accuracy of
in-domain words by the NMT models using different selection strategies in Figure 7.3. As shown
in the figure, NGF-SMP significantly improves the translation accuracy of the in-domain words
with a small annotation budget. In contrast, CSSE falls short of the other compared methods

2https://github.com/pytorch/fairseq
3At current market rates, this would cost from 491 to 7,092 USD for German-English translation by professional

translators at https://translated.com/.
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Figure 7.2: Average BLEU score over 3 runs for adapting a base NMT to the Medicine and IT
domains.

when the annotation budget is less than 80K words. Moreover, we find that the hybrid selection
strategy of NGF-SMP and CSSE can combine the merits of both methods, and obtain an even
higher accuracy when the budget is greater than 40K annotated words. Qualitatively, the example
in Table 7.2 shows the translations for a source sentence with all words appearing in the medical
domain. The NMT model adapted by CSSE translates the first half of the source sentence by
picking the correct word “exercised”, while the NMT model adapted by NGF-SMP generates the
correction translation “somnolence” in the second half of the output. The NMT model using the
hybrid of NGF-SMP and CSSE strategies translates both words correctly.

7.5.3 How Does Each Selection Strategy Help?

We examine the question of which selection strategy (Section 7.3) best improves accuracy on
in-domain test data. For mixed fine-tuning, in this section we use the retrieved out-of-domain
parallel data for a fair comparison among all active selection strategies. Figure 7.2 shows the
average BLEU score and the standard deviation of the adapted MT systems to two new domains
over 3 independent runs.4

4To obtain a stable result, we independently run the active learning procedure with different selection strategies
3 times, collect new translation data, and concatenate them with the same data retrieved from out-of-domain labeled
data
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Figure 7.3: Translation accuracy of in-domain words in the test set from the medicine domain

Comparing among sentence selection strategies in Figure 7.2, CSSE performs slightly better
than the random sentence selection baseline on adapting the NMT model to the IT domain with
smaller standard deviation values, and performs comparably on adapting to the medicine domain.
However, we observe that RTTL performs worst, and we conjecture that this is due to the usage of
the base NMT models that are trained on the out-of-domain parallel data in both directions. The
errors accumulated from the round trip translation process lead to an inaccurate estimation of the
uncertainty score for a source sentence. Table 7.3 shows the top 5 sentences selected by RTTL.
The selected sentences in the medicine domain are short phrases rather than complete sentences,
and those selected in the IT domain contain duplicate phrases such as “bewerten mitâ”.

For phrase-based selection methods, NGF-SMP significantly outperform the random phrase
selection strategy. Further, NGF-SMP even outperforms sentence selection methods when the
annotation budget is small (less than 20k words) for adaption to the medicine domain. As we
increase the annotation budget to 40K annotated words, sentence selection strategies outperform
phrase selection strategies. This indicates that if we keep training NMT systems on shorter phrase
pairs when the annotation budget is sufficient, the NMT systems would be limited by lack of
longer sentence structures. In Figure 7.2b, we also find that NMT models trained with phrasal
translations fall short of those trained with sentence translations when adapting to the IT domain.
It is hard to train the NMT systems to translate certain phrases correctly without the sentence
context. For example, “Persönlichen Ordner” in the IT domain is translated to “home directory”
rather than “personal folder” in the sentence “jedes Skript dieses Dialogs hat Schreib-Zugriff auf
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Output S-BLEU

Source
Jedoch ist Vorsicht geboten, da Berichten zufolge Verwirrung und Somnolenz während der Behandlung
auftreten können.

Reference However, caution should be exercised as confusion and somnolence have been reported.
NGF-SMP However, caution is required, as there are reports of confusion and somnolence during the treatment. 15.71
CCSE However, caution should be exercised, as confusion and drowsiness may occur during the treatment. 15.62
NGF-SMP+CSSE However, caution should be exercised as confusion and somnolence may occur during the treatment. 15.71

Source Schwindel, Parästhesie, Geschmacksstörung
Reference Dizziness, paraesthesiae, taste disorder
NGF-SMP Dizziness, paraesthesia, taste disturbance 23.27
CSSE The room was very small and the bathroom was very small. 0.00
NGF-SMP+CSSE Dizziness, paraesthesia, taste disturbance 23.27

Source Über Hospitalisierung oder Todesfälle in Verbindung mit Infektionen wurde berichtet.
Reference Hospitalisation or fatal outcomes associated with infections have been reported.
NGF-SMP There have been reports of Hospitalisation or death associated with infections. 29.79
CSSE Hospitals or deaths associated with infections have been reported. 54.63
NGF-SMP+CSSE There have been reports of Hospitalisation or fatality associated with infections. 29.79

Table 7.2: Translations generated by NMT models using different selection strategies. The last
column shows the sentence BLEU score of the translations. Translation errors are highlighted in
red.

MED

Portugal Lundbeck Portugal Lda Quinta da Fonte Edifício D.
Bronchitis
Gastrointestinaltrakt :
Neugebore
139 B.

IT

Eigenschaften des Stichwortes â % 1â
bewerten mitâ Drei Sternenâ
keine Speicherplatzinformation aufâ procfsâ
bewerten mitâ Einem Sternâ
neue und einzelne auswÃ Â hlen

Table 7.3: Top 5 sentences selected by RTTL

Ihren Persönlichen Ordner ”.

Finally, the hybrid selection of NGF-SMP and CSSE strategies outperforms the individual se-
lection strategies over every budget in our set of budgets, i.e., 2.5K, 5K, 10K, 20K, 40K annotated
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words, improving the best phrase selection strategy NGF-SMP by 0.49 average BLEU points, and
the best sentence selection strategy CSSE by 1.11 average BLEU points in the medicine domain.
Notably, the phrase-based selection strategy especially helps in the scenario where the context is
not required to translate domain-specific words, for example, the name of a medicine or a dis-
ease in the medicine domain in the second example. For the adaptation scenario that requires a
longer context in some domains such as IT, the hybrid strategy can also significantly outperforms
the best phrase-based strategy NGF-SMP by 1.2 average BLEU points, and the best sentence se-
lection strategy CSSE by 0.15 BLEU points. Overall, our hybrid selection strategy is effective
to combine the merits of both sentence and phrase selection strategies in the domain adaptation
setting.

7.5.4 Analysis on Translation Length

Do Phrasal Annotations Bias NMT? Since phrasal annotations are short and do not con-
tain complex sentence structure, we hypothesis that NMT systems trained on phrasal annotations
would be biased towards generating shorter sentences or sentences in different grammatical order
w.r.t. the reference sentence. To understand this question, we analyze the length ratio between
the translation outputs and the reference sentences in Figure 7.4. We find that the NMT model
trained only on annotated phrases selected by NGF-SMP generates shorter sentences than ref-
erence sentences. In contrast, adding sentences randomly sampled from the labeled corpus L
make the NMT model generate longer sentences than the reference sentences, while retrieving
sentences from L that are similar to the sentences in U makes the model produces translation
outputs with closed lengths as the reference sentences. Qualitatively, we also show the problem
of generating sentences with different structures as the reference sentences in the third example
in Table 7.2. In the third example, the NMTmodel trained with NGF-SMP produces a translation
in an active voice, while the reference sentence uses a passive voice.

7.5.5 How Representative Are the Selected Data?

If the selected data has a significant overlap of segments with the in-domain test data, we would
expect a better adaptation performance of the NMT trained on the selected data. Therefore we
investigate the =-gram overlap between the selected data and the test data when we annotate 5K
words from the medicine corpus, and report the average BLEU score of the adapted NMTmodels
trained on the selected data in Table 7.4. Interestingly, we find that there exists a high correlation
(d ≈0.8) between the =-gram overlap and the average BLEU score, which indicates that the =-
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Figure 7.4: Length ratio between the NMT outputs and the reference sentences.

gram overlap with the test set can be used as a good measure of whether the selected data is useful
for improving the NMT model in the new domain. Compared to the random phrase selection,
NGF-SMP selects phrases with a high overlap with the test data. We also observe that sentence
selection strategies cover fewer phrases in the test data than phrase selection strategies. This also
corroborates our assumption that asking translators to annotate phrases that the MT system can
already translate well is not cost-effective to improve the in-domain translation performance.

7.5.6 How Do Phrasal Translations Help in Mixed Fine-tuning?

We further investigate the effect of mixed fine-tuning using the newly annotated in-domain data
and sub-sampled out-of-domain data when comparing with fine-tuning only on the newly anno-
tated data. Table 7.5 shows the average BLEU score and the standard deviation values over 3
independent runs. Compared to fine-tuning on only annotated data, adding randomly sampled
sentence pairs from the out-of-domain data helps when the annotation budget is less than 5K
annotated words, but hurts when we increase the budget. In contrast, adding sentences retrieved
by the similarity in the sentence embedding space not only outperforms fine-tuning only on an-
notated data and mixed fine-tuning with randomly sampled sentences, but also achieves smaller
standard deviation values. On the other hand, mixed fine-tuning on synthetic data by switching
phrases performs slightly worse than the mixed fine-tuning on real retrieved data, but outper-
forms the fine-tuning without any out-of-domain data, especially when the annotation budget is
small, e.g., 5K annotated words. Combining synthetic data by switching phrase and real retrieved
data for mixed fine-tuning also improve the translation performance over the training only on
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Methods uni-gram bi-gram tri-gram 4-gram Avg. BLEU

OoD Data 79.33 32.65 7.30 1.10 34.51
+ Random Sentence 82.81 38.45 11.62 3.73 39.27
+ RTTL 80.70 35.76 9.85 3.04 35.78
+ CSSE 82.74 38.83 12.01 4.05 39.27
+ Random Phrase 82.36 35.84 7.98 1.15 38.23
+ NGF 84.45 41.82 14.94 6.17 39.96
+ NGF-SMP 85.80 43.13 16.15 7.11 40.21
+ NGF-SMP + CSSE 84.48 41.89 14.98 6.48 40.55
ID Training Data 98.58 87.30 67.61 52.11 57.59

Pearson Correlation 0.90 0.83 0.80 0.78 /

Table 7.4: Percentage of the n-gram in the test sentences that are covered by the selected data
with 5K words, the out-of-domain training data and the in-domain training data. The last row
shows the Pearson correlation coefficient between =-gram overlap and avg. BLEU score.

Out-of-domain Data In-domain Data
2.5K 5K 10K 20K 40K

Sampled Retrieved Switched Contextualized NGF-SMP CSSE

X 39.39 ± 0.14 39.22 ± 0.00 40.56 ± 0.02 41.19 ± 0.25 44.07 ± 0.33
X 37.94 ± 0.08 38.68 ± 0.54 40.62 ± 0.59 42.62 ± 0.03 45.00 ± 0.11

X X 38.94 ± 0.02 39.60 ± 0.09 41.34 ± 0.12 42.44 ± 0.15 44.90 ± 0.06

X X X 39.46 ± 0.14 40.51 ± 0.23 40.62 ± 0.49 41.82 ± 0.26 43.78 ± 0.57
X X X 39.73 ± 0.16 40.55 ± 0.14 42.30 ± 0.10 43.72 ± 0.04 45.41 ± 0.08

X X X 38.93 ± 0.36 40.59 ± 0.17 41.82 ± 0.29 42.70 ± 0.37 45.33 ± 0.04
X X X 35.36 ± 0.38 37.85 ± 0.68 39.96 ± 0.35 42.83 ± 0.11 44.14 ± 0.15

X X X X 39.61 ± 0.06 40.95 ± 0.06 42.19 ± 0.08 43.42 ± 0.17 45.06 ± 0.19
X X X X 37.88 ± 0.25 39.52 ± 0.32 41.17 ± 0.28 42.80 ± 0.21 44.28 ± 0.13

Table 7.5: Comparison betweenmixed fine-tuningmethods. Bold indicates highest average BLEU
by column.
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Methods IDWT WT IDWT
WT IDWC WC IDWC

WC

Random Phrase 787 2206 35.68 860 5003 17.19
NGF 489 1053 46.44 889 5002 17.77
NGF-SMP 796 1492 53.35 1076 5001 21.52

Random Sentence 631 1984 31.80 712 5023 14.17
RTTL 592 1338 44.25 961 5023 19.13
CSSE 647 2056 31.47 721 5023 14.35

NGF-SMP + CSSE 667 1755 38.01 859 5035 17.06

Table 7.6: Statistics of the unique in-domain word types and word counts in the selected data with
10K annotated words.

synthetic data. However, the contextualized method performs worst among all mixed fine-tuning
methods, which indicates that simply appending existing sentence context to phrasal translations
might potentially introduce noise to the training data.

7.5.7 How redundant are the selected data?

To answer this question, we first define “in-domain words” as words that only appear in the in-
domain test set but do not exist in the out-of-domain data. We report the statistics of the in-domain
word types word counts in the selected data with 10K annotated words in Table 7.6. We find that
phrase selection strategies select more unique in-domain word types and counts than sentence
selection strategies. This indicates that phrase selection strategies leverage the same amount of
budget effectively to annotate more diverse in-domain words than sentence selection strategies.

7.6 Related Work

Active Learning for Machine Translation Pioneering works on active learning for machine
translation focus on selecting sentences that are most useful for training PBMT. This includes
sentence selection strategies based on maximizing the percentage of unseen =-gram [53], =-gram
frequency, lexical diversity [76], or in-domain coverage [7]. These sentence selection strategies
have been used in active learning algorithms to deal with static data in the batch mode [7], or
steaming data in the interactive setting [67, 100, 138].
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For phrase-level annotations, there have been a few works applying phrase-based selection
[21, 127] to PBMT. While the annotated phrases can be easily integrated by adding them with
estimated translation probability to the existing phrase table in PBMT, it is less trivial to integrate
these phrase-level annotations in NMT. Arthur et al. [17] integrated the word-level translations to
NMT by interpolating the probability of the NMT decoder with the estimated lexical probability.
However, this approach requires a modification of the NMT model. This chapter investigates
the data-driven approaches that augment the training data by leveraging annotated phrases and
existing parallel data.

7.7 Discussion and Future Work

In this chapter, we investigate ways to incorporating phrasal translations into training NMT for
domain adaptation in the active learning setting. We find that phrasal translation is particularly
useful in the adaptation scenario where longer sentence context is not necessarily required to
translate in-domain words correctly. In contrast, NMT systems can benefit from learning sen-
tence structure with sentence-based selection strategies. The hybrid selection strategies can com-
bine the merits of both sentence-based and phrase-based selection strategies. Nonetheless, there
are several future directions. (1) It is worth exploring how different annotation strategies may
result in a difference in cost or time. (2) Although several findings could be generalized to other
language pairs, testing our methods on morphologically rich languages is our next step. (3) Our
current hybrid strategy simply allocate the annotation budget evenly without assuming any prior
knowledge on the strategies and the translation performance. Techniques in multi-armed bandit
problems [65] can be used to learn a good allocation strategy.
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Chapter 8

Conclusion

In this thesis, we studiedmultilingual learningmethods for machine translation as well as a variety
of language understanding tasks such as text classification, sentence retrieval, sequence tagging,
and question answering. In particular, we developed methods to enhance the cross-lingual un-
derstanding and generation by leveraging word and phrase alignment information from parallel
sentences, monolingual raw text, knowledge bases, or human crowsourcing.

In this chapter, we start by summarizing the key contributions of this thesis in Section 8.1,
followed by some discussions for the key ideas learned in Section 8.2 and future work in Sec-
tion 8.3.

8.1 Summary of Contributions

This thesis facilitates multilingual learning research using word and phrase alignments for both
language understanding and generation given limited direct supervision. In the following, we
outline the exploration of the multilingual learning research covered in this thesis.
Cross-lingual Generalization. Before we develop any particular multilingual models, we start
by asking a fundamental question: how could we accurately evaluate existing multilingual models
for language understanding? To answer this question, there are several aspects to consider. First,
ideally we should select a diverse set of representative NLP tasks that comprehensively examine
the semantic understanding of text data at different granularities such as words, word spans, and
sentences. Second, we should choose our target languages that reveal the typological diversity
of natural languages. To this end, we introduced XTREME (Chapter 3), a multitask multilingual
benchmark for understanding the zero-shot cross-lingual generalization capability of multilin-
gual contextualized representations. A more fine-grained analysis shows that cross-lingual trans-
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fer learning between distant languages is still challenging. Existing multilingual contextualized
models still fall short of structure prediction tasks across languages. We believe that XTREME
opens the door to a more fine-grained understanding of cross-lingual generalization of multilin-
gual models, sheds light on future designs of more effective multilingual model architectures,
and facilitates the development of more efficient multilingual pre-training methods. For example,
our follow-up work [151] not only extends the diversity of tasks and languages, but also provides
a multilingual diagnostic suite (MultiCheckList [146]) and an interactive leaderboard (Explain-
aboard [116]) for a better understanding of these multilingual models. With the target of learning
better multilingual representations for cross-lingual generalization, we further proposed two ex-
plicit alignment objectives to align contextualized word and sentence representations in different
languages (Chapter 4). We show that a compact model trained by our alignment method obtains
substantial gains or comparable performance with respect to large pre-trained multilingual mod-
els at word-level and sentence-level language understanding tasks. Our work has inspired several
follow-up works on cross-lingual alignment [32, 69].

Domain Adaptation of Machine Translation In addition to learning multilingual representa-
tions for language understanding, we also applied these representations for machine translation, a
typical and useful language generation task. In Chapter 5, we leverage word alignment techniques
to induce lexicons from monolingual data and apply a word-for-word back-translation technique
to create synthetic data for adapting a neural machine translation model to a new domain. We find
that learning such cross-lingual representations from monolingual text data in the target domain
is crucial to obtain translations of unseen words in the target domain. This finding has motivated
a series of follow-up works such as detecting domain information by multilingual contextualized
representations [2]. Through a further analysis of these unseen words for translation, we discov-
ered that many unseen or raw words in the target domains are named entities. While it might be
hard to induce the translations of these named entities from monolingual data, we find that exist-
ing knowledge bases such as WikiData contain rich information of multilingual named entities.
As a result, we further investigate the aligned entities from a knowledge base to pre-train a neural
machine translation on large amounts of raw text in Chapter 6. We explicitly inject translations of
named entities into monolingual raw text for pre-training and adopt a multi-task fine-tuning strat-
egy to improve the translation accuracy of low-frequency or unseen entities in the downstream
translation tasks. Despite the fact that a knowledge base contains entity translations, there are
still plenty of entities that do not have their translations in the knowledge bases. To address this
limitation, we further examine an active learning setting to handle the adaption scenario when
those aligned words or phrases are not available in Chapter 7. We proposed a hybrid strategy to
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integrate both phrase-based and sentence-based selection to fully utilize the annotation budget.

8.2 Key Ideas and Suggestions

Based on the exploration of multilingual learning research throughout this thesis, I summarize
several key ideas that we have learned and provide suggestions for future researcher in this direc-
tion.
Multilingual Representation Learning: A recurring theme in the methods presented in this
thesis is that we can learn cross-lingual representations for our downstream NLP tasks including
tasks in XTREME (Chapter 3) and lexicon induction task (Chapter 5). Learning such multilin-
gual representations requires supervision from various sources. Throughout this thesis we have
introduced many supervision signals from in-domain monolingual data (Chapter 5), parallel sen-
tences (Chapter 4) and aligned entities (Chapter 6). Whether to choose multilingual contextual-
ized representation or non-contextualized representations crucially depends on the task difficulty
in a specific application scenario. When we are tackling tasks crucially depending on sentence
context (e.g., sentence retrieval) or tasks with a limited amount of labeled data (e.g., question
answering), contextualized representations are usually more preferable. On the other hand, there
is always a trade-off between the availability of high-quality data and the cross-lingual general-
ization of multilingual representations. When we have large collections of parallel corpora to
train a strong multilingual neural machine translation system (e.g., Google Translate), one partic-
ular strong baseline is the translate-train method that creates synthetic training data by using the
MT system to translate labeled data from a source language to a target language. When we only
have a small number of parallel sentences, we find that aligning these multilingual contextualized
representations using parallel sentences can be efficient in terms of smaller model size and data
size (Chapter 4). When we do not have any parallel sentences, pre-training of neural network
models on large collections of monolingual corpora in multiple languages is still effective with
respect to the translate-train baseline. Notably, there is a substantial gain from pre-training when
we increase the size of monolingual corpora and model parameters for pre-training (Chapter 3).
Data Augmentation: We have been using data augmentation techniques to generate pseudo-
parallel data (Chapter 5) and code-switched data (Chapter 6) for training an encoder-decoder
based neural machine translation model. Notice that we often use the original human-written
sentences on the target side while leaving the noisy synthetic data on the source side. This is
critical to ensure that the decoder is trained on clean data so that the decoder will not be able to
generate unnatural sentences. In addition, when we have a certain amount of real parallel data
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either in the target domain (Chapter 6) or out of the target domain (Chapter 5, 7), fine-tuning
neural machine translation models jointly on both the synthetic and real parallel data usually
yields better performance than fine-tuning on either one of them.

Domain Robustness: It is hard to quantify all errors due to domain shift in language genera-
tion systems as natural languages are inherently flexible. For sentence-level machine translation
systems, translation errors due to domain shift can be mainly categorized into word/phrase-level
errors and sentence-level errors. While this thesis mainly focuses on translations of domain-
specific words or phrases (Chapter 5, 6, 7), existing studies [130] also pointed out sentence-level
errors such as hallucination of translations. As a result, judging the quality of machine translation
systems based on a single metric such as BLEU is not accurate. A more fine-grained comparison
throughcompare-mt [133] would be beneficial for error analysis. In addition to error analysis,
the development of techniques to improve domain robustness of NMT models is also important.
These techniques crucially depend on the availability of in-domain data for adaptation. Prior
studies [36, 120] have shown the effectiveness of fine-tuning NMT models on in-domain parallel
sentences. In contrast, this thesis tackles the challenging scenarios in which we do not have lots
of in-domain parallel sentences to improve in-domain word or phrase translations. When we only
have in-domain monolingual sentences in both the source and target languages, we can perform
adaptation through a bilingual in-domain dictionary induced from in-domain monolingual sen-
tences (Chapter 5). When low-frequency words and their translations cannot be easily found in
monolingual sentences at the same time, lexicon induction techniques may fail to find a high-
quality dictionary. To tackle this issue, we find that entity recognition and linking techniques
are useful to find translations of these low-frequency entities in a knowledge base (Chapter 6).
When we only have in-domain monolingual sentences in the source language, active learning
techniques that obtain human translations of informative in-domain phrases or sentences using
an annotation budget are usually helpful (Chapter 7). When we only have a limited annotation
budget, phrase-based selection strategies are usually more effective in terms of word translation
accuracy. When we have a slightly larger annotation budget, a hybrid strategy that combines both
phrase-based and sentence-based strategies performs better than either one of them. When we
have a sufficiently large annotation budget, a random selection strategy remains a strong baseline.
When we compare our DALI method (Chapter 5) with the active learning strategies (Chapter 7),
DALI automatically induces a dictionary from in-domain monolingual data in both the source and
target languages, while the phrase-based active learning methods obtain a high-quality dictionary
from human translators. As a result, the phrase-based active learning methods should perform
better than DALI at the expense of annotation costs.
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8.3 Future Work

The thesis of this research has been shown that multilingual learning approaches have the potential
to transfer knowledge across languages. While we have made much progress, there are several
issues that we still need to address:

Beyond Static Evaluation: Throughout the thesis, we have been focusing on evaluating lan-
guage understanding and machine translation in a collection of static labeled datasets. While
multilingual learning has an amazing potential of breaking down the language barrier of language
communication, the research on multilingual interactive systems such as task-oriented dialogue
systems, simultaneous speech-to-speech machine translation has not been covered so far in the
thesis. It will be interesting to see whether multilingual learning approaches could be integrated
into a real human-computer interactive setting. As a concrete next step, one potential effort is to
extend existing multilingual contextualized representations to learn from existing English-based
task-oriented dialogue dataset using the similar cross-lingual transfer techniques in Chapter 3 and
develop active learning approaches to obtain labels in the conversation (Chapter 7).

Other Types of Encoding Methods for Multilingual Representations: The previous chapters
have shown impressive cross-lingual results for language understanding. However, there is still no
clear connection between learningmultilingually-aligned representations and linguistic structures
of text. Most existing methods rely on a shared vocabulary of subwords and a shared encoder
model for cross-lingual transfer, while linguistic features such as dependency trees, character
similarity, or phonetic representations have not been fully explored yet. In particular, an important
direction for future work is to develop linguistically motivated encoding methods with the hope
of reducing the requirement of computational power and data resources. We outline some ideas
below:

1. Tokenization of Multilingual Text: Currently we still rely on subword techniques to pre-
process text data for building a fixed vocabulary before training. This loses some flexibil-
ity of jointly learning task-specific tokenization and the task itself. One way is to revisit
traditional character-based encoding methods and integrate the tokenization model in an
end-to-end learning process.

2. Sentence Structures: Most existing multilingual contextualized representations purely
rely on a Transformer model to learn the pairwise relations between words in a data-driven
way. However, there are many out-of-box parsing models for text in multiple languages,
a more principled approach of leveraging structural information from language grammar
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would be more efficient for representation learning.

3. Disentangled Langauge Representations: Most existing contextualized multilingual rep-
resentations mainly rely on sharing the entire model architecture for cross-lingual transfer.
However, a more principled approach would allow a model to disentangle representations
into language-agnostic representations that share among languages, and language-specific
representations that uniquely identify languages themselves.

Other Types of Multilingual Resources for Training: Throughout the thesis, we have investi-
gated available data including monolingual data, parallel data, or knowledge bases for learning
multilingual representations. Below we outline several more potential resources:

1. Relations between entities in knowledge bases: In our previous work regarding learning
from knowledge bases, we have mainly focused on training neural network models from
aligned entities. However, to capture deeper semantics in human-machine communication,
we believe that one key missing component of language learning is the utilization of struc-
tured relations between entities.

2. Multimodal data: Multimodal data such as video or image data contain rich visual in-
formation of entities mentioned in their captions. The intuition is that people have prior
knowledge about entities in the world and ground their concepts of the entities to the same
real-world objects, even they speak different languages. As a result, a future direction be-
yond this thesis is to pursue methods to integrate visual data with text-based multilingual
models for multilingual multimodal language learning.
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Appendix A

Appendix of Chapter 3

A.1 Languages

We show a detailed overview of languages in the cross-lingual benchmark including interest-
ing typological differences in Table A.1. Wikipedia information is taken from Wikipedia1 and
linguistic information from WALS Online2. XTREME includes members of the Afro-Asiatic,
Austro-Asiatic, Austronesian, Dravidian, Indo-European, Japonic, Kartvelian, Kra-Dai, Niger-
Congo, Sino-Tibetan, Turkic, and Uralic language families as well as of two isolates, Basque and
Korean.

A.2 Translations for QA datasets

We use an in-house translation tool to obtain translations for our datasets. For the question an-
swering tasks (XQuAD and MLQA), the answer span is often not recoverable if the context is
translated directly. We experimented with enclosing the answer span in the English context in
quotes [107, 111] but found that quotes were often dropped in translations (at different rates de-
pending on the language). We found that enclosing the answer span in HTML tags (e.g. <b>
and </b>) worked more reliably. If this fails, as a back-off we fuzzy match the translated answer
with the context similar to [80]. If the minimal edit distance between the closest match and the
translated answer is larger thanmin(10,answer_len/2), we drop the example. On the whole,
using this combination, we recover more than 97% of all answer spans in training and test data.

1https://meta.wikimedia.org/wiki/List_of_Wikipedias
2https://wals.info/languoid
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Language
ISO
639-1
code

# Wikipedia
articles (in
millions)

Script
Language
family

Diacritics /
special
characters

Extensive
compound-
ing

Bound
words /
clitics

Inflec-
tion

Deriva-
tion

# datasets
with
language

Afrikaans af 0.09 Latin IE: Germanic X 3
Arabic ar 1.02 Arabic Afro-Asiatic X X X 7
Basque eu 0.34 Latin Basque X X X X 3
Bengali bn 0.08 Brahmic IE: Indo-Aryan X X X X X 3
Bulgarian bg 0.26 Cyrillic IE: Slavic X X X 4
Burmese my 0.05 Brahmic Sino-Tibetan X X 1
Dutch nl 1.99 Latin IE: Germanic X 3
English en 5.98 Latin IE: Germanic 9
Estonian et 0.20 Latin Uralic X X X X 3
Finnish fi 0.47 Latin Uralic X X 3
French fr 2.16 Latin IE: Romance X X 6
Georgian ka 0.13 Georgian Kartvelian X X 2
German de 2.37 Latin IE: Germanic X X 8
Greek el 0.17 Greek IE: Greek X X X 5
Hebrew he 0.25 Hebrew Afro-Asiatic X 3
Hindi hi 0.13 Devanagari IE: Indo-Aryan X X X X X 6
Hungarian hu 0.46 Latin Uralic X X X X 4
Indonesian id 0.51 Latin Austronesian X X X 4
Italian it 1.57 Latin IE: Romance X X 3
Japanese ja 1.18 Ideograms Japonic X X 4
Javanese jv 0.06 Brahmic Austronesian X X 1
Kazakh kk 0.23 Arabic Turkic X X X 1
Korean ko 0.47 Hangul Koreanic X X X 5
Malay ms 0.33 Latin Austronesian X X 2
Malayalam ml 0.07 Brahmic Dravidian X X X X 2
Mandarin zh 1.09 Chinese ideograms Sino-Tibetan X 8
Marathi mr 0.06 Devanagari IE: Indo-Aryan X X 3
Persian fa 0.70 Perso-Arabic IE: Iranian X 2
Portuguese pt 1.02 Latin IE: Romance X X 3
Russian ru 1.58 Cyrillic IE: Slavic X 7
Spanish es 1.56 Latin IE: Romance X X 7
Swahili sw 0.05 Latin Niger-Congo X X X 3
Tagalog tl 0.08 Brahmic Austronesian X X X 1
Tamil ta 0.12 Brahmic Dravidian X X X X X 3
Telugu te 0.07 Brahmic Dravidian X X X X X 4
Thai th 0.13 Brahmic Kra-Dai X 4
Turkish tr 0.34 Latin Turkic X X X X 5
Urdu ur 0.15 Perso-Arabic IE: Indo-Aryan X X X X X 4
Vietnamese vi 1.24 Latin Austro-Asiatic X 6
Yoruba yo 0.03 Arabic Niger-Congo X 1

Table A.1: Statistics about languages in the cross-lingual benchmark. Languages belong to 12
language families and two isolates, with Indo-European (IE) having the most members. Diacrit-
ics / special characters: Language adds diacritics (additional symbols to letters). Compounding:
Language makes extensive use of word compounds. Bound words / clitics: Function words at-
tach to other words. Inflection: Words are inflected to represent grammatical meaning (e.g. case
marking). Derivation: A single token can represent entire phrases or sentences.
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Test set es de el ru tr ar vi th zh hi avg

mBERT
gold 75.6 / 56.9 70.6 / 54.0 62.6 / 44.9 71.3 / 53.3 55.4 / 40.1 61.5 / 45.1 69.5 / 49.6 42.7 / 33.5 58.0 / 48.3 59.2 / 46.0 62.6 / 47.2
auto 76.1 / 58.7 64.3 / 49.9 57.9 / 42.5 68.3 / 51.8 55.6 / 42.9 62.1 / 48.6 68.6 / 54.3 41.1 / 32.6 48.5 / 47.7 54.1 / 40.9 59.7 / 47.0

translate-train
gold 80.2 / 63.1 75.6 / 60.7 70.0 / 53.0 75.0 / 59.7 68.9 / 54.8 68.0 / 51.1 75.6 / 56.2 36.9 / 33.5 66.2 / 56.6 69.6 / 55.4 68.7 / 54.6
auto 80.7 / 66.0 71.1 / 58.9 69.3 / 54.5 75.7 / 61.5 71.2 / 59.1 74.3 / 60.7 76.8 / 64.0 79.5 / 74.8 59.3 / 58.0 69.1 / 55.2 72.7 / 61.3

Table A.2: Comparison of F1 and EM scores of mBERT and translate-train (mBERT) baselines
on XQuAD test sets (gold), which were translated by professional translators and automatically
translated test sets (auto).

Languages zh es de ar ur ru bg el fr hi sw th tr vi avg

auto Acc. 69.1 74.7 72.8 66.5 64.5 71.6 70.2 67.7 74.3 65.1 50.2 54.5 60.0 72.7 66.7
gold Acc. 67.8 73.5 70.0 64.3 57.2 67.8 68.0 65.3 73.4 58.9 49.7 54.1 60.9 69.3 64.3

BLEU 40.92 43.46 30.94 32.35 20.13 22.62 45.04 60.29 47.91 29.55 31.25 10.65 15.39 56.93 34.82
chrF 35.96 67.92 60.28 59.64 48.21 50.38 67.52 75.34 69.58 53.85 59.84 54.89 51.46 69.37 58.87

Table A.3: Comparison of accuracy scores of mBERT baseline on XNLI test sets (gold), which
were translated by professional translators and automatically translated test sets (auto) in 14 lan-
guages. BLEU and chrF scores are computed to measure the translation quality between gold and
automatically translated test sets.

A.3 Performance on translated test sets

We show results comparing the performance of mBERT and translate-train (mBERT) baselines
on the XQuAD test sets with automatically translated test sets in Table A.2. Performance on
the automatically translated test sets underestimates the performance of mBERT by 2.9 F1 / 0.2
EM points but overestimates the performance of the translate-train baseline by 4.0 F1 / 6.7 EM
points. The biggest part of this margin is explained by the difference in scores on the Thai test set.
Overall, this indicates that automatically translated test sets are useful as a proxy for cross-lingual
performance but may not be reliable for evaluating models that have been trained on translations
as these have learned to exploit the biases of translationese.

A.4 Generalization to unseen tag combinations

We show the performance of mBERT on POS tag trigrams and 4-grams that were seen and not
seen in the English training data in Table A.4.
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trigram,
seen

trigram,
unseen

4-gram,
seen

4-gram,
unseen

en 90.3 63.0 88.1 67.5

af 68.1 8.2 64.1 24.2
ar 22.0 0.7 14.9 4.6
bg 63.1 14.6 56.1 23.9
de 77.8 47.2 73.0 48.7
el 59.6 9.1 52.5 14.2
es 68.6 10.6 62.4 24.9
et 60.7 14.4 53.1 31.9
eu 32.8 7.1 28.7 8.1
he 52.7 35.7 44.0 27.4
hi 38.7 13.0 32.6 12.5
hu 55.5 28.8 46.9 23.7
id 60.8 16.6 54.7 21.6
it 75.5 12.8 71.8 23.5
ja 16.3 0.0 12.3 1.0
ko 22.0 2.9 14.7 3.8
mr 31.7 0.0 25.5 3.3
nl 75.5 24.1 71.0 37.8
pt 76.2 14.9 71.2 30.6
ru 69.1 4.8 63.8 20.6
ta 30.3 0.0 24.5 4.2
te 57.8 0.0 48.7 24.7
tr 41.2 6.2 33.9 10.1
ur 30.6 18.3 22.3 10.9
zh 29.0 0.0 21.7 3.9

avg 50.6 12.1 44.3 18.3
diff 39.7 50.9 43.7 49.2

Table A.4: Accuracy of mBERT on the target language dev data on POS tag trigrams and 4-grams
that appeared and did not appear in the English training data. We show the average performance
across all non-English languages and the difference of said average compared to the English per-
formance on the bottom.
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A.5 Results for each task and language

We show the detailed results for all tasks and languages in Tables A.5 (XNLI), A.9 (PAWS-X),
A.13 (POS), A.7 (NER), A.10 (XQuAD), A.12 (MLQA), A.11 (TyDiQA-GoldP), A.8 (BUCC),
and A.6 (Tatoeba).

Model en ar bg de el es fr hi ru sw th tr ur vi zh avg

mBERT 80.8 64.3 68.0 70.0 65.3 73.5 73.4 58.9 67.8 49.7 54.1 60.9 57.2 69.3 67.8 65.4
XLM 82.8 66.0 71.9 72.7 70.4 75.5 74.3 62.5 69.9 58.1 65.5 66.4 59.8 70.7 70.2 69.1
XLMR 88.7 77.2 83.0 82.5 80.8 83.7 82.2 75.6 79.1 71.2 77.4 78.0 71.7 79.3 78.2 79.2
MMTE 79.6 64.9 70.4 68.2 67.3 71.6 69.5 63.5 66.2 61.9 66.2 63.6 60.0 69.7 69.2 67.5

Translate-train
(multi-task)

81.9 73.8 77.6 77.6 75.9 79.1 77.8 70.7 75.4 70.5 70.0 74.3 67.4 77.0 77.6 75.1

Translate-train 80.8 73.6 76.6 77.4 75.7 78.1 77.4 71.9 75.2 69.4 70.9 75.3 67.2 75.0 74.1 74.6
Translate-test 85.9 73.1 76.6 76.9 75.3 78.0 77.5 69.1 74.8 68.0 67.1 73.5 66.4 76.6 76.3 76.8

Table A.5: XNLI accuracy scores for each language.

Lang. af ar bg bn de el es et eu fa fi fr he hi hu id it ja
BERT 42.7 25.8 49.3 17 77.2 29.8 68.7 29.3 25.5 46.1 39 66.3 41.9 34.8 38.7 54.6 58.4 42
XLM 43.2 18.2 40 13.5 66.2 25.6 58.4 24.8 17.1 32.2 32.2 54.5 32.1 26.5 30.1 45.9 56.5 40
XLMR 58.2 47.5 71.6 43 88.8 61.8 75.7 52.2 35.8 70.5 71.6 73.7 66.4 72.2 65.4 77 68.3 60.6

jv ka kk ko ml mr nl pt ru sw ta te th tl tr ur vi zh

BERT 17.6 20.5 27.1 38.5 19.8 20.9 68 69.9 61.2 11.5 14.3 16.2 13.7 16 34.8 31.6 62 71.6
XLM 22.4 22.9 17.9 25.5 20.1 13.9 59.6 63.9 44.8 12.6 20.2 12.4 31.8 14.8 26.2 18.1 47.1 42.2
XLMR 14.1 52.1 48.5 61.4 65.4 56.8 80.8 82.2 74.1 20.3 26.4 35.9 29.4 36.7 65.7 24.3 74.7 68.3

Table A.6: Tatoeba results (Accuracy) for each language
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Lang. en af ar bg bn de el es et eu fa fi fr he hi hu id it ja jv

mBERT 85.2 77.4 41.1 77.0 70.0 78.0 72.5 77.4 75.4 66.3 46.2 77.2 79.6 56.6 65.0 76.4 53.5 81.5 29.0 66.4
XLM 82.6 74.9 44.8 76.7 70.0 78.1 73.5 74.8 74.8 62.3 49.2 79.6 78.5 57.7 66.1 76.5 53.1 80.7 23.6 63.0
XLMR 84.7 78.9 53.0 81.4 78.8 78.8 79.5 79.6 79.1 60.9 61.9 79.2 80.5 56.8 73.0 79.8 53.0 81.3 23.2 62.5
MMTE 77.9 74.9 41.8 75.1 64.9 71.9 68.3 71.8 74.9 62.6 45.6 75.2 73.9 54.2 66.2 73.8 47.9 74.1 31.2 63.9

ka kk ko ml mr ms my nl pt ru sw ta te th tl tr ur vi yo zh

mBERT 64.6 45.8 59.6 52.3 58.2 72.7 45.2 81.8 80.8 64.0 67.5 50.7 48.5 3.6 71.7 71.8 36.9 71.8 44.9 42.7
XLM 67.7 57.2 26.3 59.4 62.4 69.6 47.6 81.2 77.9 63.5 68.4 53.6 49.6 0.3 78.6 71.0 43.0 70.1 26.5 32.4
XLMR 71.6 56.2 60.0 67.8 68.1 57.1 54.3 84.0 81.9 69.1 70.5 59.5 55.8 1.3 73.2 76.1 56.4 79.4 33.6 33.1
MMTE 60.9 43.9 58.2 44.8 58.5 68.3 42.9 74.8 72.9 58.2 66.3 48.1 46.9 3.9 64.1 61.9 37.2 68.1 32.1 28.9

Table A.7: NER results (F1 Score) for each language

Model de fr ru zh avg

BERT 62.5 62.6 51.8 50.0 56.7
XLM 56.3 63.9 60.6 46.6 56.8
XLMR 67.5 66.5 73.5 56.7 66.0
MMTE 67.9 63.9 54.3 53.3 59.8

Table A.8: BUCC results (F1 scores) for each languages.

Model en de es fr ja ko zh avg

mBERT 94.0 85.7 87.4 87.0 73.0 69.6 77.0 81.9
XLM 94.0 85.9 88.3 87.4 69.3 64.8 76.5 80.9
XLMR 94.7 89.7 90.1 90.4 78.7 79.0 82.3 86.4
MMTE 93.1 85.1 87.2 86.9 72.0 69.2 75.9 81.3

Translate-train 94.0 87.5 89.4 89.6 78.6 81.6 83.5 86.3
Translate-train
(multi-task)

94.5 90.5 91.6 91.7 84.4 83.9 85.8 88.9

Translate-test 93.5 88.2 89.3 87.4 78.4 76.6 77.6 84.4

Table A.9: PAWS-X accuracy scores for each language.
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Model en ar de el es hi ru th tr vi zh avg

mBERT 83.5 / 72.2 61.5 / 45.1 70.6 / 54.0 62.6 / 44.9 75.5 / 56.9 59.2 / 46.0 71.3 / 53.3 42.7 / 33.5 55.4 / 40.1 69.5 / 49.6 58.0 / 48.3 64.5 / 49.4
XLM 74.2 / 62.1 61.4 / 44.7 66.0 / 49.7 57.5 / 39.1 68.2 / 49.8 56.6 / 40.3 65.3 / 48.2 35.4 / 24.5 57.9 / 41.2 65.8 / 47.6 49.7 / 39.7 59.8 / 44.3
XLMR 86.5 / 75.7 68.6 / 49.0 80.4 / 63.4 79.8 / 61.7 82.0 / 63.9 76.7 / 59.7 80.1 / 64.3 74.2 / 62.8 75.9 / 59.3 79.1 / 59.0 59.3 / 50.0 76.6 / 60.8
MMTE 80.1 / 68.1 63.2 / 46.2 68.8 / 50.3 61.3 / 35.9 72.4 / 52.5 61.3 / 47.2 68.4 / 45.2 48.4 / 35.9 58.1 / 40.9 70.9 / 50.1 55.8 / 36.4 64.4 / 46.2

Translate-train 83.5 / 72.2 68.0 / 51.1 75.6 / 60.7 70.0 / 53.0 80.2 / 63.1 69.6 / 55.4 75.0 / 59.7 36.9 / 33.5 68.9 / 54.8 75.6 / 56.2 66.2 / 56.6 70.0 / 56.0
Translate-train
(multi-task)

86.0 / 74.5 71.0 / 54.1 78.8 / 63.9 74.2 / 56.1 82.4 / 66.2 71.3 / 56.2 78.1 / 63.0 38.1 / 34.5 70.6 / 55.7 78.5 / 58.8 67.7 / 58.7 72.4 / 58.3

Translate-test 87.9 / 77.1 73.7 / 58.8 79.8 / 66.7 79.4 / 65.5 82.0 / 68.4 74.9 / 60.1 79.9 / 66.7 64.6 / 50.0 67.4 / 49.6 76.3 / 61.5 73.7 / 59.1 76.3 / 62.1

Table A.10: XQuAD results (F1 / EM) for each language.

Model en ar bn fi id ko ru sw te avg

mBERT 75.3 / 63.6 62.2 / 42.8 49.3 / 32.7 59.7 / 45.3 64.8 / 45.8 58.8 / 50.0 60.0 / 38.8 57.5 / 37.9 49.6 / 38.4 59.7 / 43.9
XLM 66.9 / 53.9 59.4 / 41.2 27.2 / 15.0 58.2 / 41.4 62.5 / 45.8 14.2 / 5.1 49.2 / 30.7 39.4 / 21.6 15.5 / 6.9 43.6 / 29.1
XLM-R 71.5 / 56.8 67.6 / 40.4 64.0 / 47.8 70.5 / 53.2 77.4 / 61.9 31.9 / 10.9 67.0 / 42.1 66.1 / 48.1 70.1 / 43.6 65.1 / 45.0
MMTE 62.9 / 49.8 63.1 / 39.2 55.8 / 41.9 53.9 / 42.1 60.9 / 47.6 49.9 / 42.6 58.9 / 37.9 63.1 / 47.2 54.2 / 45.8 58.1 / 43.8

Translate-train 75.3 / 63.6 61.5 / 44.1 31.9 / 31.9 62.6 / 49.0 68.6 / 52.0 53.2 / 41.3 53.1 / 33.9 61.9 / 45.5 27.4 / 17.5 55.1 / 42.1
Translate-train
(multi-task)

73.2 / 62.5 71.8 / 54.2 49.7 / 36.3 68.1 / 53.6 72.3 / 55.2 58.6 / 47.8 64.3 / 45.3 66.8 / 48.9 53.3 / 40.2 64.2 / 49.3

Translate-test 75.9 / 65.9 68.8 / 49.6 66.7 / 48.1 72.0 / 56.6 76.8 / 60.9 69.2 / 55.7 71.4 / 54.3 73.3 / 53.8 75.1 / 59.2 72.1 / 56.0

Monolingual 75.3 / 63.6 80.5 / 67.0 71.1 / 60.2 75.6 / 64.1 81.3 / 70.4 59.0 / 49.6 72.1 / 56.2 75.0 / 66.7 80.2 / 66.4 74.5 / 62.7
Monolingual
few-shot

63.1 / 50.9 61.3 / 44.8 58.7 / 49.6 51.4 / 38.1 70.4 / 58.1 45.4 / 38.4 56.9 / 42.6 55.4 / 46.3 65.2 / 49.6 58.7 / 46.5

Joint
monolingual

77.6 / 69.3 82.7 / 69.4 79.6 / 69.9 79.2 / 67.8 68.9 / 72.7 68.9 / 59.4 75.8 / 59.2 81.9 / 74.3 83.4 / 70.3 77.6 / 68.0

Table A.11: TyDiQA-GoldP results (F1 / EM) for each language.

Model en ar de es hi vi zh avg

mBERT 80.2 / 67.0 52.3 / 34.6 59.0 / 43.8 67.4 / 49.2 50.2 / 35.3 61.2 / 40.7 59.6 / 38.6 61.4 / 44.2
XLM 68.6 / 55.2 42.5 / 25.2 50.8 / 37.2 54.7 / 37.9 34.4 / 21.1 48.3 / 30.2 40.5 / 21.9 48.5 / 32.6
XLM-R 83.5 / 70.6 66.6 / 47.1 70.1 / 54.9 74.1 / 56.6 70.6 / 53.1 74 / 52.9 62.1 / 37.0 71.6 / 53.2
MMTE 78.5 / – 56.1 / – 58.4 / – 64.9 / – 46.2 / – 59.4 / – 58.3 / – 60.3 / 41.4

Translate-train 80.2 / 67.0 55.0 / 35.6 64.4 / 49.4 70.0 / 52.0 60.1 / 43.4 65.7 / 45.5 63.9 / 42.7 65.6 / 47.9
Translate-train
(multi-task)

80.7 / 67.7 58.9 / 39.0 66.0 / 51.6 71.3 / 53.7 62.4 / 45.0 67.9 / 47.6 66.0 / 43.9 67.6 / 49.8

Translate-test 83.8 / 71.0 65.3 / 46.4 71.2 / 54.0 73.9 / 55.9 71.0 / 55.1 70.6 / 54.0 67.2 / 50.6 71.9 / 55.3

Table A.12: MLQA results (F1 / EM) for each language.
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Lang. af ar bg de el en es et eu fa fi fr he hi hu id it

mBERT 86.6 56.2 85.0 85.2 81.1 95.5 86.9 79.1 60.7 66.7 78.9 84.2 56.2 67.2 78.3 71.0 88.4
XLM 88.5 63.1 85.0 85.8 84.3 95.4 85.8 78.3 62.8 64.7 78.4 82.8 65.9 66.2 77.3 70.2 87.4
XLMR 89.8 67.5 88.1 88.5 86.3 96.1 88.3 86.5 72.5 70.6 85.8 87.2 68.3 76.4 82.6 72.4 89.4
MMTE 86.2 65.9 87.2 85.8 77.7 96.6 85.8 81.6 61.9 67.3 81.1 84.3 57.3 76.4 78.1 73.5 89.2

ja kk ko mr nl pt ru ta te th tl tr ur vi yo zh avg

mBERT 49.2 70.5 49.6 69.4 88.6 86.2 85.5 59.0 75.9 41.7 81.4 68.5 57.0 53.2 55.7 61.6 71.5
XLM 49.0 70.2 50.1 68.7 88.1 84.9 86.5 59.8 76.8 55.2 76.3 66.4 61.2 52.4 20.5 65.4 71.3
XLMR 15.9 78.1 53.9 80.8 89.5 87.6 89.5 65.2 86.6 47.2 92.2 76.3 70.3 56.8 24.6 25.7 73.8
MMTE 48.6 70.5 59.3 74.4 83.2 86.1 88.1 63.7 81.9 43.1 80.3 71.8 61.1 56.2 51.9 68.1 73.5

Table A.13: POS results (Accuracy) for each language
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Appendix B

Appendix of Chapter 4

B.1 Training Details for Reproducibility

Although English is not the best source language for some target languages [113], this zero-
shot cross-lingual transfer setting is still practical useful as many NLP tasks only have English
annotations. In the following paragraphs, we show details for reproducing our results on a zero-
shot cross-lingual transfer setting.

Model: Weuse the same architecture asmBERT for AMBER, andwe build our AMBER trained
with the alignment objectives on top of the original mBERT implementation1.

Pre-training: We first train the model on the Wikipedia data for 1M steps using the default
hyper-parameters in the original repository except that we use a larger batch of 8,192 sentence
pairs. The max number of subwords in the concatenation of each sentence pair is set to 256. To
continue training AMBER with additional objectives on parallel data, we use 10K warmup steps
with the peak learning rate of 1e-4, and use a linear decay of the learning rate. All models are
pre-trained with our proposed objectives on TPU v3, and we use the same hyper-parameter setting
for our AMBER variants in the experiments. We follow the practice of mBERT2 to sample from
multilingual data for training. We select the checkpoint of all models at the 1M step for a fair
comparison. It takes about 1 week to finish the pre-training.

1https://github.com/google-research/bert
2https://github.com/google-research/bert/blob/master/multilingual.md#

data-source-and-sampling
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models ar bg de el en es fr hi ru tr ur vi zh Avg

mBERT (public) 14.9 85.2 89.3 82.8 95.3 85.7 84.1 65.1 86.0 67.5 57.4 18.5 58.9 68.5
XLM-15 17.5 86.1 89.3 85.4 95.7 85.9 84.9 63.9 86.8 69.3 55.1 18.0 57.2 68.8
XLM-100 17.1 85.8 89.3 85.7 95.4 85.3 84.3 67.0 87.1 65.0 62.0 19.2 60.2 69.5
XLM-R-base 17.6 88.5 91.1 88.2 95.8 87.2 85.7 70.1 88.9 72.7 61.6 19.2 27.9 68.8
XLM-R-large 18.1 87.4 91.9 87.9 96.3 87.8 87.3 76.1 89.9 74.3 67.6 19.5 26.5 70.0

AMBER (MLM, our mBERT) 15.4 86.6 90.1 84.3 95.5 86.5 84.6 68.2 86.8 69.0 59.2 18.7 62.1 69.8
AMBER (MLM+TLM) 16.0 87.2 91.5 86.4 95.7 86.9 85.2 67.7 87.9 72.9 57.9 19.1 62.7 70.5
AMBER (MLM+TLM+WA) 14.8 86.9 90.4 84.9 95.6 86.7 84.8 72.5 87.8 73.9 63.8 19.5 62.3 71.1
AMBER (MLM+TLM+WA+SA) 14.6 87.1 90.6 85.9 95.5 87.0 86.0 68.6 87.4 73.4 60.2 18.8 61.8 70.5

Table B.1: F1 scores of part-of-speech tag predictions from the Universal Dependency v2.3. Bold
numbers highlight the highest scores across languages on the existing models (upper part) and
AMBER variants (bottom part).

Fine-tuning: For fine-tuning the models on the downstream applications, we use the constant
learning rate of 2e-5 as suggested in the original paper [47]. We fine-tune all the models for 10
epochs on the cross-lingual POS tag prediction task, and 5 epochs on the sentence classification
task. We use the batch size of 32 for all the models. All models are fine-tuned on 2080Ti GPUs,
and the training can be finished within 1 day.

Datasets: We use the same parallel data that is used to train XLM-15. The parallel data can be
processed by this script.3 All the datasets in the downstream applications can be downloaded by
the script.4

B.2 Detailed Results

We show the detailed results over all languages on the cross-lingual POS task in Table B.1, on
the PAWS-X task in Table B.2, on the XNLI task in Table B.3, and on the Tatoeba retrieval task
in Table B.4.

3https://github.com/facebookresearch/XLM/blob/master/get-data-para.sh
4https://github.com/google-research/xtreme/blob/master/scripts/

download_data.sh
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Model de en es fr zh Avg

mBERT (public) 85.7 94.0 87.4 87.0 77.0 86.2
XLM-15 88.5 94.7 89.3 89.6 78.1 88.0
XLM-100 85.9 94.0 88.3 87.4 76.5 86.4
XLM-R-base 87.0 94.2 88.6 88.7 78.5 87.4
XLM-R-large 89.7 94.7 90.1 90.4 82.3 89.4

AMBER (MLM, our mBERT) 87.3 93.9 87.5 87.8 78.8 87.1
AMBER (MLM+TLM) 87.6 95.8 87.4 88.9 78.7 87.7
AMBER (MLM+TLM+WA) 88.9 95.5 88.9 90.7 81.1 89.0
AMBER (MLM+TLM+WA+SA) 89.4 95.6 89.2 90.7 80.9 89.2

Table B.2: Accuracy of zero-shot cross-lingual classification on PAWS-X. Bold numbers highlight
the highest scores across languages on the existing models (upper part) and AMBER variants
(bottom part).

Models en zh es de ar ur ru bg el fr hi sw th tr vi avg

mBERT (public) 80.8 67.8 73.5 70.0 64.3 57.2 67.8 68.0 65.3 73.4 58.9 49.7 54.1 60.9 69.3 65.4
XLM-15 84.1 68.8 77.8 75.7 70.4 62.2 75.0 75.7 73.3 78.0 67.3 67.5 70.5 70.0 73.0 72.6
XLM-100 82.8 70.2 75.5 72.7 66.0 59.8 69.9 71.9 70.4 74.3 62.5 58.1 65.5 66.4 70.7 69.1
XLM-R-base 83.9 73.6 78.3 75.2 71.9 65.4 75.1 76.7 75.4 77.4 69.1 62.2 72.0 70.9 74.0 73.4
XLM-R-large 88.7 78.2 83.7 82.5 77.2 71.7 79.1 83.0 80.8 82.2 75.6 71.2 77.4 78.0 79.3 79.2

AMBER (MLM, our mBERT) 82.1 71.0 75.3 72.7 66.2 60.1 70.4 71.3 67.9 74.4 63.6 50.1 55.0 64.2 71.6 67.7
AMBER (MLM+TLM) 84.3 71.6 77.2 73.9 69.1 59.6 72.5 73.6 70.9 78.0 64.7 57.4 65.0 72.2 73.1 70.9
AMBER (MLM+TLM+WA) 84.1 72.1 76.6 74.7 69.3 61.5 72.9 73.9 71.6 77.7 65.7 58.6 65.3 72.7 73.4 71.3
AMBER (MLM+TLM+WA+SA) 84.7 71.6 76.9 74.2 70.2 61.0 73.3 74.3 72.5 76.6 66.2 59.9 65.7 73.2 73.4 71.6

Table B.3: Accuracy of zero-shot crosslingual classification on the XNLI dataset. Bold numbers
highlight the highest scores across languages on the existing models (upper part) and AMBER
variants (bottom part).

B.3 Detailed Results on Performance Difference by Languages

Figure B.1b and Figure B.1a show the performance difference between AMBER trained with
alignment objectives and AMBER trained with only MLM objective on the POS and XNLI tasks
over all languages.
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Method ar bg de el es fr hi ru sw th tr ur vi zh Avg

mBERT (public) 25.8 49.3 77.2 29.8 68.7 66.3 34.8 61.2 11.5 13.7 34.8 31.6 62.0 71.6 45.6
XLM-15 63.5 71.5 92.6 73.1 85.5 82.5 81.0 82.0 47.9 90.3 67.6 68.4 91.1 84.1 77.2
XLM-100 18.2 40.0 66.2 25.6 58.4 54.5 26.5 44.8 12.6 31.8 26.2 18.1 47.1 42.2 36.6
XLM-R-base 36.8 67.6 89.9 53.7 74.0 74.1 54.2 72.5 19.0 38.3 61.1 36.6 68.4 60.8 57.6
XLM-R-large 47.5 71.6 88.8 61.8 75.7 73.7 72.2 74.1 20.3 29.4 65.7 24.3 74.7 68.3 60.6

AMBER (MLM, our mBERT) 30.7 54.9 81.4 37.7 72.7 72.7 47.5 67.5 15.1 25.7 48.3 42.6 64.6 75.1 52.6
AMBER (MLM+TLM) 47.1 61.8 89.0 53.8 76.3 77.9 72.3 69.8 20.5 83.4 88.1 50.0 86.9 78.0 68.2
AMBER (MLM+TLM+WA) 46.8 63.3 88.8 52.2 78.3 79.5 66.9 71.6 27.4 77.2 86.9 56.5 86.5 81.6 68.8
AMBER (MLM+TLM+WA+SA) 78.5 87.1 95.5 75.3 93.3 92.2 95.0 91.5 52.8 94.5 98.4 84.5 97.4 94.3 87.9

Table B.4: Sentence retrieval accuracy on the Tatoeba dataset. Bold numbers highlight the highest
scores across languages on the existing models (upper part) and AMBER variants (bottom part).
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Figure B.1: Performance difference between AMBER trained with alignments on parallel data
and AMBER (MLM) on XNLI and POS task. Languages are sorted by no. of parallel data used
for training AMBER with alignments.
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