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Abstract 

STATISTICAL APPROACHES 
TOWARD TITLE GENERATION 

by Rong Jin 

Chairperson of the Supervisory Committee: Dr. Alex G. Hauptmann 
 Department of Computer Science 

A title is a compact representation that can help people capture a document’s 

main idea without having to read through the entire document. Automatic title 

generation is a difficult natural language processing problem. It requires both 

the understanding of the essential content of a document and the knowledge of 

creating a headline that actually reflects the content with a few words. 

Therefore, the task of automatic title generation involves both natural language 

understanding and natural language synthesis. 

Previous statistical approaches to title generation are based on the paper by 

Witbrock and Mittal (1999), where the process of title generation is divided 

into a phase of selecting title words for a document and a phase of organizing 

title words into a human readable sequence. In the work of Witbrock and 

Mittal and follow-ups, the phase of title word ordering is accomplished using 

an n-gram statistical language model and the phase of title word selection is 

realized by a Naïve Bayes method. In this thesis, we examine and compare 

seven different statistical methods for title word selection, including a nearest 

neighbor approach,  K nearest neighbor approach, a decision tree approach, a 

statistical translation approach, a reverse information retrieval approach, a 

Naïve Bayes approach with a limited vocabulary, and a Naïve Bayes approach 
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with a full vocabulary. In general, methods that are able to take into account 

all the words in the test document work better than methods that only consider 

a subset of document words. 

The other dimension of this thesis is on the study of new model for title 

generation. A general probabilistic framework is proposed for the statistical 

approaches toward title generation, where previous works on title generation 

can be treated as special case of this framework. Furthermore, a new 

probabilistic model for title generation is derived from the general framework, 

which is able to overcome the problems with the previous statistical model on 

both the phase of title word selection and the phase of title word ordering. In 

the new probabilistic model, an intermediate state named ‘information source’ 

is proposed so that both the title and the document are created from this state. 

Unlike the previous work on title generation where titles are created directly 

from documents, in this new model, we will first infer the possible 

‘information sources’ for a document and generate a title from those potential 

‘information sources’. Empirical studies over two different datasets have 

shown that the proposed model is able to outperform the previous model for 

title generation substantially. 

Finally, we extend the title generation model to other related fields such as 

information retrieval and text categorization. For information retrieval, the 

basic idea is to treat a query as a ‘title’ and the problem of finding documents 

relevant to the query can be viewed as the problem of finding documents that 

fit in with the ‘title’. Empirical studies over information retrieval have 

indicated that approaches based on the title generation model appear to work 

well for certain types of data. 
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C h a p t e r  1  

INTRODUCTION 

A title is a compact representation that can help people capture a document’s 

main idea without having to read through the entire document. Automatic title 

generation is a difficult natural language processing problem. It requires both 

the understanding of the essential content of a document and the knowledge to 

create a headline that actually reflects the content in only a few words. 

Therefore, the task of automatic title generation involves both natural language 

understanding and natural language synthesis. 

From a practical viewpoint, the significance of automatic title generation is 

that it produces a compact representation of the original document, which 

helps people to quickly understand the important information contained in a 

document. For example, most commercial search engines provide some kind 

of title for retrieved documents. These ‘titles’ help people save a large amount 

of time in finding the documents that they need. Furthermore, automatic title 

generation is not limited to written articles. It can be used to create titles for 

machine-generated texts, such as speech recognition transcripts and machine-

translated documents. More interestingly, title generation can also be applied 

to the cross-lingual environment, where documents are written in one language 

and the created titles are in another. This idea was originally proposed in the 

paper by Witbrock and Mittal (1999). The cross-lingual title generation can be 

quite useful to cross-lingual information retrieval task where the created 

English titles may help English readers to find the relevant foreign documents 

quickly. 
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From the viewpoint of Natural Language Processing (NLP), title generation is 

a difficult and interesting problem. To generate a good title for a document, 

not only are natural language understanding techniques required in order to 

determine the essential content of the document but also natural language 

synthesis is needed for creating a human readable sentence. This 

comprehensive nature distinguishes automatic title generation from many 

other problems, such as key phrase extraction (Turney, 2000; Frank, 1999; 

Leung & Kan 1997), text summarization (Mani & Maybury, 1999), 

information retrieval (Jones & Willet, 1997) and information extraction 

(MUC-6, 1995), where the sole job is to identify the important content of 

documents. It makes title generation much more interesting and challenging. 

Therefore, solving the problem of title generation may significantly improve 

our understanding of natural language analysis and creation. 

The approaches to title generation can be categorized into two groups: 

automatic text summarization based approaches and statistical approaches. 

The former approaches treat titles as summaries with extremely short length 

and use text summarization techniques directly for generating titles. Statistical 

approaches emphasize the idea of learning the title-document correlation from 

training corpus and applying the learned model to create titles for unseen 

documents. Compared to statistical approaches, the idea of treating title 

generation as an ultimate summarization doesn’t require the training corpus 

and is able to take advantage of existing research in the text summarization 

field. However, since most text summarization techniques are extraction-based 

approaches, the quality of summarization relies heavily on the quality of the 

original document. This nature makes text summarization approaches for title 

generation difficult to use for machine-generated documents such as speech-

recognized documents and machine-translated documents where many text 

units are ‘corrupted’. Furthermore, the extraction nature of text summarization 
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makes it impossible to use for cross-lingual title generation where documents 

are written in one language and the created titles are required to be in another 

language. On the other hand, unlike text summarization based approaches 

where the selection of text units as titles relies heavily on linguistic clues and 

handcrafted formulas, the statistical approaches obtain the knowledge of how 

to create titles out of documents automatically from the training corpus. 

Therefore, statistical approaches are domain and language independent and 

can be easily extended to different domains and different languages with small 

modification. Furthermore, since statistical approaches rely on few linguistic 

clues from documents, they will be robust to errors within documents. Thus, 

they will be suitable for degraded documents, such as speech-recognized 

transcripts, OCR transcripts and machine-translated documents. Of course, the 

biggest weakness of statistical approaches is their dependence on training 

corpora. Fortunately, since many web pages contain titles and document 

bodies and are freely accessible, we can simply crawl over the web to find 

enough training data for creating the statistics for the title generation. Because 

of the flexibility of statistical approaches and the potential existence of training 

data over web, in this thesis, we will focus on statistical approaches toward 

title generation. 

Previous statistical approaches to title generation are based on the paper by 

Witbrock and Mittal (1999), where the process of title generation is divided 

into a phase of selecting title words for a document and a phase of organizing 

title words into a human readable sequence. In the work of Witbrock and 

Mittal and follow-ups, the phase of title word ordering is accomplished using 

an n-gram statistical language model. A Naïve Bayes approach is used for 

selecting title words. Many other methods have been proposed for the title 

word selection phase, such as a machine translation model (Kennedy & 

Hauptmann, 2000), an inverse information retrieval approach (Jin & 
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Hauptmann, 2001) and a k nearest neighbor approach (Jin & Hauptmann, 

2000). In the machine translation model, the document-title pairs are treated as 

translation pairs and a statistical machine translation model is applied to learn 

the title-document correlation. In the inverse information retrieval approach, 

the document-title pair is viewed as a document-query relation and therefore 

information retrieval techniques are applied to obtain the correlation. For a k 

nearest neighbor approach, each title in the training corpus is treated as a class 

label and the task of creating titles for an unseen document is transformed into 

the task of finding the appropriate class label for that document. 

In this thesis, we present a general probabilistic framework for statistical 

approaches toward title generation, which is able to incorporate previous work 

on title generation. Furthermore, a new probabilistic model for title generation 

is derived from the general framework, which is able to overcome the 

problems with the previous statistical model on both the title word selection 

phase and the title word ordering phase, which will be specified in the late part 

of this thesis. In the new probabilistic model, an intermediate state named 

‘information source’ is proposed so that both the title and the document are 

created from this state. Unlike the previous work on title generation where 

titles are created directly from documents, in this new model, we will first 

infer the possible ‘information sources’ from a document and then generate a 

title from the potential ‘information sources’. With the help of this extra state, 

we are able to limit the influence of non-content words on the choice of title 

words. We call this model the ‘dual noisy channel model’. 

Essentially, the task of creating titles for documents can be viewed as 

generating a concise representation for an object from a verbose 

representation. In this sense, it is related to many different tasks such as 

information retrieval and text categorization where both queries and text 
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categories can be treated as a sort of concise representation for documents. To 

extend the title generation model to information retrieval, we can treat a query 

as a sort of title since titles and queries share many similar characteristics. The 

problem of finding documents relevant to the query can then be interpreted as 

the problem of finding documents that fit in with the pre-determined ‘title’, 

and thus the title generation model can be used for retrieving the relevant 

documents. Of course, due to the essential difference between titles and 

queries, modification to the original title generation model is required.  



 15

C h a p t e r  2  

OVERVIEW OF EXISTING METHODS FOR TITLE GENERATION 

As already mentioned in the introduction chapter, the approaches toward title 

generation can be categorized into two groups, namely the text summarization 

based approach and the statistical learning based approaches. In the first 

section of this chapter, we will review the work that has been done in the field 

of text summarization and how title generation is related to text 

summarization. Then in the second section, we will introduce the machine 

learning view of title generation and discuss the work that has been done in 

terms of applying statistical learning algorithm to automatically generate titles 

for documents. 

2.1 Automatic Text Summarization for Title Generation 

Text summarization is the process of distilling the most important information 

from a source (or sources) to produce an abridged version for a particular user 

(or users) and task (or tasks). There are many uses of summarization such as 

headlines, previews, digests and biographies. According to the input to the 

automatic text summarization system and the output from the summarization 

system, the problem of automatic text summarization can be categorized in 

several ways: 

1. Single document vs. Multiple documents: the summarization system can 

create a summary for a single document or it can be used to provide a 

summary across several documents.  
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2. Extract vs. Abstract: the summarization system can simply extract the 

representative text units from the original documents to form the summary 

or it can synthesize an abstraction of the original document based on its 

understanding of the document. 

3. Generic vs. User-focused: a generic summary serves as a surrogate for the 

full text of the document, while a user-focused summary only provides the 

summary for the part of the document related to the user’s information 

need. 

4. Indicative vs. Informative: an indicative summary tends to indicate what 

topics are addressed in the source text, while an informative summary tries 

to cover the concepts in the original document to the extent given the 

compression ratio. 

In general, the approaches toward automatic text summarization can be 

categorized into two groups: surface-level approaches and entity-level 

approaches. The surface-level approaches base their judgments of salient 

sentences on the surface-level features including the term frequency (Luhn, 

1958), the location of sentence (Edmundson, 1969), the cue phrase (i.e., the 

phrase indicating the beginning of summary sentences) (Paice, 1990; Paice & 

Jones, 1993) and the number of key words or title words in a sentence 

(Edmundson, 1969). In terms of combining surface-level features, several 

machine learning algorithms have been used. In a paper by Kupiec and his 

colleagues (Kupiec et al., 1995), they proposed a Naïve Bayes approach to 

compute the coefficients for combination using a training corpus. Other 

learning algorithms such as decision tree, generic algorithm and semi-

supervised learning algorithm have been examined for combining features in 

(Turney, 2000; E. Frank et al., 1999; Amini & Gallinari, 2002; Knight & D. 
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Marcu, 2000). Over all, the consensus is that, the location of sentences and the 

feature of cue phrases are far more informative than the other features. For 

example, people have found that for new articles, it is quite difficult to come 

up with a summarization strategy that is able to beat the simple algorithm 

which simply selects the leading sentences in the source text as the summary 

(Firmin & Chrzanowski, 1999). This fact indicates that, the right combination 

of features depends on the characteristics of the original documents, as well as 

the task. The entity-level approaches include syntactic analysis (Climenson et 

al., 1961; Skorokhodko, 1972), discourse analysis (vanDijk, 1980; Boguraev 

& Kennedy, 1997; Barzilay & Elhadad, 1997; Strzalkowski et al., 1998; 

Marcu, 1997) and semantic analysis (Reimer & Hahn, 1988; Rau et al., 1989). 

These approaches rely on the linguistic analysis of the source text to obtain 

linguistic structures such as discourse structure, syntactic structure and 

rhetorical structure to create summary. Furthermore, people have been 

working on combining surface-level approaches and entity-level approaches to 

have better summaries (Goldstein et al., 1999; Teufel & Moen, 1998; Hovy & 

Lin, 1997; Salton et al., 1997; McKeown et al., 1995; Radev & McKeown, 

1998). Finally, automatic text summarization is not limited to machine-

readable documents. People have tried to automatically summarize hand-

written documents (Banko et al., 1999), speech of dialogues (Zechner, 2001) 

and diagrams (Futrelle, 1999). 

One way to connect summaries with titles is to treat titles as summaries with 

extremely short length. Then, we can apply the methods for automatic text 

summarization to the task of automatic title generation. The advantage of this 

approach is its simplicity. We can simply take an existing text summarization 

system and ask it to generate summaries for documents with very high 

compression ratios and use the generated summaries as titles. One problem 

with the text summarization based approach is that, for many summarization 
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systems, when the compression rate goes far below 10%, the quality of 

generated summaries can be significantly damaged (Firmin & Chrzanowski, 

1999). Since a title usually consists of less than 10 words while a document 

contains hundreds of words, we would expect in general the compression ratio 

to be significantly less than 10%, which means that most text summarization 

approaches may create poor titles. Furthermore, it may not be appropriate to 

just consider a title as a summary with a short length since they could serve 

different purposes. The main goal of a summary is to summarize the main 

content of the original document into a short length while a title usually has to 

catch the attention of readers. For example, consider a news story about the 

results of an NBA regular game that the Wizard beat the Net. An appropriate 

short summary would be ‘The Wizard beats the Net with 108 to 97’. However, 

to make the story catchier, an author may come up with a title such as ‘Jordan 

flies again’, which doesn’t explicitly talk about the results of the NBA game 

between the Wizard and the Net. In this case, the learning algorithm appears to 

be more appropriate, which hopefully can learn from the training data that 

word ‘Jordan’ is frequently used in the title whenever the story is about the 

game of the Wizard. 

In addition to the problem caused by the small compression ratio of title 

generation, the extractive nature of text summarization approaches constrains 

their application to title generation significantly in many other ways. Current 

research in the field of automatic text summarization focuses on the extractive 

approaches, i.e., to extract salient sentences from the source text to form a 

summary. One direct consequence is that the minimum unit for a summary has 

to be a full sentence, which may not be appropriate for titles since many titles 

are simply phrases. Therefore, applying text summarization approaches to 

automatic title generation task may result in overly long titles compared to 

human assigned titles. Another area where applying text summarization 
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methods to title generation is difficult is the creation of human readable titles 

for machine-generated documents such as speech-recognized documents, 

OCR-recognized documents and machine-translated documents. Those 

documents in general contain many erroneous words, incomplete grammatical 

structures, and even ungrammatical structures. All these ‘corruptions’ within 

the documents will blur significantly the features used for selecting sentences 

and result in a poor choice of title sentences. Furthermore, these errors can 

create extracted sentences that are difficult to understand even though they are 

originally good candidates for titles. Even worse, for many machine-generated 

documents, there are no punctuations, no capitalization, and no sentence 

boundaries, which makes it almost impossible for extraction-based approaches 

to do their jobs. Therefore, the text summarization based approaches for title 

generation will have serious trouble with handling ‘corrupted’ documents. 

Another environment that will make text summarization approaches unsuitable 

is cross-lingual title generation, in which documents are written in one 

language and titles need to be generated in another language. For this task, 

since titles are required to be in a language different from the document, all the 

extraction-based approaches simply can’t do anything useful. 

 2.2 Statistical Methods for Title Generation 

More recently, some researchers have moved toward statistical or learning 

approaches toward title generation. The setup of the problem is slightly 

different from the viewpoint of text summarization. In this approach, we 

assume that there are a large number of document-title pairs available. The 

system is asked to learn the correlation between documents and titles and then 

will apply the learned statistical model to create titles for unseen documents. 

Compared to the text summarization based approaches, the statistical learning 

approaches rely on the availability of training data, which is the disadvantage 
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of these approaches. On the other hand, the ability of learning from training 

data can also be viewed as the strength of the statistical approaches. Unlike the 

text summarization based approaches where the rules of selecting 

representative sentences are more or less hand crafted into the systems, the 

statistical approaches are able to obtain the knowledge of how to compose a 

good title automatically from the training corpus. It is the ability of learning 

knowledge from a training corpus that makes the statistical approaches much 

easier to export to different languages and domains than the text 

summarization approaches. Unlike the text summarization based approaches, 

which usually looks at features such as the location of a sentences and the 

existence of cue phrases, statistical approaches focus on examining the 

correlation between title words and words in the document. Therefore, 

statistical approaches are able to take advantage of the word distribution in the 

original document, which provides more reliable information than features 

such as locations of sentences and existence of cue phrases, particularly in the 

case of ‘corrupted documents’. In general, statistical learning approaches for 

title generation are quite robust to noises in documents, which makes it 

suitable for machine-generated documents. Finally, some statistical 

approaches are able to go beyond the idea of extracting important phrases from 

documents to form titles. The learning approaches can even produce titles 

containing words that don’t appear in the source documents. This ability 

makes the statistical approaches suitable for cross-lingual title generation. 

 The disadvantage of statistical methods compared to the text summarization 

approach for title generation is that, statistical methods rely heavily on the 

availability of training data. Without training data, statistical approaches can 

do nothing while text summarization based approaches can still create titles for 

documents. Furthermore, because statistical methods need to compute the 

correlation between every title word and every document word (though the 
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correlation matrix is rather sparse), it is computationally more expensive than 

text summarization based approaches. Therefore, statistical methods may not 

be desirable choices if either there is no training data available or the 

computational resource is limited. 

In the first statistical framework for title generation, the process of title 

generation is divided into two phases, i.e., the phase of finding good title 

words for a document and the phase of organizing selected title words into 

sequences. To select appropriate title words for a document, the old title 

generation model takes a Naïve Bayes approach and trained the system to 

learn the correction between a document word ‘dw’ and a title word ‘tw’, i.e., 

the conditional probability P(tw|dw), and applied the learned correlation to 

compute the relevance score for title words to the given document. To order 

title words, the probability of a word sequence S, i.e. probability P(S), is 

computed using an n-gram statistical language model. More formally, the 

framework can be expressed as follows: 

Let T represent a title for the document D. Since T is a word sequence, we can 

also write T as {tw1, tw2, …, twm} where m is the length of the title. The goal 

of the model is to find whether title T is suitable for the document D. In the 

language of probability theory, we need to compute the likelihood P(T|D), 

which can be expressed in the following way as suggested by Witbrock and 

Mittal (1999): 
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As seen from the above expression, the expression for P(T|D) is expanded into 

three parts, namely P(m), P(twi∈T|D) and P(twj|tw1, …, twj-1). P(m) stands for 

the probability of having title length equal to m, P(twi∈T|D) stands for the 
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probability of choosing word twi as title words given the observation of the 

document D, and P(twj|tw1,…,twj-1) stands for the probability of putting word 

twj in the sequence after words {tw1, …, twj-1}. Since probability P(twi∈T|D) 

helps select the title words appropriate for the content of the document D, it 

corresponds to the title word selection phase. On the other hand, probability 

P(twj|tw1,…,twj−1) helps determine the word order between the selected title 

words and thus corresponds to the title word ordering phase. In order to 

estimate which word is appropriate as a title word for the document, namely 

probability P(w∈T|D), they simply approximate it as P(w∈T|w∈D) and 

estimate it using Naïve Bayes approach, i.e., 
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According to the above expression, we can simply count how many 

documents have word w in their titles and document bodies, and divide it by 

the number of documents containing word w in their bodies and use the ratio 

as the approximation for P(w∈T|D). Furthermore, in their later implementation 

(Banko et al., 2000), both the surface strings of words and other features of 

words such as the part of speech tags and the position are considered for title 

word selection. 

In order to illustrate this model better, let’s look at a simple example: consider 

a test document with three word ‘A’, ‘B’, and ‘C’, and you would like to 

create a title with only two words. From the training corpus, we can estimate 

P(w∈T|w∈D) for all the word ‘A’, ‘B’, and ‘C’. They are: 

P(‘A’∈T|‘A’∈D)=0.5, P(‘B’∈T|‘B’∈D)=0.3, and P(‘C’∈T|‘C’∈D)=0.2. 

Meanwhile, we can estimate a bigram statistical language model for titles, 

which is listed in Table 2.1. 
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Table 2.1: A simple bigram statistical language model for titles 
P(W2|W1) W2 = ‘A’ W2 = ‘B’ W2 = ‘C’ 
W1 = ‘A’ 0.01 0.2 0.79 
W1 = ‘B’ 0.4 0.01 0.59 
W1 = ‘C’ 0.4 0.59 0.01 
 

According to Equation (2.1), we can compute the most likely sequence with 

two words. The scores for all possible two-word sequence using word ‘A’, 

‘B’, and ‘C’ are listed in Table 2.2. As indicated in Table 2.2, word sequence 

‘A C’ has the highest score and should be used as the title for the test 

document. Interestingly, word ‘B’, which has the second highest score, is not 

included in the final title sequence. This is because even though word ‘B’ is 

scored higher than word ‘C’ according to the procedure of title word selection, 

it is used less frequently with word ‘A’ than word ‘C’. Due to the competition 

between title word selection and title word ordering, the algorithm specified in 

(2.1) favors word ‘C’ instead of ‘B” to be used in the title. This fact indicates 

that not only the procedure of title word selection is able to decide the 

appropriate title words but also the procedure of title word ordering. 

Table 2.2: Scores for two-word sequences using words ‘A’, ‘B’, and ‘C’ 
‘W1 W2’ Score =P(W1∈T| W1∈D)P(W2∈T| W2∈D)P(W2| W1) 
‘A C’ 0.5*0.2*0.79=0.079 
‘A B’ 0.5*0.3*0.2=0.03 
‘B A’ 0.3*0.5*0.4=0.06 
‘B C’ 0.3*0.2*0.59=0.0354 
‘C A’ 0.2*0.5*0.4=0.04 
‘C B’ 0.2*0.3*0.59=0.0354 
 

One deficiency of the work by Witbrock and Mittal is on the approximation of 

P(w∈T|D) as P(w∈T|w∈D), which constrains the choice of title words to be 

one of the words appearing in the document and does not allow words outside 
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the document to be used as title words. Similar to most extraction-based 

approaches, this limitation prevents the work from being applied to cross 

lingual title generation in which titles and documents are written in different 

languages. Furthermore, this simple approximation gives up all the word 

evidence in the document other than the title word itself. For example, words 

such as ‘basketball’, ‘volleyball’ and ‘soccer’ are very good indicators for 

suggesting putting the word ‘sport’ in the title, while this approximation is 

simply blind to that evidence. Therefore, it is important to find a better 

estimation for P(w∈T|D) such that not only all word evidence within 

document D can be used effectively for determining the title words but also 

the constraint that title words have to be one of the document words can be 

removed. In chapter 3, we will discuss different methods used for title word 

selection, which achieves both of these two goals. 

The other issue with this model is its lack of solid theoretical analysis. The 

likelihood P(T|D) is expanded based on the intuition that in order to find a 

good title for a document, we need first select a set of title words appropriate 

for the content of the document and then organize them into a readable 

sequence. With a more careful examination on the expansion of P(T|D) in 

Equation (2.1), we find that there is something suspiciously wrong: The last 

part of the expansion, namely ∏ −
j

jj twtwtwP ),...,|( 11 , which is used to 

determine the word order, can actually be written as P(T), i.e. the probability 

for the word sequence T. Using P(T) to judge the quality of a word order is 

quite problematic because the probability for a word sequence is not only 

determined by the word order within the sequence but also influenced by the 

actual words in the sequence. Compared to a word sequence T’ with many rare 

words, a word sequence T with many common words have much more chance 

to be seen as titles for documents even though both of them are in perfect word 
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order. As a result, titles ordered by the sequence probability P(T) tend to 

include unrelated common title words. Therefore, P(T) may not be a good 

choice for ordering title words and a more careful expansion of the likelihood 

P(T|D) is needed in order to obtain a better strategy for ordering title words.  

In order to have an intuitive sense of why Equation (2.1) will favor the title 

sequence with common words, let’s consider an extremely simple case, where 

we have three documents in the training collection and all of them are identical 

to document D. Let’s assume that D contains four words ‘A B C D’. Two of 

the three documents in the collection have the title ‘A B’ and the other copy of 

D has the title ‘C D’. According to the model specified in Equation (2.1) and 

(2.2), we have title word selection probability P(w∈T|w∈D) as 

P(‘A’∈T|‘A’∈D)= P(‘B’∈T|‘B’∈D)=2/3 and 

P(‘D’∈T|‘D’∈D)=P(‘D’∈T|‘D’∈D)=1/3. The statistical bigram language 

model for titles is {P(‘A’)=P(‘B’)=2/3, P(‘C’)=P(‘D’)=1/3, and 

P(‘B’|‘A’)=P(‘D’|‘C’)=1}. Then, consider that you have a test document 

which is again identical to the document D. From the simple statistics, we 

know that the ratio of the probability of using ‘A B’ as the title for document 

D to the probability of using ‘C D’ as the title for document D, i.e., P(T=‘A 

B’|D)/P(T=‘C D’|D), should be 2. However, according to Equation (2.1), 

P(T=‘A B’|D) should be 2/3*2/3*2/3*1=8/27 and P(T=‘C D’|D) should be 

1/3*1/3*1/3*1=1/27. Therefore, based on Equation (2.1), the ratio P(T=‘A 

B’|D)/P(T= ‘C D’|D)=8, which is four times larger than the true ratio 2. 
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C h a p t e r  3  

EVALUATION 

Evaluating the machine-generated titles effectively and efficiently is an 

important aspect of automatic title generation. Relying only on human subjects 

to assess the quality of machine-generated titles is not efficient because the 

human judgments for the set of titles created by one method cannot be used for 

the evaluation of another set of titles that are generated for the same set of 

documents but using a different method. On the other hand, only using 

automatic methods for evaluating machine-generated titles can also be very 

problematic because the quality of titles, such as the readability of titles, is 

very hard for any computer program to judge. In this chapter, we will discuss 

both the automatic evaluation methods and the method of manual evaluation. 

Furthermore, we will examine the correlation between the two types of 

evaluations empirically. 

In general, there are two major factors that will influence the quality of 

machine-generated titles: 

1. Consistency: i.e., whether the machine-generated title is able to reflect the 

main content of the document. Since the function of a title is to provide a 

very brief summary for a document, a good title should be able to indicate 

the main points of the document clearly. 

2. Readability: i.e. whether the machine-generated titles are readable to 

human subjects. This is the issue that distinguishes automatic title 

generation from the automatic key phrase extraction, which is to extract 
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key words from documents without having to put them into a readable 

sequence.  

We will first discuss the automatic evaluation metrics for automatic title 

generation according to the factors of consistency and readability, and then 

examine manual evaluation. 

3.1 Automatic Evaluation Metrics 

The problem of how to evaluate the machine-generated summaries has been 

studied extensively in the literature of automatic text summarization (Turney, 

1997; Goldstein, 1999; Jing et al., 1998; Mani, 1999). The main idea is to use 

the information retrieval metrics to measure the quality of machine-generated 

summaries. More specifically, by aligning the machine-generated summaries 

with the summaries extracted by human subjects, we can measure the 

precision, recall and F1 scores of machine-created summaries, and use them as 

the basis of evaluation. The same idea can be applied to the evaluation of 

machine-generated titles, namely we can compute the precision, recall and F1 

score based on the number of overlapped words between human-assigned 

titles and machine-generated titles.  Furthermore, since a title is a sequence of 

words, not just a bag of words, the evaluation metric should also be able to 

measure the difference between titles in terms of their word order. In this 

section, we examine two different kinds of automatic evaluation metrics. The 

first one is called F1 metric, which measures the difference between two titles 

based on the number of matched words. The second one is based on the edit 

distance, which measures the difference between two titles based on their word 

orders and the matched words. 
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3.1.1 F1 metric 

For the consistency issue, namely to what extent the machine-generated titles 

are able to capture the contents of documents, we can use the word matches 

between the machine-generated titles and the human assigned titles as the 

measurement. As an analogy to information retrieval, we can treat the set of 

machine-selected title words as the retrieved documents in information 

retrieval and the set of human selected title words as the marked relevant 

‘documents’. Therefore, we can easily compute the ‘precision’ and ‘recall’ 

measurement, which have been broadly used in IR. More precisely, for 

automatic title generation, the ‘precision’ of a machine-generated title with 

respect to the human-assigned title is defined as the number of matched words 

between the machine-generated title and the human-assigned title divided by 

the length of the machine-generated title. Similarly, the ‘recall’ of a machine-

generated title with respect to the human-assigned title is defined as the 

number of matched words between them divided by the length of the human-

assigned titles.  

However, similar to the situation of information retrieval, neither ‘precision’ 

nor ‘recall’ is good for measuring word matching. If we only consider the 

‘precision’ metric, a simple strategy to gain the highest ‘precision’ is to return 

nothing. On the other hand, using ‘recall’ alone is not good either, because in 

the extreme case, we can return everything and ensure the highest recall. The 

tradeoff between ‘recall’ and ‘precision’ has been very well studied in the field 

of information retrieval, and people found that combinations of ‘precision’ and 

‘recall’ appear to be much better metrics than the ‘precision’ and ‘recall’ 

alone, including mean reciprocal rank (MRR), average precision across 11 

recall points, and Fβ measurements. Among them, the ‘F1’ metric is the most 

popular one (Rjiesbergen, 1979), which is a special case of the Fβ 
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measurements with β set to be 1. The definition of the ‘F1’ metric can be 

expressed as follows: 

recallprecision
recallprecision2  F1

+
××

=  

As indicated in the above expression, ‘F1’ gives an equal emphasis to both 

‘precision’ and ‘recall’. When either the ‘precision’ or the ‘recall’ is small, the 

value of ‘F1’ will be small. The ‘F1’ score is high only when both the 

‘precision’ and ‘recall’ are large, and will reach the maximum value 1 only 

when both the ‘precision’ and the ‘recall’ reach their maximum values (i.e., 

one). With the equal emphasis on both ‘precision’ and ‘recall’, we are able to 

avoid favoring titles with no words and titles with all words. Since a high 

‘precision’ is related to the case that the machine-generated title has most of its 

words shared with the human-assigned title, and a high ‘recall’ is related to the 

case that most of words in the human-assigned titles appear in the machine-

generated title, a high ‘F1’ value indicates that the machine-generated title 

shares many words with the human-assigned title and meanwhile has a title 

length close to that of the human-assigned title, which appears to be a 

desirable title. 

For most experiments conducted in this thesis, we will only use ‘F1’ as the 

automatic evaluation metric to determine how well the machine-generated 

titles match with the human assigned titles, due to its simplicity and strong 

correlation with the human judgments, which will be discussed in a later 

section of this chapter.  

3.1.2 Edit Distance 

The metric considered in the previous subsection treats a title as a bag of 

words and therefore the word order of a title is ignored in the comparison. 
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However, titles with the same set of words can have dramatically different 

meaning if their word orders are different. A simple example would be when 

the human assigned title is ‘Bush beats Gore’ and the system comes up with a 

title ‘Gore beats Bush’. If we only consider the word matches between these 

two titles, the machine-generated title will have perfect ‘F1’ score. However, 

the meanings of these two titles are completely different due to the switch of 

the two words ‘Gore’ and ‘Bush’ in the machine-generated title. Therefore, in 

order to examine to what extent the machine-generated titles are able to 

correctly reflect the contents of documents, a better metric should not only be 

able to compare the number of words matched between two different titles but 

also take into account the order of the matched words.  

A well-known type of distance between complex strings is the so-called edit 

distance. If S is a set of allowable edit operations on the set of all strings in 

question, then the edit distance between two strings A an B is the minimal 

number of edit operations from set S required to transform string A into string 

B. In the case of word sequence, the natural atomic edit operations are 

insertion, deletion and substitution of words. More detailed information about 

the edit distance can be found in (Nye, 1984). 

The edit distance metric is a good candidate for such a task because it counts 

the number of operations that are able to transform one word sequence into 

another, which not only reflects the number of words matched but also how 

well the word order matches between titles. Consider the previous example. In 

terms of edit distance, to transform the machine-generated title ‘Gore beats 

Bush’ into the original title ‘Bush beats Gore’, we need at least two 

substitution operations, i.e., substituting the first word ‘Gore’ with ‘Bush’ and 

the last word ‘Bush’ with ‘Gore’. Since there are only three words in the title, 

two operations of transformation indicates that the machine-generated title is 
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actually not good at all. As you can see, for this simple example, the edit 

distance metric appears to be better than the ‘F1’ metric in terms of judging 

the quality of machine-generated titles. However, the down side of the edit 

distance based metric is that all the editing operations are given equal weights, 

which may be not desirable. For example, consider a machine-generated title 

‘Bush beats dogs’ for the same document as the title ‘Gore beats Bush’. 

According to the edit distance, the title ‘Bush beats dogs’ can be transformed 

into the true title ‘Bush beats Gore’ by only a replacement operation, i.e. 

replacing word ‘dogs’ with word ‘Gore’. Therefore, the title ‘Bush beats dogs’ 

appears to be a better title than the title ‘Gore beats Bush’. This conclusion is 

wrong because the title ‘Bush beats dogs’ indicates a story completely 

different from the true title while the title ‘Gore beats Bush’ still indicates a 

similar story as the true title except with the wrong conclusion. In short, the 

idea of using the edit distance to measure the quality of machine-generated 

titles has the advantage of taking into account of word orders. But the fact that 

each edit operation is given an equal weight may cause edit distance to give 

incorrect predictions for the quality of machine-generated titles. In the 

following experiment, we particularly measure the number of correct words in 

the machine-generated titles that have the same order as the original titles. For 

easy reference, we call it ‘CWCO’. 

3.2 Human Judgments 

As seen in the above section, what the automatic evaluation metrics do is to 

measure the difference between the machine-generated titles and the human 

assigned titles and use the difference to indicate the quality of machine-

generated titles. However, there are at least three problems with this approach: 
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1) The human assigned title is only one of the possible good titles for the 

document. Even though the machine-generated title differs from the 

human assigned title quite significantly, it can still be quite close to another 

good unseen title. Therefore, only using the human assigned title as the 

comparison pattern may significantly underestimate the quality of 

machine-generated titles. 

2) The surface distance between titles may not appropriately indicate the 

semantic difference between them. For example, if the original title is 

‘President Clinton addressed the opening ceremony’ and the machine-

generated title is ‘President Gore addressed the opening ceremony’. Both 

F1 metric and the editing distance based metric (i.e. ‘CWCO’) will give 

high scores to the machine-generated title because most of the words 

between these two titles are matched and in the same order. However, 

from the human perspective, the machine-generated title is completely 

wrong. Thus, the surface distance may not tell the true story about the 

semantic difference between titles. 

3) The readability of machine-generated titles. The above automatic 

evaluation metric can’t tell whether the machine-generated is human 

readable or not. 

Considering the limitations of automatic evaluation metrics, we believe that 

the judgments of human subjects are very important for evaluating the quality 

of machine-generated titles. Of course, because of the flexibility of titles, it 

could be quite difficult for an assessor to judge the quality of titles. People can 

have different standards for good titles and therefore different people can have 

quite different opinions for the same titles. For example, some people tend to 

favor ‘clever’ titles that try to catch the attention of readers and some people 
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don’t. In our experiment, we set up very simple standards for assessors, i.e., a 

title is good as long as it reflects the main content of a document and is 

organized in a human readable way. By clearly defining the evaluation 

standard for the assessor, we are able to avoid the fluctuation in the judgments 

due to the different taste in titles. Of course, this criterion forms a low baseline 

for machine-generated titles. However, as will be indicated by the 

experiments, even with this simple criterion, most machine-generated titles are 

far from being good. In the experiment, each title will be assigned to one of the 

five categories: 

• ‘Very good’ category: The title reflects the main content of the document 

and the word sequence is readable. 

• ‘Good’ category: The title indicates the content of the document however 

some words are not smoothly connected with the others. 

•  ‘Ok’ category: The title contains important phrases however some of the 

word orders are not correct. 

• ‘Bad’ category: Many words within the title are not related to the 

document even though one or two of them are important content words. 

The whole word sequence is totally not readable. 

• ‘Extremely Bad’ category: None of the words in the title makes sense to 

the document. 

A simple score scheme is developed with score 5 for the category ‘very good’, 

score 4 for ‘good’, score 3 for ‘ok’, score 2 for ‘bad’ and score 1 for 

‘extremely bad’. The average score of human judgment is used as the final 
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evaluation metric. Clearly, the higher the score of human judgment, the better 

the quality of machine-generated titles. 

The other issue with human judgments is that it can be very expensive to 

obtain the human judgments both time-wise and money-wise. Therefore, in 

our experiment, we combine the automatic evaluation metric and the human 

judgments into a two-layer evaluation system: the first layer is the automatic 

evaluation metrics. It will filter out the approaches that lead to low evaluation 

numbers. The second layer consists of human judgments. Titles generated by 

the ‘promising’ approaches, i.e., approaches having a high automatic 

evaluation number, will be sent for human judgments. The quality of the titles 

generated by those ‘promising’ approaches will be determined by the human 

judgments. Therefore, most machine-generated titles are judged only by the 

automatic evaluation metrics and only titles generated by ‘promising’ 

approaches are evaluated using human judgments. Of course, with this two-

layer scheme, there is a chance that a good method of automatic title 

generation may be missed. Due to the limitation of time and expensiveness, we 

are willing to take this risk. 

3.3 Empirical Study of Evaluation Metrics 

In this experiment, we would like examine three issues: 

1) Are human judgments able to reflect the quality of titles correctly? As we 

raised the question in the last section, due to the flexibility of titles and the 

different taste in titles for different people, the human judgments may not 

be able to indicate the quality of titles reliably. Therefore, in this 

experiment we will test the quality of human assigned titles against the 

human judgments. The difference between the perfect score ‘5’ and the 

averaged human judgments will be able to tell how good the reference 
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titles are from the viewpoint of the assessor. Meanwhile, the same set of 

titles with stopwords removed will also be presented for human judgments. 

Since the removal of stopwords should influence the readability of titles, 

the difference between the scores for titles with stopwords and scores for 

titles without stopwords will be able to indicate the sensitivity of human 

judgments. Furthermore, since in the rest of this thesis we will focus on 

creating titles without considering stopwords, this experiment will give us 

a sense of the loss in the quality of titles caused by throwing away 

stopwords. 

2) Are automatic evaluation metrics able to indicate the quality of machine-

generated titles correctly, and which automatic evaluation metric is more 

consistent with human judgments? As in the last section, we raised the 

question about the reliability of automatic evaluation metrics and thus we 

need to examine this issue empirically. In the experiment, we will apply 

three different title generation methods to create titles and then evaluate 

the machine-generated titles using the ‘F1’ score, ‘CWCO’ (the edit 

distance based metric) and human judgment. Essentially, we would like to 

examine the correlations between the automatic evaluation metrics and the 

human judgments because if the automatic evaluation metrics are able to 

distinguish good titles from bad titles to some extent, we would expect to 

see a positive correlation between the automatic evaluation metric and the 

human judgments. 

3) How effective is the statistical model compared to the automatic 

summarization approach for generating titles? As an extension of this 

empirical study, we will compare the titles generated by the statistical 

method to the titles created by automatic text summarization using the 

automatic evaluation method. Compared to the automatic text 
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summarization approach, we feel that the statistical model is able to learn 

the correlation between title words and document words from training data 

and as a result creates better titles. In the experiment, we will see if this 

claim is true or not. 

3.3.1 Design of Experiment 

The experimental dataset comes from a CD of 1997 broadcast news 

transcriptions published by Primary Source Media (1997). There are a total of 

50,000 documents and corresponding titles in the dataset. The training dataset 

is formed by randomly picking four document-title pairs from every five pairs 

in the original dataset. Thus, the size of training corpus was 40,000 documents 

with corresponding titles. The remaining 10,000 documents are used for 

testing. By separating training data and test data in this way, we ensure a 

strong overlap in the topic content between the training dataset and the test 

dataset, which gives the learning algorithms a chance to play a significant role 

in the headline generation. Finally, among the 10,000 documents used for 

evaluation, two hundred documents are randomly selected for the human 

judgments. 

To obtain human judgments for machine-generated titles, a female assessor is 

hired. For each document, she is asked to read the whole document first before 

judging the titles. The human assigned titles are mixed with the machine-

generated titles randomly. The female assessor works four to five hours a day 

and titles of 200 documents usually cost her four to five days to finish. 

Therefore, the averaged time for evaluating titles for each document is about 

10 minutes. In order to make judgments consistent, we have her judged all the 

titles. 

Three simple methods are used for generating titles in this experiment: 
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1) A Naïve Bayes approach with limited vocabulary (NBL). Essentially, this 

algorithm is the work by Witbrock and Mittal (1999), which has been 

described in Chapter 2. A Naïve Bayes approach is used to estimate 

P(tw|dw) and only the conditional probability P(tw|dw=tw) is used for 

selecting appropriate title words. A bigram statistical language model is 

used to order the chosen title words into the final sequence (Clarkson & 

Rosenfeld, 1997). 

2) A term frequency and inverse document frequency approach (TF.IDF). A 

term frequency (i.e. TF) for a word refers to the number of times that the 

word appears in a document. An inverse document frequency (i.e. IDF) for 

a word is defined as the logarithm of the ratio of the total number of 

documents to the number of documents containing that word. Usually a 

high inverse document frequency of a word indicates that the word appears 

rarely in the collection. The product of these two factors, i.e. TF.IDF, 

measures the importance of a word related to a document (Salton & 

Buckley, 1988). For this simple approach, document words with the 

highest TF.IDF scores were chosen as the title word candidates, and a 

bigram statistical language model was used to order the selected words. 

Notice that, in the method, no length normalization was used because the 

length normalization factor for each word in the same document will be 

almost identical. Therefore, adding the length normalization to the scores 

of words is essentially equal to scale all the scores with a common factor, 

which makes no change in the final outcome.  

3) A nearest neighbors approach (NN). This algorithm is similar to the KNN 

algorithm applied to topic classification in (Yang & Chute, 1994). It treats 

the titles in the training corpus as a set of fixed labels. For each new 

document, instead of creating a new title, it tries to find an appropriate 
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‘label’, which is equivalent to searching the training document set for the 

closest related document. This training document title is then used for the 

new document. In our experiment, we use SMART (Salton, 1971) system 

for indexing our training documents and test documents. The ‘ltc’ term 

weighting was used for weighting both the training documents and test 

documents, which is defined as  
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“t”: 
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)1log( +tf  
 

)_log( 
df
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ionnormalizat length vector Euclidian  

The similarity between two documents is computed as the dot product between 

the two document vectors. 

Finally, each method was forced to create titles with fixed 6 words, which is 

the average title length of training documents. 

The reason we used these three methods for the examination of the automatic 

evaluation metrics is because they are substantially different from each other. 

Both the nearest neighbor approach and the NBL approach are able to learn 

the title-document correlation from the training corpus while the TF.IDF 

approach simply uses the product of the term frequency and the inverse 

document frequency to score document words. Meanwhile, both the NBL 

approach and the TF.IDF approach use a bigram statistical language model to 

find the appropriate word order while the nearest neighbor method simply 

finds the training document that is most similar to the test document and uses 

the title of that training document as a generated title without resorting to a 

statistical language model for ordering words. Because of the large variance 

among these three title generation methods, we may be able to find the reliable 
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correlation between the automatic evaluation metrics and the human 

judgments. 

3.3.2 Results & Discussions 

3.3.2.1 Reliability of Human Judgments 

Table 3.1 shows the averaged human judgments for the reference titles with 

and without stopwords. First, according to Table 3.1, the averaged score of 

human judgments for human assigned titles with stopwords is 4.7, which is 

very close to the perfect score 5. Therefore, we believe that the score of human 

judgments is able to reflect the quality of titles reasonably well. Secondly, by 

removing stopwords from the human assigned titles, the quality of those titles 

should degrade substantially, which is consistent with the change in the human 

judgments, dropping from the averaged score 4.7 to only 4. Particularly, the 

averaged score 4, which corresponds to the ‘good’ category as described 

before, indicates that titles without stopwords are mainly readable and able to 

capture the main content of the document, only with some discontinuity 

between phrases due to the missing stopwords. Therefore, it is still quite 

reasonable to study an automatic title generation system under the assumption 

that stopwords can be ignored. One reason for insisting on not considering 

stopwords for automatic title generation is because in our studies, by taking 

into account the stopwords, the performance of automatic title generation 

degrades substantially. The reason for that is because stopwords appear in 

almost every title and therefore they can be associated with any document 

word according to the statistics of the correlation between title words and 

document words. Thus, if stopwords are allowed, they will have more chances 

to be chosen as candidates for title words than other words, which may result 

in machine-generated titles with only stopwords. Furthermore, as will be 

shown in the later chapters of this thesis, the averaged scores of machine-

generated titles judged by human subjects are still far from the averaged score 
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4.0. Therefore, how to include stopwords in automatically generated titles is 

not one of the main concerns of this thesis. 

Table 3.1: Human judgments for reference titles with and without stopwords 
 Without Stopwords With Stopword 
Human Judgments 4.0 4.7 
 

 
Figure 3.1: Comparison of different evaluation metrics. The three evaluation 
metrics are the averaged human judgments, the ‘F1’ score, and the CWCO 
metric (e.g., the edit distance based metric). Three different title generation 
methods are evaluated, including a nearest neighbor (NN), a term frequency 
and inverse document frequency (TFIDF), and a Naïve Bayes method (NBL). 
Notice that the vertical axis represents normalized evaluation metric, which 
means that each evaluation metric is scaled with a different factor in order to 
fit in this diagram. 
 

3.3.2.2 Reliability of Automatic Evaluation Metrics 

Figure 3.1 shows the results of three different evaluation metrics for the three 

title generation methods. In order to fit the three different evaluation results 

into a single diagram, for each evaluation metric, we use a different scale 
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factor. More specifically, the scale factor is 3.9 for the human judgments, 0.30 

for the F1 score, and 1 for the metric ‘CWCO’ (e.g. the edit distance based 

metric). 

According to Figure 3.1, based on the human judgments, the nearest neighbor 

approach was ranked as the highest with a normalized score of 0.795, while 

the NBL approach was judged worst with a normalized score of 0.49 and the 

term frequency and inverse document frequency approach is scored as 0.55. 

The results from the F1 metric and ‘CWCO’ (i.e. the edit distance based 

metric), as also shown in Figure 3.1, demonstrate the same tendency, namely 

the nearest neighbor approach is scored the highest and the TF.IDF approach 

is scored higher than the NBL approach. A more careful examination of Figure 

3.1 indicates that the F1 metric appears to be more correlated with the human 

judgments than the ‘CWCO’ metric. In order to see which automatic 

evaluation metric is more correlated with the human judgments, we compute 

the Pearson correlation coefficient between the two automatic evaluation 

metrics and the human judgments. According to the definition, the Pearson 

correlation coefficient is computed as following: 

Consider two metrics A and B. Over a set of n objects, metric A yields 

measurements nxxx ,...,, 21  and metric B yields measurements nyyy ,...,, 21 . Then, 

the Pearson correlation coefficient between these two metrics is computed as: 
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The higher the Pearson correlation coefficient is, the stronger the two metrics 

are correlated. 
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According to our computation, the Pearson correlation coefficient between the 

metric F1 and the human judgments is 0.87 while it is only 0.71 between the 

metric ‘CWCO’ and the human judgments. Therefore, the metric F1 correlates 

with the human judgments substantially stronger than the metric ‘CWCO’. 

Furthermore, the metric ‘CWCO’ appears to be quite flat over the three groups 

of machine-generated titles, which indicates that it may be a less sensitive 

metric. In fact, the averaged relative change in the ‘CWCO’ metric between 

these three groups of titles is only 8%. For the F1 metric, the averaged relative 

change between the three groups of titles is about 15%, which is almost twice 

as large as that of the ‘CWCO’ metric. Based on these observations, we can 

conclude that even though both the F1 metric and the ‘CWCO’ metric appear 

to be positively correlated with the human judgments, the F1 metric appears to 

correlate with human judgments substantially more strongly than the ‘CWCO’ 

metric, and is more sensitive to the quality of titles than the ‘CWCO’ metric.  

On the other hand, as indicated in Figure 3.1, the results for human judgments 

appear to show that the NN approach is noticeably better than both the NBL 

approach and the TFIDF approach while the results for the F1 metric and 

‘CWCO’ metric appear to show that the NN approach performs similarly to 

the TFIDF approach and both the NN approach and the TFIDF approach 

perform considerably better than the NBL approach. We think one possible 

explanation for this discrepancy is that since the titles generated by the NN 

approach are actual human assigned titles for training documents, they are 

much more readable than titles created by the NBL approach and the TFIDF 

approach which are ordered by a bigram statistical language model. Therefore, 

the user tends to give a higher score to the titles generated by the NN approach 

than the other two approaches. This observation indicates that the automatic 

evaluation metrics cannot fully reflect human readability, which has 

significant influence on the human judgments. Therefore, though both 
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automatic evaluation metrics are positively correlated with the human 

judgments, we still nee the human judgments for the final determination of the 

quality of machine-generated titles.  

3.3.2.3 Comparison of Statistical Models for Title Generation to the 

Automatic Summarization Approach 

In order to compare the effectiveness of statistical methods to the automatic 

summarization approach for title generation, we use the AutoSummarize 

function within the Microsoft Word to generate short summaries for the same 

10,000 test documents. For each test document, Microsoft Word is invoked to 

create a summary with a specified length (e.g. 6) and the generated short 

summary is used as the title for the test document. For easy reference, we 

simply call this method ‘AutoSummarize’.  

The F1 scores of the NBL method and the ‘AutoSummarize’ method are listed 

in Table 3.2. Clearly, the NBL method achieves a much better F1 score than 

the AutoSummarize method. The fact that the ‘AutoSummarize’ performs 

poorly for title generation is consistent with the finding by Firmin and 

Chrzanowski (1999), who claimed that when the compression ratio of 

summarization is below 10%, many automatic text summarization approaches 

don’t work well. Thus, we conclude that compared to the automatic 

summarization approach, the statistical model appears to be much better in 

catching the right title words. Since the F1 score of the automatic 

summarization approach is so low, we didn’t bother asking the human subject 

to check its quality.  To get more sense about the quality of titles created by 

the automatic summarization approach and the NBL approach, we listed five 

examples of machine-generated titles for both methods in Table 4.6 and 4.15. 

The reference titles for the same set of stories are listed in Table 4.14. 
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Table 3.2: F1 scores for the NBL method and the text summarization method 
for title generation (AutoSummarize) 
 NBL AutoSummarize 
F1 0.154 0.03 
 

3.3.3 Conclusion 

In this experiment, we examined three different evaluation metrics, namely the 

F1 metric, the ‘CWCO’ metric (e.g. the edit distance based metric), and human 

judgments. First, based on the empirical results in Table 3.1, we conclude that 

the score of human judgments is a reliable indicator for the quality of titles. 

Secondly, based on results shown in Figure 3.1, both the F1 metric and the 

‘CWCO’ metric are positively correlated with the human judgments. 

Furthermore, the F1 metric appears to correlate with the human judgments 

more strongly than the ‘CWCO’ metric, and appears to be more sensitive to 

the quality of machine-generated titles than the ‘CWCO’ metric. Therefore, we 

conclude the F1 is a better automatic evaluation metric than the ‘CWCO’ 

metric. Based on these observations, we will only use the F1 as the automatic 

evaluation metric in the rest of this thesis. Finally, we examine the automatic 

summarization approach for title generation and find that it performs 

significantly worse than the statistical models. 
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 C h a p t e r  4  

TITLE WORD SELECTION METHODS 

As already discussed in chapter 2, one problem with the previous work on title 

generation is the estimation of P(w∈T|D), i.e., the likelihood of choosing word 

‘w’ as a title word given the observation of document D. In the previous work, 

the likelihood P(w∈T|D) is simply approximated as P(w∈T|w∈D), which 

doesn’t take into account all the words appearing in document D. Furthermore, 

this simple approximation restricts choices of title words to be the words in the 

document. This constraint can significantly limit the situations for which the 

title generation model can be used, such as creating English titles for foreign 

documents. In this chapter, we will consider other statistical methods for 

estimating the likelihood P(w∈T|D), which can go beyond the limitation.  

In order to simplify the annotations, in the rest of the thesis we will always 

write ‘tw’ to indicate a word in a title, namely w∈T, and ‘dw’ to indicate a 

word in a document, namely w∈D. For example, P(w∈T|D) will be written as 

P(tw|D) and P(w∈T|w∈D) will be written as P(tw|dw). 

4.1 Text Categorization Method 

One way of estimating probability P(tw|D) is to treat every word ‘tw’ as a 

category label and interpret P(tw|D) as the probability of assigning the 

document D to the category ‘tw’. Therefore, we can apply text categorization 

methods to estimate the probability P(tw|D). Many learning techniques have 

been applied to automatic text categorization, such as K nearest neighbors 
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(Friedman, 1994), Rochioo (Schapire et al., 1998), decision tree (Ape et al., 

1998), Naïve Bayes (McCallum & Nigram, 1998), and support vector machine 

(Joachims, 1998).  However, one thing that makes the estimation of P(tw|D) 

different from the standard text classification problem is that for text 

classification, we are only concerned with the binary answer, i.e., whether or 

not a document belongs to a particular category. Whereas for the estimation of 

P(tw|D), we really need a probability number for the likelihood P(tw|D). 

Therefore, many classification methods are not suitable for the likelihood 

estimation since they only output confidence numbers, which cannot be 

interpreted as probabilities. In this thesis, we consider two common methods 

used in text categorization: the decision tree method and the K nearest 

neighbor method. 

4.1.1 Decision Tree Method (DT) 

Decision tree is a very common machine learning method (Quinlan, 1986) and 

has been successfully applied to text categorization (Apte et al., 1998). The 

basic idea of using decision tree for estimating P(tw|D) can be stated as 

follows: 

To understand why a title word ‘tw’ is used in the title, we can first examine 

all the documents whose titles contain the word ‘tw’ and then see which word 

in those document has the highest ability to distinguish those documents from 

others. In practice, the metric ‘information gain’ is used as the measurement of 

distinguishing ability. The document word with the largest information gain 

for the title word ‘tw’ will be used as the top node of the decision tree and let’s 

call this document word ‘dw1’. After that, all the documents are separated into 

two sets: the set of documents with the word ‘dw1’ and the set of documents 

without the word ‘dw1’. Then, for each of these two sets of documents, we will 

conduct the same search for a document word that is most informative to the 
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title word ‘tw’, which results in the second level of the decision tree. The 

procedure of dividing and searching will repeated again and again until either 

all documents in a set belongs to a single class or there are only a small 

number of documents left in the set. In real implementation, the stop criteria is 

either 95% of documents within the divided set belong to a single class or the 

number of documents within the set is no more than 3.  For each title word 

‘tw’, we will build a separated decision tree. In the collections that we test on, 

the number of different title words is on the order of 10,000. Therefore we 

need to build around 10,000 different decision trees, which seem to be very an 

expensive operation. However, as will be discussed later, since most title 

words appear in no more than 10 documents, it is actually not expensive at all 

to create 10,000 different decision-trees.  

Of course, in the above description of a decision tree, each document word is 

treated as a binary feature and the information of term frequency is ignored. 

Therefore, as a further improvement, we can take into account the term 

frequencies of document words for building decision trees. More specifically, 

for each node of a decision tree, we search for the most informative document 

word ‘dw’ as well as the most informative term frequency t. Then, documents 

are separated into two groups as follows: documents in the first group have the 

word ‘dw’ appearing no less than t time and documents in the other group 

have the word ‘dw’ appearing less than t times. In practice, we find these two 

versions of decision tree have almost identical performance and therefore in 

the later part of this thesis we will call them the ‘decision tree method for title 

word selection’ without distinction. 

Compared to the NBL method, the decision tree method is able to look at more 

document words for the selection of title words. In fact, we can treat the NBL 

method as a simple version of decision tree: for each title word ‘tw’, create a 
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decision tree with a single node and the document word in the top node is 

actually the title word itself. However, there is one serious problem with the 

decision tree approach. For automatic text categorization, in order to build up a 

reliable decision tree for each category, we usually need at least tens of 

examples. In the context of automatic title generation, many title words 

actually appear only around ten times or even less, which means that it may be 

difficult to build reliable decision trees for those rare title words. Furthermore, 

for those rare title words, the created decision trees can be considerably 

shallow, which may cause them to be overly favored. The extreme example 

would be that a word ‘tw’ only appears in one title among the whole training 

corpus. Then, any unique word ‘dw’ inside the corresponding document can 

be a good indicator for title word ‘tw’. Therefore, for the test documents, the 

word ‘tw’ will surely be favored as long as those unique document words 

{‘dw’} appear. For the broadcast news of 1997, which is the testbed described 

in section 3.3, 81% of the title words appear in no more than 10 training titles 

(the total number of training title is 40,000). In summary, even though the 

decision tree has the ability of taking advantage of all the words in the 

document, the sparse nature of title words makes many of the decision trees 

very shallow and therefore only a very small number of document words are 

actually used as evidence for selecting title words.  

4.1.2 K Nearest Neighbor Method (KNN) 

K nearest neighbor is an instance based learning method and has demonstrated 

very good performance for automatic text categorization (Yang & Chute, 

1994). In order to apply the k nearest neighbor method to estimate P(tw|D), we 

will first compare the test document D to the documents in the training corpus 

and select the training documents that are most similar to the test document D. 

Then, by counting the occurrences of the words in the titles of those selected 
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training documents, we can compute the title word distribution and use it as 

the estimation for the likelihood P(tw|D).  

Following the paper by Yang (1997), we use SMART (Salton, 1971) to index 

our training documents and test documents along with the weight schema “ltc” 

(Salton et al., 1988), which is defined as follows: 
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The similarity between documents is computed as the dot product between 

document vectors.  

One interesting case of the KNN method is when we only consider the training 

document that is most similar to the test document. In this case, we don’t have 

to go through the procedure of word ordering. Instead, we can simply use the 

title of the most similar training document as the title for the test document. 

This is called nearest neighbor approach (‘NN’). Obviously, the advantage of 

this method over other methods is that we don’t have to rely on the statistical 

n-gram language model to order the title words, which has shown to be a 

serious problem in automatic title generation. The disadvantage of the nearest 

neighbor approach is that it can’t produce any new titles, which is 

unacceptable for some tasks.  

Compared to the decision tree method and the NBL method, the k nearest 

neighbor method is able to take advantage of all the words in documents since 

the document-document similarity is measured based on the word matching 

between documents.  
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4.2 Reverse Information Retrieval Method (IR) 

In this section, we will discuss the idea of converting the title word selection 

problem, i.e. estimating P(tw|D), into a information retrieval problem. Usually, 

in order to estimate P(tw|D), we need to estimate P(tw|dw) for every word 

‘dw’ in the document D and combine the estimations of P(tw|dw) together as 

the estimation for P(tw|D). Following this idea, each title word ‘tw’ can be 

represented as a vector of document words 

>< )|(),...,|(),|( 21 ndwtwPdwtwPdwtwP  and each element inside the vector, i.e. 

P(tw| dwi), tells the correlation between title word ‘tw’ and document word 

‘dwi’. Then, we can treat likelihood P(tw|D) as a sort of vector similarity 

between the representation vector for title word ‘tw’ and the term vector for 

document D. When the similarity between the term vector for document D and 

the representation vector for title word ‘tw’ is large, there will be many words 

‘dw’ in D that are strongly correlated with the title word ‘tw’ (i.e. with large 

P(tw|dw)) and therefore word ‘tw’ should have a high probability of being 

used as a title word for document D. Clearly, this is similar to the vector model 

of information retrieval, where both the query and the document are 

represented as term vectors and the similarity between them is computed as the 

dot product between them. The advantage of treating the title word selection 

problem as a variant of information retrieval is that we can use all the 

techniques developed in information retrieval, such as the tf.idf term weighting 

scheme (Salton & Buckley, 1988) and pseudo-relevance feedback, for 

selecting good title words. Of course, the essential difficulty with handling the 

title word selection problem as an IR problem is how to compute the 

representation vectors for title words, which is discussed in the following 

subsection. 
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4.2.1 Vector Representation of Title Words 

To find out the optimal representation vectors for title words, let’s assume that 

we have already obtained the representation vectors for all the title words. If 

those vectors are good for representing title words, by applying our 

information retrieval model, we should be able to generate title words for 

documents similar to what human subjects have created. More specifically, the 

difference between the human assigned title words and machine-generated title 

words over all the training documents will be minimized. Therefore, we will 

search for the set of representation vectors that minimize the difference 

between human assigned title words and machine-generated title words. 

Let N be the number of documents in the training collection, Ntw be the 

number of distinct no-stopwords in the title of the documents in the training 

collection and Ndw be the number of distinct no-stopwords in the documents in 

the training collection. 

Let D be a matrix with N rows and Nddww columns. An element ijd  in D 

represents the number of occurrences in the i-th document of the j-th document 

word. Let id  be the i-th row vector in D (of length Nddww). The row vector 

characterizes the i-th document. 

Let T be a matrix with N rows and Nttww columns. An element ijt  in T is the 

number of occurrences in the title of the i-th document of the j-th title word. 

Let it  be the i-th row vector in T (of length Nttww). The row vector it  

characterizes the title of the i-th document. 

In the standard Information Retrieval paradigm, a query q is represented by a 

row vector of length Nddww and a document d is represented by a row vector of 

length Nddww. The numbers in these vectors represent the weights of the 
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corresponding words in the given query and document. The strength of the 

match between the query q and the document d is given by the inner product 

qdT. When we issue a query to a search engine, we get back a list of 

documents with their similarity scores, which are the inner products qd1
T, 

qd2
T, ..., qdN

T between the given query q and the documents in the collection 

d1, d2, ..., dN. More concisely, we can introduce a score vector s of length N 

and define s as s=(qd1
T, qd2

T, ..., qdN
T), or s= qD T. 

We wish to adapt this paradigm to assign title words to documents.  To do so, 

we need to represent every title word by a row vector of length Nddww, where the 

numbers in this vector represent the strength of the connection between each 

document word and the given title word. We will introduce a matrix M for this 

purpose. 

Let M be a matrix with Nttww rows and Nddww columns. An element ijm in M is an 

estimate of the strength of the connection between the i-th title word and the j-

th document word. Let im  be the i-th row vector in M. The row vector im  is 

a vector of length Nddww and represents the i-th title word as a vector in 

document word space. Later, we will show how to calculate M from D and T. 

Let dtest be the document vector (of length Nddww) for a document taken from the 

testing set. Our goal is to select title words for dtest. We treat the document dtest 

as if it were a query vector in information retrieval, and we produce a list of 

title words with their scores, where the scores are the inner products dtestm1
T, 

dtestm2
T, ..., dtestmNtw

T between the given document dtest (analogous to q) and 

the title words m1, m2, ..., mNtw (analogous to d1, d2, ..., dN). We take the top K 

title words with the highest scores as our chosen title words for the given 

document dtest. Similar to the treatment in information retrieval, we simplify 

the score expression using matrix multiplication. Let s be the score vector of 
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length Nttww and s is defined as s=(dtestm1
T, dtestm2

T, ..., dtestmNtw
T), or s=dtestMT. 

The i-th element in the score vector s is the score of the i-th title word for the 

test document dtest. 

Therefore, for any document i in the training collection, the corresponding title 

word score vector si (of length Nttww) can be written as si=diMT. We measure the 

error in the score vector si for the document i in the training collection as the 

sum of the squares of the differences between the author's title words ti and the 

machine generated title words si, i.e. 
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where the || ||2 represents the Euclidean vector length, i.e. the sum of the 

squares of all the numbers in the vector. 

We are trying to minimize the difference between the matrix T (N rows and 

Nttww columns) of authors' titles and the matrix DMT (N by Nddww times Nddww by 

Nttww) of mechanically assigned titles. In principle, it is possible to optimize M 

to minimize the error function err, using the Singular Value Decomposition 

(SVD) (Hildebrand, 1952). However, for large Nttww , Nddww and N, it will be very 

expensive to find the matrix M  that minimizes the error function in Equation 

(1), even with Singular Value Decomposition (SVD) package for sparse 

matrices (Press et al., 1993). Therefore, to avoid the computational 

complexity, we change the objective function to maximize the similarity 

between the author assigned title ti and the machine generated title si, i.e. 

∑ =
N
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1 st . Then, the approximated error function, named err’ is changed to 
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However, there is one problem with minimizing the approximated error 

function err’. Since the error function err’ is linearly dependant on the matrix 

M and there is no constraint on the matrix M, the error function err’ will have 

no lower bound. To avoid the case that the error function err’ goes to negative 

infinity, we enforce the Euclidean length of the title word representation vector 

mi to be 1, i.e. i
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The optimal solution M that minimizes the error function err’ in Equation 

(4.2) and also satisfies the set of constraints in the above, can be found using 

the method of undetermined Lagrangian multiplier (Hildebrand, 1952). For all 

values of mij, we set to 0 the partial derivatives with respect to 
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Equation (4.3) gives the analytic solution of matrix M that is able to minimizes 

the difference between the human assigned title words and the machine 

selected title words. The i-th row of the matrix M corresponds to the 

representation vector for the i-th title word. 
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4.2.2 Procedures for Retrieving Good Title Words 

With the representation vectors computed in the previous subsection, we can 

now apply information retrieval methods to find the good title words for 

documents, which can be further divided into two steps: 

• Weight the title word representation vectors mi. Since we treat each “title 

word” as a “document” in information retrieval, we can view the whole set 

of representation vectors for title words as a “document collection” in 

information retrieval. Thus, the standard term weighting scheme used in 

information retrieval can be applied directly to weight representation 

vectors for title words. In our experiment, we use ‘ltc’ term weighting 

scheme within the ‘SMART’ system that has been described in the section 

4.1.2. 

• Use the standard information retrieval system ‘SMART’ to compute the 

similarity between the test document and the representation vector for each 

title word ‘tw’. Then, the similarity is used as the estimation for P(tw|D). 

Similar to most information retrieval system, stopwords are removed and 

words are stemmed using the porter algorithm (Porter, 1980). 

4.2.3 Discussion 

Compared to the Naïve Bayes method and the decision tree method, this 

algorithm has the advantage of being able to use all the document words as 

evidence for selecting title words because a title word is considered to be a 

good candidate for a document only when the whole representation vector of 

that title word matches well with the document vector.  

Furthermore, this algorithm benefits from the optimized representation vectors 

for title words and the tuned term weighting schemes in information retrieval: 
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• With the optimized representation vectors for title words, we are able to 

weight the correlation between title words and document words correctly, 

which is crucial to the title word selection task.  

• Good term weighting schemes (Salton & Buckley, 1988; Jones & Willett, 

1997), such as TF.IDF and their variants, have been carefully crafted to 

take into account the factors of the word frequency within a document 

(i.e., TF), the word frequency within the collection (i.e, DF), and the 

document length (i.e. normalization factor). This algorithm is going to 

benefit from the term weighting schemes of information retrieval in two 

ways: First, the TF.IDF term weights usually reflect the importance of a 

term related to a document. In this algorithm, title words are represented 

as vectors of document words. By using TF.IDF term weights to weight 

the document words in representation vectors, we promote the connection 

between the important document content words and title words, and de-

emphasize the connection of the trivial document words with title words. 

Secondly, in information retrieval, the normalization factor in term 

weighting schemes avoids the takeover of long documents. In this 

algorithm, the normalization factor helps us overcome the noises 

introduced by common title words. According to this algorithm, most 

numbers in the representation vectors for common title words will be 

nonzero because common title words co-occur with most of the 

document words. Thus, the common title words are similar to the ‘long 

documents’ in information retrieval. Without the normalization factor, 

these common title words will always be chosen because their 

representation vectors usually have very large overlap with the test 

document vector. With the help of the normalization factor, the numbers 

in the representation vectors for common title words will be scaled down 
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substantially and the chance for common title words to be selected will 

decrease dramatically. 

4.3 Expanding P(tw|D) 

According to the above discussion, two issues influence the estimation of 

P(tw|D) significantly: on one hand, we would like to use all the words in the 

documents as the evidence for selecting good title words. Methods such as 

Naïve Bayes suggested by Witbrock and Mittal (1999) and decision tree have 

the problem of only using a very small number of words in the document for 

determining title words. On the other hand, we need the flexibility in choosing 

the title words individually. Methods such as k nearest neighbor have the 

disadvantage that all the words in the titles of most similar documents will be 

chosen as title word candidates. In this section, we will introduce a general 

method for estimating P(tw|D) that has advantages on both aspects. 

In order to take into account all the words within the document, we can expand 

the likelihood P(tw|D) as following: 
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As indicated by the above equation, P(tw|D) is expanded as a weighted sum of 

probabilities P(tw|dw), i.e., the probability of putting word ‘tw’ on a title given 

that word ‘dw’ appears in document D. Therefore, the choice of title word ‘tw’ 

is collectively decided by all the words in the documents. Of course, using 

tf(dw,D)/|D| as an estimation for P(dw|D) is problematic. Particularly, it may 

over-count the contribution of common document words, which should have 

little to do with the selection of title words. This issue will be brought up again 

when we discuss the ‘dual noisy channel model’ for title generation. For now, 
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let’s only consider the form of P(tw|D) in Equation (4.4). Clearly, the critical 

issue with this expansion is how to estimate the conditional probability 

P(tw|dw). In the following subsections, we will introduce two different 

methods, namely a Naïve Bayes approach and a statistical translation 

approach, for title word selection. 

4.3.1 A Naïve Bayes Approach (NBF) 

One simple idea for estimating P(tw|dw) is to expand it using the Bayesian 

rule, i.e. 

)(
)^()|(

dwP
dwtwPdwtwP =  (4.5) 

According to the above expression, in order to estimate P(tw|dw), we can 

simply count how many training examples have both word ‘tw’ in their titles 

and word ‘dw’ in their document bodies, and divide it by the number of 

documents with word ‘dw’ in their document bodies. 

Clearly, this simple approach can be treated as a natural extension of the Naïve 

Bayes approach suggested by Witbrock and Mittal (1999), where only 

P(tw|dw=tw) is used for title word selection. The advantage of this method 

over the NBL method is that, this method allows any word to be used as a title 

word that is not necessarily a word in the original document. For future 

reference, we call this method a ‘Naïve Bayes approach with a full 

vocabulary’ (NBF).  

One problem with this simple approach is that, even though we observe that 

word ‘tw’ appears in the title and word ‘dw’ appears in the document, these 

two words still may not be correlated with each other because the appearance 

of ‘tw’ in the title may be caused by document words other than ‘dw’. 
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Therefore, by counting each co-occurrence of a title word with a document 

word equally, this simple approach can have significant incorrect counts of 

observed evidence. As a result, this defect may cause the algorithm to overly 

favor common title words because common title words will co-occur 

frequently with many different document words and therefore, according to 

this algorithm, they tend to have strong association with many document 

words. One simple way to see why the Naïve Bayes method in (4.5) can 

overly estimate P(tw|dw) is to examine the sum  of P(tw|dw) over all title 

words ‘tw’. Theoretically, the sum should be one. But in the case of using 

Naïve Bayes estimation for P(tw|dw), the sum can exceed one. To see this 

more clearly, let’s consider a collection with a single document whose title is 

‘A B’. Therefore, for any word ‘dw’ in the document, according to Equation 

(4.5), both P(A|dw) and P(B|dw) is one. Then the sum of P(A|dw) and P(B|dw) 

is actually two, which is against the law of probability.  

Of course, this issue may be less significant in the case of the NBL method, 

where only P(tw|dw=tw) is used for selecting title words. But, it still does 

exist. For example, consider a collection with two sets of documents. One set 

of documents is about the NBA games and therefore the name ‘Michael 

Jordan’ appears frequently in both the titles and the documents. The other set 

of documents is about the research progress in machine learning. Since Prof. 

Michael I. Jordan from Berkeley has been the top researcher in this field, 

many of the articles mentioned his name in their documents but not in their 

titles. Clearly, the reason why the word ‘Jordan’ is used in titles is not only 

because the corresponding documents contain the word ‘Jordan’ but also 

because those documents have words such as ‘NBA’ and ‘Wizard’. If we 

apply the NBL method for title word selection, it will always rank the word 

‘Jordan’ highly as long as the word ‘Jordan’ appears in documents no matter 

what the contents of the documents. 
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Based on the above analysis, a better algorithm for estimating P(tw|dw) needs 

to account for the fact when the appearance of a title word ‘tw’ can be 

explained very well by some document words, the leftover document words 

should only get a small amount of credit for the appearance of the word ‘tw’ in 

the title. In the next subsection, we will introduce the statistical translation 

method for title word selection suggested by Kennedy and Hauptmann (2000), 

which has the effect of letting the document words compete with each other 

for the credit of explaining title words. 

4.3.2 A Statistical Translation Approach (ST) 

The idea of applying statistical translation model to the title generation task is 

proposed in paper by Kennedy and Hauptmann (2000). It can be intuitively 

understood as follows: since documents are generally quite verbose in 

describing information while titles usually are much more concise, they show 

very different characteristics in using languages. Therefore, we can think of 

documents and titles as files with similar information but in different 

languages. More precisely, we can view documents as information written in a 

‘verbose’ language and titles as in a ‘concise’ language. Then, every 

document-title pair in the training corpus can be treated as a translation pair 

and the process of creating a title from a document can be viewed as the 

process of translating a document (i.e., information in ‘verbose’ language) into 

a title (i.e., information in ‘concise’ language). With this concept in mind, we 

can interpret the conditional probability P(tw|dw) as a word ‘translation’ 

probability, i.e., the probability of translating a word ‘dw’ in the ‘verbose’ 

language into a word ‘tw’ in the ‘concise’ language, which can be estimated 

using the IBM statistical translation model (Brown et al., 1993). 
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The goal of the translation model is to find the optimal set of word 

‘translation’ probabilities P(tw|dw) that can explain the document-title pairs in 

the training corpus. Formally, we can write the objective goal as follows: 

∏=
i

ii
M

MDTPM ),|(maxarg*  (4.6) 

where M stands for the model which includes the set of word translation 

probabilities {P(tw|dw)} and the likelihood P(T|D,M) stands for the 

probability of translating document D into title T using model M. In the IBM 

statistical translation model I (Brown et al., 1993), the likelihood P(T|D,M) is 

expanded as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∑

+
=

∈
+ )|(),()|(

)1|(|
),|( 1|| φε twPDdwtfdwtwP

D
MDTP

DdwT  (4.7) 

where ε is a constant which accounts for the uncertainty of title length. Symbol 

φ stands for the null word, which accounts for the words in title that can’t be 

explained well by the words in documents. 

The optimization of Equation (4.6) can be accomplished using the 

Expectation-Maximization algorithm (EM) (Dempster et al., 1977). More 

interestingly, unlike other cases where the EM algorithm usually results in a 

local maximum, for the objective function stated in Equation (4.6), the EM 

algorithm is guaranteed to find the global maximum. The detailed proof can be 

found in the literature (Brown et al., 1993). Here, we just state the resulting 

EM updating equations: 
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where Z(dw) is the normalization factor for word ‘dw’ which can be expressed 

as follows: 
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The interesting part of this method is the introduction of competition among 

different document words. By looking at Equation (4.8), we can see that word 

‘translation’ probability P(tw|dw) is expressed as the sum of contributions 

from all the instances where document word ‘dw’ and title word ‘tw’ co-occur 

together, i.e. 
)|(),()|(

),()|(
φtwPDdwtfdwtwP

DdwtfdwtwP

Ddw
+∑

∈

. Unlike the Naïve Bayes approach 

stated in previous subsection where each co-occurrence instance is counted 

equally, the translation model lets different document words compete with 

each other for the share of co-occurrence instances. By dividing 

),()|( DdwtfdwtwP  by the sum )|(),()|( φtwPDdwtfdwtwPDdw +∑ ∈ , we will give 

more shares of the co-occurrence instance to those document words that are 

strongly associated with the title word ‘tw’ and vice versa. Therefore, this 

method is able to reduce the amount of incorrect counting of evidence in the 

Naïve Bayes method. As will be shown later in the experiment, this method 

achieves substantially better performance than the Naïve Bayes method. 
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4.4 Empirical Study 

In this section, we will examine empirically the effectiveness of different 

methods for title word selection. First, we will examine the Naïve Bayes 

method suggested by Witbrock and Mittal (1999) (NBL) in two aspects: 1) 

whether the Naïve Bayes estimation is good for P(tw|D), and 2) whether the 

constraint that any document word can only suggest itself as a title word is 

necessary. Then, a comparison of all six different methods for title word 

selection will be presented. 

Similar to the setup in section 3.3, we use the CD of 1997 broadcast news 

transcriptions as the testbed. The training corpus consists of 40,000 document-

title pairs and the test corpus consists of 10,000 document-title pairs. Different 

title word selection methods are used to compute the scores for title words. For 

each document, the first 100 title words with highest scores are selected, and a 

bigram statistical language model is used to create a sequence with six words 

that are among the 100 selected title words. The reason for choosing title 

length to be six is because that is the averaged title length of the training 

documents. Stopwords in all the titles are removed. The F1 score is used as the 

automatic evaluation metric because of it strong correlation with the human 

judgments as described in Chapter 3. 

4.4.1 Examination of Naïve Bayes Method with Limited Vocabulary  

In Chapter 2, we introduced the Naïve Bayes approach with a limited 

vocabulary (NBL) for title word selection, which approximates the likelihood 

P(tw|D) as P(tw=dw|dw). As you can see from the description of this 

algorithm, two factors can influence the performance of this title word 

selection method: 



 64

1) The constraint that only P(tw|dw=tw) is used for selecting title words. This 

constraint prevents document words other than word ‘tw’ from being used 

as the evidence for determining word ‘tw’ as a title word. Furthermore, 

this constraint keeps any words outside the document from being used as 

title words.  

2) Use the Naïve Bayes method for the estimation. As already pointed out 

before, one problem with the simple Naïve Bayes method for estimating 

P(tw|dw) is that it may give an incorrect count of the co-occurrence events 

between document words and title words and therefore result in a 

unreliable estimation.  

To clearly see the effects of these two factors on the task of title word 

selection, we compare this algorithm to the other two methods, namely a 

Naïve Bayes approach with a full vocabulary (NBF) and the term frequency 

and inverse document frequency approach (TF.IDF). These two methods have 

been described in Section 4.3.1 and Section 3.3.1, respectively. Compared to 

the NBL method, the NBF method uses the same Naïve Bayes method for 

estimating P(tw|dw) but with the consideration of all the words in the 

document. Meanwhile, the TF.IDF method has the same constraint as the NBL 

method, namely a document word can only suggest itself as a title word, 

however with tf.idf scores for scoring words. Therefore, by comparing the 

NBL method to the NBF method and the TF.IDF method, we can see the 

effects of the two factors. 

Table 4.1: F1 scores for title word selection methods NBL (the Naïve Bayes 
approach with a limited vocabulary), NBF (a Naïve Bayes approach with a full 
vocabulary) and TF.IDF (using tf.idf for scoring title word candidates). 
 NBL NBF TF.IDF 
F1 0.154 0.04 0.197 
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Table 4.1 shows the ‘F1’ results for these three methods. Surprisingly, the 

NBF method performs much worse than NBL. The difference between the 

NBF and NBL method is that the NBL method assumes a document word can 

only generate itself as the title word while the NBF method allows a document 

word to suggest any title word. Because of the rough nature in the Naïve 

Bayes estimation, the simple constraint of the NBL method actually makes the 

results much more stable than the NBF method. By examining the titles 

generated by the NBF method, we notice that most of the title words in the 

NBF-generated titles are actually the common title words. As an example, the 

popular word ‘clinton’, which appears in the 6% of training titles, is actually 

used by 66% of the titles generated by the NBF method. In table 4.7, examples 

of titles generated by the NBF method are listed. Clearly, almost all the titles 

created by the NBF method are simply those most common title words. 

Furthermore, as will be shown later, by replacing the Naïve Bayes estimation 

with the estimation by the statistical translation model for P(tw|dw), we are 

able to achieve a much better performance than the original NBF method (see 

Table 4.3 for the ST method). Based on these two observations, we can see 

that the Naïve Bayes method is not a good estimator for P(tw|dw) and the 

success of the NBL method is due to the constraint that only P(tw|dw=tw) 

should be used for selecting title words. 

The other surprising observation from Table 4.1 is that the simple TF.IDF 

method appears to work even better than the NBL method. The difference 

between the NBL method and the TF.IDF method is that, the TF.IDF method 

uses the tf.idf metric to score document words while the NBL method uses the 

the Naïve Bayes estimation for P(tw|dw=tw). Intuitively, the NBL approach 

takes advantage of the training corpus for estimating the correlation between 

title words and document words, and therefore should create more appropriate 

title words than the TF.IDF method. Since the title word selection method is 
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intertwined with the bigram statistical language model for generating 

sequences, it may be due to the inference with the language model. Therefore, 

in addition, we compare the NBL method to the TF.IDF method by simply 

looking at the top six title words ranked by both algorithms. The ‘F1’ scores of 

both algorithms for the case of using and not using a statistical language model 

for word ordering are listed in Table 4.2. 

Table 4.2: F1 scores for the NBL method and the TF.IDF method. The first 
row corresponds to the case when no word ordering procedure is applied and 
the second row corresponds to the case when a bigram statistical language 
model is used for ordering words. 
F1 TF.IDF NBL 
Without word ordering 0.199 0.215 
With word ordering 0.197 0.154 
 

As indicated in Table 4.2, when we only look at the top title words selected by 

both methods, the NBL method did slightly better than TF.IDF. However, 

after applying the n-gram language model to order words, the F1 score for 

NBL method drops significantly while for the TF.IDF method, the F1 score 

appears to be almost unchanged. This comparison suggests that, even though 

the NBL method did a reasonable job of scoring title words on the top of the 

rank list, it may do poorly for the title word candidates that are not in the top. 

In Figure 4.1, we plot the distribution of normalized scores over different 

ranks for both the NBL method and the TFIDF method. The normalized score 

is defined as the original score of a title word divided by the score of the title 

word ranked as #1. According to Figure 4.1, the distribution of normalized 

scores for the NBL method drops much more quickly than that of the TFIDF 

method. Therefore, for title word candidates in the tail of the rank list, the 

NBL method always gives them similarly small values. This fact implies that 

the NBL method may have a poor estimation for words that are not in the top 
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of the rank list. Since a bigram statistical language model is used to make a 

smooth sequence out of the selected title words, it can pull out words in the tail 

of the rank list, and words on the top of the rank list may not be used in the 

sequence. Therefore, not only do the scores of words on the top of the rank list 

matter but also the scores of words in the tail. Based on this analysis, we think 

that the reason why the NBL method does poorly after the title words are 

ordered may be attributed to the fact that the NBL method may have a poor 

estimation for words in the tail of the rank list. 

As the summary of this experiment, we conclude that the success of the NBL 

approach is due to the constraint that any word in the document can only 

suggest itself as a title word. Furthermore, based on the fact the NBF method 

fails miserably in selecting good title words and the NBL method performs 

worse than the simple TFIDF method, we find that the Naïve Bayes estimation 

for P(tw|dw) appears to be problematic. To show visually how these methods 

are different from each other, we include 5 samples of titles generated by these 

three methods in Table 4.6-4.8, respectively. For the purpose of reference, we 

listed the author-assigned titles in Table 4.14.  

4.4.2 Comparison of Title Word Selection Methods 

In the subsection, we will examine the effectiveness of six different title word 

selection methods that have been discussed before. They are: 

1) A Naïve Bayes approach with limited vocabulary (NBL), which has been 

described in Chapter 2. 

2) A decision tree approach (DT) as described in section 4.1.1. For each title 

word ‘tw’, a decision tree is built with the stop criterion that either at least 

95% of the documents under a node are ‘pure’ (e.g., either all 95% of the 

documents under that node have title word ‘tw’ or don’t) or the number of 
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documents under that node is no more than 3. Non-binary decision trees 

are built in the similar way except term frequencies are also used for 

splitting documents. The possible term frequencies that can be used for 

splitting a document set is {1, 2, 4, 6, 8, >8}. Since both binary decision 

tree and non-binary decision tree have the identical performance, we 

simply refer them as a decision tree approach. 

3) A k nearest neighbor approach (KNN) as described in section 4.1.2. In the 

experiment, we take the top five training documents that are most similar 

to the test document and use them to create a new title for the test 

document. More specifically, the word distribution in the titles of the top 

five most similar documents are used to estimate P(tw|D). 

4) A nearest neighbor approach (NN) as described in section 3.3.1. This is the 

KNN approach with K=1. Furthermore, unlike most other approaches, 

which rely on a bigram statistical language model to order selected title 

words into sequences, this method simply uses the title of the training 

document that is most similar to the test document as the generated title. 

5) The reverse information retrieval approach (IR) as described in Section 

4.2. A representation vector for each title word is computed using Equation 

(4.3). Then, the similarity between the representation vector of each title 

word ‘tw’ and the term vector of test document D is computed as the 

estimation for P(tw|D).  

6) A statistical machine translation approach (ST) as described in 4.3.2. A 

EM algorithm is used for computing P(tw|dw) according to Equation (4.8) 

and (4.9).  
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For all these six methods, the top 100 title words with the highest scores of 

P(tw|D) are selected and a bigram statistical language model is used to create a 

title sequence with six words from the 100 selected title words. We tried out 

various number of top selected title words, ranging from 100 to 300 and all of 

them turn out to have almost identical F1 scores. Therefore, in this experiment 

and all the experiments in the later part of this thesis, we will always use the 

top 100 selected title words as the candidates of title words. Table 4.3 lists the 

F1 results of the six different title word selection methods for both the case of 

using the word ordering procedure and the case of not using the word ordering 

procedure.  

Table 4.3: F1 scores for six different title word selection methods, namely the 
Naïve Bayes approach with limited vocabulary (NBL), the decision-tree 
approach (DT), the K nearest neighbor (KNN), the nearest neighbor approach 
(NN), the reverse information retrieval approach (IR) and the statistical 
translation approach (ST). Results for cases of using word ordering and not 
using word ordering are listed. 
F1 NBL DT KNN NN IR ST 
w.o ordering 0.215 0.201 0.220 0.219 0.235 0.228 
w.i ordering 0.154 0.187 0.212 0.219 0.220 0.223 
 

First, comparing the results for the case of using the word ordering procedure 

to the case of not using the word ordering procedure, we can see that the F1 

scores of all the methods degrade except for the nearest neighbor method, 

which doesn’t use the procedure of title word ordering. Among them, the NBL 

method suffers the most significant degradation, as already discussed in the 

previous section. For all other methods, the degradations are less significant.  

Secondly, for the case of not using title word ordering, the six different 

methods perform similarly. The reverse information retrieval method (IR) 

achieves the best performance with F1 = 0.235 and the statistical translation 
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method has the second best performance with F1= 0.228. In contrast, for the 

case of using the word ordering procedure, the difference between the six 

different approaches are quite significant. The DT approach and the NBL 

approach perform substantially worse than the other four methods. The four 

methods, namely the KNN method, the NN method, the reverse IR method 

and the ST method, achieve similar performance, ranging from 0.212 to 0.223. 

The ST method performs slightly better than the other three methods. The 

reason that the NBL approach and the decision tree approach perform worse 

than the other four methods is because both these two approaches only use a 

small subset of words in the document as the evidence to determine the title 

words, while the other four methods are able to examine all the words in the 

document. By examining decision trees for title words, we find that 78% of 

decision trees have no more than 3 layers. In order to see the difference 

between these two set of approaches further, we plot the distribution of 

normalized scores over different ranks for five methods in Figure 4.1 (the NN 

method doesn’t score title words). The normalized score is defined as the score 

of a title word candidate divided by the score of the title word ranked as #1. As 

indicated in Figure 4.1, we can see two different types of behaviors: for the 

methods NBL and DT, the normalized score drops very quickly and title word 

candidates in the tail of the rank list have extremely small scores. Whereas for 

the methods KNN, ST and IR, the normalized scores over different ranks 

change much more smoothly and the title word candidates in the tail can still 

have reasonably large scores. This is consistent with the fact that the NBL 

method and the Decision Tree method only consider a small number of 

evidence for selecting title words, which makes the scores for title words in the 

tail of the rank list significantly smaller than that of title words on the top of 

the list. For the methods KNN, ST and IR, they are able to use all words in a 
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document as evidence to compute the scores of title words and therefore even 

the title words in the tail of the rank list can still have reasonably large values. 

Based on the above observations, we can conclude that a title word selection 

method that is able to use many document words as evidence for selecting title 

words will usually result in a better F1 score. Of course, we should be careful 

with this statement. Recall that in the previous section we found that the NBF 

method performs extremely poorly compared to other methods. Even though 

both the NBF method and the ST method have similar combination form in 

terms of taking into account the opinion of all the document words (compare 

Equation (4.7) with Equation (4.4)), the ST method performs significantly 

better than the NBF method. This phenomenon can be explained by their 

different ways of estimating the conditional probability P(tw|dw) as already 

discussed in section 4.3.2. For the NBF method, the likelihood P(tw|dw) is 

computed without taking into account the correlation between different 

document words. Whereas, for the ST method, as explained in section 4.3.2, 

the competition between different document words has been considered in the 

EM algorithm. Therefore, the ST approach gives a better estimation for 

P(tw|dw) than the NBF method, which leads to better titles. Again, the fact 

that the ST method outperforms the NBF method indicates the importance in 

estimating P(tw|dw). 
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Figure 4.1: The distribution of normalized scores for different ranks of 
selected title words for methods KNN, IR, NBL, ST, TFIDF and DT. The 
normalized score is defined as the score of a title word candidate divided by 
the score of the #1 ranked title word. 
 

The other interesting observation is based on the comparison of the F1 score of 

the KNN method to that of the NN method. Even though the KNN method 

composes the title for the test document using the top five most similar 

training documents, it doesn’t outperform the nearest neighbor (NN) approach, 

which only looks at the top one most similar training document. On the 

contrary, the KNN performs slightly worse than the NN approach. To further 

investigate the influence of different K values on the quality of generated 

titles, we did experiments with K=3, 4, 5, 10, 20 and the F1 scores for those 

KNN approaches are listed in Table 4.4. As indicated from Table 4.4, 

increasing the value of K doesn’t help the F1 score. In contrast, when K is set 

to be large, such as K=20 in Table 4.4, the F1 score drops substantially. First, 

the reason that the NN approach outperforms the KNN approach can be 

explained by the fact that the nearest neighbor approach doesn’t rely on a 
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bigram statistical language model to form word sequences. As indicated by the 

comparison of F1 scores between the case of using word ordering and the case 

of not using word ordering in Table 4.3, we can see that usually the word 

ordering procedure is going to bring down the F1 score. Therefore, for the 

KNN approach, due to the word ordering procedure by a bigram statistical 

language model, it doesn’t improve the F1 score. The other explanation could 

be that the top few retrieved documents are much more similar to the test 

document than other retrieved documents. In order to see if this is correct, we 

plotted the distribution of the normalized scores of retrieved documents over 

different ranks in Figure 4.2. The normalized score is defined as the score of a 

retrieved documents divided by the score of the ranked 1 retrieved document. 

According to Figure 4.2, the normalized score of retrieved documents drops 

much faster at the beginning of the distribution than at the tail. Since a 

similarity score for a document implies the relevance of that document to the 

test document, from Figure 4.2, we can infer that most relevant documents 

probably concentrate at the top of the retrieval list and therefore increasing K 

to a large value will not provide more valuable information for creating titles.  

Table 4.4: F1 scores for the K nearest neighbor approach using different K 
values 
K 1 3 4 5 10 20 
F1 (w.i. word ordering) 0.219 0.210 0.210 0.212 0.212 0.173 
 

Finally, the reverse IR approach performs well, only slightly worse than the 

ST method. Unlike the ST method, which relies on a EM algorithm to 

compute P(tw|dw), the reverse IR method has an analytic solution as shown in 

Equation (4.3) and the scores of title words for a test document can be 

computed using a standard text retrieval engine. Therefore, the reverse IR 

method is computationally cheaper than the ST method. However, on the other 
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hand, the reverse IR method is non-statistical method and therefore the output 

scores for title words don’t have the probabilistic interpretation. This defect 

makes it difficult for the reverse IR method to be incorporated into a 

probabilistic framework, whereas the ST method can be easily used as a 

component of a probabilistic framework.  
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Figure 4.2: The distribution of normalized similarity scores over different 
retrieval ranks for the KNN method. The normalized score is defined as the 
score of a retrieved document divided by the score of the #1 retrieved 
document. 
 

Table 4.5: The averaged human judgments for six different title word 
selection methods, namely the Naïve Bayes approach with limited vocabulary 
(NBL), the decision-tree approach (DT), the K nearest neighbor (KNN), the 
nearest neighbor approach (NN), the reverse information retrieval approach 
(IR) and the statistical translation approach (ST). 
 NBL DT KNN NN IR ST 
Human 
Judgments 

2.0 2.3 2.8 3.0 2.5 2.5 
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In order to further justify the quality of the machine-generated titles by these 

six different methods, we employ a human subject to evaluate the quality of 

those titles. 200 documents out of the 10,000 test documents are randomly 

chosen and titles of those documents are sent for human judgments. The 

results are listed in Table 4.5. Comparing Table 4.5 to 4.4, except the titles 

generated by the K nearest neighbor approach (including the KNN method and 

the NN method), the F1 scores of all the other methods are consistent with the 

human judgments. Titles generated by the KNN method are much smoother 

than the titles generated by other methods and therefore gain significantly 

better judgments by the human subject. Furthermore, the fact that the result of 

KNN (K=5) is worse than the NN method is because the NN method doesn’t 

rely on the n-gram statistical language to order the selected title words while 

the KNN method does. To get a sense of the titles generated by these methods, 

we listed 5 examples of machine-generated titles by each of the six methods in 

Table 4.8 to 4.13. The reference titles for the same set of documents are listed 

in Table 4.14, and the transcripts of the original documents are included in the 

appendix at the end of this dissertation. 

4.5 Conclusion 

In this chapter, we examine five different methods for title word selection 

other than the Naïve Bayes approach with a limited vocabulary. They are the 

decision tree method, the K nearest neighbor method (KNN), the Naïve 

Bayesian method with a full vocabulary (NBL), the reverse information 

retrieval method (IR) and the statistical translation model (ST). All these 

methods try to address two defects with the original NBL method, namely how 

to use all the words within the documents as hints for selecting appropriate 
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title words and how to estimate the conditional probability P(tw|dw). 

Compared to the decision tree and Naïve Bayes methods, the statistical 

translation method, the reverse information retrieval method and the K nearest 

neighbor approach appear to be the best title word selection methods. 

Empirical studies show that these three methods perform significantly better 

than the NBL method and the decision-tree method in terms of F1 score and 

human judgments. Empirical studies also show that the K nearest neighbor 

approach has significant advantage over other method in terms of human 

judgments due to the smoothness of the generated titles. Based on the good 

performance of the statistical translation method and its flexibility in adding 

more probabilistic components compared to other methods, later in this thesis, 

unless explicitly specified, we will always use the statistical translation method 

for title word selection.  

Table 4.6 Example titles generated by the NBL method (Notice that all the 
stopwords are removed). The reference titles for the same set of documents are 
listed in Table 4.14 and the original documents are included in the Appendix. 
ID NBL 
1 congress latest plastic documents landmark patrol 
2 jazz violinist kreme kremes tango music 
3 nichols jury selection timothy mcveigh trial 
4 news week stock market gains tax 
5 russian space mir computer news morning 
 

Table 4.7 Example titles generated by the NBF method (Notice that all the 
stopwords are removed). The reference titles for the same set of documents are 
listed in Table 4.14 and the original documents are included in the Appendix. 
ID NBF 
1 interview chairman president clinton news week 
2 interview ceo discusses business news week 
3 timothy mcveigh oklahoma city bombing trial 
4 top financial news week stock market 
5 business news week space station mir 
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Table 4.8 Example titles generated by the TF.IDF method (Notice that all the 
stopwords are removed). The reference titles for the same set of documents are 
listed in Table 4.14 and the original documents are included in the Appendix. 
ID TF.IDF 
1  illegal immigration border green cards card 
2  classical music classics violinist play argentina 
3  jury selection timothy mcveigh defense attorneys 
4  capital gains tax dean witter Reynolds 
5  mir computer earth space mark Moscow 
 

Table 4.9 Example titles generated by the decision tree (DT) method (Notice 
that all the stopwords are removed). The reference titles for the same set of 
documents are listed in Table 4.14 and the original documents are included in 
the Appendix. 
ID Decision Tree (DT) 
1 illegal immigrants card fraud california technology 
2 jazz masters master center concert festival 
3 jury selection oklahoma city bombing trial 
4 stock market technology stocks wall street 
5 earth space mission update murder investigation 
 

Table 4.10 Example titles generated by nearest neighbor (NN) method (Notice 
that all the stopwords are removed). The reference titles for the same set of 
documents are listed in Table 4.14 and the original documents are included in 
the Appendix. 
ID Nearest Neighbor (NN) 
1  aliens fake documents 
2  tango takes hold women argentina 
3  oklahoma city bombing trial begin Denver 
4  expert discusses stock market 
5  crisis mir 
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Table 4.11 Example titles generated by K nearest neighbor (KNN) method 
(Notice that all the stopwords are removed). The reference titles for the same 
set of documents are listed in Table 4.14 and the original documents are 
included in the Appendix. 
ID K Nearest Neighbor (KNN) 
1 immigrant increase illegal aliens fake documents 
2 living classics violinist maxim vengerov argentina 
3 Jury selection oklahoma city bombing trial 
4 expert discusses stock market news week 
5 problems mir repair space station back 
 

Table 4.12 Example titles generated by the reverse information retrieval (IR) 
method (Notice that all the stopwords are removed). The reference titles for 
the same set of documents are listed in Table 4.14 and the original documents 
are included in the Appendix. 
ID Reverse Information Retrieval (IR) 
1 credit card fraud counterfeit illegal immigration 
2 newsroom violinist tango classical music band  
3 Mcveigh jurors jury selection oklahoma bombing  
4 financial stocks sends stock market heights  
5 mir's oxygen docks mir cosmonauts repair  
 

Table 4.13 Example titles generated by the statistical translation (ST) method 
(Notice that all the stopwords are removed). The reference titles for the same 
set of documents are listed in Table 4.14 and the original documents are 
included in the Appendix. 
ID Statistical Translation Model (ST) 
1 ins fake cards illegal immigration week  
2 entertainment tango violinist classical music band  
3 mcveigh jurors sluggishly selection oklahoma bombing  
4 stocks dow sends stock market heights  
5 Mir's crew mir cosmonauts repair mission  
 



 79

 

 

Table 4.14 Examples of reference titles for 1997 broadcast news (Notice that 
all the stopwords are removed). The corresponding documents are included in 
the Appendix. 
ID Reference Titles 
1 illegal immigration  
2 tango homage  
3 Jury selection mcveigh trial continue tomorrow  
4 expert discusses stock market  
5 power outage space station mir  
 

Table 4.15 Example titles generated by the AutoSummarization function of 
Microsoft Word (Notice that all the stopwords are removed). The second line 
is empty because Microsoft Word couldn’t come up with a short 
summarization. The reference titles for the same set of documents are listed in 
Table 4.14 and the original documents are included in the Appendix. 
ID Automatic Summarization (AutoSummarize) 
1 even green card 
2  
3 stephen jones mcveigh's attorney  
4 katharine stocks resumed their slide wednesday  lou  
5 good morning mark  mike   
 

 

 

 

  



 80

C h a p t e r  5  

FORMALIZATION OF THE TITLE GENERATION MODEL 

In the last chapter, we examine different methods for title word selection. 

However, we still work within the framework proposed by Witbrock and 

Mittal (1999), where a process of title generation is divided into a phase of title 

word selection and a phase of title word ordering, and the phase of word 

ordering is accomplished using the n-gram statistical language model. As 

pointed out in section 2.2, the idea of using the sequence probability P(T) to 

order the selected title words appears to be problematic. In this chapter, we 

will first formalize the problem of title generation more carefully and then 

come up with a better solution for automatic title generation. 

5.1 Formalization of the Title Generation Model 

The goal of the title generation model is to find an appropriate title for a given 

document. From the viewpoint of probability theory, the task can be 

interpreted as the search of a word sequence T for document D such that 

likelihood P(T|D) is maximized, or 

)|'(maxarg
'

DTPT
T

=  (5.1) 

To come up with a word sequence T for the document D, we have to decide 

two things, i.e. what words should be used in the sequence and how should we 

order them. Let word set {tw∈T} stand for words used in the sequence T and 
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O(T) stand for the word order in the sequence T. Word sequence T can be 

written as T={tw∈T}^O(T) and likelihood P(T|D) can be expanded as: 

)},{|)(()|}({
)|)(}^({)|(

DTtwTOPDTtwP
DTOTtwPDTP

∈∈=
∈=  (5.2) 

As seen from Equation (5.2), the likelihood is expressed as the product of two 

terms, namely term P({tw∈T}|D) and term P(O(T)|{tw∈T},D). Term 

P({tw∈T}|D) stands for the probability of using the set of words {tw∈T} as 

title words for a given document D, and therefore corresponds to the phase of 

title word selection. Term P(O(T)|{tw∈T},D) is a new term, which doesn’t 

appear in the old framework for automatic title generation (e.g. Equation 

(2.1)). Since P(O(T)|{tw∈T},D) stands for the probability of using word order 

O(T) given the content of document D and the set of selected title words 

{tw∈T}, it can be treated as a correspondence to the phrase of title word 

ordering. Compared to the old framework, where probability P(T) is used for 

ordering selected title words, P(T) and P(O(T)|{tw∈T},D) are two different 

terms. Interestingly, since a word sequence T can be written as 

T={tw∈T}^O(T), we can decompose P(T) as 

})({}){|)(()( TtwPTtwTOPTP ∈∈= . The first term in the decomposition, 

i.e., P(O(T)|{tw∈T}), appears to be similar to P(O(T)|{tw∈T},D) except that  

given document D is not included in the evidence set. Therefore, term P(T) is 

going to perform a similar function as term P(O(T)|{tw∈T},D) except that in 

the old framework, the content of given document D is not used for word 

ordering. Furthermore, the decomposition of P(T) contains an extra term 

P({tw∈T}) which has nothing to do with the word ordering. Since P({tw∈T}) 

stands for the probability of using the set of words {tw∈T} as title words, term 

P(T) will not only favor word sequences in correct word order but also 
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sequences with common title words, which is not desirable for the phase of 

title word ordering. Based on the above analysis, we can see that using P(T) to 

order selected title words is not appropriate because it ignores the influence of 

the test document on the word ordering and may favor word sequences with 

common words. To improve the phase of title word ordering from the previous 

framework, we need to do a better estimation for term P(O(T)|{tw∈T},D). 

5.2 Estimation of P(O(T)|{tw∈T},D) 

One simple way to estimate the likelihood P(O(T)|{tw∈T},D) is to ignore the 

evidence D. Then, we can simplify P(O(T)|{tw∈T},D) as 

})({
)(

})({
))(}^({

}){|)(()},{|)((

TtwP
TP

TtwP
TOTtwP

TtwTOPDTtwTOP

∈
=

∈
∈

=

∈≈∈
 (5.3) 

As indicated by the above equation, term P(O(T)|{tw∈T},D) is approximated 

as the ratio of P(T) to P({tw∈T}). Unlike the previous framework where P(T) 

is used directly for ordering title words, in Equation (5.3), by dividing P(T) by 

P({tw∈T}), we are able to remove the factor that P(T) favors sequences with 

common words. In order to illustrate this point, let’s reconsider the example 

used at end of Chapter 2, which is a collection of three identical documents 

D={‘A’, ‘B’, ‘C’, ‘D’}, and two of them have title ‘A B’ and one has title ‘C 

D’. If the test document is also D, according to the NBL method, the ratio 

P(T=‘A B’|D)/P(T=‘C D’|D) is 8 while the true ratio is 2. On the other hand, 

using Equation (5.3), the computed ratio is only 4 (notice that P({‘C’, ‘D’}) = 

1/3 and P({‘A’, ‘B’}) = 2/3), which is closer to the true ratio 2 than the ratio 

estimated by the NBL method. The leftover overestimation is due to the 

independence assumption used in the process of generating title words. 
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Of course, the approximation in Equation (5.3) ignores the influence of the test 

document on the word order of the generated title. In the later discussion of 

P(T), we will consider how to incorporate the content of  the test document 

into the estimation of the title language model, which provides room for the 

test document to have influence on the determination of appropriate word 

order for its title.  

Combining Equation (5.2) with (5.3), we have 
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∈

≈

∈∈=

 (5.3’) 

The above equation states the basic idea of this new framework. Comparing 

Equation (5.3’) to Equation (2.1), the biggest difference is the introduction of 

the new term P({tw∈T}), which alleviates the problem in using P(T) for 

ordering title words because P(T) can favor title sequences with common 

words. For the easy reference, we call the model specified in Equation (5.3’) a 

‘direct model’. The reason for that will be clear in the section 5.7 when we 

compare this model to the model used for automatic speech recognition. 

According to Equation (5.3’), the proposed ‘direct model’ has three major 

components: P(T), P({tw∈T}) and P({tw∈T}|D). In the following sections, 

we will discuss these three components separately. 

5.3 Estimating P(T) 

In order to estimate P(T), we can use the n-gram statistical language model 

(Clarkson & Rosenfeld, 1997). More specially, if word sequence T is written 

as ‘tw1 tw2… twn’, we can write the probability P(T) as 
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In the last step of Equation (5.4), instead of using all the words in the history to 

determine the appropriate word ‘twi’ for the current position, we only consider 

the word at the previous position and assume that words beyond the last 

position will have little influence on the choice of the word for the current 

position. This is called a bigram statistical language model. Clearly, we can 

have different cut offs in the word history. The longer we keep the word 

history, the more accurate the model will be. When the last two words in the 

history are kept for predicting the current word, namely )|( 21 −− twtwtwP , we call 

it a trigram statistical language model. On the other hand, if we keep a long 

history for predicting the word at the current position, we may suffer severely 

from the sparse data problem in estimating )...|( 121 −ii twtwtwtwP  because the 

longer the word history is, the more parameters we have. More details about 

the statistical language model can be found in (Katz, 1987; Baul, 1989; 

Niester, 1996). 

According to Equation (5.4), the core part of the bigram statistical language 

model is the set of conditional probabilities {P(twi|twi-1)}, which can be 

estimated by simply counting the number of times that phrase ‘twitwi-1’ 

appears in the training titles and dividing it by the number of occurrence of 

word ‘twi-1’ in the same training data. However, there are two problems with 

this simple approach: 

1. Sparse data problem. Due to the limited amount of training data, many 

two-word phrases may not appear in the training corpus. By simply 

counting their frequency, we will always have a zero probability for any 
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two-word sequence that is not observed in the training data. Methods such 

as Good Turing and ‘back off’ (Jelinek, 1999) have been widely used in 

the speech recognition community in order to smooth the estimation by 

simple counting. But, for titles, because the amount of title data used for 

training a title language model is considerably smaller than the data used 

for training a document language model (considering each title only 

consists of an average of six words while each document usually contains 

hundreds of words), the problem can be more severe, even with the help of 

standard smoothing methods. This suspicion is further confirmed by the 

experiment of automatic title generation using a trigram language model, 

which results in a F1 score worse than a simple bigram language model. 

Therefore, we may need methods other than Good Tuning and ‘back off’ 

methods to alleviate the sparse data problem in training a title language 

model. 

2. Word order independence problem. If we only rely on the title data in the 

training set to build up the title language model, the resulting estimation of 

word order will be independent from the content of the test document. 

Clearly, this word order independence problem can give rise to completely 

wrong titles. For example, the content of the original document is about 

U.S. air fighters bombing Iraq. However, due to the ignorance of the 

content of the test document, the generated title can be ‘Iraq bombed U.S.’. 

Therefore, we may need to incorporate the content of the test document 

into the title language model. 

In the following sections, we will examine these two problems separately. 



 86

5.3.1 Sparse Data Problem 

In speech recognition, the sparse data problem has been one of the biggest 

problems in creating a reliable language model. The main ideas for alleviating 

the sparse data problem are: adding more training examples or introducing 

some kinds of smoothing strategies. In this section, we will consider three 

methods that have potential to alleviate the sparse data problem in training a 

title language model. 

5.3.1.1 Incorporating Document Data into Training Set 

The simplest way to deal with the sparse data problem is to add more training 

data. Even though the amount of title data is small, the corresponding 

document data is large. Therefore, we can use documents as extra training data 

for training a title language model by assuming that both documents and titles 

are created from a similar language model. The advantage of this approach is 

the significant expansion of training data. However, the disadvantage of this 

approach is that, since documents and titles are two different sets of objects, 

they should be created from different underlying stochastic procedures. 

Mixing together document data and title data for training a title language 

model can severely dilute the characteristics of the ‘true’ title language model. 

As a result, the estimated P(tw|tw’) and P(tw) may not be able to reflect the 

correct composition of titles. 

5.3.1.2 Class based Language Model 

In the ‘back off’ approach, a bigram probability P(tw’|tw) will be estimated by 

unigram probability P(tw’) whenever the phrase “tw’ tw” is not observed in 

the training data. When the data are extremely sparse, many bigram 

probabilities will be backed off to the corresponding unigram probabilities, 

which can significantly degrade the estimation. One way to improve the 

quality of estimation is to avoid the direct back off of a bigram probability to 
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the corresponding unigram probability by introducing a class variable for each 

word. That is called the class (category) based language model (Niesler, 1997). 

The main idea can be stated as follows: Let C be the function that maps a word 

to a class and C(w) stand for the mapped class for word ‘w’. An example of 

such a class can be the part of speech tagging (POS) and the corresponding 

mapping function C is the speech-tagging algorithm that tags each word with 

ones of the predefined POS. With the class function C, the original conditional 

probability P(tw’|tw) can be written as P(C(tw’), tw’|tw). So, if the word pair “ 

tw tw’ ” doesn’t appear in the training corpus, instead of relying on the 

unigram language model to estimate the bigram probability, we can back off to 

conditional probability P(tw’|C(tw’))P(C(tw’)|tw), i.e., first generate the class 

of words C(tw’) and then generate the actual word “tw’” from the estimated 

class C(tw’). As the last step, if we still haven’t observed the combination “ tw 

C(tw’) ” in the training corpus, we will then back off to the probability P(tw’). 

As you can see from the above analysis, by introducing the class information 

for each title word, we are able to avoid the direct jump from a bigram 

probability to a unigram probability in the back off approach. In our 

implementation, we use the part of speech (POS) as the class variables and the 

toolkit used for extracting the POS information is downloaded from the web 

site of Infogistics (http://www.infogistics.com/posdemo.htm). 

5.3.1.3 Long Distance Language Model 

The other approach to avoid the sparse data problem is to examine more 

evidence in the word history. As indicated in Equation (5.4), for a bigram 

statistical language model, in order to decide how likely it is that the word twi 

will be used for the i-th position, we will only look at the word at the previous 

position twi-1 and if the word twi-1 provides no clue for the determination of 

twi, we will use the ‘back off’ approach, which is to determine word twi by the 

unigram probability P(twi) with some discounts. However, there could be 
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words in the depth of the word history that can help with the choice of the 

word twi. By taking into account more words in the history, we are able to 

collect more hints for the selection of words for the current position. In the 

speech recognition community, several language models with consideration of 

long distance dependency have been proposed. They are the trigger model 

(Rosenfeld, 1994), the structured language model (Chelba, 1997) and the 

multi-span language model (Bellagarda, 1998). The difference between them 

is the way that they capture the long distance dependency. The structured 

language model relies on the syntactic structure of a sentence to find the most 

relevant evidence in the long history while the trigger model and multiple-span 

language model capture the long distance dependency by extracting useful 

semantic evidence out of the word history.  

In this thesis, we consider a very simple long distance language model. The 

basic idea is similar to the trigger model (Rosenfeld, 1994), namely combining 

more words in the deep history to predict the word for the current position. In 

the trigger model, the most informative triggers are the cases when a word in 

the history repeats itself at the current position. For a title, it is unlikely that the 

same word appears twice in a single title. Therefore, we have to take into 

account all the words in the history. Furthermore, for the sake of simplicity, 

we take the linear approach for combining the predictions of all the history 

words. More specifically, the likelihood P(twi|tw1 tw2… twi-1) is approximated 

as a linear expansion of the following expression, i.e., 
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As illustrated by Equation (5.5), to decide the appropriate word for the i-th 

position, we will use all the words in the history and weight their opinions 
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based on their distances from the current position. Thus, we are going to have 

two sets of parameters: P(w|w’), i.e. the parameters for the correlation between 

words, and P(i-j), i.e., the parameters for the correlation between different 

positions. Notice that a simple bigram language model is a special case of the 

‘long distance language model’ by simply setting P(k)=δ(k,1). To obtain the 

estimation for both sets of parameters, we can deploy the Expectation-

Maximization (EM) algorithm (Dempster, 1977). The updating equations of 

the EM algorithm for P(w|w’) and P(i-j) are: 

∑ ∑
∑

∑
∑

= +>
−+

=

=

=

++−++

+++
=

−

−
=

0 }|||{
1

1

0

,...},...,'...,{
),'(

1

)),(|)1,(()1(

)())1,(|)1,((1)('

)),(|)),'(,(()),'((

)),(),'(()|'(
)(

1)|'('

k klTT
kl

j

twtwT
Ttwpos

j

jTwklTwPjklP

lPkTwlkTwP
Z

lP

jTwTtwposTwPjTtwposP

TtwposTtwposPtwtwP
twZ

twtwP

 

(5.6

) 

where the pos(tw,T) stands for the position of word ‘tw’ in title ‘T’ and w(T,j) 

stands for the j-th word in the title T. Both Z(tw) and Z0 are normalization 

factors. 

According to the above discussion, the advantage of this ‘long distance 

language model’ is that all the words in the history are involved in selecting 

words for the current position. Therefore, we may not suffer from the sparse 

data problem as severely as the bigram language model. However, this may 

not be true. Due to the Markov nature of natural languages (i.e., Shannon’s 

game), the previous word will be most informative to the choice of the current 

word. Therefore, we may expect a very quick decrease in the distribution of 

P(k=i-j) in Equation (5.5), which can significantly limit the influence of words 

in the long history on the choice of the current word. 
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5.3.1.4 Experiments 

In this subsection, we are going to compare the proposed three language 

models to the simple bigram language model for estimating P(T). The basic 

setup of this experiment is same as that stated in section 4.4, namely the CD of 

broadcast news of 1997 is used as the testbed with 40,000 training document-

titles and 10,000 test document-titles. The statistical translation method is used 

for title word selection. For the class-based language model, we use the part of 

speech tags (POS) as the class labels of words. For the long distance language 

model, we use the last five words in the history to predict the current word. For 

each method, the generated titles are of six words. The evaluation metric used 

in this experiment is F1. Table 5.1 lists the F1 results for all four different 

language models.  

Table 5.1: F1 scores for four different language models. 
 Bigram LM Bigram LM +

Documents 
Class-based 
LM 

Long 
distance 
LM 

F1 0.223 0.197 0.214 0.220 
 

Surprisingly, nothing works better than the simple bigram language model. 

The idea of incorporating the documents into the training data for building up 

a title language model works worst. We think it is because documents and 

titles are two different sets of objects and therefore simply using the mixture of 

documents and titles to train a statistical title language model will dilute the 

special word-to-word correlation in titles. In order to show that documents and 

titles are different in statistics, we examine the unigram language models of 

these two types of objects and compute the averaged ratio 

)|(/)|( doctitletitle MwPMwP +  over all the title words. The averaged ratio is 2.4. 

The fact that this ratio is substantially larger than one indicates that the 
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language model of documents is actually quite different from the language 

model of titles. The fact that the class-based language model is not able to 

improve the standard bigram language model is consistent with what people 

found in automatic speech recognition, where the class based language model 

only gives very modest improvement in the word error rates even though it is 

able to decrease the perplexity of training data noticeably (Jurafsky & Martin, 

2000). The failure of the linear long-distance language model is because the 

position-dependent correlation probabilities P(k=i-j) decrease very quickly 

when the two words are far away. Therefore, even though the long-distance 

language model tries to collect all the hints in the history for the prediction of 

the current word, the multiplication of the position-dependent correlation 

probabilities P(k=i-j) with the word-dependent correlation probabilities 

P(w|w’) in Equation (5.5) causes the influences of words in the deep history to 

become almost negligible. The distribution of position-dependent correlations 

P(K) at different distance K (i.e., i-j) are plotted in Figure 5.1, which clearly 

indicates a strong exponential decay in P(K). Due to this defect, the long 

distance language model expressed in Equation (5.5) has not been able to 

improve the standard bigram language model. In conclusion, even though two 

methods have been tried in order to deal with the sparse data problem in 

training a bigram title language model for titles, neither of them is able to 

improve the F1 scores. This is similar to the situation in automatic speech 

recognition, where many sophisticated language models have been proposed 

but almost none of them is able to improve over the trigram statistical 

language model noticeably, particularly in terms of the word error rate. 
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Figure 5.1: The distribution for the position-dependent correlation P(K) over 
different positions. The horizontal axis represents the distance between words 
and the vertical axis represents the probability distribution of position-
dependent correlation. 
 

5.3.2 Word Order Independence Problem  

In order to incorporate the content of the test document into the determination 

of word order for the created title, we need to consider two different types of 

language models, namely the language model for titles (i.e., MT), and the 

language model for the test document D (i.e., MD). In the simple bigram 

language model, P(T) is estimated using only the title language model MT. The 

simplest way of putting these two language models together is to use the 

mixture of language models MT and MD as the ‘expanded title language 

model’, and order the selected title words using the ‘expanded title language 

model’. More specifically, we can write P(T) as P(T|MT,MD) and expand it as 

a linear combination of the estimations based on each individual language 

model, i.e., 
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where λ is the combination constant which falls into the region [0,1].  

Similar to the previous subsections, we use the CD of 1997 broadcast news as 

the testbed with 40,000 training document-titles and 10,000 test document-

titles. A statistical translation model is used for title word selection. The F1 

results for different smoothing constants λ are listed in Table 5.2. First of all, 

according to Table 5.2, for all different values of the smoothing constant λ, the 

mixture model always outperforms the simple title language model in terms of 

F1 score except when λ is 0.9. This fact indicates that the language model of 

the test document is useful in ordering title words. Secondly, the F1 score 

reaches the maximum value when the smoothing constant λ is 0.3. After that, 

increasing the smoothing constant λ only causes the F1 score to degrade. 

Particularly, when λ is 0.9, the performance degrades significantly. Therefore, 

even though the document language model is useful in creating title sequences, 

the title language model still plays an important role in determining the word 

order. In the later experiment, we will always use the smoothing constant λ 

equal to 0.3 whenever the expanded title language model is applied. 

Table 5.2: F1 scores for different smoothing constant λ. 
λ 0 0.1 0.3 0.5 0.7 0.9 
F1 0.223 0.237 0.247 0.241 0.231 0.170 
 

5.3.3 Conclusion 

In this subsection, we experimented with several different language models in 

order to address the sparse data problem and the word order independency 
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problem. Four different language models are proposed and examined, 

including a bigram title language model trained over the data of both titles and 

documents, a class-based language model using the part of speech tags, a 

linear long-distance language model, and the expanded title language model 

with a mixture of the original title language model and the language model of 

the test document. We find that only the ‘expanded title language model’ is 

able to outperform the baseline bigram language model in terms of F1 metrics 

and all the other language models don’t help the performance. Since the 

expanded title language model gives the best performance, in the later part of 

this thesis, unless explicitly specified, we will always use the expanded title 

language model for estimating P(T). 

5.4 Estimating P({tw∈T}) 

As illustrated in Equation (5.3’), the introduction of term P({tw∈T}) is able to 

compensate for the fact that P(T) favors word sequences with common words. 

In this section, we will discuss three different ways of estimating term 

P({tw∈T}), namely an unigram expansion method, an exponential model and 

an order expansion method. 

5.4.1 Unigram Expansion  

The simplest way of estimating probability P({tw∈T}) is to approximate it as 

the product of unigram probabilities, i.e., P(tw), under the assumption that 

each word ‘tw’ in the set {tw∈T} appears independently from each other. 

Therefore, the probability P({tw∈T}) can be simply written as, 

∏≈∈
∈Ttw

twPTtwP )(})({  (5.8) 
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One problem with this simple unigram estimation is that it will usually 

underestimate probability P({tw∈T}) when the set of words {tw∈T} are 

strongly correlated with each other. For example, say the words ‘President’ 

and ‘Clinton’ always come out together as ‘President Clinton’. Assuming that 

‘President Clinton’ occurs in one out of every hundred titles, we will have 

P(‘President’) = P(‘Clinton’} = 1/100. Therefore, using the unigram 

estimation, the probability P({‘President’, ‘Clinton’}) will be only 1/10000, 

which is much less than 1/100. In order to prove this idea more quantitatively, 

for the top 100 popular two-word phrases in titles, we compute the ratio of 

joint probability P({tw, tw’}) with respect to the unigram estimation for 

P({tw,tw’}), i.e. P(tw)P(tw’). This ratio is 2090, which indicates that the 

simple unigram expansion substantially underestimates the joint probability. 

5.4.2 Exponential Model  

To account for the fact that many title words are actually strongly correlated 

with each other, we consider a simple exponential model for the estimation. 

The exponential model is a well-known model that is able to handle correlated 

features (Pietra et al., 1997) better than the simple independence assumption. 

In general, to estimate the probability for a vector x, it assumes P(x) has the 

following form 

))(exp(1)( ∑≈
i

ii xf
Z

P αx  (5.9) 

where Z is the normalization constant, fi(x) is the i-th feature for the vector x 

and αi is the corresponding weight. By adjusting the weights for different 

features, the exponential model is able to take into account the correlation 

between features. For the case of estimating P({tw∈T}), we can treat each 

word as a feature and the whole set of words {tw∈T} can be viewed as a 
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feature vector. Then, similar to Equation (5.9), we can have P({tw∈T}) 

expressed as follows: 

)})({exp(1})({
'

''∑ ∈≈∈
tw

twtw Ttwf
Z

TtwP α  (5.10) 

where αtw’ stands for the weight for word ‘tw′’ and ftw’({tw∈T}) is a indicator 

function which will give 1 if the word ‘tw′’ belongs to the set {tw∈T} and 

zero otherwise. However, if we allow a free parameter for each word ‘tw′’, we 

will run into a serious problem of data sparseness. Therefore, in this thesis, we 

assume that parameter αtw has the following simple parametric form: 

)(ln twPtw αα =  (5.11) 

In the above expression for αtw, α is the only parameter to be decided and the 

difference between weights is determined by the unigram probability P(tw). 

Interestingly, if we substitute the expression for αtw (in Equation (5.11)) into 

the expression for P({tw∈T}) (Equation (5.10)), we will have 

∏∝∑≈∈
∈∈ TtwTtw

twPtwP
Z

TtwP )())(lnexp(1})({
}{

αα  (5.12) 

Different from the simple unigram expansion in (5.8), Equation (5.12) weights 

each unigram probability to power α. When α is set to be zero, the probability 

P({tw∈T}) becomes a constant, which means that the factor P({tw∈T}) is 

ignored. On the other hand, when α is set to be one, we go back to the simple 

unigram expansion as in Equation (5.8). To determine the optimal α, we 

simply do the exhaustive search over different values of α and find the one 

that results in the best performance for title generation.  
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In order to see the effectiveness of this exponential model, similar to previous 

experiments, we tested the exponential model in Equation (5.12) against the 

CD of 1997 broadcast news with 40,000 training document-titles and 10,000 

test document-titles. The titles are generated using the new model specified in 

Equation (5.3’), where term P({tw∈T}|D) is estimated using the statistical 

translation model and term P(T) is estimated using the expanded title language 

model as described in the last section. The F1 scores of the machine-generated 

titles for four different α values are listed in Table 5.3.  

As indicated in Table 5.3, when α is set to be one, namely a simple unigram 

expansion for estimating P({tw∈T}) is used, we have the worst performance, 

which indicates that the naïve independence assumption is not appropriate for 

the estimation of P({tw∈T}). Meanwhile, when α is set to be zero, term 

P({tw∈T}) is simply a constant according to Equation (5.12) and therefore we 

go back to the previous framework for title generation. As seen from Table 

5.3, the best performance is achieved with F1=0.261 when α is set to be 0.3. 

Table 5.3: F1 scores for different α values 
α 0 0.3 0.6 1 
F1 0.247 0.261 0.240 0.190 
 

5.4.3 Order Expansion  

As discussed in the previous subsection, by introducing the weight constant α, 

we are able to relax the independence assumption a little bit. In this subsection, 

we would like to consider another way of estimating P({tw∈T}) that is able to 

alleviate the problem of the independence assumption even more. 

The n-gram statistical language model has been proved to be an effective tool 

for estimating the probability for a word sequence, i.e. P(T). In order to apply 
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the n-gram statistical language model to estimate the probability for a set of 

words, i.e. P({tw}), we need to bridge the gap between a set of words {tw} 

and a word sequence T. Since a set of words {tw} can be transformed into a 

word sequence T by imposing a particular word order, we can expand P({tw}) 

over all possible word orders for {tw} as shown in Equation (5.13) and then a 

n-gram statistical language model can be used to estimate each P(S) within the 

sum. 

∑=∑=
=∈ }}{}'{|{

)()}^({})({
twStwSO
SPOtwPtwP  (5.13) 

In the above equation, symbol ‘O’ stands for a particular word order. As 

indicated in Equation (5.13), P({tw}) is expanded as the sum of probabilities 

of word sequences and each word sequence ‘S’ is created from the set of 

words {tw} with a particular word order ‘O’ . By applying a n-gram statistical 

language model to estimate every P(S) in the right side of Equation (5.13), we 

can obtain the estimation for P({tw}). 

In order to see why the order expansion can alleviate the problem with the 

word correlation, let’s consider two extreme cases: first consider the case 

when the set of words {tw} are loosely correlated, namely the set of words 

{tw} should not be used together. According to Equation (5.13), the P({tw}) is 

computed as sum of P(S) and each P(S) is computed as ∏ −∝
i

ii twtwPsP )|()( 1  

using a bigram language model. Since the set of words {tw} are loosely 

correlated, most conditional probabilities )|( 1−ii twtwP  will be small and thus 

the estimation of all P(S) will also  be small. As a result, the estimation of 

P({tw}) is small. On the other hand, let’s consider the best case, i.e., words 

{tw}are strongly correlated with each other. For example, consider the case 

when the set of words {tw} are actually extracted from a common sentence. 
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Then, if we put the set of words {tw} into the word order of the original 

sentence from which {tw} are extracted, the corresponding P(S) should be 

quite large, which will result in a large value for the estimation of P({tw}). In 

order to quantitatively show that the order expansion is able to take into 

account the word correlation better than the unigram expansion, for the same 

set of top 100 popular two-words title phrases as used in 5.4.1, we compute the 

ratio of P({tw, tw’}) to the estimation based on order expansion. The averaged 

ratio is only 1.03, which is significantly better than the averaged ratio achieved 

by the unigram expansion (i.e., 2090). 

However, one problem with using Equation (5.13) directly for estimating 

P({tw}) is the computational complexity in the sum. As a simple example, if a 

word set consists of ten different words, the total number of possible word 

orders exceeds 3 million. Therefore, computing the sum in Equation (5.13) 

directly is infeasible. However, we can apply the technique similar to the stack 

search (Jelinek, 1999) to eliminate majority of terms from the sum in Equation 

(5.13) using the assumption that there will only be a small number of word 

orders that can contribute significantly to the final value of P({tw}). In 

practice, for a given set of words, we start with a sequence S of zero length 

and add one word each time. Clearly, the number of different word sequences 

will grow exponentially if we keep on adding more words. To avoid this 

situation, with the assumption in mind that only a small number of word 

sequences are important to the estimation of P({tw}), we will only keep the 

top 1000 word sequences with the highest probabilities and throw away other 

less likely word sequences. When we add in the last title word, the probability 

of the top 1000 word sequences will be summed together as the approximation 

for the probability P({tw}). In this way, we are able to avoid computing the 

exponential number of terms within the sum but still achieve good estimation 

for the probability P({tw}). Furthermore, we have tried out different numbers 
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of word sequences that are kept for the estimation of P({tw}), ranging from 

2000 to 5000, and found that  their F1 scores are almost identical to the case 

when only the top 1000 word sequences are kept. More details about stack 

search can be found in (Jelinek, 1999). 

In order to see whether or not the order expansion method is effective for 

estimating P({tw∈T}), we conducted an experiment similar to what is stated 

in the last subsection with 40,000 training document-titles and 10,000 test 

document-titles. The titles are generated using the new model specified in 

Equation (5.3’), with term P({tw∈T}|D) being estimated by the statistical 

translation model, term P(T) being estimated by the expanded title language 

model and term P({tw}) being estimated by the order expansion method. F1 

scores of machine-generated titles using both the exponential model and the 

order expansion method are listed in Table 5.4. According to Table 5.4, the 

estimation of P({tw∈T}) using the order expansion method achieves slightly 

better F1 score than the exponential model. 

Table 5.4: F1 score for the order expansion method and the exponential model 
 Exponential Model (α=0.3) Order Expansion 
F1 0.261 0.270 
 

5.4.4 Conclusion 

In this section, we examined three different methods for estimating 

P({tw∈T}), namely the unigram expansion method, the exponential model 

and the order expansion method. First, the empirical studies show that by 

including term P({tw∈T}), we are able to improve the F1 scores from 0.247 to 

0.27 by using the order expansion method. Secondly, based on the comparison 

of the three methods for estimating P({tw∈T}), we find that the method of 

order expansion is able to take into account the word correlation better than 
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both the unigram expansion and the exponential model. The empirical result 

also indicates that the order expansion method achieves a better F1 score than 

the other two methods. Thus, we conclude that the introduction of P({tw∈T}) 

is useful for the title generation model and the method of order expansion is an 

effective method for estimating P({tw∈T}) compared to others. For the later 

part of this thesis, unless explicitly specified, we will always use the order 

expansion method for estimating P({tw∈T}). 

5.5 Title Word Selection Problem 

In the previous sections, we mainly focused on the phase of title word 

ordering. In this section, we come back to the issue of title word selection and 

discuss how to improve the quality of title word selection, namely how to 

estimate the likelihood P({tw∈T}|D) in a better way. 

In the previous discussion of estimating P({tw∈T}|D) in Chapter 4, we 

focused on the idea of how to combine all the words within document D 

together as evidence for finding appropriate title words, which results in the 

general formula (4.5). The flaw within that reasoning is that not every word in 

the document can be used as evidence for selecting title words. Particularly, a 

document may contain many common words, which usually only have 

linguistic functions and don’t deliver the semantic meaning of documents. 

Therefore, a better strategy for title word selection should be to first sample 

out the important content words from the document and then determine the 

appropriate title words based on the sampled document words. Therefore to 

accomplish the title word selection task, we need two noisy channels: the first 

noisy channel distills important content words out of the original document 

and the second channel chooses the title words according to the ‘distilled’ 

content. Since the previous work on title word selection only considers one 
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single channel that transforms a document into a title, we will call the new 

model the ‘dual noisy channel model’ and the previous model for title word 

selection the ‘single channel model’. A simple diagram in Figure 5.2 illustrates 

the difference between the ‘dual noisy channel model’ and the previous work 

on title word selection as stated in Chapter 4. 

 

D o c u m e n t  D

T i t l e  T

D o c u m e n t  D  

T i t l e  T  

I n f o r m a t i o n  S o u r c e  S  

S i n g l e  N o i s y  
C h a n n e l  M o d e l

D o u b l e  N o i s y  
C h a n n e l  M o d e l  

N o i s y  C h a n n e l  
P ( T |D )  

N o i s y  C h a n n e l  1
P ( D |S )

N o i s y  C h a n n e l  2
P ( T |S )

 
Figure 5.2: The graphic representation for the ‘single noisy channel model’ 
and the ‘dual noisy channel model’.  

 

As indicated in Figure 5.2, for the previous work on automatic title generation, 

there is only one noisy channel P(T|D) which creates a title T directly from the 

document D. In the new model, both the document and the titles are generated 

from the same ‘information source’ hidden in the author’s mind. Importantly, 

the processes for creating a document and a title from an ‘information source’ 

are through two different noisy channels, namely the noisy channel P(D|S) and 

the noisy channel P(T|S). The ‘information source’ essentially is a distilled 

document with the trivial word removed and only the important content words 

kept. Therefore, in order to generate a title for the document, we need to first 

recover the hidden ‘information source’ by reversing the noisy channel P(D|S) 

and then create a title from the recovered ‘information source’. 
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To allow titles being generated from the distilled ‘information source’ instead 

of the original document, we can expand the probability P(T|D) as the sum of 

the probabilities P(T|S) over all the possible ‘information sources’ S. Formally, 

this idea can be expressed as: 

∑=
S

DSPSTPDTP )|()|()|(  (5.14) 

In Equation (5.14), term P(T|S)P(S|D) represents the idea of two noisy 

channels, with term P(S|D) corresponding to the first channel that samples 

‘information source’ S out of original document D and term P(T|S) 

corresponding to the second noisy channel that creates title T from the distilled 

‘information source’ S. Since the first noisy channel, i.e., P(S|D), is new to the 

old framework for automatic title generation, in the following discussion, we 

will focus on the discussion of the noisy channel P(S|D). 

Because the motivation of introducing the hidden state ‘information source’ S 

is to strip off the common words and have important content words kept, we 

want the noisy channel P(S|D) to be a sampling process where important 

content words have higher chances to be selected than common words. Let 

function g(dw,D) represent the importance of word ‘dw’ related to the 

document D. Then, the word sampling distribution should be proportional to 

the word importance function g(dw,D). Therefore, to be consistent with this 

intuition, following the spirit of exponential model, we can assume that the 

probability P(S|D) is written as 

∏∏
∈∈

∝=
SdwSdw

DdwgDdwg
DZ

DSP ),(),(
)(

1)|(  (5.15) 



 104

where Z(D) stands for the normalization constant for the document D. As 

indicated by Equation (5.15), the probability for ‘information source’ S to 

represent the content of the document D, i.e., P(S|D), depends on whether  or 

not the words selected by S are important to the content of the document D, 

which is expressed as the product of the importance function for all the words 

selected by ‘information source’ S. 

By putting Equations (5.2), (5.14) and (5.15) together, we will have 

∑ ∏
∈

∈
∈

∝
S Sdw

DdwgSTtwP
TtwP

TPDTP ),()|}({
})({

)()|(  (5.16) 

In the above Equation, we ignore the normalization constant Z(D), which is 

independent from title T. Because the number of different ‘information source’ 

S for document D is on the order of 2^|D|, computing the sum in Equation 

(5.16) is almost impossible. In the following part, we will discuss an 

approximation of Equation (5.16) that makes the computation of the sum 

possible. 

First, let’s only consider the ‘information source’ S that has the same number 

of unique words as title T. In other words, we ignore the case when there are 

either too few or too many unique words in S. Secondly, let’s further assume 

that the process of creating title T out of the ‘information source’ S can be 

divided into the following two steps: first align every title word position with a 

different word in the ‘information source’ S and then create a title word ‘tw’ 

for each position according to the aligned document word ‘dw’ and the 

probability distribution P(tw|dw). With these two assumptions, Equation (5.15) 

can be simplified as 



 105

∏ ∑

∑ ∏

∑∑ ∏

∑∑ ∏ ∏

∑ ∏

∈ ∈

∈

∈

∈ ∈

∈

∈
≈

∈
∝

∈
=

∈
≈

∈
∈

∝

Ttw Ddw

a Ttw

S a Sdw

S a Sdw Sdw

S Sdw

DdwgdwtwP
TtwP

TP

DdwgdwatwP
TtwP

TP

DdwgdwdwaP
TtwP

TP

DdwgdwdwaP
TtwP

TP

DdwgSTtwP
TtwP

TPDTP

),()|(
})({

)(

),())('|(
})({

)(

),()|)((
})({

)(

),()|)((
})({

)(

),()|}({
})({

)()|(

'

 
(5.17) 

where the variable ‘a’ in the above equation corresponds to the alignment 

between the title T and the ‘information source’ S. Symbol a(dw) stands for 

the title word that is aligned with the document ‘dw’ and a(tw) stands for the 

document word that is aligned with title word ‘tw’. The last step uses the fact 

that the operation of sum and product can be switched, which is also used in 

the proof of IBM statistical model I. As indicated from Equation (5.17), with 

the constraint that the number of unique words in S equals the number of 

words in the title and the assumption that every word in the title is aligned with 

a different word in S, we are able to change the order between the sum 

operation and the product operation, and therefore have a simple expression in 

Equation (5.16). In the annotation of big O, we have computation complexity 

O(|D||T|+|T|) for Equation (5.17) and O(|T|^|D|*|T|) for Equation (5.16). 

Clearly, the simplification in Equation (5.17) makes the computation much 

more efficient. Furthermore, compared to the formula (4.5), where the title 

word selection probability is expressed as ∑
∈Ddw

DdwtfdwtwP
D

),()|(
||

1 , the 

difference between the previous model (e.g., single noisy channel model) and 

the ‘double noisy channel model’ is that, the new model uses the importance 
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function g(dw, D) to weight the document word ‘dw’ while the old model 

simply weights word ‘dw’ based on its term frequency. 

Of course, one key issue with the ‘dual noisy channel model’ is to find the 

appropriate importance function g(dw,D) that is able to indicate whether or not 

a word ‘dw’ is important to document D. Unfortunately, there is no training 

data with documents on one hand and their ‘information sources’ on the other 

hand. In the following subsections, we will discuss two candidates for 

importance function g(dw,D), namely the TF.IDF value and the content-based 

language model. 

5.5.1 A TF.IDF Value for Importance Function 

The TF.IDF value has been broadly used in information retrieval. The TF 

value of a word indicates how frequently that word has been used in the 

document and the IDF value indicates how rarely a word is used in different 

documents. A high TF.IDF value for a word usually means that the word 

appears frequently in a document but is rarely used by other documents. 

Therefore, words with high TF.IDF are usually important content words to a 

document.  

A TF.IDF value can also be interpreted as the mutual information between 

document ‘D’ and word ‘w’ (Berger & Lafferty, 1999). For a given collection 

C, the mutual information between word ‘w’ and document ‘D’, i.e., I(w,D|C), 

is defined as: 

( ))}|(/1log{)}|(/1log{)|(
)|(
)|(log)|()|,( DwPCwPDwP

CwP
DwPDwPCDwI −==  (5.18) 

First, if we are only interested in those not-very-common words, usually 

1/P(w|D) (O(|D|)) is considerably smaller than 1/P(w|C) (O(|C|)). Therefore, 
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for those words, mutual information I(w,D|C) can be approximated as 

P(w|D)log{1/P(w|C)}. Since the IDF value for a word ‘w’ is usually defined as 

the logarithm of the ratio of the number of documents in a collection to the 

number of documents containing word ‘w’, it equals term log{1/P(w|C)}. 

Furthermore, since the probability P(w|D) is defined as the ratio of TF value 

for the word ‘w’ to the document length, the mutual information I(w,D|C) can 

be simply approximated as |D|×TF.IDF(w,D). Therefore, TF.IDF 

measurements basically correspond to the mutual information between words 

and documents. 

5.5.2 Content-based Language Model for Importance Function 

As pointed out before, the difference between the new model and the previous 

model for title word selection is that the old model uses tf(w,D)/|D| to weight 

different words while the new model uses a importance function g(dw,D). 

Since tf(w,D)/|D| is simply the unigram language model for document D, in 

order to improve from the old model we need a better language model for 

documents. The problem with the simple unigram language model is that it 

mixes together the word distribution for the document content and the word 

distribution for general English. In general, to create an English article, we 

need two parts of knowledge, i.e. the general knowledge about how to write an 

English paper and the knowledge about the story that you are telling. In other 

words, a document is generated from the combination of two language models, 

namely the general English model and the content-based language model. 

Therefore, instead of using the simple unigram language model for documents, 

which is the combination of two different language models, we should use the 

content-based language model to create titles. In order to extract the content-

based language model, we can first compute the simple unigram language 

model for the document and a general English language model by collapsing 
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all documents together. Then the content-based language model is simply 

computed by subtracting the unigram language model from the general 

English language model. Formally, we have the content-based language model 

expressed as follows: 

⎩
⎨
⎧ >−−

=
..0001.0

0001.0)|()|()|()|(
)|('

wo
CwPDwPifCwPDwP

DwP
λλ  (5.18) 

where λ is a weight constant which determines how much of the general 

English language model needs to be removed. To avoid the sparse data issue, 

we set the minimum value for the content-based language model to be 0.0001. 

5.5.3 Empirical Study 

To determine the effectiveness of the two proposed methods, we conducted an 

experiment similar to the last section. The new title word selection model is 

tested against the CD of 1997 broadcast news with 40,000 training document-

titles and 10,000 test document-titles. The machine-generated titles are 

compared to the reference titles using the F1 metric. The titles are generated 

using the probabilistic model specified in Equation (5.17), where term P(T) is 

estimated using the expanded title language model, term P({tw∈T}) is 

estimated using the order expansion method. Probability P(tw|dw) is estimated 

using the statistical translation model as described before. For the content-

based language model, the smoothing constant λ is set to be 0.9 (Other values 

for λ, ranging from 0.8 to 0.95, have been tried out with almost identical F1 

scores.). Both the results of using TF.IDF values and the content-based 

language model as the importance function, together with the result for the 

model without using the dual noisy channel, are listed in Table 5.5. 
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Table 5.5: F1 scores for the duel noisy channel model using the TF.IDF values 
(or mutual information) and the content-based language model, together with 
the similar model but with a single noisy channel. 
 TF.IDF Content-Based LM No dual noisy channel 
F1 0.280 0.271 0.270 
 

As shown in Table 5.5, using the TF.IDF value as the importance function 

gives rise to a better F1 score compared to the content-based language model 

approach, and using the content-based language model as the importance 

function doesn’t improve F1 score at all compared to the similar model but 

only with single noisy channel. Therefore, TF.IDF value based dual noisy 

channel (or mutual information based dual noisy channel model) appears to be 

a better choice for the importance function. In the later part of this thesis, we 

will always use TF.IDF value as the second noisy channel. 

5.6 Summary of The New Probabilistic Model for Title Generation 

In the previous sections from 5.1 to 5.5, we describe the main features of the 

proposed new model for title generation. In section 5.1 and 5.2, we discuss the 

correct formalization for automatic title generation problem, which is 

expressed in Equation (5.3’). The new feature of this formalization is the 

introduction of term P({tw∈T}). As indicated from Equation (5.3’), compared 

to P(T), using the ratio of P(T) to P({tw∈T}) for title word ordering alleviates 

the problem that P(T) is influenced not only by the quality of the word order in 

sequence T but also by whether or not the words inside T are common words. 

In section 5.3, 5.4 and 5.5, we discuss how to estimate the three components in 

Equation (5.3’), namely P(T), P({tw∈T}) and P(tw|D). For the estimation of 

P(T), the empirical results indicate that the expanded language model with the 

mixture of a title language model and the language model of the test document 

achieves the best performance. For P({tw∈T}), the order expansion method is 
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able to handle the word correlation better than the other two methods and 

achieves the best F1 score. For P(tw|D), the TF.IDF based dual noisy channel 

model (or mutual information based dual noisy channel model) obtains the 

best performance. For the later experiments, unless explicitly specified, the 

implementation of the proposed model will always use the expanded title 

language model for estimating P(T), the order expansion method for 

estimating P({tw∈T}), the dual noisy channel model with the TF.IDF value 

(or mutual information) as the importance function g(dw,D) and a statistical 

translation model for estimating P(tw|dw).  
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Figure 5.3: Comparison of the old framework for title generation to the ‘direct 

model with dual noisy channels’. Diagram ‘A’ represents the scheme for the 

old framework and ‘B’ represents the scheme for the new framework. The 

difference between them has been highlighted by the rectangles with bold 

lines. 

The schemes for the new model and the previous model are illustrated in 

Figure 5.3. The contributions of the new models are: 

• As illustrated in Figure 5.3, the new model introduces a new sampling 

distribution g(dw,D) other than the unigram distribution P(dw|D), which is 

implemented as TF.IDF values of words (or mutual information). 

Furthermore, for the procedure of ordering title words, the new model uses 

term P(T)/P({tw∈T}) instead of P(T), which is able to alleviate the 

problem of P(T) in favoring common title words. 

• For the new model, we examine various kinds of methods to estimate the 

sampling distribution g(dw,D), document-word-title-word correlation 

P(tw|dw), title language model P(T) and probabilities for word sets 

P({tw∈T}). Empirical results suggest that using the TF.IDF values (or 

mutual information) for g(dw,D), the statistical translation model for 

P(tw|dw), the expanded title language model for P(T) and the order 

expansion method for P({tw∈T}) achieves the best performance. 

Now let’s compare the best configuration of the previous model to the best 

configuration of the new model. The setup of the experiment is similar to the 

previous section. As stated in chapter 4, the best configuration of the old 

model is to use a statistical translation model for title word selection and a 

bigram language model for title word ordering. The best configuration of the 
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new model has already been discussed in the previous paragraphs. Similar to 

the previous experiments, both models are trained over 40,000 document-titles 

from the 1997 broadcast news (Primary Media Source, 1997) and tested 

against the 10,000 document-titles from the same broadcast news corpus. 

Titles with six words are generated for each method. F1 score is used as the 

automatic evaluation metric. Furthermore, out of the 10,000 test documents, 

200 documents are randomly selected and titles of those selected documents 

sent for human judgments. The F1 results and the averaged scores of human 

judgments for both models are listed in Table 5.6. As shown from Table 5.6, 

the new model is able to outperform the old model substantially in terms of 

both F1 scores and human judgments. 

Table 5.6: F1 scores and human judgments for the best configuration of the 
old model and the new model 
 Old Model New Model 
F1 0.223 0.280 
Human Judgments 2.5 2.9 
 

In order to further illustrate the advantage of the proposed method versus the 

old method, we list a set of titles generate by the best configuration of the new 

model in Table 5.7. The corresponding titles generated by the best 

configuration of the old framework have already been listed in Table 4.13. The 

corresponding reference titles are listed in Table 4.14. 

Table 5.7 Example titles generated by the direct model with dual noisy 
channels (DM) (Notice that all the stopwords are removed). The reference 
titles for the same set of documents are listed in Table 4.14 and the original 
documents are included in the Appendix. 
ID A Direct Model with Dual Noisy Channels (DM) 
1 green cards illegal immigration card fraud 
2 mossad scrutiny classics violinist classical music 
3 jury selection oklahoma city bombing trial 
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4 stock market news morning business report 
5 solving mir repair space station computer 
 

5.7 Why not Use the Model for Automatic Speech Recognition? 

One interesting question that many people may ask is why not directly use the 

model for automatic speech recognition (ASR) because both tasks try to 

estimate similar types of information, namely the most likely word sequence 

based on some observed evidence. The task of automatic speech recognition is 

to find the most likely word sequence based on audio signals while the task of 

automatic title generation is to find the most likely title word sequence based 

on the observed document. Therefore, the goal of these two tasks is to estimate 

P(T|E), where T stands for a word sequence and E stands for observed 

evidence. The only difference between them is in the evidence E, which are 

the audio signals for automatic speech recognition and documents for title 

generation.  

But, despite the similarity between these two problems, we took an approach 

for automatic title generation different from that of automatic speech 

recognition. For automatic speech recognition, instead of estimating P(T|E) 

directly, people usually use the Bayesian rule to convert P(T|E) to P(E|T)P(T) 

and estimate the first part of the product, i.e., P(E|T), with an acoustic model 

and the second part of the product , i.e., P(T), with a statistical language 

model. If we apply the same idea to title generation, we will need to estimate 

P(D|T)P(T). Unfortunately, this simple approach is not appropriate for 

automatic title generation due to the difficulty in estimating P(D|T). The 

reason can be explained as follows: since a document contains much more 

detailed information than its title, inferring a title out of a document will be 

much more certain than inferring a document out of a title. In other words, the 
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variance in estimating P(D|T) will be considerably larger than the variance in 

estimating P(T|D). This issue can be seen more clearly if we expand the 

conditional probability P(D|T) as a product of P(dw|T) for all the words ‘dw’ 

in the documents, i.e., ∏ ∈∝ Ddw TdwPTDP )|()|( . Then, the number of terms 

P(dw|T) used for estimating logP(D|T) is equal to the length of the document 

D, i.e., |D|. On the other hand, for the proposed model for automatic title 

generation, probability P(T|D) is used and the number of terms P(tw|D) 

involved in estimating logP(T|D) is equal to the length of the title, i.e., |T|.  If 

we assume that the variances in estimating P(tw|D) and P(dw|T) are similar 

and each estimation is independent from others, we can see that the variance in 

estimating logP(D|T) will be  around |D|/|T| times larger than that of 

logP(T|D). Because the document length is usually much longer than the title 

length, the variance in the estimation of logP(D|T) will be much larger than 

that of logP(T|D). As a result, inferring document D out of title T will be much 

more uncertain than inferring title T out of document D. Of course, this simple 

illustration may be a little bit naive. But at least it indicates the danger of 

applying the model of automatic speech recognition to automatic title 

generation. 

In order to prove the above point, we implemented the automatic speech 

recognition model for title generation and compared to the proposed model 

over the same dataset as previous experiments. For easy reference we refer to 

the model for title generation based on the idea of speech recognition as the 

‘ASR-based model’ and the proposed model as the ‘direct model with dual 

noisy channels’ because the proposed model doesn’t apply the Bayesian rule 

to reverse the direction of inference and a dual noisy channel is used to 

represent the process of generating titles from documents. For the ASR-based 

title generation model, the problem of estimating P(T|D) is converted into the 
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estimation of P(D|T)P(T). For implementation, we choose the statistical 

translation model for estimating P(D|T) and the expanded title language model 

for estimating P(T). Both models are asked to generate titles with six words. 

Similar to the set-up of previous experiment, 200 documents are randomly 

selected from the 10,000 test documents and titles of those selected documents 

are sent for human judgments. The F1 results and the averaged score of human 

judgments are listed in Table 5.8. 

Table 5.8: Results for the ASR based model for automatic title generation 
compared to the results for ‘direct model with dual noisy channels’. 
 Direct Model with Dual 

Noisy Channels 
ASR based Model for Title 
Generation 

F1 0.280 0.230 
Human Judgment 2.9 2.0 
 

As indicated in Table 5.8, even though the ASR-based model for title 

generation appears to be effective in terms of the F1 score, it does poorly from 

the viewpoint of human judgments. A good F1 score implies that the ASR 

based title generation model is able to capture the important content words 

while the poor performance in human judgments implies that the sequences 

generated by the ASR based model may have a very poor readability. The 

reason can be explained by the large variance in estimating P(D|T). The large 

variance in estimating P(D|T) causes the scores of title words, i.e., P(D|tw), to 

have a skewed distribution. As a result, term P(D|T) is more influential than 

P(T) in composing titles, and therefore the generated titles are less readable. In 

order to illustrate the difference between these two models visually, we list 

samples of titles created by the ASR-based approach in Table 5.9. The 

corresponding titles generated by the ‘direct model with dual noisy channels’ 

are listed in Table 5.7 and the reference titles for the same set of documents 

are listed in Table 4.14. 
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Table 5.9 Example titles generated by the ASR based model (Notice that all 
the stopwords are removed). The reference titles for the same set of documents 
are listed in Table 4.14 and the original documents are included in the 
Appendix. 
ID ASR based Model 
1 illegal immigration cards immigrants texas card 
2 tango music violinist tang kreme kremes 
3 oklahoma bombing trial mcveigh’s jurors mcveigh 
4 stock market stocks tax dow moneyline 
5 russian mir space morning computer versace 
 

5.8 How to Determine the Length of Title 

In the previous discussion of automatic title generation, we always assume the 

length of generated titles is fixed to be the average length of training titles. 

This is not desirable since some documents can be summarized into titles with 

only one word and other documents may need titles of many words. 

Particularly, in order to fill out the predefined title length, the model may have 

to come up with words that do not stick with other selected title words 

smoothly, which can degrade the quality of the generated titles. 

One simple idea for automatically determining the title length is to weight 

titles of different lengths using the distribution of title length P(m), and a title 

that maximizes both P(T|D) and P(|T|) is chosen as the final title. 

Unfortunately, this simple idea could not work due to the flat distribution of 

title length. We fit the length distribution of training titles using a Gaussian 

distribution. The resulting mean is 5.8 words per title and the resulting 

standard deviation is 3.1 words. With this Gaussian distribution, titles with the 

length ranging from 3 to 9 are almost equally likely. 

Here, we proposed another simple strategy for determining the title length 

which appears to work well in our empirical study. The task of automatically 
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determining title length is equivalent to the task of determining where we 

should put the end of sentence mark ‘</s>’ into the title. Therefore, we can 

treat the end of sentence mark ‘</s>’ as another word token and allow ‘s>’ to 

be added into titles as a normal title word. For the title word selection phase, 

we always set the conditional probability P(‘</s>’|D) to be 1 and therefore the 

end of sentence symbol will always be used as a title word candidate. For the 

title word ordering phase, a bigram title language model including the end of 

sentence symbol will be trained based on the training corpus. To generate a 

title for a document, we apply the same algorithm for title word order as before 

until we reach the maximum title length (notice that not only the normal title 

words will be ordered by the bigram title language model, but also the end of 

sentence symbol). Then, the title with highest likelihood will be selected and 

words after the end of sentence symbol is removed. The leftover word 

sequence becomes the final title. As can be seen from the above description, 

with the introduction of the end of sentence symbol, we are able to find the 

appropriate position for the generated title. 

We test the effectiveness of this simple algorithm over an experiment similar 

to the ones in the previous sections. The ‘direct model with dual noisy 

channels’ with the modification described as above is used for creating titles of 

variable length. The maximum title length in this experiment is set to be 10. 

The F1 score and the averaged human judgments for titles of fixed length and 

titles of variable length are listed in Table 5.10. 

Table 5.10: F1 scores and human judgments for titles of variable length 
(Variable Title Length) and titles of fixed length (i.e., Title Length = 6) 
 Title Length = 6 Variable Title Length 
F1 0.280 0.281 
Human Judgment 2.9 3.1 
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According to Table 5.10, even though the proposed method for automatically 

determining title length doesn’t improve the F1 score from the previous 

algorithm, it does improve the human judgments noticeably from 2.9 to 3.1. 

The reason can be explained as follows: by automatically determining the title 

length, the algorithm doesn’t improve its ability on title word selection and 

ordering. However, it does improve the readability by avoid unnecessary long 

titles. Cases such as including words only for the purpose of filling extra title 

word slots have been eliminated substantially. Actually, the average length of 

the generated titles using the method of automatically determining title length 

is only about 4, which is significantly less than the predetermined length, i.e., 

6. In order to better illustrate this point, the sample titles generated by this 

method are listed in Table 5.11. Titles of fixed title length (equal to 6) are 

listed in Table 5.7 and the reference titles for the same set of documents are 

listed in Table 4.14. From these sample titles, we can see that some titles 

generated by the method with a fixed title length contain title words that do not 

stick with other title words smoothly and may be chosen only for the purpose 

of filling out the predefined title length. In contrast, the corresponding titles 

generated by the method that allows for flexible title length do not seem to 

have such a problem. For example, the last title created by the method with 

fixed title length is ‘solving mir repair space station computer’. The last word 

‘computer’ appears to be an unnecessary extra word. As a contrast, for the 

method that allows for variable title length, the created title ‘russian space 

station mir problems’ appears to be smoother. 

Table 5.11 Example titles generated by the direct model with dual noisy 
channels (DM) with variable title length (Notice that all the stopwords are 
removed). The reference titles for the same set of documents are listed in 
Table 4.14 and the original documents are included in the Appendix. 
ID A Direct Model with Dual Noisy Channels for Variable Title Length 
1 stopping illegal immigration 
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2 classical music 
3 continuing coverage timothy mcveigh trial jury selection oklahoma city 

bombing 
4 stock market strategist discusses wall street news business report 
5 Russian space station mir problems 

5.9 Empirical Studies with the AP88 Collection 

In the previous sections, all the experiments are tested against a single dataset, 

i.e., the CD of 1997 broadcast news. In this section, we will compare the 

proposed title generation model to other methods for automatic title generation 

over another dataset, the AP88 dataset (Associated Press, 1998). The AP88 

dataset consists of 75,000 document-titles. Similar to the split used for 1997 

broadcast news corpus, for every five documents we randomly select one as 

the test document and the leftover four as the training documents. As a result, 

we have 60,000 training documents and 15,000 test documents. Each method 

of automatic title generation is asked to create titles with six words. Stopwords 

are removed from all generated titles. 

Four methods are compared in this experiment. They are the nearest neighbor 

approach (NN), the Naïve Bayes method with a limited vocabulary (NBL), the 

best configuration of the old framework for title generation (i.e., using the 

statistical translation model for estimating P(tw|dw) and a bigram statistical 

language model for estimating P(T)) (ST), and the direct model with dual 

noisy channels (DM). The reasons for choosing these three methods for 

comparison are: 

1) The NBL method is the first statistical method proposed for automatic title 

generation. It is always worthwhile to compare the new model to the NBL 

method. 
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2) According to the previous study, the Nearest Neighbor method is a simple 

and effective method for automatic title generation even though it cannot 

create new titles. Unlike other methods for automatic title generation, the 

NN method doesn’t rely on the statistical n-gram language model to order 

title words because the title of the training document that is most similar to 

the test document is chosen as the generated title for the test document. 

3) By comparing the direct model with dual noisy channels to the best 

configuration of the old framework, we can see whether the introduced 

new components, such as P({tw∈T}) and the dual noisy channel, are 

actually effective or not. 

The F1 scores and human judgments for the four methods are listed in Table 

5.12. As indicated from Table 5.12, the proposed model ‘DM’ is still able to 

achieve the best performance compared to the other methods, with the F1 

score as 0.263 and the human judgment as 2.8. This fact indicates that the 

proposed model is in general a better model compared to the old framework 

for title generation. To get a sense of machine-generated titles, we listed five 

title examples created by each method in Table 5.13 to Table 5.16. The 

reference titles for the same set of documents are listed in Table 5.17. 

Table 5.12: F1 scores and human judgments for the nearest neighbor approach 
(NN), the Naïve Bayes approach with a limited vocabulary (NBL), the best 
configuration for the old framework of title generation (ST) and the proposed 
model (DM) over the AP88 collection. 
 NBL NN ST DM 
F1 0.175 0.201 0.216 0.263 
Human Judgments 2.1 2.6 2.3 2.8 
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Table 5.13 Example titles generated by the Naïve Bayes method with a 
limited vocabulary (NBL) (Notice that all the stopwords are removed). The 
reference titles for the same set of documents are listed in Table 5.17. 
ID NBL 
1 takeover bid black decker buyout offer 
2 car bomb attack leftist guerrillas kidnap 
3 construction workers injured fire high winds 
4 court orders delay mecham impeachment trial 
5 stocks finish york stock index decline 
 

Table 5.14 Example titles generated by the nearest neighbor approach (NN) 
(Notice that all the stopwords are removed). The reference titles for the same 
set of documents are listed in Table 5.17. 
ID Nearest Neighbor (NN) 
1 black & decker rebuffed american standard takeover bid  
2 guerrillas kidnap mayors  
3 boarding house fire kills six, injures canary islands  
4 impeachment trial process embroiled controversy  
5 york: advance estimates.  
 

 

 

Table 5.15 Example titles generated by the statistical translation model (ST) 
(Notice that all the stopwords are removed). The reference titles for the same 
set of documents are listed in Table 5.17. 
ID Statistical Translation Model (ST) 
1 black decker buyout offer american standard 
2 mayors caller leftist guerrillas kidnap bjt 
3 construction workers injured building collapses bjt 
4 mecham criminal trial delay impeachment bjt 
5 london shares close higher stocks Tokyo 
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Table 5.16 Example titles generated by the direct model with dual noisy 
channels (DM) (Notice that all the stopwords are removed). The reference 
titles for the same set of documents are listed in Table 5.17. 
ID DM 
1 black & decker financing american standard bid 
2 leftist guerrillas kidnap mayors 
3 construction workers injured building collapses 
4 arizona governor mecham criminal trial delay impeachment 
5 york stock market 
 

Table 5.17 Examples of reference titles for the AP88 documents (Notice that 
all the stopwords are removed.) 
ID Reference Titles 
1 black  decker financing american standard bid 
2 mayors reporters kidnapped guerrillas 
3 wind blows wall injuring 10 workers 
4 governor's lawyer seeks delay impeachment trial 
5 york market 

5.10 Empirical Studies with Heterogeneous Datasets 

In the previous experiments, we intentionally let training data be similar to 

testing data by randomly selecting four out of every five consecutive 

documents as training ones and the leftover one as a testing document. As a 

result, a simple nearest neighbor approach performs fairly well even compared 

to other sophisticated learning algorithms. In this subsection, we will consider 

another type of setup of experiments, i.e., testing data are heterogeneous from 

training data. More specifically, for the AP88 collection, we use the news 

stories of the first ten months of 1988 as the training data and the news stories 

of last two months as the testing data. Because there are many news stories 

that only appeared in November and December of 1988 and were not 

mentioned at all in the first ten months of 1988, we expect that the nearest 

neighbor approach would work poorly for the heterogeneous testing data. 

Unlike the nearest neighbor approach which simply reuses one of the training 
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titles as the title for the test document, the proposed algorithm relies the title 

word statistics to select appropriate title words for the test document and order 

the selected title words into the title sequence. Therefore, it should be robust 

even for the heterogeneous testing datasets. The total number of training 

documents is 63,000 and the number of testing documents is 12,000. Both the 

nearest neighbor approach (NN) and the direct model with dual noisy channels 

are examined in this experiment. The F1 scores of both approaches are listed 

in Table 5.18. Meanwhile, the F1 scores with the homogeneous testing dataset 

over AP88 collection (e.g., the F1 scores of the previous experiment in Section 

5.9) are also listed in Table 5.18. As indicated from Table 5.18, the F1 score of 

the nearest neighbor approach degrades substantially, dropping from 0.201 for 

the homogeneous case to 0.119 for the heterogeneous case. On the other hand, 

the proposed model is quite robust to the heterogeneous testing dataset, whose 

F1 score changes much less substantially than that of the nearest neighbor 

approach, only from 0.263 to 0.221.  

Table 5.18: F1 scores for the nearest neighbor approach (NN) and the direct 
model with dual noisy channels (DM) for the case of homogeneous testing 
data and the case of heterogeneous testing data. 
 NN DM 
Heterogeneous Case 0.119 0.221 
Homogeneous Case 0.201 0.263 
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C h a p t e r  6  

AUTOMATIC TITLE GENERATION FOR NOISY DOCUMENTS 

In the previous chapters, we have examined the effectiveness of automatic title 

generation model for documents written by people. In this chapter, we are 

considering another type of documents, i.e., machine-generated documents, 

such as speech-recognized documents, machine-translated documents and 

optical character recognized (OCR) documents. Compared to the ‘true’ 

documents written by human subjects, these machine-generated documents are 

considerably more erroneous. For example, using the Sphinx system, the word 

error rates of speech recognized documents amount to 30% for broadcast news 

if the system is not specially trained to fit the voices of anchors and contents of 

the news. These noises within the machine-generated documents will impose a 

great challenge on the automatic title generation task. In this chapter, we will 

examine the robustness of the statistical model for title generation model for 

speech-recognized documents and machine-translated documents. 

6.1 Title Generation for Speech Recognized Documents 

The goal of this task is to automatically generate titles for speeches. To 

accomplish it, we need to first ‘translate’ a speech into a sequence of words 

using speech recognition technology, and then apply the automatic title 

generation model to create a title for the recognized speech transcripts. Due to 

the limited size of vocabulary, the ambiguity in the voice and tone of the 

speaker and the limited amount of training data, the speech recognized 

transcripts usually contain a large number of word errors. In this section, we 
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are going to examine how robust the statistical models for automatic title 

generation are to the noises introduced by the speech recognition process. 

6.1.1 Experiment Design 

For this experiment, we use a different corpus since we don’t have the speech 

data for the broadcast news of 1997. Our training set, consisting of 21190 

perfectly transcribed documents, is obtained from the CNN.com web site 

during 1999. Included with each training document text is a human-assigned 

title. The test set, consisting of 1006 CNN TV news story documents for the 

same year (1999), are randomly selected from the Informedia Digital Video 

Library (http://www.informedia.cs.cmu.edu). Each document has a closed 

captioned transcript, an alternative transcript generated with the CMU Sphinx 

speech recognition system using a 64000-word broadcast news language 

model and an original title provided by CNN. The word error rate of the 

speech recognition transcripts is around 35%. In order to see how the word 

errors in the spoken documents affect the performance of our title generation 

methods, we train the title generation models over the 21190 perfectly 

transcribed documents and their titles, and apply the models to create titles for 

both close captioned transcripts and speech-recognized transcripts. 

The title generation methods that we will examine in this experiment are: The 

term frequency and inverse document frequency approach (TF.IDF), the 

nearest neighbor approach (NN), the Naïve Bayes approach with the limited 

vocabulary (NBL) and the proposed ‘direct model with dual noisy channels’ 

(DM). The description of each algorithm can be found in previous chapters. 

The reasons for choosing these four methods are due to their different 

characteristics:  
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• Compared to the other three approaches, the TF.IDF approach is the only 

approach that has no consideration of the correlation between titles and 

documents. It simply selects words with high TF.IDF scores and organizes 

them into a sequence.  

• Compared to the other three approaches the nearest neighbor approach 

(NN) is the only approach that doesn’t rely on the title language model for 

ordering words. Instead, it simply finds the document within the training 

corpus that is most similar to the testing one and uses its title as the title for 

the testing document. 

• Both the Naïve Bayes approach with limited vocabulary (NBL) and the 

‘direct model with dual noisy channels’ (DM) use the statistics on the 

title_word-document_word correlation as the basis for selecting title 

words, and rely on the title language model to organize the word sequence. 

In the previous study of automatic title generation, we have shown that the 

proposed model outperforms the NBL approach significantly. In this 

experiment, we will examine how the word errors in the spoken documents 

can influence the performances of these two learning approaches. 

Each method is asked to generate a title with six words. F1 is used as the 

evaluation metric. 

6.1.2 Results and Discussion 

F1 results for the four different title generation methods are shown in Figure 

6.1. For each method, example titles generated for both the original documents 

and the spoken documents are listed in Table 6.1 to Table 6.4. The reference 

titles are listed in Table 6.5. According to the results shown in Figure 6.1, we 

can draw the following conclusions: 
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Figure 6.1: F1 scores of machine-generated titles for both close captioned 
transcripts and speech recognized transcripts. Results for four different 
methods are listed. They are: a nearest neighbor approach (NN), a term 
frequency and inverse document frequency approach (TF.IDF), a Naïve Bayes 
approach with limited vocabulary (NBL) and the direct model with dual noisy 
channels (DM). 
 

• The nearest neighbor approach (NN) is quite robust. Compared to 

other approaches, the nearest neighbor approach (NN) achieves the least 

degradation, going from 0.177 for close captioned transcripts to 0.172 for 

the speech recognized transcripts. We believe it is due to the fact that the 

document-document similarity is computed based on the overall word 

matches between two documents. Therefore, even though the word error 

rate of the spoken documents is about 35%, the majority of the words in 

most documents are still correct and thus, the document similarity 

measurement can be robust to even quite large word error rates.  

• The term frequency and inverse document frequency approach 

(TF.IDF) obtained the largest degradation. For the case of perfectly 

transcribed documents, the simple TF.IDF approach performs quite well, 



 128

only secondary to the direct model with dual noisy channels (DM). 

However, for the case of spoken documents, the TF.IDF approach suffers 

the largest loss in F1, going from 0.239 to 0.185. Since the TF.IDF 

approach is an extraction-based approach and can only use the words in 

the test document to form the title, it will surely be influenced by the word 

errors in spoken documents. Particularly, words with high TF.IDF values 

tend to be not common words and therefore have more chance to be 

misrecognized than common words. This fact makes the situation even 

harder for the TF.IDF approach.  

• The Naïve Bayes approach with limited vocabulary approach (NBL) 

achieves the worst performance for the speech recognized transcripts. 

This approach doesn’t perform well for the spoken documents. As a matter 

of fact, it has the worst performance among the four different methods for 

the spoken documents, with F1 of 0.162. Again, similar to the analysis for 

TF.IDF, we think it is due to the fact that the NBL approach limits the 

choice of title words to be the words appearing in the test document and 

therefore is essentially an extraction-based approach. When the important 

content words are mis-recognized, the extraction-based approach will have 

difficult time in finding good candidates for title words. 

• The new model performs well in both cases. The direct model with dual 

noisy channels achieves the best performance for both closed captioned 

transcripts and the speech recognized transcripts. Similar to the analysis 

for the nearest neighbor approach, the new model for title generation is 

able to select good title words based on the overall opinions of all the 

words within the documents, and therefore is quite resilient to large word 

error rates as long as the majority of the words within the document are 

still correct. Meanwhile, unlike both the TF.IDF and the NBL approach 
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where the title words are chosen from the words in the documents, the new 

model allows any word in the vocabulary to be a title word candidate. 

Therefore, it is robust to the case even when some important content words 

in a document are misrecognized. 

Table 6.1 Example titles generated by the nearest neighbor approach (NN) 
(Notice that all the stopwords are removed). The reference titles for the same 
set of documents are listed in Table 6.5. 
ID Original Docs Spoken Docs 
1 experts warn dolphins dangerous  

humans death linked seaworld's 
tillikum golf courses safe havens 
wildlife 

experts warn dolphins dangerous  
humans death linked seaworld's 
tillikum golf courses safe havens 
wildlife 

2 snowfall midwest delivers dream 
white christmas hampers travel 

snowfall midwest delivers dream 
white christmas hampers travel 

3 colorado school shooting teacher 
three more students buried today 

colorado school shooting michael 
thompson discusses boys bullies 
school violence 

4 adoption tennessee massachusetts 
cases open records increase contact 
biological parents 

adoption tennessee massachusetts 
cases open records increase contact 
biological parents 

5 columbine students start school 
year positive note 

san francisco teenager delivers 
$18,000 columbine victim 
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Table 6.2 Example titles generated by the TFIDF approach (TFIDF) (Notice 
that all the stopwords are removed). The reference titles for the same set of 
documents are listed in Table 6.5. 
ID Original Docs Spoken Docs 
1 experts warn dolphins dangerous 

humans wild 
san francisco dolphins dangerous 
animals wild 

2 canceled flights chicago aviation 
o'hare airport 

airline delays air travel flights 
chicago 

3 federal investigators world church 
shooting spree 

federal authorities confirm 
received shooting spree 

4 human rights supreme court judge 
rule 

supreme court judge york senate 
candidate 

5 san francisco airport security 
threats violence 

san francisco workplace violence 
schools safe 

 

Table 6.3 Example titles generated by the Naïve Bayes approach with a 
limited vocabulary (NBL) (Notice that all the stopwords are removed). The 
reference titles for the same set of documents are listed in Table 6.5. 
ID Original Docs Spoken Docs 
1 killer whale dolphins dangerous 

san Francisco 
health care bill clinton signs life 

2 chicago airports airlines flight 
delays expected 

travel delays air force airlines 
flight 

3 federal investigators world church 
shooting spree 

murder case federal investigation 
shooting spree 

4 supreme court judge rules parents 
children 

state supreme court judge york 
senate 

5 san francisco airport high school 
shooting 

san francisco airport high school 
shooting 
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Table 6.4 Example titles generated by the direct model with dual noisy 
channels (DM) (Notice that all the stopwords are removed). The reference 
titles for the same set of documents are listed in Table 6.5. 
ID Original Docs Spoken Docs 
1 animal experts warn dolphins 

dangerous humans 
health experts warn dolphins 
dangerous humans 

2 winter storm american airlines 
flight delays 

winter storm american airlines 
flight delays 

3 authorities arrest high school 
shooting spree 

high school shooting gun control 
legislation 

4 supreme court hear boy custody 
case 

supreme court decision federal 
judge rules 

5 columbine high school shooting 
gun control 

columbine high school shooting 
gun control 

 

Table 6.5 Examples of reference titles for the CNN TV news (Notice that all 
the stopwords are removed.) 
ID Reference Titles 
1 experts warn dolphins dangerous humans 
2 storm causes travel delays ohio 
3 schoolchildren attack look patterns school shooting incidents 
4 legal fray begins custody elian Gonzalez 
5 columbine students prepare take back school 
 

6.2 Title Generation for Machine Translated Documents 

Similar to speech recognized transcripts, machine translated documents are 

also quite noisy. The errors in a machine-translated document include 

incorrect word translations, syntactic errors and ungrammatical structures. In 

this section, we will examine how the errors in the machine-translated 

documents influence the performance of different title generation models. 
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6.2.1 Experiment Design 

The experimental dataset comes from a CD of 1997 broadcast news 

transcriptions published by Primary Source Media (1997), as do most other 

experiments conducted in this thesis. There were a total of roughly 50,000 

news documents and corresponding titles in the dataset. The training dataset 

was formed by randomly picking four documents-title pairs from every five 

pairs in the original dataset. The size of training corpus was therefore 40,000 

documents and their titles. We fixed the size of the test collection at 1000 

items from the unused document-title pairs.  

Since we did not have a large set of documents with titles in multiple parallel 

languages, we approximated this by creating machine-translated documents 

from the original 1000 documents with titles as follows: Each of the 1000 test 

documents was submitted to the SYSTRAN machine translation system 

(http://babelfish.altavista.com) and translated into French. The French 

translation was again submitted to the SYSTRAN translation system and 

translated back into English. This final retranslation resulted in our French 

machine translation data. The procedure was repeated on the original 

documents for translation into Portuguese and German to obtain two more 

machine translated sets of identical documents. For all languages, the average 

word overlap between the translated documents and the original documents 

was around 70%. 

Similar to the experiment done for the spoken documents, we choose the same 

four title generation methods, namely the term frequency and inverse 

document frequency approach (TF.IDF), the nearest neighbor approach (NN), 

the Naïve Bayes approach with a limited vocabulary (NBL) and the direct 

model with dual noisy channels (DM). Each method is asked to create titles of 

six words. F1 is used as the evaluation metric. 
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6.2.2 Results and Discussions 
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Figure 6.2: F1 scores for the machine-generated titles. For each method, there 
are four bars representing the F1 scores for the titles generated from the 
original documents and the translated documents. The legends en-fr-en, en-pt-
en and en-de-en represent the documents translated from English document to 
French, Portuguese and German and back in English, respectively. 
 

F1 scores of machine-generated titles for all four methods are shown in Figure 

6.2. The legend ‘en-fr-en documents’ stands for the documents that are first 

translated from English to French and then re-translated from French to 

English. Similarly, the legends ‘en-pt-en documents’ and ‘en-de-en 

documents’, stand for the translated documents through Portuguese and 

German, respectively. For each method, the sample titles for the original 

documents, the ‘en-pt-en documents’, the ‘en-de-en documents’ and the ‘en-fr-

en documents’, are listed in Table 6.6 to Table 6.9. The reference titles for the 

same set of documents are listed in Table 6.10. 
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According to Figure 6.2, we can draw the following conclusions: 

• Performance of French and Portuguese corpus is substantially better 

than the corpus of German. For all four different methods, according to 

Figure 6.2, the F1 scores for the corpuses that are translated from English 

to French and Portuguese and back to English are considerably better than 

the corpus that is translated from English to German and back to English. 

This phenomenon can be explained by the fact that French, Portuguese and 

English are quite similar languages while German is significantly different 

from these three languages. For example, German contains many 

compound words and each of them corresponds to the meaning of several 

individual words in other languages. With this difference in mind, we 

would expect the German corpus to contain more translation mistakes than 

the corpuses of the other two languages. As a result, the quality of 

machine-generated titles for the German corpus is worse than the corpuses 

of either French or Portuguese.  

• The Nearest Neighbor approach (NN) is quite robust to the machine-

translation errors. According to Figure 6.2, for the nearest neighbor 

approach, the F1 scores for French and Portuguese corpuses are only 

slightly worse than the F1 scores for the original English documents, 

degrading from 21.93% to 21.65% for the Portuguese corpus and 21.25% 

for the French corpus. Similar to the analysis for the case of spoken 

documents, we believe the robustness of the nearest neighbor approach for 

machine-translated documents is due to the fact that the document-

document similarity is determined by the overall word matches bewteen 

two documents. Therefore, even though 30% of the English words are 

missed during the machine translation process, the majority of English 



 135

words are still being kept, which makes the similarity measurement 

reasonably reliable even for machine-translated documents. 

• The TF.IDF approach suffers the largest degradation. For the TF.IDF 

approach, the F1 scores for the Portuguese corpus and the French corpus 

are much worse than the F1 score for the original English corpus, dropping 

from 19.87% to 16.83% for the Portuguese corpus and to 16.30% for the 

French corpus. Again, a similar analysis applied to the spoken documents 

can be used here, namely the TF.IDF approach is an extraction-based 

approach and therefore is very sensitive to the word errors in the 

documents, particularly when the important content words are 

mistranslated. 

• The NBL has the worst performance among the four methods. Slightly 

different from the case of spoken documents, where the NBL approach 

performs slightly better than the nearest neighbor approach for the 

perfectly transcribed documents, the NBL approach has the worst F1 

scores for both the original English documents and the documents that are 

translated through Portuguese, French and German. Similar to the analysis 

for spoken documents, the poor performance of the NBL approach can be 

attributed to the fact that the NBL approach only considers the words in 

the documents as the candidates for title words and therefore is very 

sensitive to the word errors in documents.  

• The new model significantly outperforms the other title generation 

approaches. According to Figure 6.2, the direct model with dual noisy 

channels achieves the best performance for both the original English 

corpus and the three different translated corpuses. A similar explanation 

for speech recognition transcripts can be applied here, i.e., the new model 
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is a non-extraction based approach and allows any word to be used as title 

words. Furthermore, the new model is able to take into account all the 

document words as evidence in deciding title words and therefore is less 

sensitive to the word errors in documents. 

6.3 Conclusions 

According to the previous analysis, we can see that the four different methods 

show similar patterns for speech recognized documents and machine-

translated documents. Usually, the nearest neighbor approach is quite robust to 

both the translation errors and the speech recognition errors because the 

document-document similarity depends on the overall word matches between 

documents and therefore is resilient to even large word error rates in 

documents. On the other hand, both the TF.IDF method and the NBL method 

are quite sensitive to word errors due to the extraction nature of these two 

approaches. Finally, the new model is able to substantially outperform the 

other three methods for both the speech recognized documents and machine-

translated documents because the new statistical model is able to take into 

account all the document words for selecting title words and the candidates of 

title words are not restricted to the words appearing in the tested document. 

Therefore, we conclude that the proposed model for title generation, i.e., 

‘direct model with dual noisy channels’, is resilient to the word errors in the 

documents. 

 

 

 



 137

 

 

 

 

Table 6.6 Example titles generated by the nearest neighbor approach (NN) for 
the original documents, the ‘en-fr-en’ documents, the ‘en-pt-en’ documents 
and the ‘en-de-en’ documents. Notice that all the stopwords are removed. 
ID Titles for Original Documents 
1 pen phen warning 
2 meeting israeli palestinian leaders 
3 world balloon quest 
4 oil food deal rescue iraq's stagnant economy 
5 astronomists continue probe life mars 
 Titles for ‘en-fr-en Documents’ 
1 fda issues warning herbal fen-phen 
2 secret meeting arafat netanyahu unsuccessful 
3 british tycoon's balloon launch thwarted 
4 oil food deal rescue iraq's stagnant economy 
5 astronomists continue to probe life on mars 
 Titles for ‘en-pt-en Documents’ 
1 pen phen warning 
2 meeting israeli palestinian leaders 
3 british tycoon's balloon launch thwarted 
4 oil food deal rescue iraq's stagnant economy 
5 astronomists continue to probe life on mars 
 Titles for ‘en-de-en Documents’ 
1 pen phen warning 
2 hebron 
3 british tycoon's balloon launch thwarted 
4 oil food deal rescue iraq's stagnant economy 
5 astronomists continue to probe life on mars 
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Table 6.7 Example titles generated by the TFIDF method (TFIDF) for the 
original documents, the ‘en-fr-en’ documents, the ‘en-pt-en’ documents and 
the ‘en-de-en’ documents. Notice that all the stopwords are removed. 
ID Titles for Original Documents 
1 phen fen drug effects drugs disease 
2 palestinian cabinet minister netanyahu yasser arafat 
3 swiss balloon quest landed safely desert 
4 iraq sanctions iraqi oil arab nations 
5 life galaxy earth stars pounds universe 
 Titles for ‘en-fr-en Documents’ 
1  drug effects mark drugs disease capacity 
2  yasser arafat hebron agreement israel palestinians 
3  search mark algerian switzerland balloon quest 
4  iraq iraqi sanctions food companies usa 
5  life ground east stars usa universe 
 Titles for ‘en-pt-en Documents’ 
1  phen fen effects drugs doctor illness 
2  yasser arafat hebron agreement israel palestinians 
3  algerian balloon quest teams de stops 
4  iraq iraqi sanctions food stands commentary 
5  life distant galaxy stars land universe 
 Titles for ‘en-de-en Documents’ 
1  doctor effects drugs illness robbery breath 
2  israeli cabinet hebron agreement israel palestinians 
3  algerian message places balloon branson continuous 
4  iraq iraqi sanctions medicine arab enterprises 
5 life span credit mass possibly universe 
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Table 6.8 Example titles generated by the Naïve Bayes method with a limited 
vocabulary (NBL) for the original documents, the ‘en-fr-en’ documents, the 
‘en-pt-en’ documents and the ‘en-de-en’ documents. Notice that all the 
stopwords are removed. 
ID Titles for Original Documents 
1  diet drugs food health news medicine 
2  yasser arafat netanyahu ross talks hebron 
3  algerian man balloonist richard branson week 
4  iraq oil food deal iraqi crisis 
5  life mars scientists religious civil earth 
 Titles for ‘en-fr-en Documents’ 
1  health news doctors weight rubin hypertension 
2  israelis palestinians yasser arafat hebron agreement 
3  world news morning branson balloon flight 
4  iraq food medicine coverage iraqi crisis 
5  scientists world science olympic astronomers galactic 
 Titles for ‘en-pt-en Documents’ 
1  doctors diet drugs food health medicine 
2  minister netanyahu arafat hebron agreement israel 
3  balloonist richard branson world balloon week 
4  iraq oil food medicine business report 
5  life mars landing religious civil land 
 Titles for ‘en-de-en Documents’ 
1  food health people dead man hearings 
2  israeli palestinian cabinet hebron agreement israel 
3  algerian man news week house industry 
4  russian space pair murder man strike 
5  oil food medicine market economy companies 
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Table 6.9 Example titles generated by the direct model with dual noisy 
channels (DM) for the original documents, the ‘en-fr-en’ documents, the ‘en-
pt-en’ documents and the ‘en-de-en’ documents. Notice that all the stopwords 
are removed. 
ID Titles for Original Documents 
1 fda diet drug fen phen redux fenfluramine heart disease 
2 israeli palestinian peace middle east  jerusalem 
3 world ballon quest 
4 iraq oil food deal 
5 life mars probe 
 Titles for ‘en-fr-en Documents’ 
1 fda diet drug fen phen redux heart disease 
2 israeli palestinian peace talks middle east  jerusalem 
3 flight world balloon quest 
4 iraqi crisis 
5 scientists discusses universe mars probe 
 Titles for ‘en-pt-en Documents’ 
1 diet drug fen phen health medicine 
2 israeli palestinian peace middle east 
3 branson's beautiful balloon quest 
4 iraqi sanctions iraq oil food deal 
5 scientists universe life mars probe 
 Titles for ‘en-de-en Documents’ 
1 risks diet drugs heart treatment 
2 middle east peace process west bank 
3 balloon race reno testimony 
4 iraqi crisis iraq 
5 scientists discusses universe mars 
 

Table 6.10 Examples of reference titles for the experiment of automatic title 
generation with machine-translated documents. Notice that all the stopwords 
are removed. 
ID Reference Titles 
1 fen phen primary pulmonary hypertension 
2 update night's netanyahu arafat meeting 
3 world balloon quest incomplete 
4 iraq dealing international sanctions 
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5 scientists search life planets 
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C h a p t e r  7  

A TITLE GENERATION MODEL FOR INFORMATION RETRIEVAL 

In this chapter, we will discuss how to apply the title generation model to 

information retrieval. The basic idea is to use the title generation model for 

exploiting the correlation between document words and title words. Unlike the 

traditional language model, where a document language model is built for each 

document, this model tries to build an approximated query language model for 

every document. Furthermore, at the end of this chapter, we will briefly study 

another application of the title generation model, namely applying the 

automatic title generation model to text categorization. 

7.1 Introduction 

Using language models for information retrieval has been studied extensively 

recently (Lafferty & Zhai, 2001a; Zhai & Lafferty, 2001b; Berger & Lafferty, 

1999; Hiemstra & Kraaij, 1999; Miller et al., 1999; Ponte & Croft, 1998; 

Voorhees & Harman, 1996). The basic idea is to compute the conditional 

probability P(Q|D), i.e., the probability of generating a query Q given the 

observation of a document D. Several different methods have been applied to 

compute this conditional probability. In most approaches, the computation is 

conceptually decomposed into two distinct steps: (1) Estimating a document 

language model; (2) Computing the query likelihood using the estimated 

document model based on some query model.  For example, Ponte and Croft 

(1998) emphasized the first step, and used several heuristics to smooth the 

Maximum Likelihood Estimate (MLE) of the document language model, and 

assumed that the query is generated under a multivariate Bernoulli model. The 
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BBN method (Miller et al., 1999) emphasized the second step and used a two-

state hidden Markov model as the basis for generating queries, which, in 

effect, is to smooth the MLE with linear interpolation, a strategy also adopted 

in Hiemstra and Kraaij (1999). In Zhai and Lafferty (2001b), it has been found 

that the retrieval performance is affected by both the estimation accuracy of 

document language models and the appropriate modeling of the query, and a 

two-stage smoothing method was suggested to explicitly address these two 

distinct steps.  

A common deficiency in these approaches is that they all apply an estimated 

document language model directly to generating queries, but presumably 

queries and documents should be generated through different stochastic 

processes, since they have quite different characteristics. Therefore, there 

exists a “gap” between a document language model and a query language 

model. Indeed, such a gap has been well recognized in (Lafferty & Zhai, 

2001a), where separate models are proposed to model queries and documents 

respectively. The gap has also been recognized in (Lavrenko & Croft, 2001), 

where a document model is estimated based on a query through averaging 

over document models based on how well they explain the query. In most 

existing approaches using the query likelihood for scoring, this gap has been 

implicitly addressed through smoothing. Indeed,  in (Zhai & Lafferty, 2001b) 

it has been found that the optimal setting of smoothing parameters is actually 

query-dependent , which suggests that smoothing may have helped bridge this 

gap. 

Although filling the gap by simple smoothing has been shown to be 

empirically effective, ideally we should estimate a query language model 

directly based on the observation of a document, and apply the estimated query 

language model, instead of the document language model, to generate queries. 
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The question then is, “What evidence do we have for estimating a query 

language model given a document?”. This is a very challenging question, since 

the information available to us in a typical ad hoc retrieval setting includes no 

more than a database of documents and queries. 

In this section, we propose to use the titles of documents as the evidence for 

estimating a query language model for a given document -- essentially to 

approximate the query language model given a document by the title language 

model for that document, which is easier to estimate. The motivation of this 

work is based on the observation that queries are more like titles than 

documents in many aspects. For example, both titles and queries tend to be 

very short and concise description of information. The reasoning process in the 

author’s mind when making up the title for a document is similar to what is in 

a user’s mind when formulating a query based on some “ideal document” -- 

both would be trying to capture what the document is about. Therefore, it is 

reasonable to assume that the titles and queries are created through a similar 

generation process. The title information has been exploited previously for 

improving information retrieval, but so far, only heuristic methods, such as 

increasing the weight of title words, have been tried (e.g., Lam-Adesina & 

Jones, 2001; Voorhees & Harm, 1996). Here we use the title information in a 

more principled way by treating a title as an observation from a document-title 

statistical translation model. 

Technically, the title language model approach falls into the general source-

channel framework proposed in Berger and Lafferty (1999), where the 

difference between a query and a document is explicitly addressed by treating 

query formulation as a “corruption” of the “ideal document” in the information 

theoretic sense. Conceptually, however, the title language model is different 

from the synthetic query translation model explored in (1999). The use of 
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synthesized queries provides an interesting way to train a statistical translation 

model that can address important issues such as synonymy and polysemy, 

whereas the title language model is meant to directly approximate queries with 

titles. Moreover, training with the titles poses special difficulties due to data 

sparseness, which we discuss below. 

A document can potentially have many different titles, but the author only 

provides one title for each document. Thus, if we estimate title language 

models only based on the observation of the author-given titles, it will suffer 

severely from the problem of sparse data. The use of a statistical translation 

model can alleviate this problem. The basic idea is to treat the document-title 

pairs as ‘translation’ pairs observed from some translation model that captures 

the intrinsic document to query translation patterns. This means we would 

train the statistical ‘translation’ model based on the document-title pairs in the 

whole collection. Once we have this general translation model in hand, we can 

estimate the title language model for a particular document by applying the 

learned translation model to the document. 

Even if we pool all the document-title pairs together, the training data is still 

quite sparse given the large number of parameters involved. Since titles are 

typically much shorter than documents, we would expect that most words in a 

document would never occur in any of the titles in the collection. To address 

this problem, we extend the standard learning algorithms of the translation 

models by adding special parameters to model the “self-translation” 

probabilities of words. We propose two such techniques: One assumes that all 

words have the same self-translation probability and the other assumes that 

each title has an extra unobserved null word slot that can only be filled by a 

word generated through self-translation. 
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7.2 Title Language Model for IR 

The basic idea of the title language model approach is to estimate the title 

language model for a document and then to compute the likelihood that the 

query would have been generated from the estimated model. Therefore, the 

key issue is how to estimate the title language model for a document based on 

the observation of a collection of documents.  

A simple approach would be to estimate the title language model for a 

document using only the title of that document. However, because of the 

flexibility in choosing different titles and the fact that each document has only 

one title given by the author(s), it would be almost impossible to obtain a good 

estimation of title language model directly from the titles. 

Our approach is to exploit statistical translation models to find the title 

language model based on the observation of a document. More specifically, 

we use a statistical translation model to “convert” the language model of a 

document to the title language model for that document. To accomplish this 

conversion process, we need to answer two questions: 

1. How to estimate such a statistical translation model?  

2. How to apply the estimated statistical translation model to convert a 

document language model to a title language model and use the estimated title 

language model to score documents with respect to a query? 

In the following section, we are going to address these two questions 

respectively. 
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7.2.1 Learning a Statistical Title Translation Model 

The key component in a statistical title translation model is the word 

translation probability P(tw|dw), i.e., the probability of using word tw in the 

title, given that word dw appears in the document. Once we have the set of 

word translation probabilities P(tw|dw), we can easily calculate the title 

language model for a document based on the observation of that document. 

To learn the set of word translation probabilities, we can take advantage of the 

document-title pairs in the collection. By viewing documents as samples of a 

‘verbose’ language and titles as samples of a ‘concise’ language, we can treat 

each document-title pair as a translation pair, i.e., a pair of texts written in the 

‘verbose’ language and the ‘concise’ language respectively. 

Formally, let {<ti, di>, i = 1, 2, …, N} be the title-document pairs in the 

collection. According to the standard statistical translation model (Brown et 

al., 1990) we can find the optimal model M* by maximizing the probability of 

generating titles from documents, or 
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∏ ∏ ∑

∏ ∏ ∑

∏

= ∈ ∈

= ∈ ∈

=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
+

≈

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

+
≈

=

N

i ttw ddw
i

iM

N

i ttw ddw
i

iM

N

i
ii

M

i i

i i

ddwPMdwtwP
d

MtwP

ddwcMdwtwPMtwP
d

MdtPM

1

1

1

)|(),|(
1||

),|(maxarg

),(),|(),|(
1||

maxarg

),|(maxarg*

φ

φ
ε

 (7.2) 



 148

where ε is a constant, φ stands for the null word, |di| is the length of document 

di, c(dw, di) is the number of times that word dw appears in document d. In the 

last step of Equation (7.2), we throw out the constant ε and use the 

approximation that )1|/(|),()|( +≈ dddwcddwP . To find the optimal word translation 

probabilities P(tw|dw,M*), we can use the EM algorithm. The details of the 

algorithm can be found in the literature for statistical translation models, such 

as (Brown et al., 1993). We call this model  “model 1” for easy reference. 

7.2.1.1 The problem of under-estimating self-translation probabilities 

There is a serious problem with using model 1 described above directly to 

learn the correlation between the words in documents and titles. In particular, 

the self-translation probability of a word (i.e., P(w’=w|w)) will be under-

estimated significantly. A document can potentially have many different titles, 

but authors generally only give one title for every document. Because titles are 

usually much shorter than documents, only an extremely small portion of the 

words in a document can be expected to actually appear in the title. We 

measured the vocabulary overlapping between titles and documents on three 

different TREC collections: AP(1988), WSJ(1990-1992) and SJM(1991), and 

found that, on average, only 5% of the words in a document also appear in its 

title. This means that most of the document words would never appear in any 

title, which will result in a zero self-translation probability for most of the 

words. Therefore, if we follow the learning algorithm for the statistical 

translation model directly, the following scenario may occur: For some 

documents, even though they contain every single query word, the probability 

P(Q|D) can still be very low due to the zero self-translation probability. In the 

following subsections, we propose two different learning algorithms that can 

address this problem. As will be shown later, both algorithms improve the 
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retrieval performance significantly over the model 1, indicating that the 

proposed methods for modeling the self-translation probabilities are effective. 

7.2.1.2 Tying self-translation probabilities (Model 2)  

One way to avoid the problem of zero self translation probability is to tie all 

the self translation probabilities P(w’=w|w) with a single parameter Pself. 

Essentially, we assume that all the self-translation probabilities have 

approximately the same value, and so can be replace with a single parameter. 

Since there are always some title words actually coming from the body of 

documents, the unified self-translation probability Pself will not be zero. We 

call the corresponding model Model 2. 

We can also apply the EM algorithm to estimate all the word translation 

probabilities, including the smoothing parameter Pself. The updating Equations 

are as follows:  

Let P(w’|w) and Pself stand for the parameters obtained from the previous 

iteration, P’(w|w) and P’self stand for the updated values of the parameters in 

the  current iteration. According to the EM algorithm, the updating equation 

for the self-translation probability P’self, will be 
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where variable Zself is the normalization constant and is defined as 
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For those non-self-translation probabilities, i.e., P(w’≠w|w), the EM updating 

equations are identical to the ones used for the standard learning algorithm of a 

statistical translation model except that in the normalization equations, the 

self-translation probability should be replaced with Pself, or 

self
ww

PwwPw '1)|'('   
'
∑
≠

−=∀  (7.5) 

 

7.2.1.3 Adding a Null Title Word Slot (Model 3) 

One problem with tying all the self-translation probabilities for different words 

with a single unified self-translation probability is that we lose some 

information about the relative importance of words. Specifically, those words 

with a higher probability in the titles should have a higher self-translation 

probability than those with a lower probability in the titles. Tying them would 

cause under-estimation of the former and over-estimation of the latter. As a 

result, the self-translation probability may be less than the translation 

probability for other words, which is not desirable. 

In this subsection, we propose a better smoothing model that is able to 

discriminate the self-translation probabilities for different document words. It 

is based on the idea of introducing an extra NULL word slot in the title. An 

interesting property of this model is that the self-translation probability is 
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guaranteed to be no less than the translation probability for any other word, 

i.e., P(w|w)³P(w’¹w|w) . We call this model ‘Model 3’. 

Titles are typically very short and therefore only provide us with very limited 

data. Now, suppose we had sampled more title words from the title language 

model of a given document, what kinds of words would we expect to have 

seen? Given no other information, it would be reasonable to assume that we 

will more likely observe a word that occurs in the document. To capture this 

intuition, we assume that there is an extra NULL, unobserved, word slot in 

each title, that can only be filled in by self-translating any word in the body of 

the document. Use et to stand for the extra word slot in the title t. With the 

count of this extra word slot, the standard statistical translation model between 

the document d and title t will be modified as 
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To find the optimal statistical translation model, we will still maximize the 

translation probability from documents to titles. Substituting the document-

title translation probability P(t|d,M) with equation (7.6), the optimization goal 

(Equation (7.1)) can be written as 
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Because the extra word slot in every title provides a chance for any word in the 

document to appear in the title through the self-translation process, it is not 

difficult to prove that this model will ensure that the self-translation 

probability P(w|w) will be no less than P(w’≠w|w) for any word w. The EM 

algorithm can again be applied to maximize Equation (7.7) and learn the word 

translation probabilities. The updating equations for the word translation 

probabilities are essentially the same as what are used for the standard learning 

algorithm for statistical translation models, except for the inclusion of the extra 

counts due to the null word slot. 

7.2.2 Computing Document Query Similarity 

In this section, we discuss how to apply the learned statistical translation 

model to find the title language model for a document and use the estimated 

title language model to compute the relevance value of a document with 

respect to a query. To accomplish this, we define the conditional probability 

P(Q|D) as the probability of using query Q as the title for document D, or, the 

probability of translating document D into query Q using the  statistical title 

translation model, which is given below. 
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As can be seen from Equation (7.8), the document language model P(dw|D) is 

not directly used to compute the probability of a query term. Instead, it is 

“converted” into a title language model through using word translation 

probabilities P(qw|dw). Such conversion also happens in the model proposed 

in (Berger & Lafferty, 1999), but there the translation model is meant to 
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capture synonym and polysemy relations, and is trained with synthetic queries.  

Similar to the traditional language modeling approach, to deal with the query 

words that can’t be generated from the title language model we need to do 

further smoothing, i.e., 
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where constant l is the smoothing constant and P(qw|GE) is the general 

English language model which can be easily estimated from the collection. In 

our experiment, we set the smoothing constant l to be 0.5 for all different 

models and all different collections. 

Equation (7.8’) is the general formula that can be used to score a document 

with respect to a query with any specific translation model. A different 

translation model would thus result in a different retrieval formula. In the next 

section, we will compare the retrieval performance using different statistical 

title translation models, including Model 1, Model 2 and Model 3. 

7.3 Experiment 

7.3.1 Experiment Design 

The goal of our experiments is to answer the following three questions: 

1. Will the title language model be effective for information retrieval? To 

answer this question, we will compare the performance of the title 

language model to that of the state-of-art information retrieval methods, 
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including the Okapi method and the traditional language model for 

information retrieval. Furthermore, since our method explores the 

correlation between words in titles and words in documents, it can be 

treated as a method of query expansion using title information instead of 

document information. Therefore, we also compare the performance of 

title language model to the performance of query expansion using titles of 

top retrieved documents. 

2. How general is the trained statistical title translation model? Can a model 

estimated on one collection be applied to another? To answer this question, 

we conduct an experiment that applies the statistical title translation model 

learned from one collection to other collections. We then compare the 

performance of using a “foreign” translation model with that of using no 

translation model.  

3. How important is the smoothing of self-translation in the title language 

model approach for information retrieval? To answer this question, we can 

compare the results for title language model 1 with model 2 and model 3. 

We used three different TREC testing collections for evaluation: AP88 

(Associated Press, 1988), WSJ90-92 (Wall Street Journal from 1990 to 1992) 

and SJM (San Jose Mercury News, 1991). Furthermore, because these three 

collections contain only news stories and therefore may be too homogeneous, 

we create a fourth heterogeneous collection, which consists of documents 

sampled from seven different document collections, namely AP88 (Associated 

Press, 1988), AP90 (Associated Press, 1990), WSJ90-92 (Wall Street Journal 

from 1990 to 1992), FR88 (Federal Register, 1998), ZIFF (Computer Select 

Disk, 1989 & 1990), SJM (San Jose Mercury News, 1991), ZIFF2 (Computer 

Select Disk, 1991 & 1992).  For each collection, we sampled 10% of the 
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documents out of the original collection and the total number of documents for 

this ‘created collection’ is 49765. Finally, all the relevant documents are 

appended to the synthesized collection. 

We used TREC4 queries (201-250) and their relevance judgments for 

evaluation. The average length of the titles in these collections is four to five 

words. The different characteristics of the three databases allow us to check 

the robustness of our models. 

7.3.2 Baseline Models 

The two baseline methods are the Okapi method (Robertson et al., 1993) and 

the traditional language modeling approach. The exact formula for the Okapi 

method is shown in Equation (7.9) 
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where tf(qw,D) is the term frequency of  word qw in document D, df(qw) is the 

document frequency for the word qw, and avg_dl is the average document 

length for all the documents in the collection. The query expansion for the 

Okapi method is implemented as follows: we select titles of the top 10 

retrieved documents. The top 15 most popular title words among the selected 

titles are chosen as expanded query words with a discount weight 0.3. 

Parameters used in the query expansion are roughly tuned in order to get a 

reasonable performance. Notice that in this experiment, we use the title words 

of top retrieved documents for query expansion, instead of the document 

words. The reason for that is because the proposed retrieval model takes 

advantage of the correlation between title words and document words to 
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enhance the retrieval performance. Therefore, as a fair comparison, the method 

of query expansion should use similar information.  

The exact equation used for the traditional language modeling approach is 

shown in Equation (7.10). 

∏
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The constant λ is the smoothing constant (similar to the λ in Equation (7.8’)), 

and P(qw|GE) is the general English language model estimated from the 

collection. To make the comparison fair, the smoothing constant for the 

traditional language model is set to be 0.5, which is same as for the title 

language model. 

7.3.3 Experiment Results for Homogeneous Datasets 

The results on AP88, WSJ and SJM are shown in Table 7.1, Table7.2, and 

Table 7.3, respectively. In each table, we include the precisions at different 

recall points and precisions for different numbers of top retrieved documents. 

Meanwhile, the averaged precision and the precision after the number of 

relevant documents retrieved are also listed in those tables. For easy 

comparison, the results of average precision are also shown in Figure 7.1. 

Several interesting observations can be made on these results: 

First, let us compare the results between different title language models, 

namely model 1, model 2 and model 3. As seen from Table 7.1, 7.2 and 7.3, 

for all the three collections, model 1 is inferior to model 2, which is inferior to 

model 3, in terms of both average precision and precisions at different recall 

points. In particular, on the WSJ collection, title language model 1 performs 

extremely poorly compared with the other two methods. This result indicates 
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that title language model 1 may fail to find relevant documents in some cases 

due to the problem of zero self-translation probability, as we discussed in 

Section 7.2. We computed the percentage of title words that cannot be found 

in their documents. This number is 25% for AP88 collection, 34% for SJM 

collection and 45% for WSJ collection. This high percentage of “missing” title 

words strongly suggests that the smoothing of self-translation probability will 

be critical. Indeed, for the WSJ collection, which has the highest percentage of 

missing title words, title language model 1, without any smoothing of self-

translation probability, degrades the performance more dramatically than for 

collections AP88 and SJM, where more title words can be found in the 

documents, and the smoothing of self-translation probability is not as critical. 

The second dimension of comparison is to compare title language models with 

traditional language model. As already pointed out by Berger and Lafferty 

(1999), the traditional language model can be viewed as a special case of the 

translation language model, i.e., all the translation probability P(w’|w) become 

delta functions δ(w,w’). Therefore, the comparison along this dimension can 

indicate if the translation probabilities learned from the correlation between 

titles and documents are effective in improving retrieval accuracy. As seen 

from Table 7.1, Table 7.2, and Table 7.3, title language model 3 performs 

better than the traditional language model over all the three collections in 

terms of all the performance measures. Thus, we can conclude that the 

translation probability learned from title-document pairs appears to be helpful 

for finding relevant documents. 

Lastly, we compare the performance of the title language model approach with 

the Okapi method (Robertson et al., 1993). For all the three collections the title 

language model 3 outperforms Okapi in terms of most performance measures, 

except the precision at 0.0 recall point for AP88 collection, precisions at 0.0 
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and 0.1 recall point for WSJ collection, and the precision at the top 5 retrieved 

documents for SJM collection. For these four points, Model 3 performs worse 

than the Okapi method. Furthermore, we compare the performance of the 

proposed model to that of the query expansion. Surprisingly, for all three 

collections, the method of query expansion doesn’t improve the performance 

of original Okapi method. As already mentioned before, the query expansion 

used here is different from the traditional query expansion. For the traditional 

query expansion, the most popular document words of the top retrieved 

documents are added to the original query, while for this experiment, the most 

popular title words of the top retrieved documents are added to the original 

query. In effect, we conducted the same experiments but with query expansion 

on document words and the results are substantially better than the original 

Okapi method. The reason why the query expansion with title words doesn’t 

improve the performance can be explained by the fact that words used for 

titles are significantly different from words used for constructing documents. 

This difference is indicated by the fact that a large portion of words used in 

titles doesn’t appear in the corresponding documents. It is also confirmed by 

the comparison of a title language model to a document language model in 

Section 5.3.1.4 when we tried to explain why using documents as extra 

training data for creating title language model is inappropriate. Because of this 

difference, the title words of top retrieved documents may not necessary be 

important words to those relevant documents. Thus, expanding queries with 

title words doesn’t help improve the performance of information retrieval. 

7.3.4 Experiments on the Generality of the Proposed Model 

To test the generality of the estimated translation model, we applied the 

statistical title translation model leaned from the AP88 collection to the AP90 

collection. We hypothesize that if two collections are ‘similar’, the statistical 

title translation model learned from one collection should be able to give a 
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good approximation of the correlation between documents and titles of the 

other collection. Therefore, it would make sense to apply the translation model 

learned from one collection to another ‘similar’ collection. 

Table 7.4 gives the results of applying the translation model learned from 

AP88 to AP90, together with the results of applying the translation model 

learned from AP90. Since title language model 3 already demonstrated its 

superiority to model 1 and model 2, we only considered model 3 in this 

experiment. From Table 7.4, we see that title generation model 3 trained on 

both AP88 and AP90 is able to outperform the traditional language model and 

Okapi method substantially in terms of most measures. Surprisingly, model 3 

trained over the AP88 collection performs slightly better than the same model 

trained over the AP90 collection. This appears to contradict common sense, 

which usually believes that a model trained over the test collection should be 

superior to models trained over other collections. However, since the 

difference between these two models is small (e.g., the improvement is less 

than 5%), the improvement cannot be deemed as a reliable observation. We 

also applied the statistical title translation model learned from AP88 to WSJ to 

further examine the generality of the model and our learning method. This 

time, the performance of title language model 3 with the statistical title 

translation model learned from AP88 is only about the same as the traditional 

language model and the Okapi method for the collection WSJ.  Since the 

statistical title translation model learned from AP88 can be expected to be a 

much better approximation of the correlation between documents and titles for 

AP90 than for WSJ, these results suggest that applying the translation model 

learned from a “foreign” database is helpful only when the “foreign” database 

is similar to the “native” one.  
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7.3.5 Experiment Results for the Heterogeneous Dataset 

In this experiment, we test the proposed model 3 over the heterogeneous 

dataset that is formed by the documents sampled from seven different 

document collections. The results for the proposed model 3, the traditional 

language model, the Okapi method and the query expansion method are listed 

in Table 7.5. For easy comparison, the results of average precision are also 

shown in Figure 7.1. This time, the proposed model (i.e., ‘Model 3’,) doesn’t 

improve the performance over the traditional language model. In contrast, the 

averaged precision of the proposed retrieval model degrades from 0.2842 to 

0.2720. The reason why the title language model doesn’t work for the 

heterogeneous datasets can be attributed to the diversity of title words. In order 

to see the situation clearly, let’s consider the word ‘bank’, which can mean 

either a financial institute or the bank of a river. When the word ‘bank’ means 

a financial institute, we would expect words such as ‘investment’ to appear in 

titles. When it means the bank of a river, we may see words such as ‘flood’ 

appearing in titles. If we have mixture of financial stories and stories about 

weather, the title language model will be able to link the word ‘bank’ strongly 

with the title words ‘investment’ and ‘flood’. Therefore, for a query with word 

‘bank’, even if it is intended to find financial news stories, the title language 

query will push both the documents of financial news and the documents of 

floods toward the top of the retrieval list. Clearly, such an adjustment can 

actually degrade the performance. With this simple illustration, we can see that 

for the heterogeneous datasets, document words with multiple meanings can 

be linked to many more different title words than the homogeneous datasets. 

When a query contains such a document word, the title language model may 

push documents in several different topics toward the top of the retrieval list, 

even though the query only asks for documents in a single topic. As a result, 

the title language model can degrade the performance of information retrieval 
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for the heterogeneous datasets. In order to see the diversity of title words that 

are correlated with document words, we compute the averaged number of 

unique title words that are linked with each document word by the title 

language model. It is 170.9 for the synthesized heterogeneous dataset and only 

around 130 for both AP90 and AP88 collection. This number indicates that for 

the heterogeneous dataset, each document word is linked with many more 

unique title words than the homogeneous datasets, which provides more 

opportunities for the title language model to move irrelevant documents 

toward the top of the retrieval list. Furthermore, for each document word, we 

compute the ten most correlated title words for both the synthesized dataset 

and the AP88 dataset, and found that in average less than one word is shared 

by both collections. This fact again indicates that the set of title words 

correlated with each document word in the synthesized dataset is much more 

diverse than the homogeneous datasets. In conclusion, the above analysis 

suggests that heterogeneous datasets can lead each document to correlate with 

diverse title words and therefore the proposed title language model for 

information retrieval may not be effective for heterogeneous datasets. 

Furthermore, different from the experiments with the homogeneous datasets, 

for this dataset the query expansion method does improve the performance of 

the Okapi method substantially in terms of most measures. It can be explained 

by the fact that for this synthesized dataset, the average retrieval precision for 

the top 10 documents is 0.64 while for the homogeneous datasets, the averaged 

retrieval precision for the top 10 documents is no more than 0.35. Therefore, 

the top retrieved documents for the heterogeneous dataset are much more 

relevant to the query than those homogeneous datasets, which provides a better 

chance for the query expansion method to improve the performance even 

using the title words of the top retrieved documents. To further confirm this 

hypothesis, we run the query expansion method over the synthesized dataset 
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again using top 100 documents (the retrieval accuracy at 100 documents is 

around 0.3460). All the other parameters, including the number of expanded 

query words and the weights used for expanded query words, are kept the 

same. The resulted averaged precision is 0.2812, which is only as good as the 

Okapi method (e.g., 0.2782).  

7.4 Conclusions For the Title Language Model of IR 

Bridging the “gap” between a query language model and document language 

model is an important issue when applying language models to information 

retrieval. In this thesis, we propose bridging this gap by exploiting titles to 

estimate a title language model, which can be regarded as an approximate 

query language model. The essence of our work is to approximate the query 

language model for a document with the title language model for the 

document. Operationally, we first estimate such a translation model by using 

all the document-title pairs in a collection. The translation model can then be 

used to “convert” a regular document language model into a title language 

model. Finally, the title language model estimated for each document is used 

to compute the query likelihood. Intuitively, the scoring is based on the 

likelihood that the query could have been a title for a document. 

From the experiment results, we can draw the following conclusions: 

• Based on the comparison between the title language model, the traditional 

language model and the Okapi method, we can conclude that the title 

language model for information retrieval is an effective retrieval method 

for homogeneous datasets but may not be effective for heterogeneous 

datasets due to the fact that the correlation between titles and documents 

varies from one collection to another. 
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• Based on the comparison between three different title language models for 

information retrieval, we can conclude that title generation model 2 and 3 

are superior to model 1, and model 3 is superior to model 2. Since the 

difference between the three different title language models is on how they 

handle the self-translation probability, we can conclude that: First it is 

crucial to smooth the self-translation probability to avoid the zero self-

translation probability. Secondly, a better smoothing method for self-

translation probability can improve the performance. Results show that 

adding an extra null word slot to the title is a reasonable smoothing method 

for the self-translation probabilities.  

• The success of applying the title language model learned from AP88 to 

AP90 appears to indicate that in the case when the two collections are 

similar, the correlation between documents and titles in one collection also 

tend to be similar to that in the other. Therefore, it would seem to be 

appropriate to apply the statistical title translation model learned from one 

collection to the retrieval task of another similar collection.  
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Table 7.1: Results for AP88 collection. ‘LM’ stands for the traditional 
language model, ‘Okapi’ stands for the Okapi formula, ‘QE’ stands for the 
query expansion based titles of the top retrieved documents, and model-1, 
model-2 and model-3 stand for the title language model 1, model 2 and model 
3.  
Collection LM Okapi Model 

1 
Model 

2 
Model 3 QE 

Recall 0.0 0.5986 0.6459 0.5708 0.6028 0.6224 0.6429 
Recall 0.1 0.4398 0.4798 0.2061 0.4885 0.5062 0.4717 
Recall 0.2 0.3490 0.3789 0.1409 0.4082 0.4024 0.3749 
Recall 0.3 0.3035 0.3286 0.1154 0.3417 0.3572 0.3280 
Recall 0.4 0.2492 0.2889 0.0680 0.2830 0.3133 0.2904 
Recall 0.5 0.2114 0.2352 0.0525 0.2399 0.2668 0.2351 
Recall 0.6 0.1689 0.2011 0.0277 0.1856 0.2107 0.2034 
Recall 0.7 0.1369 0.1596 0.0174 0.1460 0.1742 0.1548 

Recall 0.8 0.0811 0.0833 0.0174 0.0897 0.1184 0.0889 
Recall 0.9 0.0617 0.0611 0.0115 0.0651 0.0738 0.0615 
Recall 1.0 0.0580 0.0582 0.0115 0.0618 0.0639 0.0584 

Avg. Prec. 0.2238 0.2463 0.2108 0.2516 0.2677 0.2454 
5 docs 0.3600 0.3720 0.3240 0.376 0.4080 0.3640 
10 docs 0.2820 0.3080 0.2560 0.312 0.3380 0.3080 
15 docs 0.2520 0.2787 0.2330 0.268 0.3000 0.2707 
20 docs 0.2290 0.2480 0.2100 0.236 0.2700 0.2450 
30 docs 0.1930 0.2080 0.1787 0.2067 0.2270 0.2067 
100 docs 0.0974 0.1094 0.0940 0.1086 0.1200 0.1804 
200 docs 0.0487 0.0547 0.0470 0.0543 0.0600 0.0542 
500 docs 0.0195 0.0219 0.0188 0.0217 0.0240 0.0217 
1000 docs 0.0097 0.0109 0.0094 0.0109 0.0120 0.0108 

R-precision 0.2511 0.2668 0.2422 0.2994 0.2937 0.2676 
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Table 7.2: Results for WSJ collection. ‘LM’ stands for the traditional 
language model, ‘Okapi’ stands for the Okapi formula, ‘QE’ stands for the 
query expansion based titles of the top retrieved documents, and model-1, 
model-2 and model-3 stand for the title language model 1, model 2 and model 
3. 
Collection LM Okapi Model 1 Model 

2 
Model 

3 
QE 

Recall 0.0 0.5127 0.5564 0.2710 0.4895 0.5136 0.5619 
Recall 0.1 0.4308 0.4539 0.2061 0.4055 0.4271 0.4499 
Recall 0.2 0.3587 0.3546 0.1409 0.3449 0.3681 0.3543 
Recall 0.3 0.2721 0.2724 0.1154 0.2674 0.2878 0.2698 
Recall 0.4 0.2272 0.1817 0.0680 0.2305 0.2432 0.1804 
Recall 0.5 0.1812 0.1265 0.0525 0.1723 0.1874 0.1277 
Recall 0.6 0.1133 0.0840 0.0277 0.1172 0.1369 0.0855 
Recall 0.7 0.0525 0.0308 0.0174 0.0764 0.0652 0.0312 

Recall 0.8 0.0328 0.0218 0.0174 0.0528 0.0465 0.0223 
Recall 0.9 0.0153 0.0106 0.0115 0.0350 0.0204 0.0111 
Recall 1.0 0.0153 0.0106 0.0115 0.0321 0.0204 0.0111 

Avg. Prec. 0.1844 0.1719 0.0761 0.1851 0.1950 0.1722 

5 docs 0.3200 0.3200 0.1440 0.2960 0.3160 0.3120 

10 docs 0.2580 0.2660 0.1140 0.2560 0.2600 0.264 

15 docs 0.2253 0.2320 0.1053 0.2200 0.2290 0.2307 

20 docs 0.2060 0.2170 0.1020 0.1970 0.2130 0.2170 

30 docs 0.1747 0.1813 0.0860 0.1660 0.1813 0.1820 

100 docs 0.1036 0.1018 0.0514 0.1010 0.1050 0.1020 

200 docs 0.0518 0.0509 0.0257 0.0505 0.0525 0.0510 

500 docs 0.0207 0.0204 0.0103 0.0202 0.0210 0.0204 

1000 docs 0.0104 0.0102 0.0051 0.1010 0.0105 0.0102 
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R-precision 0.2137 0.2154 0.0962 0.2188 0.231 0.2142 

 

 

Table 7.3: Results for SJM collection. ‘LM’ stands for the traditional language 
model, ‘Okapi’ stands for the Okapi formula, ‘QE’ stands for the query 
expansion based titles of the top retrieved documents, and model-1, model-2 
and model-3 stand for the title language model 1, model 2 and model 3. 
Collection LM Okapi Model 

1 
Model 

2 
Model 

3 
QE 

Recall 0.0 0.5093 0.5352 0.5470 0.5126 0.5480 0.5619 
Recall 0.1 0.4009 0.4054 0.4226 0.4249 0.4339 0.4499 
Recall 0.2 0.3345 0.3232 0.3281 0.3650 0.3638 0.3543 
Recall 0.3 0.2813 0.2348 0.2712 0.2890 0.3019 0.2698 
Recall 0.4 0.2076 0.1692 0.1991 0.2236 0.2296 0.1804 
Recall 0.5 0.1815 0.1378 0.1670 0.1874 0.1919 0.1277 
Recall 0.6 0.1046 0.0986 0.1095 0.1393 0.1431 0.0855 
Recall 0.7 0.0816 0.0571 0.0782 0.0862 0.0974 0.0312 
Recall 0.8 0.0460 0.0312 0.0688 0.0591 0.0788 0.0223 
Recall 0.9 0.0375 0.0312 0.0524 0.0386 0.0456 0.0111 
Recall 1.0 0.0375 0.0312 0.0524 0.0386 0.0456 0.0111 
Avg. Prec. 0.1845 0.1727 0.1910 0.1983 0.2081 0.1722 

5 docs 0.2880 0.3120 0.2720 0.2640 0.3040 0.3120 
10 docs 0.2460 0.2460 0.2100 0.2580 0.2520 0.264 
15 docs 0.2147 0.2360 0.1880 0.2280 0.2227 0.2307 
20 docs 0.1990 0.2140 0.1740 0.2110 0.2220 0.2170 
30 docs 0.1760 0.1773 0.1487 0.1830 0.1913 0.1820 
100 docs 0.0920 0.0984 0.0850 0.0996 0.1018 0.1020 
200 docs 0.0496 0.0492 0.0425 0.0498 0.0509 0.0510 
500 docs 0.0198 0.0197 0.0170 0.0199 0.0204 0.0204 
1000 docs 0.0099 0.0098 0.0085 0.0100 0.0102 0.0102 

R-precision 0.2250 0.2030 0.224 0.2203 0.2243 0.2142 
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Table 7.4: Results for AP90. ‘LM’ stands for the traditional language model, ‘Okapi’ 
stands for the Okapi formula, ‘QE’ stands for the query expansion based on the titles of 
the top retrieved documents, model3 (AP88) stands for the title language model 3 
using AP88 data for training, and model3 (AP90) stands for the title language model3 
using AP90 data for training. Different from the previous experiments in which the 
translation model is learned from the retrieved collection itself, this experiment applies 
the translation model learned from AP88 to retrieve relevant document in AP90 
collection. For the method of query expansion, we also use the titles of top retrieved 
documents from collection AP88. 

Collection LM Okapi Model 3 
(AP88) 

Model3 
(AP90) 

QE 

Recall 0.0 0.5904 0.5888 0.6598 0.6471 0.5480 
Recall 0.1 0.4775 0.4951 0.5137 0.5034 0.5075 
Recall 0.2 0.4118 0.4308 0.4454 0.4230 0.4225 
Recall 0.3 0.3124 0.3374 0.3628 0.3500 0.3583 
Recall 0.4 0.2700 0.2894 0.3248 0.3061 0.3306 
Recall 0.5 0.2280 0.2567 0.2665 0.2643 0.2854 

Recall 0.6 0.1733 0.2123 0.2222 0.2027 0.2153 
Recall 0.7 0.1294 0.1230 0.1372 0.1409 0.1365 

Recall 0.8 0.0991 0.0969 0.1136 0.1252 0.1082 
Recall 0.9 0.0782 0.0659 0.0963 0.0959 0.0657 
Recall 1.0 0.0614 0.0550 0.0733 0.0744 0.0359 
Avg. Prec. 0.2411 0.2511 0.2771 0.2675 0.2567 

5 docs 0.3640 0.364 0.3880 0.3880 0.3480 

10 docs 0.3020 0.3060 0.3280 0.2940 0.3180 
15 docs 0.2693 0.2787 0.2960 0.2653 0.2920 
20 docs 0.245 0.2590 0.2780 0.2480 0.2750 
30 docs 0.2027 0.2193 0.2387 0.2172 0.2413 
100 docs 0.1142 0.1198 0.1306 0.1196 0.1304 
200 docs 0.0571 0.0599 0.0653 0.0598 0.0652 
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500 docs 0.0228 0.0240 0.0261 0.0239 0.0261 
1000 docs 0.0131 0.0120 0.0131 0.0120 0.0130 

R-precision 0.2746 0.2920 0.3117 0.2826 0.2925 
 

Table 7.5: Results for the synthesized heterogeneous dataset. The 
synthesized heterogeneous dataset consists of documents sampled from 
seven different document collections. ‘LM’ stands for the traditional 
language model, ‘Okapi’ stands for the Okapi formula, ‘QE’ stands for 
the query expansion based on the titles of the top retrieved documents, 
‘Model3’ stands for the title language model 3. 

Collection LM Okapi Model 3 QE 

Recall 0.0 0.8281 0.8690 0.8126 0.8592 
Recall 0.1 0.6701 0.6645 0.6529 0.6933 
Recall 0.2 0.5402 0.5449 0.5371 0.5942 
Recall 0.3 0.4411 0.4300 0.4150 0.4465 
Recall 0.4 0.3135 0.3135 0.3235 0.3223 
Recall 0.5 0.2677 0.2339 0.2367 0.2649 

Recall 0.6 0.1440 0.1055 0.1150 0.1398 
Recall 0.7 0.0880 0.0839 0.0740 0.0865 

Recall 0.8 0.0565 0.0470 0.0502 0.0519 
Recall 0.9 0.0189 0.0249 0.0207 0.0253 
Recall 1.0 0.0138 0.0092 0.0127 0.0114 
Avg. Prec. 0.2842 0.2782 0.2720 0.2931 

5 docs 0.6800 0.6960 0.6760 0.7120 
10 docs 0.6160 0.6420 0.6140 0.6620 
15 docs 0.5760 0.5947 0.5733 0.6160 
20 docs 0.5480 0.5580 0.5470 0.5730 
30 docs 0.5033 0.5000 0.4920 0.5200 
100 docs 0.3428 0.3460 0.3354 0.3612 
200 docs 0.1714 0.1730 0.1677 0.1806 
500 docs 0.0686 0.0692 0.0671 0.0722 
1000 docs 0.0343 0.0346 0.0335 0.0361 
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R-precision 0.3417 0.3322 0.3332 0.3467 
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Figure 7.1: Average precision over 11 recall points for the tradition language 
model (Tradition LM), the Okapi method (Okapi), the title language model 
(Title LM), and the query expansion method (Query Expansion). Results for 
five different datasets are listed. They are: AP88, WSJ, SJM, AP90 and the 
synthesized dataset. 
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C h a p t e r  8  

 CONCLUSIONS 

In this thesis, we proposed a new statistical framework for automatic title 

generation named the ‘direct model with dual noisy channels’. Unlike the 

previous framework where there is only a single noisy channel that transforms 

documents into titles, in the new framework a hidden ‘information source’ is 

assumed and a title and a document are created from the same hidden 

‘information source’ but through different noisy channels. In order to create a 

title for a document, we need to first recover the hidden ‘information source’ 

from the observed document and then create a title from the estimated 

‘information source’. Two noisy channels are suggested for this process: the 

first noisy channel distills the ‘information source’ out of the document and 

the second noisy channel will then create a title out of the distilled 

‘information source’. 

Various methods have been examined for each component of the proposed 

model, namely the component for distilling important words out of documents, 

the component for computing the correlation between title words and 

document words, and the component for ordering selected title words. The 

best configuration uses the TF.IDF value (or mutual information) for distilling 

important content words, a statistical translation model for computing 

document-word-title-word correlation, an expanded title language model for 

estimating the likelihood of word sequences, and an order expansion method 

for estimating the likelihood for a set of words. Compared to both the Naïve 

Bayes method with a limited vocabulary and the best implementation of the 
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framework suggested by Witbrock and Mittal, the proposed model has 

demonstrated substantially better performance over two large datasets in terms 

of the F1 metric and human judgments. Experiments with speech recognition 

transcripts and machine-translated documents also indicated that the proposed 

model is more resilient to word errors than the old framework in terms of the 

F1 metric. Furthermore, experiments with heterogeneous testing documents 

suggested that the proposed model could be effective even when testing 

documents are substantially different from training documents. 

 In addition to examining automatic title generation, in this thesis we also 

extend the title generation model to information retrieval and automatic text 

categorization. For information retrieval, we treat queries as variants of titles, 

and then the similarity of a query to a document can be estimated as the 

likelihood of using the query as a title for this document. For automatic text 

categorization, we treat each text category label as a different title word, and 

the problem of finding appropriate category labels for a document can be cast 

as the problem of finding appropriate title words for the document. Empirical 

studies on information retrieval have shown that the title language model for 

information retrieval is able to achieve better performance than the traditional 

language model for homogeneous collections, but not for heterogeneous 

collections. Preliminary studies with text classification have suggested that the 

title language model for text categorization has potential to achieve 

performance comparable to other commonly used text categorization methods, 

particularly for common categories.  

Other technical contributions of this thesis include: 

• Investigation of evaluation metrics. In this thesis, we investigated three 

metrics that can be used for evaluating the quality of machine-generated titles: 
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two automatic ones and a manual one. They are: the F1 metric, the edit 

distance metric and human judgments. According to the experiments, both the 

F1 metric and the edit distance metric are positively correlated with human 

judgments, but the F1 metric correlates with the human judgments more 

strongly than the edit distance metric and is more sensitive to changes in the 

quality of titles.  

• Investigation of different title word selection methods. In this thesis we 

examined various approaches for title word selection, including two variations 

of Naïve Bayes approaches, a text categorization approach, a statistical 

machine translation approach, a reverse information retrieval approach, a K 

nearest neighbor approach and a TF.IDF approach. The general conclusion is 

that methods that are able to take into account all the words in the test 

document appear to be more effective than methods that only examine a subset 

of words in the test document. 

• Different title word ordering methods. Unlike the old framework for 

automatic title generation, where likelihood P(T) is used to order selected title 

words, a new metric P(T)/P({tw∈T}) is introduced for title word ordering. The 

advantage of this new metric is that it avoids the problem of P(T) favoring 

word sequences with common words. Empirical studies have shown that with 

the help of this new metric for title word ordering, we are able to substantially 

improve the F1 scores. 

• Automatically determining title length. Instead of relying on the 

distribution of title lengths in the training data to find titles with appropriate 

lengths, in this thesis we introduce the ‘end_of_sentence’ symbol to help find 

the appropriate title length. The basic idea is to treat the ‘end_of_sentence’ 

symbol as a normal title word candidate. The title with highest score will be 



 173

selected but only the word sequence before the ‘end_of_sentence’ symbol is 

used as the final title for the document. By generating titles in this way, the 

resulting title will have a ‘smooth’ ending. 

Of course, there are still some open issues with the proposed model in this 

thesis. The biggest deficiency in the current implementation of the ‘direct 

model with dual noisy channels’ is with the realization of the second noisy 

channel, namely the noisy channel that distills the ‘information source’ out of 

the original documents. Due to the lack of training data with documents and 

descriptions of corresponding ‘information sources’, we cannot learn an 

appropriate model for such a noisy channel. Instead, we simply resorted to 

some well-known functions, such as the TF.IDF value (or mutual 

information). More studies are needed in the future to understand how to learn 

such a model, particularly in an unsupervised manner. Secondly, since this 

thesis mainly focuses on the statistical model for automatic title generation, we 

only take advantage of the statistics of title words, document words and their 

co-occurrence patterns. The structure of documents and titles are not 

considered in this thesis. As a next step, we can take advantage of the structure 

of documents and titles, both semantic and syntactic, in order to further 

improve the quality of machine-generated titles. One way to include semantic 

knowledge into the statistical model is to enrich the ‘word translation’ 

probability P(tw|dw). In this dissertation, P(tw|dw) is estimated based only on 

the appearance of title word ‘tw’ and document word ‘dw’. By including the 

semantic knowledge of words, we can expand P(tw|dw) as P(s(tw,dw), tw|dw), 

where s(tw,dw) is a vector or a number representing our knowledge about the 

relationship between words ‘tw’ and ‘dw’.  As an example, with WordNet we 

can use s(tw,dw) to represent the length of the minimum path between word 

‘tw’ and ‘dw’ within the tree of ontology. In this case, s(tw,dw) measures how 

closely these two words are related to each other. Thirdly, in this thesis we 
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completely ignore the stopwords in generated titles. Removing stopwords 

from documents is a standard practice in information retrieval and has been 

proved to be effective. The reason for excluding stopwords from generated 

titles is because stopwords are not supposed to reflect the content of the test 

document and therefore title word selection will be ineffective in choosing 

appropriate stopwords. Instead of choosing stopwords based on the document 

content, appropriate stopwords should be chosen to connect the content words 

that are used for titles. In practice, because stopwords appear much more 

frequently than other title words, the resulting ‘word translation’ probability 

P(tw|dw) for most document words ‘dw’ will be nonzero for stopwords. 

Moreover, because the prediction of title words is based on the sum of 

P(tw|dw), the title word selection procedure will always favor stopwords as 

title words than other words. As a result, if we allow stopwords to be included 

in machine-generated titles, it is very likely that many machine-generated titles 

will contain multiple stopwords and be less informative to the content of the 

test document. Based on the above analysis, in order to include stopwords in 

generated title, we need an extra noisy channel. This extra noisy channel will 

examine the already selected title words and search for the appropriate 

stopwords that are able to connect those selected title words together 

smoothly. Finally, the proposed statistical model for title generation is 

computationally expensive, not only on the training phase but also on the 

testing phase. For the corpus used in the experiment, which has 40,000 

training documents and 10,000 testing documents, we needed 3 days to train 

the statistical model and 3.5 days to generate 10,000 documents. This is 

unacceptable if we want to apply the proposed model to real applications. As 

future work, we need to improve the efficiency of the proposed model 

significantly. 
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Compared to automatic text summarization and automatic text categorization, 

the key advantage of automatic title generation is the flexibility in creating 

titles. Unlike automatic text categorization, which can only assign a document 

to one of the predefined category labels, automatic title generation is able to 

create a flexible title for the unseen document which may not be any title in the 

training corpus. Different from automatic text summarization, where 

summaries are formed by sentences extracted from the original document, 

automatic title generation can create titles consisting of words that don’t 

belong to the original document. It is this flexibility that makes automatic title 

generation useful and unique to many tasks that both automatic text 

summarization and automatic text categorization cannot be applied to.  

One useful application for automatic title generation is to summarize multiple 

documents, which may not belong to any of the predefined categories and 

cannot be summarized by one or two sentences extracted from original 

documents. The idea of being able to summarize multiple documents is useful 

to many applications. For example, for the problem of document clustering, it 

will be useful to automatically create a headline for each cluster of documents 

so that users can quickly find the cluster that they want without having to read 

any of the documents inside the cluster. Another interesting application is to 

apply automatic title generation model to summarize foreign documents into 

English headlines as first suggested in the paper (Witbrock and Mittal, 1999). 

Most text summarization approaches are based on extractions from the original 

documents and therefore will fail to create English summaries for foreign 

documents, while for statistical title generation models, words that can be used 

for titles are not limited to the words in the test document. The idea of cross-

lingual title generation can be useful to cross-lingual information retrieval. In 

this case, not only will foreign documents be retrieved but also an English title 

provided for each retrieved document. With the help of English titles, users 
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may be able to quickly find interesting foreign documents without having to 

translate them into English.  

More interestingly, the idea of automatic title generation, particularly the idea 

of dual noisy channels, can be extended to many other problems. In this thesis 

we have demonstrated the generality of the model by applying it to 

information retrieval and automatic text categorization. The title generation 

model can also be extended to the problem of automatically annotating 

images, where a system is asked to find a set of words that appropriately 

describe the content of images. In the previous research (Duygulu et al., 2002), 

this task has been treated as a translation problem with images and texts being 

viewed as information written in different languages, and the process of 

annotating images becomes a process of ‘translating’ images into text. 

However, similar to the problem described in automatic title generation, the 

translation view of image annotation essentially consists of a single noisy 

channel transforming images into text, which may lead to the problem of 

transcribing everything appearing in an image into text. In many cases, not 

everything in an image needs to be transcribed into text. For example, consider 

an image that contains a beautiful mountain scene. Even though there is a 

portion of blue sky in the back of the image, we usually don’t use the word 

‘sky’ in the description of the image since it is mainly “about” the mountain 

scene. Continuing in the direction of dual noisy channels, we can introduce an 

extra noisy channel that distills useful image information from the original 

image, and then the description text will be created from the ‘distilled’ images 

instead of the original images. As a further extension, we can apply the same 

idea to create titles for image collections and video sequences. For the case of 

creating titles for videos, it becomes even more interesting because both text 

(obtained from speech recognized transcripts) and images can be used as hints 

for finding appropriate title sequences, and how to combine these two types of 
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evidence together is an interesting research topic. In the extreme case, we may 

be able to create a reasonable name for movies. 

The other application of the title generation model is to apply it to automatic 

text categorization. By viewing each category label as a title word, the 

problem of finding correct category labels for documents becomes creating 

appropriate titles for a given document. The preliminary experiments with the 

title generation model for text categorization have shown that for common 

categories, the title generation model is able to perform as well as the state-of-

art models in text categorization, such as the K nearest neighbor approach or 

the Naïve Bayes approach.  
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APPENDIX 

In this appendix, we include the five documents that have been used to show 

the examples of machine-generated titles. 

Document 1: 

ILLEGAL IMMIGRATION HAS INCREASED IN THE LAST FOUR YEARS AND SO 

HAS THE BUDGET OF THE IMMIGRATION AND NATURALIZATION SERVICE 

.CONGRESS HAS PUT THE MONEY INTO STOPPING ILLEGAL ALIENS AT THE 

BORDER .BORDER SECURITY FUNDS HAVE MORE THAN DOUBLED 

.PREVENTING THOSE WHO SNEAK IN FROM WORKING HAS BEEN LESS OF A 

PRIORITY .THE I. N. S. SLOWLY HAS BEEN ADDRESSING THE ISSUE ANYWAY 

.TO LIMIT THE USE OF PHONY WORK PAPERS BY ILLEGAL IMMIGRANTS THE 

AGENCY IS RELEASING A NEW I. D. CARD THAT'S HARDER TO COUNTERFEIT 

.NPR'S PETER KENYON REPORTS .FIRST OF ALL THE I. N. S. IS ANXIOUS THAT 

PEOPLE UNDERSTAND WHAT THIS NEW CARD IS NOT .IT'S NOT A NATIONAL I. 

D. CARD .IT'S NOT EVEN A NEW GREEN CARD .THOSE ARE FOR PERMANENT 

NONRESIDENT WORKERS .LAST YEAR NEARLY ONE POINT SEVEN MILLION 

GREEN CARDS WERE ISSUED .ANOTHER SEVEN HUNDRED THOUSAND CARDS 

WERE ISSUED TO PEOPLE IN THIS COUNTRY ON TEMPORARY WORK VISAS OR 

TO THOSE WORKING HERE WHILE THEY HAVE AN ASYLUM PETITION PENDING 

WITH THE GOVERNMENT .THOSE ARE THE CARDS THAT ARE CHANGING .THE I. 

N. S. IS USING ADVANCE TECHNOLOGY TO COMBAT DOCUMENT FRAUD A 

CHRONIC PROBLEM FACING THOSE WHO WANT TO REDUCE THE JOBS 

MAGNET DRAWING PEOPLE ACROSS THE BORDER .IN GOVERNMENT JARGON 

THE CARD IS CALLED AN EAD OR EMPLOYMENT AUTHORIZATION DOCUMENT 

.COMMISSIONER DORIS MEISSNER CALLS IT A LANDMARK IN DOCUMENT 

SECURITY .THE NEW EAD CARD IS STATE OF THE ART IT IS AN IMPORTANT 

TECHNOLOGICAL ADVANCE FOR THE IMMIGRATION SERVICE .INSTEAD OF 

THE OLD LAMINATED SOFT CARDS THE NEW ONES ARE MADE OF HARD 

PLASTIC LIKE CREDIT CARDS .BUT UNLIKE A CREDIT CARD THIS ONE 
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INCLUDES A FINGERPRINT A PHOTOGRAPH AT LEAST THREE HOLOGRAMS 

MICROPRINTING AND OTHER SECURITY FEATURES .I. N. S. SAYS THEIR 

FORENSIC EXPERTS CALL THIS CARD THE MOST COUNTERFEIT RESISTANT 

DOCUMENT OF ITS KIND .MOST TEMPORARY WORK AUTHORIZATIONS EXPIRE 

AFTER SIX MONTHS OR A YEAR SO MEISSNER SAYS THE NEW CARDS WILL 

QUICKLY GET INTO CIRCULATION .AND SO IN THE NEXT PERIOD WE WILL BE 

SYSTEMATICALLY REPLACING EAD CARDS THAT ARE OUT THERE WITH ONE 

THAT WILL BE MUCH EASIER FOR EMPLOYERS TO WORK WITH MUCH SAFER 

AND MORE SECURE FOR THOSE PEOPLE WHO ACTUALLY HAVE AND SHOULD 

HAVE THE EAD CARD AND MUCH MORE DIFFICULT TO REPLICATE .TEXAS 

REPUBLICAN LAMAR SMITH CHAIRMAN OF THE HOUSE IMMIGRATION 

SUBCOMMITTEE APPLAUDED THE NEW CARD .IT'S A GOOD STEP FORWARD 

BECAUSE THERE HAS BEEN SUCH ABUSE THERE IS SUCH A PROLIFERATION OF 

FRAUDULENT DOCUMENTS THAT THIS EFFORT TO TRY TO REDUCE THE 

NUMBER OF FRAUDULENT DOCUMENTS IS A GOOD ONE .WELL OF COURSE IT'S 

LEGITIMATE AND APPROPRIATE FOR THE GOVERNMENT TO MAKE A 

DOCUMENT MORE TAMPER RESISTANT .LUCAS GUTTENTAG WITH THE A. C. L. 

U.'S IMMIGRANT RIGHTS PROJECT SAYS HIS CONCERN IS THAT TOO OFTEN THE 

I. N. S. REACHES FOR A TECHNOLOGICAL FIX RATHER THAN ADDRESS THE 

LONGSTANDING IN HOUSE PROBLEMS THAT PLAGUE LEGITIMATE 

NONRESIDENT WORKERS .TOO OFTEN INDIVIDUALS WHO ARE ENTITLED TO 

GET WORK AUTHORIZATION CARDS ARE REJECTED BY THE I. N. S. BECAUSE 

OF AGENCY ERRORS MISTAKES AND INEFFICIENCIES IN THE I. N. S. COMPUTER 

AND RECORDS .AFTER PUTTING THESE NEW CARDS INTO CIRCULATION THE I. 

N. S. PLANS TO APPLY THE SAME TECHNOLOGY TO GREEN CARDS .SO FAR 

THERE'S NO TIMETABLE FOR THAT PROJECT .MEANWHILE THE AGENCY IS 

MOVING AT HIGH SPEED ON THE ENFORCEMENT FRONT .COMMISSIONER 

MEISSNER YESTERDAY ANNOUNCED THE DEPLOYMENT OF MORE THAN 

SEVEN HUNDRED NEW BORDER PATROL AGENTS PRIMARILY IN TEXAS 

ARIZONA NEW MEXICO AND CALIFORNIA .AN ADDITIONAL THREE HUNDRED 

AGENTS ARE BEING HELD IN RESERVE .MEISSNER SAYS THIS WINTER WILL 

TELL IF THIS LATEST INCREASE IN ENFORCEMENT IS ENOUGH OR IF THE 

BATTLE TO SECURE THE BORDERS MUST BE ESCALATED YET AGAIN .I'M 

PETER KENYON IN WASHINGTON . 
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Document 2: 

MUSIC MAKING THAT BEGAN IN ARGENTINA AND LATVIA IS TOPPING THE C. 

D. CHARTS IN GERMANY AND JAPAN. THE ARGENTINIAN IS ASTOR PIAZZOLLA 

THE TANGO MASTER WHO DIED IN NINETEEN NINETY TWO. LATVIAN 

VIOLINIST GIDON KREMER HAS RECORDED SOME OF PIAZZOLLA'S 

COMPOSITIONS A REAL DEPARTURE FOR THIS CLASSICAL VIRTUOSO. BUT 

KREMER NOW FIFTY IS KNOWN AS AN ICONOCLAST. SO WAS PIAZZOLLA. 

NPR'S SUSAN STAMBERG REPORTS. THIS IS ASTOR PIAZZOLLA RECORDED IN 

NINETEEN EIGHTY SIX PLAYING HIS BANDONIAN A SOUTH AMERICAN 

VERSION OF THE ACCORDION . AND THIS IS GIDON KREMER PLAYING TODAY 

THE SAME PIAZZOLLA COMPOSITION CONCERTO FOR A QUINTET . THERE'S A 

BANDONIAN HERE TOO . BUT KREMER'S VIOLIN IS THE LEAD INSTRUMENT. 

WHEN YOU WERE A LITTLE BOY IN RIGA STUDYING VIOLIN WITH YOUR 

FATHER AND YOUR GRANDFATHER MR. KREMER DID YOU EVER IMAGINE 

THAT ONE DAY YOU WOULD BE PLAYING THIS MUSIC. NO I NEVER NEVER 

IMAGINED THAT I WOULD EVER PLAY PIAZZOLLA'S MUSIC. HOWEVER I 

LEARNED THROUGH MY LIFE TO APPRECIATE GREAT COMPOSERS. AND 

PIAZZOLLA IS ONE OF THEM. GIDON KREMER WAS JUST FOUR WHEN HE 

STARTED TO PLAY VIOLIN TCHAIKOVSKY PROKOFIEV THE RUSSIAN MASTERS 

FOUR TO FIVE HOURS A DAY OF PRACTICE. HIS FATHER INSISTED NO 

PLAYGROUNDS NO STICK BALL. IN RIGA LATVIA IN THE KREMER FAMILY THE 

VIOLIN ALWAYS CAME FIRST THE CLASSICS. ASTOR PIAZZOLLA WHO 

INVENTED THE NEW TANGO NUEVO TANGO ALSO GREW UP WITH THE 

CLASSICS IN ARGENTINA. IN NINETEEN EIGHTY EIGHT HE TOLD PUBLIC 

RADIO'S TERI GROSS ABOUT HIS EARLIEST MUSICAL INFLUENCES. I WAS BORN 

PLAYING JOHANN SEBASTIAN BACH ON THE BANDONIAN BECAUSE IT SOUNDS 

MORE LIKE AN ORGAN AS THE INSTRUMENT. MY TEACHER TAUGHT ME TO 

PLAY ALL CLASSICAL MUSIC ON THE BANDONIAN. I NEVER PLAYED A TANGO 

WHEN I WAS SMALL. IN HIS THIRTIES IN THE NINETEEN FIFTIES PIAZZOLLA 

INTRODUCED HIS NEW TANGO A MIX OF TRADITIONAL TANGO CLASSICAL 

MUSIC JAZZ AND POP. PURISTS WERE HORRIFIED. HE'D TAKEN THEIR MOST 

BELOVED ART FORM THEIR FAVORITE DANCE MUSIC AND DARED TO MAKE IT 

UNDANCEABLE. THEY SAID PIAZZOLLA WAS THE ASSASSIN OF THE TANGO. 
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THEY USED TO CALL ME ON THE PHONE AND SAY THEY WOULD WAIT FOR ME 

IN THE STREETS . AND THEY WOULD BE BEATEN . WHY JUST BECAUSE I 

CHANGED THE TANGO . BUT I DIDN'T CHANGE THE TANGO . WHAT I CHANGED 

IS THE WAY OF PLAYING AND THE WAY OF WRITING . I MEAN I I GAVE IT A A 

NEW DIMENSION . AND NOW GIDON KREMER HAS TAKEN UP PIAZZOLLA'S 

REVOLUTION WITH HIS VIOLIN . THE FORM IS NEW FOR KREMER . THE SPIRIT 

OF ADVENTURE IS NOT . THE LATVIAN VIRTUOSO HAS ALWAYS BEEN AN 

EXPLORER SEARCHING FOR NEW MUSICAL CHALLENGES . ABOUT FOURTEEN 

YEARS AGO KREMER WENT TO A PIAZZOLLA CONCERT IN PARIS . HE BECAME 

A FAN . BUT GIDON KREMER WHO HAS BEEN CALLED AN INTELLECTUAL 

MUSICIAN AND BY HERBERT FONTARIAN THE GREATEST VIOLINIST IN THE 

WORLD WASN'T SURE HE COULD MASTER THE NUEVO TANGO . TO PLAY 

PIAZZOLLA'S MUSIC YOU NOT ONLY NEED TO FEEL HIS IDIOM TO BE 

SOMEHOW TURNED ON ON TANGOS . BUT IT SEEMS LIKE YOU HAVE TO MOVE 

FREELY LIKE BEING A JAZZ MUSICIAN BETWEEN THE BARS BETWEEN THE 

LINES . YOU HAVE NOT JUST TO PLAY ONLY THE NOTES THAT ARE PUT INTO 

THE SCORE . BUT YOU HAVE TO GET THE FEEL FOR IT . SLOWLY SLOWLY 

OVER SOME YEARS GIDON KREMER TOOK UP PIAZZOLLA'S TANGO . FIRST IN 

MOSCOW LATER AT A SMALL CONCERT IN GERMANY THEN AT A MUSIC 

FESTIVAL IN AUSTRIA HE DID TWO FULL EVENINGS OF PIAZZOLLA . 

AUDIENCES LOVED IT . KREMER INTENSE CURIOUS ALWAYS PROBING FELT HE 

HAD FOUND HIS OWN VOICE IN PIAZZOLLA'S MUSIC . ASTOR PIAZZOLLA USED 

A VIOLINIST IN HIS GROUP BUT DIDN'T DESIGN HIS MUSIC ESPECIALLY FOR 

THE VIOLIN . GIDON KREMER MADE HIS OWN ARRANGEMENTS AND PUT HIS 

VIOLIN AT THE CENTER OF THE PIAZZOLLA MUSIC HE MADE . PIAZZOLLA 

BECAME PART OF MY HEARTBEAT . SO NATURAL SO MUCH IN HIS SPIRIT 

BECAUSE IN ITS SERIOUSNESS ITS AMBITION PIAZZOLLA'S NEW TANGO WAS 

LIKE THE MUSIC KREMER HAD GROWN UP WITH . QUOTE CELOS QUOTE FOR 

EXAMPLE QUOTE JEALOUSY QUOTE AS IT WOULD BE IN ENGLISH IS A TUNE 

OF SCHUBERTIAN CHANGES OF HARMONY . I WOULD NOT KNOW ANOTHER 

COMPOSER THAT WOULD HAVE THE COURAGE TO JUST TO BREAK A 

HARMONY IN THE MIDDLE OF A TUNE AND AND START A NEW CHAPTER IN 

SUCH A SIMPLE BUT AT THE SAME TIME INCREDIBLY SENSUAL AND 

INTELLIGENT WAY . I DISCOVERED THAT SOMETHING I I NEVER KNEW THAT 
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MY MUSIC WAS SENSUAL MUSIC . IT WAS SEXUAL . AGAIN THE LATE 

COMPOSER ASTOR PIAZZOLLA. I NEVER INTENDED TO DO SENSUAL MUSIC . 

BUT MY ONLY INTENTION WAS TO WRITE THE MUSIC I FEEL THAT I I THINK 

IT'S VERY RELIGIOUS . IT'S VERY MELANCHOLIC . IT'S SAD. IT COULD BE VERY 

SOPHISTICATED . IT COULD BE VERY AGGRESSIVE . THE ONLY THING THAT 

MY MUSIC DOESN'T HAVE IS THE WORD HAPPY . THERE'S NO HAPPINESS . BUT 

ISN'T HAPPINESS A PART OF RELIGION OF RAPTURE OF THESE RAVISHING 

NOTES AND CHORDS . ISN'T THERE HAPPINESS IN BEING TOUCHED BY MUSIC 

DRAWN TO IT CAPTURED IN IT IN BEING DEEPLY MOVED. GIDEON KREMER 

SAYS WE ARE BOMBARDED BY SOUND. BUT NONE OF IT SPEAKS TO OUR 

SOULS. WE ALL ARE VICTIMS OF NOISES IN OUR CENTURY OR THE END OF 

THIS CENTURY. VICTIMS OF EVERYTHING THAT IS IMPOSED ON US . WE ADAPT 

THE LOUDNESS OF THE STREET OF THE DISCO . WE ADAPT OURSELVES TO THE 

MEDIA TO THE TELEVISION RUNNING AROUND THE CLOCK . AND WHAT IS THE 

MOST IMPORTANT THING IN FACT FOR A HUMAN BEING OR FOR A HUMAN 

LIFE IS TO BE SENSITIVE TO SILENCE . AND I FEEL PIAZZOLLA DESPITE HIS 

EXTREMELY AGGRESSIVE TURNS OCCASIONALLY OR HIS POWER OR HIS 

ENERGY HE IS ABLE ALSO TO CONCENTRATE US WITHIN OURSELVES . AND 

VERY FEW COMPOSERS IN OUR CENTURY WERE ABLE TO DO SO . GIDON 

KREMER'S QUOTE HOMMAGE TO PIAZZOLLA QUOTE IS THE FIRST OF WHAT 

WILL BE THREE PIAZZOLLA ALBUMS . IT SEEMS THAT IN PAYING RECORDED 

TRIBUTES TO THE TANGO MASTER GIDON KREMER THE CLASSICAL VIOLIN 

VIRTUOSO HAS DISCOVERED A PART OF HIMSELF . I FEEL I NEVER COULD 

DANCE THE TANGO BUT I ALWAYS DREAMT ABOUT IT . THERE WAS 

SOMETHING QUITE SENSUAL WHICH I NEVER COULD MAYBE EXPRESS IN LIFE 

. BUT I SOMEHOW SUCCEEDED TO EXPRESS IN MUSIC . SO PIAZZOLLA HELPED 

ME ALSO TO FIND MYSELF AND I'M QUITE GRATEFUL TO HIM . IN 

WASHINGTON I'M SUSAN STAMBERG . 

Document 3: 

OUR TOP STORY TONIGHT THE FIRST DAY OF THE OKLAHOMA CITY BOMBING 

TRIAL . JURY SELECTION IS UNDERWAY IN DENVER COLORADO FOR THE MEN 

AND WOMEN WHO WILL HEAR THE GOVERNMENT'S CASE AGAINST TIMOTHY 
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MCVEIGH . HO WEVER IT'S SLOW GOING TODAY .C. N. N.'S TONY CLARK JOINS 

US LIVE FROM DENVER WITH A REPORT .TONY HOW MANY PROSPECTIVE 

JURORS HAVE THEY BEEN ABLE TO QUESTION SO FAR .LINDEN SO FAR ONLY 

SIX PROSPECTIVE JURORS HAVE BEEN QUESTIONED BY JUDGE RICHARD 

MATSCH AND DEFENSE ATTORNEYS AND PROSECUTORS. THE SIXTH 

PROSPECTIVE JUROR WILL BE CALLED BACK TOMORROW TO FINISH THE 

QUESTIONING WHICH GIVES YOU SOME IDEA THAT THIS JURY SELECTION 

PROCESS WILL TAKE A LONG TIME. AS HE LED HIS DEFENSE TEAM INTO THE 

FEDERAL COURTHOUSE IN DENVER MONDAY DEFENSE ATTORNEY STEPHEN 

JONES WAS ALL SMILES . WE'RE READY . IT HAS BEEN NEARLY TWO YEARS 

SINCE A BOMB RIPPED THROUGH THE FEDERAL BUILDING IN OKLAHOMA 

CITY KILLING ONE HUNDRED SIXTY EIGHT PEOPLE . NOW AFTER ONE OF THE 

LARGEST CRIMINAL INVESTIGATIONS IN U. S. HISTORY FORMER SOLDIER 

TIMOTHY MCVEIGH IS ON TRIAL FOR HIS LIFE ACCUSED ALONG WITH 

CODEFENDANT TERRY NICHOLS OF PUTTING TOGETHER THE BOMB AND 

DETONATING IT . INSIDE THE SECOND FLOOR COURTROOM MCVEIGH SAT 

QUIETLY DRESSED IN A BLUE SHIRT KHAKI PANTS AND SPORTING A CLOSE 

BURR HAIRCUT . HE LOOKED STRAIGHT AT EACH PROSPECTIVE JUROR AS HE 

OR SHE WAS BROUGHT IN TO BE QUESTIONED BY THE JUDGE AND TRIAL 

ATTORNEYS . THE QUESTIONS DEAL WITH THREE PRIMARY AREAS WHAT 

DOES THE PROSPECTIVE JUROR KNOW ABOUT THE BOMBING WHAT NEWS 

STORIES HAVE THEY HEARD ABOUT MCVEIGH AND PERHAPS MOST 

IMPORTANTLY HOW DO THEY FEEL ABOUT THE DEATH PENALTY . IF YOU ARE 

OPPOSED TO THE DEATH PENALTY YOU MAY NOT SIT ON THIS CASE . THE 

POTENTIAL JURORS ARE BROUGHT INTO THE COURTROOM INDIVIDUALLY . 

THEY ARE KNOWN ONLY BY NUMBERS AND ARE HIDDEN FROM VIEW FROM 

MOST OF THE REPORTERS AND SPECTATORS . THE FIRST JUROR NUMBER 

EIGHT HUNDRED FIFTY EIGHT LIVED IN TULSA OKLAHOMA AT THE TIME OF 

THE BOMBING AND VISITED THE BOMBING SITE THREE WEEKS AFTER THE 

BLAST . HE SAID HE WAS QUOTE QUITE MOVED AND STIRRED QUOTE BY 

WHAT HE SAW .  HE SAID HE PRAYED AND CRIED . NUMBER EIGHT HUNDRED 

FIFTY EIGHT ALSO SAID HE KNEW ABOUT MCVEIGH'S ALLEGED . CONFESSION 

BUT DIDN'T NECESSARILY BELIEVE IT AND HE SAID HE THINKS THE BOMBING 

QUOTE RUNS FURTHER AND DEEPER THAN ONE INDIVIDUAL QUOTE . A 
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SECOND PROSPECTIVE JUROR REMEMBERED SEEING MCVEIGH BEING LED 

OUT OF THE NOBLE COUNTY COURTHOUSE . SHE SAID QUOTE I FELT VERY 

SORRY FOR HIM FOR SUCH A YOUNG MAN TO WASTE HIS LIFE QUOTE . 

MARSHA KIGHT WHOSE DAUGHTER WAS KILLED IN THE BOMBING WAS 

SITTING IN THE COURTROOM MONDAY . I THINK THE FAMILY MEMBERS ARE 

DEFINITELY LOOKING . THEY WANT THE RIGHT PERSON THEY WANT THE 

TRUTH . ABOUT SIXTY OTHER BOMBING SURVIVORS AND VICTIMS' FAMILY 

MEMBERS WATCHED THE PROCEEDINGS BY CLOSED CIRCUIT IN OKLAHOMA 

CITY . IT'S A LOT MORE EMOTIONAL THAN SOME OF THE PEOPLE THOUGHT . 

THE LAST JUROR THAT WAS QUESTIONED JUROR NUMBER EIGHT HUNDRED 

FIFTY ONE SAID SHE HAD PLAYED CLOSE ATTENTION TO THE BOMBING AND 

ALSO TO THE PREVIOUS FIRE AT THE BRANCH DAVIDIAN COMPOUND 

BECAUSE BOTH HAD HAPPENED ON HER BIRTHDAY APRIL NINETEENTH . IN 

THE COURTROOM TODAY WAS MCVEIGH'S FATHER BILL MCVEIGH AND ALSO 

SOME OF THE VICTIMS' FAMILIES . TOM KIGHT WHO LOST HIS STEP DAUGHTER 

IN THE BOMBING SAID HE HAD SYMPATHY FOR MCVEIGH'S FATHER . HE'S 

FIGHTING FOR A YOUNG MAN'S LIFE AND MY HEART DID GO OUT TO HIM LIKE 

I SAID EARLIER MCVEIGH'S FATHER BECAUSE HE HAD TO LISTEN TO SOME OF 

THE TESTIMONY THAT THE PROSECUTION WAS SAYING ONE HUNDRED SIXTY 

EIGHT PEOPLE AND A LOT OF CHILDREN AND YOU COULD SEE HIS HEAD 

SLUMPED . NONE OF US AS PARENTS WANT OUR CHILDREN TO BE THIS . WE 

ALL HAVE SOME THAT TURN INTO BAD APPLES . 

I DON'T BELIEVE THAT MAN CAN . AND FROM ONE PARENT TO ANOTHER I 

HAVE A LOT OF COMPASSION . PROSECUTORS AND DEFENSE ATTORNEYS 

WILL MEET WITH JUDGE RICHARD MATSCH BEFORE COURT BEGINS SESSION 

TUESDAY MORNING . THEY WILL GO OVER THE INDIVIDUALS WHO WERE 

QUESTIONED ON MONDAY TO DECIDE WHO WILL REMAIN IN THE JURY POOL 

THOUGH THAT INFORMATION WILL NOT BE GIVEN TO US . THE ONE THING 

THAT APPEARS CERTAIN NOW IS THAT JURY SELECTION WILL BE TOUGH AND 

MAY TAKE A LONG TIME . LINDEN . TONY DID YOU NOTICE ANY VISIBLE 

REACTION FROM THE POTENTIAL JURORS OR FROM ANY OF THE FAMILY 

MEMBERS OR THE SURVIVORS IN THE COURTROOM TO THE PRESENCE OF 

TIMOTHY MCVEIGH . WE WERE UNABLE TO SEE THE POTENTIAL JURORS OR 
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SEE VERY MUCH OF THEM . THE WAY THE COURTROOM HAS BEEN 

REDESIGNED THERE IS A PARTITION THAT HIDES THE POTENTIAL JUROR THE 

PROSPECTIVE JUROR FROM VIEW THROUGHOUT MUCH OF THE COURTROOM 

AND SO OTHER THAN WHEN THEY ARE STANDING TO BE SWORN IN WE'RE 

UNABLE TO SEE THEM . WE DO SEE REACTIONS FROM MCVEIGH AND FAMILY 

MEMBERS THROUGHOUT THE DAY AND MCVEIGH AT FIRST WAS VERY 

QUIZZICAL IN THE COURTROOM BECAUSE THAT WAS THE FIRST TIME HE WAS 

IN THERE . HE WAS LOOKING AROUND A LOT AND SMILES A LITTLE BIT . MORE 

THAN ANYTHING ELSE HE SEEMS TO BE PAYING CLOSE ATTENTION TO THE 

PROCEEDINGS . ALL RIGHT . C. N. N.'S TONY CLARK IN DENVER . THANK YOU 

VERY MUCH . PREPARED BY FEDERAL DOCUMENT CLEARING HOUSE 

INCORPORATED . NO LICENSE IS GRANTED TO THE USER OF THIS MATERIAL 

OTHER THAN FOR RESEARCH . USER MAY NOT REPRODUCE OR REDISTRIBUTE 

THE MATERIAL EXCEPT FOR USER'S PERSONAL OR INTERNAL USE AND IN 

SUCH CASE ONLY ONE COPY MAY BE PRINTED NOR SHALL USER USE ANY 

MATERIAL FOR COMMERCIAL PURPOSES OR IN ANY FASHION THAT MAY 

INFRINGE UPON CABLE NEWS NETWORK INCORPORATED'S COPYRIGHT OR 

OTHER PROPRIETARY RIGHTS OR INTERESTS IN THE MATERIAL PROVIDED 

HOWEVER THAT MEMBERS OF THE NEWS MEDIA MAY REDISTRIBUTE LIMITED 

PORTIONS OF THIS MATERIAL WITHOUT A SPECIFIC LICENSE FROM C. N. N. SO 

LONG AS THEY PROVIDE CONSPICUOUS ATTRIBUTION TO C. N. N. AS THE 

ORIGINATOR AND COPYRIGHT HOLDER OF SUCH MATERIAL . THIS IS NOT A 

LEGAL TRANSCRIPT FOR PURPOSES OF LITIGATION .  

Document 4: 

ON WALL STREET THE PERFECT CLIMATE FOR A BLOCKBUSTER RALLY . A 

BALANCED BUDGET DEAL COUPLED WITH AN INVESTOR FRIENDLY 

EMPLOYMENT REPORT TOGETHER SENT STOCKS ROCKETING . THE DOW 

INDUSTRIALS TONIGHT AT SEVEN THOUSAND SEVENTY ONE A GAIN OF 

NEARLY NINETY FOUR AND THREE QUARTERS POINTS AND FOR THE WEEK 

THE BEST SHOWING IN TERMS OF POINTS EVER FOR THE DOW UP THREE 

HUNDRED THIRTY TWO POINTS . THE VOLUME WAS FIVE HUNDRED ONE 

MILLION SHARES AND ADVANCING ISSUES SWAMPING DECLINING ISSUES BY 
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MORE THAN FOUR TO ONE MARGIN . NEW YORK STOCK EXCHANGE 

COMPOSITE INDEX GAINED SEVEN AND ONE QUARTER POINTS . THE S. AND P. 

FIVE HUNDRED INDEX UP ALMOST FOURTEEN AND ONE HALF POINTS . THE 

DOW TRANSPORTATION INDEX GAINED SIXTY ONE AND TWO THIRDS POINTS 

TO CLOSE AT A RECORD TWO THOUSAND SIX HUNDRED FIVE . DOW UTILITIES 

GAINING FOUR AND ONE QUARTER POINTS . THE AMERICAN STOCK 

EXCHANGE INDEX GAINED TEN POINTS AND ON THE NASDAQ THE NASDAQ 

COMPOSITE GAINED THIRTY FOUR POINT EIGHT THREE ALMOST THIRTY FIVE 

POINTS THE BIGGEST ONE DAY GAIN EVER FOR THE NASDAQ . LET'S TAKE A 

LOOK AT SOME TECHNOLOGY STOCKS THAT GAINED TODAY . DELL 

COMPUTER UP MORE THAN FIVE DOLLARS GATEWAY TWO THOUSAND UP 

FOUR AND ONE QUARTER INTEL UP THREE AND SEVEN EIGHTHS MICROSOFT 

DOWN ONE QUARTER . IN TONIGHT'S MONEYLINE FOCUS WE TAKE A CLOSER 

LOOK AT THE MARKETS . JOINING ME NOW IS DEAN WITTER REYNOLDS CHIEF 

INVESTMENT STRATEGIST PETER CANELO . WELCOME BACK TO MONEYLINE . 

GOOD TO BE HERE . SO DOES IT GET ANY BETTER FROM HERE . I MEAN THIS 

WAS REALLY AN INCREDIBLE DAY AND WEEK . IT'S GOING TO BE A TOUGH 

WEEK TO FOLLOW BUT EVERYTHING WORKED OUT JUST FINE . WE'VE SEEN 

SIGNS OF SLOWING IN THE ECONOMY . NOTHING DANGEROUS BUT ENOUGH 

TO CREATE SOME DOUBT THAT THE FED IS GOING TO MOVE RATES UP 

AGGRESSIVELY . MAYBE THEY DON'T DO IT IN MAY BUT OBVIOUSLY THE KEY 

THING HERE IS THE CAPITAL GAINS TAX RATE REDUCTION AND THAT MEANS 

YOU GET TO KEEP NOT SEVENTY PERCENT OF WHAT YOU MAKE IN STOCKS . 

YOU MIGHT GET TO KEEP PERHAPS EIGHTY PERCENT OF WHAT YOU MAKE . 

IT'S INTERESTING THOUGH . SECRETARY RUBIN WAS SAYING THAT THAT'S 

NOT IN WRITING AT THIS POINT THE CAPITAL GAINS TAX CUT . YES BUT THE 

REPUBLICANS I THINK ARE STRONGLY IN FAVOR OF A FIFTY PERCENT 

EXCLUSION ON GAINS SO THAT WOULD PROBABLY BRING THE TAX RATE ON 

GAINS DOWN TO MAYBE NINETEEN PERCENT FROM THE CURRENT TWENTY 

EIGHT . SO SUDDENLY STOCKS ARE CHEAPER BECAUSE YOU'VE JUST YOU'RE 

GOING TO GET TO KEEP MORE OF YOUR RETURNS . BUT WHAT KIND OF 

EFFECT DOES IT HAVE INITIALLY IF IN FACT THIS CAPITAL GAINS TAX CUT 

ACTUALLY HAPPENS . PEOPLE DO FEAR THAT THERE COULD BE A LOT OF 

SELLING . MY EXPERIENCE IS THAT ANY TYPE OF SELLING WOULD BE 
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TEMPORARY AND NOT TERRIBLY SERIOUS TO THE MARKET . SUDDENLY 

YOUR LONG TERM INVESTOR FEELS A WHOLE LOT BETTER ABOUT BUYING 

STOCKS . HE'S NOT GOING TO BE SELLING STOCKS . I THINK THIS IS GOING TO 

HELP US TO GET TO NEW HIGHS IN THE WEEKS AHEAD . IS YOUR SENSE THAT 

THE FEDERAL RESERVE YOU SAY THE FEDERAL RESERVE COULD BE ON HOLD 

. I MEAN COULD YOU HAVE A SITUATION WHERE IN FACT RATES CAME DOWN 

AS A RESULT OF THE BALANCED BUDGET DEAL . WELL THE BOND YIELDS 

HAVE COME DOWN UNDER SEVEN PERCENT . THEY MAY COME DOWN A 

LITTLE MORE MAYBE DOWN TO SIX AND THREE QUARTERS BUT I THINK WE 

STILL HAVE A VERY GOOD ECONOMY . WE HAD A TERRIFIC G. D. P. IN THE 

FIRST QUARTER AND EVEN IF IT SLOWS A LITTLE BIT IN THE SPRING WE'RE 

NOT OUT OF THE WOODS YET . WE HAVE WE PROBABLY HAVE ONE OR TWO 

INTEREST RATE HIKES AHEAD OF US IN THE NEXT COUPLE OF QUARTERS SO I 

THINK THE MARKET HAS JUST FORGOTTEN ABOUT THAT FOR A WHILE . IT 

MAY COME BACK AND CREATE SOME PROBLEMS LATER ON DOWN THE ROAD 

. SO A CORRECTION STILL AHEAD . WELL I NO I THINK A MOVE TO NEW HIGHS 

IS IMMEDIATELY AHEAD . WE'LL TAKE IT ONE STEP AT A TIME . I DO THINK 

THE ECONOMY WOULD HAVE TO REALLY SLOW DOWN TO REALLY OBVIATE 

ANY INTEREST RATE INCREASES . WE STILL THINK THEY'RE GOING TO RAISE 

RATES BUT THEY THEY MAY GO A LITTLE MORE SLOWLY AND THAT'S GOING 

TO HELP THE BOND MARKET THE BANK STOCKS THE ENTIRE MARKET . WHAT 

IS THE BIG GAINER THOUGH IN ALL OF THIS . IS IT SMALL CAP STOCKS . YES I 

THINK SO FOR SEVERAL REASONS . YOU KNOW THEY'RE LITTLE COMPANIES 

ARE AFRAID OF HIGHER INTEREST RATES AT LEAST SOME OF THOSE FEARS 

MAY HAVE BEEN MUTED HERE THIS WEEK BUT SINCE THEY DON'T PAY 

DIVIDENDS LITTLE GROWTH STOCKS REALLY MAKE MONEY FOR YOU IN 

CAPITAL GAINS AND SUDDENLY YOU'RE GOING TO GET TO KEEP MORE OF 

THAT CAPITAL GAINS . IT'S GOT TO BE BULLISH . LITTLE STOCKS DID BETTER 

THAN BIG STOCKS THIS WEEK . WE MAY SEE A REVERSAL HERE FOR SOME 

TIME . THANKS VERY MUCH PETER CANELO CHIEF INVESTMENT STRATEGIST 

AT DEAN WITTER REYNOLDS . THANKS FOR JOINING US . PREPARED BY 

FEDERAL DOCUMENT CLEARING HOUSE INCORPORATED . NO LICENSE IS 

GRANTED TO THE USER OF THIS MATERIAL OTHER THAN FOR RESEARCH . 

USER MAY NOT REPRODUCE OR REDISTRIBUTE THE MATERIAL EXCEPT FOR 
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USER'S PERSONAL OR INTERNAL USE AND IN SUCH CASE ONLY ONE COPY 

MAY BE PRINTED NOR SHALL USER USE ANY MATERIAL FOR COMMERCIAL 

PURPOSES OR IN ANY FASHION THAT MAY INFRINGE UPON CABLE NEWS 

NETWORK INCORPORATED'S COPYRIGHT OR OTHER PROPRIETARY RIGHTS OR 

INTERESTS IN THE MATERIAL PROVIDED HOWEVER THAT MEMBERS OF THE 

NEWS MEDIA MAY REDISTRIBUTE LIMITED PORTIONS OF THIS MATERIAL 

WITHOUT A SPECIFIC LICENSE FROM C. N. N. SO LONG AS THEY PROVIDE 

CONSPICUOUS ATTRIBUTION TO C. N. N. AS THE ORIGINATOR AND COPYRIGHT 

HOLDER OF SUCH MATERIAL . THIS IS NOT A LEGAL TRANSCRIPT FOR 

PURPOSES OF LITIGATION . 

Document 5: 

GOOD MORNING . THIS IS THURSDAY JULY SEVENTEENTH . IN THE NEWS THIS 

MORNING ANOTHER SERIOUS PROBLEM ON THE RUSSIAN SPACE STATION MIR  

NEW EVIDENCE IN THE VERSACE MURDER INVESTIGATION . AND THE HOME 

RUN DERBY BETWEEN THE YANKEES' TINO MARTINEZ AND MARK MCGWIRE 

OF THE OAKLAND A'S . FROM A. B. C. THIS IS WORLD NEWS THIS MORNING 

WITH MARK MULLEN AND ASHA BLAKE . GOOD MORNING EVERYONE . 

THANKS FOR WAKING UP WITH US TODAY . GOOD MORNING MARK . GOOD 

MORNING TO YOU AND TO ALL OF YOU . WE HAVE A DEVELOPING STORY 

FROM THREE HUNDRED MILES ABOVE EARTH . ONCE AGAIN THERE IS A 

SERIOUS PROBLEM ONBOARD THE RUSSIAN SPACE STATION MIR . A. B. C.'S 

MIKE LEE JOINS US NOW FROM MOSCOW WITH DETAILS . MIKE . GOOD 

MORNING MARK . SOMETIME IN THE LAST TWELVE OR TWENTY HOURS 

SOMEONE WE BELIEVE IT HAD BEEN TSIBLIYEV THE MAN WHO HAD A HEART 

IRREGULARITY APPARENTLY DISCONNECTED AN ELECTRICAL CABLE THE 

WRONG CABLE ON THE SPACECRAFT WHILE THEY WERE PRACTICING FOR 

CABLE REPAIRS . THIS DISCONNECTED THE COMPUTER THAT CONTROLS THE 

GYRO . AND MIR IS MORE OR LESS SPINNING OUT OF CONTROL WHICH MEANS 

IT CANNOT ORIENT ITSELF TO THE SUN . THAT MEANS THE SOLAR PANELS 

CAN'T CHARGE . VIRTUALLY ALL OF THE POWER HAS DROPPED OUT OF MIR . 

THE CREW HAD TO GO TO THE SOYUZ ESCAPE CAPSULE TO MAKE A RADIO 

CONTACT . AND AS FAR AS I'M BEING TOLD AT THE MOMENT VIRTUALLY 
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NOTHING IS WORKING ON MIR BECAUSE IT IS IN THE SHADOW OF EARTH . 

WHAT THEY'RE TRYING TO DO IS GET ENOUGH SOLAR POWER THROUGH THE 

RANDOM ROTATION TODAY TO RECONNECT THE COMPUTER AND HAVE THE 

COMPUTER ORIENT THE GYRO AGAIN . IT'S DESCRIBED AS A PROBLEM THAT'S 

HAPPENED BEFORE . IT WAS A HUMAN ERROR ACCORDING TO SPACE 

OFFICIALS HERE BUT IT'S POTENTIALLY A SERIOUS ONE . HOW OPTIMISTIC 

ARE THEY AT THIS POINT MIKE THAT THEY CAN FIX IT . WELL THEY'RE STILL 

EXPRESSING OPTIMISM THAT WHEN THE SPACECRAFT IN A FEW HOURS 

COMES OUT OF THE SHADOW OF THE EARTH AND GETS SOME EXPOSURE TO 

THE SUN THAT THEY'LL HAVE ENOUGH BATTERY POWER AFTER THAT TO 

HAVE THE COMPUTER REORIENT THE GYRO WHICH WILL SOLVE THE LARGER 

PROBLEM . THERE IS NO GUARANTEE OF THAT . WORST CASE SCENARIO IF 

THEY CANNOT CORRECT THE PROBLEM THEN WHAT . WELL THEY'VE GOT 

ABOUT WITHIN THE MIR SPACECRAFT ITSELF THEY HAVE ABOUT TWO DAYS 

OF BATTERY SUPPLY BACKUP BATTERY SUPPLY . THE ULTIMATE BACKUP OF 

COURSE THEY GO INTO THE SOYUZ CAPSULE WHICH IS A SELF CONTAINED 

SPACE CAPSULE . IT'S CALLED THE DESCENT CAPSULE . THEY COULD COME 

BACK DOWN TO EARTH . BUT AS OF NOW THEY'RE SAYING IT IS NOT A LIKELY 

SCENARIO . THEY'RE STILL EXPRESSING OPTIMISM THEY CAN FIX IT . BUT 

OBVIOUSLY IT IS A SERIOUS SETBACK TO PLANS TO POSSIBLY TAKE THAT 

REPAIR MISSION NEXT WEEK . WITH AN UPDATE A. B. C.'S MIKE LEE IN 

MOSCOW . MIKE THANKS VERY MUCH . ASHA . 
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