
Data-driven Natural Language Generation:
Making Machines Talk Like Humans Using

Natural Corpora
Brian Langner
CMU-LTI-10-007

January 2010

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Alan W Black – Chair

Carolyn P. Rosé
Alexander I. Rudnicky

Maxine Eskenazi
Julia Hirschberg, Columbia University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2010 Brian Langner

This research has been supported by NSF grants 0208835 and 0229715, the NSF IGERT Fellowship
program, and a gift from Lycos, Inc.

The views and conclusions contained in this document are solely those of the author and should not
be interpreted as representing the official policies, either expressed or implied, of any sponsoring
institution, the U.S. government, or any other entity.

Keywords: natural langauge generation, corpus-based generation, spoken lan-
guage generation, speech synthesis, spoken dialog, speech, computers

For my wife Belinda,

always

Abstract

With the significant improvements that have been seen in speech
applications, the long-held goal of building machines that can have hu-
manlike conversations has begun to seem more reachable; there ex-
ist spoken dialog systems which can now be used effectively by much
of the general public. Despite these improvements, however, applica-
tions are still frequently limited by their unnatural spoken language
generation. This thesis discusses the problem of human-like spoken lan-
guage generation: how to make machine-generated speech more like
natural human speech. The scope of this problem is large, with issues
in speech synthesis, natural language generation, and spoken dialog,
among other areas. The work in this thesis is primarily focused on nat-
ural language generation, with some discussion of the issues related to
speech synthesis and the intersection between synthesis and language
generation. In particular, we discuss a method that uses signal modifica-
tions of the synthesized waveforms to emulate what humans do when
trying to be understood better while speaking in noisy conditions.

One of the main differences between human- and machine-
produced speech is in understandability; natural human speech is typi-
cally easier to understand. We describe a general framework, which we
call uGloss, designed to improve the understandability of spoken gener-
ation of complex information. The uGloss framework employs a set of
tactical generation strategies that attempt to take the expected capabil-
ity of the human listener into account; by staying within those abilities
the resulting spoken output is typically more easily understood. Though
uGloss can improve understandability, it is not a complete solution to
machine-generated human-like speech.

In many other fields, from speech recognition and synthesis, to pars-
ing and understanding, using corpus-based statistical knowledge has
led to improved systems. We propose a similar data-driven approach in-
tended to improve language generation systems, specifically for speech
and dialog applications. Our proposed approach – the MOUNTAIN lan-
guage generation system – is a fully-automatic approach which uses ma-
chine translation techniques to generate novel examples from a natural
corpus. This system is designed to be a domain-independent method for
training a generator that can produce human-like language in speech
applications, by translating the machine’s internal representation of

vi

what it intends to say into a natural language surface form. Further,
it is also designed to require no linguistics expertise for use, making
it more appealing to non-experts than some other advanced language
generation systems. We show the MOUNTAIN approach to be compara-
ble in output quality as those advanced systems, without requiring their
amount of manual intervention to design and build.

Finally, we discuss the difficulties involved in the evaluation of
machine-generated language. Manual human evaluation of examples
is expensive, both in time and personnel, and has potential problems
when the human evaluators have only monetary motivations for evalu-
ating, as opposed to real users of a system who care whether things are
truly improved. Despite these problems, it is still the most commonly
used method of evaluation. We investigate other automatic measures
that can be used for evaluation, and determine how well they correlate
to human judgments.

Acknowledgements

When thinking about the efforts that have gone into a PhD thesis, it is difficult to
fully identify and properly thank all of the people whose contributions and assis-
tance made the end result possible. In my case, certainly Alan W Black heads the
list. As my advisor, his support, direction, and encouragement have helped me
learn how to do good research, and how to properly talk about what I’ve done. It
is rare that a conversation with Alan would not give me something new, from in-
sight into a problem with my research, to how to improve my teaching skills. The
countless hours he has spent with me have helped me make a significant improve-
ment in the kind of academic I am; for that, I am forever in his debt. In many
ways, I cannot imagine having a more ideal advisor. I would also like to thank my
thesis committee, who have always been available to discuss ideas, and provide
many helpful comments and suggestions to improve the things I was working on.
Though he was not a part of my committee, I want to thank Stephan Vogel for
the conversations we had in the past several months which helped clean up my
research and make it stronger.

I also need to thank the good friends I have made since coming to CMU; they
have been there with support and friendship, helping with research or just to relax.
In particular, Antoine Raux, Arthur Toth, Satanjeev “Bano” Banerjee, Betty Cheng,
John Kominek, Wen Wu, Jean Oh, Wilson Tam, Udhay Nallasamy, and Gopala
Anumanchipalli were always there when I needed someone. I would wager some of
them cheered the announcement of my defense, not just as my friends, but because
it also meant I would stop bothering them to do my research studies! Many of
them were able to help me prepare for my defense talk; John, in particular, made
numerous insightful comments and suggestions after my practice talk that really
made the talk stronger (and ultimately, more successful).

In addition to them, there are many other who deserve thanks for the multitude
of discussions we have had over the years that helped steer my own research or

vii

viii

gave me insight into another research area. Members of the Synthesis and Sphinx
groups, and especially Tina Bennett, Kishore Prahallad, Ziad Al Bawab, Sourish
Chaudhuri, David Huggins-Daines, Stan Jou, Ben Lambert, Matt Marge, Jahanzeb
Sherwani, Stefanie Tomko, Bob Frederking, and Rich Stern have all contributed to
my reaching this point.

Finally, the deepest thanks of all are for my wife Belinda. Her patience to let me
work on “just one more thing” was incredible, and her support as my thesis neared
completion was key to my ability to finish, while helping me stay grounded with
the things that matter most. Even when deadlines meant extra stress and less time
with me, she was always there to help with exactly what I needed. I could not have
done it without her love and support.

Contents

1 Introduction 1

1.1 Natural Language Generation . 1

1.1.1 Spoken Language Generation 2

1.1.2 Understandability vs. Naturalness 2

1.2 Evaluation . 3

1.3 Thesis . 4

1.3.1 Thesis Statement . 5

1.3.2 Contributions . 5

1.4 Outline . 6

2 Background and Related Work 9

2.1 Speech Synthesis: More Human-like Output Through Prosodic and
Signal Changes . 9

2.1.1 Prosody and Emphasis . 10

2.1.2 Speech in Noise . 11

2.2 Spoken Language Generation . 14

2.2.1 Language Generation for Speech Synthesis 15

2.3 Corpus-based Natural Language Generation 16

2.4 Summary . 17

3 Evaluation of Language Generation Systems 19

ix

x CONTENTS

3.1 Methods and Metrics . 20

3.1.1 Automatic Measures . 20

3.1.2 Human-Based Evaluation . 21

3.2 Why Real Users are Important . 23

3.2.1 Evaluation Challenges in a Real-World System 24

3.2.2 Study with Real-World Users 24

3.2.3 Recruited Lab Participants . 28

3.3 Summary . 30

4 Improving Spoken Language Generation: The uGloss Framework 33

4.1 Preliminary Work . 34

4.1.1 How Much Information to Present 35

4.1.2 Time-Constrained Presentation 45

4.1.3 Presentation Style and Fluency 50

4.1.4 Discussion . 52

4.2 Towards a General Approach: Design Considerations 54

4.3 The uGloss Framework . 56

4.3.1 Algorithmic Description . 56

4.3.2 Implementation . 57

4.3.3 Evaluation and Effectiveness 58

4.3.4 Other Considerations . 60

5 The MOUNTAIN Language Generation System 63

5.1 Motivation . 63

5.2 Approach . 64

5.3 MOUNTAIN: Machine Translation NLG 66

5.4 Training and Use of MOUNTAIN . 67

5.4.1 Application . 67

5.4.2 Corpus . 67

CONTENTS xi

5.4.3 Training for Generation . 69

5.4.4 Output . 70

5.5 Evaluation of MOUNTAIN Generation 71

5.5.1 Automatic Evaluation: BLEU and METEOR 72

5.5.2 Human-scored Evaluation . 76

5.5.3 Discussion . 76

5.6 Tuning to Improve Generation Results 78

5.6.1 Training Corpus . 78

5.6.2 Language Model . 79

5.6.3 Internal Language . 79

5.6.4 Translation Parameters . 80

5.6.5 Overall Effect on Generation 81

5.7 Testing in Another Domain . 83

5.7.1 Weather Forecasting: The SUMTIME-METEO Corpus 83

5.7.2 Training . 83

5.7.3 Systems in the Prodigy-METEO Corpus 85

5.7.4 Evaluation . 88

5.7.5 Do Automatic Measures Correlate with Ratings by Humans? . 90

5.8 Discussion . 96

5.9 Summary . 98

6 Concluding Words 99

6.1 Summary . 99

6.2 Contributions . 101

Bibliography 103

Chapter 1

Introduction

People have long envisioned machines that can converse naturally with them. This,
in fact, is one of the tests of artificial intelligence [Turing, 1950] – is a human able
to tell if the entity they’re talking to is another person or a machine? Though it
is a large problem with many sub-areas, each of them has made steady progress
such that sometimes machines are able to pass at least a limited version of the
Turing Test, though we are still far from creating a machine capable of having an
independent conversation about anything. This thesis is focused on one particular
sub-area of this problem: human-like, machine-generated conversations. In other
words, how can we build a machine that is able to talk like a person?

1.1 Natural Language Generation

Natural language generation is the task of producing natural language surface
forms from a machine representation of the information. Broadly, there are two
main steps in natural language generation, which can be classified as either strate-
gic or tactical generation. Strategic langauge generation is a task where a decision
is made about what meaning is going to be expressed, while tactical language gen-

1

2 Chapter 1: Introduction

eration is focused on determining which particular words and phrases are used to
express that meaning in natural language. Though both are important to the task
of language generation, in this thesis we discuss the problem of tactical generation
only.

1.1.1 Spoken Language Generation

Natural language generation can also be subdivided based on the goals or use of the
language being produced. Spoken language generation refers to machine-generated
language that is intended to be spoken, as opposed to text-based generation that is
designed to be read. Though many of the same problems and issues are applicable
to both types of generation, spoken language generation has additional issues that
need to be addressed due to the fact that it is often easier to understand sentences
when the words can be seen (and re-read as necessary) rather than only heard.

Language Generation for Speech Synthesis

Frequently, spoken language generation is used in speech and language applica-
tions by feeding the output of the generator to a speech synthesizer, producing
fully-machine generated spoken language. Introducing a speech synthesizer to the
process creates additional problems with understanding; synthetic speech has not
yet reached the point where it is as understandable as natural speech [Black and
Tokuda, 2005, Bennett and Black, 2006, Fraser and King, 2007, Karaiskos et al.,
2008, King and Karaiskos, 2009].

1.1.2 Understandability vs. Naturalness

Human-generated language is by definition natural, and also generally understand-
able. Machine-generated language typically has trouble matching human ability in

1.2 Evaluation 3

both of those dimensions. Though they are related, and both dimensions are impor-
tant in producing human-like language, they are somewhat orthogonal in that one
can have understandable but unnatural language (or, natural but incomprehensi-
ble language); this is widely known in speech synthesis [Clark et al., 2007], and
certainly applies as well to natural language generation. Thus, when discussing
how “human-like” machine-generated language is, it is important not to assume
that it is natural simply because it is understandable.

1.2 Evaluation

Evaluation is clearly an important part of any research work – how do we know
that what we are doing is better? There is not much general agreement among
researchers in natural language generation about a common method of evaluation,
though there has been significant recent interest in this topic [Belz and Reiter,
2006, Paris et al., 2007, Reiter and Belz, 2009], along with organizing shared-
task challenges [Belz et al., 2008] to more easily compare approaches. The most
common evaluation method used in the field is human-based evaluation – includ-
ing task-based evaluations where performance is judged using measures such as
task completion, and rating-based evaluations where people are explicitly asked to
judge the quality of examples. These sorts of evaluations give good results but can
be very expensive to set up and perform, making rapid testing of systems and ideas
difficult. Other similar fields, such as machine translation and text summarization,
use automatic metrics more frequently than human-based evaluations; these are
far less expensive to perform but may not be as consistent and reliable as actual
humans at assessing quality. Until recently, there has not been much interest in
the language generation community in using automatic measures for evaluation,
though as corpus-based generation has become more common this has changed. It
is important, though, that any automatic measure of quality be well-correlated to
human perception of quality in order to be meaningful.

4 Chapter 1: Introduction

1.3 Thesis

Many advanced language generation systems are able to produce very natural,
high-quality output, if not in the general case at least for some specific applica-
tion or domain. Though the quality of these systems can be impressive, they are
often very expensive to create, because they have a significant amount of manual
annotation or handcrafting necessary to build them. Some systems make exten-
sive use of linguistic information, requiring an expert to be heavily involved in its
design and implementation, and possibly ongoing use. Though often this is not
a problem, there are many potential applications where such an expert may not
be available, or where a novice group is trying to build an application; in these
cases those advanced systems would not be usable at all. In fact, many commonly
used spoken dialog applications use the most basic types of language generation
– templates or canned prompts – despite the penalty paid in quality, because they
are easy to create and use. We are interested in designing a language generation
system that can produce high-quality, human-like output, while requiring only min-
imal human intervention to build – or no intervention at all. Such a system would
make more human-like language available to a greater number of speech systems.

One potential method of improving machine generated language is to design
a system that takes human capabilities – such as auditory memory or cognitive
load – into account in its generations. Restricting generations that are likely to be
difficult for human listeners to understand, like very long utterances or complex ab-
stract groupings, should result in more understandable machine output in general.
This type of approach could be used in conjunction with a simple, template based
system, improving the understandability of its output for complex information.

Another possibility is to determine how humans talk, including what words they
use, and design a generation system that allows a machine to produce similar utter-
ances. An obvious method for this is to use actual human-generated examples to
train a generation system. Many areas in natural language processing and speech
technology have been able to benefit from applying machine learning and statisti-
cal analysis, including automatic speech recognition, spoken dialog, and machine

1.3 Thesis 5

translation, among others. Surprisingly, natural language generation has not seen
as much work using trainable methods, though this has recently been changing.
Given the general successes in other areas, we believe it is likely such an approach
can also result in improvements for natural language generation.

1.3.1 Thesis Statement

Improvements in spoken dialog systems have made it possible to create limited
conversational machines, though truly natural conversations remain elusive. Fre-
quently, one of the major factors which limits the perceived naturalness of machine
conversations is the simplistic approach to natural language generation that is still
typically being used, despite the existence of more advanced systems which are ca-
pable of highly natural output. The additional costs of using these superior systems
seems to be the reason they are not frequently used in dialog applications.

In this thesis, we present two approaches designed to make machine-generated
language more like human-generated language. The first approach is a frame-
work for producing more understandable machine-spoken language; this frame-
work uses a set of tactical generation strategies designed to take human capabilities
into account, resulting in more understandable language when discussing complex
information. Our second approach is a fully automatic, data-driven method pri-
marily aimed at spoken dialog applications. This approach, which uses statistical
machine translation techniques, can produce human-like language using only nat-
ural corpora. Though no further linguistic or semantic information is required for
generating novel language with this approach, it should be possible to make use of
it when available.

1.3.2 Contributions

The main contributions of this thesis are:

• A statistical data-driven method of tactical language generation that performs

6 Chapter 1: Introduction

similarly to other advanced approaches. This is a fully-automatic method,
unlike other approaches which require some level of human intervention in
the training or building process.

• Demonstration that natural corpora can be used to generate novel natural
language sentences that are as clear and understandable as human-written
texts.

• A framework for producing more understandable language that will ulti-
mately be spoken by a speech synthesizer.

• An investigation of evaluation methods – both automatic and human-based –
for natural language generation output, and what these methods can tell us
about output quality.

1.4 Outline

The remainder of this document is structured as follows:

Chapter 2 describes other work related to this thesis, including both work in simi-
lar areas in language generation, speech synthesis, and spoken dialog, as well
as discussions of and solutions to other dimensions of this problem that are
not directly part of this thesis.

Chapter 3 describes evaluation methods for natural language generation and their
applicability to this work.

Chapter 4 describes the uGloss framework, a method designed to improve the
understandability of machine-spoken natural language generation.

Chapter 5 describes the MOUNTAIN language generation system, a new machine
translation based approach to natural language generation.

Chapter 6 summarizes the conclusions and contributions of this work.

1.4 Outline 7

Together, these chapters all address the problem of generation of human-like
natural language from various different perspectives. The discussion in Chapter 2
examines the general dimensions of producing human-like spoken output, though
much of the specific research discussed addresses a different part of the general
problem than the core contributions of this thesis. The uGloss framework pre-
sented in Chapter 4 attempts to define a general strategy for understandable spo-
ken language generation. It is best described as a component of tactical generation,
not a full generation system by itself, and is most useful for presenting complex
information (such as lists or groups of items). uGloss is intended to make machine-
generated spoken language more human-like by increasing its understandability.
Though it mostly succeeds at that task, it does not explicitly deal with other aspects
of human-like output in its generations. In comparison, the MOUNTAIN system in
Chapter 5 is a full tactical generation system, using statistical machine translation
techniques and a corpus of natural responses to generate novel utterances from a
suitable internal (machine) representation of the information to discuss. MOUN-
TAIN attempts to use the naturally-generated examples to get more human-like
generation results. The expected MOUNTAIN use case is within a spoken dialog ap-
plication, though the technique itself should be suitable for other generation tasks
as well.

Because the general scope of the problem discussed in this thesis is sufficiently
large to touch on several areas of research, it can attract interest from each of
these related fields. However, some portions of this work will be of greater interest
than others, depending on the perspective of the reader. For those coming from a
speech synthesis perspective, parts of Chapter 2 along with the entirety of Chapter
4 are the most directly relevant. Researchers coming from a natural language
generation background will find Chapter 2, Chapter 3, and Chapter 5 discuss issues
and research in their field. Finally, spoken dialog researchers may be interested
in the systems described in Chapters 4 and 5, since their intended use cases are
strongly tied to spoken human-machine interaction.

Chapter 2

Background and Related Work

There are many ways of getting machines to speak more like humans do. Modifying
the speech synthesizer – changing how the speech is said – is one approach, and
can involve prosodic, spectral, and even stylistic changes to the words being said.
Though it is clearly important to any solution to this problem, issues with how the
words are spoken are beyond the scope of this thesis. Working on a different level,
there are modifications in spoken language generation – changing or deciding what
words to say – in order to produce more natural and understandable machine
speech. The proposed approach of this thesis falls into this area of research.

This chapter covers work from both of these areas that is related to the prob-
lem of producing human-like machine-generated speech. Additionally, since our
approach is a corpus-based method of natural language generation, we discuss
significant work that has been done in that area as well.

2.1 Speech Synthesis: More Human-like Output

Through Prosodic and Signal Changes

Natural human speech can be highly varied along many dimensions. In fact, peo-
ple will deliberately change how they speak in different environments; in some

9

10 Chapter 2: Background and Related Work

cases this is a subconscious process. When they find they are having trouble be-
ing understood, people will change the manner in which they produce speech in
a variety of ways to improve how understandable they are and how well they can
communicate with others. When they want to call attention to some specific part
of what they are saying, people use emphasis and other prosodic cues that result in
different-sounding speech from how they “normally” sound.

Standard speech synthesis typically does not do any of these things, and is
one of the main reasons even modern, high-quality synthetic speech can still be
perceived as unnatural. There has been some work on improving this, which we
describe in this section.

2.1.1 Prosody and Emphasis

Modern synthetic voices have progressed to the point where they can often be
perceived as reasonably natural and understandable [Black, 2002]. Unit selec-
tion [Hunt and Black, 1996] and limited domain techniques [Black and Lenzo,
2000] can produce voices with highly natural prosody, because they use the natural
prosody from the database of recordings. The limitation is that they are restricted
to the prosody in the database, which may not be large enough to have all phonetic
and prosodic contexts that are desired. Further explicit control over prosody with-
out additional recordings is possible, but only by using signal processing methods
that degrade the natural quality.

Work by Raux and Black [2003] took a corpus-based approach to F0 modeling.
The approach used F0 units – instead of the more typical phonetic units – for a unit
selection voice. This is similar to earlier work [Meron, 2001], which used groups
of several syllables rather than single segments. By clustering units together based
on various features, such as phoneme name, voicing, stress, part of speech, and
neighboring units, and then using similar methods as segmental synthesis [Black
and Taylor, 1997], the method is able to produce F0 contours which are then
applied to the resulting synthesized waveform.

Results seemed to show that their data-driven approach was able to produce

2.1 Speech Synthesis: More Human-like Output Through Prosodic and Signal
Changes 11

natural F0 models of specific aspects of prosody, which can be used to generate
synthetic speech that is preferred over speech synthesized using rule-based F0
models. Additionally, when applied to other speaking styles, such as emphasized
speech, this method produced more natural emphasis prosody than the standard
rule-based model.

There is further work that has gone into producing expressive synthesis systems
[Iida et al., 2003, Eide et al., 2004]; these have generally focused on designing
and building corpora of the desired style of speech for the synthesizer. Such an
approach is effective (presuming that a large enough database can be collected for
the desired style), but is expensive since it requires a large set of recordings for
each different style of speech to be generated. However, the results of evaluations
show that synthesis systems that include models for emphasis and other speaking
styles are improved over standard unit selection systems [Strom et al., 2007].

2.1.2 Speech in Noise

Speech in noise [Langner and Black, 2004b], or speech spoken in poor channel
conditions, is a style resulting from delivering speech as if the listener had said, “I
can’t hear you, can you say that again.” Speech in noise can be elicited from people
by having them speak in a noisy room. In order to investigate this speaking style,
we designed and recorded a database of natural speech in noise. It should be noted
that volume is not the sole difference between speech in noise and plain speech.
Speech in noise has different spectral qualities, different durations, and different
prosody than plain speech, in addition to the power differences. Such speech has
been referred to as Lombard speech [Lombard, 1911, Lane and Tranel, 1971], but
we feel that term is inappropriate for this work, because the level of background
noise being considered is relatively small. Furthermore, this work does not deal
with more extreme examples of speech in noise, such as shouting, which is not
directly comparable to normal speech.

Speech in noise can have different properties depending on the type of noise
the speaker is dealing with. For example, speech produced during a rock concert

12 Chapter 2: Background and Related Work

will be different than speech produced near a loud white noise source, and both of
those will be different than speech produced in a noisy restaurant. This work uses
a recording of human conversational babble from a crowded cafeteria during peak
lunch times as the noise source; thus, any conclusions from this work are likely
limited to similar noise sources. The noise source was selected for several reasons,
including its naturalness, people’s familiarity with it, its spectral qualities, and the
ease with which it could be obtained. Though our findings may be applicable in
other circumstances, this has not yet been shown to be true, and so this work
should not be taken as authoritative for all types of speech in noise. However, the
speech collection and evaluation methods we have used are relevant for most, if not
all, types of speech delivery styles worth investigating, and so this work provides
a possible framework for working with speech beyond the specific style detailed
here.

While we are interested in the understandability effects of natural speech in
noise, our interest is motivated by our ability to get similar increases in under-
standability for synthetic speech. Despite vast improvements in the quality of
speech synthesis in recent years, many people continue to find even the highest
quality synthetic speech difficult to understand. If we could see understandability
improvements for computer-generated speech like those of natural speech in noise,
applications of synthesis such as spoken dialog systems would become significantly
more usable in non-research environments. Some preliminary work [Langner and
Black, 2005a] suggests that such improvements are possible, though not trivial, to
obtain.

Speech In Noise for Speech Synthesis

Since concatenative speech synthesis as well as human perception of speech are
significantly degraded if noise is present in the speech recordings, we must have
a way of recording the style of speech in noise without contaminating our record-
ings with noise; what we require is recordings of clean speech in noise. Combined
with the fact that human speakers are annoyingly adaptive, changing their speech

2.1 Speech Synthesis: More Human-like Output Through Prosodic and Signal
Changes 13

production as they “get used” to the conditions they are in, it was necessary to de-
sign a recording method [Langner and Black, 2004a] that would account for them.
Because of that adaptability, the noise should be randomly played or not played
while a specific prompt is being recorded, so that the voice talent is unaware of
the noise condition ahead of time.In order to isolate the desired speech from the
noise source in the recordings, the voice talent should wear headphones during the
recording process. The headphones deliver the noise source as well as the voice
talent’s own speech; effectively, this simulates the acoustics of a noisy room to the
voice talent without putting the noise in the same channel as their speech. Obvi-
ously, the noise source should be pre-recorded to simplify the logistics of playing it
through headphones. It should be noted that the volume of the noise source can,
and should be, adjusted to the desired level; in our work, it was adjusted to a level
where it was noticeable to the voice talent without being uncomfortable.

After recording a database of speech in noise, it is possible to build a voice us-
ing that data just as with any other database, with a few caveats. As noted above,
speech in noise has different spectral and prosodic qualities than plain speech. This
often causes methods of F0 extraction to give poor results, which in turn lowers the
quality of the resulting synthesis. Additionally, it is possible to build a single voice
that can produce plain speech or speech in noise, using marked-up text to deter-
mine the speaking style, since the recording process generates a full database of
both styles. Such a voice is useful for circumstances where having multiple distinct
voices either not practical or desireable, but both speaking styles are required.

Modifying Other Synthetic Voices

There are several possible methods to get existing voices to speak in noise. One
novel approach is to use style conversion. Using techniques that were designed
for voice conversion between a source and target speaker [Toda, 2003], we ap-
plied such techniques to learn a mapping between plain speech and speech that
was generated in noise. This work uses a Gaussian Mixture Model transformation
method [Stylianou et al., 1995], and works primarily with the spectral differences

14 Chapter 2: Background and Related Work

between the two styles, as well as some minimal pitch and durational differences.
It is important to reiterate that those differences are not all that distinguish speech
in noise from plain speech, and thus the transformation model is not going to be
able to produce natural-quality speech in noise. Results from experiments using
this approach were mixed [Langner and Black, 2005b], showing potential under-
standability improvements can be had if the resulting speech is close in quality to
natural speech in noise.

2.2 Spoken Language Generation

There has been quite a bit of work in applying natural language generation to ac-
tual interactive systems [Reiter and Dale, 1997]. Many of these systems, at least
initially, focused on methods for generating text, taking into account content, re-
ferring expression generation [Dale, 1992], discourse planning, and other basic
tasks. This work made it possible to build practical systems, and allowed for more
complex advancements.

Language generation designed for spoken output is not a new application. How-
ever, it has been clear for some time that spoken language generation is a different
problem than written language generation [Prevost, 1996]. Other previous work
[Pan and McKeown, 1996] has noted the importance of conciseness in the per-
ceived understandability and usefulness of spoken output, particularly as compared
to written output. Furthermore, complex sentence structure which is easily under-
stood when written can be far more challenging when rendered as speech. Most
of the work on spoken language generation has focused on intonation of the spo-
ken output [Marsi, 2001], or on emotional variation [Fleischman and Hovy, 2002],
which are clearly important for generating more natural-sounding speech. Other
factors, some of which are shared with written language generation, including lex-
ical choice, sentence structure, and conversation flow, can also play an important
part in understandable spoken output.

As speech applications become more common, we feel it is important that they

2.2 Spoken Language Generation 15

be usable for all segments of the population, not simply the young, educated tech-
nology specialists they are normally tested on now. To maximize the usefulness
of these applications, they must work for everyone, rather than only an ideal sub-
set. Thus, we want to demonstrate that it is possible to improve their capabilities,
without making them more difficult for people to use.

2.2.1 Language Generation for Speech Synthesis

Often, a language generation system will be able to come up with multiple differ-
ent, yet equally acceptable, ways of saying the same thing. For text generation,
the particular words in a sentence are not necessarily important. However, for gen-
erated language that is ultimately going to be spoken by a machine using speech
synthesis, word and phrase choices can play a large role in the quality of the spo-
ken utterances. There have been several efforts to more tightly combine language
generation and speech synthesis modules within a larger speech application, focus-
ing on intonation and context [Davis and Hirschberg, 1988, Prevost and Steedman,
1994, Hitzeman et al., 1998, Pan et al., 2002]; effectively, this work attempts to
use additional information from structure, syntax, and dialog context to improve
prosodic predictions, and produce more natural speech.

The output quality is a particularly key issue for unit selection voices. When
the output of a unit selection synthesizer is good, it can be difficult to distinguish
from natural speech. The problem is that minor changes in words or phrasing can
cause drastically different speech quality. When unit selection synthesis is bad, it
is often very bad, making “problem utterances” especially glaring. Because of that,
spoken language generation (using speech synthesis) should take the capabilities
of the synthesizer and voice into account when generating utterances, so that low
quality output is more likely to be avoided.

Nakatsu and White [2006] did exactly that, ranking the output of their genera-
tor using the predicted quality of the output’s synthesis. Building on earlier work
[Bulyko and Ostendorf, 2002], the approach has the generator produce multiple
paraphrases of a single target surface form, and then estimate the quality of the

16 Chapter 2: Background and Related Work

synthesis output for each utterance; when the highest-ranked utterances are then
spoken by the synthesizer, the result will more often be natural-sounding speech.
Evaluation of this method showed clear improvements in the quality of the output
by human judges. Later refinement by Boidin et al. [2009] produced similar re-
sults, but needed significantly less annotated data, instead using a larger feature
set for training.

2.3 Corpus-based Natural Language Generation

Corpus- and statistically-based approaches to language generation have been
around for some time now, though only recently have they been more commonly
applied in applications such as spoken dialog. These approaches are appealing
due to their ability to leverage machine learning as has been done for other NLP
tasks, in order to provide better results than typical approaches. The Nitrogen
generation system [Langkilde and Knight, 1998], for example, derived statistical
information from a corpus in order to rank and select grammar-generated surface
forms. The work by Ratnaparkhi [2000] describes a generation system that can
be trained from an annotated corpus, learning to produce surface forms using only
a semantic representation. Marciniak and Strube [2005] describe using a corpus
annotated with semantic and grammatical information, which is then used as a
linguistic knowledge base for generation. Amalgam [Corston-Oliver et al., 2002]
uses a similar classfication approach as Nitrogen, but takes logical forms as input.
Work by Zhong and Stent [2005] is more similar to our proposed approach, di-
rectly using unannotated data to learn surface realizations. Likewise, a similar
approach as we describe has used statistical translation methods for summariza-
tion and headline generation [Banko et al., 2000], with some degree of success.
Additionally, Sripada et al. [2003] generated weather forecasts using a parallel cor-
pus of raw weather data and human-produced forecasts; following up this work,
Belz [2005] compared N-gram selection and treebank based methods of statisti-
cal NLG in this domain. Other domains, such as machine-generated sportscasting
[Chen and Mooney, 2008], have also successfully used corpus-based language gen-

2.4 Summary 17

eration.

Many of these approaches use significant amounts of linguistic knowledge (in
some cases from annotations, and in some cases trained from data) in order to
improve the natural language output they produce. In this thesis, we attempt to
use a broadly similar method – automatically learning generation output from a
corpus of examples – but without any explicit linguistic annotation of the corpus.

2.4 Summary

In this chapter, we discussed several areas working on improving the naturalness
and understandability of machine-generated speech, including work in speech syn-
thesis (that is, how the speech gets said) and spoken language generation (what
things to actually say). Further, we examined work on optimally combining a lan-
guage generator and a speech synthesizer, to improve the resulting spoken output.
While all of these areas are related to the topic and goals of this thesis, they pri-
marily focus on issues outside the scope of this work or are solving a different part
of the larger problem of human-like machine-generated spoken language.

Finally, we discussed related work in corpus-based and data-driven approaches
to natural language generation. The work of this thesis can be generally described
as a similar approach in this regard; however, where many of these related methods
use significant linguistic annotation of their corpus, we propose an approach that
does not require any significant linguistics expertise to implement. Our proposed
approach is detailed in Chapter 5.

Chapter 3

Evaluation of Language Generation
Systems

How best to evaluate language generation systems has been an unresolved question
for some time now. Dale and Mellish [1998] discussed many of the pertinent
issues and dimensions, of which we are most concerned with output assessment
and application potential – in particular, the notions of quality and accuracy, and
possibly fluency as well. Aware of this lack of standard assessment, researchers
in the field have been attempting to design and agree on a metric [Paris et al.,
2007]. Shared task challenges, which are popular and useful in other fields (see the
Blizzard Challenge [Black and Tokuda, 2005] for speech synthesis as an example),
have also been suggested and introduced for NLG [Rus et al., 2007, Belz et al.,
2008].

Directly comparing machine-generated language to human-generated language
seems like an obvious approach; however, such comparisons were not routinely
done as part of an evaluation until recently [Viethen and Dale, 2006]. When ex-
amining human-generated language, what is often found is that different people
will describe the same things different ways; in fact, the same person might also
describe the same thing differently at different times [Viethen and Dale, 2007,
Langner and Black, 2007]. For any evaluation using human-generated answers

19

20 Chapter 3: Evaluation of Language Generation Systems

to determine correctness, this sort of variation must be taken into account [Stent
et al., 2005].

3.1 Methods and Metrics

Typically, methods of evaluating natural language generation output will fall into
one of two general categories: those using automatic measures of some kind, and
those using human judges. We discuss both in this section.

3.1.1 Automatic Measures

While natural language generation researchers are most concerned with how to
evaluate machine-produced language, there are other areas of NLP which must
deal with this problem as well, including machine translation and summarization.
Both involve generating novel natural language; however, they differ from general
NLG by having reasonably well-defined “correct” generations. Despite that differ-
ence, the automatic metrics used by both fields have been suggested for use in NLG
as well [Popescu-Belis, 2007, Rus et al., 2007]. The advantage of automatic mea-
sures is that they are low cost and easy to run, allowing for the rapid comparison
of different techniques and ideas, and straightforward demonstration of progress
and improvements.

Simple string accuracy [Alshawi et al., 1998], analagous to speech recognition’s
word error rate, is among the early attempts at finding a quantitative measure.
Though it is simple to compute, it is fairly limited and has minimal correlation
to perceptions of the actual quality or correctness of generated language. Fur-
ther experiments aimed at finding an automatic metric examined tree-based accu-
racy metrics [Bangalore et al., 2000]. In corpus-based summarization, the ROUGE
metric [Lin and Hovy, 2003] has been used as an automatic evaluation measure,
though in general the field seems to prefer human evaluations to automatic met-
rics. However, as a metric, it is uncertain if ROUGE correlates to human ratings of

3.1 Methods and Metrics 21

summaries; there are claims both for [Dang, 2006] and against [Dorr et al., 2005].

An earlier approach from machine translation is the BLEU score [Papineni et al.,
2002]. BLEU effectively works by measuring N-gram agreement between reference
and test strings. It is a standard reported metric for MT systems, and is widely
used primarily because it is claimed to be well-correlated to human judgements of
translation quality and is straightforward to compute. Its success as a metric for MT
has led to some language generation work reporting BLEU scores as well [Callaway,
2003], particularly corpus-based NLG [Belz, 2005, Belz and Kow, 2009].

It is unclear if BLEU is truly an appropriate metric to use for NLG evaluation,
however. Recent analysis [Belz and Reiter, 2006, Reiter and Belz, 2009] suggests
that BLEU (or similar metrics) can be reasonable to use in some applications, but
not necessarily in the general case. Though it is correlated to human judgements
for translation results, it may not be the best metric to use for evaluating NLG
output because it tends to view output as a set of N-grams rather than sentences.
This might work for machine translation output, but it seems possible that NLG
quality may have other dependencies, particularly in cases where “correct” out-
puts can be highly varied. METEOR [Banerjee and Lavie, 2005] may be a useful
measure for our needs, as an evaluation metric for machine translation that takes
more sentence-level information into account than BLEU. Furthermore, METEOR
is designed to work on a per-sentence basis, whereas BLEU is best used over entire
documents. Since language generation, particularly within speech applications, is
fundamentally about sentence-sized examples, METEOR seems like a potentially
preferable metric.

3.1.2 Human-Based Evaluation

Natural language generation is most often evaluated using scores given by a human
evaluator. Such evaluations are expensive in many ways, from design and setup
time, to personnel costs, and even in how long it takes to complete. Even worse,
this expense is recurring, since most evaluations are tied to a specific test and are
difficult or impossible to reuse. Despite these drawbacks, the information about

22 Chapter 3: Evaluation of Language Generation Systems

generation quality is difficult to find in other ways, justifying the expense. The
main advantage to this style of evaluation is that it provides an actual human
perspective and judgement, which is important for something that is designed to
be used by people.

Evaluation typically involves giving people generated examples and having
them provide scores indicating their quality, possibly in multiple dimensions (such
as coherence, correctness, appropriateness, overall quality, etc.) [Lester and Porter,
1997]. These scores are usually presented as Likert-scale ratings [Likert, 1932].
Similar evaluation techniques can be found in other fields as well, such as mean
opinion scores for speech synthesis quality evaluations. Other methods instead
show two examples, with the evaluator asked to indicate which one is preferred.
Frequently, actual natural examples are mixed in with the machine generated ones,
both as a quality control check – it is unlikely that machine generated text will be
better than natural examples – and to provide a ceiling for the rating scale.

The other type of human evaluation that is typically used is a task-based eval-
uation, where the generation output is measured by how well a person is able to
accomplish something by using it. Work by Young [1999] is an early example of
this kind of evaluation, where the generation of instructions was tested by measur-
ing how well people were able to complete the task specified in the instructions.
Task-based evaluation has been claimed to be a highly meaningful measure of NLG
output [Reiter and Belz, 2009], though in many domains it can be prohibitively ex-
pensive to perform – even more so than other human-based evaulations. However,
if a language generation system is part of an application with a built-in user base
(such as a spoken dialog system), some of that expense can be mitigated, mak-
ing this method more attractive. Particularly if the application has actual users,
it can provide an excellent platform for evaluating NLP research; actual users are
motivated to get correct information efficiently, which happens to correspond to
the goals of a language generation system. Ultimately, since successful machine-
generated language will be used in applications, it makes sense that it should be
tested and tuned for such usage.

3.2 Why Real Users are Important 23

3.2 Why Real Users are Important

The two most common methods of getting human evaluators for speech and lan-
guage tasks is by recruiting participants for a study, often by paying them, and by
designing an application which people choose to use for their own reasons, not
solely for the purpose of an evaluation study. These two groups frequently have
noticeable differences.

For many paid subjects, since they simply do not care about the answers they
are getting, they will accept obviously incorrect information as valid if they can
“complete” the task faster by doing so. Designing an evaluation task for recruited
subjects that does not suffer from this problem tends to be challenging, and there
will always be questions about whether the users’ motivation impacts their behav-
ior, and thus the resulting performance of the speech application. This is not a
new observation, having been noted at least as early as the Communicator user
studies [Rudnicky et al., 2000], and almost certainly prior to that as well; recent
studies [Ai et al., 2007] explicitly compared recuited subjects and real users and
found noticeable differences. We believe this shows a need to have subjects who
are sufficiently motivated. People using a speech application because they want to
– perhaps because it provides them information they want – have different motiva-
tion. Not only do they want the information from the system, they want the right
information; in other words, they care if the application makes errors, whereas re-
cruited users may or may not. Even if the recruited users do care, they may care for
other reasons based on their motivation, which might cause them to be concerned
with different issues of system performance than non-recruited users.

What seems clear from this is that evaluating speech applications can be very dif-
ficult to execute successfully, due to the issue of user motivation. One must either
sufficiently motivate paid participants, perhaps by compensating on a number-of-
successful-compeletions basis, or find users who are already motivated. The former
introduces potential problems with the validity of results – are subjects doing better
because of our improvements, or because we pay them? – while the latter makes
it difficult to get direct feedback from the users about their interactions, which is

24 Chapter 3: Evaluation of Language Generation Systems

another important criterion for evaluation.

3.2.1 Evaluation Challenges in a Real-World System

Knowing that our approach is providing improvements, and to what extent, is im-
portant. However, unlike speech recognition with word error rate, there is no sim-
ple, automatic, objective measure that can be used to evaluate this work in any sit-
uation. Within a single task or domain it may be possible to define some measures,
though these will not always easily transfer across applications. Among these, task
success and user satisfaction seem most likely to be useful measures, despite being
possibly difficult to define and subjective. Indirect measures such as dialog length
and conversational efficiency can possibly be used, since they are somewhat easier
to obtain yet still should correlate with other measures of improvement.

3.2.2 Study with Real-World Users

Design

Since our work is designed to improve spoken dialog applications, the ideal plat-
form for testing our approach is an established, mature dialog system with a large
user base. Conveniently, such a platform is available: the Let’s Go spoken dia-
log system [Raux et al., 2006], a publicly available dialog system that has received
over 50,000 calls, provides users with bus schedule information over the telephone,
using a mixed-initiative but generally system-directed dialog. This system uses
Rosetta, a template-based slot-filling generation system [Oh and Rudnicky, 2000],
originally designed for the CMU Communicator [Rudnicky et al., 2000] project.
Once the system has provided a result, users can “navigate” through other nearby
results to their query by asking for the next or previous bus. Such an interface is
sufficient, but can be clunky to use at times, particularly if users wanted to know
both the bus before and after the original answer. Since the system provides only
one result at a time, users must go through each result in sequence, meaning to

3.2 Why Real Users are Important 25

satisfy this query, the user must ask for the next, previous, and previous bus, hear-
ing the first result twice. This may seem minor, but is actually reasonably common;
about 35% of calls to the Let’s Go system request at least one next or previous bus
after getting an initial result.

For this study, we modified the system to discuss multiple results in a single
answer. Our hope was that we were able to improve the efficiency of the dialog
and the user’s perception of how the dialog has gone, without negatively impacting
performance. We had three conditions: the baseline system that was already in use,
a multiple-result system that provided results with absolute times (i.e., 7:42 pm),
and a multiple result system that used relative times (i.e., 15 minutes later). Gen-
erated answers in the multiple-result conditions use grouping to describe the bus
numbers; however, in general we believe there were not enough different bus num-
bers in answers to practical queries for this to have a noticeable difference. Some
prompts needed “wordsmithing” in order to be properly rendered by the speech
synthesis for this system, but otherwise follow a small set of rules to generate the
resulting prompt templates.

Our study ran on the Let’s Go system for five weeks. For each call during our
study, one of our three conditions (as described above) would be used: baseline
(B), absolute times (A), or relative times (R). The conditions would be run in se-
quence; that is, a call would be in condition B, the following call in condition A,
the following in condition R, and then the sequence would repeat.

Results

During part of the time our study was running, there was another study using the
system as well. However, only one experimental condition would be used on a
given call, so only about half of all calls during that time were used in our study.
Furthermore, we excluded all calls that did not give at least one result to the user,
since only calls that provided results would hear our modified generation. The
number of calls in each condition is similar, but not identical, due to these effects.
After accounting for these issues, we received 544 total calls to the system.

26 Chapter 3: Evaluation of Language Generation Systems

Condition # Calls
Baseline 138
Absolute 163
Relative 157

Table 3.1: Number of calls in each experimental condition.

Additionally, we excluded from those 544 all calls that were longer than double
the median length, or approximately 15% of the calls. We feel this is appropriate
because these long calls typically have some unusual qualities or user behavior –
such as poor channel conditions, high word error rates, or significant off-topic user
conversation – that degrade dialog performance independently of the system’s lan-
guage generation. However, since these outlier calls occur randomly, not uniformly
distributed across all conditions, they introduce a significant level of noise into the
data. This leaves us with a total of 458 calls; the total in each condition is shown
in Table 3.1.

Analyzing these calls, we see a conditional effect on dialog length. In the ab-
solute condition, average number of turns decreased by 7% from the baseline con-
dition; this is statistically significant to p < 0.1. However, the relative condition
showed a smaller, non-significant decrease in turn length from the baseline. In
terms of temporal length, neither experimental condition showed a significant dif-
ference from the baseline; in fact, the relative condition showed a small increase
in dialog time. A full comparision of dialog length between conditions is shown in
Figure 3.1.

We have also looked at the effect on user requests for next and previous buses
in our different conditions. One would expect that the multiple result conditions
would show reduced frequency of these user requests, since each answer from
the system contains more information. Indeed, that is the case for the absolute
condition, which shows a significant decrease in both requests for the next bus
(47%) and previous bus (73%); these are significant to p < 0.05, and p < 0.01,
respectively. However, the relative condition shows no significant difference on
these user requests from the baseline, though the previous bus requests were 25%

3.2 Why Real Users are Important 27

Figure 3.1: Comparison of number of turns and dialog length (in seconds) between
experimental conditions.

Figure 3.2: Comparison of next and previous requests per session between experi-
mental conditions.

lower in this condition. These results are shown in Figure 3.2.

Additionally, we checked the effect of our different presentation on the fre-
quency of user requests to repeat an answer. We found no noticeable increase of
repeat requests in either of our two multiple result conditions; in fact, the baseline
condition had the most examples of user repeat requests. However, we saw only 3

28 Chapter 3: Evaluation of Language Generation Systems

total examples out of all the calls we collected, so we do not feel this measure can
actually tell us much about user experience in the different conditions.

3.2.3 Recruited Lab Participants

While we believe that using real users for evaluation gives more accurate results,
the challenges of performing such an evaluation with most speech systems can
make it less appealing than other methods. Though we do not expect to get the
same results with recruited subjects, it would be helpful if those results were corre-
lated to real user evaluations.

Design

We created a study with a similar task as the one described in Section 3.2.2; the
goal was to have an equivalent system so that results between both studies would
be easy to compare. As before, we had three conditions: the baseline system that
was already in use, a multiple-result system that provided results with absolute
times (i.e., 7:42 pm), and a multiple result system that used relative times (i.e., 15
minutes later).

Subjects were asked to go through six scenarios, two in each condition. Each
scenario consisted of a departure point, a destination, and a range of possible
departure times. In each case, subjects were told to use the dialog system to find
out all the buses between the two points that left between the given times, and
write down the answers they received. After each scenario, they were told to rate
their impression of the answer they heard on a one to five scale. After completing
all six scenarios, there was a short demographic questionnaire as well. Subjects
were compensated with $5.

3.2 Why Real Users are Important 29

Results

We had a total of 20 subjects for this study. However, a significant number of these
did not properly perform the task. In some cases, this was due to very poor speech
recognition results; however, the majority were due to subjects either forgetting, or
not bothering, to retrieve all buses for a scenario. In all, only 10 subjects sufficiently
did the task such that their results were meaningful.

In both experimental conditions, requests for next and previous were about half
as frequent as in the baseline system. This result is not overly surprising, given that
more bus results are provided in these systems. The experimental conditions also
both showed a negligible increase in number of requests to repeat an answer. The
comparisons between the experimental conditions are shown in Figure 3.3.

We had hypothesized that the different answer generation types would have an
impact on dialog length, an indirect measure of conversational efficiency. However,
the results of this study do not show a significant difference, either in raw time, or
number of user dialog turns. These results are shown in Figure 3.4. We had also
hoped to show a user preference for one of the generation styles in this study
based on the ratings subjects provided. Unfortunately, several participants rated

Figure 3.3: Comparison of average user next, previous, and repeat requests be-
tween experimental conditions.

30 Chapter 3: Evaluation of Language Generation Systems

Figure 3.4: Comparison of dialog length (in seconds) and number of turns between
experimental conditions.

their general experience with the system, rather than just its final answers. The
only correlation for their ratings was to speech recognition performance in that
particular dialog, rather than their impressions of the generation as we asked.

These results demonstrate a need to have sufficiently motivated subjects. For
many paid subjects, since they simply do not care about the answers they are get-
ting, they will accept clearly incorrect information as valid if they can “complete”
the task faster by doing so. However, real users do not have this luxury, as they ac-
tually need to get the right answer, and so do not display this sort of behavior. Thus,
to evaluate a system that will be used by people, it would seem necessary to have
subjects that are similarly motivated, or at least that display the same type of be-
havior. This is not a particularly new revelation, having been noted and discussed
in the Communicator project [Walker et al., 2001] as well.

3.3 Summary

Traditionally, language generation output has mostly used human-based evalua-
tion. Though expensive, this is a justifiable standard metric. However, particularly

3.3 Summary 31

for task-based evalauations, it is important for the motivation of the human judges
to be taken into account. Evaluators who are unconcerned with the output quality
(or correctness, or other dimensions) are simply not going to provide as accurate
or as useful an evaluation as motivated users of an application. The challenge is
to extract useful information from real users about how NLG changes impact task
success without disrupting or noticeably altering their interaction.

Because of the expense of human-based evaluations, the search for a cheaper
yet still effective evaluation technique has led towards automatic measures. After
seeing the success they have had in other fields, there has been increasing inter-
est in using this type of evaluation for language generation as well. Because of
the simplicity of using automatic measures, it is likely that they will be popular
for natural language generation, as they have been in related areas like machine
translation and summarization. However, in these areas, the automatic measures
being used have been shown to correlate to human evaluation, whereas this has
not yet been conclusively shown for natural language generation. It is important,
then, to see if and how well these measures correlate to human judgements of NLG
quality. Some initial investigations have been done [Stent et al., 2005, Reiter and
Belz, 2009, Belz and Kow, 2009], but we believe further research is warranted.

Chapter 4

Improving Spoken Language
Generation: The uGloss Framework

Many current speech applications typically take a fairly näıve approach to present-
ing anything beyond basic information – usually simple, “read a long list” utter-
ances – if they attempt to do so at all. Besides producing spoken output that is
hard to understand (and thus, less useful for the human listeners), this kind of
approach fails to take advantage of the underlying structure (and in some cases,
context) that is typically characteristic of complex information. What is seen more
often, though, are systems that are limited to avoid the problems of complex spo-
ken presentation. Either of these approaches results in a speech system which is
perceived as clunky and unnatural, and is less useful than it would otherwise be.

Systems that try to extend a näıve approach to generation beyond basic infor-
mation presentation tend to be difficult for most people to understand; the ma-
chine speech is so unlike what a human would produce that a human listener is
overwhelmed trying to decipher it. If the speech application is being used in an
environment more challenging for understandability than a quiet office – as a real
application likely would be – then the machine-generated output has yet another
disadvantage compared to natural speech.

This chapter describes the uGloss framework, a general-purpose algorithm de-

33

34
Chapter 4: Improving Spoken Language Generation: The uGloss

Framework

signed to influence the production of understandable machine-spoken output.

4.1 Preliminary Work

The work described in the following sections investigates several different strate-
gies designed to make use of structural (and other) information not explicitly con-
tained in the text in order to produce speech that is more understandable. Several
different approaches were investigated, including varying the amount of informa-
tion presented at a given time, limiting the length of time for generated utterances,
and altering the semantic presentation of the raw text. All of these approaches
are based on the idea of tailoring the generated language to account for the limita-
tions of the human listener, since that is likely to be easier and more successful than
finding a general method of improving the capabilities of those human listeners.

General tactics, such as limiting the length of time of spoken utterances – or
in the case of lists, the number of items presented in the list – are often used,
since longer utterances in general will be harder to understand fully. There are
numerous methods which could achieve this, though all have their challenges or
drawbacks. The simplest methods of implementing this approach, such as a “fast-
talking” synthesizer or producing only severely abbreviated, disfluent language are
not sufficient; at best these methods will be perceived as strange and unnatural,
and at worst they will actively hamper human understanding. Fluent or mostly flu-
ent utterances, despite being longer, are often more understandable because they
are more like what the user is expecting to hear, and because conversational “filler”
phrases can draw attention to the important information and then be ignored, thus
not taking up the human’s relatively short auditory memory.

Asking follow-up questions to a user to add constraints is a common approach,
especially in domains like flight-reservation. This often is a good choice, though
it tends to be somewhat domain-dependent. If the domain is very open-ended or
has lots of possibilities even when constrained, this is not a viable method. Further,
asking questions of the user limits this solution to interactive applications, and

4.1 Preliminary Work 35

while it can be successful there, we are interested in a more general solution that
can be used in many different text-to-speech applications. It is also possible to only
give part of information to the user, what we refer to as subsetting, indicate that
there is more information, and allow the user to request it if desired. This has the
same interactivity requirement, as well as placing an increased burden on the user,
making it less attractive. Summarizing long content, rather than providing all of it,
is a related possibility, given a functional summarization system.

Yet another option is to group related items, preferably in an automatic fashion,
to take advantage of chunking [Miller, 1956]. However, this raises the question
of what appropriate groups are. It is easy to come up with valid but convoluted
groups that an automatic process could identify that would be utterly inappropriate
to present to a human; one such example could be “You can take any bus that
comes by whose number is prime and letter comes before F.” Such an answer from
a bus schedule service, concise and accurate though it may be, would likely create
more confused users than satisfied users. It should be possible, though, to identify
and create reasonable groups, and so this seems like a good first approach to the
problem.

4.1.1 How Much Information to Present

Presenting lists of information understandably is difficult at best for many speech
applications, even when using natural recorded speech. The standard simple ap-
proaches fail quite badly when the list of items becomes longer, and when using
synthetic speech these problems are even more pronounced. Improving spoken list
presentation would be useful for a large class of speech-based information-giving
systems.

Experimental Results: Initial User Study

We performed two studies to evaluate list presentation. In the first, subjects used
headphones to listen to ten sentences with three places that described a trip that

36
Chapter 4: Improving Spoken Language Generation: The uGloss

Framework

On weekends, the H11, H12, J12, and X11 stop at the beach on the way to the train station

from the hospital.

On weekdays, any of the 20s or 30s will go between the high school and the zoo, turning at

the library.

Figure 4.1: Example sentences from this study.

a list of (fictional) bus numbers could take. The audio for the sentences was pro-
duced with the Festival speech synthesis system [Black et al., 1998], using the
standard diphone voice kal diphone. Each sentence was heard individually, and
could be listened to only once. Figure 4.1 shows examples of sentences that were
used. The bus numbers in the sentences are unlike those used by the local tran-
sit system. This was done deliberately, to remove any possible domain familiarity
effects for subjects.

Subjects were told to draw an arrow on a map corresponding to the places in the
sentence. After drawing the arrow, they needed to identify the bus numbers from
the sentence out of a set of 32 possible numbers. The map of locations presented to
subjects for each sentence is shown in Figure 4.2. There were 16 locations shown
on the map, any of which could be present in a sentence. To prevent confusion as to

Figure 4.2: Map used in this study. Subjects were directed to draw an arrow on
this map showing the path described in the sentence they heard.

4.1 Preliminary Work 37

List: “H11, H12, H21, ...”
Groups: “All of the 25s”

Exceptions: “Any of the 40s except the 48”

Figure 4.3: Examples of presentation types in this study.

the iconic representation of places, subjects were provided with a key to reference
as needed.

Of the 32 possible bus numbers, sentences presented anywhere from 2 to 28
numbers for subjects to remember. Bus numbers were presented randomly as sim-
ple lists, with small groups, or with complex groups using exceptions. All subjects
heard the same semantic content in the same order; the differences were solely
in the way the bus numbers were presented. Figure 4.3 shows examples of these
presentation types.

Subjects in this study were primarily undergraduate and graduate students from
local universities. Most were not familiar with current speech technologies. They
were compensated with $5 once they finished the task.

We evaluated performance using two different measures: “Bus” Error Rate and
full correctness. What we are referring to as Bus Error Rate (or simply Error Rate
hereafter) is no more than applying the familiar Word Error Rate metric to the
buses selected by participants for each sentence, arranged in ascending alphanu-
meric order. The formula is shown here:

ErrorRate =
ins + del + sub

total reference bus numbers

Full correctness is the situation where subjects identified all of the buses correctly
without including any extra buses – essentially 0% Bus Error Rate. These measures
are obviously related, but as our goal is to improve overall understanding, full
correctness is more useful and appropriate for evaluating performance.

In general, what we discovered is that most people found this task quite difficult,
though there was a large variance in performance. There were 22 participants in
this study, with an average Error Rate of 51%. Separating out each condition, we

38
Chapter 4: Improving Spoken Language Generation: The uGloss

Framework

Overall List Group (#) Group (L) Except.
0

10

20

30

40

50

60

70

Condition

E
rr

or
 R

at
e

(%
)

Figure 4.4: Overall and per-condition (lists, group-by-number, group-by-letter, ex-
ceptions) Bus Error Rate results.

found that simple lists had 40% error rate; groups by number (all the 40s), 45%;
groups by letter (all the L’s), 63%; and exceptions, 58%. These values are shown
in Figure 4.4.

Again, however, since we are most interested in the ability to have a list of
presented items remembered completely, what we would really like to know are
the full correctness scores. Bus Error Rate can be deceptively good with a large
list – missing one or two items from a set of ten shows a good error rate – while
a person still has understandability problems. These results also show that this
was a difficult task for people. With the highest possible score on this task being
10, participant scores ranged from 0 to 4 with an average of 1.63, which is quite
poor. 25% of the simple list condition examples were fully correct, compared to
11% from the number groups, 19% from the letter groups, and 14% from the
exceptions; this can be seen in Figure 4.5. Note that the better error rate for
grouping by number compared to grouping by letter masks the lower overall score
for that strategy.

This result runs counter to our expectations, namely that presenting a large list
of items as a smaller number of chunks of items would increase the number of buses
people could remember. This could be for several reasons. First, the results from

4.1 Preliminary Work 39

this study are not statistically significant, most likely due to having too insufficient
subjects. Also, though overall the simple list result seems better, this hides the fact
that the two best results came from the grouped cases – one with four total bus
numbers, and one with eight. It should be noted that in both of these grouped
cases that a simple, concise group was able to fully describe the set of bus numbers
(i.e.: “all the 25s”).

In contrast, the simple list condition did well only when the list was limited
to two or three items; beyond that performance degraded drastically. Though this
study was not designed properly to show this clearly, from looking at the scores it
seems that most people seemed able to remember about 3±1 items, which fits with
the general guidelines LeCompte [2000] suggests.

Additionally, approximately one-third of the subjects were non-native speakers
of English. Natives, unsurprisingly, generally outperformed non-natives at this task,
by about 20 to 30% error rate. Splitting the natives and non-natives and evaluating
them separately, which the numbers (and intuition) suggest would be reasonable
to do only further highlights the lack of subjects.

Overall List Group (#) Group (L) Except.
0

5

10

15

20

25

Condition

%
 F

ul
ly

 C
or

re
ct

Figure 4.5: Overall and per-condition (lists, group-by-number, group-by-letter, ex-
ceptions) full correctness scores.

40
Chapter 4: Improving Spoken Language Generation: The uGloss

Framework

Experimental Results: Follow-Up Study

As we felt that the previous study was more difficult than intended, we made some
minor modifications designed to make the task somewhat easier. First, we changed
the format of the bus numbers to be in the same style as those used by the local
transit system, feeling that a more familiar number scheme would be easier for
people to deal with. However, we continued to select number-letter combinations
that are not used by the real buses, to ensure that domain knowledge did not
impact performance. The possible bus numbers increased from 32 to 36, but no
more than six items were presented in any sentence. Some sentences contained
simple groups, such as “all the 37s”; when groups were present in the list, they
appeared only at the beginning, end, or both ends of the list. Based on the defined
domain of bus numbers, all groups contained exactly three items. This means the
maximum number of buses that could be presented in a sentence was ten: six
items in the list, including groups of three on each end. Subjects again heard ten
sentences, two each with list lengths between two and six items. List items were
presented in random order, except for the restriction on placement of groups within
the list. Subjects heard half of the 20 possible sentences, which were presented in
random order.

Further, only two places were now used to describe the trips made by the buses,
and the size of the map was scaled back, reducing the complexity of the task.
Figures 4.6 and 4.7 show example sentences and updated map, respectively. The
number of places on the map was reduced to 6 from 16. Subjects were still asked
to draw an arrow indicating the path given in the sentence, and then to identify
the bus numbers from the sentence.

The speech for this study was produced by a high quality commercial synthe-

On weekdays, the 44N and 47L go from the hospital to the airport.

On weekends, all the 35s, the 33J, 32H, 32L, and all the 39s go from the train station to the post

office.

Figure 4.6: Example sentences from the follow-up study.

4.1 Preliminary Work 41

Figure 4.7: Simpler map used in the follow-up study. Subjects were directed to
draw an arrow on this map showing the path described in the sentence they heard.

sizer. We felt the understandability gains made by changing to higher quality syn-
thesis, compared to the relatively low quality of diphone speech, would decrease
the difficulty of the task and allow us to see if synthesis quality had a significant
impact on the poor performance of the participants in the earlier study.

Despite our efforts to make the task easier, most people continued to find it
exceedingly difficult, though the variance in performance was somewhat reduced.
Of the 34 participants, the average Error Rate was 50%, ranging from 19% on
the low end to 75% at the high end. When separating the results by condition,
we found that having groups anywhere in the list improved error rates, and not
surprisingly, two groups had the lowest error rate, at 40%. These values, along
with the standard deviations, are shown in Figure 4.8. It is interesting to note that
with only one group present, placing that group at the end of the list resulted in
a lower error rate than when the group was at the start of the list, suggesting the
recency effect is stronger, at least for this task. Including a group anywhere in the
list showed a 48% error rate, compared to 65% with no groups present.

Again, however, while useful, error rate is not precisely what we are most in-
terested in – the full correctness scores are. These score still show this task was
difficult; however, it does seem to highlight a border point where the difficulty
changes drastically. With the highest possible score on this task once again being

42
Chapter 4: Improving Spoken Language Generation: The uGloss

Framework

Overall List Only Group
(Start)

Group
(End)

Group
(Both)

0

10

20

30

40

50

60

70

Condition

E
rro

r R
at

e
(%

)

Figure 4.8: Overall and per-condition Bus Error Rate results.

10, participant scores ranged from 0 to 4 with an average of 1.65, which is similar
to the previous study and still quite poor. However, as with the error rates, includ-
ing groups increases performance at this task, with multiple groups showing full
correctness 24% of the time. These scores are shown in Figure 4.9.

For lists with only two items, subjects could correctly identify all bus numbers
(which ranged from two to six) 46% of the time. When the list contained three
items, subjects were still correct 26% of the time. Once the list reached five items,

Overall List Only Group
(Start)

Group
(End)

Group
(Both)

0

5

10

15

20

25

Condition

%
 F

ul
ly

 C
or

re
ct

Figure 4.9: Overall and per-condition full correctness scores.

4.1 Preliminary Work 43

people were only able to be fully correct 4.3% of the time. If we ignore the results
from the first two sentences, with the idea that subjects were getting familiar with
what the task required, performance increases; two item lists are correctly iden-
tified 71% of the time, and three items 38%. The best case result for five items
increased as well, but remained quite low at 5.8%. These results, as well as those
for the longer list conditions, can be seen in Figures 4.10 and 4.11. Note that
lists with four items showed worse (though not significantly worse) performance
than lists with five items. The difference in score between the low-item conditions
(two or three items) and the high-item conditions (four or more) is statistically
significant.

Discussion

The results from these studies seem to confirm our initial intuitions, as well as
the prior research results from cognitive psychology: simple, logical groupings
will allow people to remember more individual items from a list, but that more
complex groups tend to be of much less benefit. Accordingly, sentences making
use of groups showed an increase in understandability compared to those that did
not. Most people have extreme difficulty with lists once they grow beyond three
items. Whether these items are groups or individual pieces of information does not
seem to be important.

Both of these studies highlight the difficulties in providing spoken lists under-
standably. Even in the best case observed in this work, people still failed to un-
derstand what was presented to them nearly 30% of the time. Considering that
example was with two items in a list – the minimal amount of information that
can legitimately be called a list – and the subjects were ideal – young, educated
natives with no hearing or learning difficulties – this brings into question whether
less ideal populations like non-native or elderly listeners would have much hope of
understanding spoken lists from a speech system at all at this point. Since speech
systems, especially spoken dialog systems, are increasingly being used by people
in those challenging groups, these results show the importance of finding a way to

44
Chapter 4: Improving Spoken Language Generation: The uGloss

Framework

2 3 4 5 6
0

10

20

30

40

50

of List Items

%
 F

ul
ly

 C
or

re
ct

Figure 4.10: Per-item full correctness scores. These scores include all data.

2 3 4 5 6
0

15

30

45

60

75

of List Items

%
 F

ul
ly

 C
or

re
ct

Figure 4.11: Per-item full correctness scores. These scores exclude data from the
first two sentences.

4.1 Preliminary Work 45

improve those systems’ understandability. Without improvement, current systems
are likely to be frustrating and difficult to use for a large minority of the popula-
tion. One thing that seemed clear, especially from the second study, is that good
groups have a significant advantage over suboptimal groups, let alone the simple
list strategy.

It should be pointed out that the general similarity in subject performance be-
tween the two studies suggests that the relatively low quality diphone speech did
not impact understandability significantly compared to the overall difficulty of the
task itself. The use of much higher quality commercial synthesis did not result
in noticably better results in terms of overall success in remembering lists of any
length, let alone show better understanding of longer lists. While there is clearly
an understandability difference between low and high quality synthesis, that effect
seems to be overwhelmed in this instance by lexical effects.

4.1.2 Time-Constrained Presentation

Given the fairly short restrictions of human auditory memory, one approach for
improving output understandability is to limit the time of the output. This can be
accomplished, particularly with structured or complex information, by using the
inherent structure of the information to be presented, and having that structure
guide the generation of utterances that fit within a given time limit.

Proposed Solutions

For the structured information we are investigating, it can be reasonable to repre-
sent the information in a tree-like manner, such that the leaves of the tree represent
the most detailed information available, and higher-level nodes are increasingly
general summaries of their children. An example of this can be seen in Figure 4.12.
Our proposed language generation system would thus follow a relatively simple
algorithm to produce utterances. We begin by determining the maximum time for
the utterance. In most cases, this should be five seconds or less, as a default, since

46
Chapter 4: Improving Spoken Language Generation: The uGloss

Framework

Battles

Antietam Gettysburg Shiloh ...

Generals Date Winner

Union17 Sept
 1862

McClellan Lee

Figure 4.12: Example of structured information, represented as a tree.

this length takes human capabilities into account. Other possible lengths – based
on user knowledge, user preferences, and conversational context, among other
things – include 10 seconds, 15 seconds, and unlimited. The last should be used
extremely rarely, only when absolutely required or explicitly preferred, as there
will be a significant understandability decrease as utterances lengthen.

We next establish the maximum pieces of information that can be presented in
the allowable time frame. Fortunately, since we are producing synthetic speech, we
will have easy access to the length of utterances that we are generating. However,
determining this will require taking into account the information we are presenting
(the information may be capable of being grouped logically to allow for chunking
[Miller, 1956]) as well as any knowledge we have of the user (users familiar with
the information being presented will more readily understand abbreviations, and
thus we can make use of them). The default, when we have no knowledge of
the user’s capabilities, is to assume the user is unfamiliar with the subject being
discussed. Often, establishing the optimal amount of information that can be pre-
sented will require domain-specific knowledge. While this means that the language
generation system is also domain dependent, this is already often the case, and we
also feel that a domain-independent system can show sufficient understandability
improvements even without producing optimal utterances.

4.1 Preliminary Work 47

In cases where we have multiple pieces of information which are similar or
related, either in a single response or in response to subsequent queries, we can
use tapered presentation as in [Yankelovich et al., 1995] to produce shorter utter-
ances. Tapered presentation refers to reducing or removing extraneous and repete-
tive words from subsequent utterances. In a first utterance, the template is given
for how the information is being presented, and following utterances eliminate
repeated words from the template that can be assumed. For example,

There is a 61C leaving from CMU at 5:30, arriving at Forbes and Murray at 5:38.

A 61A leaving at 5:41, arriving at 5:47.

A 501 leaving at 5:44, arriving at 5:52.

The preferred behavior should be to start with the most detailed information
that answers the user query, then generate the shortest possible utterance. If that
utterance exceeds the allowable length, proceed up the information tree to the
next most general node that can satisfy the query. This process should continue
until either an utterance is produced that is within the time requirements or no
utterance that answers the query can be produced in the allowable time. In the
latter case, we should generate the shortest answer that can provide an answer.

Another strategy to examine is prosodic modification of the synthetic output,
primarily to emphasize important information. Additionally, we would also like
to use altered prosody to call attention to any difficult or unusual information,
much as humans will do. However, this is significantly more challenging than other
potential tactics, and thus more likely to be attempted after we have implemented
the simpler strategies.

Experimental Results

In order to determine which strategies are effective at improving understandabil-
ity, we designed and performed a simple user study. Subjects were asked to listen
to 16 synthetically-produced utterances, with varying time lengths, and then de-
scribe in their own words the information from the utterance. The utterances were

48
Chapter 4: Improving Spoken Language Generation: The uGloss

Framework

There are 12 poster and 12 oral sessions on Wednesday.
There are 9 speech recognition, 3 signal processing, dialog, and prosody, and 4
other sessions on Tuesday.
“Influence of syntax on prosodic boundary prediction” is an oral presentation
on Wednesday at 10:40 am.

Figure 4.13: Example utterances from the user study. These examples are from the
two shortest time categories.

generated using a modern, high-quality commercial synthesis engine. All of the
utterances contained information about papers or sessions from Interspeech 2005;
several examples can be seen in Figure 4.13. The utterances took the form of fluent
sentences; that is, they did not simply say “25 recognition sessions”, but “There are
25 speech recognition sessions”. As we did not want to explicitly test memory, but
understandability, subjects were allowed to hear utterances twice. Utterances had
one of four lengths – under 5 seconds, under 15 seconds, under 30 seconds, and
unlimited – and fell into three distinct stylistic categories: näıve “read everything”,
summaries produced by a freely available text summarization tool, and utterances
that could be produced by the algorithm described above. Eight subjects partici-
pated in this study, all of whom were familiar with speech technology.

Subjects were evaluated in two ways; first, on how many of the concepts present
in each utterance they understood, and second, on how many concepts associated
with the information in the utterance they understood. These can differ because
shorter utterances may not attempt to convey as much of the information as the
longer ones, and thus could look artificially better despite providing less informa-
tion to the user. For example, an utterance could describe to the user 5 out of
the 10 total concepts related to a query, of which the user understood 4. The user
would thus have 80% understanding of what was presented to him, but only 40%
understanding of the full answer to the query. This contrasts with an utterance
presenting 9 out of 10 concepts for which the user correctly understands 5; this
would result in 56% and 50% understanding rates, respectively.

Overall, subjects did quite well at understanding the content of the shorter

4.1 Preliminary Work 49

Utterance Time Correct (Presented) Correct (Total)
Under 5 seconds 95% 42%
Under 15 seconds 56% 33%
Under 30 seconds 44% 34%
Unlimited 13% 13%

Table 4.1: Results from this user study, grouped by utterance length

utterances. Not unexpectedly, their performance dropped steadily as the utterances
became longer, with exceedingly long utterances showing very poor understanding.
These results can be seen in Table 4.1.

It is interesting to confirm that presenting more information does not necessar-
ily result in more information being understood; in fact it is clear that presenting
too much information has a detrimental effect on overall understanding, as can be
seen with the Unlimited category. The reverse also seems to be true; the best over-
all understanding occured when only small percentages of the information were
given (the under-5 category), though the result is not statistically significant. It
could also be that the shorter utterances had fewer concepts to convey, in which
case they would appear superficially better. More results exploring this are needed
to explain the cause.

It should be noted that most subjects, when encountering longer utterances,
commented on the increased difficulty of remembering and understanding what
they were being told. For the time-unlimited utterances (some of which could
exceed two minutes in length), every subject indicated they felt the task was too
difficult. This would seem to be supported by the relatively poor performance for
those utterances, and strongly suggests system utterances should not exceed 30
seconds for any reason. No noticeable improvement was observed when using au-
tomatically generated summaries as opposed to reading the full abstract; indeed,
in some cases, the full abstract had a higher percentage of provided concepts un-
derstood. This result is most likely due to the overall low quality of the summaries
produced by the text summarization tools that were freely available at the time.

50
Chapter 4: Improving Spoken Language Generation: The uGloss

Framework

4.1.3 Presentation Style and Fluency

While there has been some work investigating the use of stylistic changes to im-
prove the understandability of synthetic speech [Oh and Rudnicky, 2000], our fo-
cus here is on semantic delivery strategies that can impact how understandable
and usable our presentation is.

Too often, the strategy speech systems employ when providing a large amount
of complex information is a simple, read-all-the-text method that is usually inap-
propriate for the content being presented. We believe that taking advantage of
structured information by presenting it with the structure in mind should improve
how understandable it is. Further, we believe removing extraneous, irrelevant in-
formation will also help, by allowing people to focus on the most important items,
as well as decreasing the amount of speech their auditory memory needs to handle.
With this in mind, we have attempted to test our presentation strategies’ capability
to provide more understandable spoken output.

Experimental Results

We have designed and performed an experiment designed to evaluate the effect
of semantic presentation style on understandability. Participants were asked to
listen to seven descriptions, over the telephone, of battles from the US Civil War,
and then write down the important information about the battle. Specifically, they
were asked to write down what they would tell a person who knew nothing about
the civil war that asked the question “What can you tell me about this battle?” We
deliberately chose not to provide any direction to subjects about what constituted
the important information, as we felt that would unduly influence their responses.

We initially believed that the concise list style would be the easiest to under-
stand, both because it structures and highlights the desired information, and be-
cause the length of the audio is shorter than the other descriptions. Based on
other work [Langner et al., 2006], we expected the length of the full text to prove
prohibitively long, and hamper understanding. As the summaries are shorter, but

4.1 Preliminary Work 51

Concise ASum HSum Full
Non-Elderly 87.7 65.4 68.9 73.1
Elderly 49.3 44.3 41.5 43.1
Overall 66.0 53.5 53.4 56.0

Table 4.2: Percent understanding results for this study, by presentation style.

generally providing the same set of information, we would expect their understand-
ing to be improved, though not by as much as the concise list. We were particularly
interested in any performance difference between a good human summary, and a
simple machine-generated one, as automatic summaries will be cheaper and easier
to obtain.

As we expected, there was a performance difference between the young and el-
derly groups, with the non-elderly group showing noticably higher understanding.
However, the trends for both groups are largely similar, which is reassuring given
our expectation that changes leading to understandability improvements for the el-
derly will be reflected in the general population as well. Our results from this study
are shown in Table 4.2. “ASum” and “HSum” refer to the automatic- and human-
generated summaries, respectively. All values are percent correct understanding.

These results show a clear understanding improvement with the concise list
presentation style; in the non-elderly group, this result is significant with p < 0.01.
What is surprising here is that neither the automatic nor human summaries are
noticiably different from the full text in understandability. The audio length for the
summarized versions, though, is still shorter than the full text.

However, looking closer at the results by style, we observed that some of the au-
tomatic summaries cropped out relevant information, and thus participants never
had the opportunity to understand those items. This, obviously, has a negative
impact on the understandability score for this style. If we adjust for the number
of relevant items actually presented, our results differ slightly, as you can see in
Table 4.3. In terms of style understandability, it is appropriate to make this ad-
justment; however, from the perspective of presenting a specific set of information

52
Chapter 4: Improving Spoken Language Generation: The uGloss

Framework

Concise ASum HSum Full
Non-Elderly 87.7 70.0 68.9 73.1
Elderly 49.3 48.6 41.5 43.1
Overall 66.0 58.0 53.4 56.0

Table 4.3: Percent understanding results for this study, by presentation style, ad-
justed for information presented.

to be understood, such an adjustment is not truly helpful. Effectively, the auto-
matic summary has a defect that causes some information not to be conveyed at
all, which is no better than presenting it in an unintelligible manner. Thus, while
we report these adjusted scores, we feel the original numbers are a more accurate
representation of understanding for any task where the goal is successfully convey-
ing a particular set of information. It is still the case that the most understandable
strategy, regardless of the measurement, is the concise list style.

Even without the adjustments, though, the automatic summaries showed com-
parable understanding to the human produced summaries. This is definitely a
useful result, as the automatic summaries can be generated in seconds, versus the
30 minutes the human summaries required. For larger-scale tasks with more infor-
mation, the time and effort savings given by the automatic process are compelling
when summaries are needed.

4.1.4 Discussion

Based on earlier understandability work with the elderly, we expected that partic-
ipants with hearing problems would have a considerably more difficult time with
this task. Our results, however, show no appreciable difference between people
who have hearing problems and those who claim to have none, though this is obvi-
ously subject to sample size issues. It should be noted that self-reporting of hearing
problems is potentially inaccurate, as some people either do not know, or will not
admit, that they have them, and so subjects in the “normal hearing” group might
have hearing deficiencies. Without performing a hearing test, which we were not

4.1 Preliminary Work 53

able to do for this evaluation, there is little we can do besides trust the subjects to
accurately describe their hearing.

Noting, however, the general difficulty the elderly group had with this task com-
pared to the younger group, we attempted to isolate other possible causes besides
hearing. One obvious possibility is memory, though the task was designed to limit
the memory requirements. The most likely difference, however, was writing speed.
The non-elderly group was, in general, capable of writing quickly while listening to
the descriptions. Meanwhile, most of the elderly group either did not or could not
do this, in some cases due to the early stages of degenerative conditions such as
Parkinson’s disease. This limited the amount of information they would write down
for each description. Other possibilities include fewer elderly participants identi-
fying the same “important” information as the task specified, though we found no
noticeable difference between the non-elderly and elderly groups in this respect.

It is quite clear, however, that the concise list presentation style does provide
more understandable output for desired information. For domains where such
a style is possible, it should be used for improved user understanding, except in
cases where full sentences are required. Ideally, language generation components
of speech systems would be capable of generating this style of output directly from
their backend data source, allowing bus timetable information, for example, to be
presented in a concise, efficient fashion. It remains to be proven that this strategy
will be successful across multiple domains, though we expect that it will. Demon-
strating understandability improvements in real applications (such as the Let’s Go!
Public [Raux et al., 2006] spoken dialog system), rather than artificial tasks such
as the study described here, would be the next logical step for this work. Since
it would be required when integrated into such a system, we intend to create a
language generation tool that is capable of producing this sort of concise output
when appropriate.

Other possible directions with this work include attempting to produce a more
fluent-sounding style than the “spoken bullet points” method here. If such a
style were successful, it would limit concerns from system developers about per-
ceived unnaturalness while still providing better understandability than is currently

54
Chapter 4: Improving Spoken Language Generation: The uGloss

Framework

found.

4.2 Towards a General Approach: Design Considera-

tions

There are several different requirements a language generation system should
be concerned with. To be successful, language generation needs to balance ma-
chine capabilities with the limitations of human performance, without producing
unnatural-sounding speech. Interactive applications also necessitate fairly rapid
response times. For simple information, this is a fairly straightforward, though not
trivial, task, and the increasing abundance of these systems – from pizza ordering
[Choularton and Dale, 2004], to flight reservations [Walker et al., 2001], to bus
timetables [Raux et al., 2006], and even commercial customer service phone sys-
tems – shows this can be done with varying degrees of success. However, even
these fairly simple tasks have examples where more complex information could
or should be presented, but the systems are either unable to do so in an under-
standable fashion, or have had their presentation extensively tailored manually to
the specific information. Though it can be effective, manual tailoring tends to be
both expensive, requiring expert attention to be done well, and inflexible, requir-
ing additional expert attention to redesign utterances with even minor changes in
the information content. Since complex information is often structured in some
fashion – in a table or list, for example – we feel there should be a more automatic
solution that can take advantage of that structure to generate understandable spo-
ken language.

How best to take advantage of that structure will of course be influenced by hu-
man capabilities. Results from cognitive psychology provide some direction to our
approach. The primacy and recency effects [Murdock, 1962, Bousfield et al., 1958]
are well-studied phenomena, suggesting important items should be presented ei-
ther first or last in a list. Furthermore, there is the standard “seven, plus or minus
two” rule [Miller, 1956] that is commonly used, though more recent work [Badde-

4.2 Towards a General Approach: Design Considerations 55

ley, 1994, 1999] suggests that this “rule” is at best a guideline, and not applicable
except in specific, limited cases [Jones, 2002]. In fact, it seems that the number of
items being presented is not the limiting factor in remembering them, but instead
the length of the sound being listened to; humans have approximately two seconds
of useful auditory memory [Baddeley et al., 1975] to work with. Finally, though
concentrating on visual interfaces, other work has made a strong case that even
if the 7±2 rule were applicable, it does not make sense to use that as a basis for
designing a human-computer interface, as this is the upper limit of human perfor-
mance [LeCompte, 2000]. Interfaces that require users to continuously operate at
their limits will quickly be regarded as frustrating, stressful, and “too much work”
to be effective. Thus, three to four items is suggested as a more reasonable memory
limit to use.

Further, there is also the consideration that different levels of information are
appropriate in different circumstances, consistent with Grice’s cooperative principle
of conversation [Grice, 1975] and its application to language generation systems
[Dale and Reiter, 1995]. For example, questions about what a restaurant serves
are better answered with a higher-level outline of choices (such as “seafood, steak,
and pasta”) rather than a detailed description of the menu, whereas a good answer
to a question about available pizza toppings isn’t “various meats and vegetables”.

Taking all of these different constraints into account suggests that in the general
case, generated utterances should be fairly short in length, with a small number of
different items, and as detailed yet concise as possible. At least one recent study
[Langner et al., 2006] suggests that time-limited utterances, particularly those five
seconds and under, are more understandable than longer ones, given the same
speaking rate; likely this is due to humans’ relatively short auditory memory. Other
research suggests generic answers to specific queries is inadequate [Varges et al.,
2006], given that there may be a mismatch between the system and user under-
standing, and thus replies reiterating the query constraints would serve as implicit
confirmation of the user’s request, making the overall conversation more under-
standable. Note that these issues will tend to work against each other; finding a
balance between a short, but informative and confirming utterance would appear

56
Chapter 4: Improving Spoken Language Generation: The uGloss

Framework

to be significant in generating understandable speech.

Our earlier work in this area demonstrates that there is considerable room for
improvement for synthetic speech understandability, even when applying fairly sim-
ple approaches. This confirms the generally held view that natural speech is more
understandable; however, the challenge now is to obtain increased understandabil-
ity for synthetic speech in general. While natural speech is an ideal baseline and
can provide guidance towards improving speech synthesis, there are other possi-
bilities besides simply imitating a human speaker. Indeed, the “concise list” pre-
sentation style is fairly unnatural as an approach, but can demonstrate improved
understanding from human listeners.

4.3 The uGloss Framework

4.3.1 Algorithmic Description

We propose a general-purpose algorithm that can be used to influence the gen-
eration of understandable spoken output. We feel that this approach is capable of
being used in multiple domains, while still allowing for domain-specific knowledge
to be used for further improvements.

Our algorithm, given some internal representation of the information to be
presented, as well as the desired time limit for the speech and optionally a desired
style of spoken presentation, should take that information and produce speech
fitting those constraints. The default presentation would be fluent text, though
this can be overridden if appropriate to concise, “bullet point” style presentation,
or others.

A pseudocode version of this algorithm is shown in Figure 4.14.

4.3 The uGloss Framework 57

GenerateText (InternalRepresentation IRep, TimeLimit T)

Form groups from IRep

identify structural features of information in IRep (automatic/by expert)

use structural features to mark information similarities in IRep

identify items with similar features from entire domain *

group items based on similarities

flag groups which comprise all domain items with that featureset *

Generate (style-appropriate) text from groups and IRep

Determine length of time L required to speak this text

If (L > T)

produce new groups

if no new groups can be formed, use current text (best-effort)

otherwise return to generation step

Synthesize speech from generated text

* denotes optional step

Figure 4.14: Our proposed algorithm for influencing understandable spoken lan-
guage generation.

4.3.2 Implementation

The uGloss framework starts with the premise that shorter, more concise utterances
are more understandable, and thus is geared towards generating those types of
utterances. The main way our approach attempts to reduce utterance speaking
time is through grouping relevant items together, rather than speaking each item
individually. Complex information typically has an inherent structure, and the
uGloss approach aims to take advantage of that structure by using it to group
items before presenting them.

Grouping can either be done in advance by a human expert, or learned au-
tomatically from the structural features. For small simple tasks, using a human
expert might be feasible, but for most applications this is not a viable choice. Some
domain knowledge may be useful in selecting appropriate structural features, but
should not be absolutely required. Using those features, it should be possible to
learn which items are similar, and therefore capable of being grouped together.

58
Chapter 4: Improving Spoken Language Generation: The uGloss

Framework

Group generation is a bottom-up method; we start with the individual items, and
proceed to make larger and larger groups as needed.

Optionally, we can also look at the entire database and identify groups from
there, rather than just the subset that fulfills some request. The advantage to this
extra step would be to allow generation of utterances that say “All of these” rather
than a range that includes those items, by matching the subset groups that are the
same as full-domain groups. Different levels of grouping from the entire database
would allow for different “all” constructions. For example, in the bus schedule
domain, possible answers to the question “What bus can I take” could be “Any of
the 61’s”, “Any of the next 3 buses that come” or “Any bus will work”, rather than
providing a long list of valid bus numbers.

The other major parameter to the uGloss algorithm is a time constraint. This
constraint is not a hard limit – that is, we would generate nothing if there was no
utterance short enough to convey the information within the limit – but a “best
effort” guideline. We attempt to generate utterances within that limit, but if we
cannot we generate the shortest utterance we are able to.

Based on these parameters, we iteratively form groups and generate utterances
until we have an utterance that can be spoken within the time limit, or we are un-
able to produce a shorter utterance that conveys the desired information. uGloss
is sufficiently general that it should be possible to use across multiple domains.
Further, should we find other parameters that are useful in influencing output un-
derstandability, it would not be hard to incorporate them.

4.3.3 Evaluation and Effectiveness

We performed a very small study to determine the effectiveness of this approach,
as well as to compare to human-generated utterances. Given a schedule showing
the availability status of a tennis court for the week, people were asked to answer
questions from someone trying to reserve the court at various times. The requests
generally were to reserve the court for one hour out of a several hour block by
specifying a general time range (e.g. Wednesday afternoon, Monday evening, etc.).

4.3 The uGloss Framework 59

Figure 4.15: A partial example of the presented schedule.

These ranges corresponded to times where the court was available for the entire, or
only part of, the requested range, as well as when the courts were completely un-
available. Subjects were told to answer naturally, as if someone had said to them,
“I want to play on <day-time range>, what time can I reserve a court for?” Fig-
ure 4.15 shows an excerpt from the schedule, showing the morning and afternoon
availability for a few days.

All of the subjects were educated young adult, native speakers. Human re-
sponses to these requests were varied, but generally consistent. The “obvious” con-
ditions, where the courts were either available or unavailable for the entire range
produced effectively identical answers, with some variation in the exact wording
used. In the case where no reservation could be made, most people used some form
of the phrase “I’m sorry” in their answer; it is interesting to note that about one
third of the participants offered suggestions for other reservations they would be
able to fill. The most intriguing answers came for the request to make a reservation
on Monday morning. All but one subject made note of the fact that the only morn-
ing time was at 6:00, and typically used language that showed their expectation
was that this would not be an acceptable time despite fulfilling the stated request.
The implication is that unexpected or unusual answers should be presented differ-
ently than “normal” answers. Several examples of the human responses are shown

60
Chapter 4: Improving Spoken Language Generation: The uGloss

Framework

Wednesday Afternoon
“You can reserve a court noon through 5pm.”
“The court is open the entire afternoon.”
“Sure, what time would you like?”

Monday Morning
“If you’re willing to come in really early, you can reserve a court from 6 to 7.”
“Only the slot at 6am.”
“The only time on Monday morning is at 6am, is that okay?”

Figure 4.16: Example responses from two time conditions.

in Figure 4.16.

For the most part, our framework seems capable of generating similar utter-
ances, though there are some differences with human responses in some more
complex conditions. The main areas where the human responses seem to be of
higher quality than our generation are ackowledgement of unusual or strange
times, implicit reference to an unconstrained situation, non-repetitive phrasing,
and attempts to resolve a non-fulfillable request. We feel it should be possible for a
generation system to deal with all of these to some degree, so the perceived quality
should be able to be improved.

4.3.4 Other Considerations

As described earlier, summarization, or the identification of items that can convey
the important and central meaning of a set of information, could be used to more
efficiently present information in spoken output. Related to summaries are subsets,
where some, but not all, of the information is presented, ideally in a fashion that
indicates there is more available information. In some ways, both subsets and a
high-quality summary are similar to what we are attempting to accomplish with
uGloss: a compact yet accurate (spoken) presentation of some set of information
that can be readily understood by a human listener. For subsets, this is accom-
plished by omitting some amount of the information in the initial presentation, and

4.3 The uGloss Framework 61

for summaries, by altering the language without changing the underlying meaning.
Indeed, using a summarization tool as an aid in producing understandable output
may provide some improvements. However, the core task we are proposing is not a
summarization task, merely one that could perhaps benefit from a good automatic
summarization system. Work in summarization has shown that good summaries
do make information easier for people to find and understand [McKeown et al.,
2005], so this would not be surprising.

Though we do not intend to build a summarization system, it might be possi-
ble to use similar techniques to modify the language generated for spoken output.
Most work in speech summarization is using output from speech recognition sys-
tems, which will have errors, yet still can show improvements. For a language
generation task, we control the text, which means that any summarization should
be easier: there are no recognizer errors to “work around”. While speech sum-
marization routinely makes use of features, such as acoustic features, that would
not be applicable for our task, there has been work with other features that would
likely be helpful, such as structural [Maskey and Hirschberg, 2003], lexical, and
discourse, among others [Maskey and Hirschberg, 2005]; this work demonstrates
that these features can be used to generate effective summaries. If we apply this
to our task – rather than summarizing articles and documents, we summarize the
originally-generated output – it could possibly provide a more concise, yet still
accurate, presentation. It may be worthwhile to explore this possibility using a
summarization system in concert with our language generation framework.

Chapter 5

The MOUNTAIN Language Generation
System

5.1 Motivation

Recent years have seen noticeable improvement in dialog systems, but even state-
of-the-art systems still have limitations. Improvements in speech recognition and
dialog management have made it possible to have more natural interactions, but
frequently the potential of dialog systems to have truly natural conversations will
be held back by their rudimentary language generation components. This obser-
vation is not new, having been noticed for years [Rambow et al., 2001, Chambers
and Allen, 2004], but continues to be an issue.

Templates and canned text, because they are conceptually simple and require
minimal expertise to write, are still one of the most commonly encountered meth-
ods of language generation in dialog systems. They are far more frequently seen
than more state-of-the-art language generation systems, which tend to require a
linguistics expert to be able to use effectively. This is despite the drawbacks of
using templates, such as generally unnatural and repetitive output, significant cre-
ation cost, and a lack of portability between applications. Efforts to provide more
varied template output [Oh and Rudnicky, 2000] have been able to reduce the

63

64 Chapter 5: The MOUNTAIN Language Generation System

perceived repetition, but the end result is still noticeably different from natural,
human-generated output. Further, as the number and complexity of the templates
increases, they become increasingly more expensive to design, create, and main-
tain.

There has been increasing interest in applying machine learning to spoken dia-
log research. Nearly all of the typical components of a dialog system have had some
effort made to use machine learning to improve them; these are nicely summarized
by Lemon and Pietquin [2007]. It seems, though, that trainable language gener-
ation for dialog has seen comparatively less work than other modules like ASR,
dialog management, and related areas like user simulation. Given the general suc-
cess of these efforts in related areas, we feel it is likely that such an approach can
also work well for language generation.

The motivation for this work is to allow for speech applications with more
human-like output than templates are typically capable of achieving, while main-
taining the general simplicity of creating a typical template-based system. Some
users of spoken dialog systems will interact with a system using a human metaphor
[Edlund et al., 2006], and these users expect human-like responses. For such users,
the quality of the dialog system they are interacting with in part depends on how
natural its responses are [Edlund et al., 2008].

5.2 Approach

Because language generation for dialog systems has several key differences from
general text generation, as discussed by Horacek [2003], we feel a dialog system
should have language generation that is tailored for its needs. In particular, for
many dialog platforms, including the Olympus framework [Bohus et al., 2007],
generation is primarily only for realizing natural language surface forms that corre-
spond to some internal state; often this is referred to as tactical generation. In prac-
tical terms, what is done is to convert the machine’s representation of the dialog
state into fluent and natural-sounding sentences. If one thinks of the dialog state

5.2 Approach 65

representations as a highly structured (and possibly simplistic) language, then this
task can be viewed as a translation problem, where the goal is to translate from the
highly structured internal language of states to fluent and natural English (or any
other language) sentences. Wong [2007] describes a language generation system
that uses machine translation techniques; the approach effectively is the inverse
of a semantic parser [Wong and Mooney, 2007], and translates meaning represen-
tations into natural language. We propose a similar approach, taking as a source
language an internal state representation (such as a dialog state) and generating a
natural language surface form with a machine translation engine.

Though this type of approach has been tried in some areas of natural language
generation – particularly paraphrase generation [Quirk et al., 2004], though also
more recently tested with more general-purpose generation [Belz and Kow, 2009]
– we have not seen it applied for spoken dialog applications. For general-purpose
language generation, the more linguistically-aware translation approaches of Wong
and Mooney [2007] can probably outperform linguistically-blind statistical ma-
chine translation methods. However, as mentioned above, generation for spoken
dialog applications is different than general NLG; in the former case, the source
language to be translated is highly structured and likely not to have rich linguistic
information. Given that, it seems possible that a purely statistical approach may
work sufficiently well to be usable.

Generation using this approach requires a parallel data set, so that a mapping
between the internal “language” and the natural surface forms can be learned. Un-
like some other advanced NLG systems, we are not concerned with any significant
amount of linguistic details, such as part of speech, agreement, or semantic re-
lations, among others, in our input data. While these can clearly be helpful in
producing high-quality output, there are significant costs for systems that require a
high level of linguistic expertise or detailed annotation to be able to use; not all de-
velopers of dialog systems will be able to devote resources to have an expert design
and annotate corpora for their generation module. Therefore, one of the consid-
erations in our approach is that its implementation require only similar developer
skills as writing templates.

66 Chapter 5: The MOUNTAIN Language Generation System

Since most dialog applications exist within a known domain – that is, they do
not have fully open-ended conversations – the set of things that can be talked about
is closed, if possibly large. Thus, for tasks whose domain can be covered with
a template-based system, it should also be possible to create a reasonably-sized
parallel training corpus.

5.3 MOUNTAIN: Machine Translation NLG

We present MOUNTAIN, a machine translation approach for natural language
generation. In our implementation, we have used the Moses machine translation
system [Koehn et al., 2007], which makes use of the Giza++ [Och and Ney, 2003]
translation model training toolkit and the SRILM [Stolcke, 2002] language model
toolkit. Though we have used Moses as the translation engine, because it and its
support tools are freely available, nothing in the approach for MOUNTAIN restricts
us to this specific engine.

MOUNTAIN requires only a parallel corpus of states in an internal language
aligned with corresponding natural language surface forms. This parallel corpus
is used to train a translation model which is capable of translating from the struc-
tured internal language to appropriate natural language. Additionally, the natural
language corpus is used to train a language model for the target language. As
described above, the internal language can be a structured representation of the
dialog state – what the dialog manager intends to convey to the user.

Once the models have been trained, MOUNTAIN uses the translation engine to
generate output utterances, given “sentences” from the internal language. Moses
uses the trained models to translate into the target natural language; the resulting
output is the best result from the translation engine. Because of the way Moses
works, the output may not only consist of examples lifted straight from the training
corpus, but can also combine several examples to form novel sentences in the target
language.

5.4 Training and Use of MOUNTAIN 67

It should be noted that the entire process used by MOUNTAIN, from training to
generation, does not require any specific linguistic analysis or domain knowledge,
and thus can be considered a domain-independent approach. In fact, MOUNTAIN is
also language-independent, provided the target language is able to be used by the
training tools (such as the tokenizer and language model trainer).

5.4 Training and Use of MOUNTAIN

5.4.1 Application

To demonstrate our generation approach, we chose a fairly simple, but reasonable
application: a scheduling task for a limited resource. In this case, the resource is a
tennis court, available to reserve for one-hour blocks throughout the day. We have
collected a corpus of human-generated responses in this domain. Given a schedule
showing the availability status of a tennis court for the week, people were asked to
answer questions from someone trying to reserve the court at various times. The
requests generally were to reserve the court for one hour out of a several hour block
by specifying a general time range (e.g. Wednesday afternoon, Monday evening,
etc.). These included examples where the court was available for the entire range,
only for part of the time, and where it was completely unavailable. Responders
were told to answer naturally, as if someone had said to them, “I want to play
on <day-time range>, what time can I reserve a court for?” Figure 5.1 shows an
excerpt from an example schedule. Though trivial, this interaction can easily be
seen as part of a larger spoken dialog application.

5.4.2 Corpus

The collected corpus consists of about 800 responses, which are labeled with in-
formation about the specific schedule situation they describe. That information,
which can be thought of as a dialog manager state that would be passed to an

68 Chapter 5: The MOUNTAIN Language Generation System

Figure 5.1: A partial example of the presented schedule.

NLG module, is effectively an internal language. Thus, this corpus is, in fact, an
aligned, parallel bilingual data set, defining equivalent English surface forms for
the internal language. Sentences in the internal language consist of 3 tokens: a
code corresponding to the day, a code corresponding to the time period, and a
string that represents the court availability during that time. Example sentences
include “111111 d2 t3” and “001110 d5 t1”.

Approximately 20 people provided responses to form this corpus, all of whom
were young adult, native speakers. Human responses to these requests were varied,
but generally consistent. For cases where no reservation could be made, many
responses used some form of the phrase “I’m sorry”. It is also interesting to note
that several responses offered suggestions for other similar reservations that could
be made instead.

We had nearly one-quarter of the corpus scored by human evaluators. In keep-
ing with the task design, the evaluator was shown a schedule and request, along
with the response from the corpus, which was presented as their co-worker’s an-
swer. They were then asked to rate that answer on a 5-point Likert scale, and ad-
ditionally provide their own answer to the request. Figure 5.2 shows a histogram
of the ratings. Most responses are rated well; however, a significant portion of the
corpus has a low score. This is likely due to errors made by the human responders.

5.4 Training and Use of MOUNTAIN 69

Figure 5.2: Histogram of ratings given to the collected corpus.

For example, some responders misread the schedule and reversed the availability
(instead of all slots free, they responded as if all slots were full).

5.4.3 Training for Generation

To make the collected corpus more complete, we first make several fairly stan-
dard modifications. Since it seems reasonable in this domain to have the output
be independent of the day-of-week – that is, a sentence used to describe a full
court on Monday afternoon can also be used for Thursday afternoon, changing
only the word for the day – we boosted the training data by cloning responses for
all 7 days, changing the day word in the sentence as appropriate. Additionally,
since the internal language uses a fixed token to correspond to particular days (i.e.,
d3 = Wednesday), we added these translations directly to the bilingual dictionary.
Likewise, the tokens for time (i.e., t1 = morning) were similarly added. The result
is that the training corpus size is increased to about 4500 state-response pairs.

With the modified parallel corpus, we then train a translation model using the
Moses tools. The first step is to tokenize and case-normalize both the internal and
English training sentences. Due to the designed structure of the internal language,
the English tokenizer can be used for both sets of sentences. Once this is complete,
we train a trigram language model for the target language (English in our case)
using the SRILM tool. Finally, we train a phrase model using the Moses toolkit,

70 Chapter 5: The MOUNTAIN Language Generation System

English
Text

Parallel Corpus

Internal
Text

Boosting
Tokenize /

Normalize

English
Text

Boosted Corpus

Internal
Text

Lowercase
English words

Normalized Corpus

Internal
Tokens

Train Phrase

Model

English
Language

Model

Internal – English
Translation Model

Figure 5.3: The MOUNTAIN training process from initial parallel corpus to trained
models.

which produces the necessary phrase and reordering tables for translation. This
process is shown in Figure 5.3.

Once the model is trained, the model can be tuned using a separate, held out
corpus. For this initial work being described, we have not done any tuning, though
it seems likely that this would improve the resulting generation.

5.4.4 Output

Table 5.1 shows several example input-output pairs. Though several outputs have
come entirely from single examples in the training data, likely due to the presence
of these exact pairs in the parallel corpus, most of the outputs have combined
phrases from two or more examples, producing a novel English sentence unseen
in the training data. Overall, more than three quarters of the generated responses
are not present in the original corpus.

The examples in the table show the variety of ways availability can be expressed.
Though the method we are using here generates the same response for a particular
input, similar but non-identical inputs can produce noticeable surface variation –
but similar semantics – in the resulting output. The source of this is likely the
variation present in the training corpus.

Though many of the generated responses are interesting and appropriate an-
swers, there are also responses that contain errors of varying severity. Some, like

5.5 Evaluation of MOUNTAIN Generation 71

000000 d5 t3 friday evening is completely closed
100000 d2 t2 the only time available is noon
111111 d4 t1 the court is open all morning
111111 d1 t3 you can reserve a court anytime on monday evening
100011 d5 t3 six , ten or eleven
010011 d3 t2 you can reserve a court at 1pm , 4pm and 5pm on wednesday
011001 d4 t3 any time but 6 , 9 and 10
111011 d7 d2 afternoon except the 3pm block
111100 d1 t2 you can reserve a court is free anytime from noon until 3
110111 d6 t3 saturday evening . ooh , that

Table 5.1: Example output from the MOUNTAIN system

the second-to-last example in the table, are relatively trivial with some grammat-
icality problems. These are obviously not ideal, though with appropriate prosody
when spoken, they could be made to sound like a person’s natural, unplanned,
conversational response. Other errors, however, are more problematic, such as the
last example in the table. Here we see what appears to be a partial translation
failure, since the day and time are correctly rendered in the response; however,
the remaining important content information has been omitted. Minimizing or
eliminating these sorts of errors is crucial to the effectiveness of MOUNTAIN as a
generation method.

5.5 Evaluation of MOUNTAIN Generation

While an informal examination of MOUNTAIN output seems to show it is more or
less capable of generating acceptable responses (though with some errors), it is
clear that a more structured evaluation is required. Given the issues raised by
Dale and Mellish [1998] and the earlier discussion of evaluation in Chapter 3, the
best approach appears to be to evaluate using automatic metrics and human-based
metrics. This also provides an additional opportunity to test the performance and

72 Chapter 5: The MOUNTAIN Language Generation System

correlation of automatic metrics compared to human judgements, continuing the
work by others in that regard [Stent et al., 2005, Reiter and Belz, 2009].

As discussed earlier, the most common means of evaluating natural language
generation is with human-based measures involving rating generation examples,
with increasing interest recently in using automatic measures like those used in
other fields. The strongest push for evaluation using automatic metrics has come
from the corpus-based NLG groups, which makes sense since these groups are
better able to benefit from optimizations that can happen when evaluation results
are available quickly compared to handcrafted systems which take significantly
longer to build.

Most commonly, NLG evaluations have reported NIST scores [Doddington,
2002] or BLEU scores [Papineni et al., 2002]. Both metrics basically measure n-
gram agreement between test and reference strings. NIST is more heavily weighted
to unigram recall (approximately 80% of the contribution to the score), and thus
may not be an ideal measure of adequacy, fluency, or human preference. This is
probably a reason why it has only shown occasional and at best, moderate, corre-
lation to human judgements of generation output, though BLEU has not been any
better [Stent et al., 2005, Belz and Reiter, 2006, Reiter and Belz, 2009].

METEOR [Banerjee and Lavie, 2005] is another MT metric that has been dis-
cussed, but not generally used for NLG evaluation. We are unsure why this is, since
its design appears to account for more features than NIST or BLEU that might be
relevant to NLG output quality.

5.5.1 Automatic Evaluation: BLEU and METEOR

To evaluate MOUNTAIN using BLEU, we used a held-out test set of about 120 re-
sponses from the collected corpus that were not part of the training process. These
responses were taken from throughout the corpus at various intervals – approxi-
mately every eighth entry, to ensure the resulting test set was representative of the
corpus and domain. The internal language half of this bilingual set is used as input
to MOUNTAIN to produce the test output; the English half of the bilingual set is

5.5 Evaluation of MOUNTAIN Generation 73

used as a reference. Individual N-gram scores for the default MOUNTAIN system
are as follows:

1-gram 2-gram 3-gram 4-gram 5-gram
0.3198 0.1022 0.0525 0.0300 0.0202

While it is not unusual to see scores decrease with larger N-grams, our default
system has a fairly steep dropoff. However, there are several potential areas for
improvement available to us. First, recall that the training corpus contains some
amount of error, as described in Section 5.4.2, and that some of the corpus has
been scored by human evaluators. We can use the scores to exclude some responses
from the training set, with the assumption being that removing poor or incorrect
responses will improve the resulting generation. We performed this analysis using
various exclusion thresholds; these results are shown in Table 5.2. The training
corpus for these systems includes only responses with ratings above the indicated
threshold, plus any unscored responses from the original corpus.

These results show clear improvement over the baseline system, with statisti-
cally significant improvement (p < 0.1) for all systems; values in bold are signif-
icant with p < 0.05. Removing only the poorest examples from the training data
does not help as much as removing more – even some which were considered good
by a human. However, once the threshold becomes too high, the BLEU scores be-
gin to decrease, likely due to a combination of data sparsity and the well-rated
examples being overwhelmed by unrated examples in the corpus. To test this, we

System 1-gram 2-gram 3-gram 4-gram 5-gram
Baseline 0.3198 0.1022 0.0525 0.0300 0.0202
Rating > 1 0.4376 0.1729 0.1079 0.0746 0.0597
Rating > 2 0.4491 0.1919 0.1169 0.0872 0.0747
Rating > 3 0.4742 0.1963 0.1212 0.0866 0.0722
Rating > 4 0.4596 0.1762 0.1023 0.0693 0.0611

Table 5.2: BLEU scores for systems with excluded training data based on human
scoring

74 Chapter 5: The MOUNTAIN Language Generation System

System 1-gram 2-gram 3-gram 4-gram 5-gram
Rating > 3 0.4742 0.1963 0.1212 0.0866 0.0722
Rating > 3 (resample) 0.4598 0.1744 0.1011 0.0688 0.0597
Rating > 4 0.4596 0.1762 0.1023 0.0693 0.0611

Table 5.3: BLEU scores after resampling to account for amount of training data

tried resampling the Rating > 3 training set so that it contained the same number
of rated examples as the Rating > 4 training set. The results, shown in Table 5.3,
seem to confirm this hypothesis, as the similarly-sized training sets show compara-
ble or better scores with the higher exclusion threshold.

We also investigated the effects of the model’s distortion limit on the resulting
output. Distortion limit refers to the amount of word reordering allowed when
translating source sentences to the target language. The default value in the Moses
training process is 6 – that is, words may appear up to 6 words away from their
source-language neighbor in the target language. Using our baseline system, we
examined values from 0 (no reordering) to 8, as well as unlimited reordering. We
found identical BLEU scores for systems with a limit ≥ 3, and minimal differences
(mostly less than .001) between systems with other values; these results are shown
in Table 5.4.

Though we had expected a performance effect as the distortion limit changed,
our results showed almost no impact whatsoever. Our original intuition was that a

Distortion 1-gram 2-gram 3-gram 4-gram 5-gram
0 0.3194 0.1053 0.0544 0.0302 0.0203
1 0.3194 0.1053 0.0544 0.0302 0.0203
2 0.3222 0.1050 0.0542 0.0300 0.0202
3 0.3198 0.1022 0.0525 0.0300 0.0202
6 0.3198 0.1022 0.0525 0.0300 0.0202
∞ 0.3198 0.1022 0.0525 0.0300 0.0202

Table 5.4: BLEU scores for systems with various distortion limits (baseline=6)

5.5 Evaluation of MOUNTAIN Generation 75

higher distortion limit would improve results, due to the nature of our source and
target sentences: 3-token source sentences map to much longer target sentences.
We had thought that a distortion limit that was too low might cause some correct
(and possibly preferred) translations from being generated; however, this does not
seem to be the case. Additionally, varying the distortion limit with our improved
systems that excluded training data also showed no noticeable difference.

Though BLEU has been shown to be well-correlated to translation results, it
may not be the best metric to use for evaluating NLG output because it tends to
view output as a set of N-grams rather than sentences. METEOR [Banerjee and
Lavie, 2005] may be a useful measure for our needs, as a translation metric that
takes more sentence-level information into account than BLEU.

We used METEOR to score the same systems described earlier, trained with
some of the corpus data excluded. Results from the same test set, showing preci-
sion, recall, f1, and total METEOR score, are in Table 5.5. As with the BLEU scores,
there is an improvement seen over the baseline system by excluding training data,
and this improvement decreases when the exclusion threshold is too high. Like-
wise, the systems with thresholds of 2 and 3 are similar, with the former system
being marginally better in performance.

System Precision Recall f1 Total
Baseline 0.4225 0.2013 0.2727 0.1950
Rating > 1 0.4489 0.2097 0.2859 0.2028
Rating > 2 0.4533 0.2248 0.3009 0.2218
Rating > 3 0.4834 0.2148 0.2974 0.2146
Rating > 4 0.4481 0.2030 0.2794 0.1971

Table 5.5: METEOR scores for systems with excluded training data

76 Chapter 5: The MOUNTAIN Language Generation System

5.5.2 Human-scored Evaluation

We performed a small scale evaluation using 4 human evaluators, all young adult,
native speakers. The evaluation task was structured similarly to the corpus evalu-
ation described in Section 5.4.3, substituting MOUNTAIN-generated output for the
original human responses in the corpus. Overall, the MOUNTAIN output has a lower
average rating than the human responses (3.1 compared to 3.4), but a broadly
similar rating pattern. Figure 5.4 shows a histogram of these ratings (compare to
Figure 5.2 for human-generated responses). The main difference is a much higher
incidence of a poor rating (1) for the machine-generated output, but similar rates
for good (4) and excellent (5) scores. This seems to indicate MOUNTAIN can gen-
erate output similar in quality to human answers, but when it fails, the output is
unacceptably poor.

The limited amount of human evaluation done precludes a formal examination
of inter-person agreement. However, a per-person histogram (Figure 5.5) shows
similar rating patterns from each of the human evaluators. Clearly, a significantly
larger-scale human evaluation is warranted, which would give us a more complete
subjective measure of the output quality.

5.5.3 Discussion

The results from this small test application show that MOUNTAIN is capable of gen-
erating natural, human-like output. In the examples, the day name is frequently
not present in the output. Though a slot-filling generation system will typically fill
in specific information such as that, in a human-human conversation once the day
has been established it does not need to continue to be said. MOUNTAIN, because it
is trained from a natural corpus, is able to produce this sort of human-like output.

This initial effort did not attempt to do much in the way of tuning, instead using
mostly default settings for various components, such as the language model and
parameters in the translation engine. These results thus do not accurately represent
the potential of the MOUNTAIN approach, but a useful baseline. The next section

5.5 Evaluation of MOUNTAIN Generation 77

Figure 5.4: Histogram of ratings for MOUNTAIN-generated responses.

Figure 5.5: Per-person histogram of ratings for MOUNTAIN-generated responses.
Each color represents an individual evaluator.

78 Chapter 5: The MOUNTAIN Language Generation System

describes various attempts to improve on this baseline by tuning and optimizing
for improved generation output.

5.6 Tuning to Improve Generation Results

5.6.1 Training Corpus

As noted earlier, the training corpus we collected was generally good, but not con-
sistently high-quality. This is due to several factors, including human error in gen-
erating responses to questions. The initial effort showed that eliminating some
amount of data likely to be poor improved the resulting generation; this is not
a surprising result. However, the effects were limited due to the relatively small
amount of rated data we had in the corpus. With the evidence that using the rat-
ings to exclude data from training gives a significant improvement in generation,
we made the effort to have people rate the entire corpus.

Since the corpus is fairly large, this is a substantial task. Further, since people
often will have differing opinions about the quality of responses, we should get
several ratings for each response in the corpus. The large number of ratings this
necessitates precludes us from using our previous method of recruiting local raters
– the task is simply too large. We instead used a different approach: the Amazon
Mechanical Turk (MTurk), a web-based crowdsourcing application that allows Re-
questers to design and publish tasks for Workers to complete. This has been used
successfully for several natural language processing tasks already [Kittur et al.,
2008, Snow et al., 2008], including transcription of speech for ASR, with results
seeming to be of reasonably good quality.

We set up our rating task on Mechanical Turk as before, with people asked to
rate their “co-worker’s” answer given a schedule and reservation request, and pro-
vide their own answer as well. The task was structured so that Workers could rate
as many entries as they wanted, though never the same entry more than once. Ad-
ditionally, each entry would get at least two ratings. The main advantage to using

5.6 Tuning to Improve Generation Results 79

Mechanical Turk is speed; by putting us in contact with dozens of Workers, the en-
tire corpus – with just under 2000 ratings – was able to be rated in approximately
two days, with minimal effort on our part. Rating quality was initially a concern;
however, comparing the MTurk-derived ratings to the earlier ratings from recruited
evaluators showed no significant differences.

Note that though we collected additional responses from the rating process, we
did not include them in the training data. This is primarily due to uncertainty
about MTurk responses’ relative quality, since they have not been rated. Further,
since we have an additional response for each rating we obtained, this unrated
data would put us back in the situation of having significantly more unrated than
rated training data.

5.6.2 Language Model

The default settings for the training process build a 3-gram language model. With
the amount of data in this application, this could be sufficient, though some of the
generation errors suggest their cause is related to combining disparate 3-grams.
Using a larger N-gram language model might help alleviate that, provided there
is enough training data to deal with sparsity issues. To boost the amount of data
for building the language model, we used the responses collected from Mechanical
Turk raters as well as the training data for the translation model. This effectively
more than doubled the amount of domain text used to build our language model.

We tested 4- and 5-gram models; the 4-gram model had a marginal but positive
effect. The 5-gram model did not show additional improvement, suggesting that
there is insufficient training data for that model size to be useful.

5.6.3 Internal Language

We hypothesized that one of the reasons for some poor output sentences in this
domain is the choice of internal language representation. Though reasonable, the
representation used initially embeds many pieces of information in a single token

80 Chapter 5: The MOUNTAIN Language Generation System

corresponding to the schedule of availability. This is not ideal, partly because it is
more difficult for the translation model to learn mappings with a wide disparity in
token lengths. That is, having a single token from the internal language correspond
to many different English phrases which can range in length from 4 to nearly 20
words in some cases makes learning a good translation needlessly difficult.

To account for this, we tested several different tokenizations that would result
in input sentences closer in token length to their English counterparts. The varia-
tions which showed more improvement were those that separated the single origi-
nal schedule token into several tokens. The most trivial change was simply to split
the schedule into 6 tokens by adding spaces (i.e., from “011001” to “0 1 1 0 0 1”).
This tokenization had a small but positive impact on the generated text. A further
refined tokenization was to add the time (using the hour for each slot) in addition
to the availability information to each of the individual schedule tokens, since one
of the common errors we had observed was incorrect times in the output. That is,
times not present in the input would appear in the English translation. This tok-
enization (i.e., “12b 13a 14a 15b 16b 17a”) more explicitly describes the content
to translate rather than making the model infer it from other tokens; it had a more
pronounced positive effect on output quality, and made time confusion errors rare.

5.6.4 Translation Parameters

The Moses engine has many different parameters that can affect the translation
output. Our initial effort simply used the defaults, however it is likely that tuning
them will result in better outputs. One of these, the translation table size, con-
trols how many translation options are considered for each phrase. If this value is
too small, valid (and possibly preferable) translations will be pruned, resulting in
poorer output; however too large a value will both increase the running time as
well as the number of bad translations that get considered, which can also result in
poorer output. The default value for the ttable parameter is 20; we tested several
different values and discovered that a larger value (50) gave better generations
without a large impact on speed. This makes some sense, intuitively; our training

5.6 Tuning to Improve Generation Results 81

data has a larger than average amount of variation in translations for a given input
and so can benefit from examining more possible translations.

Another parameter, which controls the preferred word length of translations,
also impacted our results. Since we observed MOUNTAIN would generate responses
several words shorter, on average, than those in the training corpus, we adjusted
the length penalty parameter to encourage longer translations. Overall, this pro-
vided a slight boost to output quality.

Finally, because the default training configuration produces model weights of
“questionable quality”,1 minimum error rate tuning to adjust these weights is rec-
ommended. We held out an additional subset of the training data to use as a
development set for tuning. Since minimum error rate tuning effectively optimizes
for BLEU score, it is not surprising that this will have a positive effect on the result-
ing output; the drawback is that it reduces the amount of training data, which can
be an issue when there is only limited data available.

5.6.5 Overall Effect on Generation

With the changes to our training data, it was necessary to create a new, different
test set than we used in our previous evaluations. We tested the original MOUN-
TAIN system described previously, and compared the results to tuned and optimized
systems with the modifications described in this section. Tables 5.6 and 5.7 show
the BLEU and METEOR results for these systems. The modification with the largest
impact is the improved tokenization of the internal language, followed by the mini-
mum error rate tuning. If we had more data available for a larger development set
to use for tuning, it is likely that we would have seen still further improvements.

1http://www.statmt.org/moses/?n=FactoredTraining.Tuning

http://www.statmt.org/moses/?n=FactoredTraining.Tuning

82 Chapter 5: The MOUNTAIN Language Generation System

System 1-gram 2-gram 3-gram 4-gram 5-gram
Fully-rated 0.2747 0.1010 0.0442 0.0183 0.0109
Baseline
LM + Simple 0.2913 0.1122 0.0496 0.0217 0.0139
Tokenization
LM + Improved 0.3605 0.1983 0.1276 0.0994 0.0808
Tokenization
LM + Token + 0.4170 0.2351 0.1549 0.1215 0.1039
Min Error Tuning

Table 5.6: BLEU scores for tuned systems. All systems shown use the best rating
threshold for excluding training data.

System Precision Recall f1 Total
Fully-rated 0.3402 0.1818 0.2369 0.1753
Baseline
LM + Simple 0.3250 0.2311 0.2701 0.2048
Tokenization
LM + Improved 0.2938 0.3075 0.3005 0.2742
Tokenization
LM + Token + 0.4538 0.3347 0.3853 0.3187
Min Error Tuning

Table 5.7: METEOR scores for tuned systems. All systems shown use the best rating
threshold for excluding training data.

5.7 Testing in Another Domain 83

5.7 Testing in Another Domain

5.7.1 Weather Forecasting: The SUMTIME-METEO Corpus

While we feel MOUNTAIN is a useful new approach to natural language generation,
it would be useful to compare its performance to other NLG systems – ideally in an
easily-comparable domain. The SUMTIME-METEO corpus [Sripada et al., 2002] has
been used by multiple different generation systems, and offers an ideal opportunity
to compare against other approaches in NLG. This corpus consists of wind and
precipitation forecasts written by three different human weather forecasters, along
with the weather data used by the human forecasters to create them. Specifically,
we wanted to repeat the same evaluation used by Belz and Kow [2009], which
compared 10 different approaches using the wind forecast data. This subset of
the corpus, referred to as Prodigy-METEO [Belz, 2009], extracts the wind forecast
statements from the SUMTIME-METEO corpus, as well as the wind data in the form
of vectors of 7-tuple numeric data, ultimately forming an aligned parallel corpus
suitable for corpus-based NLG. Overall, the corpus contains 465 entries with data
and a corresponding forecast text.

5.7.2 Training

We used the same basic training process as the earlier application for the METEO

domain. The parallel corpus was tokenized and case-normalized, and we trained
an English trigram language model. We also tried using a 4-gram language model;
however, for this domain there was no effect on the output. This is likely due to
insufficient training data. Finally, as before, we train a phrase model using Moses.

As mentioned above, the input data for the METEO corpus consists of vectors of
7-tuples that correspond to the collected wind data. Each 7-tuple has a sequential
ID for the forecast period, wind direction, minimum speed, maximum speed, min-
imum gust speed, maximum gust speed, and timestamp. If a value is missing or

84 Chapter 5: The MOUNTAIN Language Generation System

not relevant for a particular 7-tuple, it is represented with a single dash. Each 7-
tuple has its values listed in order and separated by commas, with the entire block
enclosed in square brackets. Each forecast can have multiple 7-tuples associated
with it; they are represented as a vector, also enclosed in square brackets, with
individual 7-tuples separated by commas. We considered using the raw vectors in
MOUNTAIN with only the default tokenizer, but decided on a custom tokenization
instead that would be better suited for training a translation model. Our tokeniza-
tion strips all square brackets and underscores, replaces commas with spaces, and
adds a disambiguating character to the 7-tuple ID token. We also separate various
infrequent qualifiers to wind direction from the main direction token (for exam-
ple, M-SE, which means “MAINLY SE”, is tokenized to M- SE). Figure 5.6 shows an
example of both the raw and the tokenized input.

Additionally, the METEO corpus is designed to use 5-fold cross-validation, where
the entire corpus is split into 5 overlapping training and test sets, with each fold
being trained and tested as independent systems. Since previous evaluations using
this corpus have done this, we chose to do so as well to have easily comparable
results. Each fold uses slightly more than 400 examples for training and approx-
imately 45 for testing. We did not do any minimum error rate tuning as in the
reservation application due to the limited amount of training data in each of the
folds. However, we note that such tuning, if we use sufficient data for training and
development sets, would likely improve the resulting output from MOUNTAIN.

Raw Input: [[1, NW,25,30,40,-,0600],[2, VAR,8,-,-,-,1800],[3, SE-E,15,20,-,-,0000]]

Tokenized: t1 NW 25 30 40 - 0600 t2 VAR 8 - - - 1800 t3 SE-E 15 20 - - 0000

Figure 5.6: Example of the raw vector of 7-tuples and the corresponding tokenized
form used as input text by MOUNTAIN.

5.7 Testing in Another Domain 85

5.7.3 Systems in the Prodigy-METEO Corpus

This section details the systems used by Belz and Kow [2009] in their evalua-
tion. Their generation outputs are distributed along with the aligned forecasts
and weather data in the Prodigy-METEO corpus.

SMT-based systems

Two phrase-based statistical machine translation systems were built using the
Prodigy-METEO corpus. Both systems used the Moses toolkit [Koehn et al., 2007]
and trigram language models; the primary difference between them is their source
language representation. Neither system used factored translation models or any
tuning.

PBSMT-unstructured: This approach was the simplest, taking the raw input vec-
tor and converting it to a sequence of nonterminal symbols, and adding wind direc-
tion and speed change information. Otherwise, no normalization or disambigua-
tion of the input tokens was done.

PBSMT-structured: This approach also used the raw input vector, but addition-
ally tagged each of the 7-tuples with explicit predicate-argument structure infor-
mation. The structure markers were themselves treated as additional tokens in the
source language.

PCFG-based systems

There are also five probabalistic context-free grammar generation systems built
using the Prodigy-METEO corpus. The particular systems all used a Probabalis-
tic Context-free Representationally Underspecified (pCRU) approach [Belz, 2008],
which interprets the set of all generation rules such that they themselves de-
fine a context-free language, and use a single probabalistic model for generation.

86 Chapter 5: The MOUNTAIN Language Generation System

The model can be estimated using either annotated or unannotated source texts,
though it appears that only simple tasks are suitable for unannotated data.

The pCRU approach requires building a CFG by hand to cover the entire set
of input-to-output possibilities, and then estimating a probability distribution to
decide among the various different generation rules for a given input. If annotating
the source texts is also required, this approach will need a significant amount of
skilled manual work to be usable. However, the generated texts distributed with
the corpus used systems trained with unannotated data.

All of the PCFG systems used the same input as the PBSMT-unstructured system
for their distributed generations.

PCFG-random: This baseline PCFG approach chooses generation rules randomly
at each possible decision point, rather than using a trained probabalistic model.
Thus, it represents a floor for how well a trained system should be able to do by
chance alone.

PCFG-2gram: Another baseline approach, it also does not used a trained proba-
balistic model, and instead generates all possibilities for a given input. Then, using
a bigram language model, the most likely possible generation is determined and
subsequently output as the generation result.

PCFG-greedy: This approach uses the simplest method. After estimating the
probability distribution from the corpus via pCRU, it then applies the single most
likely rule for any given decision point.

PCFG-viterbi: This approach expands all non-terminal rules for a given input,
and then uses a Viterbi search to determine the most likely output.

PCFG-roulette: This approach decides to expand non-terminal rules based on a
non-uniform random distribution. This distribution is proportional to the likeli-

5.7 Testing in Another Domain 87

hoods of the various possible expansion rules at that decision point.

PSCFG-based systems

The Prodigy-METEO corpus also has generated output from Probabalistic Syn-
chronous Context Free Grammar (PSCFG) systems, built using the WASP−1 method
[Wong and Mooney, 2007]. The WASP−1 training process takes a grammar of the
meaning representation language and a parallel data set of meaning representa-
tions and output sentences, and produces a target language model and weighted
SCFG of the MR grammar. This is done in a two-step process, first producing a
non-probabalistic SCFG and then subsequently finding probabilities for the SCFG
rules using the training data; the end result is the weighted PSCFG. To generate,
it takes a meaning representation, and finds a sentence that maximizes the con-
ditional probability of the sentence given the meaning representation according
to the trained PSCFG. That conditional probability is hard to model due to the
difficulty in determining if the output sentences are grammatical [Wong, 2007];
thus instead of directly using that, WASP−1 uses a language model combined with
a translation model to determine if its generated output is grammatical and also
corresponds to the meaning of the original input.

Prodigy-METEO distributes outputs from two different PSCFG-based systems.

PSCFG-unstructured: This approach uses the same input as the PBSMT-
unstructured and PCFG systems. The input is encoded as a MR grammar, and
then is given to WASP−1, which uses that to train the SCFGs used for generation.

PSCFG-semantic: This approach uses a different input grammar, augmenting
the grammar used for the PSCFG-unstructured system with recursive predicate-
argument structure [Belz and Kow, 2009]. This structure resembles semantic
forms, and was produced from the raw input vectors of wind data.

88 Chapter 5: The MOUNTAIN Language Generation System

Other systems

SUMTIME-hybrid: This approach is the original, hand-crafted, SUMTIME system
[Reiter et al., 2005]. It is a deterministic rule-based system that generates output
from content representations via microplanning and realization. This system is
a more traditional language generation approach, using skilled experts to craft
generation rules.

Natural corpus: Though not truly a language generation system in the sense
of the others, the natural, human-written corpus can also be considered as a lan-
guage generation approach, albeit an expensive one with high latency. However,
comparing against a human standard can be helpful, so we also included these
“generations” as well.

5.7.4 Evaluation

The earlier results in this domain from Belz and Kow [2009] report NIST and
BLEU scores for automatic measues. Thus, we report those in our evaluation, plus
METEOR which we feel is more likely to be correlated to human judgements (see
Section 3.1.1).

As described in Section 5.7.2, the Prodigy-METEO corpus can be split into over-
lapping folds for cross-validation, which we have done. This necessitates training
(and then testing) what amounts to 5 separate systems; the average of scores from
all 5 systems will give a reasonably unbiased view of system performance. Table 5.8
shows the results of all 3 automatic measures for MOUNTAIN output on each fold
of the corpus.

Not much can be said about those scores in isolation, however, so a compari-
son to other systems would be helpful. The Prodigy-METEO distribution includes
the outputs from the 10 systems evaluated by Belz and Kow [2009], making di-
rect comparison of scores a straightforward task. Table 5.9 shows the results of
multiple different generation systems in the METEO domain; these scores are the

5.7 Testing in Another Domain 89

Fold # of texts NIST BLEU METEOR
1 48 6.6767 .5933 .8054
2 40 6.2034 .5567 .7594
3 46 6.5037 .5773 .7735
4 44 6.5914 .5793 .7685
5 43 6.6113 .5801 .7757
Average 44 6.5173 .5773 .7765

Table 5.8: Results of automatic measures for MOUNTAIN output in the METEO do-
main using 5-fold cross-validation.

System NIST BLEU METEOR
corpus 9.3074 1.000 1.000
PSCFG-semantic 7.0725 .6352 .8159
PSCFG-unstructured 6.8815 .6259 .8081
PCFG-greedy 6.6325 .5968 .7969
MOUNTAIN 6.5173 .5773 .7765
SUMTIME-hybrid 6.0865 .5252 .6889
PCFG-2gram 5.4687 .4862 .6867
PCFG-viterbi 5.4624 .4864 .6863
PCFG-roulette 5.9056 .4617 .6853
PBSMT-unstructured 5.6846 .4863 .4877
PBSMT-structured 4.1860 .3143 .4173
PCFG-random 3.3683 .2069 .2102

Table 5.9: Results of automatic measures for MOUNTAIN compared to the NLG sys-
tems and original human-written forecasts used in Belz and Kow [2009]. Reported
values are averaged from the 5-fold cross-validation test sets.

90 Chapter 5: The MOUNTAIN Language Generation System

average of the 5 folds in the cross-validation setup. Overall, MOUNTAIN performs
fairly well according to automatic measures compared to other systems. outper-
forming other SMT-based approaches, many of the weaker CFG-based systems, as
well as the hand-crafted human-designed SUMTIME-hybrid system. The only sys-
tems which are clearly better than MOUNTAIN are the PSCFG-based approaches
[Wong and Mooney, 2007]; these approaches are not fully automatically trained
like MOUNTAIN is, however. All three of the automatic metrics are fairly consistent
in how systems are ranked relative to each other.

5.7.5 Do Automatic Measures Correlate with Ratings by Hu-

mans?

One of the key issues with NLG evaluation is its expense, primarily due to the high
costs of human-based evaluation. Automatic measures are cheap and simple to
use, but it isn’t clear that they measure the same things. Thus, it would be helpful
to determine what correlation, if any, there is for these automatic measures and
human judgements.

We set up the same human evaluation used by Belz and Kow [2009]; human
evaluators were shown forecast texts and asked to rate them on a 7-point Likert
scale for both clarity and readability. These terms were explicitly defined for the
evaluators: clarity refers to how clear and understandable a forecast is, and read-
ability refers to how fluent and easy to read a forecast is. In addition to the MOUN-
TAIN approach, we used 5 systems from the earlier evaluation: the SMT-based sys-
tems, the most consistent CFG-based system (PSCFG-semantic), the handcrafted
SUMTIME-hybrid system, and the original human-written corpus. The choice of
these systems was made because they were either similar to the MOUNTAIN ap-
proach, strong performers in the previous evaluation, or a human-generated stan-
dard; additionally they encompass widely varying approaches, from manually an-
notated to fully automatic. They also cover the entire range of systems in the
earlier evaluation, from highly- to poorly-performing, so our results should be easy

5.7 Testing in Another Domain 91

to compare. Table 5.10 shows an example of a METEO forecast text from each of
these systems.

We used 12 randomly selected forecast dates (taken from each fold of the cor-
pus), and included outputs from all 6 systems. Thus, our evaluation set consists
of 72 distinct forecast texts. Using a repeated Latin square design, raters were pre-
sented with 2 different forecasts texts from each system, where the systems were
presented in random order. Because earlier work in this domain demonstrated that
non-experts produced ratings that were highly correlated to those given by domain
experts [Belz and Reiter, 2006], we did not attempt to find weather experts to
rate the forecasts. In fact, we used Mechanical Turk workers to provide the ratings.
MTurk workers were randomly assigned a system order from the Latin square, then
shown only the forecast texts and told to rate them for clarity and readability as
defined above. We had a total of 38 raters complete this task.

Raw Input [[1,SW,38,42,55,-,0600],[2,-,45,50,65,-,0900],[3,WSW,-,-,-,-,0000]]

corpus SW 38-42 GUSTS 55 SOON INCREASING 45-50 GUSTS 65 FOR A TIME THEN

VEERING WSW LATE EVENING

SUMTIME- SW 38-42 GUSTS 55 SOON INCREASING 45-50 GUSTS 65 THEN VEERING

hybrid WSW 38-42 BY MIDNIGHT

PSCFG- SW 38-42 GUSTS 55 SOON INCREASING 45-50 GUSTS 65 THEN VEERING

semantic WSW LATER

PBSMT- GUSTS SW 38-42 GUSTS 55 TO AND INCREASING BY GUSTS 45 GUSTS 50

struct GUSTS 65 BY NINE TO THEN 1 VEERING WSW BY EVENING LATER

PBSMT- BACKING SW 38-42 GUSTS 55 GRADUALLY INCREASING 45-50 GUSTS 65

unstruct BY MIDDAY VEERING WSW BY LATE EVENING

MOUNTAIN SW 38-42 GUSTS 55 INCREASING 45-50 GUSTS 65 BY MIDDAY THEN

WSW BY LATE EVENING

Table 5.10: Examples from the 8 Sep 2000 forecast in the METEO domain. Shown
is the raw input vector of 7-tuples, and the corresponding outputs from the systems
used in the evaluation, including the human-written corpus.

92 Chapter 5: The MOUNTAIN Language Generation System

Results

Figure 5.7 shows the mean clarity and readability scores for each system. Though it
matches the results from Belz and Kow [2009], we are still surprised that the orig-
inal human corpus is rated poorer than most of the machine-generated texts. The
handcrafted SUMTIME system has the highest ratings in both categories, though it
is by far the most expensive system in terms of creation effort. The semi-automatic
PSCFG system from Wong and Mooney [2007] is the only system with a higher-
rated clarity than readability, though this is not statistically significant. The MOUN-
TAIN approach is significantly better than the other SMT-based systems, and in fact
is rated slightly higher than the natural corpus. It is not quite as good as the SUM-
TIME or PSCFG systems; however, it should be noted that those systems include
linguistic knowledge and are not fully automatic like MOUNTAIN. If MOUNTAIN can
exploit that as well, it is likely to see a performance improvement.

Figures 5.8 and 5.9 show the frequency of each clarity and readability rating,
respectively, for all 6 test systems. These graphs make it clear why the PBSMT-
structured system scored so poorly – it has the highest proportion of ratings of 1 or
2 of any system as well as the lowest proportion of 7s. Conversely, it is also clear

Figure 5.7: Mean clarity and readability ratings from human evaluation of 5 NLG
systems and the original human-written forecasts in the METEO domain.

5.7 Testing in Another Domain 93

0

5

10

15

20

25

SUMTIME-

hybrid

PSCFG-

semantic

MOUNTAIN corpus PBSMT-

unstructured

PBSMT-

structured

Ratings: Clarity 1 2 3 4 5 6 7

Figure 5.8: Histogram of clarity ratings (1–7) for each of the 6 systems from the
human evaluation.

0

5

10

15

20

25

SUMTIME-

hybrid

PSCFG-

semantic

MOUNTAIN corpus PBSMT-

unstructured

PBSMT-

structured

Ratings: Readability 1 2 3 4 5 6 7

Figure 5.9: Histogram of readability ratings (1–7) for each of the 6 systems from
the human evaluation.

why the SUMTIME system scored very well, since it has not a single rating of 1 in
either category. The MOUNTAIN output has a rating pattern similar to that of the
corpus text, which is not overly surprising since that is its source text. However, its
mean score appears to be higher due to having additional ratings of 5 that were
3s for the corpus. The main difference between MOUNTAIN and the better-rated
systems ahead of it appears to be fewer 7 ratings and some 1s.

94 Chapter 5: The MOUNTAIN Language Generation System

Table 5.11 shows both automatic and human-based scores for all the systems
based on the 12 forecast texts used in the human evaluation. This is a different test
set than reported previously (see Table 5.9), which explains the different values
for the automatic metrics. Ignoring the “corpus” system, which is guaranteed to
have a perfect score from the automatic measures, there is definite similarity in
rankings between the human and automatic scores – except for the handcrafted
SUMTIME-hybrid system. Just as in the previous evaluation, this system was not
among the better systems according to the automatic metrics, but was given the
highest scores from the human evaluators. However, we did not see the same
strong performance of the PBSMT-unstructured system on the automatic measures,
as our results showed it to be similarly ranked by both the human and automatic
metrics.

As for MOUNTAIN, these results show it to be significantly better than the other
SMT-based approaches, according to all of the metrics. It is not immediately clear
why MOUNTAIN is so much better. Further, it is comparable to or better than the
original corpus according to the human raters, which is a positive but somewhat
puzzling result. Our best hypothesis for this is that MOUNTAIN regularizes the
output from the corpus, making its forecasts’ language similar from one to another,
while the corpus is written by several different human forecasters who have distinct
writing styles and might not get identical ratings. Additionally, the other trained

System Clarity Readability NIST BLEU METEOR
SUMTIME-hybrid 4.7632 4.8684 5.3174 .5548 .6840
PSCFG-semantic 4.7237 4.6447 5.7959 .5876 .7967
MOUNTAIN 4.4737 4.6316 5.6724 .5860 .7784
corpus 4.3421 4.5132 7.4103 1.000 1.000
PBSMT-unstructured 3.7632 4.1447 4.8723 .4619 .4834
PBSMT-structured 3.1711 3.2763 3.4419 .3088 .1623

Table 5.11: Mean human-based scores and automatic measures for 5 NLG systems
and the original human-written forecasts. Each system used an identical 12 dates
of forecast texts from the METEO domain.

5.7 Testing in Another Domain 95

system (PSCFG-semantic) was rated as having the same readability and somewhat
better clarity than MOUNTAIN. As we mentioned above, though, that system is
not fully automatic like MOUNTAIN, and also makes use of information MOUNTAIN

does not; if MOUNTAIN did use that information it is likely to improve its output.
Finally, though the handcrafted SUMTIME-hybrid system has clearly better output,
MOUNTAIN has an even clearer edge in creation effort; the SUMTIME system was
reported to take a year to build, whereas MOUNTAIN was able to train a new system
in this domain in less than a week.

Our results in this evaluation showed high correlation between the automatic
measures and the human-based measures. Pearson’s r > 0.9 for all comparisons,
with BLEU and METEOR being generally more highly correlated than NIST for both
clarity and readability. The correlation coefficients for each comparison are shown
in Table 5.12. Spearman’s rank correlation ρ = 0.7, between all of the metrics and
both clarity and readability, since each metric ordered all 5 systems identically and
the human-based scores were also ranked identically in both dimensions.

However, it is not clear that the automatic metrics are designed to measure
the same thing that the human evaluation did. Though clarity and readability are
important when considering NLG quality, it seems that the automatic measures
are actually measuring adequacy, or how well a particular example says what a
reference does. In fact, this is something that Stent et al. [2005] suggested based
on their results of comparing different evaluation metrics – the automatic measures
are more highly correlated to NLG output adequacy than other dimensions.

Adequacy is somewhat more challenging to test well in a human evaluation,
though. The best method is to show the original data used to generate an example

NIST BLEU METEOR
Clarity .926 .957 .953
Readability .944 .966 .951

Table 5.12: Pearson’s correlation for human-based clarity and readability scores
versus the automatic measures.

96 Chapter 5: The MOUNTAIN Language Generation System

– in the METEO case, that would be the raw input – as well as a machine-generated
text, and ask the human to rate how well the text communicates the information
from the input. The drawback here is that it often requires some expertise to
be able to tell if an output sentence is particularly good for a given input. The
alternative is to present a human-written example instead of the input data, which
requires less expertise for evaluators but can bias the perception of the machine-
generated output.

5.8 Discussion

MOUNTAIN clearly outperforms the other PBSMT systems from Belz and Kow
[2009], though it is not immediately obvious why that would be. The most likely
difference is in the design and tokenization of the internal language; the Belz and
Kow systems used “simply the augmented corpus input vectors”, and also tried tag-
ging the vectors with structure information. With the expected use of MOUNTAIN,
the system designer has the ability to control the structure and vocabulary of the
internal language, which corresponds to underlying structural information (like di-
alog state). There are likely to be multiple valid and reasonable representations of
that information, but not all of them are guaranteed to be equally suitable as input
for statistical machine translation. For example, in the METEO data, we took the
input language to be the raw vector of weather data, with some basic tokenization.
Our tokenization left the “-” tokens in the internal language training sentences,
even though they do not appear to convey useful information in the English trans-
lation. It is possible that not including them could result in a better translation
model by reducing the complexity of the input language. Optimally specifying an
input language for a given application is likely to be a challenging problem; finding
an automatic method that can produce reasonable options would help in getting
the most out of this language generation approach.

Compared to other NLG systems, MOUNTAIN requires relatively little time to set
up. The largest and most expensive part is corpus collection; once the training
corpus is available, the training time itself is minimal. For the test application

5.8 Discussion 97

described in Section 5.4, it was about 20 seconds, though a real application would
clearly require a larger training corpus. Still, for well-defined, and mostly closed-
vocabulary tasks – which most spoken dialog systems could be described as – the
training time should be measurable in minutes. The time required to generate
output is nearly instantaneous, or similar to a template-based system. Obtaining
a suitable training corpus is still expensive, though there are potential solutions.
Besides including responses from the system developers, which is similar in cost
and skill to template-writing, other data sources such as transcribed Wizard-of-Oz
interactions could be used. Potentially, any available human-human dialogs for the
application domain could also be included in the training corpus, as long as they
could be transcribed and annotated with the internal language.

Some idea of how much training data is needed for reasonable output from
MOUNTAIN would be useful, as that would permit cost analysis to be done on the
most expensive part of the training process. Though we recognize that there are
likely application- or domain-specific issues that will impact the training data re-
quirements, we wanted to see if we could gather any information about this prob-
lem in general. To test this, we halved the amount of training data from the METEO

domain, using only about 200 training examples in each fold instead of more than
400. Repeating the 5-fold cross-validation technique used earlier, we computed the
same automatic measures as in Section 5.7 for this smaller training set. The results,
compared to the earlier system trained on the full METEO corpus, are shown in Ta-
ble 5.13. The reduction in training data clearly causes MOUNTAIN to perform more
poorly. However, note that the scores from NIST and METEOR would only drop
MOUNTAIN one spot in the results from Table 5.9, still significantly outperforming
the SMT-based approaches as well as most of the CFG-based approaches. BLEU

System NIST BLEU METEOR
Full-data 6.5173 .5773 .7765
Half-data 5.7076 .4636 .7008

Table 5.13: Results of automatic measures for MOUNTAIN after halving the training
data in the METEO domain.

98 Chapter 5: The MOUNTAIN Language Generation System

differs greatly from the other measures, and would rank this system among the
worst 3.

As described in Section 5.3, the output of MOUNTAIN discussed in this work
was the single-best result from the translation engine. Though this can result in
reasonable generation for many inputs, it also means that an input will always have
the same generated response, which will have the same repetitiveness problems as
template-based NLG. However, Moses can be configured to output N-best lists of
translation results, rather than a single-best result. If MOUNTAIN instead selects
its responses from the N-best list, that will provide more variation in the resulting
output, and possibly prevent a human listener from perceiving it as unnaturally
repetitive. Further investigation of this, including determining an appropriate size
for the list and evaluating user perception of the generation, is planned.

5.9 Summary

This chapter described the MOUNTAIN language generation system, a fully-
automatic system which uses machine translation techniques to generate novel
natural language examples using a corpus. We detailed the training process re-
quired to use MOUNTAIN, and showed results from evaluations in two different
domains. Further, we compared MOUNTAIN output to several different approaches,
and found that it outperformed other fully-automatic trainable systems. MOUNTAIN

also was shown to approach the performance of other advanced systems, including
a handcrafted system designed especially for the testing domain. Based on these
results, we are confident that if MOUNTAIN can be further improved, particularly to
make use of further information other advanced systems use, its performance will
equal or surpass those systems.

Chapter 6

Concluding Words

6.1 Summary

This thesis investigated methods of creating machine-generated human-like nat-
ural language. We discussed several aspects of this problem, including making
speech synthesizers sound more natural (Section 2.1) and the applicability to spo-
ken language generation (Section 2.2). We discussed the various dimensions of
“human-like” natural language, including understandability and naturalness. We
have also described a framework designed to produce more understandable spo-
ken language: uGloss (Chapter 4). Additionally, we discussed the major issues
with evaluation of natural language generation (Chapter 3), such as the tradeoffs
between automatic and human-based measures, and the importance of accounting
for motivation of the evaluators when doing a human-based evaluation. Finally,
we have also detailed the MOUNTAIN language generation system (Chapter 5), a
fully-automatic, data-driven approach that uses statistical machine translation tech-
niques to generate human-like language.

The two systems described in this thesis – uGloss and MOUNTAIN – are both, at
their core, approaches for improved language generation that is more human-like
in quality. Human-like language, for our purposes, refers to spoken utterances
comparable in understandability, clarity, naturalness, and efficiency to human-

99

100 Chapter 6: Concluding Words

generated language. The uGloss approach is more tightly focused, emphasizing
understandable utterances – particularly utterances spoken with speech synthesis
– when considering challenging inputs that even people can find difficult to speak
understandably. uGloss has a direct impact on the types of utterances to be gener-
ated, as it is designed to use heuristics and other learned rules as part of the tactical
generation process. Because the intent of this framework is to achieve human-like
understandability, the process does not always result in fluent, natural-sounding
utterances. This means uGloss will not always generate completely human-like
language in order to fulfill its goals.

In contrast, the MOUNTAIN language generation system is able to generate lan-
guage that is human-like in many dimensions, not only understandability. MOUN-
TAIN tries to sidestep the issue of how to get a machine to have sufficient knowl-
edge to generate highly natural and understandable language by utilizing human-
generated corpora to do tactical generation. Rather than directly learning charac-
teristics of human-like utterances, MOUNTAIN uses models trained from the exam-
ples in its training corpora to generate utterances. The resulting generations will
implicitly be natural and understandable – or at least as much as the examples in
the corpora themselves are. In this way, MOUNTAIN can fully-automatically gener-
ate comparable output to humans, without needing to learn specific rules for how
to do that. The major advantages over the uGloss approach are that this method
is fully automatic once the training corpus is collected for a particular application,
and the naturalness and understandability of the corpus itself is reflected in the
generations MOUNTAIN will produce.

Results from evaluations in multiple domains show the MOUNTAIN approach is
capable of producing output of similar quality to human-written texts.A previous
evaluation conducted by another group in the Prodigy-METEO domain examined
four general types of systems (handcrafted rule-based, probabilistic context-free
grammars, probabilistic synchronous context-free grammars, and phrase-based sta-
tistical machine translation), with some types having multiple implementation vari-
ants. Of these, the PBSMT approaches were generally among the poorer systems
according to both automatic and human-based measures. The results of our eval-

6.2 Contributions 101

uation from this domain showed that MOUNTAIN, which is also a PBSMT-based
system, can have performance remarkably close to the handcrafted and PSCFG
systems, though still not quite as good. Results from human evaluators showed
that generated output from MOUNTAIN has comparable clarity and readability to
human-generated output and the PSCFG-based systems. However, the MOUNTAIN

approach is fully automatic, whereas the other systems included some amount of
manually-encoded linguistic knowledge to achieve their output quality. The fully
automatic approach is appealing due to its lower cost of implementation and main-
tenance, while still generating human-like utterances. Additionally, MOUNTAIN is
clearly better than previous PBSMT-based systems in this domain.

6.2 Contributions

This thesis provides the following main contributions:

• A statistical, data-driven, fully-automatic method of tactical language gener-
ation. Our method performs similarly to other advanced approaches and has
generation quality similar to human-written text in multiple dimensions.

• Demonstration that natural corpora can be used to generate novel natural
language sentences that are as clear and understandable as human-written
texts.

• A framework for producing more understandable language that will ulti-
mately be spoken by a speech synthesizer.

• An investigation of evaluation methods – both automatic and human-based –
for natural language generation output, and what these methods can tell us
about output quality.

Bibliography

H. Ai, A. Raux, D. Bohus, M. Eskenazi, and D. Litman. Comparing spoken dia-
log corpora collected with recruited subjects versus real users. In 8th SIGDial
Workshop on Dialogue and Discourse, Antwerp, Belgium, 2007.

H. Alshawi, S. Bangalore, and S. Douglas. Automatic acquisition of hierarchical
transduction models for machine translation. In 36th Annual Meeting of the As-
sociation for Computational Linguistics, Montréal, Canada, 1998.

A. D. Baddeley. The magical number seven: Still magic after all these years? Psy-
chological Review, 101:353–356, 1994.

A. D. Baddeley. Essentials of Human Memory. Psychology Press, 1999.

A. D. Baddeley, N. Thomson, and M. Buchanan. Word length and the structure of
short-term memory. Journal of Verbal Learning and Verbal Behavior, 14:575–589,
1975.

Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for MT evalua-
tion with improved correlation with human judgments. In ACL 2005 Workshop
on Intrinsic and Extrinsic Evaluation Measures for MT and/or Summarization, Ann
Arbor, MI, 2005.

S. Bangalore, O. Rambow, and S. Whittaker. Evaluation metrics for generation. In
INLG 2000, Mitzpe Ramon, Israel, 2000.

Michele Banko, Vibhu O. Mittal, and Michael J. Witbrock. Headline generation
based on statistical translation. In ACL 2000, pages 318–325, Hong Kong, 2000.

103

104 Bibliography

Anja Belz. Statistical generation: Three methods compared and evaluated. In ENLG
2005, pages 15–23, Aberdeen, Scotland, 2005.

Anja Belz. Automatic generation of weather forecast texts using comprehensive
probabalistic generation-speace models. Natural Language Engineering, 14(4):
431–455, 2008.

Anja Belz. Prodigy-METEO: Pre-alpha release notes (Nov 2009). Techni-
cal Report NLTG-09-01, Natural Language Technology Group, CMIS, Univer-
sity of Brighton, 2009. http://www.nltg.brighton.ac.uk/home/Anja.Belz/

Publications/release-notes-pre-alpha.pdf.

Anja Belz and Eric Kow. System building cost vs. output quality in data-to-text
generation. In ENLG 2009, Athens, Greece, 2009.

Anja Belz and Ehud Reiter. Comparing automatic and human evaluation of NLG
systems. In 11th Conference of the European Chapter of the Association for Com-
putational Linguistics (EACL 06), Trento, Italy, 2006.

Anja Belz, Eric Kow, Jette Viethen, and Albert Gatt. The GREC Challenge 2008:
Overview and evaluation results. In INLG 2008, Salt Fork, OH, 2008.

C. Bennett and A. Black. The Blizzard Challenge 2006. In Blizzard Challenge 2006,
Pittsburgh, PA, 2006.

A. Black. Perfect synthesis for all of the people all of the time. In IEEE 2002
Workshop on Speech Synthesis, Santa Monica, CA, 2002.

A. Black and K. Lenzo. Limited domain synthesis. In ICSLP2000, volume II, pages
411–414, Beijing, China, 2000.

A. Black and P. Taylor. Automatically clustering similar units for unit selection in
speech synthesis. In Eurospeech97, volume 2, pages 601–604, Rhodes, Greece,
1997.

http://www.nltg.brighton.ac.uk/home/Anja.Belz/Publications/release-notes-pre-alpha.pdf
http://www.nltg.brighton.ac.uk/home/Anja.Belz/Publications/release-notes-pre-alpha.pdf

105

A. Black and K. Tokuda. Blizzard Challenge – 2005: Evaluating corpus-based
speech synthesis on common datasets. In Interspeech 2005, Lisbon, Portugal,
2005.

A. Black, P. Taylor, and R. Caley. The Festival speech synthesis system.
http://festvox.org/festival, 1998.

D. Bohus, A. Raux, T. Harris, M. Eskenazi, and A. Rudnicky. Olympus: An open-
source framework for conversational spoken language interface research. In HLT-
NAACL 2007 workshop on Bridging the Gap: Academic and Industrial Research in
Dialog Technology, 2007.

C. Boidin, V. Rieser, L. van der Plas, O. Lemon, and J. Chevelu. Predicting how it
sounds: Re-ranking dialogue prompts based on TTS quality for adaptive spoken
dialogue systems. In Interspeech Special Session: Machine Learning for Adaptivity
in Spoken Dialogue, Brighton, UK, 2009.

W. A. Bousfield, G. A. Whitmarsh, and J. Esterton. Serial position effects and
the “Marbe effect” in the free recall of meaningful words. Journal of General
Psychology, 59:255–262, 1958.

I. Bulyko and M. Ostendorf. Efficient integrated response generation from multiple
targets using weighted finite state transducers. Computer Speech and Language,
16:533–550, 2002.

C. Callaway. Evaluating coverage for large symbolic NLG grammars. In 18th Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico,
2003.

Nathanael Chambers and James Allen. Stochastic language generation in a dia-
logue system: Toward a domain independent generator. In 5th SIGdial Workshop
on Discourse and Dialogue, pages 9–18, Cambridge, MA, USA, 2004.

David L. Chen and Raymond J. Mooney. Learning to sportscast: A test of grounded
language acquisition. In 25th International Conference on Machine Learning
(ICML 2008), Helsinki, Finland, 2008.

106 Bibliography

S. Choularton and R. Dale. User responses to speech recognition errors: Consis-
tency of behaviour across domains. In SST-2004, Sydney, Australia, 2004.

Robert A. J. Clark, Monika Podsaidlo, Mark Fraser, Catherine Mayo, and Simon
King. Statistical analysis of the Blizzard Challenge 2007 listening test results. In
Blizzard Challenge 2007, Bonn, Germany, 2007.

Simon Corston-Oliver, Michael Gamon, Eric Ringger, and Robert Moore. An
overview of Amalgam: A machine-learned generation module. In INLG 2002,
pages 33–40, New York, 2002.

R. Dale. Generating Referring Expressions. MIT Press, 1992.

R. Dale and E. Reiter. Computational interpretations of the gricean maxims in the
generation of referring expressions. Cognitive Science, 19:233–263, 1995.

Robert Dale and Chris Mellish. Towards evaluation in natural language generation.
In Proceedings First International Conference on Language Resources and Evalua-
tion, pages 555–562, 1998.

Hoa Trang Dang. DUC 2005: Evaluation of question-focused summarization sys-
tems. In Proceedings of the Workshop on Task-Focused Summarization and Ques-
tion Answering, Sydney, Australia, July 2006. Association for Computational Lin-
guistics.

J. R. Davis and J. Hirschberg. Assinging intonational features in synthesized spoken
directions. In ACL 1988, Buffalo, NY, 1988.

G. Doddington. Automatic evaluation of machine translation quality using n-gram
co-occurance statistics. In ARPA Workshop on Human Language Technology, 2002.

Bonnie Dorr, Christof Monz, Stacy President, Richard Schwartz, and David Zajic.
A methodology for extrinsic evaluation of text summarization: Does ROUGE
correlate? In ACL 2005, Ann Arbor, MI, 2005.

J. Edlund, M. Heldner, and J. Gustafson. Two faces of spoken dialogue systems. In
Interspeech 2006 Dialogue on Dialogues Workshop, Pittsburgh, PA, 2006.

107

J. Edlund, J. Gustafson, M. Heldner, and A. Hjalmarsson. Towards human-like
spoken dialogue systems. Speech Communication, 50(8-9):630 – 645, 2008.

E. Eide, A. Aaron, R. Bakis, W. Hamza, M. Picheny, and J. Pitrelli. A corpus-based
approach to <AHEM/> expressive speech synthesis. In 5th ISCA Workshop on
Speech Synthesis, Pittsburgh, PA, 2004.

M. Fleischman and E. Hovy. Towards emotional variation in speech-based natural
language generation. In INLG 2002, New York, 2002.

Mark Fraser and Simon King. The Blizzard Challenge 2007. In Blizzard Challenge
2007, Bonn, Germany, 2007.

H. P. Grice. Logic and conversation. In Cole and Morgan, editors, Syntax and
Semantics: Speech Acts, volume 3. Academic Press, 1975.

J. Hitzeman, A. Black, C. Mellish, J. Oberlander, and P. Taylor. Use of automatically
generated discourse-level information in a concept-to-speech synthesis system.
In ICSLP98, Sydney, Australia, 1998.

H. Horacek. Text generation methods for dialog systems. In 2003 AAAI Spring
Symposium, pages 52–54, Palo Alto, CA, 2003.

A. Hunt and A. Black. Unit selection in a concatenative speech synthesis system
using a large speech database. In ICASSP96, volume 1, pages 373–376, Atlanta,
GA, 1996.

A. Iida, N. Campbell, F. Higuchi, and M. Yasumura. A corpus-based speech synthe-
sis system with emotion. Speech Communication, 40:161–187, 2003.

D. M. Jones. The 7±2 urban legend. In MISRA C 2002 Conference, Oct. 2002. URL
www.knosof.co.uk/cbook/misart.pdf.

Vasilis Karaiskos, Simon King, Robert A. J. Clark, and Catherine Mayo. The Blizzard
Challenge 2008. In Blizzard Challenge 2008, Brisbane, Australia, 2008.

www.knosof.co.uk/cbook/misart.pdf

108 Bibliography

Simon King and Vasilis Karaiskos. The Blizzard Challenge 2009. In Blizzard Chal-
lenge 2009, Edinburgh, UK, 2009.

Aniket Kittur, Ed H. Chi, and Bongwon Suh. Crowdsourcing user studies with
Mechanical Turk. In CHI ’08: Proceeding of the twenty-sixth annual SIGCHI con-
ference on Human factors in computing systems, pages 453–456, New York, NY,
USA, 2008. ACM. ISBN 978-1-60558-011-1. doi: http://doi.acm.org/10.1145/
1357054.1357127.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Fed-
erico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondřej Bojar, Alexandra Constantin, and Evan Herbst. Moses:
open source toolkit for statistical machine translation. In ACL 2007: Interac-
tive Poster and Demonstration Sessions, pages 177–180, Prague, Czech Republic,
2007.

H. L. Lane and B. Tranel. The Lombard sign and the role of hearing in speech.
Journal of Speech and Hearing Research, 14:677–709, 1971.

Irene Langkilde and Kevin Knight. Generation that exploits corpus-based statisti-
cal knowledge. In ACL/ICCL 1998, pages 704–710, Montreal, Quebec, Canada,
1998.

B. Langner and A. Black. Creating a database of speech in noise for unit selection
synthesis. In 5th ISCA Workshop on Speech Synthesis, Pittsburgh, PA, 2004a.

B. Langner and A. Black. An examination of speech in noise and its effect on
understandability for natural and synthetic speech. Technical Report CMU-LTI-
04-187, Language Technologies Institute, Carnegie Mellon University, Pittsburgh,
PA, 2004b.

B. Langner and A. Black. Improving the understandability of speech synthesis by
modeling speech in noise. In ICASSP05, Philadelphia, PA, 2005a.

B. Langner and A. Black. Using speech in noise to improve understandability for
elderly listeners. In ASRU 2005, San Juan, Puerto Rico, 2005b.

109

B. Langner and A. Black. uGloss: A framework for improving spoken language
generation understandability. In Interspeech 2007, Antwerp, Belgium, 2007.

B. Langner, R. Kumar, A. Chan, L. Gu, and A. Black. Generating time-constrained
audio presentations of structured information. In Interspeech 2006, Pittsburgh,
PA, 2006.

D. C. LeCompte. 3.14159, 42, and 7±2: Three Numbers That (Should) Have Noth-
ing To Do With User Interface Design. http://www.internettg.org/newsletter/

aug00/article_miller.html , 2000.

Oliver Lemon and Olivier Pietquin. Machine learning for spoken dialogue systems.
In Interspeech 2007, Antwerp, Belgium, 2007.

J. Lester and B. Porter. Developing and empirically evaluating robust explanation
generators: The KNIGHT experiments. Computational Linguistics, 23(1):65–101,
1997.

R. Likert. A technique for the measurement of attitudes. Archives of Psychology,
140:1–55, 1932.

Chin-Ye Lin and Eduard Hovy. Automatic evaluation of summaries using n-gram
co-occurance statistics. In HLT-NAACL 2003, Edmonton, Canada, 2003.

Étienne Lombard. Le signe de l’elévation de la voix. Annales Maladiers Oreille,
Larynx, Nez, Pharynx, 37:101–119, 1911.

Tomasz Marciniak and Michael Strube. Using an annotated corpus as a knowl-
edge source for language generation. In Workshop on Using Corpora for Natural
Language Generation, Birmingham, UK, 2005.

E. Marsi. Intonation in Spoken Language Generation. PhD thesis, Netherlands Grad-
uate School of Linguistics, 2001.

S. Maskey and J. Hirschberg. Automatic summarization of broadcast news using
structural features. In Eurospeech 2003, Geneva, Switzerland, 2003.

http://www.internettg.org/newsletter/aug00/article_miller.html
http://www.internettg.org/newsletter/aug00/article_miller.html

110 Bibliography

S. Maskey and J. Hirschberg. Comparing lexical, acoustic/prosodic, structural and
discourse features for speech summarization. In Interspeech 2005, Lisbon, Portu-
gal, 2005.

K. McKeown, R. Passonneau, D. Elson, A. Nenkova, and J. Hirschberg. Do sum-
maries help? a task-based evaluation of multi-document summarization. In
SIGIR 2005, Salvador, Brazil, 2005.

J. Meron. Prosodic unit selection unit an intonation speech database. In 4th ISCA
Workshop on Speech Synthesis, Pitlochry, Scotland, 2001.

G. A. Miller. The magical number seven plus or minus two: Some limits on our
capacity for processing information. Psychological Review, 63:81–97, 1956.

B. B. Murdock. The serial position effect of free recall. Journal of Experimental
Psychology, 64:482–488, 1962.

C. Nakatsu and M. White. Learning to say it well: Reranking realizations by pre-
dicted synthesis quality. In ACL 2006, Sydney, Australia, 2006.

Franz Josef Och and Hermann Ney. A systematic comparison of various statistical
alignment models. Computational Linguistics, 29(1):19–51, 2003.

A. Oh and A. Rudnicky. Stochastic language generation for spoken dialogue sys-
tems. In ANLP/NAACL 2000 Workshop on Conversational Systems, pages 27–32,
Seattle, WA, 2000.

S. Pan and K. McKeown. Spoken language generation in a multimedia system. In
ICSLP96, volume 1, Philadelphia, PA, 1996.

S. Pan, K. McKeown, and J. Hirschberg. Exploring features from natural language
generation for prosody modeling. Computer Speech and Language, 16:457–490,
2002.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: A method
for automatic evaluation of machine translation. In ACL 2002, pages 311–318,
Philadelphia, PA, 2002.

111

C. Paris, D. Scott, N. Green, K. McCoy, and D. McDonald. Desiderata for evaluation
of natural language generation. In M. White and R. Dale, editors, Workshop
Final Report, chapter 2, pages 9–16. Workshop on Shared Tasks and Comparative
Evaluation in Natural Language Generation, 2007.

A. Popescu-Belis. Evaluation of NLG: Some analogies and differences with machine
translation and reference resolution. In Machine Translation Summit XI, Copen-
hagen, Denmark, 2007.

S. Prevost. An information structural approach to spoken language generation. In
Proceedings of the 34th annual meeting on Association for Computational Linguis-
tics, pages 294–301, Santa Cruz, CA, 1996.

S. Prevost and M. Steedman. Specifying intonation from context for speech synthe-
sis. Speech Communication, 15:139–153, 1994.

C. Quirk, C. Brockett, and W. Dolan. Monolingual machine translation for para-
phrase generation. In EMNLP 2004, Barcelona, Spain, 2004.

Owen Rambow, Srinivas Bangalore, and Marilyn Walker. Natural language genera-
tion in dialog systems. In HLT 2001, pages 1–4, San Diego, CA, 2001.

Adwait Ratnaparkhi. Trainable methods for surface natural language generation.
In NAACL 2000, pages 194–201, Seattle, WA, 2000.

A. Raux and A. Black. A unit selection approach to F0 modeling and its application
to emphasis. In ASRU2003, St Thomas, USVI, 2003.

A. Raux, D. Bohus, B. Langner, A. Black, and M. Eskenazi. Doing research on a de-
ployed spoken dialogue system: One year of Let’s Go! experience. In Interspeech
2006, Pittsburgh, PA, 2006.

E. Reiter, S. Sripada, J. Hunter, J. Yu, and I. Davy. Choosing words in computer-
generated weather forecasts. Artificial Intelligence, 67:137–169, 2005.

112 Bibliography

Ehud Reiter and Anja Belz. An investigation into the validity of some metrics for
automatically evaluating natural language generation systems. Computational
Linguistics, 35(4):529–558, 2009.

Ehud Reiter and Robert Dale. Building applied natural language generation sys-
tems. Journal of Natural Language Engineering, 3(1):57–87, 1997.

A. Rudnicky, C. Bennett, A. Black, A. Chotimongkol, K. Lenzo, A. Oh, and R. Singh.
Task and domain specific modelling in the Carnegie Mellon Communicator sys-
tem. In ICSLP2000, volume II, pages 130–133, Beijing, China, 2000.

V. Rus, Z. Cai, and A. C. Graesser. Evaluation in natural language generation:
The question generation task. In Workshop on Shared Tasks and Comparative
Evaluation in Natural Language Generation, Arlington, VA, 2007.

R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng. Cheap and fast – but is it good?
Evaluating non-expert annotations for natural language tasks. In Conference on
Empirical Methods in Natural Language Processing (EMNLP 2008), Honolulu, HI,
2008.

S. Sripada, E. Reiter, J. Hunter, and J. Yu. SUMTIME-METEO: Parallel corpus of natu-
rally occurring forecast texts and weather data. Technical Report AUCS/TR0201,
Computing Science Department, University of Aberdeen, Aberdeen, Scotland,
2002.

S. Sripada, E. Reiter, J. Hunter, and J. Yu. Exploiting a parallel text-data corpus. In
Corpus Linguistics 2003, Lancaster, UK, 2003.

A. Stent, M. Marge, and M. Singhai. Evaluating evaluation methods for generation
in the presence of variation. In CICLing 2005, Mexico City, Mexico, 2005.

Andreas Stolcke. SRILM – An extensible language modeling toolkit. In ICSLP 2002,
pages 901–904, Denver, CO, 2002.

V. Strom, A. Nenkova, R. Clark, Y. Vazquez-Alvarez, J. Brenier, S. King, and D. Ju-
rafsky. Modelling prominence and emphasis improves unit-selection synthesis.
In Interspeech 2007, Antwerp, Belgium, 2007.

113

Y. Stylianou, O. Cappé, and E. Moulines. Statistical methods for voice quality trans-
formation. In Eurospeech95, pages 447–450, Madrid, Spain, 1995.

T. Toda. High-Quality and Flexible Speech Synthesis with Segment Selection and Voice
Conversion. PhD thesis, Nara Institute for Science and Technology, 2003.

Alan Turing. Computing machinery and intelligence. Mind, 59:433–460, 1950.

S. Varges, F. Weng, and H. Pon-Barry. Interactive question answering and constraint
relaxation in spoken dialogue systems. In 7th SIGdial Workshop on Discourse and
Dialogue, Sydney, Australia, 2006.

J. Viethen and R. Dale. Algorithms for generating referring expressions: Do they
do what people do? In INLG 2006, Sydney, Australia, 2006.

J. Viethen and R. Dale. Evaluation in natural language generation: Lessons from
referring expression generation. Traitment Automatique des Langues, 48(1):141–
160, 2007.

M. Walker, J. Aberdeen, J. Boland, E. Braat, J. Garofolo, L. Hirschman, A. Lee,
S. Lee, S. Narayanan, K. Papineni, B. Pellom, J. Polifroni, A. Potamianos,
P. Prabhu, A. Rudnicky, G. Sanders, S. Seneff, D. Stollard, and S. Whittaker.
DARPA Communicator dialogue travel planning systems: The June 2000 data
collection. In Eurospeech 2001, Aalborg, Denmark, 2001.

Yuk Wah Wong. Learning for Semantic Parsing and Natural Language Generation
Using Statistical Machine Translation Techniques. PhD thesis, University of Texas
at Austin, 2007.

Yuk Wah Wong and Raymond J. Mooney. Generation by inverting a semantic parser
that uses statistical machine translation. In NAACL-HLT 2007, pages 172–179,
Rochester, NY, 2007.

N. Yankelovich, G. Levow, and M. Marx. Designing SpeechActs: Issues in speech
user interfaces. In Conference on Human Factors in Computing Systems, Denver,
CO, 1995.

114 Bibliography

Michael Young. Using Grice’s maxim of quantity to select the content of plan de-
scriptions. Artificial Intelligence, 115:495–535, 1999.

Huayan Zhong and Amanda Stent. Building surface realizers automatically from
corpora. In Workshop on Using Corpora for Natural Language Generation, Birm-
ingham, UK, 2005.

	1 Introduction
	1.1 Natural Language Generation
	1.1.1 Spoken Language Generation
	1.1.2 Understandability vs. Naturalness

	1.2 Evaluation
	1.3 Thesis
	1.3.1 Thesis Statement
	1.3.2 Contributions

	1.4 Outline

	2 Background and Related Work
	2.1 Speech Synthesis: More Human-like Output Through Prosodic and Signal Changes
	2.1.1 Prosody and Emphasis
	2.1.2 Speech in Noise

	2.2 Spoken Language Generation
	2.2.1 Language Generation for Speech Synthesis

	2.3 Corpus-based Natural Language Generation
	2.4 Summary

	3 Evaluation of Language Generation Systems
	3.1 Methods and Metrics
	3.1.1 Automatic Measures
	3.1.2 Human-Based Evaluation

	3.2 Why Real Users are Important
	3.2.1 Evaluation Challenges in a Real-World System
	3.2.2 Study with Real-World Users
	3.2.3 Recruited Lab Participants

	3.3 Summary

	4 Improving Spoken Language Generation: The uGloss Framework
	4.1 Preliminary Work
	4.1.1 How Much Information to Present
	4.1.2 Time-Constrained Presentation
	4.1.3 Presentation Style and Fluency
	4.1.4 Discussion

	4.2 Towards a General Approach: Design Considerations
	4.3 The uGloss Framework
	4.3.1 Algorithmic Description
	4.3.2 Implementation
	4.3.3 Evaluation and Effectiveness
	4.3.4 Other Considerations

	5 The Mountain Language Generation System
	5.1 Motivation
	5.2 Approach
	5.3 Mountain: Machine Translation NLG
	5.4 Training and Use of Mountain
	5.4.1 Application
	5.4.2 Corpus
	5.4.3 Training for Generation
	5.4.4 Output

	5.5 Evaluation of Mountain Generation
	5.5.1 Automatic Evaluation: BLEU and METEOR
	5.5.2 Human-scored Evaluation
	5.5.3 Discussion

	5.6 Tuning to Improve Generation Results
	5.6.1 Training Corpus
	5.6.2 Language Model
	5.6.3 Internal Language
	5.6.4 Translation Parameters
	5.6.5 Overall Effect on Generation

	5.7 Testing in Another Domain
	5.7.1 Weather Forecasting: The SumTime-Meteo Corpus
	5.7.2 Training
	5.7.3 Systems in the Prodigy-meteo Corpus
	5.7.4 Evaluation
	5.7.5 Do Automatic Measures Correlate with Ratings by Humans?

	5.8 Discussion
	5.9 Summary

	6 Concluding Words
	6.1 Summary
	6.2 Contributions

	Bibliography

