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Abstract

Learning the structures of large undirected graphical models from data is an active re-
search area and has many potential applications in various domains, including molecular
biology, social science, marketing data analysis, among others. The estimated structures
provide semantic clarity, the possibility of causal interpretation, and ease of integration
with a variety of tools. For example, one very important direction in system biology is to
discover gene regulatory networks from microarray data (together with other data sources)
based on the observed mRNA levels of thousands of genes under various conditions. The
basic assumption is that if two genes are co-regulated by the same proteins, then they tend
to have similar patterns at the mRNA levels. Thus it is possible to learn a gene regulatory
network from microarray data if we treat each gene as a node variable and each condition
as a configuration instance.

Structure learning for undirected graphs is an open challenge in machine learning. Most
probabilistic structure learning approaches enforce sparsity on the estimated structure by
penalizing the number of edges in the graph, which leads to a non-convex optimization
problem. Thus these approaches have to search for locally optimal solutions through the
combinatorial space of structures, which makes them unscalable for large graphs. Fur-
thermore, the local optimal solution they find could be far away from the global optimal
solution, especially when the number of configuration instances is small compared with the
number of nodes in the graph.

This thesis tries to address these issues by developing a novel structure learning ap-
proach that can learn large undirected graphs efficiently in a probabilistic framework. We
use the Graphical Gaussian Model (GGM) as the underlying model and propose a novel
ARD style Wishart prior for the precision matrix of the GGM, which encodes the graph
structure we want to learn. With this prior, we can get the MAP estimation of the precision
matrix by solving a modified version of Lasso regression and thus achieve a global optimal
sparse solution. By proposing a generalized version of Lasso regression, which is called
the Feature Vector Machine (FVM), our structure learning model is further extended so
that it can capture non-linear dependencies between node variables. In particular, the opti-
mization problem in our model remains convex even in non-linear cases, which makes our
solution globally optimal. We have also developed a graph-based classification approach
for predicting node labels given network structures, either observed or automatically in-
duced. This approach is especially suitable when edges in the networks contain multiple
input features.
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The contributions of this thesis work can be seen from several aspects. First, it provides
a probabilistic framework that allows us to learn global optimal undirected graph structures
with a low polynomial (quadratic when the graph is sparse) computational cost . Second,
the development of Feature Vector Machine theoretically enriches current approaches to
feature selection and extends our structure learning model so that the non-linear dependen-
cies among node variables can be captured. Third, a graph-based classification approach
is developed for predicting node labels using the observed or learned network structures.
Fourth, we provided empirical evidence for the proposed methods in gene regulatory net-
work re-construction and gene function prediction, as well as multi-class text categorization
tasks.
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Chapter 1

Introduction

1.1 What is structure learning
A lot of real-world domains are richly structured, consisting of objects related to each other
in complex ways. In many cases, the relationships among objects are unknown and can only
be discovered from observed data. Structure learning algorithms can help us to determine
these relationships and structures hidden in the data. The learned structures could be very
useful because of their semantic clarity and understandability by humans, the possibility of
causal interpretation, and ease of integration with a variety of decision support systems.

1.2 Where can structure learning be used
With the rapid emergence of high-throughput data, structure learning has been successfully
applied to explore hidden patterns in many different fields. Some examples are given as
following:

• gene regulatory network analysis. A gene regulatory network is a collection of
DNA segments in a cell which interact with each other (indirectly through their RNA
and protein expression products) and with other substances in the cell, thereby gov-
erning the rates at which genes in the network are transcribed into mRNA. Automated
induction of large genetic regulatory networks has been an open challenge in com-
putational biology. In recent years, advances in microarray technology have made
possible the simultaneous monitoring of the mRNA levels of tens of thousands of
genes from the entire genome under various conditions. If two genes are co-regulated
by the same Transcriptional Factors (TFs), they will tend to have similar patterns of
mRNA levels in different conditions. Thus it is possible to infer the structure of the

5
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Unobserved

protein level A

mRNA lelve of gene A mRNA lelve of gene E

Unobserved

protein level X

mRNA lelve of gene B mRNA lelve of gene C mRNA lelve of gene D

Figure 1.1: A typical sample of gene regulatory network

gene regulatory network from microarray data if we treat each gene as a node vari-
able and treat the expression levels of all studied genes under a single condition as a
(multivariate) sample. Figure 1.1 gives an examples of the gene regulated network.

• Text mining and information retrieval. In some textual corpus, documents have
human-defined labels, which reflect the content of these articles. In other corpus,
there are no human-defined labels at all. It is possible to learn category networks from
observed data in both cases. When there are categorical labels defined by humans,
we can treat each category as a node and learn a category network that reflects the
relationship among these categories. When there are no human-defined labels, we
can still assume that each document contains multiple hidden topics correlated to
each other and induce a latent category network. The learned category networks
would help us to predict document labels more accurately and guide users to search
the whole collections in a much better way.

• Social network analysis. Social network analysis is the study of relationships among
social entities; such as communications among members of a group, economic trans-
actions between corporations, and treaties among nations. Structure learning algo-
rithms have been widely used in this area to determin the relationship among users or
groups from web-logs. Figure 1.2 gives an examples of the social networks among
users.

Other examples of applications include citation analysis, entity extraction, causal anal-
ysis,etc.
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Figure 1.2: A typical sample of social network among users

1.3 Graphical models: a probabilistic framework for structure
learning

Graphical models are a marriage between probability theory and graph theory. They provide
a natural tool for us to model structure learning problem within a probabilistic framework.
The random variables are represented as nodes in a graph and the conditional dependencies
among random variables are represented as edges (either directed or not). In fact, graphical
models not only give a natural representation of the relationships among multiple variables,
but they also provide inference machinery for answering probabilistic distribution queries.

There are two kinds of graphical models in general: directed and undirected. The former
restricts the structures to be directed acyclic graphs by definition while the latter can have
arbitrary topologies.

• A directed graphical model is also called a Bayesian network. It is defined as a pair
< G, P >: G =< V, E > represents a directed acyclic graph (DAG), V = {Vi} is a set of
nodes, each of which corresponds to a random variable, E = {(Vi,V j) : i , j} is a set
of edges with directions and P determines the conditional probabilistic distributions
over the variables. If there is a directed edge in G from V j to Vi, then V j is called
a parent of Vi and Vi is called a child of V j. We use parent(Vi) to represent the set
of variables that are parents of Vi. The joint probability over all variables V can be
calculated as the product of the conditional probability of each variable conditioned
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on its parent, i.e.

P(V) =
∏

Vi∈V
P(Vi|parent(Vi)) (1.1)

• An undirected graphical model is also called a Markov Random Field. It is defined
as a pair < G,Φ >: G =< V, E > represents an undirected graph, V = {Vi} is a set
of nodes, each of which corresponds to a random variable, E = {(Vi,V j) : i , j}
represents a set of undirected edges and Φ is a set of potential functions defined over
the maximal cliques ∗ in graph G. We use φc to represent the potential function for
maximal clique c. It can be any positive real-valued function. The joint probability of
the variables V can be calculated as the normalized product of the potential functions
over all the maximal cliques in G, i.e.

P(V) =
∏

c∈CG φc(Vc)
∑

V′c
∏

c∈CG φc(V ′c) (1.2)

where CG represents the set of maximal cliques in graph G, Vc represents a specific
configuration of variables in the maximal clique c and V ′c represents any possible
configuration of variables in the maximal clique c.

Both bayesian networks and undirected graphical models are widely used in many real-
world domains. Generally saying, if we do not care the direction information of the in-
teractions among nodes in the network, then we would prefer to use undirected graphical
models. If we want to model the directions of the interactions among nodes (for exam-
ple,causal relationships), then bayesian networks are better choices.

1.4 Why Structure learning is difficult
Structure learning for undirected graphs is an open challenge in machine learning. The
major difficulty of this problem comes from the fact that the number of possible structures
is in exponential to the number of nodes in the graph, which makes it very hard to find the
best structure in the searching process.

There are two major categories of existing structure learning approaches: constraint-
based approaches and score-based approaches. Constraint-based approaches use condi-
tional independence tests to tell the existence of edges between node variables. They lack
an global objective function for structure finding and likelihood maximization. Score-based

∗A maximal clique of a graph is a fully connected sub-graph that can not be further extended
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approaches perform a search through the space of possible structures and attempt to identify
the graph with the maximal likelihood. Most of them also enforce sparsity on the learned
structure by penalizing the number of edges in the graph, which leads to a non-convex op-
timization problem. The local optimal solution they find could be far away from the global
optimal solution, especially when the number of observed configuration instances is small
compared with the number of nodes in the graph.

1.5 Our work and contributions
The contributions of this thesis work can be seen from several aspects.

• Structure Learning. The problem is to recover hidden structures from observed
data. Existing methods are either unscalable for large networks or vulnerable to local
optimal values due to their greedy search processes. In this thesis, a new probabilistic
framework is developed for learning the structures of large undirected graphs. We
use the Graphical Gaussian model (GGM) as the underlying model and propose a
novel ARD style Wishart prior to enforce sparsity on the precision matrix of the
GGM, which encodes the graph structure we want to learn. With this prior, we can
get the MAP estimation of the precision matrix by solving a modified version of
Lasso regression and thus achieve an optimal sparse solution with a low polynomial
computational cost.

• Feature Selection. The problem is to discover a small subset of most predictive fea-
tures in a high dimensional feature space, motivated for accurate modeling or human
understandability. This task becomes more difficult when the dependency between
response and predictor variables is non-linear and existing feature selection methods
(like feature scaling kernel machine) often lead to highly non-convex optimizations,
which are hard to solve. In this thesis, we proposed a generalized version of Lasso
regression, called the Feature Vector Machine (FVM). It can capture non-linear de-
pendencies between response and predictor variables and generates sparse solutions
in the feature space, while still keeping the objective function convex and easy to
solve. Integrated with FVM, our structure learning method can also be readily ex-
tended to capture non-linear dependencies between node variables in a graph.

• Graph-based Classification. The problem is to predict node labels given network
structures, either observed or automatically induced. Graph-based semi-supervised
learning approaches have been widely used for such tasks. However, one limitation
of such approaches is that, the edge weights are treated as pre-determined constants,
which can not be learned from the data. On the other hand, in many real world
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domains, edge weights should be modeled as a function of multiple input variables.
For example, in Internet, each edge represents a hyperlink and its weight is a function
of the anchor text on that link. In gene regulatory networks, each edge represents
a co-regulated gene pair and its weight is a function of the corresponding protein
regulators. In citation networks, each edge represents an author pair and its weight is
a function of the papers published by the two authors together.

In this thesis, we developed a graph-based classification approach, which can learn
the edge weight functions automatically from the data and improve the finial classification
performance.

1.6 Outline of the thesis
The rest of this thesis is organized as follows. Chapter 2 reviews the related work and also
introduces some background knowledge. Chapter 3 presents our structure learning model
for undirected graphs. Chapter 4 proposes a generalization of Lasso regression, named
Feature vector machine, which enriches current approaches to feature selection and extends
our structure learning model so that the non-linear dependencies among node variables can
be captured. Chapter 5 presents our experimental results in the learning of gene regulatory
networks. Chapter 6 gives the experimental results in text categorization using learned cat-
egory networks. Chapter 7 proposed a graph-based classification approach that can learn
edge weights automatically from the data, given network structures either learned or ob-
served . Chapter 8 summarizes thesis claims.



Chapter 2

Literature Review and Background
Knowledge

Structure learning is an active research area and has many potential applications in vari-
ous domains, including causal discovery, molecular biology, information retrieval, and so
on. [44], [33] and [22] developed several structure learning algorithms for Bayesian net-
works and used them to help causal discovery in decision support systems, covering a wide
range of real life applications, such as medicine, agriculture, weather forecasting, finan-
cial modeling and animal breeding. [14], [18] and [4] used Bayesian networks to model
the interactions between genes and tried to identify these interactions by structure learning
algorithms. [50],[40],[17] and [9] did similar work but they used undirected graphical mod-
els instead of Bayesian networks as the underlying models. [14] tried to learn a network of
words from a text corpus based on the co-occurrence of words in the same documents. [5]
tried to extract topic networks from a text corpus and capture the correlations among topics
using structure learning algorithms for undirected graphical models.

There are two major categories of structure learning approaches: score-based approaches
and constraint-based approaches. Score-based approaches are mainly used to learn Bayesian
networks (directed graphs), while constraint-based approaches have been used for both
Bayesian networks and Markov Random Fields( undirected graphs). There are also some
other approaches belonging to neither of these two categories. We will introduce them in
detail for the three categories in the following sections.

2.1 Score-based approaches
Score based approaches ([20], [14],[18] and [4]) define a score that describes the fitness of

11
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each possible structure to the observed data and then perform a search through the space of
possible structures and attempt to identify the graph with the highest score. Obviously, the
posterior probability of structure G given data D, represented as P(G|D), can be used as the
score. Thus, we have

Ĝ = argmaxGlogP(G|D) = argmaxGlogP(D|G) + logP(G) (2.1)

where Ĝ represents the estimated structure, and D represents the observed data. Here the
prior logP(G) can be thought as a regularizer that penalizes complex structures.

logP(D|G) =
∫

θ

P(D|G, θ)P(θ|G)dθ (2.2)

is the marginal likelihood term where θ represents the parameters of the graphical models
associated with G.

It is often intractable to calculate exact logP(D|G) values due to the integration in for-
mula 2.2. One popular solution is to use an asymptotic approximation called BIC (Bayesian
Information Criterion) to replace this term as follows:

log P(D|G) ≈ log P(D|G, θ̂G) − log N
2

#G (2.3)

where θ̂G represents the maximum likelihood estimate of parameter θ, #G represents the
number of parameters in graph G and N represents the number of samples in the observed
data D. In this way, The integration 2.2 can be approximated by formula 2.3.

Once a score is defined, a searching strategy is needed to find the structure with the
highest score. Generally, the number of undirected graph topologies with P node variables
is 2

P(P−1)
2 , which is super-exponential in P. Thus when P is larger than 10, it is almost

impossible to find the global optimal structure in such a huge searching space.
Hill-climbing search is a sub-optimal search method that is often used ([14]). It makes a

series of edge changes (addition or deletion of one edge at a time). ∗ For each edge change,
we have a score for the graph before the change and a score for the graph after the change.
Acceptance of the change depends on whether the latter score is higher than the previous
one.

If a score for the whole graph can be decomposed as the sum of scores for individual
nodes (and the associated edges) in the graph, then after each edge change, we only need
to re-compute the scores for the nodes associated with the changed edge, but not the whole

∗If we are learning a Bayesian network, we must guarantee that the resulting graph after each edge change
is still a valid DAG.
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graph. This can simplify the computation considerably.
The pseudocode of a hill-climbing search for Bayesian networks is listed as Algorithm

1.

Algorithm 1 Hill-climbing searching algorithm for structure learning
1. Set graph G′ to be an initial graph structure, which could be random.

2. do

(a) Set G = G′

(b) Generate the acyclic graph set Neighbor(G) by adding, removing or reversing
an edge in graph G.

(c) Set G′ to be the graph in Neighbor(G) with the highest score.

3. until the score of G′ is not larger than the score of G

4. Return G

Recall that in a Bayesian network, the joint distribution of node variables V = [V1,V2, ...,VP]
can be calculated as

logP(V) =
∑

Vi∈V
logP(Vi |parent(Vi)) (2.4)

This implies that the score of a structure in a Bayesian network can be decomposed as the
sum of scores of nodes. When we add or delete an edge pointing to node V j in a Bayesian
network , we only need to re-compute the term logP(V j|parent(V j)) in the right-hand side
of formula 2.4 and the scores associated with other nodes will not change. This property
greatly reduces the computational cost of score-based structure learning approaches for
Bayesian networks.

Note that the size of Neighbor(G) is O(P2) where P is the total number of node vari-
ables. Thus step 2 needs to compute the scores of O(P2) structures, which makes the hill-
climbing search unscalable when the graph is large (with several hundred nodes or larger).
[14] proposed Sparse Candidate Hill Climbing (SCHC) to solve this problem. SCHC first
estimates possible candidate parent set for each variable and then uses this set to constrain
the hill-climbing search. The structure returned by the search can be in turn used to esti-
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mate the possible candidate parent set for each variable in the next loop. In this way, the
size of Neighbor(G) is reduced to O(P). In [14], SCHC has been used to learn Bayesian
network structures on text data and genome microarray data with 500 to 800 variables. Be-
sides Hill-climbing search, many other heuristic searching strategies have also been used
to learn structures for Bayesian networks, including Best-first search([39]), genetic search
([25]), and greedy equivalence search([7]).

A limitation of score-based approaches is the local-optimal problem. The space of
possible structures that needs to be explored will be extremely large. Thus the solution
achieved by score-based approaches could be far away from the global optimal solution.
This problem becomes more serious when the number of nodes P is large and the number
of examples N is small.

While score-based approaches have been successfully used to learn structures for Bayesian
networks, it is difficult to directly use them to learn the structures of Markov random fields.
Undirected graphical models do not have the property shown in formula 2.4. Thus the
score-based approaches for undirected graphical models are unscalable for large graphs.
Instead, constraint-based approaches are common alternatives.

2.2 Constraint-based approaches
Constraint-based approaches ([44], [33] [22], [50] and [40]) use conditional independence
tests to tell whether an edge between two node variables exists or not. The SGS algorithm
(named after Spirtes, Glymour and Scheines in [44]) is the most straightforward constraint-
based approach for Bayesian network structure learning. It determines the existence of an
edge between every two node variables by conducting a number of independence tests be-
tween them conditioned on all the possible subsets of other node variables. The pseudocode
of SGS is listed as Algorithm 2. †

The computational cost of SGS is exponential in the number of nodes in the graph
because it has considered all the possible subsets of nodes that could be conditioned on.
Thus the algorithm does not scale to large graphs.

Peter Spirtes and Clark Glymour (in [44]) developed a more efficient constraint-based
algorithm, namely the PC algorithm. It conducts independence tests between all the variable
pairs conditioned on the subsets of other node variables that are sorted by their sizes, from
small to large. The subsets whose sizes are larger than a given threshold are not considered.

†Note that after slight modifications, SGS can be used to determine the existence of edges in Markov random
fields. The details of step 3 are omitted here since this thesis only focuses on undirected graphs.
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Algorithm 2 SGS for Bayesian network structure learning
1. Set graph G to be a completely connected graph. Set U to be the set of all node

variables.

2. For each pair of node variables x1 and x2

(a) For all possible subsets S ∈ U − x1 − x2, conduct independence test between x1
and x2 conditioned on S.

(b) If for all possible subsets S ∈ U − x1 − x2, the two variables are independent
conditioned on S, then delete the edge between x1 and x2 from graph G.

3. Determine the directions of the undirected edges found in the previous steps.

The PC algorithm can be applied on graphs with hundreds of node variables. However,
when the number of nodes becomes even larger, the PC algorithm does not scale well either.

[34] has proposed the Grow-Shrinkage (GS) algorithm to learn Bayesian networks with
thousands of node variables. In GS, two phases are used to identify the estimated Markov
blanket M̂(V j) for variable V j. Initially each variable has an empty estimated Markov blan-
ket set. In the ”growing” phase, variables are added into M̂(V j) sequentially using a forward
feature selection procedure. The result is supposed to be a superset of the real Markov blan-
ket. In the ”shrinkage” phase, variables are deleted from M̂(V j) if they are independent from
the target variable conditioned on a subset of other variables in M̂(V j). Then the algorithm
tries to identify the parents and children for each variable from the estimated Markov blan-
ket and tries to orient the edges. The time cost of GS is O(P2) where P represents the
number of nodes. This algorithm can be used to learn structures of Markov random fields
after some minor modifications.

When the sample size N is small compared to the number of nodes P (which is often the
case in microarray data, for example), it is difficult to correctly test the partial correlation
between two variables given all the other variables. Several possible solutions to circumvent
this problem have been proposed. For example, [50] used Markov random fields to model
gene networks and used order-limited significance tests to learn the graph structures (only
first order partial correlations are considered). [40] did similar work but used multiple
testing procedures to identify edges in Markov random fields.

A weakness of constraint-based approaches is the lack of an explicit global objective
function directly engaged with likelihood maximization. Thus these approaches do not
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support probabilistic optimization.

2.3 Other approaches
Other approaches for the learning of undirected graphical models include the follows, which
are neither score-based approaches nor constraint-based approaches.

Learning undirected graphs via regression

The idea of regression-based approaches is to apply regression analysis to each variable as
the response on the rest of the variables as the the input; the regression coefficients larger
than a threshold are treated as links and those smaller than the threshold are ignored in the
graph structure. Lasso regression ([47]) is often preferred in recent years because it tends
to assign zero regression coefficients to most irrelevant or redundant variables (thus leading
to a sparse graph structure). Furthermore, theoretical analysis in [36] and [35] shows that
using L1 regularization, the sample complexity (i.e., the number of training examples re-
quired to learn ”well”) grows only logarithmically in the number of irrelevant features. This
conclusion indicates that L1 regularized Lasso regression can be effective even if there are
exponentially many irrelevant features as there are training examples (which is typical with
microarray data). [35] used Lasso regression to estimate undirected graph structures and
[17] used similar approaches to recover large scale transcriptional regulatory network from
expression microarray data. However, the solutions of these approaches do not necessarily
yield a maximum likelihood estimate of the undirected graphical model because the global
objective functions in these models are not probabilistic.

Learning undirected graphs via corresponding directed acyclic graphs

[9] proposed an interesting approach that learns the structures of undirected graphical mod-
els by first learning their corresponding directed acyclic graphs (DAGs). In particular, they
used the Graphical Gaussian model (GGM) ‡ as the underlying undirected graphical model.
The main idea is that, for any undirected graph whose variables (nodes) follow a joint mul-
tivariate Gaussian distribution, there must be a DAG whose variables have exactly the same
joint distribution (because a multivariate Gaussian distribution can be always decomposed
into a set of one-dimensional Gaussian distributions using the chain rule). Thus, instead of
learning the undirected graph directly, we can first learn a DAG with the largest posterior
probability. Once this DAG is found, the joint multivariate Gaussian distribution of the
variables in this DAG and its associated precision matrix (encoding an undirected graph

‡The details of GGM will be discussed in the next chapter.
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structure) can be estimated. This precision matrix will be exactly the one in the GGM we
are trying to learn. In this way, the problem of GGM structure learning has been trans-
formed into the problem of DAG learning and any Bayesian network learning algorithms
can be used to solve the problem.

One major problem of this approach is how to enforce sparsity on the estimated preci-
sion matrix, which encodes the connectivity in the undirected graph we are trying to learn.
[9] achieved a sparse estimated precision matrix by penalizing the number of edges in the
DAG that corresponds to the GGM. However, notice that there is not a simple mapping
between the sparsity of an undirected graph and the sparsity of its corresponding DAGs.
In general, an undirected graph can correspond to many DAGs with variables in different
orders. The topologies of these DAGs could be very different although the variables in these
DAGs share exactly the same joint multivariate Gaussian distribution. And the topology of
the undirected graph could be very different from the topologies of all these DAGs. Thus,
conceptually, it is not a good strategy to enforce sparsity on the corresponding DAGs in
order to obtain the sparsity in the ultimate undirected graph. Also note that this approach
needs to search DAGs with different variable orders since it penalizes the number of edges
in a DAG, while the number of edges in a DAG depends on the variable order of this DAG
for a given GGM. We will discuss this problem in detail in the next chapter.



Chapter 3

Learning Global Optimal Undirected
Graphs with ARD Wishart Prior

In this chapter, we propose a new approach for learning the global optimal structure for
undirected graphs. Our goal is to find an undirected graph structure that best explains the
data, and is relatively sparse. We use Graphical Gaussian Models (GGM) ([26]) as the
probabilistic framework, and we solve the problem by introducing a sparse prior for the
precision matrix that encodes an undirected graph, and by estimating the Maximum a Pos-
terior (MAP) for the precision matrix based on both the prior and the observed data. We
also propose a modified version of Lasso regression that efficiently finds the DAG that cor-
responds to the most probable undirected graph, as an intermediate step toward the global
optimal solution.

The rest of this chapter is organized as follows. Section 3.1 introduces Graphical Gaus-
sian model (GGM) briefly. Section 3.2 introduces whishart prior for the precision matrix in
GGM. Section 3.3 presents the relationship between the GGM and its corresponding DAGs
and explains how to estimate the precision matrix in GGM by solving regressions. Sec-
tion 3.4 presents approches to enforce sparsity on the estimated precision matrix. In this
section, we proposes an ARD style Wishart prior for the GGM and shows its equivalence
to the Laplace priors for the regression coefficients in the corresponding DAGs. Section
3.5 presents the parameter estimation procedure in our model. Section 3.6 gives a sum-
marization. Section 3.7 gives of some proof that has been used in our derivations in this
chapter.

18
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3.1 Graphical Gaussian model
Graphical Gaussian model (GGM) ([26]) is one of the undirected graphical models that
has been frequently used in recent years. In this chapter, we will use it as the underlying
framework as our undirected graphic model. For simplicity, we assume all the variables
have been preprocessed so that each of them follows a standard normal distribution. Let P
be the number of nodes in the graph. We use X = [x1, ..., xP]′to represent the P × 1 column
matrix. Then in GGM, the variables X = [x1, ..., xP]′ is assumed to follow a multivariate
normal distribution with covariance matrix Σ,i.e.

P(x1, x2, ..., xP) = 1
(2π) P

2 |Σ| 12
exp(−1

2X′Σ−1X) (3.1)

An edge between two nodes (variables) in the undirected graph encoded by the GGM im-
plies that the two variables are NOT conditionally independent to each other given the rest
variables (in other words, the conditional correlation between these two variables is not
zero). Matrix Ω = Σ−1 is often called the precision matrix. The non-zero entries in matrix
Ω are corresponding to the edges of the undirected graph. We attempt to learn the precision
matrix of GGM with maximal posterior probability from the training data.

The most straight forward way of estimating Ω is to first calculate the estimated covari-
ance matrix Σ̂and then conduct the matrix inverse operation so that the estimated precision
matrix is Ω̂ = Σ̂−1. However, there are several problems if we estimate Ω in this way.

• First, when the number of observed instances is small compared to the number of
node variables, the estimation may not be very reliable and we would want a prior on
the precision matrix as a regularizer.

• Second, Ω is a P × P matrix and P may be a large number. Matrix inverse operation
would take O(P3) computational cost, which could be too expensive.

• Third, we usually prefer to have a sparse undirected graph and Ω̂ estimated in this
way is not sparse in general.

We will discuss how the previous related works address these concern, their limitations,
and our strategy one by one in the following sections.

3.2 Wishart prior for the precision matrix in GGM
To address the first concern, one popular way is to introduce wishart prior as the regularizer
when we estimate the precision matrix in GGM.
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Wishart distribution, named in honor of John Wishart, is a family of probability distri-
butions for nonnegative-definite matrices of random variables (”random matrices”). They
are very important in multivariate statistics and they have been used as priors in the estima-
tion of precision matrix in [37], [15], [9] and many other works. A detailed description of
wishart distribution can be found in [37]. We only give a brief introduction in this section.

The Wishart distribution can be characterized by its probability density function, as
follows. Let S be a p × p symmetric matrix of random variables that is positive definite
and let V be a (fixed) p × p positive definite matrix. Then, S has a Wishart distribution
S ∼ Wp(n,V) if it has a probability density function fS given by

f (S) =
|S|(n−p−1)/2 exp

[

−trace(V−1S/2)
]

2np/2 |V |n/2 Γp(n/2)

where n is called degrees of freedom and V is called the scaling matrix. They are two
major parameters that characterize the distribution. Γp(·) is the multivariate gamma function
defined as

Γp(n/2) = πp(p−1)/4Π
p
j=1Γ
[

(n + 1 − j)/2] .

This distribution looks complex but is simply a multivariate generalization of the Gamma
distribution. The following well-known property provides a intuitive way to understand it.
Suppose X is a P × 1 column-vector random variable that follows a multivariate gaussian
distribution X ∼ Np(0,Σ). We randomly take n samples from X and get X1,X2, ...,Xn.
The the P × P matrix S = ∑n

k=1 XiX′i follows a wishart distribution S ∼ Wp(n,Σ) where
parameter n is the degree of freedom and parameter Σ is the scaling matrix.

One important property of whishart distribution is that, it is the conjungate prior of
the precision matrix in multivariate gaussian distribution. In other words, if we assume a
wishart prior for the precision matrix and the observed data are generated from a multivari-
ate gaussian distribution with zero means, then the posterior distribution of the precision
matrix also follows a wishart distribution. This is the main reason that whishart prior has
been used by many previous researchers.

Let’s suppose for precision matrix Ω, we define a Wishart prior Ω ∼ W p(δ,T ) with δ
degrees of freedom and diagonal scaling matrix T . If there is no specific prior knowledge
for the precision matrix, the scaling matrix T in the wishart prior is often set to be a diagonal
matrix (in which the off-diagonal elements are set to be zero and the diagonal elements are
set to be a constant). That is, we let T = diag(t, ..., t) where t is a constant. It is easy to
see that such a prior would encourage the off-diagonal elements in the estimated precision
matrix to shrink to zero.

However, the introduction of whishart prior can not solve our second and third con-
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cerns in the previous section. It can not help us to avoid the matrix inverse operation and
it does not lead to a sparse estimated precision matrix in general (just like in ridge regres-
sion, the norm-2 regularizer would not result in sparse regression coefficients, although the
regression coefficients are encouraged to shrink to zero.

3.3 Estimating the precision matrix in GGM by solving regres-
sions in a DAG

In this section, we will discuss how to address the second concern. That is, how to estimate
the precision matrix without matrix inverse operation.

One possible strategy is to treat the multivariate gaussian distribution as the product of
multiple conditioned univariate gaussian distribution, and then solve a set of regressions.
This method has been used by [9] and the key idea is described as follows.

3.3.1 Mapping between the precision matrix in GGM and regression coeffi-
cients in a DAG

We can always represent the joint probability P(x1, x2, ..., xP) as the product of multiple
conditional probabilities. That is:

P(x1, x2, ..., xP) =
P
∏

i=1
P(xi|xi+1, ..., xP) (3.2)

In GGM, P(x1, x2, ..., xP) is assumed to follow a multivariate Gaussian distribution.
From the properties of Gaussian distributions, we know that each conditional probability
P(xi|xi+1, ..., xP) also follows a Gaussian distribution. This implies that, for any GGM,
there must be at least one DAG with exactly the same joint distribution as the GGM ∗. Once
we estimated all the parameters in the corresponding DAG, we can recover the precision
matrix in the original GGM. Thus our task of structure learning in GGM is equivalent to
learning the DAG with maximal posterior probability.

For any DAG, there is a specific ordering of variables, which we take here for discussion
as simply 1, 2, ..., P without loss of generality. For any variable xi, only variables whose
indexes are larger than i could be considered as xi’s parents. We use x(i+1):p to represent
these variables.

∗In general, for any given GGM, there are more than one DAGs with the same joint probability distribution
since the variables can be ordered in multiple ways. For example, P(x1, x2, x3) = P(x1|x2, x3)P(x2|x3)P(x3) =
P(x1|x2, x3)P(x3|x2)P(x2).
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Let’s use β to represent the regression coefficients of the DAG. Notice once β is known,
the DAG is determined.

For each xi, we can have

xi =
P
∑

j=i+1
β jixj + εi (3.3)

where εi ∼ N(0, ψi).
This can be further written in a matrix form

X = ΓX + ε and ε ∼ NP(0, ψ)

where X = [x1, x2, ..., xP]′ represents the P×1 column matrix, ε = (ε1, ..., εP)′, ψ = diag(ψ1 , ..., ψP),
and Γ is the P×P upper triangular matrix with zero diagonal elements and upper triangular,
non-diagonal entries Γi j = β ji, ( j > i).

Form the above formula, we can get

X = (I − Γ)−1ε

Since ε follows a multivariate Gaussian distribution, from the properties of Gaussian
distribution, we know X also follows a joint multivariate Gaussian distribution with co-
variance matrix Σ = (I − Γ)−1ψ((I − Γ)−1)′. Thus the precision matrix of this distribution
is

Ω = Σ−1 = (I − Γ)′ψ−1(I − Γ) (3.4)

Notice this precision Ω is just the precision matrix of the undirected graph we are trying to
learn and it encodes the structure of the undirected graph.

It’s easy to see that the off-diagonal element Ω ji (let’s suppose j > i) has the value

Ω ji =
∑

q< j,i
βiqβ jqψ

−1
q − β jiψ

−1
i

And the diagonal element Ωii has the value

Ωii =
∑

q< j,i
β2

iqψ
−1
q + ψ

−1
i

Thus, once we can solve the regressions in formula 3.3 and get estimations of β ji and
ψi for any index i, j, then we can get the estimation of precision Ω using formula 3.4.
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The time complexity of standard linear regression is quadratic with the number of pre-
dictor variables. However, if we apply some sparse regression techniques and constrain the
number of non-zero weighted predictor variables to be small, the computational cost of each
regression could be reduced from quadratic to linear. Since we need to solve P regressions
in the structure learning process, the total computational cost would be O(P2), smaller than
the O(P3) cost for matrix inverse operations. We will have more discussion on this issue in
the next section.

3.3.2 Translate the priors of the precision matrix Ω into the priors of regres-
sion coefficients β and noise variance ψ

As described in the previous subsection, the second issue can be addressed by avoiding the
matrix inverse operation. And at the same time, we also want to address the first issue by
defining a wishart prior for the precision matrix. This requires us to translate the wishart
prior for the precision matrix into the prior for the regression coefficients β and noise vari-
ance ψ (in formula 3.3).

Let’s suppose we have defined a wishart prior Ω ∼ Wp(δ,T ) for the precision matrix
where T is a diagonal matrix with fixed diagonal elements T = diag(t, t, .., t). Let’s use β i to
represent the (p − i) × 1 matrix βi = (β(i+1)i, ...βpi)′. let’s use Ti to represent the sub-matrix
of T corresponding to variables X(i+1):p.

From the derivations in [15], † we know the associated prior for ψi is ‡

P(ψ−1
i ) = Gamma(δ − i + 1

2
,

t−1

2
) (3.5)

And the associated prior for βi is P(βi|ψi, θ(i+1):p) = Np−i(0,Tiψi). Thus

P(β ji|ψi) = N(0, tψi) (3.6)

With these priors of β and ψ, we can calculate the MAP estimation of β and ψ. and then
recover Ω.

†The Gamma distribution here is defined as Gamma(x;α, β) = xα−1 βα e−β x

Γ(α) , which is slightly different from
some other literatures. Also note the difference between the degree of freedom δ defined in this thesis and the
degree of freedom δ′ defined in [9]. In fact, they have a relationship δ = δ′ + P − 1. These small differences in
definition lead to slight difference between the formulas derived here and derived in [9].

‡To make the thesis self-contained, we also provided a brief proof in the third appendix of this chapter
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3.3.3 A brief summary
As discussed in the previous sections, both the first and the second concern can be ad-
dressed by defining a wishart prior on the precision matrix and then transfer the problem
of estimating precision matrix into the problem of solving a set of regressions. Also notice
that, until now, the MAP estimation of the precision matrix will not be influenced by the
variable order of the DAG in subsection 2.1. This is because the only prior defined is the
wishart prior for the precision matrix and this prior does not depend on the variable order.
The priors of β and ψ in formula 3.3 are derived from the wishart prior instead of being
defined directly.

We will discuss how to enforce sparsity on the estimated precision matrix, which is the
third concern, in the next section.

3.4 Enforcing sparsity on the estimated precision matrix
Based on our discussions in the previous two sections, both the first and the second con-
cerns can be addressed in the GGM framework by introducing wishart priors and solving
regressions in the DAG. The only left concern is how to make the estimation of the precision
matrix Ω sparse.

One straight-forward approach is to define some additional penalizer on the regression
coefficients β ji in formula 3.3 when we solve regressions in the DAG. Note that β jis are the
elements of matrix Γ. Thus if the estimated β jis are sparse, then the estimated Ω = (I −
Γ)′ψ−1(I−Γ) will be inheritably sparse. [9] has adopted this idea. In additional to defining a
whishart prior of the precision matrix in the GGM, they introduced a zero-norm regularizer
for β when solving regressions in the DAG. However, this strategy (named ”strategy 1”)
could result in several important disadvantages, which will be discussed in detail in the
following sub-section.

In this chapter, we proposed a new method to achieve sparseness in the estimated preci-
sion matrix, which we called ”strategy 2”. Our method differs fundamentally from [9] and
has overcome many of its problems. It will be described in detail in later sub-sections.

3.4.1 Strategy 1: defining sparse priors on the regression coefficients
Dobra ([9]) introduced a wishart prior on the precision matrix, and then estimated the pre-
cision matrix by solving regressions in the DAG. They further defined additional zero-norm
priors on the regression coefficients β in order to enforce sparsity. Such zero-norm priors
on regression coefficients penalize the number of non-zero β ji elements (which is also the
number of edges in the DAG). At the same time, it also raises some new problems.
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• First, the zero-norm penalizer on the regression coefficients β leads to a highly non-
convex optimization problem, which is hard to solve. We can only get local optimal
solutions.

• Second, a zero-norm penalizer on the regression coefficients penalizes the number of
edges in the DAG. However, what we want to get is a sparse undirected graph. Note
that there is not an explicit mapping between the number of edges in an undirected
graph and the number of edges in its corresponding DAG, although the undirected
graph and the DAG share the same joint multivariate distribution. Thus, conceptually
saying, since our finial purpose is to learn a sparse undirected graph, we would prefer
a sparse prior defined on the precision matrix, instead of a prior defined on the number
of edges in the DAG.
An intuitive example is given in figure 3.1 and 3.2. Figure 3.1 shows an undirected
graph that we want to learn, with 8 node variables following a joint multivariate
Gaussian distribution. If we represent the joint probability P(x1, x2, ..., x8) as the
product of multiple conditional probabilities P(x1, x2, ..., x8) =

∏8
i=1 P(xi|xi+1, ..., x8)

as formula 3.2, we can get the corresponding DAG shown in figure 3.2. In other
words, in order to learn the undirected graph structure in figure 3.1 correctly, we need
to learn the DAG structure in 3.2, which is not sparse. If we penalize the number of
edges in this DAG and force it to be sparse, then we can not learn the undirected
graph in figure 3.1 correctly.

• Third, a zero-norm prior directly defined on the regression coefficients depends on
the variable order of the DAG in general § Thus if a zero-norm prior defined on
the regression coefficients is introduced, the finial estimation of the precision matrix
would depend on the variable order of the DAG. Consequently, a search over all the
possible variable orders is needed, which is computational expensive.

A more natural and consistent approach (and our approach) is to directly define a sparse
prior for the precision matrix that encodes the undirected graph, and then derive the DAG
priors correspondingly, instead of starting for the DAG priors. This is the essential and
unique part of our new approach.

3.4.2 Strategy 2: defining an ARD wishart prior for the precision matrix
In order to enforce sparsity on the estimated precision matrix, we do not use the standard
wishart prior Ω ∼ Wp(δ, diag(t, ..., t)). Instead, we use a modified version of wishart prior,

§Notice the fact that for a given undirected graph, its corresponding DAGs with different variable orders
have different topologies.
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Figure 3.1: An undirected graph with 8 node variables, which are assumed to follow a joint
multivariate Gaussian distribution.
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Figure 3.2: One of the corresponding DAGs of the undirected graph in figure 3.1.

which has the form Ω ∼ Wp(δ,T ) and T = diag(θ1 , ..., θP). Here θi are positive parameters
and follow the hyper prior distribution:

P(θi) =
γ

2 exp(−γθi
2 ) (3.7)

This kind of hyper prior distributions have been suggested by [12] in a single regression
model.
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Recall the regression model defined on DAGs in formula 3.3,

xi =
P
∑

j=i+1
β jixj + εi

where β ji represent the regression coefficients and εi ∼ N(0, ψi) represents the Gaussian
noise. Let’s use βi to represent the (p − i) × 1 matrix βi = (β(i+1)i, ...βpi)′. let’s use Ti to
represent the sub-matrix of T corresponding to variables X(i+1):p.

From the derivations in [9] and [15], we know that if the prior for precision matrix Ω is
defined as Ω ∼ Wp(δ,T ), then:

• The associated prior for ψi is

P(ψ−1
i |θi) = Gamma(δ − i + 1

2
,
θ−1

i
2

) (3.8)

• The associated prior for βi is P(βi|ψi, θ(i+1):p) = Np−i(0,Tiψi). Thus

P(β ji |ψi, θ j) = N(0, θ jψi) (3.9)

Following the idea in [12], we can integrate out the hyper parameter θ from prior distri-
bution of β ji and get

P(β ji |ψi) =
∫ ∞

0
P(β ji|ψi, θ j)P(θ j)dθ j

=
1
2

√

γ

ψi
exp(−

√

γ

ψi
|β ji |) (3.10)

The detailed proof of this integration can be found in the appendix 3.7 at the end of this
section.

Formula 3.8 and 3.10 give us the priors of β and ψ. Now it’s clear that the prior of β is
a kind of norm-1 prior and would lead to a sparse estimation of regression coefficients. We
can calculate the MAP estimation β and ψ in the way the thesis proposal suggested. The
finial estimated precision matrix can be then achieved using formula 3.4.

Let’s suppose there are K samples and we use k to index them. xki represents the value of
the ith variable in the kth sample and xk(i+1):kp represents the values of the i+1th, i+2th,..,pth
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variables in the kth sample. Thus

P(βi|ψi,Data) ∝
∏

k
P(xki|xk(i+1):kp , βi, ψi)P(βi|ψi)

∝ exp(
∑

k(xki −
∑p

j=i+1 β ji xk j)2 +
√
γψi
∑p

j=i+1 |β ji|
−ψi

)

(3.11)

and

P(ψ−1
i |θi, βi,Data)

∝ P(Data|ψ−1
i , βi, θi)P(βi|ψ−1

i , θi)P(ψ−1
i |θi)

∼ Gamma(δ + 1 + p − 2i + K
2

,

∑p
j=i+1 β

2
jiθ
−1
i + θ

−1
i +
∑

k(xki −
∑p

j=i+1 β ji xk j)2

2
)

(3.12)

Our ARD wishart prior is defined on the precision matrix Ω and does not depend on
the variable order. Thus we do not need to search the order of variables in the DAG. In our
model, the finial MAP estimation of the precision matrix will not be influenced by the vari-
able order. Note that a multivariate Gaussian distribution can be re-written as the product of
a set of one-dimensional Gaussian distributions using chain rule in an arbitrary order. This
implies that, for DAGs with different variable orders, as far as the DAG parameters are all
learned using MAP estimations and the priors of the DAG parameters are all derived from
a unified global prior (not depending on the variable order) for the precision matrix, the
finial recovered joint distributions of the variables in these DAGs should all be the same. In
other words, these DAGs with different variable orders should all correspond to the same
undirected graph, even if the structures of these DAGs are very different (e.g. some are
sparse while some are dense). Thus, in principle, we can use an arbitrary variable order in
our model.

3.5 Parameter estimation of the modified Lasso regression
From formula 3.11, we see the MAP estimation of βi is

β̂i = argmin
∑

k
(xki −

p
∑

j=i+1
β ji xk j)2 +

√

γψi

p
∑

j=i+1
|β ji | (3.13)
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Thus β̂i is the solution of a Lasso regression.
However, we cannot solve formula 3.13 as a standard Lasso regression. The reason is

that ψi with different i values are generally not the same. Thus the regularization parameter√
γψi can not be treated as a single parameter. In order to estimate βi using Lasso regression

in formula 3.13, we need to first estimate the regularization parameter
√
γψi.

Formula 3.11 and 3.13 provide the posterior distribution of βi conditioned on ψi while
formula 3.12 provides us the posterior distribution of ψi conditioned on βi (the effect of θi
in formula 3.12 can be numerically integrated out by sampling method ¶). Thus we can use
an iterative procedure to estimate β̂i and ψ̂i. We start from an initial guess ψ̂i = 0. Using
this ψ̂i value, we can estimate β̂i. Then using the estimated β̂i, we estimate ψ̂i again. This
procedure is iterated until the estimation ψ̂i and β̂i do not change.

It is obvious that this iterative process will converge because the joint probability in-
creases in each iteration. Also note that the second order partial derivative of the log-
likelihood for non-zero weighted β is

2
∑

k x2
k j

−ψ , which is always negative (according to for-
mula 3.11). From the properties of convex function, we can also show that our solution is
global optimal. A detailed proof is provided in the second appendix of this chapter.

Once ψ̂i and β̂i are known, we can estimate Ω using formula 3.4 easily. Thus the graph
structure is learned. The overall procedure of of our structure learning approach is summa-
rized as follwoing.

In the real implementation, we can incorporate the iterative procedure into the fast graft-
ing algorithm that is used to solve Lasso regression ‖. The fast grafting algorithm uses the
sparse property of Lasso regression to accelerate the optimization. It scales linearly in the
total number of features when Lasso regression has a sparse solution. Suppose we have
P nodes in the graph. Note that we need to conduct P Lasso regressions. Thus the total
computational cost of our structure learning algorithm is O(P2).

¶Ideally, we’d like to multiply formula 3.7 and formula 3.12 and analytically integrate out θi. However,
it’s unclear to us whether θi can be integrated out in a close form. Thus we just sample θi values under the
distribution in formula 3.7 and use these values to simulate the integration operation. Since θi (with different
i values) all follow the same distribution in formula 3.7, the sampled θi values can be used repeatedly with
different i values.

‖Fast grafting is a kind of stage-wise gradient descent algorithm. It uses the sparseness property of Lasso
regression to accelerate the optimization. The algorithm starts with two feature sets: feature set F and feature
set Z. Then it gradually moves features from Z to F while training a predictor model only using features in F.
The details of this algorithm are referred to [42]. In order to incorporate the iterative procedure adjusting the
regularization parameter into the fast grafting algorithm, our implementation is a little different from [42]. We
initialize ψi with a zero value. In the end of each iteration in the fast grafting algorithm, ψi and the regularization
parameter λ are re-estimated based on the current regression coefficients βi.
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Algorithm 3 Pseudo code of our structure learning approach
1. Define an ARD-style wishart prior for the precision matrix in the GGM model.

2. Transform the parameters from the precision matrix to regression coefficients ~β and
variance ψ, by decomposing the joint multivariate Gaussian distribution using chain
rules.

3. Set initial values for the paramters ψ.

4. Loop until convergence:

(a) Given ψ, estimate the regression coefficients ~β using formula 3.13.
(b) Given ~β, estimate the regression variance ψ using formula 3.12.

5. Recover the estimated precision matrix by the learned ~β and ψ using formula 3.4.

3.6 Summary
In this chapter, we develop a new approach for learning large undirected graphs for GGM
in a probabilistic framework.

To be precise, we propose an Automatic Relevance Determination (ARD) style Wishart
prior for the precision matrix [31]. The ARD prior is defined in a way that 1) the proba-
bility of each undirected graph can be estimated using a corresponding DAG; and 2) the
MAP estimation of the precision matrix does not depend on the variable order in the DAG.
Notice that the second property is only true for our ARD style Wishart prior defined for
the precision matrix, and not true for the priors penalizing the number of edges in the DAG
previously reported by [9] in their approach. As a result, the previous approach requires ex-
amining all possible orders of variables in order to find the best DAG, while our approach
does not need to do so. This is a key property that enables us to solve the optimization
problem far more efficiently, as described below.

We have shown that our ARD style Wishart prior for the precision matrix is equivalent
to the Laplace priors for the regression coefficients in the corresponding DAGs. This means
that we can find the MAP estimation of the precision matrix efficiently using a modified
version of Lasso regression and a fast grafting algorithm (proposed in [42]). In this way, we
have an efficient solution for finding the global optimal undirected graph structure in a prob-
abilistic framework, instead of the exhaustive search of all DAGs which has an exponential
complexity, or some greedy search which may be more scalable but cannot guarantee the
global optimal solution. An important advantage of Lasso regression is its 1-norm regu-
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larization, making the solution space convex and hence the efficiency in finding the global
optimal point. Previous approaches ([9]) used a zero-norm regularizer in the search for the
optimal DAG, where the solution space can be very bumpy.

Our structure learning algorithm scales quadratically in the total number of nodes and
can be used to learn very large graphs. The L-1 norm regularizer and the convexity of the
optimization problem in our model provide special advantages when the number of training
examples is small compared to the number of nodes.

3.7 Appendix 1
We want to prove: Given P(θ j) = γ

2 exp(−γθ j
2 ) and P(β ji|ψi, θ j) = N(0, θ jψi), then P(β ji |ψi) =

1
2

√

γ
ψi

exp(−
√

γ
ψi
|β ji|)

Since

P(β ji|ψi) =
∫ ∞

0
P(β ji|ψi, θ j)P(θ j|ψi)dθ j =

∫ ∞

0
P(β ji|ψi, θ j)P(θ j)dθ j

So, we need to prove:

∫ ∞

0

γ

2
exp(
−γθ j

2
) 1
√

2πθ jψi
exp(

−β2
ji

2θ jψi
)dθ j =

1
2

√

γ

ψi
exp(−

√

γ

ψi
|β ji |) (3.14)

We use LHS (left hand side) and RHS (right hand side) to represent two sides of the
above formula.

The LHS can be re-written as

LHS =
∫ ∞

0

γ

2 exp(
−γθ j

2 ) 1
√

2πθ jψi
exp(

−β2
ji

2θ jψi
)dθ j

=
γ

2
√

2π

∫ ∞

0

1
√

θ jψi
exp(

γθ j +
β2

ji
θ jψi

−2 )dθ j

Let θ = θ jψi. Then θ j =
θ
ψi
.Use θ to replace θ j in the above equation , then LHS can be
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re-written as

LHS = γ

2ψi
√

2π

∫ ∞

0

1
√
θ

exp(
γ θ
ψi
+

β2
ji
θ

−2 )dθ

Let γ
ψi
= γ′, then LHS can be re-written as

LHS = γ′

2
√

2π

∫ ∞

0

1
√
θ

exp(
γ′θ +

β2
ji
θ

−2 )dθ

=
γ′

2
√

2π

∫ ∞

0

1
√
θ

exp(
(
√
γ′θ − |β ji |√

θ
)2 + 2

√
γ′|β ji|

−2 )dθ

=
γ′

2
√

2π

∫ ∞

0

1
√
θ

exp(−
√

γ′|β ji|)exp(
(
√
γ′θ − |β ji |√

θ
)2

−2 )dθ

=

√
γ′

2 exp(−
√

γ′|β ji|)
√
γ′
√

2π

∫ ∞

0

1
√
θ

exp(
(
√
γ′θ − |β ji |√

θ
)2

−2 )dθ (3.15)

Let

f (β ji) =
√
γ′
√

2π

∫ ∞

0

1
√
θ

exp(
(
√
γ′θ − |β ji |√

θ
)2

−2 )dθ (3.16)

Then, equation 3.15 becomes

LHS =
√
γ′

2 exp(−
√

γ′|β ji |) f (β ji) (3.17)

Comparing equation 3.14 and 3.17, we know now we only need to prove f (β ji) = 1.
Let
√
θ = t, then θ = t2. Replace θ by t in equation 3.16, we have

f (β ji) =
√
γ′
√

2π

∫ ∞

0

1
t exp(

(
√
γ′t − |β ji |

t )2

−2 )dt2

=

√

2γ′
√
π

∫ ∞

0
exp(

(
√
γ′t − |β ji |

t )2

−2 )dt (3.18)
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Let

g(t) = exp(
(
√
γ′t − |β ji |

t )2

−2 ) (3.19)

Then equation 3.18 can be written as

f (β ji) =
√

2γ′
√
π

∫ ∞

0
g(t)dt (3.20)

Now we define the function K(t) as:

K(t) =
√

2π
4
√
γ′

[exp(2|β ji |
√

γ′)erf(
t
√

2γ′
2 +

|β ji|
√

2
2t ) + erf(

t
√

2γ′
2 −

|β ji|
√

2
2t )]

(3.21)

Here the erf() function is the Gauss error function defined as

erf(x) = 2
√
π

∫ x

0
exp(−s2)ds

. It’s obvious that erf(∞) = 1 and erf(−∞) = −1. Also notice the property that d erf(x)
dx =

2√
π
exp(−x2).
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From equation 3.21, we know

d K(t)
dt =

√
2π

4
√
γ′

[exp(2|β ji |
√

γ′)
d erf( t

√
2γ′

2 +
|β ji |
√

2
2t )

dt +
d erf( t

√
2γ′

2 − |β ji |
√

2
2t )

dt ]

=

√
2π

4
√
γ′

exp(2|β ji |
√

γ′) 2
√
π

exp(−(
t
√

2γ′
2 +

|β ji |
√

2
2t )2)(

√

2γ′
2 −

√
2|β ji|
2t2 )

+

√
2π

4
√
γ′

2
√
π

exp(−(
t
√

2γ′

2 −
|β ji |
√

2
2t )2)(

√

2γ′

2 +

√
2|β ji|
2t2 )

=
1

2
√
γ′

[exp(
(t
√
γ′ − |β ji |

t )2

−2
)(
√

γ′ −
|β ji|
t2 ) + exp(

(t
√
γ′ − |β ji |

t )2

−2
)(
√

γ′ +
|β ji|
t2 )]

=
1

2
√
γ′

2
√

γ′exp(
(t
√
γ′ − |β ji |

t )2

−2 )

= exp(
(t
√
γ′ − |β ji |

t )2

−2 )
= g(t) (3.22)

From equation 3.22, we know that equation 3.20 can be re-written as

f (β ji) =
√

2γ′
√
π

∫ ∞

0
dK(t) (3.23)

Recall equation 3.21 and notice the fact erf(∞) = 1 and erf(−∞) = −1. Then we have
∫ ∞

0
dK(t) =

√
2π

4
√
γ′

[(exp(2|β ji |
√

γ′)(1) + 1) − (exp(2|β ji |
√

γ′)(1) + (−1))]

=

√
2π

2
√
γ′

Thus we know equation 3.23 can be re-written as

f (β ji) =
√

2γ′
√
π

√
2π

2
√
γ′

= 1 (3.24)
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Put equation 3.24 into equation 3.17, We have

LHS =
√
γ′

2
exp(−

√

γ′|β ji |)

= RHS (3.25)

Thus equation 3.14 is proved.
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3.8 Appendix 2
We want to prove our solution achieved using algorithm 3 is global optimal .

In each iterationin in algorithm 3, we can get the MAP estimation of ~β given ψ using
formula 3.13 and the MAP estimation of ψ given ~β using formula 3.12. So it is easy to see
the joint probability of ~β and ψ given the observed data increases in each iteration. Thus
the iteration will converge and we can get a local maximal point in the solution space using
algorithm 3. Now we will show there is only one local maximal point in the solution space
in our model (thus it is also global maximal).

Note that formula 3.13 defines a curve in the solution space. Assume there are mutiple
local maximal points in the solution space in our model. It’s easy to see all these local
maximal points in the solution space should satisfy formula 3.13 so they are all on this
curve. In other words, the curve defined by formula 3.13 has mutiple local maximal points.
Thus it must have at least one local minimal point. Let’s use (ψlow, ~βlow) to represent this
local minimal point on the curve.

There are two possible directions if we move away from the point (ψlow, ~βlow) along
the curve defined by formula 3.13 . One direction is increasing ψ and the other direction
is decreasing ψ. Since (ψlow, ~βlow) is the local minimal point on the curve, moving in both
directions along the curve will increase the joint probability.

However, note the following two facts.

• When the value of ψ is fixed, moving an infinitly small amount d~β away from the
point (ψlow, ~βlow) in any direction will always decrease the joint probability. The
reason is that the log of formula 3.11 is convex and the partial derivative of ~β is zero
at the point of (ψlow, ~βlow).

• When the value of β is fixed, moving an infinitly small amount dψ away from the
point (ψlow, ~βlow) will at lease decrease the joint probability in one of the two direc-
tions. The reason is that when ~β is fixed, the joint probability becomes a gamma
distribution, and gamma distribution does not have a local minimal point when ψ is
positive.
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From the above two facts, we can see that moving away from the point (ψlow, ~βlow)
along the curve will decrease the joint probability in at lease one of the two directions. This
contrdicts with the assumption that (ψlow, ~βlow) is a local minimal point on the curve.

Thus there can not be mutiple local maximal points in the solution space in our model.
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3.9 Appendix 3
Assume (x1, x2, ..., xP) follows a P dimensional multivariate Gaussian distribution with
zero means (x1, x2, ..., xP) ∼ NP(~0,Ω−1). Assume Ω follows a wishart distribution Ω ∼
Wp(δ,T ) where T is a diagonal matrix T = diag(t, ..., t). Let’s consider the conditional
distribution P(xi|xi+1, ..., xP). From the properties of Gaussian distribution, it’s easy to
know P(xi|xi+1, ..., xP) is also a Gaussian distribution and let’s assume P(xi|xi+1, ..., xP) ∼
N(X(i+1):P~βi, ψi). We want to prove ψ−1

i ∼ Gamma( δ−i+1
2 , t−1

2 ).

Proof:
Let Σ be a P × P matrix that Σ = Ω−1, thus we have (x1, x2, ..., xP) ∼ NP(~0,Σ),
From the properties of Gaussian distribution, we know (xi, ..., xP) also follows a P− i+1

dimensional multivariate Gaussian distribution (xi, ..., xP) ∼ NP−i+1(~0,Σi:P) where Σi:P is the
(P − i + 1) × (P − i + 1) sub-matrix of Σ.

Note that the definitions of inverse whishart distribution are slightly different in different
literatures. Since we will frequently cite [37] in this proof, we will use their version, which
is slightly different from the inverse whishart distributions defined in [15] and [9].

From page 110 of [37], we know that since Σ = Ω−1 and Ω ∼ Wp(δ,T ), then Σ ∼
W−1

P (δ + P + 1,T−1). And from page 111 of [37], we know that since Σi:P is the sub-
matrix of Σ, thus Σi:P ∼ W−1

P−i+1(δ + P + 1 − 2P + 2(P − i + 1),T−1
i:P), which is Σi:P ∼

W−1
P−i+1(δ + P − 2i + 3,T−1

i:P)
Let’s assume Ω′i:p = Σ

−1
i:P. From page 110 of [37], we know Ω′i:P ∼ WP−i+1(δ + P − 2i +

3 − (P − i + 1) − 1,Ti:P), which is Ω′i:P ∼ WP−i+1(δ − i + 1,Ti:P).
Suppose Ω′11 is the 1 × 1 upper left partition of Ω′i:P, and suppose T ′11 is the 1 × 1 upper

left partition of Ti:P (thus T ′11 in fact is just a real number t). From page 104 of [37], we
know Ω′11 ∼ W1(δ − i + 1,T ′11).

On the other hand, suppose Σ′11 is the 1 × 1 upper left partition of Σi:P. Suppose Σ′12,
Σ′21 and Σ′22 are other partitions of Σi:P defined in a similar way. From the properties of
Gaussian distribution, we know ψi = Σ

′
11 − Σ

′
12Σ
′
22
−1Σ′21. And from Matrix Inverse Lemma,

we know Ω′11
−1 = Σ′11 − Σ

′
12Σ
′
22
−1Σ′21 Thus Ω′11 = ψ

−1
i

We have already known that Ω′11 ∼ W1(δ − i + 1,T ′11) in our previous derivation. Thus
we know ψ−1

i ∼ W1(δ − i + 1,T ′11). Recall T ′11 in fact is just a real number t. Thus we have
ψ−1

i ∼ Gamma( δ−i+1
2 , t−1

2 ).



Chapter 4

Extend Our model to Non-linear
Cases

As presented in chapter 2, our approach transformed the structure learning problem into
the problem of solving a set of modified Lasso regressions, which are linear models. In
this chapter, we extend our approach so that it can capture non-linear relationships between
variables for structure learning. As the solution, we propose a generalization of Lasso re-
gression, named ”Feature vector machine” (FVM), by exploiting the duality between SVM
regression and Lasso regression and use it to replace Lasso regression in our previous struc-
ture learning model ([32]). FVM can be also used as a non-linear feature selection approach
with several advantages compared to other alternatives.

In this chapter, we first give an introduction of Lasso regression and SVM regression
as well as a geometric comparison between their solution hyper-planes in section 3.1 and
3.2. Motivated by their geometric similarity, we then explore the mapping between these
two algorithms. By re-formulating the standard Lasso regression into a form isomorphic to
SVM, we prove that the solution of Lasso regression on a given dataset can be achieved by
solving linear hard-margin SVM regression on the transposed dataset in section 3.3. Based
on this re-formulation, we propose a generalization of Lasso regression, which we called
”Feature vector machine” (FVM), by introducing kernels and slack variables in section 3.4.
Preliminary experiments are conducted in section 3.5 to verify our derivations of FVM and
show its effectiveness in non-linear feature selection tasks. Section 3.6 integrates FVM in
our structure learning model and section 3.7 gives the summarization.

39
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4.1 Introduction of Lasso regression and SVM regression
4.1.1 Lasso regression and its limitations
Lasso regression ([47]) tends to assign zero weights to most irrelevant or redundant features,
and hence is a promising technique for identifying the relationship between the response
variable and a small subset of predictive variables. It has been widely used in shrinkage and
feature selection (and our other feature selection works can be found in [30] and [29]).

The loss function of Lasso regression is defined as:

L =
∑

i
(yi −

∑

p
βpxip)2 + λ

∑

p
||βp||1 (4.1)

where xip denotes the pth predictor (feature) in the ith datum, yi denotes the value of the
response in this datum, and βp denotes the regression coefficient of the pth feature. The
norm-1 regularizer ∑p ||βp||1 in Lasso regression typically leads to a sparse solution in the
feature space, which means that the regression coefficients for most irrelevant or redundant
features are shrunk to zero. Theoretical analysis in [36] indicates that Lasso regression
is particularly effective when there are many irrelevant features and only a few training
examples.

One of the limitations of standard Lasso regression is its assumption of linearity in the
feature space. Hence it is inadequate to capture non-linear dependencies from features to
responses (output variables). To address this limitation, [38] proposed “generalized Lasso
regressions” (GLR) by introducing kernels. In GLR, the loss function is defined as

L =
∑

i
(yi −

∑

j
α jk(xi, x j))2 + λ

∑

i
||αi||1

where α j can be regarded as the regression coefficient corresponding to the jth basis in an
instance space (more precisely, a kernel space with its basis defined on all examples), and
k(xi, x j) represents some kernel function over the “argument” instance xi and the “basis”
instance x j. The non-linearity can be captured by a non-linear kernel. This loss function
typically yields a sparse solution in the instance space, but not in feature space where data
was originally represented. Thus GLR does not lead to compression of data in the feature
space.

Additive models ([45]) or generalized additive model ([19]) can also be used to capture
the nonlinear dependencies between the response and predictor variables. However, their
solutions are not sparse in the feature space either.

[49], [6] and [24] addressed the limitation from a different angle. They introduced
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feature scaling kernels in the form of:

Kθ(xi, x j) = φ(xi ∗ θ)φ(x j ∗ θ) = K(xi ∗ θ, x j ∗ θ)

where xi∗θ denotes the component-wise product between two vectors: xi∗θ = (xi1θ1, ..., xipθp).
For example, [24] used a feature scaling polynomial kernel:

Kγ(xi, x j) = (1 +
∑

p
γp xip x jp)k,

where γp = θ
2
p. With a norm-1 or norm-0 penalizer on γ in the loss function of a feature

scaling kernel machine, a sparse solution is supposed to identify the most influential fea-
tures. Notice that in this formalism the feature scaling vector θ is inside the kernel function,
which means that the solution space of θ could be non-convex. Thus, estimating θ in feature
scaling kernel machines is a much harder problem than the convex optimization problem in
conventional SVM of which the weight parameters to be estimated are outside of the kernel
functions.

What we are seeking for here is an alternative approach that guarantees a sparse solution
in the feature space, that is sufficient for capturing both linear and non-linear relationships
between features and the response variable, and that does not involve parameter optimiza-
tion inside of kernel functions. The last property is particularly desirable in the sense that
it will allow us to leverage many existing works in kernel machines which have been very
successful in SVM-related research.

We notice that [21] has recently developed an interesting feature selection technique
named ”potential SVM”, which has the same form as the basic version of FVM (with linear
kernel and no slack variables). However, they did not explore the relationship between
”potential SVM” and Lasso regression. Furthermore, their method does not work for feature
selection tasks with non-linear models since they did not introduce the concepts of kernels
defined on feature vectors.

4.1.2 SVM regression
Suppose we are given training data {(~x1, y1), ..., (~xn, yn)}. In the ε-SVM regression [48], the
goal is to find a function f (~x) that has at most ε deviation from the actually obtained targets
yi for all the training data, and at the same time is as flat as possible. Consider a simple case
as a linear function without the constant term, i.e., f (x) = ~β~x where ~xi = (xi1, ..., xiP) is the
vector representation of an example, and ~β = (β1, ..., βP) are the model parameters (feature
weights). The problem is defined as to learn the parameter vector using the training set with
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the following objective:


























minβ
1
2 ||~β||

2

s.t. ~β~xi − yi ≤ ε ∀i
~β~xi − yi ≥ −ε ∀i

, (4.2)

This formula is often referred as the primal objective function. By introducing a set of
non-negative Lagrange multipliers α′′i and α′i , this objective function can be re-formulated
as the equivalent dual optimization problem ∗ :



































maxα
−1
2
∑n

i, j=1(α′′i − α
′
i )(α

′′
j − α

′
j)~xi~x j

−ε
∑n

i=1(α′′i + α
′
i ) +
∑n

i=1 yi(α′′i − α
′
i )

s.t. α′′i ≥ 0 ∀i
α′i ≥ 0 ∀i

, (4.3)

Solving the problem for α′′i and α′i with i = 1, ..., n typically yields a sparse solution in the
sense that the weight αi = α

′′
i − α

′
i can be exactly zero for many training examples ~xi.

4.2 Geometric similarities between the solution hyper-planes in
SVM and Lasso regression

Suppose there are N examples and P features. Let’s use X to denote the N × P data ma-
trix, where each row corresponds to a training example and each column corresponds to a
feature. In matrix X, the (i, j)th element xi j represents the value of the jth feature in the
ith example. Let’s use Y = (y1, y2, ..., yN)T to denote a N × 1 matrix, where element yi
represents the value of the response variable in the ith example.

The shape of the solution hyper-planes of SVM regression is easy to get from formula
4.2. It is shown in figure 4.1. The space is spanned by features and each training example
is represented as a data point in the space. The two hyper-planes in the graph correspond to
the epsilon-tube, whose directions are decided by ~β in formula 4.2. We can see all the data
points are either on a hyper-plane or between the two hyper-planes, due to the constraint
in formula 4.2. The data points on the hyper-planes are called support vectors and have
non-zero αi weights. The data points between the hyper-planes have zero αi weights and
do not influence the shape of the solution hyper-plane.

In order to investigate the solution hyper-plane of Lasso regression, we first have a look
∗Notice that we are assuming f (x) = ~β~x, instead of f (x) = ~β~x + b. Thus in formula 4.3, the constraint

∑

i(α′′i − α′i ) = 0 does not exist. If we assume f (x) = ~β~x + b, then this constraint will appear.
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at two propositions about Lasso regression.
Proposition 1: For a Lasso regression problem with the following objective function,

L = ‖Xβ − Y‖2 + λ|βp|1
=
∑

i
(
∑

p
xipβp − yi)2 + λ

∑

p
|βp| (4.4)

its solution P × 1 column matrix β satisfies the following property:


















if βq < 0 then
∑

i(
∑

p βp xip − yi)xiq =
λ
2

if βq = 0 then |
∑

i(
∑

p βp xip − yi)xiq| < λ
2

if βq > 0 then
∑

i(
∑

p βp xip − yi)xiq =
−λ
2

(4.5)

Proof: see [42]. †
Proposition 2 is the inverse proposition of proposition 1.
Proposition 2: For a Lasso regression problem in formula 4.4, if some β satisfies the

properties in formula 4.5, then β is the solution of the Lasso regression.
Proof: see [42].
Proposition 1 and Proposition 2 give us an intuitive hint how the solution hyper-plane

of Lasso regression looks like. In order to make things clearer, we further re-write formula
4.5 as following























if βq < 0 then f T
q (Xβ − Y) = λ

2
if βq = 0 then −λ2 < f T

q (Xβ − Y) < λ
2

if βq > 0 then f T
q (Xβ − Y) = −λ2

(4.6)

where the N × 1 matrix fq = (x1q, ..., xNq)T corresponds to the qth column of matrix X and
represents the qth feature vector.

By comparing formula 4.6 and formula 4.2, we can see some similarities. In fact, let’s
consider a transposed space spanned by examples and each features is represented as a
point in this space. Then we can clearly see the geometric meaning of the solution in Lasso
regression. There would also be two parallel hyper-planes in this transposed space, whose
direction is Xβ−Y , according to formula 4.6. All the non-zero weighted feature vectors are
on two parallel hyper-planes. These feature vectors, together with the response variable,

†Although [42] did not give a formal mathematical proof, they have given detailed descriptions in words
thus we can construct such a proof easily. The key step is to show the following fact: the argument that
β satisfies formula 4.5 is equivalent to the argument that β is local optimal in terms of minimizing Lasso
regression’s objective function in formula 4.4. Also notice that Lasso regression is convex, which means if β is
local optimal, then it is just the solution of Lasso regression.
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example 1

example 2

feature a

Response

example 3

Figure 4.1: The solution of SVM in the space spanned by features. Each training example is
represented as a data point in the space. Example 1 and example 3 are support vectors with non-zero
weights. Example 2 has a zero weight.

feature a

feature b

feature c

example 2

example 1

Figure 4.2: The solution of Lasso regression in a space spanned by training examples. Each feature
is represented as a data point in the space. Feature a and feature c are ”support features” with
non-zero weights. Feature b has a zero weight.

determine the directions of these two hyper-planes. Thus these feature vectors correspond
to the support vectors in SVM. Other feature vectors are between these two hyper-planes.
They have zero weights and will not influence the solution hyper-plane. The figure 4.2
shows these two hyper-planes and the feature vector points.

As a summary, the solution hyper-planes in SVM and Lasso regression share many
geometric similarities, although in different spaces. This motives us to further explore the
internal relationship between these two methods.
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4.3 The proof of the mapping between the solution of SVM and
Lasso regression

The mapping between the solution of SVM and Lasso regression is described in theorem 1.
Theorem 1: Let’s consider two problems. The first problem is applying Lasso regres-

sion on the N×P data matrix X and the N×1 response matrix Y . Let’s use the P×1 column
matrix β to represent the learned weights for features. The second problem is applying
SVM regression on the P×N data matrix XT and the P× 1 response matrix XT Y . Let’s use
the P × 1 column matrix α to represent the learned weights for examples. Then β = α.

proof: In order to be consistent, we first re-write the objective function of SVM in
formula 4.2 into matrix form . In order to avoid confusion with the symbols X, Y and β

already defined in theorem 1, we use X′ to represent the input data matrix and use Y ′ to
represent the response matrix for SVM. We use β′ to represent the column weight matrix
for features learned in SVM. Without loss of generality, we use λ

2 to replace ε. We get






















minβ′
1
2 ||β
′||2

s.t. X′β′ − Y ′ ≤ λ
2 e

X′β′ − Y ′ ≥ −λ2 e
, (4.7)

where e is a one-vector whose dimensionality is equal to the number of examples in the
SVM setting.

According to the conditions given in theorem 1, there are P examples and N features
in the current SVM setting. Thus SVM’s primary solution β′ is a N × 1 matrix and can be
written as β′ = (β′1, ..., β

′
N)T . Since we know SVM’s primary solution can be represented in

the dual form, we can write
β′i =

∑

p
αpx′pi

where αp is the weight that SVM assigned to the pth example. Here x′pi is the (p, i) element
in matrix X′ and represents the value of the ith feature in the pth example in input data
matrix X′. Thus, using matrix form, we can write β′ = X′Tα.

According to the conditions given in theorem 1, we have X ′ = XT and Y ′ = XT Y . Thus
we have β′ = X′Tα = Xα. Put these stuffs into formula 4.7. We get























minα
1
2 ||Xα||

2

s.t. XT Xα − XT Y − λ
2 e ≤ 0

XT Xα − XT Y + λ
2 e ≥ 0

, (4.8)

This is a standard optimization problem with inequalities. Following the standard con-
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strained optimization procedure, we can derive the dual of this optimization problem. We
can introduce Lagrange multipliers α+ for the inequalities XT Xα − XT Y + λ

2 e ≥ 0 and in-
troduce Lagrange multipliers α− for the inequalities XT Xα − XT Y − λ

2 e ≤ 0. α+ and α− are
two P × 1 column matrixs with non-negative elements. Then we get the Lagrange L as:

L = 1
2
αT XT Xα − αT

+(XT (Xα − Y) + λ
2

e)

+αT
−(XT (Xα − Y) − λ2 e)

The optimizer satisfies:

∇αL = XT Xα − XT X(α+ − α−) = 0

When XT X is not inversible, there could be multiple solutions. Let’s assume there is
only one solution for SVM regression. Then it’s easy to know α = α+ − α− is the solution
of this loss function.

Notice that α, α+, and α− are all column matrices as α = (α1, ..., αP)T , α+ = (α+1, ..., α+P)T

and α− = (α−1, ..., α−P)T .

• For any element αq > 0, obviously α+q should be larger than zero. From the KKT
condition, we know

N
∑

i=1
(

P
∑

p=1
αp xip − yi)xiq = −

λ

2

holds at this time.

• For the same reason we know when αq < 0, α−q should be larger than zero thus
∑

i
(
∑

p
αp xip − yi)xiq =

λ

2

holds.

• When αq = 0, α+q and α−q must both be zero (it’s easy to see they can not be both
non-zero from KKT condition), thus from KKT condition, both

∑

i
(
∑

p
αp xip − yi)xiq > −

λ

2
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and
∑

i
(
∑

p
αp xip − yi)xiq <

λ

2

hold now, which means

|
∑

i
(
∑

p
αpxip − yi)xiq| <

λ

2

at this time.

As a summary, α satisfy properties in formula 4.5. According to proposition 2, α is the
solution of the Lasso regression in formula 4.4. Thus α = β

Proof finished.

4.4 The Feature vector machine
4.4.1 FVM for non-linear feature selection
Theorem 1 allows us to get the solution of Lasso regression on a given dataset just by
solving linear SVM regression on a transposed dataset. In other words. Lasso regression
defined in formula 4.1 can be re-formulated as formula 4.8 and solved by standard linear
SVM regression solvers. To clean up a little bit, we rewrite formula 4.8 in vector format:















minβ
1
2‖[ f1, . . . , fK]β‖2

s.t. | f T
q (y − [ f1, . . . , fK]β)| ≤ λ

2 , ∀q.
(4.9)

In many cases, the dependencies between feature vectors are non-linear. Analogous
to the SVM, we can introduce kernels that capture such non-linearity. Note that unlike
SVM, our kernels are defined on feature vectors instead of the sampled vectors (i.e., the
rows rather than the columns in the data matrix). Such kernels can also allow us to easily
incorporate certain domain knowledge into the classifier.

Suppose that two feature vectors fp and fq have a non-linear dependency relationship.
In the absence of linear interaction between fp and fq in the the original space, we as-
sume that they can be mapped to some (higher dimensional, possibly infinite-dimensional)
space via transformation φ(·), so that φ( fq) and φ( fq) interact linearly, i.e., via a dot product
φ( fp)Tφ( fq). We introduce kernel K( fq, fp) = φ( fp)Tφ( fq) to represent the outcome of this
operation.
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Replacing f with φ( f ) in Problem (4.9), we have














minβ
1
2
∑

p,q βpβqK( fp, fp)
s.t. ∀q, |∑p βpK( fq, fp) − K( fq, y)| ≤ λ

2
(4.10)

We refer to the optimization problem in formula 4.9, and its kernelized extensions in
formula 4.10, as Feature vector machine (FVM).

Now, in Problem 4.10, we no longer have φ(·), which means we do not have to work in
the transformed feature space, which could be high or infinite dimensional, to capture non-
linearity of features. The kernel K(·, ·) can be any symmetric semi-positive definite matrix.
When domain knowledge from experts is available, it can be incorporated into the choice
of kernel (e.g., based on the distribution of feature values). When domain knowledge is
not available, we can use any kernels that can detect non-linear dependencies without any
distribution assumptions. In the following we give one such example.

One possible kernel is the mutual information [8] between two feature vectors: K( f p, fq) =
MI( fp, fq). This kernel requires a pre-processing step to discritize the elements of features
vectors because they are continuous in general. In this paper, we discritize the continuous
variables according to their ranks in different examples. Suppose we have N examples in
total. Then for each feature, we sort its values in these N examples. The first m values (the
smallest m values) are assigned a scale 1. The m+1 to 2m values are assigned a scale 2. This
process is iterated until all the values are assigned with corresponding scales. It’s easy to see
that in this way, we can guarantee that for any two features p and q, K( f p, fp) = K( fq, fq),
which means the feature vectors are normalized and have the same length in the φ space
(residing on a unit sphere centered at the origin).

Mutual information kernels have several good properties. For example, it is symmet-
ric (i.e., K( fp, fq) = K( fq, fp), non-negative, and can be normalized. It also has intuitive
interpretation related to the redundancy between features. Therefore, a non-linear feature
selection using generalized Lasso regression with this kernel yields human interpretable
results.

Note that we choose mutual information kernel mainly because it is simple and effec-
tive. Other choices are also possible and it could be interesting to explore them. we have
not done thorough investigations in this line yet.

4.4.2 Further discussion about FVM
As we have shown, FVM is a straightforward feature selection algorithm for nonlinear fea-
tures captured in a kernel; and the selection can be easily done by solving a standard SVM
problem in the feature space, which yield an optimal vector β of which most elements are



4.5. Experiments 49

zero. It turns out that the same procedure also seemlessly leads to a Lasso-style regularized
nonlinear regression capable of predicting the response given data in the original space.

In the prediction phase, all we have to do is to keep the trained β fixed, and turn the
optimization problem (4.10) into an analogous one that optimizes over the response y.
Specifically, given a new sample xt of unknown response, our sample matrix grows by
one column → [, xt], which means all our feature vectors gets one more dimension. We
denote the newly elongated features by F ′ = { f ′q}q∈A (note that A is the pruned index set
corresponding to features whose weight βq is non-zero). Let y′ denote the elongated re-
sponse vector due to the newly given sample: y′ = (y1, ..., yN , yt)T , it can be shown that the
optimum response yt can be obtained by solving the following optimization problem ‡:

minyt K(y′, y′) − 2
∑

p∈A
βpK(y′, f ′p) (4.11)

When we replace the kernel function K with a linear dot product, FVM reduces to Lasso
regression. Indeed, in this special case, it is easy to see from Eq. (4.11) that y t =

∑

p∈A βpxtp,
which is exactly how Lasso regression would predict the response. In this case one predicts
yt according to β and xt without using the training data . However, when a more complex
kernel is used, solving Eq. (4.11) is not always trivial. In general, to predict y t, we need not
only xt and β, but also the non-zero weight features extracted from the training data.

As in SVM, we can introduce slack variables into FVM to define a “soft” feature sur-
face. But due to space limitation, we omit details here. Essentially, most of the methodolo-
gies developed for SVM can be easily adapted to FVM for nonlinear feature selection.

One thing to be noticed is that in FVM regression, the computational cost is quadratic
to the number of features and linear to the number of samples. Thus when the number
of features is huge and the number of samples is small, the computational cost of FVM
regression is larger than that of SVM.

4.5 Experiments
4.5.1 Experiments to verify our derivations and proofs
We conducted experiments to verify our derivations and proofs for theorem 1. A 100 × 30
data matrix X, with 100 examples and 30 features, was randomly generated. The values of

‡For simplicity we omit details here, but as a rough sketch, note that Eq. (4.10) can be reformed as

minβ||φ(y′) −
∑

p
βpφ( f ′p)||2 +

∑

p
||βp||1.

Replacing the opt. argument β with y and dropping terms irrelevant to yt, we will arrive at Eq. (4.11).
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Figure 4.3: comparison between the weights estimated by SVM (in the X axis) and the
weights estimated by Lasso codes in [16] (in the Y axis). We can see that the two estima-
tions are very close.

the elements in X are sampled from the uniform distribution between 0 and 1. A 100 × 1
response matrix Y is also randomly generated in the same way. Our task is to learn the
30 × 1 weight matrix β by applying Lasso regression in formula 4.4 on X and Y .

According to theorem 1, we can get β by feeding the data matrix XT and the response
matrix XT Y into SVM regression solver. We chooses the SVM-light package [23] as our
toolkit, due to its large-scale processing ability and the widespread popularity. § SVM-light
returned us an estimated 30 × 1 weight matrix β̂.

We also used the matlab codes of Lasso regression implemented according to [16] to
get another estimated β̂′. We use it as the baseline to verify the correctness of the β̂ returned
by SVM.

Figure 4.3 shows the comparison between the two weight vectors, learned by SVM-light
and by Lasso matlab toolkit respectively. Each circle in the figure represents a feature. The

§It’s important to choose the correct parameter options when we use SVM-light to calculate solutions for
Lasso regression. Let’s suppose we want to set the regularization parameter λ in Lasso regression to be 0.7.
Then the command line we use for SVM-light is as following:

svm learn − a f a − z r − b 0 − c 9999 − w 0.7 f d f m

Here ”-b 0” option is necessary to guarantee that the unbiased hyperplane y = ~w~x instead of the biased hyper-
plane y = ~w~x+b is used in the model. Another thing is that the line number in file ”fa” will be 2×P if there are
P lines in the file ”fd”. From the first line to the Pth line in the file ”fa”, the value in the ith line is the alpha+
value of the ith example. However, from the P+ 1th line to the 2× P line in the file ”fa”, the value in the P+ ith
line is corresponding to the −α− value for the P + 1 − ith example. This rather unnatural format in svm-light
need be noticed otherwise the results will be wrong.
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value on the X axis of a feature represents the weight of this feature learned by SVM-light
according to theorem 1. The value on the Y axis of a feature represents the weight of this
feature learned by Lasso matlab toolkit. Notice that many features have been zero-weighted
by both methods thus overlap together. We can see that the points in the figure almost form
a straight line, which means that the two estimations are very close.

4.5.2 Experiments of non-linear feature selection by FVM
We test FVM on a simulated dataset with 100 features and 500 examples. The response
variable y in the simulated data is generated by a highly nonlinear rule:

y = sin(10 ∗ f1 − 5) + 4 ∗
√

1 − f 2
2 − 3 ∗ f3 + ξ.

Here feature f1 and f3 are random variables following a uniform distribution in [0, 1];
feature f2 is a random variable uniformly distributed in [−1, 1]; and ξ represents Gaussian
noise. The other 97 features f4, f5, ..., f100 are conditionally independent of y given the
three features f1, f2 and f3. In particular, f4, ..., f33 are all generated by the rule f j =
3 ∗ f1 + ξ; f34, ..., f72 are all generated by the rule f j = sin(10 ∗ f2) + ξ; and the remaining
features ( f73, ..., f100) simply follow a uniform distribution in [0, 1]. Fig. 4.4 shows our data
projected in a space spanned by f1 and f2 and y.

We use a mutual information kernel for our FVM. For each feature, we sort its values
in different examples and use the rank to discritize these values into 10 scales (thus each
scale corresponds to 50 data points). We apply both standard Lasso regression and FVM
with mutual information kernel on this dataset. The value of the regularization parameter λ
can be tuned to control the number of non-zero weighted features. In our experiment, we
tried two choices of the λ, for both FVM and the standard Lasso regression. In one case,
we set λ so that only 3 non-zero weighted features are selected; in another case, we relaxed
a bit and allowed 10 features.

The results are very encouraging. As shown in Fig. (4.5), under stringent λ, FVM
successfully identified the three correct features, f1, f2 and f3, whereas Lasso regression has
missed f1 and f2, which have non-linear dependencies with y. Even when λ was relaxed,
Lasso regression still missed the right features, whereas FVM was very robust.

4.6 Integrate FVM in our structure learning model
In our previous structure learning model, the P node variables x1, ..., xP are assumed to fol-
low a multivariate normal distribution. However, such a model can not capture the possible
non-linear dependencies among these variables.
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Figure 4.4: The responses y and the two features f1 and f2 in our simulated data. Two
graphs from different angles are plotted to show the distribution more clearly in 3D space.

Following the idea of FVM, suppose that two variables xp and xq have a non-linear
dependency relationship. In the absence of linear interaction between xp and xq in the the
original space, we assume that they can be mapped to some (higher dimensional, possibly
infinite-dimensional) space via transformation φ(·), so that φ(xp) and φ(xq) interact linearly,
i.e., via a dot product φ(xp)Tφ(xq). We introduce kernel K(xq, xp) = φ(xp)Tφ(xq) to repre-
sent the outcome of this operation.

We assume the variables φ(x1), ..., φ(xP) follow a multivariate normal distribution. φ(X) = [φ(x1), ..., φ(xP)]′
represents the P × 1 column matrix. Then we have

P(φ(x1), ..., φ(xP)) = 1
(2π) P

2 |Σ| 12
exp(−1

2φ(X)′Σ−1φ(X)) (4.12)

Following the derivations in chapter 2, we can estimate Σ−1 by solving a set of modified
Lasso regressions. Formula 3.13 in chapter 2 now becomes:

β̂i = argmin||φ(xi) −
p
∑

j=i+1
β jiφ(x j)||2 +

√

γψi

p
∑

j=i+1
|β ji| (4.13)

As we discussed in this chapter , formula 4.13 can be re-formulated as formula 4.10 and
solved by SVM regression solvers.
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Figure 4.5: Results of FVM and the standard Lasso regression on this dataset. The X axis
represents the feature IDs and the Y axis represents the weights assigned to features. The
two left graphs show the case when 3 features are selected by each algorithm and the two
right graphs show the case when 10 features are selected. From the down left graph, we can
see that FVM successfully identified f1, f2 and f3 as the three non-zero weighted features.
From the up left graph, we can see that Lasso regression missed f1 and f2, which are non-
linearly correlated with y. The two right graphs show similar patterns.

4.7 Summary
In this chapter, we have explored the mapping between the solution of SVM regression
and Lasso regression and found that the solution of one model on a given dataset can be
achieved by solving the other model on the transposed dataset. This finding sets up a bridge
that allows the optimization techniques and algorithmatic variants developed for these two
models to communicate with each other. Based on this exploration, we propose a gener-
alization of Lasso regression named FVM. which extends our structure learning model to
non-linear cases and enriches the current approaches for feature selection .



Chapter 5

Learning Gene Regulatory Networks

5.1 Background
A gene regulatory network usually refers the ensemble of DNA segments (e.g., genes, mo-
tifs) and proteins in a cell and the causal schemes (e.g., regulatory dependencies) according
these elements interacting with each other and with other substances in the cell, thereby
governing the rates at which genes in the network are transcribed into mRNA (Fig. 7.1).
Automated induction of large genetic regulatory networks has been an open challenge in
machine learning and computational biology. In recent years, advances in microarray tech-
nology have made possible the simultaneous monitoring of the mRNA levels of tens of
thousands of genes from the entire genome under various conditions. If two genes are co-
regulated by the same Transcriptional Factors (TFs), they will tend to have similar patterns
of mRNA levels in different conditions in the microarray data. Thus it is possible to infer
the structure of the gene regulatory network from microarray data if we treat each gene as
a variable and treat the expression levels of all studied genes under a single condition as a
(multivariate) sample.

Clustering-based algorithms are widely applied in microarray data analysis. The two
most popular clustering methods, hierarchical clustering algorithm ([10]) and K-means
clustering algorithm ([11]), have been used to find biologically meaningful gene clusters
from expression data by many previous researchers. [2] and [41] have developed more ad-
vanced clustering-based approaches to discover genetic regulatory networks from multiple
data sources.

Although clustering analysis is effective and straightforward, it has several limitations.
It is often tricky to determine the number of clusters and the partial correlation (conditional
independence relationship) between mRNA levels of genes cannot be modeled.

One solution to overcome this is to use a Bayesian network (BN), which is defined as a

54
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Figure 5.1: A typical sample of gene regulatory network

directed acyclic graph associated with local conditional distributions, as the model of gene
network ([13], [18], [4]). Each node in a BN represents a gene and each directed edge
represents an interaction between two genes. Several algorithms (usually called ”structure
learning algorithms”), like Sparse Candidate Hill Climbing and Grow-Shrinkage algorithm,
have been developed to learn the structures of BNs with thousands of nodes from data.

One problem of modeling a regulatory network as a BN lies on the fact that the pro-
tein levels are unobservable from microarray data (Fig. 7.1). Most BNs proposed so far
only include mRNA levels of genes as nodes, but not protein levels. While the mRNA
levels of co-regulated genes are often correlated, the mRNA levels of the regulated genes
and regulator genes may not always correlate to each other because the mRNA expression
levels of regulator genes are not always good indicators of their protein levels and activ-
ities. Even when the mRNA levels of regulator genes and regulated genes do correlate,
the mRNA levels of co-regulated genes are generally not conditionally independent to each
other given the mRNA levels of the regulator genes. Generally speaking, there are two
kinds of dependencies among mRNA levels of genes in microarray data. One is the depen-
dency between regulator genes and regulatee genes. The other is the dependency among
co-regulated genes. A BN directly inferred from mRNA profiles may confound these two
kinds of dependencies.

one way to distinguish these two kinds of dependencies is to use location analysis data
in addition to microarray data. Location analysis identifies physical interactions between
regulators and motifs on the regulatory regions of the genes. However, physical binding is
not equivalent to regulatory interaction. Furthermore, location analysis itself is also very
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Figure 5.2: An undirected graph learned in our approach corresponding the regulatory network
in Fig 1. The dot-lined boxes represent modules of co-regulated genes. The gene connecting to a
module encodes the TF that regulates the genes in that module.

noisy. Thus, by combining these two data sources, we may recover modules more accu-
rately than using either one alone. [18] and [4] have used genome wide location analysis
data as priors to constrain the structures of BNs so that the edges corresponding to the de-
pendencies of co-regulated genes are filtered out. Such an approach implicitly assumes the
presence of (relatively strong) correlations between mRNA levels of the regulator genes and
the regulated genes, whereas ignores the dependencies among genes that are co-regulated,
which are often the strongest signals in microarray data and may be very useful.

5.2 Our approach
In this thesis, we integrate the microarray data and location analysis data in a different way.
Our approach learns the genetic regulatory network in two steps.

• In the first step, instead of directly modeling the regulator-regulatee dependencies as
in BNs, we only attempt to model the dependencies among co-regulated genes using
graphical Gaussian model (GGM). Each edge of the undirected graph encoded by the
GGM corresponds to the dependencies between a pair of co-regulated genes. Fig 5.2
shows an example of such a model. We use the structure learning approach in chapter
2 to learn a GGM from microarray data. Of course in practice our algorithm can not
completely exclude edges that may correspond to the dependencies between regula-
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tors and regulatees. In this case, we rely on the location analysis data to distinguish
the two kinds of edges in the next stage.

• In the second step, we take the learned undirected graph together with a genome-wide
location analysis dataset (i.e., the ChIp-ChIp data) as the input. A post-processing al-
gorithm is developed to calculate the probability that genes connected in the estimated
undirected graph have some shared TF set in location analysis data by chance. If this
probability is less than a p-value threshold, we would infer these genes be regulated
by the shared TF set.

The advantage of our approach lies on the fact that the dependencies among co-regulated
genes are often much stronger and more robust than the dependencies between regulator
genes and regulatee genes in microarray data. Thus by exploiting the co-regulation depen-
dency information, which is not used in BNs, we may discover more regulatory patterns
and we no longer need to assume the presence of detectable statistical correlations between
mRNA levels of regulator genes and regulated genes.

5.2.1 The first step: Learning GGM from microarray data
In the first step we learn an undirected graph encoded by the GGM from microarray data.
The edges in the undirected graph are supposed to correspond to the co-regulated gene
pairs. The technical details of this step is presented in chapter 2.

5.2.2 The second step: the post-processing process
In the second step, we outline a method to identify the regulator genes and the modules
of co-regulated genes from the estimated GGM with the help of genome-wide location
analysis data (i.e., the ChIp-ChIp data).

Location analysis identifies physical interactions between regulators and motifs on the
regulatory regions of the genes. It consists of a matrix whose rows are all the possible
regulatee genes and columns are all the possible regulators. The elements of the matrix are
the P-values reflecting the chance that a physical interaction happens between the regulator
and regulatee gene.

For any gene xi, let’s assume there are K genes connecting to it in the previously esti-
mated undirected graph. Let’s suppose in these K genes, there are L genes that share some
regulator set with gene xi in the location analysis data. We use R to represent the shared
regulator set. Now we want to calculate the probability that the L + 1 genes (L genes plus
gene xi itself) share the same regulator set R by chance. In this paper, we use a binomial
distribution to approximate this probability.
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Let’s use N to represent the total number of genes. Let’s use M to represent the number
of genes which are possibly regulated by the regulator set R in the location analysis data.
Then, the probability of a randomly selected gene being regulated by regulator set R is M

N .
Thus, in the K + 1 genes (K genes connecting to gene xi plus gene xi itself), the proba-

bility that L + 1 or more than L + 1 genes share the same regulator set R by chance is

score =
K+1
∑

j=L+1

(K + 1)!
(K + 1 − j)! j! ( M

N ) j(1 − M
N )K+1− j. (5.1)

If this score is lower than a pre-defined p-value threshold (we use 0.05 in this paper), we
will infer regulator-regulatee dependencies between regulator set R and these L + 1 genes.

The pseudo code of the post-processing algorithm is shown as Algorithm 3.

Algorithm 4 Pseudo code of the post-processing algorithm
1. For each gene xi

(a) Get all the genes connecting to gene xi in the estimated undirected graph. Use
Neighbor(xi) to represent this gene subset. Suppose the size of Neighbor(xi) is K.

(b) From the protein-binding location analysis data, find all the TFs that are shared by xi
and one or more genes in Neighbor(xi). For each shared TF set R

i. Suppose there are N genes in total. Suppose there are M genes regulated by TF
set R. Suppose in Neighbor(xi), there are L genes regulated by TF set R. Use
S (R,Neighbor(xi)) to represent these L genes. Use formula 5.1 to calculate a p-
value. If this p-value is less than a p-value threshold, then we would infer that
the gene xi and genes in S (R,Neighbor(xi)) form a co-regulated module, which is
regulated by genes in TF set R

5.3 Experiments
We applied our method on the Yeast Saccharomyces cerevisiae dataset. The expression
microarray data we used comes from [43]. The mRNA expression levels of 6177 genes
are measured under 76 conditions. The location analysis data we used comes from [27]. It
gives the p-values of genes regulated by each of the 106 TFs. When a p-value is lower than
0.05, we would assume it is possible that the gene is regulated by the TF.

In our experiment, the value of the hyper-prior γ is assigned to be 2.31 so that the corre-
lation coefficients between zero weighted variables and the regression residue are no larger
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Figure 5.3: This is an undirected graph that is corresponding to all the gene regulatory mod-
ules(whose sizes are required to be no less than five) found by our algorithm. Each node represents
a gene and each edge represents a co-regulated relationship between two genes. Each regulatory
module corresponds to a clique. Notice that one gene can be in multiple regulatory modules. That’s
why many cliques are connected in the figure. The graph clustering coefficient is 0.433.

than 0.01. Another parameter is the p-value threshold of the post-processing algorithm,
which can be used to control the number of output gene modules. Here we also set the
p-value threshold to be 0.05.

Directly evaluating the estimated gene regulatory network is difficult because the true
gene network is usually unknown. One possible solution is that, instead of directly evaluat-
ing the estimated gene regulatory network, we evaluate the gene regulatory modules in the
estimated gene network. A gene regulatory module is defined to be a set of co-regulated
genes sharing the same set of regulator genes. Genes in the same module are likely to attend
the same cellular processes and have similar biological functions. Most yeast genes have
been annotated with certain cellular processes or functions in GO database([1]). Thus it is
possible to use this information as an external evidence to evaluate the estimated gene reg-
ulatory modules. In fact, such evaluation strategies have been widely used in recent years
([41]).

The details of the evaluation strategy are summarized as following. For each gene mod-
ule and each GO annotation, we calculated the fraction of genes in that module associated
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Figure 5.4: This is the histogram that shows the distribution of node degrees in figure 5.3. The X
axis represents the degree of nodes. The Y axis shows the number of nodes with such degrees in
each bin. We can see that the histogram approximately follows power law distribution.

with that GO annotation and used the hypergeometric distribution to calculate a p-value
for this fraction (which can be done using SGD Term Finder Toolkit([1]), and took p-value
< 0.05 to be significant. We compared the enrichment of modules for GO annotations
between results achieved by our undirected graph structure learning algorithm and results
achieved by other baseline algorithms. In this paper, we only consider GO annotations in
”Process” category.

5.3.1 Co-regulated gene modules recovered by our method
We list the regulatory modules found by our approach with at least 2 TFs and five regulated
genes in table 5.1.

Each line in table 5.1 represents a regulatory module found by our approach. The first
column gives the regulator set of this module. The second column gives the number of reg-
ulated genes with annotations in GO database VS the number of all the regulated genes in
this module. The third column gives the previous reference of the interactions among reg-
ulator genes in this module. The last column gives the GO annotations of processes shared
by the regulated genes in this module (the names of the regulated genes are not shown to
save space). We also give the P-values for these GO annotations, which are calculated by
SGD Gene Ontology Term Finder Toolkit([1]). This value reflects the probability that the
genes in the module share the GO annotation by chance. Since there are generally multiple
GO annotations shared by a gene cluster, we only show the GO annotation with the smallest
P-value for each module in the last column. We can see many of the co-regulators in our
recovered modules have already been reported as co-TFs or have interactions by previous
references. Some well studied co-TFs like (MBP1, SWI6) and (FKH2, MCM1, NDD1) can
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Figure 5.5: Comparison between our approach and Hierarchy clustering (in the first row) and K-
means clustering (in the second row), with k=50 (first column), 100 (second column), 600 (third
column) respectively. In the up left figure, there are 109 dots on the Y axis and 22 dots on the X
axis. In the up middle figure there are 121 dots on the Y axis and 19 dots on the X axis. In the up
right figure, there are 91 dots on the Y axis and 22 dots on the X axis. In the down left figure, there
are 119 dots on the Y axis and 29 dots on the X axis. In the down middle figure, there are 112 dots
on the Y axis and 27 dots on the X axis. In the down right figure, there are 92 dots on the Y axis and
39 dots on the X axis.

also be found in table 5.1.
There are a lot of other interesting patterns found by our approach that are not listed in

table 5.1. For example, our approach found the module with regulator set (CAD1,PHO4)
and the regulated gene set (CUP1-1,CUP1-2). This small module corresponds to the process
”response to copper ion” on a significance level with pvalue = 3.02e − 07 (both CUP1-1
and CUP1-2 belong to this process, while in all of the 7276 annotated genes in the GO
database, only 4 genes belong to this process).

In figure 5.3, we plot the undirected graph that is corresponding to all the gene regu-
latory modules(whose sizes are required to be no less than five) found by our algorithm.
There are 957 nodes in this figure. Each node represents a gene and each edge represents
a co-regulated relationship between two genes. Thus each regulatory module corresponds
to a clique. Notice that one gene can be in multiple regulatory modules. That’s why many
cliques are connected. The graph clustering coefficient is also given in figure 5.3. In figure
5.4, we plot the histogram that shows the distribution of node degrees for the undirected
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Table 5.1: modules with multiple regulators and more than 5 regulated genes.
regulator set annotated/ALL reference of co-regulators common processes or function of regulated genes
ACE2,SWI5 6/6 4/6 cell proliferation, p=0.023
ASH1,FKH2 4/5 2/4 cell wall organization and biogenesis, p=0.002
ASH1,SWI4 5/5 3/5 cell organization and biogenesis(p=5.94e-05),
CIN5,MET4 6/8 2/6 copper ion import, p=0.0002
DIG1,STE12 10/10 functional and physical 10/10 cellular process(p=1.45e-05),
FHL1,RAP1 100/100 share motif(Davide et al) 100/100 structural constituent of ribosome, p < 1e − 4
FKH1,FKH2 4/5 co-TFs(Kato et al 2004) 2/4 covalent chromatin modification, p=0.0003
FKH2,MCM1,NDD1 12/12 co-TFs(CYGD) 6/12 cell proliferation, p=0.01
GAT3,RGM1 3/13 2/3 telomerase-independent telomere maintenance, p=9.56e-06
GCR1,GCR2,RAP1 6/6 6/6 energy pathways, p=1.65e-08
HIR1,HIR2 6/6 co-TFs(Spector et al 1997) 6/6 chromatin assembly or disassembly, p=1.23e-14
HSF1,MSN4 6/8 co-TFs(Jeffrey et al, 2002) 4/6 response to stress, p=9.62e-05
INO2,INO4 6/7 co-TFs(BRIAN et al 1995) 2/6 translation elongation factor activity, p=4.76e-05
MAL13,MSN4,RGM1 5/7 3/5 telomerase-independent telomere maintenance, p=1.05e-6
MBP1,SWI4 8/8 3/8 microtubule cytoskeleton organization and biogenesis, p=0.005
MBP1,SWI6 32/37 fun-phy interact(CYGD) 21/32 cell cycle, p=4.74e-17
MET31,MET4 8/8 same complex(Pierre et al 1998) 6/8 sulfur metabolism, 9.78e-11
MET4,RAP1 6/6 6/6 macromolecule biosynthesis, p=4.24e-06
NDD1,SKN7 5/5 5/5 cell organization and biogenesis, p=9.35e-05
NDD1,SWI4 5/5 2/5 cytoskeleton organization and biogenesis, p=0.012
SWI4,SWI6 15/19 fun-phy interact(CYGD) 7/15 cell cycle p=3.57e-05

graph in figure 5.3. We can see that the histogram approximately follows power law distri-
bution.

5.3.2 Comparison between our approach and other approaches
[2] has used GRAM algorithm, which can be thought as a kind of clustering algorithms,
to extract gene regulatory modules from expression microarray data and location analysis
data. In particular, they have used the same genome-wide location analysis data as the one
we used. However, their expression microarray data is over 500 experimental conditions

Table 5.2: The comparison between our method and several baseline approaches.
assigned by our method but missed by baselinesassigned by baselines but missed by our method

Gram algorithm 93 61
Bayesian Network 88 29
K-means Clustering 109 22
Hierarchical Clustering 119 29
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Figure 5.6: Comparison between our method and Gram algorithm in GRAM algorithm. There are
93 dots on the Y axis and 61 dots on the X axis.

and our microarray data, with 76 conditions, is only a subset of theirs. ∗ We will use their
result as a baseline result.

We set the requirement that the size of a gene module should be no less than five. The p-
value threshold of our post-processing algorithm, which can be used to control the number
of output gene modules, is set to be 0.04 so that the number of output gene modules is 106,
which is exactly the same as the number of gene modules in the results reported by [2]. In
this way, we can compare our results with [2] conveniently.

We also compared our results to the results achieved by hierarchical clustering ([10])
and k-means clustering algorithms ([11]). Since the number of clusters is a parameter that
needs to be pre-defined in these two clustering algorithms, we tried several settings (k=50,
100, and 600) for this parameter. For the Hierarchical clustering method, we used the
agglomerative average linkage version. For the K-means clustering method, we tried 5
random restarts and only reported the best result. Notice that clustering algorithms can be
only applied on expression microarray data to group correlated genes. They cannot make
use of location analysis data themselves. In order to be fair in comparing our method with
these two clustering methods, we need some post-processing algorithms that can combine
the clustering results with location analysis data. In fact, we can simply treat the clustering
results as a disjoint undirected graph. Genes in same clusters form complete sub-graphs and

∗[2] combined several microarray data sources in different conditions to get a big microarray data over 500
conditions in their paper. Thus the cell cycle microarray data from [43], which we used in our paper, is a only
a subset of it.
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Figure 5.7: Comparison between our method and BN learning algorithm. There are 88 dots on the
Y axis and 29 dots on the X axis.

genes in different clusters are disconnected with each other. Thus we can directly use the
post-processing algorithm we described before to post-process clustering results. In order
to be fair in comparing the two module extraction methods using this evaluation strategy,
the number of gene regulatory modules found by these two methods should be the same.
Thus for the two clustering methods, we tuned the p-value threshold of the post-processing
algorithm so that it also returns 106 modules. In this way, we can give a fair comparison.

We further compared our approach with the BN learning approaches that used the lo-
cation analysis data as priors to constrain the BN structures (([13], [18] and [4])). We used
sparse candidate hill climbing as the search algorithm for BN learning and only allow edges
from a regulator gene to a regulatee gene when the p-value between these two genes is lower
than 0.05 in location analysis data. We tune the weight of the penalizer for the number of
edges in the BN so that it will also generate 106 regulatory modules.

The results are shown in figure 5.5, 5.6 and 5.7. In these figures, each dot represents
a GO annotation. If it is on the Y-axis, it means that the GO annotation has been enriched
in our results but not in the baseline results. If it is on the X-axis, it means that the GO
annotation has been enriched in the baseline results but not in our results. We can see that
there are many more dots on the Y-axis than on the X-axis in figure 5.5, 5.6 and 5.7, which
implies our method achieved a much better performance. Notice the microarray data used
in [2] contains richer information than our data, but their results are still not as good as ours,
as reflected in figure 5.6.

We also generated the table 5.2, which gives the comparison between our method and
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several baseline approaches. The first column in the table shows the names of the baseline
method. The second column shows the number of GO annotatoins correctly assigned by
our method but missed by the baseline methods. The third column shows the number of
GO annotatoins correctly assigned by the baseline methods but missed by our method.

5.4 Summary
In this chapter, we proposed a new formalism based on Graphical Gaussian models to learn
gene regulatory networks from microarray data and location analysis data. Overall, our
approach provides an efficient and biological more informative and comprehensible (i.e.,
yielding sparse network and gene modules) solution to the problem of gene network infer-
ence. We applied our approach to a real microarray dataset and a protein-binding location
analysis dataset. An evaluation on the basis of consistency with the GO annotations shows
our results significantly better than the results of clustering-based methods and BN learning
methods.



Chapter 6

Learning Category Network to Help
Text Classification Tasks

6.1 Background
In the multi-class text categorization problem, each document may belong to more than
one categories. In this chapter, we use the phrase ”category network” to represent the
dependencies among different category labels. Each node in the network corresponds to a
category and each edge corresponds to the dependency between categories. When category
labels are not independent to each other, it is possible to exploit the category network to
improve text categorization performance.

Sometimes documents are organized in a large number of categories and the categories
are arranged in a hierarchal tree. If a document belongs to a node in this tree, then it must
also belong to all the ancestor nodes in the hierarchal structure. And the category nodes in
the same level are mutually exclusive. The U.S. patent database and Yahoo hierarchy are
two such examples. Many previous researchers have studied how to use such pre-existing
hierarchal structure to help text categorization.

In more general scenarios, the connections among categories may go beyond a hierar-
chal tree. For example, each paper published by ACM Press has mutiple ”category codes”
that help to identify the area of the paper. A paper could belong to two categories on two
different taxonomies. In this case, the category network becomes a general graph instead
of a hierarchical tree. The Reuters 2001 dataset is another example, where documents are
classified into three taxonomies: Topic categories, Industrial categories and Geographical
categories respectively. One can view the dependencies among these categories as in a
graph where the structures of the networks are not observed in general and can only be

66
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learned from data.
In this chapter, we focus on the scenarios where the category networks are general

graphs rather than pre-defined hierarchal trees. Our task is to first extract a category network
from textual corpus and then use this category network to help text categorization:

• The first step: Learning category network from textual corpus. Suppose there
are N documents and P category labels in the dataset. Each document has one or
more category labels. We treat each document as a sample and each category label as
a node variable. Thus we get a N × P data matrix. If the ith document belongs to the
jth category, then the (i, j)th element in the matrix is set to be 1. Otherwise it is set
to be zero. We use the approaches in chapter 3 to learn an undirected graph from the
textual corpus. The edges in the undirected graph are supposed to correspond to the
correlated category label pairs.

• The second step: Use the category network to help text classification. Once a
category network is learned, we can exploit it to help text classification. Suppose one
document is assigned a label A in the classification process, then this document would
tend to be assigned other labels that are connected with category A in the category
network.

We will discuss how to conduct text classification with category networks in detail in
the next section.

6.2 Text classification with category networks
.

6.2.1 Review of graph-based semi-supervised learning approaches
Many researchers studied the problem of classification with graph structures. For example,
graph-based semi-supervised learning approaches have been widely used for classification
tasks on textual data ([3], [51], [46], and [52]). This kind of approaches have several im-
portant advantages compared to other alternatives. First, their objective functions can be
solved easily by gradient based methods, no matter how complex the graph structure is.
Second, these approaches assign real-value scores to examples in the test set, which makes
them easy to be tuned to maximize metrics like F1 performance.

The key idea of graph-based semi-supervised learning approaches lies on an additional
term (often called graph regularizer) in their objective functions, compared with traditional
classifiers like logistic regression or ridge regression. This term encourages the examples
connected to each other in a graph to receive similar scores and be assigned same labels.
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Text classification with document networks

Consider the problem of predicting unknown labels for the testing examples based on their
input vectors. The observed data includes a training set (~xi, yi) for i = 1, ..., n and a test set
(~x j) for j = n+1, ...,m. Here ~xi is the input vector of the ith document and scalar yi ∈ {−1, 1}
is the class label of the ith example. The true labels y j for the test set (~x j) are unknown and
to be predicted.

[52] applied the graph-based semi-supervised learning approach on Reuters corpus for
text classification tasks. They first constructed a network using word level similarity among
documents. Each node in the network represents a document (in the training or testing set)
and each edge represents a document pair whose cosine similarity is larger than a threshold.
After the document network was induced, [52] reinforced continuity among category labels
of connected documents by using the following objective function:

f̂ = arg min
f∈Rm

n
∑

i=1
loss( fi, yi) + λ f T∆ f (6.1)

In formula 6.1, fi represents the predictive score assigned to the ith document. These
scores are the parameters to be solve to minimize the objectuive function. If f i is larger than
a threshold, then the ith document would be assigned to the positive category. Otherwise it
will be assigned to the negative category. loss() represents the loss function measuring how
good the values fit the training data. A detailed analysis of loss functions can be found in
[28]. It is set as loss( fi, yi) = ( fi−yi)2 in [52]. Matrix ∆, namely the graph-Laplacian matrix,
is an m × m matrix that encodes the document network structure, defined as ∆ = D − W .
Matrix W = [wi j] is the m × m matrix with each wi j representing the weight of the edge
connecting document i and document j. If there is no edge between these two documents,
then wi j = 0. Matrix D is defined as the m × m diagonal matrix whose diagonal elements
are dii =

∑m
k=1 wik.

More explicitly, formula (6.1) can be re-written as

f̂ = arg min
f

n
∑

i=1
loss( fi, yi) + λ

∑

(i, j)∈E
wi j( fi − f j)2. (6.2)

It’s obvious that the graph regularizer λ∑(i, j)∈E wi j( fi− f j)2 encourages fi and f j to be close
to each other if document i and document j are connected.

Text classification with hyperlink networks

[51] applied the graph-based semi-supervised learning approach on Yahoo corpus and We-
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bKB data for web page classification tasks. They reinforced continuity among category
labels of connected web pages by the following objective function:

f̂ = arg min
f∈Rm

n
∑

i=1
loss( fi, yi) + λ′ f T K−1 f + λ f T ζ f (6.3)

ζ is the graph-Laplacian matrix and it plays similar roles as the ∆ matrix in formula 6.1.
The only difference is that ζ used in [51] encodes the hyperlink network while ∆ used in
[52] encodes the document network based on word-level similarities.

Compared to formula 6.1, formula 6.3 has one additional term λ′ f T K−1 f . The matrix
K is an m×m kernel gram matrix that is constructed using the inner-products of the ”bag of
words” representation of web pages. It is obvious that this term encourgages the web pages
with similar content to receive similar predictive scores.

Also note that without the graph regularizer term λ f T ζ f , formula 6.3 will reduce to
standard ridge regression classifiers or logistic regression classifiers (depending on which
loss function is actually used).

6.2.2 Our method
Both [52] and [51] transferred the multi-class categorization problem into a set of one-vs-all
binary classification problems. Each binary classifier makes decisions separately and the
dependencies among category labels have not been considered.

In this section, we use the graph-based semi-supervised learning approach to classify
documents with learned category networks. Instead of constructing multiple one-vs-all
binary classifiers, we predict document labels for all the categories simultaneously. This is
our unique contribution compared to the previous works including [52] and [51].

Consider the multi-class text categorization problem. Suppose there are L categories in
total. The observed data includes a training set (~xi,~yi) for i = 1, ..., n and a test set (~x j) for
j = n + 1, ...,m. Vector ~yi = (yi1, ..., yiL), where scalar yik ∈ {−1, 1} is the class label of the
ith example for the kth category. The true labels ~y j for the test set (~x j) are unknown and to
be predicted. In the multi-class text categorization task, people often estimate a predictive
score fik for each category k and each example ~xi in the test set. If this score is larger than
a threshold, then the corresponding example would be assigned to the kth category. We use
the n×1 matrix fk = [ f1k, ..., fnk]T to represent the predictive scores for the kth category and
use the L× 1 matrix fi = [ fi1, ..., fiL]T to represent the predictive scores for the ith example.

We are interested in the case that in addition to the input vectors, a category network
is also given. Each node in the network corresponds to an category and each edge in the
network corresponds to some dependency between these two categories. Note that our
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category networks are very different from the document networks or hyperlink networks in
[52] and [51] since in document networks or hyperlink networks, each node corresponds to
a document and each edge corresponds to the dependency between two documents.

The objective function of our method is defined as:

f̂ = arg min
f

L
∑

k=1

n
∑

i=1
loss( fik , yik) + λ

L
∑

k=1
f T
k K−1 fk + λ′

n
∑

i=1
f T
i ζ fi. (6.4)

The matrix K is an m×m kernel gram matrix that is constructed using the inner-products
of the ”bag of words” representation of documents. The matrix ζ is an L×L graph-Laplacian
matrix that encodes the category network obtained by applying our graph learning method
in chapter 3. The construction and the role of ζ is similar to what we described in section
6.2.

Constants λ and λ′ are regularization parameters that are treated as constants here.
Equation 6.4 can be reduced to a standard ridge regression classifier when λ′ is set to be
zero because K is a linear kernel and loss( fik , yik) is the least squares loss.

Equivalently, we can also write formula (6.4) as

f̂ = arg min
f

L
∑

k=1

n
∑

i=1
loss( fik , yik) + λ

L
∑

k=1
f T
k K−1 fk + +λ′

n
∑

i=1

∑

(k,q)∈E
wkq( fik − fiq)2 (6.5)

Here E represent the set of edges in the category network. wkq represent the edge weights,
which are the off-diagonal elements in matrix W .

There are three terms in the objective function in formula 6.5. The first two terms do not
introduce the interaction between different categories. Without considering the third term,
formula 6.5 will reduce to a standard classifier (logistic regression or ridge regression clas-
sifier, depending on which loss function is used). The third term in formula 6.5 encourages
the predictive score assigned for connected categories to be close to each other.

6.3 Experiments
We conducted experiments on Reuters 21578 corpus, which has been a benchmark in text
classification evaluations. Note that there are many other datasets like OSHMED and RCV1
corpus, which may also be suitable for our approach. We leave the exploration of these
datasets to future works.

The Reuters 21578 corpus contains 7769 training documents and 3019 testing docu-
ments. There are 90 categories in the dataset in total and each document may belong to
one or more categories. We first applied our structure learning algorithm on the corpus and
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learned a category network with 90 nodes and 20 edges. This network is then exploited
to help text categorization using the approach described in the previous section. There are
23 categories linked to each other by the edges in the learned category network. We com-
pared the F1 classification performance of these categories achieved by our approach with
baselines achieved by standard ridge regression classifier.

In our experiments, we set wkq in formula 6.5 as wkq = λkλqekq. Here ekq represents
the edge weight we learned from our structure learning algorithm. λk and λq are the scal-
ing parameters for the kth and qth category. It’s obvious that when λk is zero, then the
classification decisions for the kth category will not be influenced by other categories.
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Figure 6.1: Each star in the graph represents a category in our experiments. The Y axis
value of a star represents the F1 score of this category achieved by our approach and the X
axis value represents the F1 score achieved by the baseline ridge regression classifier. In
order to show the graph clearly, we split the graph into two parts. The left subgraph shows
the categories with F1 score from 0.25 to 0.75 and the right subgraph shows the categories
with F1 scores larger than 0.75. There are 23 categories in these two graphs. We can see
that 11 stars are above the diagonal line and only 1 star is below the diagonal line.

We tuned the the parameter λk for every category k in formula 6.5 on the training data
by two-fold cross-validation. On some categories, this λk values could be tuned to zero. For
these categories, our approach will reduce to standard ridge regression and have the same
classification performance as the baseline. Only for the categories with non-zero λk values,
our results are different from the baseline.

In our experiments, 11 of the 23 categories have non-zero tuned λk values thus they have
different F1 scores compared to the baseline. Our approach has outperformed the baseline
on 10 out of these 11 categories. The T-test shows that our improvement is significant with
a P-value less than 0.01. We plot the results in figure 6.1 and 6.2.

In figure 6.1, each star in the graph represents a category in our experiments. The Y axis
value of a star represents the F1 score of this category achieved by our approach and the X
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Figure 6.2: Each bar in the graph represents a category. The Y axis value of a bar represents
the difference between the F1 score achieved by our approach and by the baseline ridge
regression. We can see there are 23 bars in the graph. 11 of them have positive Y axis
values and only 1 has negative value.

axis value represents the F1 score achieved by the baseline ridge regression classifier. In
order to show the graph clearly, we split the graph into two parts. The left sub-graph shows
the categories with F1 score from 0.25 to 0.75 and the right sub-graph shows the categories
with F1 scores larger than 0.75. There are 23 categories in these two graphs. We can see
that 11 stars are above the diagonal line and only 1 star is below the diagonal line.

In figure 6.2, each bar in the graph represents a category. The Y axis value of a bar
represents the difference between the F1 score achieved by our approach and by the baseline
ridge regression. We can see there are 23 bars in the graph. 11 of them have positive Y axis
values and only 1 has negative value.

6.4 Summary
In this chapter, we proposed a multi-class text categorization method that can explore the
relationships among category labels and outperform binary classifiers using one-vs-all strat-
egy. The classification process includes two steps. In the first step, we learn a category
network from textual corpus using our structure learning algorithm, in which each node
represents a category label and each edge represents the correlation between two categories.
In the second step, we use the network to help text categorization in a graph regularization
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framework.
Overall, our approach provides an effective way to improve text categorization perfor-

mance by exploiting the rich relationship among category labels. We applied our approach
to the Reuter 21578 dataset and observed significant improvement compared to the baseline.



Chapter 7

Structure based Classification with
Graphs containing Annotated Edges

7.1 Background
Automatic classification with graphs containing annotated edges is an interesting problem
and has many potential applications. For example, web-graph hyperlink structures can be
used in web page categorization. Hyperlinks can be thought as edges annotated by their
associated anchor text and can be used to improve web-page classification performance. In
social networks, participants often annotate their network connections thus it is natural to
study learning methods that can take advantage of graphs with annotated edges. In gene
regulatory networks, co-regulated gene pairs are connected by undirected edges, which
are annotated by the proteins that regulate these genes. These edges, together with their
annotation information, can help us to predict functions for unknown genes. Other examples
include protein networks and citation networks, etc.

Graph-based semi-supervised learning approaches, which have been discussed in the
previous chapter, are widely used for classification tasks with graph structures. However,
these approaches did not exploit the annotation information associated with the edges in the
graph. For example, in [51], it is assumed that all the edges in hyperlink structures have
the same positive weight. This assumption, however, may not always yield the best result
from a classification standpoint. The importance of these edges could be very different in
terms of classification, depending on their associated annotations. Furthermore, sometimes
the edges in hyperlink structures may have negative weights. For example, in the catalog
and product web page classification task, the catalog pages often connect to product pages
but seldom connect to other catalog pages.

74



7.2. The Algorithm 75

A simple way to use annotation information is to pass edge annotations to node features.
That is to treat the annotations of an edge as additional features of the two node connected
by this edge. Although, by doing so, we have merged the edge features into node features
and lost part of the useful information, it is nevertheless non-trivial to devise a method that
can perform better than this simple baseline. In order to derive a better learning method,
we propose a novel objective function in the graph regularization framework to exploit the
annotations on the edges. The underlying idea is to create regularization for the graph with
the assumption that the likelihood of two nodes to be in the same class can be estimated
using annotations of the edge linking the two nodes. In our model, the importance of each
edge is measured by the sum of the weights of edge annotation features associated with this
edge. The edge annotation feature weights are parameters in our objective function and can
be learned efficiently in this framework.

Our main contribution in this line is to derive a new formulation that could learn the
edge importance from the annotations on the edges within a graph regularization frame-
work. A scalable numerical algorithm is then presented to solve the problem. We have
conducted experiments on several datasets and compared with several baseline approaches.
The empirical results suggest that our approach performs significantly better than other ap-
proaches. Although we focus on web-page categorization in our experiments, our approach
can be directly applied to general graph classification problems with annotated edges.

7.2 The Algorithm
Consider the problem of predicting unknown labels for the testing examples based on their
input vectors. We are interested in the case that in addition to the training set (~x i, yi) for
i = 1, ..., n and the test set (~x j) for j = n + 1, ...,m, a graph is also observed on the whole
dataset. Graph-based semi-supervised learning approaches have been widely used in such
tasks. Let’s recall the objective function used in [51], which we have discussed in the
previous chapter.

f̂ = arg min
f

n
∑

i=1
loss( fi, yi) + λ f T K−1 f + λ′

∑

(i, j)∈E
wi j( fi − f j)2. (7.1)

Here wi j represent the edge weights, which are set to be the constant 1 in [51]. As we dis-
cussed before, this objective function has several limitations. Importantly, the edge weights
wi j in formula (7.1) have to be chosen a priori. In practice, they are often set to be a con-
stant. We can not directly treat wi j as learnable parameters in our model because otherwise,
the trivial solution is wi j = 0 (that is, the graph information is ignored). Moreover, wi j
can not be set as a negative number because otherwise, the solution of [ f i] could become
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infinity. However, in some problems, negative edge weights can be helpful when values of
two connecting nodes are anti-correlated.

In order to overcome the limitations of (7.1), we propose a novel objective function
in this paper so that the edge importance (or weights) can be automatically learned. Our
method is based on the idea that the likelihood of two nodes to be in the same class can
be estimated from annotations of the edge linking the two nodes. We use this idea to
design regularization conditions with hyper-parameters depending on the annotations, and
the hyper-parameters can be jointly optimized with f in a unified optimization problem.
Specifically, we consider the following objective function as an instantiation of the above
general idea:

f̂ = arg min
f ,~γ

n
∑

i=1
loss( fi, yi) + λ f T K−1 f + λ′

∑

(i, j)∈E
( fi f j − wi j)2

such that wi j = ~γ · ~ai j. (7.2)

Here wi j are the edge importance to be learned from the edge annotation features. Vector
~ai j = [ai j,1, . . . , ai j,p] represents the edge-annotation features associated with the edge (i, j).
Vector ~γ = [γ1, . . . , γp] is the hyper-parameter to be learned from the data, , which repre-
sents the weights of the annotation features (for predicting edge importance w i j). Note that
we are only considering the case when the loss() is set as the least squares loss. If other loss
functions are used, then the third term of formula 7.2 need to be modified accordingly.

Since we are using the least squares loss function with yi ∈ {±1}, the value of fi f j is
encouraged to be close to ±1. In this case, formula (7.2) has a very clear intuitive meaning.
If we consider regularization of the form ( fi f j − wi j)2 with unknown annotation dependent
parameter wi j, then the optimal value of wi j is the conditional expectation: wi j = E ( fi f j|~ai j).
In the proposed method, this value is estimated using a linear estimator of the form ~γ · ~a i j.
If fi and f j only take values in {±1}, then E ( fi f j|~ai j) = 2P( fi f j = 1|~ai j) − 1. This has the
following desirable effect: given the edge annotation, if fi and f j are likely to have the same
sign, then the objective function will strengthen this trend with a positive w i j; if fi and f j are
likely to have different signs, the objective function will strengthen the trend with a negative
wi j.

With the above interpretation in mind, we can simplify (7.2) as follows.

f̂ = arg min
f ,~γ

n
∑

i=1
loss( fi, yi) + λ f T K−1 f + λ′

∑

(i, j)∈E
( fi f j − ~γ · ~ai j)2. (7.3)

The first term of the formula encourages fi values for the training examples to be close to
yi (either 1 or −1). The third term in the above formula encodes the graph structure and
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plays the role as a graph regularizer. The difference between formula (7.3) and the original
objective function in formula (7.1) is only the third term, which is the graph regularizer. The
new formulation enables us to find non-trivial solutions for the edge importance w i j, which
is estimated using a linear combination of edge annotation features. The edge importance
wi j = ~γ · ~ai j is positive when fi and f j have the same signs (both close to 1 or both close
to −1), and negative when fi and f j have different signs (one is close to 1 and the other
is close to −1). The weights ~γ can be learned from the data through joint optimization in
our new method. If the appearance of some annotation features always imply an within-
class edge connection, then these features will get positive weights. On the other hand, if
some annotation features always appear in between-class connections, then these features
are more likely to get negative weights. The learned annotation weights help us to better
predict the fi values on the test examples.

We want to emphasize that there can be other methods to achieve similar effect and the
particular formulation in our proposal represents an instance of a general framework to use
annotation information in an effective way.

7.3 Numerical Solution
Our method is closely related to [51], where an efficient algorithm was proposed to solve
(7.1). In this paper, a modification of that algorithm is used to solve (7.3). Similar to [51]
(see derivations there), we rewrite (7.3) as

f̂ = arg min
f ,~γ,~v,~w

n
∑

i=1
loss( fi, yi) + λ(||~w||2 + ||~v||2) + λ′

∑

(i, j)∈E
( fi f j − ~γ~ai j)2

s.t. fk = ~w~xk + vk
√

u (k = 1, ...,m). (7.4)

Here u plays the role as a stabilizing parameter and we set it to be a small constant
0.1. By reformulating the objective function as in (7.4), the construction of the dense kernel
matrix K is avoided. We can then solve the problem iteratively using the gradient descent
algorithm. In each iteration, we first fix ~γ and solve for ~v and ~w; we then fix ~v and ~w and
solve for ~γ. This process is iterated until the algorithm converges. The initial values of these
parameters are all set to be zero. The pseudo code of the optimization method is given in
Algorithm 5. The detailed implementation of steps (a) and (b) will be skipped due to the
limitation of space.
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Algorithm 5 Pseudo code of the optimization algorithm corresponding to formula 7.4
1. Initialize the parameters ~w, ~v and ~γ.

2. Loop

(a) Use gradient descent to search values of ~w and ~v with fixed ~γ.
(b) Use gradient descent to search values of ~γ with fixed ~w and ~v.

3. Until convergence

7.4 Experiment
We evaluated our method on two real hyper-linked datasets: WebKB (http://www.cs.cmu.edu/webkb/)
and Yahoo! Directory (http://www.yahoo.com/). The graph regularization approach in [51]
was implemented as our baseline approach and was named ”Baseline”. We also included an
extension of the baseline by putting the annotation features associated with each edge into
the local features of nodes connected by this edge, and we called this extension ”Baseline
with edge-feature”.

For the WebKB dataset, we constructed not only the original directed hyper-linked web-
graph, but also the co-citation graph derived from the original directed graph. In a co-
citation graph, two pages are connected by an undirected edge if both pages are linked
to by a third page. Experiments are conducted using the original (which we treated as
undirected) and co-citation graphs separately. For the Yahoo! Directory dataset, we only
constructed the co-citation graph because its directed graph is too sparse. The co-citation
graphs are often much denser and can be used to achieve better categorization performance
in our experiments compared to their corresponding directed graphs.

For the directed graph, we simply use the anchor text associated with each hyperlink
as the edge annotation features. For the co-citation graph, when two pages are linked by
the same web-page, we use the intersection of the anchor text associated with the incoming
links of these two pages (in the original directed graph) as the edge annotation features.
For convenience, we still call these features ”anchor text of the edge”. The WebKB dataset
consists of 8275 web-pages crawled from university web sites. The vocabulary consists of
20000 most frequent words. The number of edges in the original directed graph is 10721.
In order to form a denser co-citation graph, we also used additionally crawled web-pages
so that pages used to derive the co-citation graph do not necessarily belong to the set of
WebKB pages. In this way, we get a co-citation graph with 1143716 edges. The Yahoo!
Directory dataset consists of 22969 web pages. Each page of this collection belongs to one
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of the 13 top level topical directory categories (for example, arts, business and education).
The vocabulary consists of 50000 most frequent words. The number of edges in its co-
citation graph is 1170029.

We randomly split the labeled data into two parts: 50 percent for training and another 50
percent for testing. We draw five runs and report test set averages and standard deviations.
The least squares loss loss( f , y) = ( f − y)2 is used in our experiment. The best λ can be
found through cross validation in the training data without the graph structure. We fix this λ
for all other configurations (with graph structure). Our approach easily scales to the datasets
used in this paper. A typical run for each dataset takes well under an hour on a standard PC.
The micro-F1 and macro-F1 performance of different approaches on multiple datasets with
co-citation graphs are listed in Table 7.1 and Table 7.2. The F1 performance of individual
categories is shown in figure 7.1.

Table 7.1: The micro-averaged F1 performance using co-citation graphs (mean ± std-dev
%)

Yahoo Directory Data WebKB Data
Baseline 57.9 ± 0.5 86.5 ± 0.3
Baseline with edge-feature 60.5 ± 0.4 87.6 ± 0.6
Our approach 64.8 ± 0.4 89.0 ± 0.5

Table 7.2: The macro-averaged F1 performance using co-citation graphs(mean ± std-dev
%)

Yahoo Directory Data Webkb Data
Baseline 57.9 ± 0.4 77.2 ± 0.3
Baseline with edge-feature 60.8 ±0.4 82.6 ± 0.5
Our approach 65.1 ±0.5 82.7 ± 0.3

We can see that our approach has achieved significant improvement compared with
the two baseline approaches. Note that while both our approach and the ”Baseline with
edge-feature” approach can exploit the anchor text information, our approach has impor-
tant advantages. A key observation is that the anchor text associated with edges may not
imply any specific category by itself. For example, in the co-citation graph of the Yahoo
Directory data, the word ”foods” has appeared in the anchor text of 132 edges. While 112
of these edges connect two web pages that both belong to the ”Health” category, the other
20 edges connect two web pages that both belong to the ”Science” category. Therefore, the
anchor text word ”foods” implies that the two connected pages have the same class labels.
However, if we use the ”Baseline with edge-feature” approach and put this word into the
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Figure 7.1: The F1 performance of three approaches for each of the 13 yahoo categories.
The names of these 13 categories (from left to right) are ”Arts”, ”Business and Economy”,
”Computers and Internet”, ”Education”, ”Entertainment”, ”Government”,”Health”, ”News
and Media”, ”Recreation”, ”Reference”, ”Science”, ”Social Science” and ”Society and Cul-
ture”.

body text features, the appearance of this word tends to predict the ”Health” category while
ignoring the ”Science” category. On the other hand, our approach only employs the word to
determine the strength of the connected pages belonging to the same class, which is more
effective.

In Table 7.3, we list for each of the 13 categories in the Yahoo! Directory data the top-
five ranked words in the undirected co-citation edges that are assigned the largest weights
in our approach. Notice that the meanings of the top ranked edge words in a category are
not necessarily related to the meaning of that category. For example, the word ”sw” is a
top edge feature for the ”Arts” category (and many other categories) while the meaning of
this word is not related to ”Arts”. In fact, the word ”sw” has appeared in the anchor text of
60 edges. While 58 of these edges are connecting two web pages that both belong to the
”Entertainment” category, the other 2 edges are connecting two web pages that both belong
to the ”Computers and Internet” category. So the appearance of this word implies that the
two connected pages have the same class labels, which is why ”sw” is also given a high
rank for ”Arts” category (although it has no effect there).

We have also conducted experiments using directed graphs on the Webkb data. The
micro-averaged F1 numbers of the ”Baseline” approach, the ”Baseline with edge-feature”
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Table 7.3: Top-five ranked edge-feature words for the Yahoo! Directory with co-citation
graph

Category name Top-five ranked words in the edges
Arts sw, halloween, b-school, artists, antonio
Business and Economy hedge, sw, penny, fat, lib
Computers and Internet hp, sharing, windows, programming, linux
Education b-school, school’s, gifted, exam, montessori
Entertainment fanlisting, updated, wow, adventure, rumors
Government base, military, b-school, representative, sw
Health dieting, menopause, diets, vitamin, depression
News and Media cbs, anchor, daniel, bio, cnn
Recreation fat, b-school, sw, collections, foundation’s
Reference lib, catalog, collections, fat weight, sw
Science horticulture, extension, soil, beef, floriculture
Social Science sw, fat, univ, submarine, msu
Society and Culture halloween, sw, b-school, fat, haunted

approach, and our approach are 0.850, 0.859, and 0.864 respectively. We can see that the
classification performance of our approach on directed graphs is still competitive.

7.5 Summary
In this chapter, we presents a novel risk minimization formulation for classifying graph
nodes that can effectively utilize the underlying graph structure with annotated edges. The
main idea of our approach is that edge importance can be automatically determined from
edge annotations. This is achieved by solving a joint optimization problem with an edge-
annotation dependent graph-regularizer, which we introduced in this chapter. We tested the
new method on web-page classification and gene-function prediction tasks, and compared
its performance to two previously proposed strong base-line methods. The experiments
showed that our approach outperformed both methods, confirming that the new approach
can utilize edge-annotation information more effectively.



Chapter 8

Summary of Thesis Work and
Contributions

8.1 Summary of Thesis Work
In this thesis, we propose a novel approach for learning large sparse undirected graph struc-
tures effectively and efficiently in a probabilistic framework. We use Graphical Gaussian
model (GGM) as the underlying model and propose a novel ARD style Wishart prior for
the precision matrix of the GGM, which encodes the graph structure we want to learn. With
this prior, we can get the MAP estimation of the precision matrix by solving a set of (mod-
ified) Lasso regressions and achieve a sparse solution. By proposing a generalized version
of Lasso regression, named Feature vector machine (FVM), we have further extended our
structure learning model so that it can capture non-linear dependencies between node vari-
ables. The optimization problem in our model remains convex even in non-linear cases,
which makes our solution global optimal. We have also developed a graph-based classi-
fication approach for predicting node labels given network structures, either observed or
automatically induced. This approach can automatically determine edge weights based on
the observed edge annotations. Compared with other graph-based semi-supervised learn-
ing approaches, which treat edge weights as pre-determined constants, our method is more
flexible and achieves better performance.

We have applied our structure learning approach on microarray data for gene regula-
tory network re-construction, and on textual corpus for category network extraction. The
extracted category network has been used to help multi-class text categorization tasks. Ex-
perimental results show that our approach is empirically effective and achieves some im-
provement over other state-of-art methods.
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We also applied our extended graph-based classification approach on web-page classi-
fication tasks, and compared its performance to two previously proposed strong base-line
methods. Experiments showed that our approach outperformed both methods, confirming
that the new approach can utilize edge-annotation information more effectively.

8.2 Contributions
There are several contributions of this thesis work.

• Theoretically and computationally

– We propose a novel approach for learning large sparse undirected graph struc-
tures in a probabilistic framework. Our approach transforms the problem of
structure learning for Graphical Gaussian Model into the problem of solving
a set of modified Lasso regressions. We can theoretically guarantee that the
global optimal solution be found with a low polynomial (quadratic when the
graph is sparse) computational cost.

– We have explored the mapping between SVM regression and Lasso regression.
Based on this exploration, we propose a generalization of Lasso regression
named Feature vector machine, which extends our structure learning model to
non-linear cases and enriches the current approaches for feature selection . Ex-
perimental results on the simulated data are very encouraging.

– We have proposed a graph-based classification approach for predicting node la-
bels given network structures, either observed or automatically induced. This
approach can automatically determine edge weights based on the observed edge
annotation. Compared with other graph-based semi-supervised learning ap-
proaches, which treat edge weights as pre-determined constants, our method
is more flexible and can exploit the data in a better way.

• Empirically

– We used our structure learning approach to re-construct gene regulatory net-
works from microarray data and other data sources and have achieved improve-
ment over other state-of-art methods.

– We used our structure learning approach to extract category networks from tex-
tual data and then used the learned network to help multi-class text categoriza-
tion tasks. We applied our approach to the Reuter 21578 dataset and observed
significant improvement compared to the baseline binary classifiers.
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– We applied our extended graph-based classification approach on web-page clas-
sification tasks, and compared its performance to two previously proposed strong
base-line methods. The experiments showed that our approach outperformed
both methods, confirming that the new approach can utilize edge-annotation
information more effectively.



Chapter 9

Future Work

The work presented in this thesis provides a basic framework for structure learning with
large undirected graphs and its related applications. There are still many related research
problems that I plan to pursue in future work. Some are listed as following.

• First, I want to combine the problem of node label prediction and the problem of
graph structure learning into a unified framework. In many cases, each node in a
graph has one or more labels and nodes with the same labels tend to be connected in
the graph. Thus it’s interesting to explore a unified framework which could simul-
taneously learn graph structures using partially known label information and predict
un-observed labels using learned structures. One example of such a scenario is gene
regulatory network induction from microarray data. We know co-regulated genes
(which are connected nodes in the graph) are likely to share similar biological func-
tions. Thus we can treat gene functions as node labels and use them to help learning
gene network structures. The estimated structures could in turn help us to predict
unknown gene functions. As far as we know, such a unified framework does not exist
yet and I am planning to work on it.

• Second, I want to explore structure learning at different granularities in graph-based
classification models. In this thesis, I have proposed one approach that uses learned
category networks to help multi-class text categorization tasks. In fact, a category
network can be thought as a kind of higher granularity generalization of document
networks. We can also learn networks at other granularities, like networks defined on
words or latent aspects, and use them to influence classification decisions in different
ways. Are these networks all helpful for the classification task? Can we combine
them to further improve the performance? How should we consider the mappings
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between these networks in our structure learning process? I hope to answer these
questions in the future.

• Third, I would like to try the FVM approach on real-world data. In this thesis, I have
conducted experiments on simulated data and FVM achieved encouraging results.
But in real-world applications, things will be more complex. How should we choose
the best non-linear kernels for feature vectors? Will the introduction of slack variables
in FVM really help with noisy data? I expect to address these questions in my future
research.
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