
Machine Translation 4 Microblogs
Wang Ling

Ph.D. Thesis

Language Technologies Institute Dep. of Computer Science and Engineering
School of Computer Science Instituto Superior Técnico
Carnegie Mellon University University of Lisbon

Pittsburgh, PA 15213 Av. Rovisco Pais, 1, 1049-001 Lisbon

Thesis Committee:
Alan W Black, Carnegie Mellon University
Isabel Trancoso, Instituto Superior Técnico
Nuno Mamede, Instituto Superior Técnico

Noah Smith, Carnegie Mellon University and University of Washington
Mário Figueiredo, Instituto Superior Técnico

Chris Callison-Burch, University of Pennsylvania

Thesis Advisors:
Alan W Black, Carnegie Mellon University
Isabel Trancoso, Instituto Superior Técnico

Chris Dyer, Carnegie Mellon University
Luísa Coheur, Instituto Superior Técnico

Copyright c© 2015 Wang Ling

This work is supported by the Fundação de Ciência e Tecnologia through the Carnegie Mellon|Portugal
Program, a joint program between the Portuguese Government and Carnegie Mellon University.

Abstract

The emergence of social media caused a drastic change in the way
information is published. In contrast to previous eras in which the writ-
ten word was more dominated by formal registers, the possibility for
people with different backgrounds to publish information has caused
non-standard style, formality, content, genre and topic to be present in
written documents. One source of such data are posts in microblogs
and social networks, such as Twitter, Facebook and Sina Weibo. The
people that publish these documents are not all professionals, yet the in-
formation published can be leveraged for many ends [Han and Baldwin,
2011, Hawn, 2009, Kwak et al., 2010, Sakaki et al., 2010]. However,
current NLP tasks perform poorly in the presence of this type of data,
since they are modelled using traditional assumptions and trained on
existing edited data. One problem is the lack of annotated datasets in
this domain. One such assumption is of spelling homogeneity, where
we assume that there is only one way to spell tomorrow, whereas in
microblogs, this word can be abbreviated to tmrw (among many other
options) or spelled erroneously as tomorow. It is shown in [Gimpel et al.,
2011] that using in-domain data and defining more domain specific
features can help address this problem for Part-of-Speech Tagging.

In this thesis, we address the challenge of NLP on the domain of
informal online texts, with emphasis on Machine Translation. This thesis
makes the following contributions in this respect. (1) We present an
automatic method to extract such data automatically from microblog
posts, by exploring the fact that many bilingual users post translations
of their own posts. (2) We propose a compositional model for word
understanding based only on the character sequence of those words,
breaking the assumption that different word types are independent. This
allows the model to generalize better on morphologically rich languages
and the orthographically creative language used in microblogs. (3)
Finally, we show improvements on several NLP tasks, both syntactically
and semantically oriented, using both the crawled data and proposed
character-based models. Ultimately, these are combined into a state-of-
the-art MT system in this domain.

Abstract

A criação das redes sociais causou uma alteração drástica na forma
que a informação épublicada. Em contraste com as eras passadas onde
o texto publicado era dominado por registros formais, a possibilidade de
publicação de informação por pessoas de differentes backgrounds criou
a existência de estilo, formalidade, conteúdo, género e tópicos fora de
padrão em documentos escritos. Uma fonte de dados deste tipo são os
posts em microblogues e redes sociais, como o Twitter, Facebook e Sina
Weibo. As pessoas que publicam estes documentos não são profissionais,
mas esta informação pode ser usado para differentes fins [Han and
Baldwin, 2011, Hawn, 2009, Kwak et al., 2010, Sakaki et al., 2010].
No entanto, sistemas de PLN existentes funcionam mal na presença
deste tipo de dados neste tipo de dados, porque são modelados usando
métodos tradicionais e treinados em dados anotados. Um dos problemas
éa deficiência de dados anotados neste domínio. Uma das tais assunções
éa homogeneidade da ortografia, onde assumimos que existe uma forma
de escrever a palavra tomorrow, no entanto, em microblogues, esta
palavra pode ser abreviado para tmrw (entre muitas outras opções) ou
mal escrito como tomorow. Como foi demonstrado em [Gimpel et al.,
2011], dados do mesmo domínio e features adicionais podem ser usados
para tratar deste problema.

Nesta tese, tratamos do problema de PLN no domínio de textos
onlines informais, com emfase em Tradução Automática. Esta tese
faz as seguintes contribuições. (1) Apresentação de um método au-
tomático para minar este tipo de dados explorando o facto que muitos
utentes traduzem os seus próprios tweets. (2) Propomos um modelo
composicional capaz de entender palavras ao nível dos characteres, que-
brando a assunção que differentes tipos são independentes. Isto permite
ao modelo generalizar melhor para línguas ricas morfologicamente e
domínios com criatividade lexical como nos microblogues. (3) Final-
mente, mostramos que estes modelos podem melhorar várias tarefas em
PLN, ambos em tarefas principalmente semânticas ou sintáticas, usando
os dados minados e os modelos de characteres propostos. Ultimamente,
estes são combinados em sistemas state-of-the-art neste domínio.

Contents

1 Introduction 1

1.1 Motivation . 2

1.1.1 Parallel Data Extraction from Microblogs 2

1.1.2 Character-based Machine Translation and Natural Language
Processing . 2

1.2 Contributions and Thesis Statement 4

1.3 Contributions from Satellite Work . 6

1.4 Thesis Structure . 8

2 Background 11

2.1 Parallel Data Extraction . 11

2.1.1 What are Parallel Corpora? 11

2.1.2 Automatic Parallel Corpora Mining 11

2.2 Microblog Normalization . 13

2.2.1 What is Normalization? . 13

2.2.2 Lexical Normalization . 14

2.2.3 Sentence Normalization . 15

2.3 Word Representations in Neural Networks 16

2.3.1 Word Lookup Tables . 16

2.3.2 Word Representation Learning 17

vii

viii CONTENTS

3 Automatic Microblog Parallel Data Extraction 19

3.1 The Intra-Document Alignment (IDA) Model 20

3.1.1 Model Components . 22

3.1.2 Inference . 27

3.1.3 Dynamic programming search 28

3.1.4 Language Pair Filtering . 30

3.1.5 Evaluation Metrics . 31

3.2 Parallel Data Extraction . 32

3.2.1 Filtering . 33

3.2.2 Location . 34

3.2.3 Identification . 35

3.3 Experiments . 37

3.3.1 Setup . 37

3.3.2 Targeted Crawling . 39

3.3.3 Building Gold Standards . 40

3.3.4 Parallel Data Extraction Experiments 42

3.3.5 Machine Translation Experiments 46

4 Normalization Using Paraphrases 59

4.1 Obtaining Normalization Examples 59

4.1.1 Variant–Normalized Parallel Corpus 61

4.1.2 Alignment and Filtering . 62

4.2 Normalization Model . 63

4.2.1 From Sentences To Phrases 63

4.2.2 From Phrases to Characters 65

4.3 Normalization Decoder . 67

4.3.1 Phrasal Decoder . 67

4.3.2 Character and Phrasal Decoder 68

4.3.3 Learning Variants from Monolingual Data 69

CONTENTS ix

4.4 Experiments . 71

4.4.1 Setup . 71

4.4.2 Results . 72

4.4.3 Summary . 73

5 Character-based Word Representations for NLP 75

5.1 Word Vectors and Wordless Word Vectors 76

5.1.1 Problem: Independent Parameters 77

5.1.2 Solution: Compositional Models 78

5.2 C2W Model . 78

5.3 Experiments: Language Modeling . 80

5.3.1 Language Model . 80

5.3.2 Experiments . 81

5.4 Experiments: Part-of-speech Tagging 83

5.4.1 Bi-LSTM Tagging Model . 84

5.4.2 Experiments . 84

5.4.3 Summary . 88

6 Character-based Word Generation for NLP 91

6.1 V2C Model . 92

6.2 Character to Character Language Modeling 93

6.2.1 Experiments . 95

6.3 Character to Character Machine Translation 100

6.3.1 Character-based Machine Translation 101

6.3.2 Experiments . 107

6.4 Summary . 110

7 Conclusion and Future Work 113

Bibliography 119

Chapter 1

Introduction

Microblogs, such as Twitter, Facebook and other non-American microblogs, like Sina
Weibo, have gained tremendous popularity in the past 10 years. In addition to being
an important form of communication for many people, they often contain extremely
current, even breaking, information about world events and are reshaping the way
information is published and analyzed [Han and Baldwin, 2011, Hawn, 2009, Kwak
et al., 2010, Sakaki et al., 2010]. However, the writing style of microblogs tends
to be quite colloquial, with frequent orthographic innovation (R U still with me or
what?) and nonstandard abbreviations (idk! smh)—quite unlike the style found
more traditional, edited genres. This poses considerable problems for traditional
NLP tools, which were developed with other domains in mind, which often make
strong assumptions about the type of the language we are processing, such as
orthographic homogeneity (i.e., that there is just one way to spell you).

In this thesis, we will address the challenges posed by informal online text genres,
with emphasis on machine translation. Machine translation is a fundamental task
in NLP, and is composed by a large range of different components and concepts
that must be addressed when we wish to adapt our models for this new domain.
While many adaptation models [Koehn and Schroeder, 2007, Sankaran et al., 2012,
Haddow, 2013, Foster and Kuhn, 2007] have been proposed to adapt MT to different
domains, we believe that due to the popularity of microblogs and social media, this
domain deserves a more focused effort from the research point of view. Translation
in this domain will allow the information that is published to be readable to a
larger audience. For instance, a translation system in this domain would allow
non-Mandarin speakers to read posts in Mandarin from Chinese microblogs, such as
Sina Weibo, or allowing non-English speakers to read English posts from Twitter.

1

2 Chapter 1: Introduction

1.1 Motivation

Improvements in NLP and MT systems are obtained using two approaches. Firstly,
training the model with more labelled data, especially in-domain data, generally
yields better overall results. Thus, methods that automatically obtain in-domain
data can substantially boost the performance of existing systems. Secondly, learning
a model that generalizes better for the specific problem can also yield improvements
in translation quality.

1.1.1 Parallel Data Extraction from Microblogs

While much work has been done in the automatic extraction of parallel data from
online domains [Resnik and Smith, 2003, Fukushima et al., 2006, Li and Liu,
2008, Uszkoreit et al., 2010a, Ture and Lin, 2012], most of these extract from
carefully edited domains. Thus, the training data that is extracted seldom resembles
microblog text. We start by introducing a method for finding naturally occurring
parallel microblog text, which helps address the domain-mismatch problem. Our
method is inspired by the perhaps surprising observation that a reasonable number
of microblog users tweet “in parallel” in two or more languages. For instance,
the American entertainer Snoop Dogg regularly posts parallel messages on Sina
Weibo (Mainland China’s equivalent of Twitter), for example, watup Kenny Mayne!!
- Kenny Mayne，最近这么样啊！！, where an English message and its translation in
Mandarin are in the same post, separated by a dash. Our method is able to identify
and extract such translations. Briefly, this requires determining if a tweet contains
more than one language, if these multilingual utterances contain translated material
(or are due to something else, such as code switching), and what the translated
spans are. We show that a considerable amount of parallel data can be extracted
from Twitter and Sina Weibo.

1.1.2 Character-based Machine Translation and Natural Language
Processing

A considerable factor for the inappropriateness of existing models to address the
orthographic diversity observed in microblogs is the fact that existing models treat
word types as independent of each other. That is, even though words cool and
coool are lexically similar, this information is discarded by most models, and so

1.1 Motivation 3

the models are not capable of generalizing that if cool is translated to X, the same
applies to coool. We propose two ways to approach this problem. (1) One way
is pre-process the input text, standardizing it so that it is simpler to process. The
normalization of informal online messages is a task that has been a topic of interest
in social media [Han et al., 2013, 2012, Kaufmann, 2010, Han and Baldwin, 2011].
One key application we developed during this thesis, is a microblog normalizer
that learns to normalize microblog messages using the parallel data we crawled
from microblogs. The approach is based on paraphrasing [Bannard and Callison-
Burch, 2005, Ganitkevitch et al., 2013, Zhao et al., 2010, Madnani, 2010, Madnani
and Dorr, 2010]. Paraphrasing is the process of rewriting sentences that convey
the same meaning but with a different textual form [Barzilay and Lee, 2003]. In
our work, we not do make many assumptions about the language, which allows
us to build normalization systems for non-English languages. Furthermore, we
incorporate character-level information during the process. Finally, applications
of normalization systems are not restricted to MT, but also applicable to other
NLP tasks. (2) The recent advances in word representation learning have shown
that contextual similarity [Collobert et al., 2011, Mikolov et al., 2013] is a strong
indicator for semantic similarity. That is, words such as dog and cat (or cool
and cooool) can be found to be similar due to the fact that they occur in similar
contexts. More concretely, words that are similar are mapped into a continuous
space where similar words possess similar embeddings (similar values in their
respective vector). However, in microblogs, new orthographic variants are created
daily. For instance, the word cool can be spelled with an arbitrary number of o’s
(e.g. cooooooool), and current methods attribute each variant with a different vector.
Thus, while it is possible to learn similarities between frequent word types (e.g. u
and you), this is not the case for variants that only occur once or twice in the corpora.
Furthermore, it is impossible to store every word type in microblogs, as there are
an unbounded number of word types that can be created. Thus, existing methods
generally resort to approximations that prune less frequent word types [Mikolov
et al., 2013]. In this thesis, we address these problems by introducing a method for
learning word embeddings solely from their character sequence. That is, instead
of storing each word type, we only store embeddings for characters, and generate
the word representations using their character sequence. This allows us to build
models that are orders of magnitude smaller than existing models. Furthermore, as
lexical traits in words are directly explored in our compositional model, our models
directly address lexical properties in words, such as morphology and orthographic
innovation. More concretely, our model learns to understand the process where
adding the suffix ly converts an adjective into an adverb, and also that regardless

4 Chapter 1: Introduction

of the number of o’s that are added to cool, it remains the same word. Finally, we
show that our model can also learn non-compositional effects in language, that is,
even though the words butter and batter are lexically similar, their meanings are
different.

Aside from understanding words from characters, many models must also be
able to generate words. Our main task, machine translation generates the target
sentence word by word from the input sentence. Once again, the broadly used
methods simply map this problem into predicting the correct word type from a
list of existing types. Similar problems arise using these methods that are lexically
oriented. For instance, word-based prediction models cannot generate unseen words.
For instance, the model cannot generate the unseen word performed even though
it has seen the word perform, and many present-past English verb constructions.
Another common example in machine translation, is that many named entities (e.g.
Manders) are not translated at all across European languages. Yet, most models
cannot learn to simply copy the entity name to the output. These are generally
implemented as special conditions during decoding or using post processing scripts
to clean the translation output.

In this thesis, we shall propose models for the representation and generation of
words at the character level, and show improvements in many NLP tasks in terms of
quality of the end-to-end task, their performance and their compactness. Finally, we
will show that in machine translation, this model can improve existing methods by
allowing them to generalize better to lexically diverse languages (e.g. Turkish) and
domains (e.g. Twitter).

1.2 Contributions and Thesis Statement

From the algorithmic point of view, we enrich the fields of NLP and MT fields with
the following contributions:

Contribution 1: Parallel Data Extraction from Self-Contained Messages We
present a parallel data extraction algorithm that allows parallel data extraction from
self-contained documents [Ling et al., 2013b]. That is, unlike existing methods that
extract data from different documents, our method can extract parallel sentences
within the same message if it contains two or more languages.

1.2 Contributions and Thesis Statement 5

Contribution 2: Character-based Microblog Normalization We present a para-
phrasing model that can be trained on parallel data in order to generate paraphrases
of input sentences [Ling et al., 2013a]. Trained on the extracted parallel data, it
acts as a microblog normalizer, which can be used to standardize microblog data
prior to translation.

Contribution 3: Character-based Word Representation We introduce a model
for constructing vector representations of words by composing characters using
bidirectional long short term memory (LSTM) recurrent neural networks [Ling et al.,
2015c]. Relative to traditional word representation models that have independent
vectors for each word type, our model requires only a single vector per character type
and a fixed set of parameters for the compositional model. Despite the compactness
of this model and, more importantly, the arbitrary nature of the form–function
relationship in language. In most NLP components, our model out-performs existing
models that consider word types as independent units.

Contribution 4: Character-based Word Generation We present a model for
generating words at the character level. Relative to the more broadly used word
softmax, our method is faster to compute and requires less parameters. Furthermore,
it also allows the model to generate word forms that have not been seen in the
training data.

Contribution 5: An Character-based Machine Translation Model We use the
character-based representation and generation models to introduce a neural ma-
chine translation model that operates using characters as atomic units. We show
that our model excels at morphologically rich languages and noisier data, such as
microblogs, as it is sensitive to lexical traits in words. Furthermore, our model is
an order of magnitude faster and more compact as it only the translation task is
performed using characters as atomic unit.

In terms of applications, we improve the existing state-of-the-art systems by:

Contribution 1: Learning up-to-date translation units for machine translation
units Our automatic parallel data extraction algorithm collects translations from
up-to-date messages, which allows newer terms to be learnt. Thus, aside from
learning lexical variants, we also learn translations for newly introduced entities,

6 Chapter 1: Introduction

such as the movie Jurassic World. Thus, we show that the collected data can also be
used to improve translation in more standard domains, although the improvements
are not as significant as when these are used to translate sentences in the same
domain.

Contribution 2: Improvements in NLP for morphologically rich languages
We show that our character-based word representation model can also be used for
modeling words in morphologically rich languages. In languages such as Turkish,
our models tend to obtain significant improvements over existing models using
word lookups, in POS tagging and language modeling. Furthermore, it has been
shown improvements parsing in Ballesteros et al. [2015].

Contribution 3: Significantly smaller models for NLP A second effect for using
the character-based model is the fact that we model words using characters only.
Thus, we no longer need to keep parameters for every word in the vocabulary,
and replace a model for characters and their composition. This leads to dramatic
reductions in the size of the models (less than 1% of the original model). Thus,
it would be feasible for models trained on large datasets to be stored and used in
mobile devices with limited memory.

Thesis Statement Our claim is that the way content is published is changes con-
sistently and that existing MT and NLP methods, which were devised for processing
standard text are not adequate and must be adapted to accomodate these changes.
Firstly, existing parallel data mining methods that are structured, such as translated
parliament data, or translated webpages, are no longer directly applicable in mi-
croblogs, as users tend to post self-contained translations. Secondly, most NLP and
MT applications use words as atomic units of information, which is not well suited
for addressing the lexical complexity underlying this domain. In this regard, we
propose multiple character-based methods that model words as their sequence of
characters.

1.3 Contributions from Satellite Work

Some of the work on the doctoral research leading to this thesis document shall
be omitted for sake of coherence, as we are not directly related to the topic of this

1.3 Contributions from Satellite Work 7

thesis. Thus, we briefly describe the contributions and more information about
them can be accessed in their referenced work.

Learning Reordering Models using Posterior Alignments We learn reordering
models used in phrase-based models using soft alignment probabilities, rather than
fixed alignments obtained from the Viterbi algorithm [Ling et al., 2011c,b].

Phrase Table Pruning based on Relative Entropy We propose a novel algorithm
for filtering phrase tables for translations that are redundant (translations units that
can be obtained by combining smaller units). This allows a significant reduction in
the model size, with a small reduction in terms of translation quality [Ling et al.,
2012a,b].

A Game Application for Learning a Second Language based on translation
An application of MT to build a language learning game, where a human player
plays a translation game against an automatic agent, which uses a MT system to
play the game [Ling et al., 2011d].

A Named Entity Translation Extraction System using Anchor Links We learn
named entity translations by exploring the fact that anchor links that link to the
same entity generally contain the same meaning. If these are in different languages,
it is a strong indicator that these are translations of the same entity [Ling et al.,
2011a].

Improved Word Representation Learning We propose adaptations to the word
representation models defined in [Mikolov et al., 2013], which can be applied to
multiple neural NLP models. These relax the bag of words assumption defined
in previous work, by defining position dependent objective functions [Ling et al.,
2015b,a]. Improvements have been reported in both syntax-based tasks [Ling et al.,
2015c, Tsvetkov et al., 2015], as well as in semantically related tasks [Astudillo
et al., 2015b,a].

8 Chapter 1: Introduction

1.4 Thesis Structure

This thesis is divided in three parts as we will describe below:

Background Chapter 2 systemizes prior work relevant to the main topics ad-
dressed in this thesis.

• Section 2.1 describes the prior work on parallel data extraction.

• Section 2.2 summarizes the work on microblog normalization.

• Section 2.3 provides some insight on word representation learning and deep
architectures for NLP.

Parallel Data Mining From Microblogs We describe our work on extracting
parallel data from corpora from microblogs. This part is divided in the following
chapters:

• Chapter 3 describes our automatic extraction algorithm to obtain large amounts
of translated material from microblogs.

• Chapter 4 describes an application of the extracted data for microblog nor-
malization, where parallel data is used as a pivot for learning standardized
versions of existing words.

Character-based Models for NLP We propose a model for learning word repre-
sentations and generation based on characters and apply these models different to
NLP tasks, as detailed in the following chapters:

• Chapter 5 Describes the character-based word representation model and
applies this model to improve language modeling and part-of-speech tagging.

• Chapter 6 Introduces a character-based word generation model, which first
tested for character-based language modeling. Then, it combines the efforts
in the previous chapters, building a machine translation system that operates
on the character level, and showing that these models can potentially excel
on morphologically rich languages, such as Portuguese, and lexically rich
domains, such as Twitter.

1.4 Thesis Structure 9

Conclusion We conclude this thesis with an analysis of our work and delineating
directions for future work.

Chapter 2

Background

2.1 Parallel Data Extraction

2.1.1 What are Parallel Corpora?

Bitext or parallel data consists of sentences that are translated in multiple languages.
Generally, these are the result of translations produced by human translators on
an original sentence. When translating from the source language s to a target
language t, sentences in the s language can be thought of as input sentences, and
the translations in language t as labels. Thus, the majority of machine translation
systems [Koehn et al., 2007, Chiang, 2005, Bahdanau et al., 2015] are trained
on such data, making it extremely valuable in the field of MT. Exceptions include
rule-based MT systems that are built with hand-crafted rules, and work that learns
translations from monolingual data [Ravi and Knight, 2011, Dou and Knight, 2012,
Nuhn et al., 2012].

2.1.2 Automatic Parallel Corpora Mining

The automatic retrieval of parallel data is a well-studied problem. In particular,
the automatic retrieval of parallel web documents has been a mainstream line
of research [Resnik and Smith, 2003, Fukushima et al., 2006, Li and Liu, 2008,
Uszkoreit et al., 2010b, Ture and Lin, 2012]. In general, these approaches extract
bitext in two steps.

11

12 Chapter 2: Background

In the first step, these methods find multiple pairs of websites that are likely
to be parallel. This step is necessary to narrow down the potential candidates for
parallel websites as considering all possible pairs in a given set of webpages would
be intractable. A simple approach named URL filtering [Resnik and Smith, 2003]
builds this set of pairs, by checking for websites with patterns that may indicate
the presence of a parallel website. For instance, the pattern lang=en, generally
indicates that by changing en to another language code, such as pt, we may find
another website, which is the translation of the original one. However, this method
has a low recall, since it ignores the content within the web document. More robust
approaches, such as the work described in [Uszkoreit et al., 2010b], translates all
documents into English, and then finds rare ngrams that are common across web
documents with different original languages. Then, all pairs between documents
that share a rare ngram are extracted.

The second step determines whether a pair of websites is actually parallel. A
language independent approach, named structural filtering [Resnik and Smith,
2003], is to compare the HTML structure of the pair of documents, which is done
by measuring how well their HTML tags align. However, this method does not work
well when webpages are only partially parallel. Content-based matching [Resnik
and Smith, 2003] approaches attempt to measure how well the content of the two
documents are translations of each other. One possible implementation is to word
align [Brown et al., 1993] the documents, and then compute the following score:

S =
#alignments

#alignments +#unaligned words
(2.1)

Finally, a threshold is set and pairs of webpages are considered parallel if their
score is higher than the threshold.

One approach to obtain word alignments is IBM Model 1, which we shall
now review. Given a source sentence x = 〈x1, x2, . . . , xn〉 and a target translation
y = 〈y1, y2, . . . , ym〉, where n and m denote the number of tokens in x and y, IBM
Model 1 defines the probability of a lexical alignment a to translation y as

PM1(a, y | x) =
1

(n+ 1)m

m∏
i=1

t(yi | xai) (2.2)

where a are the alignments between x and y, and t(yi | xai) denotes the lexical
translation probability that word yi is the translation of xai. More robust models
consider other factors such as distortion and fertility, and generally find better

2.2 Microblog Normalization 13

alignments, albeit at the cost of higher complexity. In our work, we use Model 1 as
the basis, since its simplicity allows for a particularly tractable solution.1

Some work has also focused on a specific domain within the Web, such as
the work in [Smith et al., 2010], which attempts to find parallel segments from
Wikipedia. This work leverages the fact that Wikipedia contains pages that are
written in multiple languages, and even though these are not translations, they
are generally similar in content. Thus, parallel segments can be extracted using
methods that retrieve parallel sentences from comparable corpora [Smith et al.,
2010, Munteanu et al., 2004]. Likewise, the work in [Jehl et al., 2012] attempts
to extract bitext from Twitter. This method relies on Cross-Lingual Information
Retrieval techniques (CLIR) to extract English-Arabic translation candidates by
using the Arabic tweets as search queries in a CLIR system. Afterwards, the model
described in [Xu et al., 2001] is applied to retrieve a set of ranked translation
candidates for each Arabic tweet, which are then used as parallel segments.

It is also possible to focus the extraction in one particular type of phenomena.
The work on mining parenthetical translations [Lin et al., 2008], which attempts
to find translations within the same document, has some similarities with our
work, since parenthetical translations are within the same document. However,
parenthetical translations are generally used to translate names or terms, which is
more limited than our work targeting the extraction of whole sentence translations.

2.2 Microblog Normalization

2.2.1 What is Normalization?

Normalization is the task of standardizing the non-standard text found in non-
edited domains such as Twitter. Consider the English tweet shown in the first row
of Table 2.1 which contains several elements that NLP systems trained on edited
domains may not handle well. First, it contains several nonstandard abbreviations,
such as, yea, iknw and imma (abbreviations of yes, I know and I am going to).
Second, there is no punctuation in the text although standard convention would
dictate that it should be used.

While normalization to a form like To Daniel Veuleman: Yes, I know. I am going

1Furthermore, despite its simplicity, IBM Model 1 has previously shown good performance for
sentence alignment systems [Xu et al., 2005, Braune and Fraser, 2010].

14 Chapter 2: Background

Table 2.1: Translations of an English microblog message into Mandarin, using three
web translation services.

orig. To DanielVeuleman yea iknw imma work on that
MT1 啊iknw DanielVeuleman伊马工作，
MT2 DanielVeuleman是iknw凋谢关于工作，
MT3 到DanielVeuleman是的iknw imma这方面的工作

to work on that. does indeed lose some information (information important for
an analysis of sociolinguistic or phonological variation clearly goes missing), it
expresses the propositional content of the original in a form that is more amenable
to processing by traditional tools. Translating the normalized form with Google
Translate produces要丹尼尔Veuleman：是的，我知道。我打算在那工作。, which
is a substantial improvement over all translations in Table 2.1.

2.2.2 Lexical Normalization

Most of the work in microblog normalization is focused on finding the standard
forms of lexical variants [Yang and Eisenstein, 2013, Han et al., 2013, 2012, Kauf-
mann, 2010, Han and Baldwin, 2011, Gouws et al., 2011, Aw et al., 2006]. A lexical
variant is a variation of a standard word in a different lexical form. This ranges from
minor or major spelling changes, such as jst, juxt and jus that are lexical variants of
just, to abbreviations, such as tmi and wanna, which stand for too much information
and want to, respectively. Jargon can also be treated as variants, for instance cday is
a slang word for birthday, in some groups.

There are many rules that govern the process lexical variants are generated.
Some variants are generated from orthographic errors, caused by some mistake
from the user when writing, or also purposely introduced for stylistic effects. For
instance, the variants representin, representting, or reprecenting can be generated by
a spurious letter swap, insertion or substitution by the user. One way to normalize
these types of errors is to attempt to insert, remove and swap characters in a lexical
variant until a word in a dictionary of standard words is found [Kaufmann, 2010].
Contextual features are another way to find lexical variants, since variants generally
occur in the same context as their standard form. This includes orthographic
errors, abbreviations and slang. However, this is generally not enough to detect
lexical variants, as many words share similar contexts, such as already, recently

2.2 Microblog Normalization 15

and normally. Consequently, contextual features are generally used to generate a
confusion set of possible normalizations of a lexical variant, and then more features
are used to find the correct normalization [Han et al., 2012]. One simple approach
is to compute the Levenshtein distance to find lexical similarities between words,
which would effectively capture the mappings between representting, reprecenting
and representin to representing. However, a pronunciation model [Tang et al., 2012]
would be needed to find the mapping between g8, 2day and 4ever to great, today
and forever, respectively. Moreover, visual character similarity features would be
required to find the mapping between g00d to good.

2.2.3 Sentence Normalization

Wang and Ng [2013] argue that the task of microblog normalization is not simply to
map lexical variants into standard forms, but that other tasks, such as punctuation
correction and missing word recovery should be performed. Consider the example
tweet you free?, while there are no lexical variants in this message, the authors
consider that the normalizer should recover the missing article are and normalize
this tweet to are you free?. To do this, the authors train a series of models to
detect and correct specific errors. While effective for narrow domains, training
models to address each specific type of normalization is not scalable over all types
of normalizations that need to be performed within the language, and the fact
that a set of new models must be implemented for another language limits the
applicability of this work.

Another strong point of the work above is that a decoder is presented, while
the work on building dictionaries only normalize out of vocabulary (OOV) words.
The work of [Han et al., 2012] trains a classifier to decide whether to normalize
a word or not, but is still preconditioned on the fact that the word in question is
OOV. Thus, lexical variants, such as, 4 and u, with the standard forms for and you,
are left untreated, since they occur in other contexts, such as u in u s a. Inspired by
the work above, we also propose a decoder based on the existing off-the-self tool
Moses [Koehn et al., 2007], that “translates" from non-standard forms to normal
forms.

Character-based MT methods have also been applied to normalization [Pennell
and Liu, 2011, 2014], in these approaches, the phrase-based machine translation
system is trained at the character level, as opposed as in the word level. These are
trained in pairs of sentences where the non-standard sentence is aligned with the
standardized/normalized sentence, resulting in a normalization system that learns

16 Chapter 2: Background

this mapping at the character level. There are also methods to find paraphrases
automatically from Twitter [Xu et al., 2013], by finding tweets that contain common
entities, such as Obama, that occur during the same period by matching temporal
expressions. The resulting paraphrase corpora can also be used to train a normalizer
using similar approaches.

2.3 Word Representations in Neural Networks

2.3.1 Word Lookup Tables

Most NLP methods convert words into a sparse representation, where word types
are treated independently. For instance, multinomial distributions that compute the
probability of word w being labelled as class c are generally modelled with a table
containing a row for each word type and a column for each possible class. Similarly,
in logistic regression a word is converted into one-hot representation onehot(w),
which is a vector with the size of the vocabulary V and contains the value 1 in index
w and zero in all other indexes. As a softmax is performed on this vector, each
position of the vector is given its own set of parameters. One disadvantage of this
model is that it assumes independence between words as each word type is given
its unique set of weights.

On the other hand, vector space models capture the intuition that words may be
different or similar along a variety of dimensions. Learning vector representations
of words by treating them as optimizable parameters in various kinds of language
models has been found to be a remarkably effective means for generating vector
representations that perform well in other tasks [Collobert et al., 2011, Kalchbrenner
and Blunsom, 2013, Liu et al., 2014, Chen and Manning, 2014]. Formally, such
models define a matrix P ∈ Rd×|V |, which contains d parameters for each word
in the vocabulary V . For a given word type w ∈ V , a column is selected by right-
multiplying P by a one-hot vector of length |V |, which we write 1w, that is zero
in every dimension except for the element corresponding to w. Thus, P is often
referred to as word lookup table and we shall denote by eWw ∈ Rd the embedding
obtained from a word lookup table for w as eWw = P · onehot(w). This allows tasks
with low amounts of annotated data to be trained jointly with other tasks with large
amounts of data and leverage the similarities in these tasks.

2.3 Word Representations in Neural Networks 17

2.3.2 Word Representation Learning

A common practice to learn good representations for words is to initialize the word
lookup table with the parameters trained on a proxy task for which a lot of data
is available, such as, language modeling. Some examples of these include the
skip-n-gram and continuous bag-of-words (CBOW) models of [Mikolov et al., 2013],
but also extensions of these models Ling et al. [2015b].

Chapter 3

Automatic Microblog Parallel Data
Extraction

Data is a major component in any statistical NLP system setup. It is needed both to
train models and evaluate the quality of MT systems.

In statistical machine translation, we are particularly interested in parallel data,
which are segments of text in multiple languages aligned in the sentence level.
The existence of multiple parallel corpora supports the work done in this field.
However, there is no available parallel corpora in the domain of microblogs and
social networks. This is especially problematic, since using out-of-domain training
data generally leads to worse results than using in-domain data, which stresses the
importance of devising a system to crawl data automatically.

In this chapter, we shall describe our method for extracting parallel data from
microblogs, such as Twitter and Sina Weibo (This work has been published in [Ling
et al., 2013b]). It is inspired by the fact that a reasonable number of microblog
users tweet “in parallel” in two or more languages. For instance, the American
entertainer Snoop Dogg regularly posts parallel messages on Sina Weibo (Mainland
China’s equivalent of Twitter). Figures 3.1 and 3.2 show real parallel posts found in
Sina Weibo. In both examples, posts are written first in English and then the same
content is added in Mandarin, separated by a dash(-) character. While tweets that
are translated are not exactly representative of microblogs as a whole, as not all
messages are translated, these are better at representing the general language used
in this domain than existing datasets.

Our goal is to find these posts and extract the Mandarin and English segments

19

20 Chapter 3: Automatic Microblog Parallel Data Extraction

from the tweet. Briefly, this requires determining if a tweet contains more than one
language, if these multilingual utterances contain translated material (or are due to
something else, such as code switching), and what the translated spans are.

Figure 3.1: Examples of parallel posts from Sina Weibo by Snoop Dogg.

3.1 The Intra-Document Alignment (IDA) Model

As previously stated, content-based filtering is a method for parallel data detection
that relies on translation/alignment models [Brown et al., 1993, Vogel et al., 1996,
inter alia]. However, such approaches reason about the probability that a pair
of documents—in different languages—is parallel. In contrast, in our problem,

3.1 The Intra-Document Alignment (IDA) Model 21

Figure 3.2: Examples of parallel posts from Sina Weibo by Psy.

translated material might be embedded in a single document, with different regions
in different languages. In this section, we describe a model for identifying translated
material in these documents.

The IDA model takes as input a document x = 〈x1, x2, . . . , xn〉, where n denotes
the number of tokens in the document. Our goal is to find the location of the parallel
segments, the languages of those segments and their word alignments. These are
defined by the tuple ([p, q], l, [u, v], r, a), where the token indexes [p, q] and [u, v]
are used to identify the left segment (from p to q) and right segment (from u to
v), which are parallel. We shall refer by [p, q] and [u, v] as the spans of the left
and right segments. To avoid overlaps, we set the constraint p ≤ q < u ≤ v. For
simplicity, we also assume that there are at most 2 continuous segments that are
parallel. Then, we use l and r to identify the language of the left and right segments,
respectively. Finally, a represents the word alignment between the words in the
left and the right segments. An example is provided in Figure 3.3 where, for the
given tweet, the left and right segment spans [1, 5] and [11, 13] are identified in (1),
the languages for these spans zh and en in (2) and the alignments (2, 12), (3, 13),

22 Chapter 3: Automatic Microblog Parallel Data Extraction

indicating that words in indexes 2 and 3 are aligned to words at indexes 12 and 13.
The main problem we address is to find the parallel data when the boundaries of the
parallel segments are not explicitly defined. That is, to find the optimal segments
[1, 5] and [11, 13], we must search through all other possible spans, such as [1, 4] and
[11, 13]. If the optimal indexes [p, q] and [u, v] were known a priori, it would reduce
this problem into a regular word alignment problem, where we simply perform
language detection on those segments, and align the segments and use Equation 2.1
to determine the likelihood that the segments are parallel.

The approach we devised to solve this problem finds the optimal segments
[p, q][u, v], languages l, r and word alignments a jointly. However, there are two
problems with this approach that must be addressed. Firstly, word alignment models
generally attribute higher scores to smaller segments, since these are the result
of a smaller product chain of probabilities. In fact, since the model can freely
choose the size of the segments [p, q] and [u, v], using a word alignment model
(Equation 2.2) or content-based matching (Equation 2.1) almost always yields word-
to-word translations. Secondly, inference must be performed over the combination
of all latent variables ([p, q], l, [u, v], r, a), which can easily become intractable, even
for short documents, using brute force approaches. These problems are described
in detail and addressed in Section 3.1.1, 3.1.2 and 3.1.3. The extension of this
method to more than a single language pair is presented in Section 3.1.4. Finally, we
describe the metrics used to evaluate the quality of the extracted parallel segments
in Section 3.1.5.

3.1.1 Model Components

As previously stated, an alignment model itself is not sufficient, since as more
possible source alignments are available the probability of any alignment would
decrease. Thus, there is a bias for selecting shorter spans.

To understand the problem, consider the example in Figure 3.3, and assume
that we know the language pair l, r and the word alignments a. Suppose that
the Chinese characters 起 and 努 are aligned to the words fighting and together,
respectively. We now consider three possible segment spans [p, q], [u, v]: (1) The
desired translation from 一起努力吧 to We fighting together; (2) the segment of
all aligned words translating from起努 to fighting together; (3) and the segment
with a word-to-word translation from起 to together. According to Equation 2.2, the
translation probabilities would be calculated as:

3.1 The Intra-Document Alignment (IDA) Model 23

• (1) 1
46
PM1(together |起)PM1(fighting |努)

• (2) 1
23
PM1(together |起)PM1(fighting |努)

• (3) 1
13
PM1(together |起)

By observing these probabilities, we notice two problems with this model. Firstly,
the model is unlikely to choose segments with unaligned words. This can be
seen by comparing the first and second cases, where it is evident that the first
case’s translation probability is bounded by the second one regardless of the word
translation probabilities, as the normalization factor 1

nm+1 is inversely proportional
to the number of words in the segments. A more aggravating issue is the fact that
the model always picks word-to-word translation segments. This can be seen by
comparing case (2) and (3), where we can observe that the second case is bounded
by the third one, as the second case is a product of more translation probabilities.

Similar results are obtained if we consider Equation 2.1, where the example (1)
obtains a lower score than (2) and (3), as it contains unaligned words.

To address this problem, we propose a three-feature model that takes into
account the spans of the parallel segments, their languages, and word alignments.
This model is defined as follows:

score([u, v],r, [p, q], l, a | x) =
φS([p, q], [u, v] | x)︸ ︷︷ ︸

span score

×φL(l, r | [p, q], [u, v], x)︸ ︷︷ ︸
language score

×φT (a | [p, q], l, [u, v], r, x)︸ ︷︷ ︸
alignment score

Each of the component scores (φS, φL and φT) returns a score in the interval
[0, 1] and each score is conditioned on different latent variables. We shall describe
the role each score plays in the model.

Translation Score

The translation score φT (a | [p, q], l, [u, v], r) indicates whether [p, q] is a reasonable
translation of [u, v], according to the alignment a. Previously, we relied on pre-
trained IBM Model 1 probabilities for this score:

φM1(a | [p, q], l, [u, v], r, x) =
1

(q − p+ 2)v−u+1

v∏
i=u

tl→r
M1 (xi | xai).

24 Chapter 3: Automatic Microblog Parallel Data Extraction

The equation above is a reformulation of the Model 1 presented in Equation 2.2 for
a single document with the segment p, q as source, and u, v as target. The lexical
tables tl→r

M1 for the various language pairs are trained a priori using available parallel
corpora. The null translation probability is set to ε, which is set to a negligible
probability, so that these are only used if xi cannot be aligned to any word. Note
that the translation score by itself also allows the identification of the language pair
l, r, as using a lexical table from an incorrect language pair is likely to yield lower
scores.

However, when considering multiple language pairs, lexical translation probabil-
ities for pairs of words in some language pairs tend to be higher, as there are less
equivalent translations for the same word. This would bias the model to pick those
language pairs more often, which is not desirable. Thus, we redefine this score
by adapting the content-based matching metric, which assumes lexical translation
uniformity:

φmatch(a | [p, q], l, [u, v], r, x) =
#a∑

i∈[p,q]∪[u,v] δ(i /∈ a)

However, the computation of the alignments a for a given language pair l, r is
still performed under IBM model 1.

Finally, as performing word alignments for different directions can generate a
different set of alignments, we also compute the alignments from r to l. These
alignments are generated for both directions, which are denoted as al,r and ar,l. The
translation score is defined as:

φT = max(φmatch(al,r | [p, q], l, [u, v], r, x), φmatch(ar,l | [u, v], r, [p, q], l, x))

Span Score

The span score φS([p, q], [u, v] | l, r, x) of hypothesized pair of segment spans
[p, q], [u, v] is defined as:

φS(l, r | [p, q],[u, v] | x) =
(q − p+ 1) + (v − u+ 1)∑

0<p′≤q′<u′≤v′≤n(q
′ − p′ + 1) + (v′ − u′ + 1)

× δ([p, q], [u, v] /∈ ω(l, r, x))

3.1 The Intra-Document Alignment (IDA) Model 25

The span score is a distribution over all spans that assigns higher probability to
segmentations that cover more words in the document. It is highest for segmenta-
tions that cover all the words in the document, which allows the model to consider
larger segments.

It also defines the function δ that takes the values 1 or 0 depending on whether
all the segment boundaries are valid according to the constraints list ω. The only
exception occurs when there are no valid boundaries, in which case we set δ to
always yield 1. These constraints are used to define hard constraints regarding a
segment’s validity based on prior knowledge.

The first intuition that we wish to include is that consecutive words in the same
unicode range tend to belong to the same sentence. For instance, in the example
in Figure 3.3, segments fighting together or fighting would violate the constraint,
since they do not include the whole sequence of Latin words We fighting together.
However, the segment tag: We fighting together or any other segment that contains
the whole sequence of Latin words is acceptable. The same applies to the Mandarin
segment一起努力吧.

The second constraint ensures that a segment containing a parenthesis starter
also contains the corresponding parenthesis ender. For instance, for the tweet Yoona
taking the ’身体健康’ (be healthy) ˆ ˆ, the segment (be healthy would not be valid,
since it does not contain the parenthesis closer). However, both (be healthy) and be
healthy are acceptable. The exception to this rule occurs when either the parenthesis
starter or ender is missing in the tweet, in which case this constraint is ignored. We
consider the following universal starter and ender pairs: (),[] and {}; as well as the
Mandarin and Japanese pairs: （）,【】,［］ and「」.

With the inclusion of the span score, the model can successfully address the
example in Figure 3.3, as the span score gives preference to longer segments and
constraints force the model to use complete sentences. Consider the French-English
example tweet Qui est le véritable avare ? Who is the real miser ?, and assume that
the alignment model is able to align est to is, le to the and the left question mark
? is aligned to the right one. In this case, the current model would be able to
find the correct segments as the constraints would enforce that the left segment
contains Qui est le véritable avare and the right segment contains Who is the real
miser. Furthermore, as the question marks are aligned, the model is capable of
correctly extracting the translation from Qui est le véritable avare? to Who is the real
miser?.

While the alignment and span scores can address most tweets containing trans-

26 Chapter 3: Automatic Microblog Parallel Data Extraction

lations, they still suffer from the lack of language detection. For instance, consider
that the previous example was tweeted as Who is the real miser Qui est le véritable
avare. We can see that correctly translated segments from Who is the real miser to
Qui est le véritable avare and the incorrect segments that translate from Who is the
real to miser Qui est le véritable avare would receive the same score according to the
span score, since they cover all words in the tweet. This is because the model does
not know whether miser belongs to the English or French segment. One solution to
solve this would be to augment the lexical table so that the alignment model can
align the word miser to avare, so that the alignment score is higher in the first case.
However, this is an unreasonable requirement as it would require large amounts
of parallel data. An easier solution would include a language detector in order to
identify that it is likely that miser is an English word, so it is unlikely that it would
be placed in the French segment. This information is encoded in the language score.

Language Score

The language score φL(l, r | [p, q], [u, v], x) indicates the degree that the language
labels l, r are appropriate to the document contents:

φL(l, r | [p, q], [u, v], x) =
∑q

i=p PL(l, xi) +
∑v

i=u PL(r, xi)

(q − p+ 1) + (v − u+ 1)

where PL(l, xi) is a language detection function that yields the probability that
word xi is in language l. In our previous work [Ling et al., 2013b], this was a
binary function based on unicode ranges, which assumed that all Latin words were
English and all Han Characters were Mandarin. This was not a problem, since we
were only extracting Arabic–English and Mandarin–English pairs. To cope with
any language pair, including pairs where both languages have the same unicode
range, we estimate PL(l, x) by training a character-based language detector1, and
calculating the posterior probability of a language l given a word x.

The score benefits the model in two aspects. Firstly, it addresses the problem
mentioned above, so that we can address tweets with languages in the same unicode
range. Secondly, it allows a better identification of the language pair l, r than simply
using the alignment model. The reason for this is the fact that some languages,
such as Portuguese and Spanish or Mandarin and Japanese contain overlapping
words. For instance, in the tweet よい末を！Have a nice weekend! #ohayo, the

1http://code.google.com/p/language-detection/

3.1 The Intra-Document Alignment (IDA) Model 27

characters 末 mean weekend for both Mandarin and Japanese. Thus, if these are
the only characters that are aligned during the computation of the translation score,
both languages are equality likely to be correct. However, the Hiragana characters
よ,い andを only exist in Japanese, so it is likely that the segmentよい末を！ is in
Japanese and not in Mandarin. These details are considered by the language score.

3.1.2 Inference

In our inference problem, we need to efficiently search over all pairs of spans,
languages, and word alignments. We show that, assuming a Model 1 alignment
model, an optimal dynamic programing inference algorithm is available. Our search
problem is formalized as follows:

([p, q], l, [u, v], r)∗ = arg max
[p,q],l,[u,v],r

max
a

score([p, q], l, [u, v], r, a | x). (3.1)

A high model score indicates that the predicted bispan [p, q], [u, v] is likely to corre-
spond to a valid parallel span.

A naïve approach to solving this problem would require each of the scores φS,
φL and φT to be computed for each possible variation of l, r, p, q, u, v. Calculating
the span score φS for all combinations of u, v, p, q values only requires a sum of
boundary positions. As for the set of constraints, the set of invalid boundaries ω
only needs to be computed once for each document.

As for the language score φL, the language probabilities for each word PL(l, x)
only need to be computed once. The detector can compute the language probabilities
for a word x for all considered languages in linear time over the document length
|x|. Furthermore, the number of character ngrams that need to be considered is
relatively small, as we are applying it on words rather than documents. Once
PL(l, x) is computed for all possible values of l and x, calculating the language score
can be trivially computed.

However, computing the translation score φT requires the computation of the
word alignments in φT over all possible segmentations, which requires O(|x|6)
operations using a naive approach (O(|x|4) possible segmentations, and O(|x|2)
operations for aligning each pair of segments). Even if only one language pair l, r
is considered, a document with 40 tokens would require approximately 7 million
operations in the worst case for φT to be computed for all segmentations. To process
millions of documents, this process would need to be optimized.

28 Chapter 3: Automatic Microblog Parallel Data Extraction

We show that we can reduce the order of magnitude of this algorithm to the
optimal O(|x|4) without resorting to approximations by using a dynamic program-
ming algorithm. This is done by showing that, under Model 1, Viterbi alignments
do not need to be recomputed every time the segment spans are changed, and can
be obtained by updating previously computed ones. Thus, we propose an iterative
approach to compute the Viterbi word alignments for IBM Model 1 using dynamic
programming in Section 3.1.3.

Furthermore, computing the alignments using all possible values of l, r is un-
necessarily expensive, and we show that we can limit the number of pairs without
approximations by using the language identification approach described in Sec-
tion 3.1.4.

3.1.3 Dynamic programming search

We leverage the fact that the Viterbi word alignment of a bispan (or pair of spans)
can be reused to calculate the Viterbi word alignments of larger bispans. The
algorithm considers a 4-dimensional chart of bispans and computes the Viterbi
alignment for the minimal valid span (i.e., [0, 0], [1, 1]). Then, it progressively builds
larger spans from smaller ones. Let Ap,q,u,v represent the Viterbi alignment of
the bispan [p, q], [u, v]. Each of the four dimensions p, q, u, v of the chart can be
manipulated using λ recursions, which guarantees that the new alignment would
be optimal according to IBM Model 1. The following update functions are defined:

• Ap,q,u,v+1 = λ+v(Ap,q,u,v) inserts one token to the end of the right span with
index v + 1. Only the optimal alignment for that token is needed, which re-
quires iterating over all the tokens in the left span [p, q], and possibly updating
their alignments. See Figure 3.4 for an illustration.

• Ap,q,u+1,v = λ+u(Ap,q,u,v) removes the first token of the right span with index u.
The Viterbi alignment remains the same with the exception that alignments to
the removed token at u must be removed. This can be done in time O(1).

• Ap,q+1,u,v = λ+q(Ap,q,u,v) inserts one token to the end of the left span with
index q + 1. All words in the right span must be rechecked, since aligning
them to the inserted token at q + 1 may yield a better alignment score. This
update requires n− q + 1 operations.

• Ap+1,q,u,v = λ+p(Ap,q,u,v) removes the first token of the left span with index
p. After removing the token, new alignments must be found for all tokens

3.1 The Intra-Document Alignment (IDA) Model 29

that were aligned to p. Thus, the number of operations for this update is
K × (q − p+ 1), where K is the number of words that were originally aligned
to p. In the best case, no words are aligned to the token in p, so nothing needs
to be done. However, in the worst case, when all target words were originally
aligned to p, this update would result in the recalculation of all alignments.

The algorithm proceeds until all valid cells have been computed, and retrieves
the value of the best cell. The most important aspect to consider when updating
existing cells is that the update functions differ in complexity, and the sequence
of updates used defines the performance of the system. Most spans are reachable
using any of the four update functions. For instance, the span A2,3,4,5 can be reached
using λ+v(A2,3,4,4), λ+u(A2,3,3,5), λ+q(A2,2,4,5) or λ+p(A1,3,4,5). However, it is desirable
to apply λ+u whenever possible, since it only requires one operation. Yet, this is
not always feasible. For instance, the state A2,2,2,4 cannot be reached using λ+u, as
the state A2,2,1,4 does not exist, since it breaks the condition p ≤ q < u ≤ v. In this
situation, incrementally more expensive updates must be considered, such as λ+v

or λ+q, which are in the same order of complexity. Finally, we want to minimize
the use of λ+p, which may require the recomputation of the Viterbi Alignemnts.
Formally, we define the following recursive formulation that guarantees an optimal
outcome:

Ap,q,u,v =

λ+u(Ap,q,u−1,v) if u > q + 1

λ+v(Ap,q,u,v−1) else if v > q + 1

λ+p(Ap−1,q,u,v) else if q = p+ 1

λ+q(Ap,q−1,u,v) otherwise

This transition function applies the cheapest possible update to reach state
Ap,q,u,v.

If we consider that we always choose the least complex update function, we
reach the conclusion that this algorithm runs at O(n4) time. Starting by considering
the worst update λ+u, we observe that this is only needed in the following cases
[0, 1][2, 2], [1, 2][3, 3], · · · , [n− 2, n− 1][n, n], which amounts to O(n) cases. Since this
update is quadratic in the worst case, the complexity of these operations is O(n3).
The update λ+q is applied to the bispans [∗, 1][2, 2], [∗, 2][3, 3], · · · , [∗, n − 1], [n, n],
where ∗ denotes an arbitrary number within the span constraints, but not present
in previous updates. Given that this update is linear, and we need to iterate through
all tokens twice, this update also takes O(n3) operations in total. The update λ+v

is applied for the cells [∗, 1][2, ∗], [∗, 2][3, ∗], · · · , [∗, n − 1], [n, ∗]. Thus, with three

30 Chapter 3: Automatic Microblog Parallel Data Extraction

degrees of freedom and a linear update, it runs in O(n4) time. Finally, update λ+u

runs in constant time, but is needed for all remaining cases, so it also requires O(n4)
operations. Hence, by summing the executions of all updates, we observe that the
order of magnitude of our exact inference process is O(n4). Note that for exact
inference, a lower order would be unfeasible, since simply iterating all possible
bispans once requires O(n4) time.

3.1.4 Language Pair Filtering

While running alignments for all language pairs does not raise the order of the
algorithm itself, since the number of existing languages is limited, it still involves a
considerable additional run time that can be avoided. For instance, if we consider
20 language pairs, we must run the alignment algorithm 20 times. However, in
most cases, many language pairs can be trivially ruled out. For instance, if there are
no Han characters, any pair involving Japanese or Mandarin can be excluded. Thus,
one can efficiently filter out unlikely language pairs without losses.

The combined score (IDA score) is composed by the product of the span, lan-
guage and translation scores. The computation of the translation score requires
checking a lexical translation table in each operation, which is computationally
expensive, so dynamic programming is required. However, the span and language
scores can be more efficiently computed, so this operation is only expensive if we
compute the translation score.

Thus, we define the incomplete IDA score as:

Sinc([u, v], r, [p, q], l | x) = φS([p, q], [u, v] | l, r, x)× φL(l, r | [p, q], [u, v], x).

We can trivially show that score([u, v], r, [p, q], l, a | x) is bounded by Sinc([u, v], r, [p, q], l |
x), as the incomplete score does not include the product of the translation score,
in the [0, 1] interval. This means that if we know that the highest score value for
Mandarin-English is 0.4, and wish to check if we can obtain a better score for
Arabic-English, we can first compute the Sinc score for Arabic-English, and check
if it is higher than 0.4. If it is not, we can skip the computation of the alignment
score for this language pair, as it would not be higher than 0.4. Thus, if we find that
the highest Sinc score among all possible segmentations of p, q, u, v score for a given
language pair l1, r1 is lower than score for any other language pair, it follows that
l1, r1 is never the highest scoring language pair. More formally, we can discard a

3.1 The Intra-Document Alignment (IDA) Model 31

language pair l1, r1 if the following condition applies:

∃l 6=l1,r 6=r1 max
[p,q],[u,v]

Sinc([p, q], l1, [u, v], r1 | x)

≤ max
[p,q],[u,v]

max
a

score([p, q], l, [u, v], r, a | x)

Our method starts by computing the incomplete IDA scores Sinc for all values of
r, l. Then, starting from the highest scoring language pairs l, r, we compute their
complete IDA scores, while keeping track of the highest IDA score. The algorithm
can stop once it reaches a language pair whose incomplete IDA score is lower than
the highest complete IDA score, as we know that they never achieve the highest
complete IDA score.

3.1.5 Evaluation Metrics

The goal of the IDA model is to find the optimal parallel segments [p, q][u, v], their
languages l, r and the alignments a. The evaluation metric we define tests whether
the predicted values of [ph, qh], lh, [uh, vh], rh are determined accurately with their
reference values [pr, qr], lr, [ur, vr], rr. We refrain from testing the optimal alignments
a, as gold standards with word alignments are generally complex and expensive to
build. The reference values are obtained manually from human annotations, and
we present methods to crowdsource these annotations in [Ling et al., 2014].

We start by defining the intersection and union between two segments [a, b] ∩
[a′, b′] and [a, b] ∪ [a′, b′]. The intersection between two segments [a, b] ∩ [a′, b′],
namely [a, b] and [a′, b′] computes the number of tokens within the intersection of
the intervals, as given by [max(a, a′),min(b, b′)]. Similarly, the union between two
segments ([a, b] ∪ [a′, b′]) computes the number of tokens within the union of the
intervals, given by [min(a, a′),max(b, b′)]. One important aspect to consider is that
the segments can span half words, which can happen if there is a missing space
between a sentence pair boundary, such as uneasyBom, which is contains the English
word uneasy and the Portuguese word Bom. To cope with this, we use the simple
method where we add the fractional count as the ratio between the number of
characters that is included in the interval and total number of characters in the
token. Thus, the segment corresponding to uneasy in uneasyBom, would correspond
to two-thirds of a single word.

A hypothetical segment [ah, bh] with language lh is scored against the reference
[ah, bh] with language lr as:

32 Chapter 3: Automatic Microblog Parallel Data Extraction

Sseg([ah, bh], lh, [ar, br], lr) =
intersect([ah, bh], [ar, br])

union([ah, bh], [ar, br])
δ(lh = lr) (3.2)

This score penalizes the hypothesis segment for each extra token not in the
reference, as well as each token in the reference that is not in the hypothesis.
Furthermore, segments that differ in language would have a zero score. Unlike our
previous work, we decided not to evaluate the language pair detection as a separate
task, as only a negligible number of spurious parallel sentences (less than 0.1%) are
caused by a incorrect detection of the language pair.

The final score SIDA is computed as the harmonic mean between the segment
scores of the parallel segments:

SIDA([ph, qh], lh, [uh,vh], rh, [pr, qr], lr, [ur, vr], rr) = (3.3)
2Sseg([ph, qh], lh, [pr, qr], lr)Sseg([uh, vh], rh, [ur, vr], rr)

Sseg([ph, qh], lh, [pr, qr], lr) + Sseg([uh, vh], rh, [ur, vr], rr)
(3.4)

We opt to compute the harmonic mean (as opposed to a arithmetic mean), since
it emphasizes that both parallel segments must be accurate to obtain a high score.
This is because parallel segments are only useful when both sides are accurate on
the span and language.

3.2 Parallel Data Extraction

The previous section describes a method for finding the optimal segments p, q, u, v
and the language pair l, r and the alignments a, according to the IDA model score, for
any document x. However, extracting parallel sentences using this model requires
addressing other issues, such as identifying the tweets that contain translations from
those that do not. This section describes how the parallel data extraction process is
performed. We start by assuming that we have access to a sample of tweets (e.g.
from Twitter), which we denote as T .

The process is divided into three steps. Firstly, we filter the set T in order to
remove all monolingual tweets, which results in a set Tmult composed solely by
multilingual tweets, which substantially reduces the number of tweets that need
to be processed by the following steps. Secondly, assuming that all tweets Tmults

contain parallel data, we extract the parallel segments using the IDA model, which

3.2 Parallel Data Extraction 33

are placed in one of the sets Ds,t, where s and t denote the language pair of each
parallel segment. The fact that we are applying the IDA model to tweets that may
not contain translations means that many instances in Ds,t would not be parallel.
Thus, as the last step, we filter these instances, using a classifier that is trained to
predict whether each sample in Ds,t is actually parallel. These steps are described
in detail in Sections 3.2.1, 3.2.2 and 3.2.3.

3.2.1 Filtering

The first step is to filter the set of tweets T , so that only multilingual tweets are kept.
A tweet is multilingual if there is more than one language within it. Thus, these can
contain not only translated material, but also case switching, use of foreign words,
or simply sentences in multiple languages. Obviously, if a tweet is not multilingual,
it can automatically be disregarded as a potential container of bitext.

Our previous approach for extracting Mandarin-English sentence pairs consid-
ered only tweets that simultaneously contained a trigram of Mandarin Characters
and a trigram of Latin words. However, this approach is only effective at finding
multilingual tweets with languages that do not share the same unicode range. Thus,
to allow the extraction of parallel data for language pairs, such as English-Spanish,
a more general method is needed.

Multilingual Document Detection

Once again, a challenge in this problem is that language detectors do not identify
multiple languages within a document. There are some recently proposed methods
for this [Lui et al., 2014], they are not tuned for efficiency, which is the main
requirement for this step.

We use an approach similar to the one devised in Section 3.1.1, where we
adapted a word-based language detection approach. The approach is based on
estimating the probability that two tokens a and b are in different languages, which
is given as:

Pmult(a, b) = 1−
∑
i∈L

PL(a, i)PL(b, i) (3.5)

where PL(x, i) is once again the probability that token x is in language i, according
to a character based model and L is the set of all languages considered. Thus, given
a tweet, our model attempts to find a pair of words where Pmult(a, b) is higher than

34 Chapter 3: Automatic Microblog Parallel Data Extraction

0.952. For instance, in the tweet eu quero ver este cartoon, where the message is
mainly in Portuguese except for the word cartoon, which is in English, the model can
use the high probability in Pmult(ver, cartoon) to identify this tweet as multilingual.
Once again, we are not interested in the accuracy provided by considering contextual
information in language detectors for the following reasons. Firstly, the language
ambiguity is not a problem, since we are attempting to detect whether a pair is
multilingual and not exactly the languages of the pair of words. Notice that the
language of the word ver by itself is ambiguous, since both Portuguese and Spanish
contain this word. However, the model is only interested in knowing if the language
of ver is different from the language of cartoon. Thus, as long as the probability of
ver is low for English, the multilingual language detector would successfully identify
this pair as multilingual. Secondly, even if a pair fails to be detected as multilingual,
the model would still test all remaining pairs on whether these are parallel.

Word Pair Indexing

Traversing the whole Twitter corpus and computing Equation 3.5 for all pairs of
words can be expensive, given that there are billions of tweets to process. To cope
with this, we use an approach based on the work of [Uszkoreit et al., 2010b], where
we first index the whole list of tweets. This index maps a word pair to a list of
documents containing that word pair. Next, we traverse the index of word pairs
and perform the detection using Equation 3.5, tagging the list of documents with
that word pair as multilingual. Using this approach, we can avoid recomputing the
same word pair more than once, if they occur in multiple tweets. Furthermore, we
traverse the index so that word pairs that occur in more documents are processed
first, and skip word pairs whose associated documents have already been classified
as multilingual.

3.2.2 Location

The set of multilingual tweets Tmult, achieved after the filtering step, is then pro-
cessed using the IDA model in order to find the optimal values for the variables
[p, q], [u, v], l, r that define the parallel segments and their languages. Then, each
parallel sentence is extracted and placed in the set Ds,t = (s1, t1), . . . , (sk, tk), con-
taining all parallel sentences extracted in the language pair s, t. It is important to

2Threshold determined empirically to obtain high recall.

3.2 Parallel Data Extraction 35

mention that, while the variables l, r denote the languages of the left and right
segments, respectively, in the set Ds,t, we place all parallel sentences that contain
the language pair s, t, regardless of their order. Thus, we define the following
insertion function:

Ins(d, [p, q], [u, v], l, r,Ds,t) =

{
Ds,t ∪ (dqp, d

v
u) l = s ∧ r = t

Ds,t ∪ (dvu, d
q
p) l = t ∧ r = s

(3.6)

where dba denotes the segment corresponding to the indexes from a to b in the
original tweet d. This function simply checks if the s and t correspond to the left l or
right r segments in the detected parallel data, and places the appropriately aligned
parallel segments.

Obviously, all sets D contain a considerable amount of non-parallel segments,
as multilingual messages are not guaranteed to contain translated material. Fur-
thermore, we must also consider errors from misalignments of the IDA model and
misclassifications of the multilingual message detector. Thus, in order to identify
messages that are actually parallel, an identification step is necessary.

3.2.3 Identification

Once the latent variables are converted into a sentence pair (s, t) in the previous
step, many existing machine learning methods for detecting parallel data [Resnik
and Smith, 2003, Munteanu and Marcu, 2005] can be applied, as this problem
becomes a regular unstructured bitext identification problem. In our previous
work [Ling et al., 2013b], we simply defined a threshold τ on the IDA model score,
which was determined empirically. However, this approach is not optimal and not
generalizable for other domains and language pairs. Thus, in our current work, we
train a max entropy classifier model for each language pair, similar to that presented
in [Munteanu and Marcu, 2005], that detects whether two segments are parallel in
a given language pair. Training is performed on annotated data from tweets, where
each tweet is annotated on whether there is parallel data in that language pair.

The automatic training involved the following set of features:

• IDA Model Features - These features correspond to the scores corresponding
to each of the factors SS, SL and ST . Each score is added as a separate feature
so that they can be weighted separately.

36 Chapter 3: Automatic Microblog Parallel Data Extraction

• User features - While the background of the users that parallel post cannot
be determined with absolute certainty, it is safe to assume that they are either
bilingual speakers and translate their own messages, or hire translators to
translate their posts. Thus, users that do not belong to these categories rarely
post parallel messages, since they do not have the means, and likewise, users
that are in these categories are likely to post a considerable amount of parallel
posts. For instance, Sina Weibo users for Snoop Dogg and Paris Hilton mostly
post in English-Mandarin. While the IDA model can align the parallel segments
in most cases, some shorter more informal messages, such as Ready to rock
NYC. -准备好让纽约嗨起来。, tend to be harder to align and receive a lower
score and not get classified as parallel. Yet, these messages tend to be more
valuable, as they contain artifacts that our translation models cannot translate.
Thus, it is desirable to consider the aggregate scores of the user posts as
additional information for the classification problem. This is implemented
by adding the average IDA model score from all posts from a given user as a
feature.

• Repetition features - In informal domains, there are many terms that are not
translated, such as hashtags (e.g. #twitter), at mentions (e.g. NYC), numbers
and people’s names. The presence of such repeated terms in the same tweet
can be a strong cue for detecting translations. Hence, we define features that
trigger if a given word type occurs in a pair within a tweet. The word types
considered are hashtags, at mentions, numbers and words beginning with
Capital letters.

• Length feature - It has been known that the length differences between
parallel sentences can be modelled by a normal distribution [Gale and Church,
1991]. Thus, we used a training parallel data (used to train the alignment
model) in the respective language pair to determine (µ̃, σ̃2), which lets us
calculate the likelihood of two hypothesized segments being parallel.

For each language pair s, t, we train a max-entropy classifier using these fea-
tures using an annotated parallel set Dgold(s, t). The method used to obtain these
annotations is described in [Ling et al., 2014].

The quality of the classifier can be evaluated in terms of precision and recall. We
count as a true positive (tp) if we correctly identify a parallel tweet, and as a false
positive (fp) if we spuriously detect a parallel tweet. Finally, a true negative (tn)
occurs when we correctly detect a non-parallel tweet, and a false negative (fn) if
we miss a parallel tweet. Then, we set the precision as tp

tp+fp
and recall as tp

tp+fn
.

3.3 Experiments 37

Afterwards, F-measure is used to test the overall accuracy of the system in terms of
precision and recall.

Depending on the nature of the task the extracted corpora is applied to, recall
may be more important than precision or viceversa. For instance, as training data
for MT models, recall tends to matter more, as models are robust to errors in the
training data.

3.3 Experiments

In this section, we shall describe the experiments performed in this work. There
are three sets of experiments that are be performed. We evaluate the parallel
data extraction process intrinsically by testing each of the three steps described in
Section 3.2, and extrinsically by testing its application to MT.

3.3.1 Setup

We consider the following languages: Arabic, German, English, French, Japanese,
Korean, Mandarin, Portuguese, Russian and Spanish. From Sina Weibo, we focus on
extracting sentence pairs involving Mandarin as one of the elements in the pair, as
Mandarin is the main language in Sina Weibo. As for Twitter, we focus on finding
sentence pairs involving English as one of the languages.

Tokenization

Tokenization converts a tweet into a set of tokens. Our tokenizer must consider a
variety of languages and some common artifacts in the microblog domain. Below
are general properties of our tokenizer:

• Sequences of Latin, Arabic, Cyrillic characters are separated into tokens using
white spaces.

• Each Han, Hangul and Kana character is considered an independent token.

• Numbers are considered a token. Quantifiers, such as $ and kg, are separated
in a different token.

38 Chapter 3: Automatic Microblog Parallel Data Extraction

• Http links, hashtags and emoticons are standardized into _HTTP_, _HASH_
and _EMO_ tokens.

• Punctuation marks are considered separate tokens.

• Traditional characters are standardized into Simplified Mandarin characters3.

One particular aspect in our tokenizer is that it stores the starting and ending
offsets of the tweet from which each token was extracted. This is done so that after
finding the parallel segments relative to the tokens, we can also use these offsets to
recover the parallel segments in the non tokenized tweet.

Language Detection

A character-based language detector is required for the calculation of the language
score in Section 3.1.1 and for the multilingual tweet detection in Section 3.2.1.
This detector is trained on 112 languages, with the monolingual data extracted
from Wikipedia dumps. While we do not extract parallel sentences for all the 112
languages, more information regarding existing languages allows the detector to
estimate the language probabilities more accurately. As we are using a character
trigram model, a large amount of data is not required to saturate the model proba-
bilities. Thus, for each language, we extract all data from Wikipedia up to a limit of
100K documents in order to keep the model compact.

Translation Lexicons

The IDA model uses translation lexicons to determine the translation score, as
described in Section 3.1.1, which are estimated using parallel corpora. More specifi-
cally, we use the aligner described in [Dyer et al., 2013] to obtain the bidirectional
alignments from the parallel sentences. Afterwards, we intercept the bidirectional
alignments to obtain sure alignment points. Finally, we prune the lexicon using
significance pruning [Johnson and Martin, 2007] with the threshold α + ε (as
defined in that work). The intersection and the pruning are performed to reduce
the size of the lexicon to make the look up faster. The breakdown of the different
lexicons built is shown in Table 3.1.

3In general, Traditional and Simplified characters convey the simple meaning and normalizing
them improves alignments by reducing sparcity.

3.3 Experiments 39

Language Pair Corpus # sentence pairs
German–English EUROPARL 1920K
Spanish–English EUROPARL 1966K
French–English EUROPARL 2007K
Portuguese–English EUROPARL 1687K
Mandarin–English FBIS 300K
Arabic–English NIST 970K
Russian–English Yandex 1000K
Korean–English KAIST 60K
Korean–Mandarin KAIST 60K
Japanese–English Tatoeba 150K

Table 3.1: Lexicons built using parallel corpora.

3.3.2 Targeted Crawling

While the documents from Twitter were obtained using an existing dataset consisting
of 1.6 billion tweets sampled from 2008 to 2013, originally from the Gardenhose
stream4.

As for the Weibo data, we describe the crawling method we used to crawl 3M
parallel Mandarin-English sentence pairs from Sina Weibo within 6 months. The
main problem we had to address is related to the fact that a uniform crawl over
1.6 billion tweets from Twitter only yields approximately 300K English-Mandarin
sentence pairs. However, due to the rate limiting5 established by Sina Weibo’s API,
we were only able to send 150 requests per hour. Each request could fetch up to
100 posts from a user, and subsequent sets of 100 posts request additional API calls.
This means that crawling 1.6 billion tweets is beyond our capabilities. In fact, we
were only able to crawl approximately 90 million tweets in 6 months.

Thus, we wished to optimize the parallel tweets we obtained from each API call.
This was done from the observation that users that frequently, post in parallel are
likely to post more parallel tweets in the future. Thus, we spent only one request per
user to obtain his/her first 100 messages, and ran the IDA model on those messages
and estimate the number of parallel messages within those 100 messages6. If the

4obtained from http://www.ark.cs.cmu.edu/tweets/
5http://open.weibo.com/wiki/API文档/en
6The identification of parallel messages was performed by setting a threshold on the IDA score,

since we did not have a max entropy classifier at the time. The details of the old model is defined
in [Ling et al., 2013b] It is not possible to repeat this method under the same conditions due to the
dynamic nature of microblogs.

40 Chapter 3: Automatic Microblog Parallel Data Extraction

number of automatically identified parallel messages within those 100 tweets was
higher than 10, we set that user as active. We obtain all messages from active users
and periodically check if new messages had been posted. An active user remains
active while the number of posts he/she possesses that are identified as parallel
constitute at least 10% of all his/her posts.

In summary, the crawler operates as follows:

1. Pick a random user and crawl 100 posts all from followers and followees.

2. For all active users that have not been updated within the last week, check
and crawl their new posts.

3. Repeat from 1.

During the one hour downtime from exhausting the 150 requests in any step,
we ran the following operations:

1. Run the IDA model for users with unprocessed tweets.

2. Set the user as active if more than 10% of his/her tweets are parallel, or
inactive otherwise.

This is done separately in order to spend the 150 requests when available, as
unspent requests are lost after an hour.

3.3.3 Building Gold Standards

To train and test the classifier described in Section 3.2.3, and perform MT experi-
ments, a corpus of annotated tweets is needed for different language pairs. Table 3.2
summarizes the obtained corpora for different domains (Twitter or Sina Weibo) and
language pairs. The number of tweets that were annotated are quantified in the
#Annotated Tweets column. The number of tweets that contained parallel data is
provided in the #Parallel Sentences column. For Sina Weibo, the annotations were
performed manually by an expert Mandarin speaker, whereas the Twitter datasets
were crowdsourced in Mechanical Turk. Our method to crowdsource such data is
described in [Ling et al., 2014]. Finally, we also illustrate the average size of the
English and non-English sides of the extracted data based on the number of tokens

3.3 Experiments 41

#Annotated #Parallel Average Size Average Size
Source Language Pair Method Tweets Sentences (English) (Foreign)
Weibo English–Mandarin Expert 4347 2581 18.09 28.45
Twitter English–Mandarin Crowdsourcing 2688 1302 8.76 14.03
Twitter English–Arabic Crowdsourcing 2520 1758 8.32 6.84
Twitter English–Russian Crowdsourcing 5082 1631 7.11 6.19
Twitter English–Korean Crowdsourcing 3906 1116 7.10 15.67
Twitter English–Japanese Crowdsourcing 2583 1155 10.22 19.07
Twitter English–Portuguese Crowdsourcing 2583 542 8.50 9.02
Twitter English–Spanish Crowdsourcing 2541 722 7.09 7.28
Twitter English–French Crowdsourcing 2856 594 8.46 8.95
Twitter English–German Crowdsourcing 2772 909 8.94 7.31

Table 3.2: Description of the annotated data. Columns correspond to the the
number of annotated tweets, the number of parallel sentences obtained, the method
used to obtain the annotations and the average number of words in the English and
non-English sides of the parallel sentences.

generated by our tokenizer in the last two columns. We observe that the number of
words in Twitter datasets are smaller than those in Weibo, which can be explained
by the fact that posts in Twitter are limited to 140 characters as opposed to Sina
Weibo, where posts are not bound by such restriction.

It is important to keep in mind that these numbers are not fully representative
of the Twitter data as a whole, as we are filtering out monolingual tweets prior to
the annotation. Thus, we cannot draw conclusions about the ratio between parallel
and non-parallel data in Twitter. For instance, the ratio between parallel and non-
parallel tweets for Arabic-English in Twitter is 2:1 in the annotated datasets, which
is definitely not the case for uniformly extracted datasets7. However, performing
the annotation for an uniformly extracted dataset is problematic for two reasons.
Firstly, a huge annotation effort would be required to find a significant amount
of tweets containing translations, since most tweets do not contain translations.
Secondly, training the classifier on such an unbalanced dataset would bias the
classifier towards the negative case, as the majority of the samples belong in this
category, which is definitely not desired.

7We obtain this ratio as we are filtering out monolingual tweets, and we are removing samples
that do not contain alignment points

42 Chapter 3: Automatic Microblog Parallel Data Extraction

3.3.4 Parallel Data Extraction Experiments

We report on the experiments performed in each of the stages of the parallel data
extraction process described in Section 3.2.

Filtering

The filtering step (described in Section 3.2.1) attempts to filter out monolingual
tweets, since these definitely do not contain parallel data. Ideally, we would
uniformly sample tweets and annotate them on whether they are multilingual.
However, this would require an extraordinary amount of effort to obtain a sample
with a large number of multilingual tweets, as most tweets are monolingual. Thus,
we use an manually annotated dataset on tweets from Twitter, where each word in
the tweet was annotated with its language. On this dataset, there are 773 annotated
samples from Twitter. We filter these so that all tweets contain words from at least
two different languages, resulting in 554 multilingual tweets. We also build two
other datasets consisting of tweets that contain the languages we are considering for
parallel data extraction with 291 tweets, and another consisting of only languages
that use the Latin alphabet8 with 222 tweets. To find monolingual tweets, we
sample tweets uniformly until we find 2000 tweets that are monolingual from
Twitter, which is feasible since most tweets are in this category. The goal of this
experiment is to measure how many multilingual tweets are lost due to the filtering
process. Thus, these are then injected into the Twitter dataset. Then, we compute
the accuracy on the multilingual datasets based on the percentage of the injected
tweets that were retrieved and the accuracy on monolingual datasets by computing
the percentage of monolingual tweets that were filtered using different thresholds
for Equation 3.5.

Results are shown in Figure 3.5, where we can observe that by simply by
removing the top 90% of word pairs, we can remove 67.8% of the monolingual
tweets at the cost of losing 10-15% of the multilingual tweets at threshold 0.
Obviously, when we start considering the probabilities of the word pairs, we observe
a substantial improvement at the detection of monolingual tweets, at the cost of
multilingual ones. As we raise the threshold, more multilingual tweets are discarded
in order to remove more monolingual tweets. We also observe that we obtain similar
results for tweets containing only Latin languages, such as English and Portuguese,
as they share many orthographic similarities. Finally, results for the language we use

8English, Spanish, French, German and Czech.

3.3 Experiments 43

are slightly higher, as they contain many language pairs, such as Mandarin-English,
where a different set of characters are used.

In our work, we set the threshold to 95%, in order to maximize the number
of monolingual tweets that are removed. While this filters out more potentially
multilingual tweets, it substantially reduces the number of tweets that need to be
processed. Furthermore, a large portion of the misclassifications for multilingual
tweets are the result of tweets that only contain one or two words in a different
language, such as a person’s name, and these tweets are generally devoid of bitext.

Location Results

To test the quality of the location of the parallel segments, we compare the automatic
segment boundaries with the human annotations using the SIDA metric defined
in 3.1.5, which measures the overlap between the proposed and the reference
boundaries. Results for different language pairs and domains can be found in
Table 3.3, where average overlap score Sseg for the English and Foreign segments
are shown in Columns English Overlap and Foreign Overlap, respectively. The SIDA

score obtained as a harmonic mean between the previous scores is shown in the
SIDA column.

From these results we can see that for Sina Weibo’s English Mandarin corpus,
the results are significantly higher than those in Twitter. One explanation for this is
the fact that parallel segments found in Weibo are longer. This allows the alignment
model to find more word alignments, which can be used to find better boundaries
for the parallel spans.

We can also observe that results tend to be higher on the language-pairs, where
we used more and higher quality training corpora to build the lexical translation
table. For instance, the English-Korean and English-Japanese, where the parallel cor-
pora used consisted of 60K and 150K sentence pairs, the results are evidently worse
compared to the English-Arabic and English-Russian results, where approximately 1
million sentence pairs were used.

Identification Results

The aim of the identification task is to determine if a given tweet contains parallel
data. We used the datasets described in Section 3.3.3, and these were evenly
divided into training and test sets. The maximum entropy classifier was trained

44 Chapter 3: Automatic Microblog Parallel Data Extraction

Source Language Pair English Overlap Foreign Overlap SIDA

Weibo English–Mandarin 0.848 0.891 0.859
Twitter English–Mandarin 0.743 0.779 0.760
Twitter English–Arabic 0.801 0.794 0.771
Twitter English–Russian 0.793 0.818 0.778
Twitter English–Korean 0.737 0.744 0.706
Twitter English–Japanese 0.695 0.786 0.704
Twitter English–Portuguese 0.759 0.781 0.770
Twitter English–Spanish 0.798 0.795 0.796
Twitter English–French 0.836 0.809 0.822
Twitter English–German 0.734 0.718 0.726

Table 3.3: Results for the location of the parallel segments over different datasets.
The English Overlap and Foreign Overlap columns illustrate the average of the over-
laps of the automatically extracted segments for the English and Foreign segments,
respectively. The final score is computed as the harmonic mean between the two
previous overlaps, which is shown in the SIDA column.

using Weka [Hall et al., 2009], which maximizes the weighted F-measure of the
positive and negative samples. We calculate the precision, recall (on positive labels)
and accuracy at increasing intervals of 10% of the top scoring samples. This score is
calculated as the probability of the positive label given.

Results for the English-Mandarin language pair for both the Twitter and Sina
Weibo domains using the full set of features are presented in Figure 3.6. We can
observe that Weibo contains a larger amount of parallel tweets as the precision for
the x-axis at 1 (where all the samples are considered as parallel) is only 46% for
Twitter, compared to 61% in Weibo. This is because the Twitter dataset we used to
extract the parallel data from was extracted uniformly, while the Sina Weibo tweets
were crawled using the algorithm described in Section 3.3.2, which attempts to
maximize the amount of tweets containing translations using heuristics. We can
also observe that results are significantly better for Weibo, as the precision curve for
the Weibo dataset is always higher than the one for the Twitter dataset. This shows
that while the method is the same, our method’s performance is affected by the
dataset itself. One reason is the fact that messages are longer in Sina Weibo, so they
contain more information that can be used to determine whether translations exist
within. The other reason is the fact that orthographic innovation for English tends
to occur more often in Twitter, as English is not the mainstream language in Weibo.

While it is not the goal of this work to exhaustively engineer features to maximize

3.3 Experiments 45

Source Language Pair IDA +User +Length +Repetition
Weibo English–Mandarin 0.781 0.814 0.839 0.849
Twitter English–Mandarin 0.599 0.598 0.603 0.652
Twitter English–Arabic 0.721 0.721 0.725 0.763
Twitter English–Russian 0.692 0.705 0.706 0.729
Twitter English–Korean 0.635 0.650 0.650 0.655
Twitter English–Japanese 0.570 0.566 0.569 0.579
Twitter English–Portuguese 0.859 0.860 0.857 0.858
Twitter English–Spanish 0.841 0.849 0.850 0.850
Twitter English–French 0.886 0.886 0.885 0.888
Twitter English–German 0.789 0.787 0.794 0.798

Table 3.4: Results for the parallel data identification task over different datasets.
The columns present the identification results using a incremental set of features.
Each cell contains the F-measure using a given dataset and set of features.

the results for this task, we wish to show that additional features can be used to
improve the quality of the classifier, some even containing Twitter or Weibo specific
attributes, such as the meta-information regarding the user that posted each tweet.
To do this, we trained the max entropy classifier using an increasingly larger set
of features and present the weighted average of the F-measure for positive and
negative labels.

Results for different language pairs are shown in Table 3.4, where we can
observe that results can be improved by adding more features, similar to previous
work [Resnik and Smith, 2003, Munteanu and Marcu, 2005]. The microblog specific
User features seem to work best in Sina Weibo, as the crawling methodology we
used obtains a large amount of posts from the same user. On the other hand, the
Twitter dataset was obtained from a uniform crawl where we had less tweets from
each user, which is why smaller improvements were observed. We can also observe
that other more general features (Length, Repetition and Language) also improve
the classifier slightly.

The quality of the results of the identification task is strongly correlated to the
quality of the location task, as the identification task depends on the quality of the
automatically detected parallel segments. For instance, we can observe better results
for Arabic-English, which also obtained a high SIDA in Table 3.3. Furthermore,
similar language pairs, such as English-Spanish and English-French, tend to be
better aligned, and obtain higher scores. In these cases, additional features are less
beneficial for the classifier.

46 Chapter 3: Automatic Microblog Parallel Data Extraction

Topic Most probable words in topic
1 (Dating) love time girl live mv back word night rt wanna
2 (Entertainment) news video follow pong image text great day today fans
3 (Music) cr day tour cn url amazon music full concert alive
4 (Religion) man god good love life heart would give make lord
5 (Nightlife) cn url beijing shanqi party adj club dj beijiner vt
6 (Chinese News) china chinese year people world beijing years passion country government
7 (Fashion) street fashion fall style photo men model vogue spring magazine

Table 3.5: Most probable words inferred using LDA in several topics from the
parallel data extracted from Weibo. Topic labels (in parentheses) were created
manually for illustration purposes.

Data Representation

To give an intuition about the contents of the parallel data we are finding, we look
at the distribution over topics of the parallel dataset inferred by LDA [Blei et al.,
2003]. To do so, we grouped the Weibo filtered tweets by user, and ran LDA over
the predicted English segments, with 12 topics. The 7 most interpretable topics are
shown in Table 3.5. We see that the data contains a variety of topics, both formal
(Chinese news, religion) and informal (entertainment, music). We do not provide
a breakdown of topics for the Twitter datasets, as the datasets were significantly
more reduced and only 1 or 2 posts per user are available as the twitter dataset was
crawled uniformly.

3.3.5 Machine Translation Experiments

In order to measure the impact of the extracted corpora, we performed an extrinsic
experiment where we used the extracted data as training parallel sentences for
existing MT systems. We first performed an extensive test on the English-Mandarin
language pair, where we show that the extracted corpus contributes to improve the
state-of-the-art results in Twitter, Sina Weibo and also more formal domains. Then,
we showed that these results generalize for other language pairs.

To accurately quantify the effect of our corpora in translation, all experiments
were conducted using fixed development and test sets for each domain as well as
the same system setup but with different training sets. That is, we wish to show
that even with a small sample of in-domain parallel data for tuning and testing, and

3.3 Experiments 47

a large amount of monolingual data, the automatically extracted parallel data can
improve the system significantly.

Datasets

We report on machine translation experiments using our harvested data in three
domains: edited news, Twitter and Sina Weibo.

• News translation - For the news test, we created a new test set from a crawl
of the Mandarin-English documents on the Project Syndicate website9, which
contains news commentary articles. We chose to use this data set, rather
than more standard NIST test sets to ensure that we had recent documents
in the test set (the most recent NIST test sets contain documents published
in 2007, well before our microblog data was created). We extracted 1386
parallel sentences for tuning and another 1386 sentences for testing, from the
manually alignment segments. For this test set, we used 8 million sentences
from the full NIST parallel dataset as the language model training data. We
shall call this test set Syndicate.

• Sina Weibo translation - The Sina Weibo corpus was created by using the
gold standard annotations described in Section 3.3.3. This contained 2581
parallel sentences, where 1290 pairs were used for tuning and the other 1291
pairs were used for testing. Naturally, we removed all these instances from the
training data. We refer to this test set as Weibo10. The language model used
in this work was built using 10 million tweets from Sina Weibo for Mandarin.
As for English, we used 10 million tweets from Twitter.

• Twitter translation - The Twitter datasets were built using a similar method-
ology, where we use the gold standard annotations to create a held-out dataset
of parallel sentences. In all cases, we split the held-out dataset evenly to
obtain the tuning and testing datasets. To build the English and Mandarin
language models, we used the same data as the Sina Weibo dataset.

9http://www.project-syndicate.org/ during the year 2012
10We acknowledge that self-translated messages are probably not a typically representative sample

of all microblog messages. However, we do not have the resources to produce a carefully curated test
set with a more broadly representative distribution. Still, we believe these results are informative as
long as this is kept in mind.

48 Chapter 3: Automatic Microblog Parallel Data Extraction

Training Data

We report results on these test sets using different training data. First, we use
the FBIS dataset which contains 300K high quality sentence pairs, mostly in the
broadcast news domain. Second, we use the full 2012 NIST Mandarin-English
dataset (approximately 8M sentence pairs, including FBIS). Finally, we use our
crawled data from Sina Weibo (referred as Weibo) and those extracted from Twitter
(referred as Twitter) by themselves but also combined with the two previous training
sets. The max-entropy classifier for detecting parallel data was tuned for a 50%
precision, where 118 parallel sentences were extracted.

Setup

We use the Moses phrase-based MT system with standard features [Koehn et al.,
2003]. For reordering, we use the MSD reordering model [Axelrod et al., 2005].
As the language model, we use a 5-gram model with Kneser-Ney smoothing. The
weights were tuned using MERT [Och, 2003]. Results are presented with BLEU-
4 [Papineni et al., 2002].

Results

The BLEU scores for the different parallel corpora are shown in Table 3.6 and the
top 10 out-of-vocabulary (OOV) words for each dataset are shown in Table 3.7.
Results for the microblog test sets (Weibo and Twitter) suggest that considerable
improvements can be obtained by using the crawled corpora for this domain.

The most notable result can be observed by contrasting the obtained BLEU
scores on the Weibo test set with the NIST and Weibo training corpus (NIST and
Weibo rows), where relative improvements of over 200% in terms of BLEU can be
observed. While this is a promising result, it is important to consider the fact that
we are drawing training and test samples from the same domain, which naturally
leads to better results than using training corpora that was drawn from other
domains. However, a strong indication that this is not the case is the fact that
similar results can be obtained for the Twitter test set, where we can observe a BLEU
improvement from 9.55, using the NIST corpus, to 23.57, using the Weibo corpus.
This shows that the extracted corpus contains many translated elements that are
representative of the microblogging domain that are not found in publicly available

3.3 Experiments 49

Syndicate Weibo Twitter
ZH-EN EN-ZH ZH-EN EN-ZH ZH-EN EN-ZH

FBIS 8.86 19.69 9.24 13.60 8.44 13.04
NIST 10.87 22.32 10.76 14.89 9.55 13.97

Twitter 2.90 6.59 10.53 11.42 12.67 15.43
Weibo 9.78 20.72 33.32 34.48 23.57 25.01

NIST+Twitter 12.43 23.81 15.29 16.72 15.83 19.29
NIST+Weibo 13.11 24.60 33.01 34.33 23.35 27.07

Table 3.6: BLEU scores for different datasets (Syndicate, Weibo and Twitter) in
different translation directions (EN-ZH and ZH-EN), broken with different training
corpora (top to bottom). The top four rows depict experiments using a single
datasets, while the bottom two rows combine both in-domain and out-of-domain
datasets.

corpora, such as NIST11. Examples include translations for newer terms, such as
iTunes, as we can observe in Table 3.7. While there is no guarantee that all the
terms are translated correctly, it is a promising result that using the Weibo corpus,
we can find translations for all words that occur more than once in the Twitter
dataset, which can be seen in Table 3.7. On the other hand, the NIST and FBIS
dataset do not possess frequent terms, such as wanna, lol and omg and also newer
terms like kpop (Korean pop music) in their translation inventory. Furthermore,
some important terms that are not captured by looking for OOV words, such as
abbreviations, like u and 4 are found in the NIST dataset, but can be used with
different meanings in microblogs. We also found examples of microblog terms that
are not addressed by the NIST dataset, and are learnt from the Weibo training
corpus. First, we observe the character jiǒng, which generally means embarrassed
in informal speech. The term粉丝(fěn s̄ı), is a phonetic translation of the English
term fans. This is translated incorrectly using the FBIS dataset as powder silk, which
is its literal character level translation. Finally, the term diǎo s̄ı is very common in
Chinese microblogs. While there is no direct translation for this term, it is generally
translated based on context into loser or sucker in our extracted parallel sentence
pairs from Weibo.

If we observe the results using the Twitter training set (Twitter row), we can
observe that improvements are much more reduced. In fact, for the Weibo test set,
the obtained results are lower than using the NIST dataset. This can be explained by
the lexical gaps caused by the small size of the Twitter training set (117K sentence

11as results different radically between datasets we did not run significance tests

50 Chapter 3: Automatic Microblog Parallel Data Extraction

pairs). However, we can see that a considerable improvement can be obtained by
combining these datasets (NIST+Twitter row), which suggests that a meaningful
translation inventory can be obtained from this training set for the translation of
microblog data.

As for the Syndicate test set (Syndicate row), the NIST and FBIS datasets perform
better than our extracted parallel data as they are much more representative of this
domain. Yet, we can observe that training with the Weibo corpus still obtains a
similar result compared to the NIST and FBIS datasets, due to the fact that many
news events are posted on Weibo, and contain the formal language present in NIST
and FBIS. Furthermore combining datasets leads to improvements in BLEU. Error
analysis indicates that one major factor is that names from current events, such as
Romney and Wikileaks do not occur in the older NIST and FBIS datasets, but are
represented in the Weibo dataset.

We did not show results for combining the three datasets (NIST, Weibo and
Twitter) as the Twitter dataset is substantially smaller and results are not significantly
different than combining the NIST and Weibo datasets.

Experiments for Other Language Pairs

To further validate the usefulness of this method, we perform a similar test for other
language pairs. We perform the same test on the other test data we obtained from
Twitter, as the Weibo dataset mainly contained English-Mandarin sentence pairs,
as the crawler was parameterized to find users that post in this language pair. The
Twitter dataset was crawled uniformly, which lowered the amount of training data
that can be found within this dataset. We did not perform experiments for language
pairs where the number of extracted training sentences is particularly small (3K for
Korean-English). For other language pairs, we checked whether we can improve
translation results by adding the extracted corpora into formal datasets.

Once again, the crowdsourced corpus in Table 3.2 is divided evenly in develop-
ment and test sets for MT. The in-domain training corpus for Twitter is extracted
automatically by optimizing the threshold for 50% precision. The size of these
corpora varies from 10K to 150K. As out-of-domain training data, we use the data
from which the lexicons (Table 3.1) were built. As monolingual data for English,
we use the same 10M tweets from Twitter as in the previous experiment, and we
always translate from the foreign language into English.

Results are shown in Table 3.8, where we can observe that on average, the usage

3.3 Experiments 51

of the in-domain data results in better translation quality as expected. Furthermore,
combining both the in-domain and out-of-domain data improves the results further,
similarly to the Mandarin-English experiments.

In most cases, the significant improvements are led by the inexistence of fre-
quently used variations for fundamental function words in each language, which
do not occur in formal domains. For instance, in the Portuguese-English language
pair, the Portuguese terms muito and para, which mean very and for in English,
are generally written as mto and pra in Twitter. As the in-domain corpus that is
used are relatively small, adding a large amount of out-of-domain bitext yields large
improvements in BLEU.

Translation of Online Terms

In order to provide insight of the distintive translations of online terms that are
learned in our extracted data, we manually selected some examples of parallel
sentences containing terms that are generally not found in other media. These are
shown in Figure 3.7.

The first row provides a sentence pair with the term diaosi, which is a popular
buzzword among Chinese communities and is used to describe a class of underpriv-
ileged men, lacking certain desirable features (looks, social status, wealth etc...).
Generally, these terms are difficult to translate as no counterpart exist in other
languages, and must be addressed depending on context. In this case, the term is
translated into loser, which is an acceptable translation due to the lack of better
English terms.

The second row shows an example where multiple lexical variants in English
are used. In this example, the Mandarin translation is translated formally without
the stylistic features present in the English sentence. However, in some parallel
sentences, these properties are preserved during translation. For instance, the
term toooooo in the third row corresponds to the word too with extra o’s to further
emphasize the following adjective thick. Likewise, in the Mandarin sentence, it is
translated into太XX, which is composed by the character太, an equivalent for the
word too in English, and the string XX, which adds a similar connotation of the extra
o’s in the English sentence.

Finally, in the fourth and fifth rows, we observe some examples of Chinglish,
where new English words are constructed from Mandarin terms. In the fourth row,
the term牛逼, which is an adjective to describe that something is great, is translated

52 Chapter 3: Automatic Microblog Parallel Data Extraction

into niubility, which is constructed by taking the Pinyin representation for the
term牛逼(niubi) and adding the English suffix lity. More examples are given in the
firth row, where other similar terms (niubility, zhuangbility, shability and erbility)
are also translated. In this case, we can also observe examples of abbreviations
in the Mandaring translations, where the character逼 is replaced by the letter B,
which is the first letter in the Pinyin representation of the character.

It is also important to mention that mainstream translation systems, such as
Google Translate12 and Bing Translator13 fail to translate these examples. For
instance, the term diaosi in the first row, is translated character-by-character, which
leads to a translation with a very different meaning. Both abbreviations in English
(e.g. imma) and in Mandarin (e.g. 逼B) also tend to be mistranslated. These
are either incorrectly translated phonetically for English words, or character-by-
character for Mandarin terms. Finally, we also tried translating Chinglish terms
using online systems and found that these are either not translated as OOV words,
or translated incorrectly.

The existence of these terms in microblogs and other informal domains justifies
the need for the methods to find parallel data where the translations for those terms
can be learnt. As such, we believe that the method we propose in this work has the
potential to substantially improve the state-of-the-art MT systems in these domains.

12https://translate.google.com
13http://www.bing.com/translator/

3.3 Experiments 53

u=11

一 起 努 力 吧 。💋 / / @tag: We fighting together 💪

1) Select a left span (p,q) and right span (u,v)

p=1 q=5 v=13

left span right span

一 起 努 力 吧 。💋 / / @tag: We fighting together 💪

2) Select languages for spans (l,r)

l=cn r=en

一 起 努 力 吧 。💋 / / @tag: We fighting together 💪

3) Generate alignments (a) from left to right spans

a={(2,12),(3,13)}

Figure 3.3: Illustration of each of the model parameters. The top box shows a
potential pair of parallel segments p, q, u, v. The box in the middle represents a
possible pair of languages l, r and the bottom box illustrates the word alignments
between these segments.

54 Chapter 3: Automatic Microblog Parallel Data Extraction

a b - A B

a

b

-

A

B

a b - A B
p

q
u v

p

q
u vλ+v

Figure 3.4: Illustration of the λ+v operator. The light gray boxes show the parallel
span and the dark boxes show the span’s Viterbi alignment. In this example, the
parallel message contains a “translation” of a b to A B.

3.3 Experiments 55

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

A
c
c
u
r
a
c
y

Threshold

Multilingual Message Detection

Multilingual
Multilingual (Used Languages)

Multilingual (Latin)
Monolingual

Figure 3.5: Results for the language based filtering task. The X-axis represents
the threshold for Equation 3.5. The “Multilingual" line represents the percentage
of multilingual tweets that are kept, while the “Monolingual" line represents the
percentage of monolingual tweets that are discarded. Thus, we wish to maximize
the Monolingual score and minimize the Multilingual score. For contrast, we also
show the same scores using the languages that we are extracting parallel data for in
the “Multilingual (Used Languages)" line, and those that are in Romance languages
in the “Multilingual (Latin)" line.

56 Chapter 3: Automatic Microblog Parallel Data Extraction

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

S
c
o
r
e
s

Percentage Of Top Scoring Sentence Pairs

Identification Results for Twitter and Weibo (English-Mandarin).

Precision (Twitter)
Recall (Twitter)

Precision (Weibo)
Recall (Weibo)

Figure 3.6: Precision and recall curves an increasingly larger set of top scoring
sentence pairs for the Weibo and Twitter datasets for the English-Mandarin language
pair. The precision and recall scores are quantified in the Y-axis, and the percentage
of samples labelled as positive is represented in the X-axis.

3.3 Experiments 57

Syndicate (test)
FBIS NIST Weibo Twitter

obama (83) barack (59) democracies (15) cambridge (80)
barack (59) namo (6) imbalances (13) debt (68)

princeton (40) mitt (6) mahmoud (12) 2008 (55)
ecb (8) guant (6) millennium (9) monetary (52)

bernanke (8) fairtrade (6) regimes (8) economies (47)
romney (7) hollande (5) wolfowitz (7) paris (45)
gaddafi (7) wikileaks (4) revolutions (7) increasingly (41)
merkel (7) wilders (3) qaddafi (7) princeton (40)

fats (7) rant (3) geopolitical (7) recession (39)
dialogue (7) esm (3) genome (7) fiscal (38)

Weibo (test)
FBIS NIST Weibo Twitter

2012 (24) showstudio (9) submissions (4) alanis(15)
alanis (15) crue (9) ivillage (4) mexico (14)

crue (9) overexposed (8) scola (3) ego (12)
showstudio (9) tweetmeian (5) rbst (3) kelly (11)
overexposed (8) tvd (5) curitiba (3) showstudio (10)

itunes (8) iheartradio (5) zeman (2) awakening (9)
havoc (8) xoxo (4) yaptv (2) milan (8)
sammy (6) snoop (4) witnessing (2) crue (8)
obama (6) shinoda (4) whoohooo (2) wit (7)

lol (6) scrapbook (4) wbr (2) trespassing (7)
Twitter (test)

FBIS NIST Weibo Twitter
twitter (5) twitter (5) zzzzzzzzz (1) submit (3)

kyuhyun (5) kyuhyun (5) unobstructive (1) fin (3)
siwon (4) siwon (4) totalitarian (1) behavior (3)

lol (4) oppa (3) telus (1) artificial (3)
oppa (3) didn (3) takamine (1) scribd (2)
haha (3) scribd (2) spansh (1) owes (2)
gd (3) omg (2) spaciousness (1) net (2)

didn (3) kpop (2) soshi (1) kindness (2)
wanna (2) facebook (2) snowkyu (1) february (2)

tid (2) exo (2) wukan (1) ego(2)

Table 3.7: The most frequent out-of-vocabulary (OOV) words and their counts for
the three English-source test sets (Syndicate, Weibo and Twitter) with four different
training sets (FBIS, NIST, Weibo and Twitter). We did not consider http links, hash
tags and at mentions, in this list as these are generally not translated.

58 Chapter 3: Automatic Microblog Parallel Data Extraction

Source Language Arabic Spanish French Japanese Russian
Out-of-domain Size 970K 1966K 2007K 150K 1000K

In-domain Size 138K 36K 12K 31K 11K
Out-of-domain 12.76 11.11 16.01 6.72 28.05
+In-domain 29.27 27.00 25.89 11.23 31.53

Table 3.8: Translation experiment results for different language pairs on the Twitter
data. Each column shows the MT results for a given source language into English.
The Out-of-domain Size and In-domain Size rows represent the number of sentence
pairs in the in-domain and out-of-domain training sets. The Out-of-domain and
+In-domain rows show the BLEU scores for a setup where only the out-of-domain
data was used and the same setup after adding the in-domain dataset, respectively.

Figure 3.7: Examples of parallel sentences extracted from Sina Weibo. These
examples were hand extracted because they contain elements that are characteristic
of this domain.

Chapter 4

Normalization Using Paraphrases

In this Chapter, we propose an application of the parallel corpus using the dataset
we obtained. The task is to build a normalization model capable of standardizing the
nonstandard language in microblogs. This can be used as a pre-processing step prior
to translation, but also other NLP tasks. More concretely, we introduce a data-driven
approach to learning normalization rules by conceiving of normalization as a kind of
paraphrasing and taking inspiration from the bilingual pivot approach to paraphrase
detection [Bannard and Callison-Burch, 2005] and the observation that translation
is an inherently “simplifying” process [Laviosa, 1998, Volansky et al., 2013]. We start
from extracted parallel corpus of microblog messages consisting of English paired
with several other languages, we use standard web machine translation systems
to re-translate the non-English segment, producing 〈English original,English MT〉
pairs. Then, a normalization model is built to map the original message to the
produced MT outputs. 1

4.1 Obtaining Normalization Examples

We want to treat normalization as a supervised learning problem akin to machine
translation, and to do so, we need to obtain pairs of microblog posts and their
normalized forms. While it would be possible to ask annotators to create such a
corpus, it would be quite expensive to obtain large numbers of examples. In this
section, we propose a method for creating normalization examples without any

1This chapter contains the work published in Ling et al. [2013a]

59

60 Chapter 4: Normalization Using Paraphrases

Table 4.1: Translations of Chinese original post to English using web-based service.

orig. To DanielVeuleman yea iknw imma work on that
orig. 对DanielVeuleman说，是的，我知道，

我正在向那方面努力
MT1 Right DanielVeuleman say, yes, I know, I’m

Xiangna efforts
MT2 DanielVeuleman said, Yes, I know, I’m that hard
MT3 Said to DanielVeuleman, yes, I know, I’m to

that effort

human annotation, by leveraging existing tools and data resources.

The English example sentence in Table 2.1 was selected from the corpus extracted
in Chapter 3. Row 2 of Table 4.1 shows the Mandarin self-translation from the
corpus. The key observation is what happens when we automatically translate the
Mandarin version back into English. Rows 3–5 shows automatic translations from
three standard web MT engines. While not perfect, the translations contain several
correctly normalized subphrases. We used such re-translations as a source of (noisy)
normalization examples. Since such self-translations are relatively numerous on
microblogs, this technique can provide a large amount of data.

We argue that NLP tools — like the very translation systems we propose to use —
often fail on unnormalized input. Is this a problem? We argue that it is not for the
following two reasons.

Normalization in translation. Work in translation studies has observed that trans-
lation tends to be a generalizing process that “smooths out” author- and work-specific
idiosyncrasies [Laviosa, 1998, Volansky et al., 2013]. Assuming this observation
is robust, we expect that dialectal variant forms found in microblogs to be normal-
ized in translation. Therefore, if the parallel segments in our microblog parallel
corpus did indeed originate through a translation process (rather than, e.g., being
generated as two independent utterances from a bilingual), we may then state the
following assumption about the distribution of variant forms in a parallel segment
〈e, f〉: if e contains nonstandard lexical variants, then f is likely to be a normalized
translation using with fewer nonstandard lexical variants (and vice-versa).

4.1 Obtaining Normalization Examples 61

Table 4.2: Corpora Used for Paraphrasing.
Lang. Pair Source Segs. MT Engines

Mandarin-English Weibo 800K Google, Bing, Youdao
Mandarin-English Twitter 113K Google, Bing, Youdao

Arabic-English Twitter 114K Google, Bing
Russian-English Twitter 119K Google, Bing
Korean-English Twitter 78K Google, Bing

Japanese-English Twitter 75K Google, Bing

Uncorrelated orthographic variants. Any written language has the potential to
make creative use of orthography: alphabetic scripts can render approximations
of pronunciation variants; logographic scripts can use homophonic substitutions.
However, the kinds of innovations used in particular languages would be language
specific (depending on details of the phonology, lexicon, and orthography of the
language). However, for language pairs that differ substantially in these dimensions,
it may not always be possible (or at least easy) to preserve particular kinds of
nonstandard orthographic forms in translation. Consider the (relatively common)
pronoun-verb compounds like iknw and imma from our motivating example: since
Chinese uses a logographic script without spaces, there is no obvious equivalent.

4.1.1 Variant–Normalized Parallel Corpus

For the two reasons outlined above, we argue that we would be able to translate
back into English using MT, even when the underlying English part of the parallel
corpus has a great deal of nonstandard content. We leverage this fact to build the
normalization corpus, where the original English tweet is treated as the variant
form, and the automatic translation obtained from another language is considered
a potential normalization.2

Our process is as follows. We use all corpora that include English as one of the
languages in the pair. The respective non-English side is translated into English
using different translation engines. The different sets we used and the engines we
used to translate are shown in Table 4.2. Thus, for each original English post o, we
obtain n paraphrases {pi}ni=1, from n different translation engines.

2We additionally assume that the translation engines are trained to output more standardized
data, so there would be additional normalizing effect from the machine translation system.

62 Chapter 4: Normalization Using Paraphrases

4.1.2 Alignment and Filtering

Our parallel microblog corpus was crawled automatically and contains many mis-
aligned sentences. To improve precision, we attempt to find the similarity between
the (unnormalized) original and each of the normalizations using an alignment
based on the one used in METEOR [Denkowski and Lavie, 2011], which computes
the best alignment between the original tweet and each of the normalizations
but modified to permit domain-specific approximate matches. To address lexical
variants, we allow fuzzy word matching, that is, we allow lexically similar, such as
yea and yes to be aligned (similarity is determined by the Levenshtein distance).
We also perform phrasal matchings, such as ikwn to i know. To do so, we extend
the alignment algorithm from word to phrasal alignments. More precisely, given
the original post o and a candidate normalization n, we wish to find the optimal
segmentation producing a good alignment. A segmentation s = 〈s1, . . . , s|s|〉 is a
sequence of segments that aligns as a block to a source word. For instance, for the
sentence yea iknw imma work on that, one possible segmentation could be s1 =yea
ikwn, s2 =imma and s3 =work on that.

Model. We define the score of an alignment a and segmentation s using a model
that makes semi-Markov independence assumptions, similar to the work in [Bansal
et al., 2011]:

u(a, s | o,n) =
|s|∏
i=1

[
ue(si, ai | n)× ut(ai | ai−1)× u`(|si|)

]
In this model, the maximal scoring segmentation and alignment can be found using
a polynomial time dynamic programming algorithm. Each segment can be aligned
to any word or segment in o. The aligned segment for sk is defined as ak. For
the score of a segment correspondence ue(s, a | n), we assume that this can be
estimated using the lexical similarity between segments, which we define to be
1− L(sk,ak)

max{|sk|,|ak|}
, where L(x, y) denotes the Levenshtein distance between strings x

and y, normalized by the highest possible distance between those segments.

For the alignment score ut, we assume that the relative order of the two se-
quences would be mostly monotonous. Thus, we approximate ut with the following
density poss(ak)−pose(ak−1) ∼ N (1, 1), where the poss is the index of the first word
in the segment and pose the one of the last word.

After finding the Viterbi alignments, we compute the similarity measure τ =
|A|

|A|+|U | , used in [Resnik and Smith, 2003], where |A| and |U | are the number of

4.2 Normalization Model 63

words that were aligned and unaligned, respectively. In this work, we extract the
pair if τ > 0.2.

4.2 Normalization Model

From the normalization corpus, we learn a normalization model that generalizes
the normalization process. That is, from the data we observe that To DanielVeuleman
yea iknw imma work on that is normalized to To Daniel Veuleman: yes, I know. I am
going to work on that. However, this is not useful, since the chances of the exact
sentence To DanielVeuleman yea iknw imma work on that occurring in the data is
low. We wish to learn a process to convert the original tweet into the normalized
form.

There are two mechanisms that we use in our model. The first (§4.2.1) learns
word–word and phrase–phrase mappings. That is, we wish to find that DanielVeule-
man is normalized to Daniel Veuleman, that iknw is normalized to I know and that
imma is normalized to I am going. These mappings are more useful, since whenever
iknw occurs in the data, we have the option to normalize it to I know. The sec-
ond (§4.2.2) learns character sequence mappings. If we look at the normalization
DanielVeuleman to Daniel Veuleman, we can see that it is only applicable when the
exact word DanielVeuleman occurs. However, we wish to learn that it is uncommon
for the letters l and v to occur in the same word sequentially, so that be can add
missing spaces in words that contain the lv character sequence, such as normalizing
phenomenalvoter to phenomenal voter. However, there are also cases where this is
not true, for instance, in the word velvet, we do not wish to separate the letters l
and v. Thus, we shall describe the process we use to decide when to apply these
transformations.

4.2.1 From Sentences To Phrases

The process to find phrases from sentences has been throughly studied in machine
translation. This is generally done in two steps, Word Alignment and Phrase
Extraction.

Alignment. The first step is to find the word-level alignments between the original
post and its normalization. This is a well studied problem in MT, referred as Word

64 Chapter 4: Normalization Using Paraphrases

I wanna go 4 pizza 2day

I want go for pizza todayto

Figure 4.1: Variant–normalized alignment with the variant form above and the
normalized form below; solid lines show potential normalizations, while dashed
lines represent identical translations.

Alignment [Brown et al., 1993]. In our work, we use the fast aligner proposed
in [Dyer et al., 2013] to obtain the word alignments. Figure 4.1 shows an example
of a word aligned pair of a tweet and its normalization.

Phrase Extraction. The phrasal extraction step [Ling et al., 2010] uses the word
aligned sentences and extracts phrasal mappings between the original tweet and its
normalization, named phrase pairs. For instance, in Figure 4.1, we would like to
extract the phrasal mapping from go 4 to go for, so that we learn that the word 4 in
the context of go is normalized to the proposition for. To do this, the most common
approach is to use the template proposed in [Och and Ney, 2004], which allows
phrase pairs to be extracted, if there is at least one word alignment within the pair,
and there are no words inside the pair that are aligned to words not in the pair. For
instance, in the example above, the phrase pair that normalizes wanna to want to
would be extracted, but the phrase pair normalizing wanna to want to go would not,
because the word go in the normalization is aligned to a word not in the pair.

Phrasal Features. After extracting the phrase pairs, a model is produced with
features derived from phrase pair occurrences during extraction. This model is
equivalent to a phrasal translation model in MT, but we shall refer to it as the
normalization model. For a phrase pair 〈o,n〉, where o is the original phrase,
and n is the normalized phrase, we compute the normalization relative frequency
f(n | o) = C(n,o)

C(o) , where C(n,o) denotes the number of times o was normalized to
n and C(o) denotes the number of times o was seen in the extracted phrase pairs.

4.2 Normalization Model 65

Table 4.3: Fragment of the phrase normalization model built. For each original
phrase o, we present the top-3 normalized forms ranked by f(n | o).

Original (o) Normalization (n) f(n | o)
wanna want to 0.4679
wanna will 0.0274
wanna going to 0.0114
4 4 0.5641
4 for 0.01795
go 4 go for 1.0000

Table 4.3 gives a fragment of the normalization model. The columns represent the
original phrase, its normalization and the probability, respectively.

In Table 4.3, we observe that the abbreviation wanna is normalized to want to
with a relatively high probability, but it can also be normalized to other equivalent
expressions, such as will and going to. The word 4 by itself has a low probability to
be normalized to the preposition for. This is expected, since this decision cannot be
made without context. However, we see that the phrase go 4 is normalized to go for
with a high probability, which specifies that within the context of go, 4 is generally
used as a preposition.

4.2.2 From Phrases to Characters

While we can learn lexical variants that are in the corpora using the phrase model,
we can only address word forms that have been observed in the corpora. This is
quite limited, since we cannot expect all the word forms to be present, such as all
the possible orthographic errors for the word cat, such as catt, kat and caaaat. Thus,
we will build a character-based model that learns the process lexical variants are
generated at the subword level.

Our character-based model is similar to the phrase-based model, except that,
rather than learning word-based mappings from the original tweet and the normal-
ization sentences, we learn character-based mappings from the original phrases
to the normalizations of those phrases. Thus, we extract the phrase pairs in the
phrasal normalization model, and use them as a training corpora. To do this, for
each phrase pair, we add a start token, <start>, and an end token, <end>, at the
beginning and ending of the phrase pair. Afterwards, we separate all characters by

66 Chapter 4: Normalization Using Paraphrases

Table 4.4: Fragment of the character normalization model where examples repre-
sentative of the lexical variant generation process are encoded in the model.

Original (o) Normalization (n) f(n | o)
o o o o o 0.0223
o o o o 0.0439
s c 0.0331
z s 0.0741
s h c h 0.019
2 t o 0.014
4 f o r 0.0013
0 o 0.0657
i n g f o r i n g <space> f o r 0.4545
g f g <space> f 0.01028

space and add a space token <space> where spaces were originally. For instance,
the phrase pair normalizing DanielVeuleman to Daniel Veuleman would be converted
to <start> d a n i e l v e u l e m a n <end> and <start> d a n i e l <space> v e u l e
m a n <end>.

Character-based Normalization Model - To build the character-based model,
we proceed using the same approach as in the phrasal normalization model. We
first align characters using Word Alignment Models, and then we perform phrase
extraction to retrieve the phrasal character segments, and build the character-based
model by collecting statistics. Once again, we provide examples of entries in the
model in Table 4.4.

We observe that many of the normalizations dealt with in the previous model
by memorizing phrases are captured with string transformations. For instance,
from phrase pairs such as tooo to too and sooo to so, we learn that sequences of
o’s can be reduced to 2 or 1 o. Other examples include orthographic substitutions,
such as 2 for to and 4 for for (as found in 2gether, 2morrow, 4ever and 4get).
Moreover, orthographic errors can be generated from mistaking characters with
similar phonetic properties, such as, s to c, z to s and sh to ch, generating lexical
variants such as reprecenting. Finally, we learn that the number 0 that resembles
the letter o, can be used as a replacement, as in g00d. Finally, we can see that the
rule ingfor to ing for attempts to find segmentation errors, such as goingfor, where a

4.3 Normalization Decoder 67

space between going and for was omitted.3

4.3 Normalization Decoder

In section 4.2, we built two models to learn the process of normalization, the
phrase-based model and the character-based model. In this section, we describe the
decoder we used to normalize the sentences.

The advantage of the phrase-based model is that it can make decisions for
normalization based on context. That is, it contains phrasal units, such as, go 4, that
determine, when the word 4 should be normalized to the preposition for and when
to leave it as a number. However, it cannot address words that are unseen in the
corpora. For instance, if the word form 4ever is not seen in the training corpora, it
is not be able to normalize it, even if it has seen the word 4get normalized to forget.
On the other hand, the character-based model learns subword normalizations, for
instance, if we see the word nnnnno normalized to no, we can learn that repetitions
of the letter n are generally shorted to n, which allows it to generate new word
forms. This model has strong generalization potential, but the weakness of the
character-based model is that it fails to consider the context of the normalization
that the phrase-based model uses to make normalization decisions. Thus, our goal
in this section is describe a decoder that uses both models to improve the quality of
the normalizations.

4.3.1 Phrasal Decoder

We use Moses, an off-the-shelf phrase-based MT system [Koehn et al., 2007], to
“translate” the original tweet to its normalized form using the phrasal model (§4.2.1).
Aside from the normalization probability, we also include the common features
used in MT. These are the reverse normalization probability, the lexical and reverse
lexical probabilities and the phrase penalty. We also use the MSD reordering model

3Note that this captures the context in which such transformations are likely to occur: there are
not many words that contain the sequence ingfor, so the probability that these should be normalized
by inserting a space is high. On the other hand, we cannot assume that if we observe the sequence
gf, we can safely separate these with a space. This is because, there are many words that contain
this sequence, such as the abbreviation of gf(girlfriend), dogfight, and bigfoot.

68 Chapter 4: Normalization Using Paraphrases

0 1 2 3 4 5 6
I

wanna

want to meeeeet
meet

met

DanielVeuleman

Daniel Veuleman

Figure 4.2: Example output lattice of the character-based decoder, for the sentence
I wanna meeeeet DanielVeuleman.

proposed in [Koehn et al., 2005], which adds reordering features.4 The final score
of each phrase pair is given as a sum of weighted log features. The weights for
these features are optimized using MERT [Och, 2003]. In our work, we sampled
150 tweets randomly from Twitter and normalized them manually, and used these
samples as development data for MERT. As for the character-based model features,
we simply rank the training phrase pairs by their relative frequency the f(n | o),
and use the top-1000 phrase pairs as development set. Finally, a language model
is required during decoding as a prior, since it defines the type of language that
is produced by the output. We wish to normalized to formal language, which is
generally better processed by NLP tools. Thus, for the phrase model, we use the
English NIST dataset composed of 8M sentences in English from the news domain
to build a 5-gram Kneser-Ney smoothed language model.

4.3.2 Character and Phrasal Decoder

We now turn to how to apply the character-based (§4.2.2), together with the phrasal
model. For this model, we again use Moses, treating each character as a “word”.
The simplest way to combine both methods is first to decode the input sentence o
with the character-based decoder, normalizing each word independently and then
normalizing the resulting output using the phrase-based decoder, which enables the
phrase model to score the outputs of the character model in context.

Our process is as follows. Given the input sentence o, with the words o1, . . . , om,
where m is the number of words in the input, we generate for each word oi a list of
n-best normalization candidates z1oi , . . . , z

n
oi

. We further filter the candidates using
two criteria. We start by filtering out each candidate zjoi that occurs less frequently
than the original word oi. This is motivated by our observation that lexical variants
occur far less than the respective standard form. Second, we build a corpus of

4Reordering helps find lexical variants that are generated by transposing characters, such as,
mabye to maybe.

4.3 Normalization Decoder 69

English language Twitter consisting of 70M tweets, extract the unigram counts, and
perform Brown clustering [Brown et al., 1992] with k = 3000 clusters. Next, we
calculate the cluster similarity between oi and each surviving candidate, zjoi. We
filter the candidate if the similarity is less than 0.8. The similarity between two
clusters represented as bit strings, S[c(oi), c(zjoi)], calculated as:

S(x, y) =
2 · |lpm{x, y)}|
|x|+ |y|

,

where lpm computes the longest common prefix of the contexts and |x| is the length
of the bit string.5 If a candidate contains more than one word (because a space
was inserted), we set its count as the minimum count among its words. To find the
cluster for multiple word units, we concatenate the words together, and find the
cluster with the resulting word if it exists. This is motivated by the fact that it is
common for missing spaces to exist in microblog corpora, generating new word
forms, such as wantto, goingfor, and given a large enough corpora as the one we
used, these errors occur frequently enough to be placed in the correct cluster. For
example, the variants such as wanna and tmi, occur in the same clusters as the
words wantto and toomuchinformation.

Remaining candidates are combined into a word lattice, enabling us to perform
lattice-based decoding with the phrasal model [Dyer et al., 2008]. Figure 4.3.2,
provides an example of such a lattice for the variant sentence I wanna meeeet
DanielVeuleman. Lattice inputs permit the decoder to choose on the basis of transla-
tion and language model features – contextually appropriate inputs.

4.3.3 Learning Variants from Monolingual Data

Until now, we learned normalizations from pairs of original tweets and their nor-
malizations. We shall now describe a process to leverage monolingual documents
to learn new normalizations, since the monolingual data is far easier to obtain than
parallel data. This process is similar to the work in [Han et al., 2012], where confu-
sion sets of contextually similar words are built initially as potential normalization
candidates. We again use the k = 3000 Brown clusters,6 and this time consider the
contents of each cluster as a set of possible normalization variants. For instance, we

5Brown clusters are organized such that more words with more similar distributions share
common prefixes.

6The Brown clustering algorithm groups words together based on contextual similarity.

70 Chapter 4: Normalization Using Paraphrases

neverr

neva neve

nevar

never

glady

gladly

cladly

Figure 4.3: Example DAGs, built from the cluster containing the words never and
gladly.

find that the cluster that includes the word never, also includes the variant forms
neverrrr, neva and nevahhh. However, the cluster also contains non-variant forms,
such as gladly and glady. Thus, we want to find that neverrrr maps to never, while
glady maps to gladly in the same cluster. Our work differs from previous work in
that, rather than defining features manually, we use our character-based decoder to
find the mappings between lexical variants and their normalizations.

For every word type wi in cluster c(wi) = {w1, . . . , wn}, we generate a set of
possible candidates for each word w1

i , . . . , w
m
i . Then, we build a directed acyclic

graph (DAG), where every word. We add an edge between wi and wj, if wi can be
decoded into wj using the character model from the previous section, and also if wi

occurs less than wj; the second condition guarantees that the graph will be acyclic.
Sample graphs are shown in Figure 4.3.

Afterwards, we find the number of paths between all the nodes in the graph (this
can be computed efficiently in O(|V |+ |E|) time). Then, for each word wi, we find
the wj to which it has the highest number of paths to and extract the normalization
of wi to wj. In case of a tie, we choose the word wj that occurs more often in
the monolingual corpora. This is motivated by the fact that normalizations are
transitive. Thus, even if neva cannot be decoded directly to never, we can use nevar
as an intermediate step to find the correct normalization. This is performed for
all the clusters, and the resulting dictionary of lexical variants mapped to their
standard forms is added to the training data of the character-based model.

4.4 Experiments 71

4.4 Experiments

We evaluate our normalization model intrinsically by testing whether our nor-
malizations more closely resemble standardized data, and then extrinsically by
testing whether we can improve the translation quality of in-house as well as online
machine translation systems by normalizing the input.

4.4.1 Setup

Once again, we use our parallel dataset, composed by 2581 English-Mandarin
microblog sentence pairs obtained in Chapter 3. From this set, we randomly select
1290 pairs for development and 1291 pairs for testing.

The normalizer model is trained on the corpora extracted and filtered in sec-
tion 4.1, in total, there were 1.3M normalization pairs used during training. The test
sentences are normalized using four different setups. The first setup leaves the input
sentence unchanged, which we call No Norm. The second uses the phrase-based
model to normalize the input sentence, which we will denote Norm+phrase. The
third uses the character-based model to output lattices, and then decodes with
the phrase based model, which we will denote Norm+phrase+char. Finally, we
test the same model after adding the training data extracted using monolingual
documents, which we will refer as Norm+phrase+char+mono.

To test the normalizations themselves, we used Google Translate to translate the
Mandarin side of the 1291 test sentence pairs back to English and use the original
English tweet. While, this is by itself does not guarantee that the normalizations are
correct, since the normalizations could be syntactically and semantically incorrect,
it will allow us to check whether the normalizations are closer to those produced by
systems trained on news data. This experiment will be called Norm.

As an application and extrinsic evaluation for our normalizer, we test if we can
obtain gains on the MT task on microblog data by using our normalizer prior to
translation. We build two MT systems using Moses. Firstly, we build an out-of-
domain model using the full 2012 NIST Chinese-English dataset (approximately 8M
sentence pairs), which is a dataset from the news domain, and we will denote this
system as Inhouse+News. Secondly, we build a in-domain model using the 800K
highest ranked sentence pairs extracted in Chapter 3. We also add the NIST dataset
to improve coverage. We call this system Inhouse+News+Weibo. To train these
systems, we use the Moses phrase-based MT system with standard features [Koehn

72 Chapter 4: Normalization Using Paraphrases

Table 4.5: Normalization and MT Results. Rows denote different normaliza-
tions, and columns different translation systems, except the first column (Norm),
which denotes the normalization experiment. Cells display the BLEU score of that
experiment.

In house In house
Condition Norm (News) (News+Weibo) Online A Online B Online C
baseline 19.90 15.10 24.37 20.09 17.89 18.79
norm+phrase 21.96 15.69 24.29 20.50 18.13 18.93
norm+phrase+char 22.39 15.87 24.40 20.61 18.22 19.08
norm+phrase+char+mono 22.91 15.94 24.46 20.78 18.37 19.21

et al., 2003]. For reordering, we use the MSD reordering model [Axelrod et al.,
2005]. As the language model, we train a 5-gram model with Kneser-Ney smoothing
using a 10M tweets from twitter. Finally, the weights were tuned using MERT [Och,
2003]. As for online systems, we consider the systems used to generate the para-
phrase corpora in section 4.1, which we will denote as Online A, Online B and
Online C7.

The normalization and MT results are evaluated with BLEU-4 [Papineni et al.,
2002], comparing the produced translations or normalizations with the appropriate
reference.

4.4.2 Results

Results are shown in Table 4.5. In terms of the normalizations, we observe a much
better match between the normalized text with the reference, than the original
tweets. In most cases, adding character-based models improves the quality of the
normalizations.

We observe that better normalizations tend to lead to better translations. The rel-
ative improvements are most significant, when moving from No Norm to norm+phrase
normalization. This is because we are normalizing words that are not seen in general
MT system’s training data, but occur frequently in microblog data, such as wanna to
want to, u to you and im to i’m. The only exception is in the Inhouse+News+Weibo
system, where the normalization deteriorates the results. This is to be expected,
since this system is trained on the same microblog data used to learn the normal-

7The names of the systems are hidden to not violate the privacy issues in the terms and conditions
of these online systems.

4.4 Experiments 73

izations. However, we can observe on norm+phrase+char that if we add the
character-based model, we can observe improvements for this system as well as for
all other ones. This is because the model is actually learning normalizations that
are unseen in the data. Some examples of these normalization include, normalizing
lookin to looking, nutz to nuts and maimi to miami but also separating peaceof to
peace of. The fact that these improvements are obtained for all systems is strong
evidence that we are actually producing good normalizations, and not overfitting
to one of the systems that we used to generate our data. The gains are much
smaller from norm+phrase to norm+phrase+char, since the improvements we
obtain come from normalizing less frequent words. Finally, we can obtain another
small improvement by adding monolingual data to the character-based model in
norm+phrase+char+mono.

4.4.3 Summary

In this chapter, we introduced a data-driven approach to microblog normalization
based on paraphrasing. We build a corpora of tweets and their normalizations
using parallel corpora from microblogs using MT techniques. Then, we build two
models that learn generalizations of the normalization process, one the phrase level
and on the character level. Then, we build a decoder that combines both models
during decoding. Improvements on multiple MT systems support the validity of our
method.

Chapter 5

Character-based Word
Representations for NLP

Generalization is one of the main concerns when building any statistical model.
Given two models, the model with better generalization capabilities will perform
better at unseen data, even though they are trained on the same datasets. As a
simple example, suppose that our training data tells us that greatly and objectively
are adjectives, while John and Peter are proper nouns. One way to model the
data would be simply memorizing all words and their labels in a dictionary. The
problem with this approach is that given the unseen example poorly, the model
would be unable to classify this example. On the other hand, if the model is able
to capture that both adjectives end with the suffix -ly, and both proper nouns start
with a capital letter, many of the unseen examples would be labelled correctly. It
is important to note that while both models can achieve a perfect accuracy on the
seen data, the quality of the model is solely associated with their performance on
unseen examples.

One would imagine that in a domain such as Twitter, where many lexical variants
are infrequent, a model that would consider character level information, rather than
simply memorizing words is desirable. Unfortunately, phrase tables used in current
phrase-based MT systems [Koehn et al., 2007] simply memorize words. That is,
each entry maps a source phrase to a target phrase, and any changes to either
phrases would result in a different phrase pair. This is problematic on one hand as
the model is incapable of learning the translations of unseen words, even if these are
simply slight variations of existing words in the phrase table (e.g. cool→ coooool),
but also as we cannot generate for forms that have not been seen. Moreover, phrase

75

76 Chapter 5: Character-based Word Representations for NLP

tables generated from phrase-based systems tend to be extremely large due to the
fact that all contexts must be encoded as separate entries. Combined with the fact
that the creative language in microblogs alone can generate millions of word types,
an approach that simply memorizes translations for all words in their different
contexts is definitely not scalable to large datasets. While we propose methods to
alleviate this problem by standardizing [Ling et al., 2013a] and pruning [Ling et al.,
2012a] phrase tables in the work developed in this thesis, most of these methods are
used to compensate a missing property in phrase-based systems: compositionality.

Compositionality allows complex structures to be formed by increasingly smaller
and simpler structures [Dyer et al., 2015]. For instance, documents are composed of
sentences, which are in turn composed by words, which are composed of characters.
An example in machine translation is that the translation of a sentence can be
decomposed into the translation of smaller phrases. Yet, the phrase extraction
process [Ling et al., 2010] extracts many redundant phrase pairs that could be
composed by even smaller phrase pairs. Thus, the model is not fully exploiting the
compositional properties within language that allows very compact models to be
learnt. In prior work, we provide evidence [Ling et al., 2012a] that many of these
redundant phrases can be removed for compactness with only a small negative
impact in the translation quality.

In this chapter, we will develop models that take major advantage of the compo-
sitional properties within language. Our work [Ling et al., 2015c] focuses mainly
on the character to word relationship. That is, how to model words solely from
their characters. Then, we show their validity in two major NLP tasks, language
modeling and part-of-speech tagging.

5.1 Word Vectors and Wordless Word Vectors

Our model is motivated by the recent advances in vector space models used in neural
network models. In contrast to naïve models in which all word types in a vocabulary
V are equally different from each other, vector space models capture the intuition
that words may be different or similar along a variety of dimensions. Learning vector
representations of words by treating them as optimizable parameters in various
kinds of language models has been found to be a remarkably effective means
for generating vector representations that perform well in other tasks [Collobert
et al., 2011, Kalchbrenner and Blunsom, 2013, Liu et al., 2014, Chen and Manning,
2014, Dyer et al., 2015]. Formally, such models define a matrix P ∈ Rd×|V |, which

5.1 Word Vectors and Wordless Word Vectors 77

contains d parameters for each word in the vocabulary V . For a given word type
w ∈ V , a column is selected by right-multiplying P by a one-hot vector of length |V |,
which we write onehot(w), that is zero in every dimension except for the element
corresponding to w. Thus, P is often referred to as word lookup table and we shall
denote by eWw ∈ Rd the embedding obtained from a word lookup table for w as
eWw = P · onehot(w). This allows tasks with low amounts of annotated data to
be trained jointly with other tasks with large amounts of data and leverage the
similarities in these tasks. A common practice to this end is to initialize the word
lookup table with the parameters trained on an unsupervised task. Some examples
of these include the skip-n-gram and CBOW models of [Mikolov et al., 2013].

5.1.1 Problem: Independent Parameters

There are two practical problems with word lookup tables. Firstly, while they can be
pre-trained with large amounts of data to learn semantic and syntactic similarities
between words, each vector is independent. That is, even though models based
on word lookup tables are often observed to learn that cats, kings and queens exist
in roughly the same linear correspondences to each other as cat, king and queen
do, the model does not represent the fact that adding an s at the end of the word
is evidence for this transformation. This means that word lookup tables cannot
generate representations for previously unseen words, such as Frenchification, even
if the components, French and -ification, are observed in other contexts.

Second, even if copious data is available, it is impractical to actually store vectors
for all word types. As each word type gets a set of parameters d, the total number
of parameters is d× |V |, where |V | is the size of the vocabulary. Even in relatively
morphologically poor languages, such as English, the number of word types tends
to scale to the order of hundreds of thousands, and in noisier domains, such as
online data, the number of word types raises considerably. For instance, in the
English Wikipedia dump with 60 million sentences, there are approximately 20
million different lowercased and tokenized word types, each of which would need
its own vector. Intuitively, it is not sensible to use the same number of parameters
for each word type.

Finally, it is important to remark that it is uncontroversial among cognitive
scientists that our lexicon is structured into related forms—i.e., their parameters
are not independent. The well-known “past tense debate” between connectionists
and proponents of symbolic accounts concerns disagreements about how humans
represent knowledge of inflectional processes (e.g., the formation of the English

78 Chapter 5: Character-based Word Representations for NLP

past tense), not whether such knowledge exists [Marslen-Wilson and Tyler, 1998].

5.1.2 Solution: Compositional Models

Our solution to these problems is to construct a vector representation of a word by
composing smaller pieces into a representation of the larger form. This idea has
been explored in prior work by composing morphemes into representations of words
[Luong et al., 2013, Botha and Blunsom, 2014, Soricut and Och, 2015]. Morphemes
are an ideal primitive for such a model since they are—by definition—the minimal
meaning-bearing (or syntax-bearing) units of language. The drawback to such
approaches is they depend on a morphological analyzer.

In contrast, we would like to compose representations of characters into rep-
resentations of words. However, the relationship between words forms and their
meanings is non-trivial [de Saussure, 1916]. While some compositional relation-
ships exist, e.g., morphological processes such as adding -ing or -ly to a stem have
relatively regular effects, many words with lexical similarities convey different
meanings, such as, the word pairs lesson⇐⇒ lessen and coarse⇐⇒ course.

5.2 C2W Model

Our compositional character to word (C2W) model is based on bidirectional
LSTMs [Graves and Schmidhuber, 2005], which are able to learn complex non-local
dependencies in sequence models. An illustration is shown in Figure 5.1. The input
of the C2W model (illustrated on bottom) is a single word type w, and we wish
to obtain a d-dimensional vector used to represent w. This model shares the same
input and output of a word lookup table (illustrated on top), allowing it to easily
replace them in any network.

As input, we define an alphabet of characters C. For English, this vocabulary
would contain an entry for each uppercase and lowercase letter as well as numbers
and punctuation. The input word w is decomposed into a sequence of characters
c1, . . . , cm, where m is the length of w. Each ci is defined as a one hot vector
onehot(ci), with one on the index of ci in vocabulary M . We define a projection
layer PC ∈ RdC×|C|, where dC is the number of parameters for each character in the
character set C. This of course just a character lookup table, and is used to capture
similarities between characters in a language (e.g., vowels vs. consonants). Thus,

5.2 C2W Model 79

we write the projection of each input character ci as eci = PC · onehot(ci).
Given the input vectors x1, . . . ,xm, a LSTM computes the state sequence h1, . . . ,hm+1

by iteratively applying the following updates:

it = σ(Wixxt +Wihht−1 +Wicct−1 + bi)

ft = σ(Wfxxt +Wfhht−1 +Wfcct−1 + bf)

ct = ft � ct−1+

it � tanh(Wcxxt +Wchht−1 + bc)

ot = σ(Woxxt +Wohht−1 +Wocct + bo)

ht = ot � tanh(ct),

where σ is the component-wise logistic sigmoid function, and � is the component-
wise (Hadamard) product. LSTMs define an extra cell memory ct, which is combined
linearly at each timestamp t. The information that is propagated from ct−1 to ct is
controlled by the three gates it, ft, and ot, which determine what to include from
the input xt, what to forget from ct−1 and what is relevant to the current state ht.
We writeW to refer to all parameters the LSTM, (Wix, Wfx, bf , . . .). Thus, given
a sequence of character representations eCc1 , . . . , e

C
cm as input, the forward LSTM,

yields the state sequence sf0 , . . . , s
f
m, while the backward LSTM receives as input the

reverse sequence, and yields states sbm, . . . , s
b
0. Both LSTMs use a different set of

parametersWf andWb. The representation of the word w is obtained by combining
the forward and backward states:

eCw = Dfsfm +Dbsb0 + bd,

where Df , Db and bd are parameters that determine how the states are combined.

Caching for Efficiency. Relative to eWw , computing eCw is computational expensive,
as it requires two LSTMs traversals of length m. However, eCw only depends on
the character sequence of that word, which means that unless the parameters are
updated, it is possible to cache the value of eCw for each different w that will be used
repeatedly. Thus, the model can keep a list of the most frequently occurring word
types in memory and run the compositional model only for rare words. Obviously,
caching all words would yield the same performance as using a word lookup table
eWw , but would also use the same amount of memory. Consequently, the number

80 Chapter 5: Character-based Word Representations for NLP

of word types used in cache can be adjusted to satisfy memory vs. performance
requirements of a particular application.

At training time, when parameters are changing, repeated words within the
same batch only need to be computed once, and the gradients for each word vector
can be accumulated within the batch so that only one update needs to be done per
word type. For this reason, it is preferable to define larger batches.

5.3 Experiments: Language Modeling

Our proposed model is similar to models used to compute composed representations
of sentences from words [Cho et al., 2014, Li et al., 2015]. However, the relationship
between the meanings of individual words and the composite meaning of a phrase
or sentence is arguably more regular than the relationship of representations of
characters and the meaning of a word. Is our model capable of learning such an
irregular relationship? We now explore this question empirically.

Language modeling is a task with many applications in NLP. An effective LM
requires syntactic aspects of language to be modeled, such as word orderings (e.g.,
“John is smart" vs. “John smart is"), but also semantic aspects (e.g., “John ate fish"
vs. “fish ate John"). Thus, if our C2W model only captures regular aspects of words,
such as, prefixes and suffixes, the model will yield worse results compared to word
lookup tables.

5.3.1 Language Model

Language modeling amounts to learning a function that computes the log probability,
log p(w), of a sentence w = (w1, . . . , wn). This quantity can be decomposed accord-
ing to the chain rule into the sum of the conditional log probabilities

∑n
i=1 log p(wi |

w1, . . . , wi−1). Our language model computes log p(wi | w1, . . . , wi−1) by composing
representations of words w1, . . . , wi−1 using a recurrent LSTM model [Mikolov et al.,
2010, Sundermeyer et al., 2012a].

The model is illustrated in Figure 5.2, where we observe on the first level that
each word wi is projected into its word representation. This can be done by using
word lookup tables eWwi

, in which case we will have a regular recurrent language
model. To use our C2W model, we can simply replace the word lookup table with
the model f(wi) = eCwi

. Each LSTM block si is used to predict word wi+1. This is

5.3 Experiments: Language Modeling 81

performed by projecting the si into a vector of the size of the vocabulary V and
performing a softmax.

The softmax is still simply a d× V table, which encodes the likelihood of every
word type in a given context. Since it is a closed-vocabulary model, at test time, out-
of-vocabulary (OOV) words cannot be addressed. A strategy that is generally applied
is to prune the vocabulary V by replacing word types with lower frequencies as an
OOV token. At test time, the probability of words not in vocabulary is estimated as
the OOV token. Thus, depending on the number of word types that are pruned, the
global perplexities may decrease, since there are fewer outcomes in the softmax,
which makes the absolute value of perplexity not informative when comparing
models of different vocabulary sizes. Yet, the relative perplexity between different
models indicates which models can better predict words based on their contexts.

5.3.2 Experiments

Datasets We look at the language model performance on English, Portuguese,
Catalan, German and Turkish, which have a broad range of morphological typologies.
While all these languages contain inflections, in agglutinative languages affixes
tend to be unchanged, while in fusional languages they are not. For each language,
Wikipedia articles were randomly extracted until 1 million words are obtained
and these were used for training. For development and testing, we extracted an
additional set of 20,000 words.

Setup We define the size of the word representation d to 50. The C2W model
requires setting the dimensionality of characters dC and current states dCS. We set
dC = 50 and dCS = 150. Each LSTM state used in the language model sequence
si is set to 150 for both states and cell memories. Training is performed with
mini-batch gradient descent with 100 sentences. The learning rate and momentum
are set to 0.2 and 0.95. The softmax over words is always performed on lowercased
words. We restrict the output vocabulary to the most frequent 5,000 words.
Remaining word types will be replaced by an unknown token, which must also
be predicted. The word representation layer is still performed over all word types
(i.e., completely open vocabulary). When using word lookup tables, the input
words are also lowercased, as this setup produces the best results. In the C2W, case
information is preserved.

To address OOV words in the baseline setup, these are replaced by an unknown

82 Chapter 5: Character-based Word Representations for NLP

token, and also associated with a set of embeddings. During training, word types
that occur once are replaced with the unknown token stochastically with 0.5 proba-
bility. The same process is applied at the character level for the C2W model.

Evaluation is performed by computing the perplexities over the test data, and
the parameters that yield the highest perplexity over the development data are used.

Perplexities Perplexities over the testset are reported on Table 6.1. From these
results, we can see that in general, it is clear that C2W always outperforms word
lookup tables (row “Word"), and that improvements are especially pronounced in
Turkish, which is a highly morphological language, where word meanings differ
radically depending on the suffixes used (evde→ in the house vs. evden→ from the
house).

Number of Parameters As for the number of parameters (illustrated for block
“#Parameters"), the number of parameters in word lookup tables is V × d. If a
language contains 80,000 word types (a conservative estimate in morphologically
rich languages), 4 million parameters would be necessary. On the other hand,
the compositional model consists of 8 matrices of dimensions dCS × dC + 2dCS.
Additionally, there is also the matrix that combines the forward and backward states
of size d× 2dCS. Thus, the number of parameters is roughly 150,000 parameters—
substantially fewer. This model also needs a character lookup table with dC param-
eters for each entry. For English, there are 618 characters (including noise, such
as Mandarin and Russian characters), for an additional 30,900 parameters. So
the total number of parameters for English is roughly 180,000 parameters (2 to 3
parameters per word type), which is an order of magnitude lower than word lookup
tables.

Performance As for efficiency, both representations can score sentences at a rate
of approximately 300 words per second during training. While this is surprising,
due to the fact that the C2W model requires a composition over characters, the main
bottleneck of the system is the softmax over the vocabulary. Furthermore, caching
is used to avoid composing the same word type twice in the same batch. This shows
that the C2W model is relatively fast compared operations such as a softmax.

5.4 Experiments: Part-of-speech Tagging 83

Fusional Agglutinative
Perplexity EN PT CA DE TR
5-gram KN 70.72 58.73 39.83 59.07 52.87
Word 59.38 46.17 35.34 43.02 44.01
C2W 57.39 40.92 34.92 41.94 32.88
#Parameters
Word 4.3M 4.2M 4.3M 6.3M 5.7M
C2W 180K 178K 182K 183K 174K

Table 5.1: Language Modeling Results.

increased John Noahshire phding
reduced Richard Nottinghamshire mixing

improved George Bucharest modelling
expected James Saxony styling
decreased Robert Johannesburg blaming
targeted Edward Gloucestershire christening

Table 5.2: Most-similar in-vocabular words under the C2W model; the two query
words on the left are in the training vocabulary, those on the right are nonce
(invented) words.

Representations of (invented) words While it is promising that the model is
not simply learning lexical features, what is most interesting is that the model can
propose embeddings for nonce/invented words, in stark contrast to the situation
observed with lookup table models. To illustrated this, we show the 5-most-similar
in-vocabulary words (measured with cosine similarity) as computed by our character
model on two in-vocabulary words and two nonce words. This makes our model
generalize significantly better than lookup tables that generally use unknown tokens
for OOV words. Furthermore, this ability to generalize is much more similar to that
of human beings, who are able to infer meanings for new words based on its form.

5.4 Experiments: Part-of-speech Tagging

As a second illustration of the utility of our model, we turn to POS tagging. As
morphology is a strong indicator for syntax in many languages, much effort has
been spent engineering features [Nakagawa et al., 2001, Mueller et al., 2013]. We
now show that some of these features can be learnt automatically using our model.

84 Chapter 5: Character-based Word Representations for NLP

5.4.1 Bi-LSTM Tagging Model

Our tagging model is likewise novel, but very straightforward. It builds a Bi-LSTM
over words as illustrated in Figure 5.3. The input of the model is a sequence
of features f(w1), . . . , f(wn). Once again, word vectors can either be generated
using the C2W model f(wi) = eCwi

, or word lookup tables f(wi) = eWwi
. We also

test the usage of hand-engineered features, in which case f1(wi), . . . , fn(wi). Then,
the sequential features f(w1), . . . , f(wn) are fed into a Bi-LSTM model, obtaining
the forward states sf0 , . . . , s

f
n and the backward states sbN+1, . . . , s

b
0. Thus, state sfi

contains the information of all words from 1 to i and sbi from n to i. The forward
and backward states are combined, for each index from 1 to n, as follows:

li = tanh(Lfsfi + Lbsbi + bl),

where Lf , Lb and bl are parameters defining how the forward and backward states
are combined. The size of the forward sf and backward states sb and the combined
state l are hyperparameters of the model, denoted as dfWS, dbWS and dWS, respectively.
Finally, the output labels for index i are obtained as a softmax over the POS tagset,
by projecting the combined state li.

5.4.2 Experiments

Datasets For English, we conduct experiments on the Wall Street Journal of the
Penn Treebank dataset [Marcus et al., 1993], using the standard splits (sections
1–18 for train, 19–21 for tuning and 22–24 for testing). We also perform tests on
4 other languages, which we obtained from the CoNLL shared tasks [Martí et al.,
2007, Brants et al., 2002, Afonso et al., 2002, Atalay et al., 2003]. As for the other
languages, we withdraw the last 100 sentences from the training dataset and use
them for tuning.

Setup The POS model requires two sets of hyperparameters. Firstly, words must
be converted into continuous representations and the same hyperparametrization
as in language modeling (Section 5.3) is used. Additionally, we compare to the
convolutional model of [Santos and Zadrozny, 2014], which also requires the
dimensionality for characters and the word representation size, which are set to
50 and 150, respectively. Secondly, words representations are combined to encode
context. Our POS tagger has three hyperparameters dfWS, dbWS and dWS, which

5.4 Experiments: Part-of-speech Tagging 85

correspond to the sizes of LSTM states, and are all set to 50. As for the learning
algorithm, use the same setup (learning rate, momentum and mini-batch sizes) as
used in language modeling.

Once again, we replace OOV words with an unknown token, in the setup that
uses word lookup tables, and the same with OOV characters in the C2W model.
In setups using pre-trained word embeddings, we consider a word an OOV if it
was not seen in the labelled training data as well as in the unlabeled data used for
pre-training.

Compositional Model Comparison A comparison of different recurrent neural
networks for the C2W model is presented in Table 5.3. We used our proposed
tagger in all experiments and results are reported for the English Penn Treebank.
Results on label accuracy test set is shown in the column “acc". The number of
parameters in the word composition model is shown in the column “parameters".
Finally, the number of words processed at test time per second are shown in column
“words/sec".

We observe that approaches using RNN yield worse results than their LSTM
counterparts with a difference of approximately 2%. This suggests that while
regular RNNs can learn shorter character sequence dependencies, they are not
ideal to learn longer dependencies. LSTMs, on the other hand, seem to effectively
obtain relatively higher results, on par with using word look up tables (row “Word
Lookup"), even when using forward (row “Forward LSTM") and backward (row
“Backward LSTM") LSTMs individually. The best results are obtained using the
bidirectional LSTM (row “Bi-LSTM"), which achieves an accuracy of 97.29% on
the test set, surpassing the word lookup table. The convolution model [Santos and
Zadrozny, 2014] obtained slightly lower results (row “Convolutional (S&Z)"), we
think this is because the convolutional model uses a max-pooling layer over series of
window convolutions. As order is only perserved within windows, longer distance
dependences are unobserved.

There are approximately 40k lowercased word types in the training data in
the PTB dataset. Thus, a word lookup table with 50 dimensions per type contains
approximately 2 million parameters. In the C2W models, the number of characters
types (including uppercase and lowercase) is approximately 80. Thus, the character
look up table consists of only 4k parameters, which is negligible compared to
the number of parameters in the compositional model, which is once again 150k
parameters. One could argue that results in the Bi-LSTM model are higher than

86 Chapter 5: Character-based Word Representations for NLP

acc parameters words/sec
Word Lookup 96.97 2000k 6K

Convolutional (S&Z) 96.80 42.5k 4K
Forward RNN 95.66 17.5k 4K

Backward RNN 95.52 17.5k 4K
Bi-RNN 95.93 40k 3K

Forward LSTM 97.12 80k 3K
Backward LSTM 97.08 80k 3K

Bi-LSTM dCS = 50 97.22 70k 3K
Bi-LSTM 97.36 150k 2K

Table 5.3: POS accuracy results for the English PTB using word representation
models.

those achieved by other models as it contains more parameters, so we set the state
size dCS = 50 (row “Bi-LSTM dCS = 50") and obtained similar results.

In terms of computational speed, we can observe that there is a more significant
slowdown when applying the C2W models compared to language modeling. This is
because there is no longer a softmax over the whole word vocabulary as the main
bottleneck of the network. However, we can observe that while the Bi-LSTM system
is 3 times slower, it is does not significantly hurt the performance of the system.

Results on Multiple Languages Results on 5 languages are shown in Table 6.1.
In general, we can observe that the model using word lookup tables (row “Word")
performs consistently worse than the C2W model (row “C2W"). We also compare
our results with Stanford’s POS tagger (Row “Stanford"), with the default set of
features, found in Table 6.1. Results using the tagger are comparable or better
than state-of-the-art systems. We can observe that in most cases we can slightly
outperform the scores obtained using their tagger. This is a promising result,
considering that we use the same training data and do not handcraft any features.
Furthermore, we can observe that for Turkish, our results are significantly higher
(>4%).

Comparison with Benchmarks Most state-of-the-art POS tagging systems are
obtained by either learning or handcrafting good lexical features [Manning, 2011,
Sun, 2014] or using additional raw data to learn features in an unsupervised fashion.
Generally, optimal results are obtained by performing both. Table 5.5 shows the

5.4 Experiments: Part-of-speech Tagging 87

System Fusional Agglutinative
EN PT CA DE TR

Word 96.97 95.67 98.09 97.51 83.43
C2W 97.36 97.47 98.92 98.08 91.59
Stanford 97.32 97.54 98.76 97.92 87.31

Table 5.4: POS accuracies on different languages.

current Benchmarks in this task for the English PTB. Accuracies on the test set
are reported on column “acc". Columns “+feat" and “+data" define whether hand-
crafted features are used and whether additional data was used. We can see that
even without feature engineering or unsupervised pretraining, our C2W model
(row “C2W") is on par with the current state-of-the-art system (row “structReg").
However, if we add hand-crafted features, we can obtain further improvements on
this dataset (row “C2W + features").

However, there are many words that do not contain morphological cues to their
part-of-speech. For instance, the word snake does not contain any morphological
cues that determine its tag. In these cases, if they are not found labelled in the
training data, the model would be dependent on context to determine their tags,
which could lead to errors in ambiguous contexts. Unsupervised training methods
such as the Skip-n-gram model [Mikolov et al., 2013] can be used to pretrain the
word representations on unannotated corpora. If such pretraining places cat, dog
and snake near each other in vector space, and the supervised POS data contains
evidence that cat and dog are nouns, our model will be likely to label snake with the
same tag.

We train embeddings using English Wikipedia with the dataset used in [Ling
et al., 2015b], composed of approximately 50 million tweets, and the Structured
Skip-n-gram model [Ling et al., 2015b]. Results using pre-trained word lookup
tables and the C2W with the pre-trained word lookup tables as additional parameters
are shown in rows “word(sskip)" and “C2W + word(sskip)". We can observe that
both systems can obtain improvements over their random initializations (rows
“word" and (C2W)).

Finally, when using the C2W model in conjunction pre-trained word embeddings
we also found that adding a non-linearity to the representations extracted from
the C2W model eCw improves the results over using a simple linear transformation
(row “C2W(tanh)+word (sskip)"). This setup, obtains 0.28 points over the previous
state-of-the-art system(row “SCCN").

88 Chapter 5: Character-based Word Representations for NLP

+feat +data acc improvement
word no no 96.70 0%
C2W no no 97.36 0.68%
word+features yes no 97.34 0.66%
C2W+features yes no 97.57 0.90%
Stanford 2.0 [Manning, 2011] yes no 97.32 0.64%
structReg [Sun, 2014] yes no 97.36 0.68%
word (sskip) no yes 97.42 0.74%
C2W+word (sskip) no yes 97.54 0.87%
C2W(tanh)+word (sskip) no yes 97.78 1.12%
Morče [Spoustová et al., 2009] yes yes 97.44 0.76%
SCCN [Søgaard, 2011] yes yes 97.50 0.82%

Table 5.5: POS accuracy result comparison with state-of-the-art systems for the
English PTB.

5.4.3 Summary

In this chapter, we propose a C2W model that builds word embeddings for words
without an explicit word lookup table. Thus, it benefits from being sensitive to
lexical aspects within words, as it takes characters as atomic units to derive the
embeddings for the word. On POS tagging, our models using characters alone can
still achieve comparable or better results than state-of-the-art systems, without the
need to manually engineer such lexical features. Although both language modeling
and POS tagging both benefit strongly from morphological cues, the success of our
models in languages with impoverished morphological cues shows that it is able to
learn non-compositional aspects of how letters fit together.

5.4 Experiments: Part-of-speech Tagging 89

cats
cat

cats

job
....

....

........

cats

c a t s

a
c

t

....

....

s

Character
Lookup
Table

........

Word
Lookup
Table

Bi-LSTM

embeddings
for word "cats"

embeddings
for word "cats"

Figure 5.1: Illustration of the word lookup tables (top) and the lexical Composition
Model (bottom). Square boxes represent vectors of neuron activations. Shaded
boxes indicate a non-linearity.

90 Chapter 5: Character-based Word Representations for NLP

cats fisheat

........

cats eat fish

LSTM

Word Lookup
or

Lexical
Composition

Model

Softmax
over

Vocabulary

embedings
for words

</s>

Figure 5.2: Illustration of our neural network for Language Modeling.

cats fisheat

........

NNS VBP NN

Bi-LSTM

Word Lookup
or

Lexical
Composition

Model

Softmax
over

Labels

embedings
for words

embedings
for words
in context

Figure 5.3: Illustration of our neural network for POS tagging.

Chapter 6

Character-based Word Generation
for NLP

Chapter 5 describes a model to generate word representations from characters. That
is, from a string input that represents a word, we learn a vector representations
that encodes the traits for that word that are relevant to solving a given problem.
However, the reverse process is also needed for many applications. For instance,
in a neural language model, the model predicts a word based on the previous
context. This context is generally quantified as a continuous vector obtained by the
composition of all previous words in recurrent networks [Mikolov et al., 2010] or
using a fixed size window [Mnih and Hinton, 2009]. In neural machine translation
models [Kalchbrenner and Blunsom, 2013, Bahdanau et al., 2015], this step is also
necessary to generate the translated words. In translation models, the generated
word is still dependent on the target sentence context, which are the words that
have been translated so far, but also the source sentence, which can also be mapped
into a continuous vector.

Thus, the general problem we wish to solve is to produce a string, given an input
vector. A widely known solution to this problem is to use a softmax function over
words, a class-based logistic regression unit, trained to maximize the probability
over all words in the vocabulary. However, a word softmax requires a separate set
of parameters for each word type. Thus, a word softmax cannot generate unseen
words in the training set, and requires a large amount of parameters due to the
fact that each word type must be modelled independently. Furthermore, another
well know problem is that the whole target vocabulary T must be traversed for
each prediction during both training and testing phases. While at training time

91

92 Chapter 6: Character-based Word Generation for NLP

approximations such as noise contrastive estimation [Gutmann and Hyvarinen,
2010] can be applied, traversing T is still required at test time. Other options
include tree-based softmax [Morin and Bengio, 2005], which in general lead to
suboptimal results compared to the regular word softmax.

In this chapter, we shall propose a character-level word generation model that
generates words one character at time. The model is still dependent on the given
input vector, but instead of predicting the probability distribution over words in a
single matrix projection over the whole vocabulary, our model predicts the sequence
of characters of the observed word. Our model benefits from the potential to
generate unseen words, so long as all the characters of that unseen word have been
seen. Furthermore, as the number of character types in the vocabulary is orders
of magnitude smaller than the number of word types, our model benefits from a
shorter prediction time, even though the number of predictions is higher. Finally,
similarly to character-based word representations, the fact that we do not keep word
type parameters allows us to build more compact models, as only character-based
parameters are needed.

Then, the model shall be used in conjunction with the C2W model to build a
fully character-based system for language modeling and machine translation by
composing input words from their character sequence and generating output words
character-by-character.

6.1 V2C Model

An illustration of the V2C (vector to characters) is shown in Figure 6.1. We define a
character vocabulary for the language Tc. The input of our model is an arbitrary
vector i, which is generally the result of another part of the network. We wish to
maximize the probability of the observed word w defined as a sequence of characters
w0, . . . , wy. To represented this, we involve the chain rule for probabilities:

P (w|i) =
∏

q∈[0,y]

P (wq | w0, . . . , wq−1, i)

That is, rather than learning to predict single words, our model predicts the
character sequence of the output word. Each prediction is dependent on the input
of the model, i, and also on the previously generated character context w0, . . . , wi−1.

6.2 Character to Character Language Modeling 93

Essentially, our model is writing the word character by character from left to
right, and as new characters are written, these will condition the prediction of the
following characters. We also assume that words end at wy with a special EOW
token. At training time, this token is simply added to all observed words. At test
time, characters are generated until the EOW character is predicted.

The character context is computed by an LSTM. First, we project each char-
acter w0, . . . , wq−1 with a character lookup table into a dt,c-dimensional vector
tj,0, . . . , tj,q−1. Then, each vector is concatenated to the input vector i, and passed
as the input to an LSTM, generating the sequence of states yf

0 , . . . ,y
f
q−1. Then, the

prediction of the character wq is obtained as the softmax function:

P (wq|w0, . . . , wq−1, i) =
exp(S

wq
y yf

q−1 + bwq)∑
i∈[0,Tc]

exp(Si
yy

f
q−1) + bi

,

where Sy are the parameters that convert the state y into a score for each output
character, and Si

y denotes the parameters respective to the character type i.

Finally, the model is also required to produce the end of sentence token EOS,
similarly to a word softmax. For instance, in translation models, a EOS token is used
to define the end of sentence, which is required at decoding time to know when the
translation is finished. In our model, we simply consider the EOS token as a word
whose only character is EOS. This way, no special handing is needed for this token.

The hyper parameters of our model are essentially the LSTM parameters (cell
and state size) ycell and ystate. As for the parameters, the V2W model requires an
LSTM YLSTM and the parameters for the character softmax Sy.

6.2 Character to Character Language Modeling

Neural language models have shown to obtain state-of-the-art results on many
tasks [Bengio et al., 2003, Mnih and Hinton, 2008]. Most of these models operate at
the word level, with the option to add additional subword units for morphological
awareness, and the ability to handle out-of-vocabulary words [Larson, Kozielski
et al., 2013, 2014]. Many of these approaches segment words into smaller units,
which are then used to train either an n-gram language model or a recurrent
language model. The main benefit for using subword units is the fact that these

94 Chapter 6: Character-based Word Generation for NLP

** V2C Generation Model

Forward LSTM

e s t a

e s t a EOW

SOW

Figure 6.1: Illustration of the V2C model. Square boxes represent vectors of neuron
activations.

allow better handling of unknown words, which must be accounted for in open
vocabulary systems.

Character-based language models offer an appealing strategy for dealing with the
need to model completely open-vocabulary language. In addition to being able to
generate completely novel word forms, they do not require the model to keep a list
of word types paired with parameters, which can substantially reduce the amount
of RAM required to represent the model, potentially allowing models trained on
larger datasets to be used in smaller devices. A second benefit of character models
is computational tractability: as the execution time of the softmax over the whole
vocabulary grows linearly as the vocabulary size increases, character models that
predict characters rather than words tend be significantly more efficient at training
and test time, as the number of character types tends to be orders of magnitude
smaller than word types (with some exceptions, such as Mandarin).

Unfortunately, despite these benefits, character-only models approaches have
been unsuccessful in exceeding the quality of the results of word-based approaches
when used in stand-alone applications. Hybrid solutions that combine character-
based language models with word-based models [Ali et al., 2012] overcomes this
problem in terms of the quality of the end-to-end results, but the computational
benefits of character-based models (i.e., speed and compactness) are lost when the
character-based model is combined with a word-based model as the word-based
model would be the bottleneck of the system as a whole.

Thus, we shall propose a hierarchical neural language model that uses charac-
ters as atomic input and output units. Firstly, we compose character representations
into words representations using the character to word (C2W) model proposed
in [Ling et al., 2015c]. Then, word representations are combined with a regular

6.2 Character to Character Language Modeling 95

LSTM-based recurrent neural network [Sundermeyer et al., 2012b], thereby encod-
ing cross word (context) information. Finally, output words are predicted using the
(V2W) model. As both the word composition and prediction models are performed
at the character level, our models tend to be smaller and faster than equivalently
performing word-based models. We show that our model achieves better results
than both purely word-based and character-based approaches when used as features
for automatic speech recognition re-ranking even in closed vocabulary scenarios,
where the OOV prediction problem for word-based neural networks does not hold.

6.2.1 Experiments

We evaluate the quality of our method extrinsically by training our language models
to score the n-best outputs generated by an ASR system. We chose this evaluation
method over an intrinsic evaluation using perplexity, as in many cases, the results on
perplexity are inconclusive on the quality of the model in end-to-end tasks [Clarkson
and Robinson, 1999].

Dataset

Evaluation is performed using a TED Talk subtitles dataset1, containing approxi-
mately 160 hours of TED Talks audio, with 1.8 million words. Out of the 1,382 talks,
5 were selected for development and 5 for testing. The subtitles were tokenized
and lowercased. In the pre-processed training data, we found 36,782 word types
and 33 character types, composed by the Latin alphabet and punctuation.

ASR System

The speech recognizer used in our experiments is AUDIMUS, a hybrid HMM-MLP
system which uses the WFST approach to integrate knowledge sources, such as the
language model and the lexicon with the neural network-based acoustic models.
AUDIMUS combines multiple feature streams (RASTA, PLP and MSG) for improved
robustness to different acoustic conditions.

The acoustic model was trained using 160 hours of TED Talks audio. The
subtitles for each talk were force aligned with the audio to produce the targets used

1http://www.ted.com

96 Chapter 6: Character-based Word Generation for NLP

for training. The language model used in the ASR was built using a 4-gram model
language model with Kneser-Ney smoothing. It results from the interpolation of
the model trained with the in-domain TED Talk data and another language model
built using the out-of-domain data from Europarl [Koehn, 2005], which contains
approximately 50 million words.

We also restrict the vocabulary of the ASR to the word types in the in-domain
datasets, as an open vocabulary experiment would benefit character-based models,
which is not the goal of our work.

Neural Language Models

Neural language models are trained on the in-domain TED Talk data. As baseline, we
train a word-based LSTM recurrent neural network [Sundermeyer et al., 2012b]. We
set the word vector sizeK to 50, resulting in a word lookup table with approximately
1.8 million parameters. We set the language model state size S to 150, as well as
for the cell size. This leads to an LSTM with 187 thousand parameters. Finally, the
softmax over vocabulary projects each state s to the whole vocabulary V , which
requires 5.5 million parameters. Thus, in total, the model contains approximately
7.5 million parameters. We shall denote this model as “Word LM".

Next, we train our hierarchical model, which uses the same parameters for
K and S. Instead of the word lookup table, we train the C2W model, with a
bidirectional LSTM with 150 dimensions for the state and cell units. As there are
only 33 character types, we set the character vector size P to 20 leading to only 660
parameters for the character lookup table. Then the BLSTM trained for the C2W
model contains approximately 340 thousand parameters. As we did not change K
and S, the LSTM encoding the context state s still holds 187 thousand parameters.
Finally, for the V2C model, we set its LSTM state and cell sizes to 150. Then, the
character softmax only requires 4950 parameters, while the LSTM itself requires
417 thousand parameters. Thus, in total the model only requires approximately 1
million parameters and shall be named “Hierarchical LM".

We also attempt to build a pure character-based LSTM model by simply consid-
ering each character a different input. As the character-based model requires longer
range dependencies, we set the state S to 400 units. This leads a to a model with
approximately 1.1 million parameters. We shall refer to this model as “Character
LM".

6.2 Character to Character Language Modeling 97

Word Character Hierarchical
None LM LM LM

WER ACC+LM 23.87 23.64 23.61 23.53
WER ACC 26.98 26.34 26.15 26.00
LM parameters n/a 7.5M 1.1M 1.0M
LM words/sec n/a 70 938 1,223

Table 6.1: Re-ranking results and neural language model statistics.

Training

All models were trained using adaptive gradient descent [Duchi et al., 2011], with
the learning rate 0.2, and mini-batches of 10 sentences. As stopping criteria, we
employ early stopping by checking on the perplexity on the development data every
epoch. Training stops when the perplexity does not improve for 5 epochs.

As for re-ranking the ASR, we generate a list of 200 n-best possible outputs for
each utterance. The ASR score scoreasr is obtained from the combination of the
acoustic score and the native language model score. We simply linearly combine it
with the score obtained from the neural language model scorenlm, as αscorenlm +(1−
α)scoreasr. That is, we estimate an α parameter that minimizes the WER over the
development set. As only one parameter is needed for this combination, we simply
performed a grid search over all possible values for this parameter at intervals of
0.001, and chose the value that minimizes the word error rate on the development
set.

Results

Results are shown in Table 6.1. We observe that even though our hierarchical
model (column “Hierarchical LM") uses less than 15% of the parameters (row “LM
parameters") in the word-based model (column “Word LM") it actually achieves
a better word error rate (row “WER ACC+LM"). While improvements are small
(0.11 over the word-based model), it is important to notice that these results are
achieved without explicitly representing words in our model, but only characters.
Furthermore, we can observe that our Hierarchical model achieves a significantly
faster decoding rate (row “LM words/sec"), as it performs the softmax over character
types, which are orders of magnitude smaller than word types.

98 Chapter 6: Character-based Word Generation for NLP

Compared to a purely character-based language model (column “Character LM"),
we observe that our model performs slightly better in terms WER, using slightly less
parameters.

However, it is still not certain that the character-based models can model words
without a word-based model, as the ASR system contains a native n-gram based
language model. This means that we are essentially interpolating a character-based
model with a word-based model. Thus, we removed the score of the native language
model from the score produced by the ASR and repeated this experiment. While this
degrades the overall results by approximately 3% (row “WER ACC"), we can still
observe improvements using our hierarchical model (column “Hierarchical LM").

23.5

23.6

23.7

23.8

23.9

24

0 0.02 0.04 0.06 0.08 0.1

W
E
R

(
%
)

Model weight

 Hierarchical LM
Character LM

Word LM

Figure 6.2: WER values for different values of α using the acoustic and native
language model scores.

6.2 Character to Character Language Modeling 99

25.8

26

26.2

26.4

26.6

26.8

0.2 0.25 0.3 0.35 0.4 0.45 0.5

W
E
R

(
%
)

Model weight

 Hierarchical LM
Character LM

Word LM

Figure 6.3: WER values for different values of α using the acoustic score.

Figures 6.2 and 6.3 illustrate the WER on the test set for different values of the
interpolation weight (higher values indicate that the neural language model is given
higher weight). These are computed by re-ranking the full ASR system, and the
ASR system without the native language model score, respectively. We can observe
that character-based model (“Character LM") performs better than the word-based
model (“Word LM") for most values of α when no native language model is used,
suggesting that word-based neural language models trained on smaller datasets
are more likely to overfit the data compared to character-based models. Yet, we
show that when the native language model trained on larger datasets is used, the
interpolation of both models can lead to better estimates than the character-based
models. On the other hand, we can observe that in general our hierarchical model

100 Chapter 6: Character-based Word Generation for NLP

(“Hierarchical LM") obtains better WER values for most ranges of the interpolation
weight compared to other models.

6.3 Character to Character Machine Translation

In Section 4.2 we presented a model to normalize input words, so that variants, such
as cooool are normalized to their standard forms. However, the main source of this
problem is that current MT systems do not use word representations that are not
lexically aware. Thus, effort is needed on normalizing the input prior to translation.
In this section, we shall describe our character-level machine translation model by
applying both the character-based representation model (C2W) and the character-
based softmax model (V2C). This allows the model to inherently to learn translations
for words based on their orthographic properties. That is, we wish to build models
that can represent coool and cool with similar orthographic representations so that
when learning the translation of cool, translations for other orthographic variants
are learnt as well.

Current machine translation models model words as independent units. Thus,
the model is unable to capture lexical cues in the source language and gener-
ate unseen words in the target language. For instance, the phrase pairs moun-
tain→montanha and mountains→montanhas, encoding the translation of the English
words mountain and mountains to the Portuguese words montanha and montanhas,
are essentially independent from each other in conventional models. Thus, the
generalization capabilities of the model are hampered, as it fails to learn the mor-
phological processes governing the two languages. For instance, the model would
not be able to translate rivers to the perfectly regular word rios if it was not seen in
the training data, even if a translation of river to rio is available.

There are clearly benefits in approaching the translation problem from a sub-
lexically oriented view. In morphologically rich languages (e.g. German and
Turkish), segmenting the source language using morphological analysers can sub-
stantially improve translation by improving the coverage of the translation sys-
tem [Dyer, 2007]. As for the target language, morphological variants can be
obtained using models that predict inflected forms [Chahuneau et al., 2013]. In
language pairs where there are systematic mappings between source and target
characters, new translations can be learnt by learning this mapping process. Some
concrete examples include the work in cognate detection [Beinborn et al., 2013]
and transliteration [Kang and Choi, 2000]. Finally, in noisy domains, such as Twitter,

6.3 Character to Character Machine Translation 101

it is common to normalize lexical variants in order to improve the coverage of the
model as we described in Chapter 4.

In this section, we introduce a character-based neural machine translation
model, where the representation and generation of the source and target words are
performed solely at the character-level. However, we still incorporate the knowledge
of words into the model by defining a hierarchical model that generates the source
word representations from characters, maps the word representation into the target
space and then proceeds to generate the target word character-by-character. As the
composition of the words is based on characters, the model can learn morphological
aspects in the source language, allowing it to build representations for unseen
words. On the other hand, the character-based generation model allows the model
to output words that have not been observed. As both composition and generation
of word types is performed at the character level, the model only keeps parameters
for source and target characters, which allows it to learn the translation process
using an extremely small number of parameters. This allows the model to be run in
machines with low memory resources, such as mobile phones.

Previous work [Vilar et al., 2007] shows that a purely character-based system
using phrase-based systems that directly maps the source character sequence to the
target character sequence would significantly underperform a word-based system.
Thus, we propose a hierarchical models that learns to map words from characters,
but the mapping between the source and target languages is performed at the word
level. That is, we not allow direct dependencies between characters in the source
and target character sequences, nor direct dependencies between source words.
This makes our model less computationally expensive, as most operations such
as alignment are only performed on the word level rather than on the character
level. Furthermore, a model using only characters would need substantially larger
amounts of training data to generalize, and in many language pairs or domains,
this data is scarce. Finally, while our model does not hold any direct dependencies
between characters in different words, the words themselves are connected. As the
word representations are generated from characters, such dependencies can still be
learnt in an indirect manner.

6.3.1 Character-based Machine Translation

In this section, we shall describe our character-based machine translation (CMT)
approach. The model translates a source sentence s = s0, . . . , sn, where si is the
source word at index i into the target sentence t = t0, . . . , tm, where ti is the

102 Chapter 6: Character-based Word Generation for NLP

target word at index i. This can be decomposed into a series of predictions, where
the model predicts the next target word tp, given the source sentence s and the
generated target words t0, . . . , tp−1. In this section, we shall describe the inner
workings of our CMT model.

Notation As for notation, we shall represent vectors with lowercase bold letters
(e.g. a), matrixes with uppercase bold letters (e.g. A), scalar values as regular
lowercase letters (e.g. a) and sets as regular uppercased letters (e.g. A). When
referring to whole source and target sentences, we shall use the variables s and t,
respectively. Individual source and target words, shall be referred as si and tj, where
i and j are the indexes of the words within the sentence. Furthermore, we use
variables n and m to refer to the lengths of the source and target sentences. Finally,
we shall define that s0 and t0 represent a special start of sentence token denoted as
SOS and that sn and tm represent a special end of sentence token denoted as EOS.
When we wish to refer to individual characters, we shall use the notation si,u and
tj,v, which refers to the u-th character in the i-th word in the source sentence and to
the v-th character in the j-th word in the target sentence, respectively. We use the
variables x and y as the lengths of the source and target words. We also define that
the first character within a word is always a start of word token denoted as SOW
and the last characters si,x and sj,y are always the end of word character EOW.

Joint Alignment and Translation Model

We shall first describe the word based neural approach we use as baseline, which
is defined in [Bahdanau et al., 2015]. An illustration of the model is shown in
Figure 6.4. In this model, the translation of a new target word tp, given the source
sentence s0, . . . , sn and the current target context t0, . . . , tp−1 is performed in the
following steps.

1. Source Word Projection As source words are a series of strings, they must
be mapped into continuous vectors in order to be processed by the rest of
the model. The most common approach to perform the projection from
words to vectors is to use a lookup table, where each word type is attributed
an independent set of parameters. These correspond to a vector of ds,w
dimensions, where ds,w is the dimensionality of the word vectors, defined as a
hyperparameter. This means that the set of parameters in the source lookup

6.3 Character to Character Machine Translation 103

4-Context via Forward LSTM

3-Target Word Proejction1-Source Word Projection

Where is the library

2-Context via BLSTM

5-Alignment via Attention Model

Donde esta la

* * * * * * *

0.05 0.00 0.05 0.90

6-Target Word Generation

biblioteca
**

Add word
to output

and repeat

SOS

Figure 6.4: Illustration of the joint alignment and translation model. Square boxes
represent vectors of neuron activations.

table Slookup will contain ds,w × S parameters, where S is the number of word
types in the source language.

Thus, this step requires the definition of a single hyper-parameter ds,w and the
parameters Sds,w×S

lookup . As input, it takes a sequence of source words s0, . . . , sn
and outputs the projection of the source words s0, . . . , sn.

As an alternative to word lookup tables, we use the C2W model described in
Chapter 5. That is, similarly to word lookup tables, the C2W model takes a
word string sj as input and produces a vector ds,w-dimensional vector for that
word, but rather than allocating parameters for each individual word type, the
word vector sj is composed by a series of transformation using its character
sequence sj,0, . . . , sj,x.

2. Context via BLSTMs The information contained within each projected source

104 Chapter 6: Character-based Word Generation for NLP

word s0, . . . , sn, does not hold any information regarding their position in
the sentence, which is limitative for many reasons (e.g. determining the
sense of ambiguous words). While there are many ways for encoding this
information, such as convolutional and window-based approaches [Collobert
et al., 2011], a popular approach is to use recurrent neural networks to encode
global context. We use long short memory RNNs (LSTMs), which are similar
to recurrent neural networks in that given a set of input vectors i0, . . . , ik, it
produces a set of states h0, . . . ,hk, where each state hj is the result of the
composition between the current input i and the previous state hj−1. Thus, a
context-aware representation of each source word vector s0, . . . , sn is obtained
by using two LSTMs. We build a forward LSTM by building the state sequence
gf
0 , . . . ,g

f
n using the input sequence s0, . . . , sn. Then, we build a backward

LSTM, by feeding the input sequence in the reverse order sn, . . . , s0 generating
the backward state sequence gb

n, . . . ,g
b
0. Consequently, for each word si, the

forward state gf
i encodes si with its left context, while the backward state gb

i

encodes si in its right context. To encode the global context, we combine the
forward and backward states

bi = Gfg
f
i +Gbg

b
i + gb,

where Gf , Gb and bb are parameters that determine how the states are
combined.

In summary, this module defines the hyper parameters of the BLSTM, which
are essentially the state gstate and cell gcell sizes. The parameters of the BLSTM
are the parameters governing the updates for the cells and states, based on
the input and previous cell and state, which we shall denote as Gblstm for
simplicity. Finally, the combination of the forward and backward states is
parametrized by Gf , Gb and gb. This module takes as input a sequence of
source word vectors s0, . . . , sn and produces a set of context-aware vectors
b0, . . . ,bn.

3. Target Word Projection The projection of target words essentially uses the
same model as the projection of source words, with a different set of parame-
ters. Thus, the hyper parameter dt,w refers to the size of the target language
word vectors, and the lookup table T dt,w×T

lookup , defines the parameters needed to
project the words in the target vocabulary T . As input, it takes a sequence
of target words t0, . . . , tn and outputs the projection of the source words
t0, . . . , tn.

6.3 Character to Character Machine Translation 105

Once again, the C2W model can be used as alternatives to word lookup tables.

4. Context via Forward LSTM Unlike the source sentence s, the target sentence
is not known a priori. Thus, only a forward LSTM is built over the translated
sentence t0, . . . , tp−1, generating states lf0 , . . . , l

f
p−1. Similarly to a language

model, for the prediction of word tp, we use state lfp−1, which encodes the left
context prior to the predictions of tp. This model is simply an LSTM, which is
hyper-parametrized by the state and cell sizes, lstate and lsize, and defines the
update parameters Llstm. As input, the model receives the currently translated
target words t0, . . . , tp−1 and returns the last state of the model encoding the
current target context lfp−1.

5. Alignment via Attention

For each target context lfp−1, the attention model learns the attention that
is attributed to each of the source vectors b0, . . . ,bn. Essentially, the model
computes a score zi for each source word by applying the following function:

zi = s� tanh(Wtl
f
p−1 +Wsbi),

where the source vector bi and target vector lfp−1 are combined into a ds-
dimensional vector using the parameters Ws and Wt, respectively, and a
non-linearity is applied. In our case, we apply a hyperbolic tangent function
tanh. Then, the score is obtained using the vertical vector s. This operation
is performed for each source index obtaining the scores z0, . . . , zn. Then, a
softmax over all scores as is performed as follows:

ai =
exp(zi)∑

j∈[0,n] exp(zj)

This yields a set of attention coefficients a0, . . . , an, with the property that
each coefficient is a value between 0 and 1, and the sum of all coefficients
is 1. In MT, this can be interpreted as a soft alignment for the target word
tp over each of the source words. These attentions are used to obtain a
representation of the source sentence for predicting word wp, which is simply
the weighted average a =

∑
i∈[0,n] aibi. In contrast, alignment in standard

lexical translations are latent variables rather than just a weighting scheme.

106 Chapter 6: Character-based Word Generation for NLP

Thus, the attention model defines the hyper parameter dz, which is the size
of the hidden layer that combines lfp−1 and each bi. Then, the parameters
Ws and Wt project the input vectors into this hidden layer and the vertical
vector s that scores this hidden layer. The attention model takes as input the
target context vector lfp−1 and a set of source vectors b0, . . . ,bn, and returns
a vector a, which is the average of all source vectors b0, . . . ,bn, weighted by
their estimated attentions a0, . . . , an.

6. Target Word Generation In the previous steps, we obtain two vectors that
contain important information for the prediction of the next translated word
tp. The first is the target context vector lfp−1, which encodes the information
of all words preceding tp, and a which contains the information of the most
likely source word/words to generate wp. All that is left is to actually generate
tp. This is accomplished using the V2C model we propose in this chapter, or
using the standard word softmax for a word-based generation model.

Training

During training the whole set of target words t0, . . . , tm are known, so we simply max-
imize the log likelihood of the sequence of words logP (t0|a,SOS), . . . , logP (tm|a, lfm−1).
More formally, we wish to maximize the log likelihood of the training data defined
as:

∑
(s,t)∈D

∑
p∈[0,m]

logP (tq|a, lfm−1)

where D is the set of parallel sentences used as training data.

Using a regular softmax, optimizing such a function simply requires the deriva-
tion of the softmax function and the propagation of the gradient values. Using the
W2C model, we shift the log probability log p(tq | a, lfm−1) to:

logP (tq|a, lfm−1) = logP (tp,q|tk,0, . . . , tk,q−1, a, lfm−1)

Thus, we now wish to maximize the log likelihood that each character is pre-
dicted correctly.

6.3 Character to Character Machine Translation 107

Rather than normalizing over the whole character inventory, we use noise
contrastive estimation [Gutmann and Hyvarinen, 2010], which subsamples a set of
K negative samples at each prediction.

Decoding

Similarly to previous work [Bahdanau et al., 2015], decoding is performed using
beam search. In the word-based approach, we define a stack of translation hypothe-
sis per timestamp A, where each position is a set of translation hypotheses. Starting
with A0 = SOS, at each timestamp j, we condition on each of the previous contexts
t = Aj−1 and add new hypothesis for all words obtained in the softmax function.
For instance, if A1 = I, you, and the vocabulary T = I, you, go, then A2 would
be composed by "I I", "I you", "I go", "you I", "you you", "you go". We set a beam kw,
which defines the number of hypotheses to be expanded prioritizing hypothesis with
the highest sentence probability. The search stops once all translation hypothesis
generate the end of sentence token, or if the timestamp reaches 200. Then, the
highest hypothesis that generated an end of sentence token is returned. If this is
not possible, an empty string is returned.

Whereas the word softmax simply returns a list of candidates for the next word
by iterating through each of the target word types, the V2C model can generate an
infinite number of target words. Thus, in the character-based MT model, a second
decoding process is needed to return the list of top scoring words at each timestamp.
That is, we define a second beam search decoder with beam kc, and perform a
stack-based coding on the character-level for each word prediction. The decoder
defines a stack B, where at each timestamp, a new character is generated for each
hypothesis. Once again, the search stops once all hypothesis reach their final state
by generating the end of word tag EOW. Then, all hypothesis that reach the final
state are returned as a list of translation options. If no hypothesis reaches a final
state, we simply return a special string "NA" as the only option.

6.3.2 Experiments

We report on machine translation experiments in the English-Portuguese language
pair in two domains: parliament data and Twitter data in the English-Portuguese
language pair.

108 Chapter 6: Character-based Word Generation for NLP

Data

The parliament data was drawn from Europarl [Koehn, 2005], where we have
drawn 600k sentence pairs for training, 500 sentence pairs for development and
500 sentence pairs for testing. For the Twitter data, we manually translated the
dataset provided in [Gimpel et al., 2011] from English into Portuguese. We kept the
splits used in their Part-of-speech-tagging experiments (1k training sentences, 327
development sentences and 500 sentences).

Setup

Both languages were tokenized with the tokenizer provided in [Owoputi et al.,
2013] as it has rules for Twitter specific artifacts, such as hashtags. Training is
always performed using both the Europarl and Twitter datasets. In total, there
are 248 character types and 64.976 word types in the English training data, and
257 character types and 97.964 word types in the Portuguese training data. Both
word-based and character-based MT neural systems are trained using mini-batch
gradient descent with mini-batches of 40 sentence pairs. Updates are performed
with Adagrad [Duchi et al., 2011].

As for the hyper parameters of the model, all LSTM states and cells are set to
150 dimensions. Word projection dimensions for the source and target languages
ds,w and dt,w were set to 50. Similarly, the character projection dimensions were
also set to ds,c and dt,c. For the alignment model, dz was set to 100. Finally, the
beam search at the work level kw was set to 5, and the beam size for the character
level search kc was set to 5. Training is performed until there is no BLEU [Papineni
et al., 2002] improvement on the tuning set for 5 epochs, and the epoch with the
highest score is used.

As for decoding, we used a word-beam and a character-beam of 20. That is, at
each timestamp the top 20 hypothesis are chosen.

We also use the Moses phrase-based MT system with standard features [Koehn
et al., 2003]. For reordering, we use the MSD reordering model [Axelrod et al.,
2005]. As the language model, we use a 5-gram model with Kneser-Ney smoothing.
The weights were tuned using MERT [Och, 2003].

We did not run each experiment multiple times as each experiment using the
character-based models required 2 months of training with 24 CPUS.

6.3 Character to Character Machine Translation 109

Europarl Twitter
DEV TEST DEV TEST

Word-to-Word NN 19.21 19.39 5.94 6.72
Char-To-Char NN 19.30 19.57 6.69 7.23

Moses 20.49 20.80 6.51 7.11

Table 6.2: BLEU scores for different systems.

Results

BLEU results on different datasets are shown in Table 6.2. We can observe that
the character-based model can obtain BLEU scores that are slightly higher than the
word-based models.

One of the main factors for this improvement is due to the fact that neural
network MT approaches tend struggle with the translation of OOV words. A popular
approach used to address these problems is to simply transfer the OOV word form
into the target sentence. As most OOV words tend to be numbers and named
entities, these are generally not translated at across most languages. For instance,
in Twitter, all the unknown hashtags and at mentions are not translated correctly
by the word-based neural translation system, as the word softmax does not allow
unknown words to be generated. On the other hand, character-based models can
learn to simply transpose numbers, hashtags, web links and most named entities. In
comparison to the phrase-based system, we can observe that our results are lower
in the Europarl dataset, as most of the unknown words are handled correctly by
transferring them directly, which is part of the decoding process in Moses. Yet,
we can observe slight improvements in the Twitter dataset. This is because terms,
such as strongg, are generally treated as unknown words in Moses, and translated
as they are, while in the character-based system, this word has a similar vector
representation to the standard word strong, which allows the model to translate this
word correctly.

The number of parameters and computational speed of each model is represented
in Figure 6.3. As for the number of parameters, we can observe that even though
the number of parameters in alignment model (steps 2 and 5) are the same, the
number of parameters needed for the word representation for the source and
target languages differs radically. As we are using approximately half million
sentence pairs, the large number of word types (64.976 English words and 97.964
Portuguese words), requiring 50 parameters each will lead to a word lookup table

110 Chapter 6: Character-based Word Generation for NLP

Parameters Parameters Parameters
(Word Representation) (Word Generation) (Alignment) Word/Sec

Word-to-Word NN 8M 19M 500k 113
Char-To-Char NN 800k 350k 500k 41

Table 6.3: Number of parameters and translation speed for different systems.

of approximately 8 million parameters. Similarly, for the word softmax, each of
the 97.964 Portuguese word types will require 200 parameters. Thus, it would
require 19 million parameters to implement this softmax. On the other hand, the
C2W and V2C models require far less parameters as only a character lookup table
is required. In this case, the C2W model, needs to model 248 English and 257
Portuguese characters with 50 parameters each, leading to 25k parameters. Then,
the compositional model (2 LSTMs) require approximately 375k parameters for
each language. Finally, the output word vector requires a 300×50 projection matrix.
These amount to approximately, 800k parameters. Similarly, for the V2C model,
only a character based lookup table in the target language is used, requiring 13k
parameters. Then, the LSTM used to encode target character context requires 337k
parameters to encode. This leads to a total of 350k parameters. Thus, in total, the
word-based model requires 17.5M parameters while the character-based model only
requires 1.65M parameters, which is only 10% of the word-based model.

In terms of computational speed, we can observe that the word-based model
performs significantly slower than the character-based model, which replaces the
word softmax with the character softmax. The difference is not as wide as in the
language modeling experiments in Section 6.2.1, as a character-level decoding
process is required to produce each word.

6.4 Summary

We presented a character-based alternative to predict and generate words, by pre-
dicting the characters of the word sequentially. As an alternative to a word softmax,
it allows prediction and decoding to be performed more efficiently and with less
parameters. Furthermore, it can generate unseen words in the training set. In this
sense, our model behaves similarly to that found in [Sennrich et al., 2015], which
defines a translation model for rare words using characters or subword units. We
presented a character-based machine translation model that represents and gener-

6.4 Summary 111

ates sentences at the character level. Thus, our model can learn representations
that take into transformation at the subword level during translation. This allows
our model to excel at domains such as Twitter, where lexical variants are commonly
used, as well as in morphological rich languages, where words are composed from
multiple subunits. Experiments on the English-Portuguese language pair, in both
parliament and Twitter data indicate that our model can perform better than its a
word-based counterpart with only a fraction parameters. Furthermore, our work
has been applied to dependency parsing, successfully in [Ballesteros et al., 2015].

Chapter 7

Conclusion and Future Work

In this chapter, we summarize our contributions and highlight some open problems,
suggesting possible new directions for future research.

In this thesis, we address the problem of modeling language with considerable
lexical variation, such as found in Twitter and Sina Weibo, focusing in particular
on machine translation but also looking at applications in several other related
subtasks, such as language modeling. For considerable improvements to be obtained
in any task, two conditions must be met.

Firstly, large amounts of labelled data must be available as more data is crucial
for obtaining better results. In this regard, while much parallel data can be obtained
in machine translation, these are generally obtained from edited sources, such as
Web documents [Resnik and Smith, 2003]. As the language in microblogs differs
substantially from formal text, these are not optimal candidates for learning the
translation process. Yet, most existing work that can obtain a considerable amount
of parallel data [Resnik and Smith, 2003] does so by identifying parallel documents,
which is not applicable for microblogs, as tweets tend to be relatively small and the
concept of parallel web pages does not translate into microblogs. Instead, users
tend to post self-translated messages, where users post their message in multiple
languages in the same post. We show that existing automatic parallel data methods
can be augmented to work in this new environment in Chapter 3, and that arbitrary
large amounts of in-domain parallel data can be obtained in these domains. While
our work in this area benefits existing algorithms for parallel data extraction, we
believe that our main contribution is to show that much effort is put into translating
microblog posts, which arise from the natural need of users to translate their
messages for a broader audience. We show that not only substantial improvements

113

114 Chapter 7: Conclusion and Future Work

in machine translation can be obtained using these methods in Chapter 3, but also
that other tasks, such as normalization, can benefit from such data in Chapter 4.2.
Possible directions for future work include the improvement of the techniques used
for parallel data retrieval in a self translated message setup and the development of
more applications of the parallel data that have been extracted.

Secondly, we present a model that can better exploit the training data to gener-
alize to unseen samples. As most machine translation systems are not sensitive to
lexical traits in words. This leads to sparsity problems in lexically rich domains, such
as microblogs. In this regard, we propose character-based word representations
that allow words to be composed solely from characters. In Chapter 5, we show
that these representations can be beneficial to many NLP applications, as they allow
lexical aspects in words, such as morphology, to be learnt automatically. Further-
more, only characters are modelled, which allows models to be extremely compact
and scale better to the large amounts of data that can be found in microblogs. Then,
in Chapter 6, we describe an alternative to the word softmax using characters and
proceed to describe a character-based machine translation system, by reading and
generating words at the character level. This allows us to build models that better
generalize to the lexically variable language used in microblogs, with a much smaller
number of parameters. Our main contribution is to show that it is possible to find a
much more compact representation for words both at reading and generation time.
It should be clear that while Twitter can contain millions of different word types
in English, most of the words are simply reformulations of existing words (go vs
gooooo), and as such, given that we know the meaning of go learning gooooo should
not be expensive as we only need to learn that gooooo is a lexical variant of go.
However, as existing models operate on the word level, these models are forced to
memorize each of the different variants as separate units. This is not only memory
inefficient due to the large number of parameters originated from modeling words
types separately, but it also limits the generalization ability of the model, as it is
simply memorizing words, and not learning the process these words are generated.
For instance, if the word gooo has not been seen, our model would not be translate
it, even if other variations of go have been seen.

The main contributions of this these are as follows:

• Parallel Data Extraction from Self-Contained Messages - We present a
method for extracting parallel data within the same document. Applied to
microblogs, this method allows us to extract a large amount of translations
that naturally occur in this media.

115

• Character-based Word Representations - We propose an alternative to word
lookup tables, the C2W model, which considers the orthographic information
within words, allowing it to excel in morphologically rich languages. It also
builds a more compact representation of words making the neural networks
built using our representations more compact. Furthermore, as the model is
composing word from characters, the lexically oriented aspects in words, such
as morphology, can be learnt automatically.

• Character-based Word Generation - We also generate words at the character
level rather than at the word level. This allows the model to generate unseen
words in the training set. Combined with the C2W model, we show that the
MT problem can be modelled as an open vocabulary problem.

The work in this thesis only provides a first look into many problems underlying
NLP and MT. In many cases, the ideas we propose, while novel, make very simplistic
assumptions about the problem we address. Some examples include, the simple
alignment model (IBM Model 1) and language detection models used for segmenting
tweets into parallel segments in Chapter 3, and the normalization method using
off-the-shelf MT systems in Chapter 4.2. Even the character-based models used to
represent and generate words simply define an encoder and decoder using LSTMs,
which suggest that better models can be introduced in the future. We now list some
possible future directions that could be considered for the work defined in this
thesis.

• Improved models for parallel data detection in monolingual documents
- The alignment model presented in chapter 3 can be extended to be used
to extract parallel data from any documents. For instance, we can use on
wikipedia documents to find examples of parenthetical translations [Lin et al.,
2008]. However, our model uses IBM model 1 to compute the alignment
scores. The advantage of this model is that the decisions made to align
each target word to each source word is local each target word, making
it easy to use dynamic programming to reuse Viterbi alignments computed
from different segmentations of each document. However, IBM Model 1 also
ignores distorting, which is problematic when reordering very long documents,
each target word is likely to find some source word to align to, especially
for function words. Distortion models, such as HMM models [Vogel et al.,
1996] and IBM Model 2 and 4, address this problem, as they discourage
alignments that are coherent. For instance, it is unlikely that the first and last
words in the target sentences are aligned to the first and seconds in the source

116 Chapter 7: Conclusion and Future Work

language. This intuition is captured by distortion models, which in general
prefer alignments between words that are positioned closely in both languages.
A key challenge in these approaches would adapting these algorithms to scale
with the number of segmentations for each documents. HMM-based models
are the best candidates, as the decision making at each target word is still
local (in this case to the respective target word and the previous one). Thus,
Viterbi alignments can be reused for faster computation.

• Further analysis of the translation processes in microblogs - While we
show in chapter 3, that improvements can be obtained by using the crawled
parallel data, and some examples of lexical gaps that can be filled using these
datasets. A more detailed analysis of the data that can be obtained would
proof useful to evaluate the possible contribution of the dataset and extract
method. For instance, as newer terms arise (e.g. celebraties names or alias),
can we obtain translations of these entities in microblogs prior to finding these
translation in other domains, such as webpages, Wikipedia or knowledge
bases. Answering such open questions would allow a better overview of the
value of microblogs in terms of providing parallel data to machine translation
systems.

• Combining word lookups with character-based models - The main advan-
tage of word lookup tables compared to the C2W model presented in chapter 5
is the speed of the lookup as it simply requires a table lookup. Thus, train-
ing and testing the C2W model is significantly slower than the same neural
network using a word lookup table. Thus, it is worth extending the model in
order to obtain the advantages of the C2W model in terms of lexical aware-
ness and compactness, while perserving the computational speed of the word
lookup tables. A simple approach would use a word lookup table for the
most frequent word units, and only use the C2W model for less frequent
words. As most of the word tokens in natural language restrict to a very small
inventory words, keeping this in a word lookup table would dramatically
increase the performance of the system. Less frequent words, such as named
entities, that are much more numerous would be stored in character-level
basis and composed, which yields a much more compact model. Furthermore,
as these tend to occur only once or twice, the character-based composition
approach would allow these terms to generalize better, while this is not a
problem for the more frequent word types. Furthermore, we can extend this
model to use subword units rather than the character sequence. This allows
different segmentations of words to be used for faster computation and better

117

generalization. For instance, morphological segmentors can be used to split
words into morphemes rather than into characters for composition.

• Pre-training the C2W model - It has been shown that pre-training word
lookup tables in raw text using objective functions to maximize context pre-
diction [Mikolov et al., 2013] can drastically improve the quality of the word
representations. The same can be applied to the C2W model, but it still
remains an open question whether the model is expressive enough to capture
all the semantic and syntactic information within large vocabularies.

• Interpretability of the C2W model We do not provide a detailed interpre-
tation of mechanisms used in the C2W model to learn representations of
words (e.g. is it learning subword units as prefixes or simply memorizing
certain parts of words). This is because, interpreting a neural network model
composed from BLSTMs is not trivial in itself. Thus, finding evidence on the
approach used by the model to capture syntactic and semantic remains a
future direction of work, as it would allow us to interpret whether the model
is capturing the process words are formed. This information would permit us
come up with better ways to learn word representations. Finally, if a process
can be devised to induce morphemes from the model, these could be used to
automatically segment morphologically rich languages, similar to the work
in [Poon et al., 2009].

• Comparison of different words representation models from characters
- Other approaches have been proposed to generate word representations
from characters using bag-of-word [Chen et al., 2015] and convolutional
approaches [Kim et al., 2015].

• Subword V2C model - Similarly to the C2W model, words can be generated
at the subword level rather than at the character level. Thus, morphological
segmenters can be used in the training set in order to adapt the V2C model
to generate words from morphemes. In low resource languages, such an
approach would be useful to add a bias towards valid segmentations of words
in that language.

Bibliography

S. Afonso, E. Bick, R. Haber, and D. Santos. “Floresta sintá(c)tica”: a treebank
for Portuguese. In Proceedings of the 3rd International Conference on Language
Resources and Evaluation (LREC), 2002. 84

M. Ali, B. Shaik, D. Rybach, S. Hahn, R. Schlüter, and H. Ney. Hierarchical hybrid
language models for open vocabulary continuous speech recognition using wfst,
2012. 94

R. Astudillo, S. Amir, W. Ling, B. Martins, M. Silva, and I. Trancoso. Inesc-id: A
regression model for large scale twitter sentiment lexicon induction. In Proceed-
ings of the 9th International Workshop on Semantic Evaluation (SemEval 2015).
Association for Computational Linguistics, 2015a. 7

R. Astudillo, S. Amir, W. Ling, B. Martins, M. Silva, and I. Trancoso. Inesc-id:
Sentiment analysis without hand-coded features or liguistic resources using em-
bedding subspaces. In Proceedings of the 9th International Workshop on Semantic
Evaluation (SemEval 2015). Association for Computational Linguistics, 2015b. 7

N. B. Atalay, K. Oflazer, and B. Say. The annotation process in the turkish treebank.
In In Proceedings of the 4th International Workshop on Linguistically Interpreted Cor-
pora (LINC), Budapest, Hungary, 2003. Association for Computational Linguistics.
84

A. Aw, M. Zhang, J. Xiao, and J. Su. A phrase-based statistical model for SMS
text normalization. In Proceedings of the ACL, COLING-ACL ’06, pages 33–40,
Stroudsburg, PA, USA, 2006. Association for Computational Linguistics. URL
http://dl.acm.org/citation.cfm?id=1273073.1273078. 14

A. Axelrod, R. B. Mayne, C. Callison-burch, M. Osborne, and D. Talbot. Edinburgh
system description for the 2005 iwslt speech translation evaluation. In In Proc.

119

http://dl.acm.org/citation.cfm?id=1273073.1273078

120 Bibliography

International Workshop on Spoken Language Translation (IWSLT, 2005. 48, 72,
108

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning
to align and translate. CoRR, abs/1409.0473, 2015. URL http://arxiv.org/
abs/1409.0473. 11, 91, 102, 107

M. Ballesteros, C. Dyer, and N. A. Smith. Improved transition-based parsing by
modeling characters instead of words with lstms. In Proc. EMNLP, 2015. 6, 111

C. Bannard and C. Callison-Burch. Paraphrasing with bilingual parallel corpora. In
Proceedings of the 43rd Annual Meeting of the Association for Computational Linguis-
tics (ACL’05), pages 597–604, Ann Arbor, Michigan, June 2005. Association for
Computational Linguistics. URL http://www.aclweb.org/anthology/P05-1074.
3, 59

M. Bansal, C. Quirk, and R. C. Moore. Gappy phrasal alignment by agreement.
In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies - Volume 1, HLT ’11, pages 1308–1317,
Stroudsburg, PA, USA, 2011. Association for Computational Linguistics. ISBN 978-
1-932432-87-9. URL http://dl.acm.org/citation.cfm?id=2002472.2002635.
62

R. Barzilay and L. Lee. Learning to paraphrase: an unsupervised approach using
multiple-sequence alignment. In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computational Linguistics on Human
Language Technology - Volume 1, NAACL ’03, pages 16–23, Stroudsburg, PA, USA,
2003. Association for Computational Linguistics. doi: 10.3115/1073445.1073448.
URL http://dx.doi.org/10.3115/1073445.1073448. 3

L. Beinborn, T. Zesch, and I. Gurevych. Cognate production using character-based
machine translation. In Proceedings of the Sixth International Joint Conference on
Natural Language Processing, pages 883–891, 2013. 100

Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic language
model. J. Mach. Learn. Res., 3:1137–1155, Mar. 2003. ISSN 1532-4435. URL
http://dl.acm.org/citation.cfm?id=944919.944966. 93

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J. Mach. Learn. Res.,
3:993–1022, Mar. 2003. ISSN 1532-4435. URL http://dl.acm.org/citation.
cfm?id=944919.944937. 46

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://www.aclweb.org/anthology/P05-1074
http://dl.acm.org/citation.cfm?id=2002472.2002635
http://dx.doi.org/10.3115/1073445.1073448
http://dl.acm.org/citation.cfm?id=944919.944966
http://dl.acm.org/citation.cfm?id=944919.944937
http://dl.acm.org/citation.cfm?id=944919.944937

121

J. A. Botha and P. Blunsom. Compositional Morphology for Word Representations
and Language Modelling. In Proceedings of the 31st International Conference on
Machine Learning (ICML), Beijing, China, jun 2014. 78

S. Brants, S. Dipper, S. Hansen, W. Lezius, and G. Smith. The tiger treebank, 2002.
84

F. Braune and A. Fraser. Improved unsupervised sentence alignment for symmetrical
and asymmetrical parallel corpora. In Proceedings of the 23rd International
Conference on Computational Linguistics: Posters, COLING ’10, pages 81–89,
Stroudsburg, PA, USA, 2010. Association for Computational Linguistics. URL
http://dl.acm.org/citation.cfm?id=1944566.1944576. 13

P. F. Brown, P. V. Desouza, R. L. Mercer, V. J. D. Pietra, and J. C. Lai. Class-based
n-gram models of natural language. Computational linguistics, 18(4):467–479,
1992. 69

P. F. Brown, V. J. D. Pietra, S. A. D. Pietra, and R. L. Mercer. The mathematics
of statistical machine translation: parameter estimation. Comput. Linguist., 19:
263–311, June 1993. ISSN 0891-2017. URL http://portal.acm.org/citation.
cfm?id=972470.972474. 12, 20, 64

V. Chahuneau, E. Schlinger, N. A. Smith, and C. Dyer. Translating into morphologi-
cally rich languages with synthetic phrases. In Proc. of EMNLP, 2013. 100

D. Chen and C. D. Manning. A fast and accurate dependency parser using neural
networks. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 740–750, 2014. 16, 76

X. Chen, L. Xu, Z. Liu, M. Sun, and H. Luan. Joint learning of character and word
embeddings. 2015. 117

D. Chiang. A hierarchical phrase-based model for statistical machine transla-
tion. In Proceedings of the 43rd Annual Meeting on Association for Computa-
tional Linguistics, ACL ’05, pages 263–270, Stroudsburg, PA, USA, 2005. Asso-
ciation for Computational Linguistics. doi: 10.3115/1219840.1219873. URL
http://dx.doi.org/10.3115/1219840.1219873. 11

K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio. Learning phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of the 2014 Conference on

http://dl.acm.org/citation.cfm?id=1944566.1944576
http://portal.acm.org/citation.cfm?id=972470.972474
http://portal.acm.org/citation.cfm?id=972470.972474
http://dx.doi.org/10.3115/1219840.1219873

122 Bibliography

Empirical Methods in Natural Language Processing (EMNLP), pages 1724–1734,
Doha, Qatar, October 2014. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/D14-1179. 80

P. Clarkson and T. Robinson. Towards improved language model evaluation mea-
sures. In EUROSPEECH. ISCA, 1999. 95

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. Natural
language processing (almost) from scratch. The Journal of Machine Learning
Research, 12:2493–2537, 2011. 3, 16, 76, 104

F. de Saussure. Course in General Linguistics. 1916. 78

M. Denkowski and A. Lavie. Meteor 1.3: Automatic metric for reliable opti-
mization and evaluation of machine translation systems. In Proceedings of
the Sixth Workshop on Statistical Machine Translation, pages 85–91, Edin-
burgh, Scotland, July 2011. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/W11-2107. 62

Q. Dou and K. Knight. Large scale decipherment for out-of-domain machine transla-
tion. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, EMNLP-CoNLL
’12, pages 266–275, Stroudsburg, PA, USA, 2012. Association for Computational
Linguistics. URL http://dl.acm.org/citation.cfm?id=2390948.2390982. 11

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res., 12:2121–2159, July 2011. ISSN
1532-4435. URL http://dl.acm.org/citation.cfm?id=1953048.2021068. 97,
108

C. Dyer, S. Muresan, and P. Resnik. Generalizing word lattice translation. In
Proceedings of HLT-ACL, 2008. 69

C. Dyer, V. Chahuneau, and N. A. Smith. A simple, fast, and effective reparameteri-
zation of ibm model 2. In Proceedings of NAACL-HLT, pages 644–648, 2013. 38,
64

C. Dyer, M. Ballesteros, W. Ling, A. Matthews, and N. A. Smith. Transition-based
dependeny parsing with stack long short-term memory. In Proceedings of the 53rd

Annual Meeting of the Association of Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing of the Asian Federation of
Natural Language Processing (ACL-IJCNLP 2015). ACL, 2015. 76

http://www.aclweb.org/anthology/D14-1179
http://www.aclweb.org/anthology/W11-2107
http://dl.acm.org/citation.cfm?id=2390948.2390982
http://dl.acm.org/citation.cfm?id=1953048.2021068

123

C. J. Dyer. The "noisier channel": Translation from morphologically complex lan-
guages. In Proceedings of the Second Workshop on Statistical Machine Translation,
pages 207–211, Prague, Czech Republic, June 2007. Association for Compu-
tational Linguistics. URL http://www.aclweb.org/anthology/W/W07/W07-0729.
100

G. Foster and R. Kuhn. Mixture-model adaptation for smt. In Proceedings of the
Second Workshop on Statistical Machine Translation, StatMT ’07, pages 128–135,
Stroudsburg, PA, USA, 2007. Association for Computational Linguistics. URL
http://dl.acm.org/citation.cfm?id=1626355.1626372. 1

K. Fukushima, K. Taura, and T. Chikayama. A fast and accurate method for detecting
English-Japanese parallel texts. In Proceedings of the Workshop on Multilingual
Language Resources and Interoperability, pages 60–67, Sydney, Australia, July
2006. Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/W/W06/W06-1008. 2, 11

W. A. Gale and K. W. Church. A program for aligning sentences in bilingual
corpora. In Proceedings of the 29th Annual Meeting on Association for Com-
putational Linguistics, ACL ’91, pages 177–184, Stroudsburg, PA, USA, 1991.
Association for Computational Linguistics. doi: 10.3115/981344.981367. URL
http://dx.doi.org/10.3115/981344.981367. 36

J. Ganitkevitch, B. VanDurme, and C. Callison-Burch. PPDB: The paraphrase
database. In Proceedings of the 2013 Conference of the North American Chapter
of the Association for Computational Linguistics (NAACL 2013), Atlanta, Georgia,
June 2013. Association for Computational Linguistics. URL http://cs.jhu.edu/
~ccb/publications/ppdb.pdf. 3

K. Gimpel, N. Schneider, B. O’Connor, D. Das, D. Mills, J. Eisenstein, M. Heilman,
D. Yogatama, J. Flanigan, and N. A. Smith. Part-of-speech tagging for twitter:
annotation, features, and experiments. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies:
short papers - Volume 2, HLT ’11, pages 42–47, Stroudsburg, PA, USA, 2011.
Association for Computational Linguistics. ISBN 978-1-932432-88-6. URL http:
//dl.acm.org/citation.cfm?id=2002736.2002747. iii, v, 108

S. Gouws, D. Hovy, and D. Metzler. Unsupervised mining of lexical variants from
noisy text. In Proceedings of the First Workshop on Unsupervised Learning in
NLP, EMNLP ’11, pages 82–90, Stroudsburg, PA, USA, 2011. Association for

http://www.aclweb.org/anthology/W/W07/W07-0729
http://dl.acm.org/citation.cfm?id=1626355.1626372
http://www.aclweb.org/anthology/W/W06/W06-1008
http://www.aclweb.org/anthology/W/W06/W06-1008
http://dx.doi.org/10.3115/981344.981367
http://cs.jhu.edu/~ccb/publications/ppdb.pdf
http://cs.jhu.edu/~ccb/publications/ppdb.pdf
http://dl.acm.org/citation.cfm?id=2002736.2002747
http://dl.acm.org/citation.cfm?id=2002736.2002747

124 Bibliography

Computational Linguistics. ISBN 978-1-937284-13-8. URL http://dl.acm.org/
citation.cfm?id=2140458.2140468. 14

A. Graves and J. Schmidhuber. Framewise phoneme classification with bidirectional
lstm and other neural network architectures. Neural Networks, 18(5-6), 2005. 78

M. Gutmann and A. Hyvarinen. Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. 2010. URL http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.161.7404. 92, 107

B. Haddow. Applying pairwise ranked optimisation to improve the interpolation of
translation models. In Proceedings of NAACL, 2013. URL mixture.pdf. 1

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten.
The weka data mining software: An update. SIGKDD Explor. Newsl., 11(1):
10–18, Nov. 2009. ISSN 1931-0145. doi: 10.1145/1656274.1656278. URL
http://doi.acm.org/10.1145/1656274.1656278. 44

B. Han and T. Baldwin. Lexical normalisation of short text messages: makn sens
a #twitter. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies - Volume 1, HLT ’11,
pages 368–378, Stroudsburg, PA, USA, 2011. Association for Computational
Linguistics. ISBN 978-1-932432-87-9. URL http://dl.acm.org/citation.cfm?
id=2002472.2002520. iii, v, 1, 3, 14

B. Han, P. Cook, and T. Baldwin. Automatically constructing a normalisation dic-
tionary for microblogs. In Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language
Learning, EMNLP-CoNLL ’12, pages 421–432, Stroudsburg, PA, USA, 2012. Asso-
ciation for Computational Linguistics. URL http://dl.acm.org/citation.cfm?
id=2390948.2391000. 3, 14, 15, 69

B. Han, P. Cook, and T. Baldwin. Lexical normalization for social media text. ACM
Transactions on Intelligent Systems and Technology (TIST), 4(1):5, 2013. 3, 14

C. Hawn. Take two aspirin and tweet me in the morning: how twitter, facebook,
and other social media are reshaping health care. Health affairs, 28(2):361–368,
2009. iii, v, 1

L. Jehl, F. Hiebel, and S. Riezler. Twitter translation using translation-based cross-
lingual retrieval. In Proceedings of the Seventh Workshop on Statistical Machine

http://dl.acm.org/citation.cfm?id=2140458.2140468
http://dl.acm.org/citation.cfm?id=2140458.2140468
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.161.7404
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.161.7404
mixture.pdf
http://doi.acm.org/10.1145/1656274.1656278
http://dl.acm.org/citation.cfm?id=2002472.2002520
http://dl.acm.org/citation.cfm?id=2002472.2002520
http://dl.acm.org/citation.cfm?id=2390948.2391000
http://dl.acm.org/citation.cfm?id=2390948.2391000

125

Translation, pages 410–421, Montréal, Canada, June 2012. Association for Com-
putational Linguistics. 13

J. H. Johnson and J. Martin. Improving translation quality by discarding most of
the phrasetable. In In Proceedings of EMNLP-CoNLL’07, pages 967–975, 2007. 38

N. Kalchbrenner and P. Blunsom. Recurrent continuous translation models. In
EMNLP, pages 1700–1709, 2013. 16, 76, 91

B.-J. Kang and K.-S. Choi. Automatic transliteration and back-transliteration by
decision tree learning. In LREC. Citeseer, 2000. 100

M. Kaufmann. Syntactic Normalization of Twitter Messages. studies, 2, 2010. 3, 14

Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush. Character-aware neural language
models. CoRR, abs/1508.06615, 2015. URL http://arxiv.org/abs/1508.06615.
117

P. Koehn. Europarl: A Parallel Corpus for Statistical Machine Translation. In Con-
ference Proceedings: the tenth Machine Translation Summit, pages 79–86, Phuket,
Thailand, 2005. AAMT, AAMT. URL http://mt-archive.info/MTS-2005-Koehn.
pdf. 96, 108

P. Koehn and J. Schroeder. Experiments in domain adaptation for statistical ma-
chine translation. In Proceedings of the Second Workshop on Statistical Machine
Translation, StatMT ’07, pages 224–227, Stroudsburg, PA, USA, 2007. Associa-
tion for Computational Linguistics. URL http://dl.acm.org/citation.cfm?id=
1626355.1626388. 1

P. Koehn, F. J. Och, and D. Marcu. Statistical phrase-based translation. In Pro-
ceedings of the 2003 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics on Human Language Technology - Volume 1,
NAACL ’03, pages 48–54, Morristown, NJ, USA, 2003. Association for Compu-
tational Linguistics. doi: http://dx.doi.org/10.3115/1073445.1073462. URL
http://dx.doi.org/10.3115/1073445.1073462. 48, 71, 108

P. Koehn, A. Axelrod, A. B. Mayne, C. Callison-Burch, M. Osborne, D. Talbot, and
M. White. Edinburgh system description for the 2005 nist mt evaluation. In
Proceedings of Machine Translation Evaluation Workshop 2005, 2005. 68

http://arxiv.org/abs/1508.06615
http://mt-archive.info/MTS-2005-Koehn.pdf
http://mt-archive.info/MTS-2005-Koehn.pdf
http://dl.acm.org/citation.cfm?id=1626355.1626388
http://dl.acm.org/citation.cfm?id=1626355.1626388
http://dx.doi.org/10.3115/1073445.1073462

126 Bibliography

P. Koehn, H. Hoang, A. Birch, C. Callison-burch, R. Zens, R. Aachen, A. Constantin,
M. Federico, N. Bertoldi, C. Dyer, B. Cowan, W. Shen, C. Moran, and O. Bojar.
Moses: Open source toolkit for statistical machine translation. In Proceedings of the
45th Annual Meeting of the Association for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions, pages 177–180, Prague, Czech
Republic, June 2007. Association for Computational Linguistics. 11, 15, 67, 75

M. Kozielski, D. Rybach, S. Hahn, R. Schl
"uter, and H. Ney. Open vocabulary handwriting recognition using combined
word-level and character-level language models. In IEEE International Conference
on Acoustics, Speech, and Signal Processing, pages 8257–8261, Vancouver, Canada,
May 2013. IBM Research Spoken Language Processing Student Travel Grant
Award. 93

M. Kozielski, M. Matysiak, P. Doetsch, R. Schlueter, and H. Ney. Open-lexicon
language modeling combining word and character levels. International Conference
on Frontiers in Handwriting Recognition, pages 343–348, Sept. 2014. 93

H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or a news
media? In Proceedings of the 19th international conference on World wide web,
pages 591–600. ACM, 2010. iii, v, 1

M. Larson. Sub-word-based language models for speech recognition: Implications
for spoken document retrieval. 93

S. Laviosa. Core patterns of lexical use in a comparable corpus of English lexical
prose. Meta, 43(4):557–570, 1998. 59, 60

B. Li and J. Liu. Mining Chinese-English parallel corpora from the web. In Pro-
ceedings of the 3rd International Joint Conference on Natural Language Processing
(IJCNLP), 2008. 2, 11

J. Li, D. Jurafsky, and E. H. Hovy. When are tree structures necessary for deep
learning of representations? CoRR, abs/1503.00185, 2015. URL http://arxiv.
org/abs/1503.00185. 80

D. Lin, S. Zhao, B. Van Durme, and M. Paşca. Mining parenthetical translations from
the web by word alignment. In Proceedings of ACL-08: HLT, pages 994–1002,
Columbus, Ohio, June 2008. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/P/P08/P08-1113. 13, 115

http://arxiv.org/abs/1503.00185
http://arxiv.org/abs/1503.00185
http://www.aclweb.org/anthology/P/P08/P08-1113

127

W. Ling, T. Luís, J. Graça, L. Coheur, and I. Trancoso. Towards a general and
extensible phrase-extraction algorithm. In IWSLT ’10: International Workshop on
Spoken Language Translation, pages 313–320, Paris, France, 2010. 64, 76

W. Ling, P. Calado, B. Martins, I. Trancoso, and A. Black. Named entity translation
using anchor texts. In International Workshop on Spoken Language Translation
(IWSLT), San Francisco, USA, December 2011a. 7

W. Ling, J. a. Graça, D. M. d. Matos, I. Trancoso, and A. Black. Discriminative
phrase-based lexicalized reordering models using weighted reordering graphs.
In Proceedings of the 5th International Joint Conference on Natural Language Pro-
cessing, Chiang Mai, Thailand, November 2011b. Association for Computational
Linguistics. 7

W. Ling, T. Luís, J. a. Graça, L. Coheur, and I. Trancoso. Reordering modeling
using weighted alignment matrices. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies:
short papers - Volume 2, HLT ’11, pages 450–454, Stroudsburg, PA, USA, 2011c.
Association for Computational Linguistics. ISBN 978-1-932432-88-6. URL http:
//dl.acm.org/citation.cfm?id=2002736.2002827. 7

W. Ling, I. Trancoso, and R. Prada. An agent based competitive translation game
for second language learning. August 2011d. 7

W. Ling, J. a. Graça, I. Trancoso, and A. Black. Entropy-based pruning for phrase-
based machine translation. In Proceedings of the 2012 Joint Conference on Empiri-
cal Methods in Natural Language Processing and Computational Natural Language
Learning, pages 962–971, Jeju Island, Korea, July 2012a. Association for Compu-
tational Linguistics. URL http://www.aclweb.org/anthology/D/D12/D12-1088.
7, 76

W. Ling, N. Tomeh, G. Xiang, A. Black, and I. Trancoso. Improving relative-entropy
pruning using significance. In Proceedings of the 25rd International Conference on
Computational Linguistics (Coling 2012), Mumbai, India, December 2012b. Coling
2012 Organizing Committee. 7

W. Ling, C. Dyer, A. W. Black, and I. Trancoso. Paraphrasing 4 microblog normaliza-
tion. In Proceedings of the 2013 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 73–84, Seattle, Washington, USA, October 2013a. Associ-
ation for Computational Linguistics. URL http://www.aclweb.org/anthology/
D13-1008. 5, 59, 76

http://dl.acm.org/citation.cfm?id=2002736.2002827
http://dl.acm.org/citation.cfm?id=2002736.2002827
http://www.aclweb.org/anthology/D/D12/D12-1088
http://www.aclweb.org/anthology/D13-1008
http://www.aclweb.org/anthology/D13-1008

128 Bibliography

W. Ling, G. Xiang, C. Dyer, A. Black, and I. Trancoso. Microblogs as parallel
corpora. In Proceedings of the 51st Annual Meeting on Association for Computational
Linguistics, ACL ’13. Association for Computational Linguistics, 2013b. 4, 19, 26,
35, 39

W. Ling, L. Marujo, C. Dyer, A. Black, and I. Trancoso. Crowdsourcing high-quality
parallel data extraction from twitter. In Proceedings of the Ninth Workshop on
Statistical Machine Translation, WMT ’14, Stroudsburg, PA, USA, 2014. Association
for Computational Linguistics. 31, 36, 40

W. Ling, L. Chu-Cheng, Y. Tsvetkov, S. Amir, R. F. Astudillo, C. Dyer, A. W. Black,
and I. Trancoso. Not all contexts are created equal: Better word representations
with variable attention. EMNLP, 2015a. 7

W. Ling, C. Dyer, A. Black, and I. Trancoso. Two/too simple adaptations of word2vec
for syntax problems. In Proceedings of the 2015 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies. Association for Computational Linguistics, 2015b. 7, 17, 87

W. Ling, T. Luís, L. Marujo, R. F. Astudillo, S. Amir, C. Dyer, A. W. Black, and
I. Trancoso. Finding function in form: Compositional character models for open
vocabulary word representation. EMNLP, 2015c. 5, 7, 76, 94

S. Liu, N. Yang, M. Li, and M. Zhou. A recursive recurrent neural network for
statistical machine translation. In Proceedings of ACL, pages 1491–1500, 2014.
16, 76

M. Lui, J. H. Lau, and T. Baldwin. Automatic detection and language identification
of multilingual documents. 2014. 33

T. Luong, R. Socher, and C. Manning. Proceedings of the Seventeenth Conference on
Computational Natural Language Learning, chapter Better Word Representations
with Recursive Neural Networks for Morphology. Association for Computational
Linguistics, 2013. URL http://aclweb.org/anthology/W13-3512. 78

N. Madnani. The circle of meaning: from translation to paraphrasing and back.
2010. 3

N. Madnani and B. J. Dorr. Generating phrasal and sentential paraphrases: A survey
of data-driven methods. Computational Linguistics, 36(3):341–387, 2010. 3

http://aclweb.org/anthology/W13-3512

129

C. D. Manning. Part-of-speech tagging from 97linguistics? In Proceedings of the 12th
International Conference on Computational Linguistics and Intelligent Text Processing
- Volume Part I, CICLing’11, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-
3-642-19399-6. URL http://dl.acm.org/citation.cfm?id=1964799.1964816.
86, 88

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated
corpus of english: The penn treebank. Comput. Linguist., 19(2), June 1993. ISSN
0891-2017. URL http://dl.acm.org/citation.cfm?id=972470.972475. 84

W. Marslen-Wilson and L. K. Tyler. Rules, representations, and the English past
tense. Trends in Cognitive Science, 2(11):428–435, 1998. 78

M. A. Martí, M. Taulé, L. Márquez, and M. Bertran. CESS-ECE: A multilingual and
multilevel annotated corpus. In LREC, 2007. 84

T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur. Recurrent neural
network based language model. In INTERSPEECH 2010, 11th Annual Conference
of the International Speech Communication Association, Makuhari, Chiba, Japan,
September 26-30, 2010, pages 1045–1048, 2010. 80, 91

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed represen-
tations of words and phrases and their compositionality. In Advances in Neural
Information Processing Systems, pages 3111–3119, 2013. 3, 7, 17, 77, 87, 117

A. Mnih and G. E. Hinton. A scalable hierarchical distributed language model.
In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in
Neural Information Processing Systems 21, pages 1081–1088. 2008. URL http:
//books.nips.cc/papers/files/nips21/NIPS2008_0918.pdf. 93

A. Mnih and G. E. Hinton. A scalable hierarchical distributed language
model. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, edi-
tors, Advances in Neural Information Processing Systems 21, pages 1081–
1088. Curran Associates, Inc., 2009. URL http://papers.nips.cc/paper/
3583-a-scalable-hierarchical-distributed-language-model.pdf. 91

F. Morin and Y. Bengio. Hierarchical probabilistic neural network language model.
In AISTATS’05, pages 246–252, 2005. 92

T. Mueller, H. Schmid, and H. Schütze. Efficient higher-order crfs for morphological
tagging. In Proceedings of the 2013 Conference on Empirical Methods in Natural

http://dl.acm.org/citation.cfm?id=1964799.1964816
http://dl.acm.org/citation.cfm?id=972470.972475
http://books.nips.cc/papers/files/nips21/NIPS2008_0918.pdf
http://books.nips.cc/papers/files/nips21/NIPS2008_0918.pdf
http://papers.nips.cc/paper/3583-a-scalable-hierarchical-distributed-language-model.pdf
http://papers.nips.cc/paper/3583-a-scalable-hierarchical-distributed-language-model.pdf

130 Bibliography

Language Processing. Association for Computational Linguistics, 2013. URL http:
//aclweb.org/anthology/D13-1032. 83

D. Munteanu and D. Marcu. Improving machine translation performance by exploit-
ing comparable corpora. Computational Linguistics, 31(4):477–504, 2005. 35,
45

D. S. Munteanu, A. Fraser, and D. Marcu. Improved machine translation performance
via parallel sentence extraction from comparable corpora. In HLT-NAACL, pages
265–272, 2004. 13

T. Nakagawa, T. Kudoh, and Y. Matsumoto. Unknown word guessing and part-
of-speech tagging using support vector machines. In In Proceedings of the Sixth
Natural Language Processing Pacific Rim Symposium, 2001. 83

M. Nuhn, A. Mauser, and H. Ney. Deciphering foreign language by combining
language models and context vectors. In Proceedings of the 50th Annual Meeting
of the Association for Computational Linguistics: Long Papers - Volume 1, ACL
’12, pages 156–164, Stroudsburg, PA, USA, 2012. Association for Computational
Linguistics. URL http://dl.acm.org/citation.cfm?id=2390524.2390547. 11

F. J. Och. Minimum error rate training in statistical machine translation. In
Proceedings of the 41st Annual Meeting on Association for Computational Linguistics
- Volume 1, ACL ’03, pages 160–167, Stroudsburg, PA, USA, 2003. Association
for Computational Linguistics. doi: 10.3115/1075096.1075117. URL http:
//dx.doi.org/10.3115/1075096.1075117. 48, 68, 72, 108

F. J. Och and H. Ney. The alignment template approach to statistical ma-
chine translation. Comput. Linguist., 30(4):417–449, Dec. 2004. ISSN 0891-
2017. doi: 10.1162/0891201042544884. URL http://dx.doi.org/10.1162/
0891201042544884. 64

O. Owoputi, C. Dyer, K. Gimpel, N. Schneider, and N. A. Smith. Improved part-of-
speech tagging for online conversational text with word clusters. In In Proceedings
of NAACL, 2013. 108

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, ACL ’02, pages 311–318, Stroudsburg,
PA, USA, 2002. Association for Computational Linguistics. doi: 10.3115/1073083.
1073135. URL http://dx.doi.org/10.3115/1073083.1073135. 48, 72, 108

http://aclweb.org/anthology/D13-1032
http://aclweb.org/anthology/D13-1032
http://dl.acm.org/citation.cfm?id=2390524.2390547
http://dx.doi.org/10.3115/1075096.1075117
http://dx.doi.org/10.3115/1075096.1075117
http://dx.doi.org/10.1162/0891201042544884
http://dx.doi.org/10.1162/0891201042544884
http://dx.doi.org/10.3115/1073083.1073135

131

D. Pennell and Y. Liu. A character-level machine translation approach for normal-
ization of sms abbreviations. In IJCNLP, pages 974–982, 2011. 15

D. L. Pennell and Y. Liu. Normalization of informal text. Computer Speech &
Language, 28(1):256–277, 2014. 15

H. Poon, C. Cherry, and K. Toutanova. Unsupervised morphological segmentation
with log-linear models. In Proceedings of Human Language Technologies: The
2009 Annual Conference of the North American Chapter of the Association for
Computational Linguistics, NAACL ’09, pages 209–217, Stroudsburg, PA, USA,
2009. Association for Computational Linguistics. ISBN 978-1-932432-41-1. URL
http://dl.acm.org/citation.cfm?id=1620754.1620785. 117

S. Ravi and K. Knight. Deciphering foreign language. In ACL’11, pages 12–21, 2011.
11

P. Resnik and N. A. Smith. The web as a parallel corpus. Computational Linguistics,
29:349–380, 2003. 2, 11, 12, 35, 45, 62, 113

T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes twitter users: real-
time event detection by social sensors. In Proceedings of the 19th international
conference on World wide web, pages 851–860. ACM, 2010. iii, v, 1

B. Sankaran, M. Razmara, A. Farzindar, W. Khreich, F. Popowich, and A. Sarkar.
Domain adaptation techniques for machine translation and their evaluation in
a real-world setting. In Proceedings of 25th Canadian Conference on Artificial
Intelligence, Toronto, Canada, may 2012. 1

C. D. Santos and B. Zadrozny. Learning character-level representations for part-of-
speech tagging. In Proceedings of the 31st International Conference on Machine
Learning (ICML-14), pages 1818–1826. JMLR Workshop and Conference Proceed-
ings, 2014. URL http://jmlr.org/proceedings/papers/v32/santos14.pdf.
84, 85

R. Sennrich, B. Haddow, and A. Birch. Neural machine translation of rare words
with subword units. CoRR, abs/1508.07909, 2015. URL http://arxiv.org/abs/
1508.07909. 110

J. R. Smith, C. Quirk, and K. Toutanova. Extracting parallel sentences from compa-
rable corpora using document level alignment. In Proc. NAACL, 2010. 13

http://dl.acm.org/citation.cfm?id=1620754.1620785
http://jmlr.org/proceedings/papers/v32/santos14.pdf
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1508.07909

132 Bibliography

A. Søgaard. Semisupervised condensed nearest neighbor for part-of-speech tagging.
In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies: Short Papers - Volume 2, HLT ’11,
Stroudsburg, PA, USA, 2011. Association for Computational Linguistics. ISBN 978-
1-932432-88-6. URL http://dl.acm.org/citation.cfm?id=2002736.2002748.
88

R. Soricut and F. Och. Unsupervised morphology induction using word embed-
dings. In Proceedings of the 2015 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages
1627–1637, Denver, Colorado, May–June 2015. Association for Computational
Linguistics. URL http://www.aclweb.org/anthology/N15-1186. 78

D. Spoustová, J. Hajič, J. Raab, and M. Spousta. Semi-supervised training for the
averaged perceptron pos tagger. In Proceedings of the 12th Conference of the
European Chapter of the Association for Computational Linguistics, 2009. 88

X. Sun. Structure regularization for structured prediction: Theories and experiments.
CoRR, abs/1411.6243, 2014. URL http://arxiv.org/abs/1411.6243. 86, 88

M. Sundermeyer, R. Schl
"uter, and H. Ney. Lstm neural networks for language modeling. In Interspeech,
pages 194–197, Portland, OR, USA, Sept. 2012a. 80

M. Sundermeyer, R. Schlüter, and H. Ney. Lstm neural networks for language
modeling. In INTERSPEECH, 2012b. 95, 96

H. Tang, J. Keshet, and K. Livescu. Discriminative pronunciation modeling: A large-
margin, feature-rich approach. In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics: Long Papers-Volume 1, pages 194–203.
Association for Computational Linguistics, 2012. 15

Y. Tsvetkov, M. Faruqui, W. Ling, G. Lample, and C. Dyer. Evaluation of word vector
representations by subspace alignment. EMNLP, 2015. 7

F. Ture and J. Lin. Why not grab a free lunch? mining large corpora for
parallel sentences to improve translation modeling. In Proceedings of the
2012 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pages 626–630, Mon-
tréal, Canada, June 2012. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/N12-1079. 2, 11

http://dl.acm.org/citation.cfm?id=2002736.2002748
http://www.aclweb.org/anthology/N15-1186
http://arxiv.org/abs/1411.6243
http://www.aclweb.org/anthology/N12-1079

133

J. Uszkoreit, J. Ponte, A. C. Popat, and M. Dubiner. Large scale parallel document
mining for machine translation. In COLING, pages 1101–1109, 2010a. 2

J. Uszkoreit, J. M. Ponte, A. C. Popat, and M. Dubiner. Large scale parallel document
mining for machine translation. In Proceedings of the 23rd International Conference
on Computational Linguistics, pages 1101–1109. Association for Computational
Linguistics, 2010b. 11, 12, 34

D. Vilar, J.-T. Peter, and H. Ney. Can we translate letters? In Proceedings of the
Second Workshop on Statistical Machine Translation, StatMT ’07, pages 33–39,
Stroudsburg, PA, USA, 2007. Association for Computational Linguistics. URL
http://dl.acm.org/citation.cfm?id=1626355.1626360. 101

S. Vogel, H. Ney, and C. Tillmann. Hmm-based word alignment in statistical
translation. In Proceedings of the 16th conference on Computational linguistics -
Volume 2, COLING ’96, pages 836–841, Stroudsburg, PA, USA, 1996. Association
for Computational Linguistics. doi: 10.3115/993268.993313. URL http://dx.
doi.org/10.3115/993268.993313. 20, 115

V. Volansky, N. Ordan, and S. Wintner. On the features of translationese. Literary
and Linguistic Computing, 2013. 59, 60

P. Wang and H. Ng. A beam-search decoder for normalization of social media
text with application to machine translation. In Proceedings of NAACL-HLT 2013,
NAACL ’13. Association for Computational Linguistics, 2013. 15

J. Xu, R. Weischedel, and C. Nguyen. Evaluating a probabilistic model for cross-
lingual information retrieval. In Proceedings of the 24th annual international ACM
SIGIR conference on Research and development in information retrieval, SIGIR ’01,
pages 105–110, New York, NY, USA, 2001. ACM. ISBN 1-58113-331-6. doi:
10.1145/383952.383968. URL http://doi.acm.org/10.1145/383952.383968.
13

J. Xu, R. Zens, and H. Ney. Sentence segmentation using ibm word alignment
model 1. In In Proceedings of EAMT 2005 (10th Annual Conference of the European
Association for Machine Translation, pages 280–287, 2005. 13

W. Xu, A. Ritter, and R. Grishman. Gathering and generating paraphrases from
twitter with application to normalization. In Proceedings of the Sixth Workshop on
Building and Using Comparable Corpora, pages 121–128, Sofia, Bulgaria, August

http://dl.acm.org/citation.cfm?id=1626355.1626360
http://dx.doi.org/10.3115/993268.993313
http://dx.doi.org/10.3115/993268.993313
http://doi.acm.org/10.1145/383952.383968

134 Bibliography

2013. Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/W13-2515. 16

Y. Yang and J. Eisenstein. A log-linear model for unsupervised text normalization.
In Proc. of EMNLP, 2013. 14

S. Zhao, H. Wang, X. Lan, and T. Liu. Leveraging multiple mt engines for paraphrase
generation. In Proceedings of the 23rd International Conference on Computational
Linguistics, pages 1326–1334. Association for Computational Linguistics, 2010. 3

http://www.aclweb.org/anthology/W13-2515
http://www.aclweb.org/anthology/W13-2515

	1 Introduction
	1.1 Motivation
	1.1.1 Parallel Data Extraction from Microblogs
	1.1.2 Character-based Machine Translation and Natural Language Processing

	1.2 Contributions and Thesis Statement
	1.3 Contributions from Satellite Work
	1.4 Thesis Structure

	2 Background
	2.1 Parallel Data Extraction
	2.1.1 What are Parallel Corpora?
	2.1.2 Automatic Parallel Corpora Mining

	2.2 Microblog Normalization
	2.2.1 What is Normalization?
	2.2.2 Lexical Normalization
	2.2.3 Sentence Normalization

	2.3 Word Representations in Neural Networks
	2.3.1 Word Lookup Tables
	2.3.2 Word Representation Learning

	3 Automatic Microblog Parallel Data Extraction
	3.1 The Intra-Document Alignment (IDA) Model
	3.1.1 Model Components
	3.1.2 Inference
	3.1.3 Dynamic programming search
	3.1.4 Language Pair Filtering
	3.1.5 Evaluation Metrics

	3.2 Parallel Data Extraction
	3.2.1 Filtering
	3.2.2 Location
	3.2.3 Identification

	3.3 Experiments
	3.3.1 Setup
	3.3.2 Targeted Crawling
	3.3.3 Building Gold Standards
	3.3.4 Parallel Data Extraction Experiments
	3.3.5 Machine Translation Experiments

	4 Normalization Using Paraphrases
	4.1 Obtaining Normalization Examples
	4.1.1 Variant–Normalized Parallel Corpus
	4.1.2 Alignment and Filtering

	4.2 Normalization Model
	4.2.1 From Sentences To Phrases
	4.2.2 From Phrases to Characters

	4.3 Normalization Decoder
	4.3.1 Phrasal Decoder
	4.3.2 Character and Phrasal Decoder
	4.3.3 Learning Variants from Monolingual Data

	4.4 Experiments
	4.4.1 Setup
	4.4.2 Results
	4.4.3 Summary

	5 Character-based Word Representations for NLP
	5.1 Word Vectors and Wordless Word Vectors
	5.1.1 Problem: Independent Parameters
	5.1.2 Solution: Compositional Models

	5.2 C2W Model
	5.3 Experiments: Language Modeling
	5.3.1 Language Model
	5.3.2 Experiments

	5.4 Experiments: Part-of-speech Tagging
	5.4.1 Bi-LSTM Tagging Model
	5.4.2 Experiments
	5.4.3 Summary

	6 Character-based Word Generation for NLP
	6.1 V2C Model
	6.2 Character to Character Language Modeling
	6.2.1 Experiments

	6.3 Character to Character Machine Translation
	6.3.1 Character-based Machine Translation
	6.3.2 Experiments

	6.4 Summary

	7 Conclusion and Future Work
	Bibliography

