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Abstract
The power of joint learning in multiple tasks arises from the transfer of relevant

knowledge across said tasks, especially from information-rich tasks to information-
poor ones. Lifelong learning, on the other hand, provides an efficient way to learn
new tasks faster by utilizing the knowledge learned from the previous tasks and
prevent catastrophic forgetting or significantly degrading performance on the old
tasks. Despite several advantages on learning from related tasks, it poses considerable
challenges in terms of effectiveness by minimizing prediction errors for all tasks
and overall computational tractability for real-time performance, especially when the
number of tasks is large. In contrast, human beings seem natural in accumulating
and retaining the knowledge from the past and leverage this knowledge to acquire
new skills and solve new problems efficiently. We consider two key challenges in
multitask and lifelong learning:

1. Sequential data: In many real-world applications such as optimizing financial
trading, email prioritization, personalized news, and spam filtering, etc., data
arrive sequentially. In such cases, we need to make predictions and update the
per-task models in an efficient real-time manner when a new observation or task
is available.

2. Scalability: Most existing algorithms for multitask learning cannot scale to very
large dataset especially when the number of tasks is large. The computational
complexity arises due to the difficulty in learning the shared knowledge from all
the tasks.

Together, these two challenges may hinder the practical application of multitask
learning to several real-world problems. In this thesis, we propose simple and efficient
algorithms for learning from related tasks to address the aforementioned challenges.
We present algorithms that feature probabilistic interpretation, efficient updating rules
and flexible modulation on whether learners focus on their specific task or on jointly
address all tasks. We develop a novel approach to active learning for sequential
problems that first determines if the learner can acquire a label from its peers. If
so, it saves the query for later use in more difficult cases, and if not it queries the
human. We define a new machine learning paradigm based on a curriculum defined
dynamically by the learner ("self-paced") instead of a fixed curriculum set a-priori
by a teacher. The primary focus of this thesis is to scale the multitask and lifelong
learning to practical applications where both the tasks and/or the examples of the
tasks arrive in an online fashion.
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Chapter 1

Introduction

Multitask methods leverage the relationships between tasks to jointly build a better model for each
task. By exploiting the latent structure on task-relatedness, it introduces inductive bias in joint
learning of multiple related tasks thereby improve generalization and prevent overfitting. Most
existing work in multitask learning focuses on how to take advantage of these task relationships,
either to share data directly [31] or to learn model parameters via cross-task regularization
techniques [9, 115, 121]. In a broad sense, there are two settings to learn these task relationships
1) batch learning, in which an entire training set is available to the learner 2) online learning, in
which the learner sees the data in a sequential fashion. In recent years, online multitask learning
has attracted extensive research attention [1, 25, 35, 73, 97].

Unlike in the traditional multitask learning, where the tasks are presented simultaneously
and an entire training set is available to the learner ([21]), in lifelong learning the tasks arrive
sequentially ([107]). In this thesis, we are interested in a continuous lifelong learning setting in
which one or both the tasks and the examples of the tasks arrive in an online fashion, without
any predetermined order. Although the objectives of both online multitask learning and lifelong
learning are similar, one of the main key differences is that the online multitask learning, unlike in
the lifelong learning, may require that the number of tasks is specified beforehand.

There are many useful application areas for multitask and lifelong learning, including opti-
mizing financial trading, email prioritization, personalized news, and spam filtering. Consider
the latter, where some spam is universal to all users (e.g. financial scams), some messages might
be useful to certain affinity groups, but spam to most others (e.g. announcements of meditation
classes or other special interest activities), and some may depend on evolving user interests. In
spam filtering each user is a task, and shared interests and dis-interests formulate the transfer of
information between the tasks. If we can learn the underlying task relations as well as improving
models from specific spam/not-spam decisions, we can perform mass customization of spam
filtering, borrowing from spam/not-spam feedback from users with similar preferences.

1.1 Related Topics

In this section, we consider the topics closely related to this thesis. We briefly introduce the
concepts here and explain them as when needed.
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1.1.1 Multitask Learning
Multitask learning leverage the relationships between tasks to jointly build a better model for
each task. Most existing work in multitask learning focuses on how to take advantage of these
task relationships, either to share data directly [31] or to learn model parameters via cross-task
regularization techniques [9, 115, 121]. In a broad sense, there are two settings to learn these
task relationships: 1) batch learning, in which an entire training set is available to the learner 2)
online learning, in which the learner sees the data in a sequential fashion. In recent years, online
multitask learning has attracted extensive research attention [1, 25, 35, 73, 97]. Most of our work
in this thesis focuses on online multitask learning. We briefly introduce the problem setup under
consideration in the next section.

1.1.2 Lifelong Learning
Lifelong learning, inspired by established human learning principles, works by accumulating
and retaining the knowledge from the past and leverages this knowledge to acquire new skills
and solve new problems efficiently. It poses considerable challenges in terms of effectiveness
(minimizing prediction errors for all tasks) and overall computational tractability for real-time
performance. A lifelong learning agent must provide an efficient way to learn new tasks faster by
utilizing the knowledge learned from the previous tasks and also not forgetting or significantly
degrading performance on the old tasks. The goal of a lifelong learner is to minimize errors
as compared to the full ideal hindsight learner, which has access to all the training data and no
bounds on memory or computation.

1.1.3 Transfer Learning
Multitask and lifelong learning have been studied in part under a related research topic, transfer
learning [16] under different assumptions. There are several key differences between those
methods and multitask learning: i) While transfer learning tries to find a single hypothesis that
works well for the target data with the assistance of one or more source tasks, multitask learning
finds a hypothesis for each task by adaptively leveraging related tasks. ii) It is a typical assumption
in transfer learning that the source tasks are label-rich and the target tasks are label-scarce.
However, multitask learning assumes the scenario where there is a large number of tasks with
very few examples available for each task.

1.2 Problem Setup
We are given K tasks where the jth task is associated with Nj training examples. For brevity we
consider a binary classification problem in this thesis for each task, but the methods generalize to
multi-class and are also applicable to regression tasks. We denote by [N ] the consecutive integers
ranging from 1 to N . Let

{
(x

(i)
j , y

(i)
j )
}Nj
i=1

and Lj(w) = 1
Nj

∑
i∈[Nj ]

(
1 − y(i)

j 〈x
(i)
j , w〉

)
+

be the

training set and batch empirical loss for task j, respectively, where (z)+ = max(0, z), x
(i)
j ∈ Rd

is the ith instance from the jth task and y(i)
j is its corresponding true label. When the notation is

2



clear from the context, we drop the index k and write ((x(i), k), y(i)). The general form of the
objective function for multitask learning is given by:

{ŵk}k∈[K] = arg min{wk}k∈[K]

∑
j∈[K]

Lj(wj) +R({wk}k∈[K]) (1.1)

whereR(.) is the regularization term on the model parameters, associated with a regularization
parameter and wk is the model parameter for the kth task.

Now, we extend our batch multitask formulation to the online setting. The online multitask
setting starts with a learner at each round t. The learner of the kth task receives a training instance
x

(t)
k , makes a prediction 〈x(t)

k , w
(t)
k 〉 and suffers a loss after y(t) is revealed. This sequence is

repeated over the entire data, simulating a data stream. Let {w∗k}k∈[K] be any set of arbitrary
vectors where w∗k ∈ Rd. The hinge loss on the individual example

(
(x(t), k), y(t)

)
is given by

`
(t)∗
kk =

(
1 − y(t)〈x(t), w∗k〉

)
+

, with an inter-task loss given by `
(t)∗
km =

(
1 − y(t)〈x(t), w∗m〉

)
+

.

Similarly, we define hinge losses `(t)
kk and `(t)

km for the linear predictors {w(t)
k }k∈[K] learned at round

t.
Based on the application at hand, there are two common settings in online multitask learning:

1) In the first setting, all tasks will be performed simultaneously by receiving K examples for K
tasks at each round t. 2) In the second setting, the learner receives a single example from a task
(along with a task identifier) and predicts it’s output label. Following the prediction, the learner
either receives the true label automatically or request an oracle for true label thereby incurring a
cost. The learner then updates the model(s) as necessary. The goal of an online multitask learner
in this setting is to minimize errors attempting to reach the performance of the full hindsight
learner and optionally, reduce the total number of queries issued to the oracle. The cumulative
regret for the online multitask learning algorithm can be given as follows:

Rk =
∑
t∈[T ]

(
`

(t)
kk − `

(t)∗
kk

)
,∀k ∈ [K] (1.2)

1.3 Thesis Overview
1. Online Multitask Learning (NIPS’16 [80]) In chapter 2, we address the challenge of

jointly learning both the per-task model parameters and the inter-task relationships in a
multitask online learning setting. The proposed algorithm features probabilistic interpre-
tation, efficient updating rules and flexible modulation on whether learners focus on their
specific task or on jointly address all tasks. We also prove a sub-linear regret bound as
compared to the best linear predictor in hindsight. Experiments over three multitask learning
benchmark datasets show an advantageous performance of the proposed approach over
several state-of-the-art online multitask learning baselines. we extend our learning setting
to multiple kernel learning where each task is associated with multiple kernels and propose
a two-stage learning approach to learn the model parameters, optimal kernel weights and
the task relationship efficiently (SDM’17 [77]).

2. Learning from Peers (NIPS’17 [76]) In chapter 3, we address the challenge of learning
from peers in an online multitask setting. Instead of always requesting a label from a human

3



oracle, the proposed method first determines if the learner for each task can acquire that label
with sufficient confidence from its peers either as a task-similarity weighted sum or from the
single most similar task. If so, it saves the oracle query for later use in more difficult cases,
and if not it queries the human oracle. This chapter develops the new algorithm to exhibit
this behavior and proves a theoretical mistake bound for the method compared to the best
linear predictor in hindsight. Experiments over three multitask learning benchmark datasets
show clearly superior performance over baselines such as assuming task independence,
learning only from the oracle and not learning from peer tasks.

3. Self-paced Multitask Learning (IJCAI’17 [78]) In chapter 4, we introduce self-paced task
selection to multitask learning, where instances from more closely related tasks are selected
in a progression of easier-to-harder tasks, to emulate an effective human education strategy
but applied to lifelong machine learning. We develop the mathematical foundation for the
approach based on an iterative selection of the most appropriate task, learning the task
parameters, and updating the shared knowledge, optimizing a new bi-convex loss function.
This proposed method allows us to use some of the existing multitask learning formulations
to lifelong learning setting. Results show that in each of the above formulations self-paced
(easier-to-harder) task selection outperforms the baseline version of these methods in all the
experiments.

4. Efficient Co-Clustering for Multitask and Lifelong Learning (Arxiv’18 [81]) In chapter
4, we propose a co-clustering approach to multitask and lifelong learning. We provide a
flexible way to cluster both the features and the tasks using the shared feature representation.
In addition, our proposed models learn both the task relationship matrix and the feature
relationship matrix along with the co-clustering of both the tasks and the features. We
introduce an additional degree of freedom that allows the number of task clusters to differ
from the number of features clusters. A key challenge in factoring with the extra degree of
freedom is optimizing the resulting objective function. We propose an efficient algorithm
that scales well to large-scale multitask learning and utilizes the structure of the objective
function to learn the factorized task parameters. We develop a highly scalable and efficient
learning algorithm using conjugate gradient descent and generalized Sylvester equations.
Extensive empirical analysis on both synthetic and real datasets show that the proposed
method outperforms the other state-of-the-art multitask baselines.

5. Lifelong Learning (Arxiv’18) A lifelong learning agent must provide an efficient way to
learn new tasks faster by utilizing the knowledge learned from the previous tasks and also not
forgetting or significantly degrading performance on the old tasks. The chapter 4 addresses
continuous lifelong multitask learning by jointly re-estimating the inter-task relations
(output kernel) and the per-task model parameters at each round, assuming data arrives in
a streaming fashion. A new algorithm called Online Output Kernel Learning Algorithm
(OOKLA) for lifelong learning setting is proposed. To avoid the memory explosion, a robust
budget-limited version of the proposed algorithm is introduced, which efficiently utilizes
the relationships between the tasks to bound the total number of representative examples
in the support set. In addition, a two-stage budgeted scheme for efficiently tackling the
task-specific budget constraints in lifelong learning is proposed. Empirical results over three
datasets indicate superior AUC performance for OOKLA and its budget-limited cousins
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over strong baselines.

1.4 Thesis Statement
In this thesis, we explore efficient methods to learn the task structure in online multitask learning
problems. We discover the latent structure (relationships) among the multiple related tasks
adaptively from the streaming data, We exploit this structure to learn from these related tasks and
yield a stronger model in online and lifelong multitask learning problems.
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Chapter 2

Online Multitask Learning

In online learning, the learner sees the data in a sequential fashion. The key challenge in online
learning of multiple tasks with a large number of tasks is to adaptively learn the model parameters
and the task relationships, which potentially change over time. Without manageable efficient
updates at each round, learning the task relationship matrix automatically may impose a severe
computational burden. In this chapter, we address these concerns in order to make predictions and
update the models in an efficient real-time manner.

We propose an online learning framework that efficiently learns multiple related tasks by
estimating the task relationship matrix from the data, along with the model parameters for each
task. Unlike in the previous works, we learn the model for each task by sharing data from related
task directly [80]. Our model provides a natural way to specify the trade-off between learning the
hypothesis from each task’s own (possibly quite limited) data and data from multiple related tasks.
Later in this chapter, we extend our learning setting to multiple kernel learning where each task is
associated with multiple kernels and propose a two-stage learning approach to learn the model
parameters, optimal kernel weights and the task relationship efficiently [77].

2.1 Smooth Multitask Learning

The power of joint learning in multiple tasks arises from the transfer of relevant knowledge
across said tasks, especially from information-rich tasks to information-poor ones. Instead of
learning individual models, multitask methods leverage the relationships between tasks to jointly
build a better model for each task. Most existing work in multitask learning focuses on how to
take advantage of these task relationships, either to share data directly [31] or to learn model
parameters via cross-task regularization techniques [9, 115, 121]. In a broad sense, there are
two settings to learn these task relationships 1) batch learning, in which an entire training set is
available to the learner 2) online learning, in which the learner sees the data in a sequential fashion.
In this chapter, we consider the online learning approaches to multitask problems. In recent years,
online multitask learning has attracted extensive research attention due to its practical applications
[1, 25, 35, 73, 97].

Following the online setting, particularly from [35, 73], at each round t, the learner receives a
set of K observations from K tasks and predicts the output label for each of these observations.

7



Subsequently, the learner receives the true labels and updates the model(s) as necessary. This
sequence is repeated over the entire data, simulating a data stream. Our approach follows an
error-driven update rule in which the model for a given task is updated only when the prediction
for that task is in error. The goal of an online learner is to minimize errors compared to the
full hindsight learner. The key challenge in online learning with large number of tasks is to
adaptively learn the model parameters and the task relationships, which potentially change over
time. Without manageable efficient updates at each round, learning the task relationship matrix
automatically may impose a severe computational burden. In other words, we need to make
predictions and update the models in an efficient real time manner.

We propose an online learning framework that efficiently learns multiple related tasks by
estimating the task relationship matrix from the data, along with the model parameters for each
task. We learn the model for each task by sharing data from related task directly. Our model
provides a natural way to specify the trade-off between learning the hypothesis from each task’s
own (possibly quite limited) data and data from multiple related tasks. We propose an iterative
algorithm to learn the task parameters and the task-relationship matrix alternatively. We first
describe our proposed approach under a batch setting and then extend it to the online learning
paradigm. In addition, we provide a theoretical analysis for our online algorithm and show that it
can achieve a sub-linear regret compared to the best linear predictor in hindsight. We evaluate our
model with several state-of-the-art online learning algorithms for multiple tasks.

There are many useful application areas for online multitask learning, including optimizing
financial trading, email prioritization, personalized news, and spam filtering. Consider the latter,
where some spam is universal to all users (e.g. financial scams), some messages might be useful to
certain affinity groups, but spam to most others (e.g. announcements of meditation classes or other
special interest activities), and some may depend on evolving user interests. In spam filtering each
user is a task, and shared interests and dis-interests formulate the inter-task relationship matrix. If
we can learn the matrix as well as improving models from specific spam/not-spam decisions, we
can perform mass customization of spam filtering, borrowing from spam/not-spam feedback from
users with similar preferences.

2.1.1 Related Work
While there is considerable literature in online multitask learning, many crucial aspects remain
largely unexplored. Most existing work in online multitask learning focuses on how to take
advantage of task relationships. To achieve this, Lugosi et al. [73] imposed a hard constraint on
the K simultaneous actions taken by the learner in the expert setting, Agarwal et al. [3] used
matrix regularization, and Dekel et al. [35] proposed a global loss function, as an absolute norm,
to tie together the loss values of the individual tasks. Different from existing online multitask
learning models, we propose an intuitive and efficient way to learn the task relationship matrix
automatically from the data, and to explicitly take into account the learned relationships during
model updates.

Cavallanti et al. [25] assumes that task relationships are available a priori. Kshirsagar et al.
[61] does the same but in a more adaptive manner. However such task-relation prior knowledge
is either unavailable or infeasible to obtain for many applications especially when the number
of tasks K is large [113] and/or when the manual annotation of task relationships is expensive
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[62]. Saha et al. [97] formulated the learning of task relationship matrix as a Bregman-divergence
minimization problem w.r.t. positive definite matrices. The model suffers from high computational
complexity as semi-definite programming is required when updating the task relationship matrix
at each online round. We show that with a different formulation, we can obtain a similar but much
cheaper updating rule for learning the inter-task weights.

Multitask learning has been studied in part under a related research topic, Domain Adaptation
(DA) [16] under different assumptions. There are several key differences between those methods
and ours: i) While DA tries to find a single hypothesis that works well for both the source and the
target data, this work finds a hypothesis for each task by adaptively leveraging related tasks. ii) It
is a typical assumption in DA that the source domains are label-rich and the target domains are
label-scarce. However, we are more interested in the scenario where there is a large number of
tasks with very few examples available for each task. iii) DA uses predefined uniform weights or
weights induced from VC-convergence theory during training, while our method allows cross-task
weights to dynamically evolve in an adaptive manner.

The most related work to ours is Shared Hypothesis model (SHAMO) from Crammer and
Mansour [31], where the key idea is to use a K-means-like procedure that simultaneously clusters
different tasks and learns a small pool of m� K shared hypotheses. Specifically, each task is
free to choose a hypothesis from the pool that better classifies its own data, and each hypothesis is
learned from pooling together all the training data that belongs to the same cluster. A similar idea
was explored by Abernathy et al. [1] under expert settings.

2.1.2 Setup
Suppose we are given K tasks where the jth task is associated with Nj training examples. For
brevity we consider a binary classification problem for each task, but the methods generalize to
multi-class and are also applicable to regression tasks. We denote by [N ] the consecutive integers
ranging from 1 to N . Let

{
(x

(i)
j , y

(i)
j )
}Nj
i=1

and Lj(w) = 1
Nj

∑
i∈[Nj ]

(
1 − y(i)

j 〈x
(i)
j , w〉

)
+

be the

training set and batch empirical loss for task j, respectively, where (z)+ = max(0, z), x
(i)
j ∈ Rd

is the ith instance from the jth task and y(i)
j is its corresponding true label.

We start from the motivation of our formulation in Section 2.1.2, based on which we first
propose a batch formulation in Section 2.1.3. Then, we extend the method to the online setting in
Section 2.1.4.

Motivation

Learning tasks may be addressed independently via w∗k = argminwk Lk(wk),∀k ∈ [K]. However,
when each task has limited training data, it is often beneficial to allow information sharing among
the tasks, which can be achieved via the following optimization:

w∗k = argminwk

∑
j∈[K]

ηkjLj(wk) ∀k ∈ [K] (2.1)

Beyond each task k, optimization (2.1) encourages hypothesis w∗k to do well on the remaining
K − 1 tasks thus allowing tasks to borrow information from each other. In the extreme case where
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the K tasks have an identical data distribution, optimization (2.1) amounts to using
∑

j∈[K] Nj

examples for training as compared to Nk in independent learning.
The weight matrix η is in essence a task relationship matrix, and a prior may be manually

specified according to domain knowledge about the tasks. For instance, ηkj would typically be
set to a large value if tasks k and j share similar nature. If η = I , (2.1) reduces to learning
tasks independently. It is clear that manual specification of η is feasible only when K is small.
Moreover, tasks may be statistically correlated even if a domain expert is unavailable to identify an
explicit relation, or if the effort required is too great. Hence, it is often desirable to automatically
estimate the optimal η adapted to the inter-task problem structure.

We propose to learn η in a data-driven manner. For the kth task, we optimize

w∗k, η
∗
k = argminwk,ηk∈Θ

∑
j∈[K]

ηkjLj(wk) + λr(ηk) (2.2)

where Θ defines the feasible domain of ηk, and regularizer r prevents degenerate cases, e.g.,
where ηk becomes an all-zero vector. Optimization (2.2) shares the same underlying insight with
Self-Paced Learning (SPL) [55, 65] where the algorithm automatically learns the weights over data
points during training. However, the process and scope in the two methods differ fundamentally:
SPL minimizes the weighted loss over datapoints within a single domain, while optimization
(2.2) minimizes the weighted loss over multiple tasks across possibly heterogeneous domains.

A common choice of Θ and r(ηk) in SPL is Θ = [0, 1]K and r(ηk) = −‖ηk‖1. There are
several drawbacks of naively applying this type of settings to the multitask scenario: (i) Lack
of focus: there is no guarantee that the kth learner will put more focus on the kth task itself.
When task k is intrinsically difficult, η∗kk could simply be set near zero and w∗k becomes almost
independent of the kth task. (ii) Weak interpretability, the learned η∗k may not be interpretable as
it is not directly tied to any physical meanings (iii) Lack of worst-case guarantee in the online
setting. All those issues will be addressed by our proposed model in the following.

2.1.3 Batch Formulation

We parametrize the aforementioned task relationship matrix η ∈ RK×K as follows:

η = αIK + (1− α)P (2.3)

where IK ∈ RK×K is an identity matrix, P ∈ RK×K is a row-stochastic matrix and α is a scalar
in [0, 1]. Task relationship matrix η defined as above has the following interpretations:

1. Concentration Factor α quantifies the learners’ “concentration” on their own tasks. Setting
α = 1 amounts to independent learning. We will see from the forthcoming Theorem 1 how
to specify α to ensure the optimality of the online regret bound.

2. Smoothed Attention MatrixP quantifies to which degree the learners are attentive to all tasks.
Specifically, define the kth row of P , namely pk ∈ ∆K−1, as a probability distribution over
all tasks where ∆K−1 denotes the probability simplex. Our goal of learning a data-adaptive
η now becomes learning a data-adaptive attention matrix P .
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Algorithm 1: Batch Algorithm (SMTL-e)
while not converge do

for k ∈ [K] do
w

(t)
k ← argminwk αLk(wk) + (1− α)

∑
j∈[K] p

(t)
kjLj(wk);

for j ∈ [K] do

p
(t+1)
kj ← e

− 1−α
λ

Lj(w
(t)
k

)∑K
j′=1 e

− 1−α
λ

Lj′ (w
(t)
k

)
;

end
end
t← t+ 1;

end

Common choices about η in several existing algorithms are special cases of (2.3). For instance,
domain adaptation assumes α = 0 and a fixed row-stochastic matrix P ; in multitask learning,
we obtain the effective heuristics of specifying η by Cavallanti et al. [25] when α = 1

1+K
and

P = 1
K

11>. When there are m � K unique distributions pk, then the problem reduces to
SHAMO model [31].

Equation (2.3) implies the task relationship matrix η is also row-stochastic, where we always
reserve probability α for the kth task itself as ηkk ≥ α. For each learner, the presence of α entails
a trade off between learning from other tasks and concentrating on its own task. Note that we do
not require P to be symmetric due to the asymmetric nature of information transferability—while
classifiers trained on a resource-rich task can be well transferred to a resource-scarce task, the
inverse is not usually true. Motivated by the above discussion, our batch formulation instantiates
(2.2) as follows

w∗k, p
∗
k = argminwk,pk∈∆K−1

∑
j∈[K]

ηkj(pk)Lj(wk)− λH (pk) (2.4)

= argminwk,pk∈∆K−1 Ej∼Multinomial(ηk(pk))Lj(wk)− λH (pk) (2.5)

where H(pk) = −
∑

j∈[K] pkj log pkj denotes the entropy of distribution pk. Optimization (2.4)
can be viewed as to balance between minimizing the cross-task loss with mixture weights ηk and
maximizing the smoothness of cross-task attentions. The max-entropy regularization favours a
uniform attention over all tasks and leads to analytical updating rules for pk (and ηk).

The pseudo-code is in Algorithm 1. Optimization (2.4) is biconvex over wk and pk. With p(t)
k

fixed, solution for wk can be obtained using off-the-shelf solvers. With w(t)
k fixed, solution for pk

is given in closed-form:

p
(t+1)
kj =

e−
1−α
λ
Lj(w

(t)
k )∑K

j′=1 e
− 1−α

λ
Lj′ (w

(t)
k )

∀j ∈ [K] (2.6)

The exponential updating rule in (2.6) has an intuitive interpretation. That is, our algorithm
attempts to use hypothesis w(t)

k obtained from the kth task to classify training examples in all other
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tasks. Task j will be treated as related to task k if its training examples can be well classified by
wk. The intuition is that two tasks are likely to relate to each other if they share similar decision
boundaries, thus combining their associated data should yield to a stronger model, trained over
larger data.

2.1.4 Online Formulation
In this section, we extend our batch formulation to the online setting. We assume that all tasks will
be performed at each round, though the assumption can be relaxed with some added complexity to
the method. At time t, the kth task receives a training instance x(t)

k , makes a prediction 〈x(t)
k , w

(t)
k 〉

and suffers a loss after y(t) is revealed. Our algorithm follows a error-driven update rule in which
the model is updated only when a task makes a mistake.

Let `(t)
kj (w) = 1 − y(t)

j 〈x
(t)
j , w〉 if y(t)

j 〈x
(t)
j , w

(t)
k 〉 < 1 and `kj(w) = 0 otherwise. For brevity,

we introduce shorthands `(t)
kj = `

(t)
kj (w

(t)
k ) and η(t)

kj = ηkj(p
(t)
k ).

For the kth task we consider the following optimization problem at each time:

w
(t+1)
k , p

(t+1)
k = argmin

wk,pk∈∆K−1

C
∑
j∈[K]

ηkj(pk)`
(t)
kj (wk) + ‖wk − w(t)

k ‖
2 + λDKL

(
pk‖p(t)

k

)
(2.7)

where
∑

j∈[K] ηkj(pk)`
(t)
kj (wk) = Ej∼Multi(ηk(pk))`

(t)
kj (wk), and DKL

(
pk‖p(t)

k

)
denotes the Kull-

back–Leibler (KL) divergence between current and previous soft-attention distributions. The
presence of last two terms in (2.7) allows the model parameters to evolve smoothly over time. Op-
timization (2.7) is naturally analogous to the batch optimization (2.4), where the batch loss Lj(wk)
is replaced by its noisy version `(t)

kj (wk) at time t, and negative entropy −H(pk) =
∑

j pkj log pkj

is replaced by DKL(pk‖p(t)
k ) also known as the relative entropy. We will show the above formula-

tion leads to analytical updating rules for both wk and pk, a desirable property particularly as an
online algorithm.

Solution for w(t+1)
k conditioned on p(t)

k is given in closed-form by the proximal operator

w
(t+1)
k = prox(w

(t)
k ) = argminwk C

∑
j∈[K]

ηkj(p
(t)
k )`

(t)
kj (wk) + ‖wk − w(t)

k ‖
2 (2.8)

= w
(t)
k + C

∑
j:y

(t)
j 〈x

(t)
j ,w

(t)
k 〉<1

ηkj(p
(t)
k )y

(t)
j x

(t)
j (2.9)

Solution for p(t+1)
k conditioned on w

(t)
k is also given in closed-form, analogous to mirror

descent [82]

p
(t+1)
k = argminpk∈∆K−1 C(1− α)

∑
j∈[K]

pkj`
(t)
kj + λDKL

(
pk‖p(t)

k

)
(2.10)

=⇒ p
(t+1)
kj =

p
(t)
kj e
−C(1−α)

λ
`
(t)
kj∑

j′ p
(t)
kj′e

−C(1−α)
λ

`
(t)

kj′
j ∈ [K] (2.11)
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Algorithm 2: Online Algorithm (OSMTL-e)
for t ∈ [T ] do

for k ∈ [K] do
if y(t)

k 〈x
(t)
k , w

(t)
k 〉 < 1 then

w
(t+1)
k ←
w

(t)
k +Cα1

`
(t)
kk>0

y
(t)
k x

(t)
k +C(1−α)

∑
j:`

(t)
kj>0

p
(t)
kj y

(t)
j x

(t)
j

;
for j ∈ [K] do

p
(t+1)
kj ← p

(t)
kj e
−C(1−α)

λ
`
(t)
kj

∑K
j′=1 p

(t)

kj′e
−C(1−α)

λ
`
(t)

kj′
;

end
else

w
(t+1)
k , p

(t+1)
k ← w

(t)
k , p

(t)
k ;

end
end

end

The pseudo-code is in Algorithm 21. Our algorithm is “passive” in the sense that updates are
carried out only when a classification error occurs, namely when ŷ(t)

k 6= y
(t)
k . An alternative is to

perform “aggressive” updates only when the active set {j : y
(t)
j 〈x

(t)
j , w

(t)
k 〉 < 1} is non-empty.

2.1.5 Regret Bound

Theorem 1. ∀k ∈ [K], let Sk =
{(
x

(t)
k , y

(t)
k

)}T
t=1

be a sequence of T examples for the kth

task where x(t)
k ∈ Rd, y(t)

k ∈ {−1,+1} and ‖x(t)
k ‖2 ≤ R, ∀t ∈ [T ]. Let C be a positive

constant and let α be some predefined parameter in [0, 1]. Let {w∗k}k∈[K] be any arbitrary vectors
where w∗k ∈ Rd and its hinge loss on the examples

(
x

(t)
k , y

(t)
k

)
and

(
x

(t)
j , y

(t)
j

)
j 6=k are given by

`
(t)∗
kk =

(
1− y(t)

k 〈x
(t)
k , w

∗
k〉
)

+
and `(t)∗

kj =
(
1− y(t)

j 〈x
(t)
j , w

∗
k〉
)

+
, respectively.

If {Sk}k∈[K] is presented to OSMTL algorithm, then ∀k ∈ [K] we have∑
t∈[T ]

(`
(t)
kk − `

(t)∗
kk

)
≤ 1

2Cα
‖w∗k‖2 +

(1− α)T

α

(
`

(t)∗
kk + max

j∈[K],j 6=k
`

(t)∗
kj

)
+
CR2T

2α
(2.12)

Notice when α→ 1, the above reduces to the perceptron mistake bound [98].
Corollary 2. Let α =

√
T

1+
√
T

and C = 1+
√
T

T
in Theorem 1, we have

∑
t∈[T ]

(`
(t)
kk − `

(t)∗
kk

)
≤
√
T

(
1

2
‖w∗k‖2 + `

(t)∗
kk + max

j∈[K],j 6=k
`

(t)∗
kj + 2R2

)
(2.13)

1It is recommended to set α ∝
√
T

1+
√
T

and C ∝ 1+
√
T

T , as suggested by Corollary 2.
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Proofs are given in the supplementary. Theorem 1 and Corollary 2 have several implications:
1. Quality of the bound depends on both `(t)∗

kk and the maximum of {`(t)∗
kj }j∈[K],j 6=k. In other

words, the worst-case regret will be lower if the kth true hypothesis w∗k can well distinguish
training examples in both the kth task itself as well as those in all the other tasks.

2. Corollary 2 indicates the difference between the cumulative loss achieved by our algorithm
and by any fixed hypothesis for task k is bounded by a term growing sub-linearly in T .

3. Corollary 2 provides a principled way to set hyperparameters to achieve the sub-linear
regret bound. Specifically, recall α quantifies the self-concentration of each task. Therefore,
α =

√
T

1+
√
T

T→∞−→ 1 implies for large horizon it would be less necessary to rely on other tasks

as available supervision for the task itself is already plenty; C = 1+
√
T

T

T→∞−→ 0 suggests
diminishing learning rate over the horizon length.

2.1.6 Experiments

We evaluate the performance of our algorithm under batch and online settings. All reported results
in this section are averaged over 30 random runs or permutations of the training data. Unless
otherwise specified, all model parameters are chosen via 5-fold cross validation.

Benchmark Datasets

We use three datasets for our experiments. Details are given below:
Landmine Detection2 consists of 19 tasks collected from different landmine fields. Each task

is a binary classification problem: landmines (+) or clutter (−) and each example consists of 9
features extracted from radar images with four moment-based features, three correlation-based
features, one energy ratio feature and a spatial variance feature. Landmine data is collected from
two different terrains: tasks 1-10 are from highly foliated regions and tasks 11-19 are from desert
regions, therefore tasks naturally form two clusters. Any hypothesis learned from a task should be
able to utilize the information available from other tasks belonging to the same cluster.

Spam Detection3 We use the dataset obtained from ECML PAKDD 2006 Discovery challenge
for the spam detection task. We used the task B challenge dataset which consists of labeled training
data from the inboxes of 15 users. We consider each user as a single task and the goal is to build
a personalized spam filter for each user. Each task is a binary classification problem: spam (+)
or non-spam (−) and each example consists of approximately 150K features representing term
frequency of the word occurrences. Since some spam is universal to all users (e.g. financial
scams), some messages might be useful to certain affinity groups, but spam to most others. Such
adaptive behavior of user’s interests and dis-interests can be modeled efficiently by utilizing the
data from other users to learn per-user model parameters.

Sentiment Analysis4 We evaluated our algorithm on product reviews from amazon. The
dataset contains product reviews from 24 domains. We consider each domain as a binary classifi-

2http://www.ee.duke.edu/~lcarin/LandmineData.zip
3http://ecmlpkdd2006.org/challenge.html
4http://www.cs.jhu.edu/~mdredze/datasets/sentiment
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cation task. Reviews with rating > 3 were labeled positive (+), those with rating < 3 were labeled
negative (−), reviews with rating = 3 are discarded as the sentiments were ambiguous and hard to
predict. Similar to the previous dataset, each example consists of approximately 350K features
representing term frequency of the word occurrences.

We choose 3040 examples (160 training examples per task) for landmine, 1500 emails for
spam (100 emails per user inbox) and 2400 reviews for sentiment (100 reviews per domain) for
our experiments. Note that we intentionally kept the size of the training data small to drive the
need for learning from other tasks, which diminishes as the training sets per task become large.
Since all these datasets have a class-imbalance issue (with few (+) examples as compared to (−)
examples), we use average Area Under the ROC Curve (AUC) as the performance measure.

Batch Setting

We briefly conduct an experiment on landmine detection dataset for our batch learning to demon-
strate the advantages of learning from shared data. We implement two versions of our pro-
posed algorithm with different updates: SMTL-t (SMTL with thresholding updates) where
p

(t+1)
kj ∝ (λ− `(t)

kj )+
5 and SMTL-e (SMTL with exponential updates) as in Algorithm 1. We

compare our SMTL* with two standard baseline methods for our batch setting: Independent Task
Learning (ITL)—learning a single model for each task and Single Task Learning (STL)—learning
a single classification model for pooled data from all the tasks. In addition we compare our models
with SHAMO, which is closest in spirit with our proposed models. We select the value for λ and
α for SMTL* and M for SHAMO using cross validation.

Figure 2.1 (left) shows the average AUC calculated for different training size on landmine.
We can see that the baseline results are similar to the ones reported by Xue et al. [115]. Our
proposed algorithm (SMTL*) outperforms the other baselines but when we have very few training
examples (say 20 per task), the performance of STL improves as it has more examples than
the others. Since η depends on the loss incurred on the data from related tasks, this loss-based
measure can be unreliable for a small training sample size. To our surprise, SHAMO performs
worse than the other models which tells us that assuming two tasks are exactly same (in the sense
of hypothesis) may be inappropriate in real-world applications. Figure 2.1 (middle & left) show
the task relationship matrix η for SMTL-t and SMTL-e on landmine when the number of training
instances is 160 per task.

Online Setting

To evaluate the performance of our algorithm in the online setting, we use all three datasets (land-
mine, spam and sentiment) and compare our proposed methods to 5 baselines. We implemented
two variations of Passive-Aggressive algorithm (PA) [33]. PA-ITL learns independent model for
each task and PA-ONE builds a single model for all the tasks. We also implemented the algorithm
proposed by Dekel et al. for online multitask learning with shared loss (OSGL) [35]. These three
baselines do not exploit the task-relationship or the data from other tasks during model update.
Next, we implemented two online multitask learning related to our approach: FOML – initializes

5Our algorithm and theorem can be easily generalized to other types of updating rules by replacing exp in (2.6)
with other functions. In latter cases, however, η may no longer have probabilistic interpretations.
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Figure 2.1: Average AUC calculated for compared models (left). A visualization of the task
relationship matrix in Landmine learned by SMTL-t (middle) and SMTL-e (right). The probabilistic
formulation of SMTL-e allows it to discover more interesting patterns than SMTL-t.

η with fixed weights [25], Online Multitask Relationship Learning (OMTRL) [97] – learns a task
covariance matrix along with task parameters. We could not find a better way to implement the
online version of the SHAMO algorithm, since the number of shared hypotheses or clusters varies
over time.

Table 2.1 summarizes the performance of all the above algorithms on the three datasets. In
addition to the AUC scores, we report the average total number of support vectors (nSV) and
the CPU time taken for learning from one instance (Time). From the table, it is evident that
OSMTL* outperforms all the baselines in terms of both AUC and nSV. This is expected for the
two default baselines (PA-ITL and PA-ONE). We believe that PA-ONE shows better result than
PA-ITL in spam because the former learns the global information (common spam emails) that is
quite dominant in spam detection problem. The update rule for FOML is similar to ours but using
fixed weights. The results justify our claim that making the weights adaptive leads to improved
performance.

In addition to better results, our algorithm consumes less or comparable CPU time than the
baselines which take into account inter-task relationships. Compared to the OMTRL algorithm
that recomputes the task covariance matrix every iteration using expensive SVD routines, the
adaptive weights in our are updated independently for each task. As specified in [97], we learn the
task weight vectors for OMTRL separately as K independent perceptron for the first half of the
training data available (EPOCH=0.5). OMTRL potentially looses half the data without learning
task-relationship matrix as it depends on the quality of the task weight vectors.

It is evident from the table that algorithms which use loss-based update weights η (OSGL,
OSMTL*) considerably outperform the ones that do not use it (FOML,OMTRL). We believe that
loss incurred per instance gives us valuable information for the algorithm to learn from that
instance, as well as to evaluate the inter-dependencies among tasks. That said, task relationship
information does help by learning from the related tasks’ data, but we demonstrate that combining
both the task relationship and the loss information can give us a better algorithm, as is evident
from our experiments.

We would like to note that our proposed algorithm OSMTL* does exceptionally better in
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Table 2.1: Average performance on three datasets: means and standard errors over 30 random
shuffles.

Models Landmine Detection Spam Detection Sentiment Analysis
AUC nSV Time (s) AUC nSV Time (s) AUC nSV Time (s)

PA-ONE
0.5473
(0.12)

2902.9
(4.21) 0.01

0.8739
(0.01)

1455.0
(4.64) 0.16

0.7193
(0.03)

2350.7
(6.36) 0.19

PA-ITL
0.5986
(0.04)

618.1
(27.31) 0.01

0.8350
(0.01)

1499.9
(0.37) 0.16

0.7364
(0.02)

2399.9
(0.25) 0.16

OSGL
0.6482
(0.03)

740.8
(42.03) 0.01

0.9551
(0.007)

1402.6
(13.57) 0.17

0.8375
(0.02)

2369.3
(14.63) 0.17

FOML
0.6322
(0.04)

426.5
(36.91) 0.11

0.9347
(0.009)

819.8
(18.57) 1.5

0.8472
(0.02)

1356.0
(78.49) 1.20

OMTRL
0.6409
(0.05)

432.2
(123.81) 6.9

0.9343
(0.008)

840.4
(22.67) 53.6

0.7831
(0.02)

1346.2
(85.99) 128

OSMTL-t
0.6776
(0.03)

333.6
(40.66) 0.18

0.9509
(0.007)

809.5
(19.35) 1.4

0.9354
0.01

1312.8
(79.15) 2.15

OSMTL-e
0.6404
(0.04)

458
(36.79) 0.19

0.9596
(0.006)

804.2
(19.05) 1.3

0.9465
(0.01)

1322.2
(80.27) 2.16

sentiment, which has been used as a standard benchmark application for domain adaptation
experiments in the existing literature [18]. We believe the advantageous results on sentiment
dataset implies that even with relatively few examples, effectively knowledge transfer among the
tasks/domains can be achieved by adaptively choosing the (probabilistic) inter-task relationships
from the data.

2.2 Multitask Multiple Kernel Relationship Learning

There have been two main line of work in multitask learning: First, learn a shared feature
representation across all the tasks, leveraging low-dimensional subspaces in the feature space
[9, 52, 72, 105]. Second, learn the relationship between the tasks to improve the performance of
the related tasks [93, 115, 120, 121]. Pairwise task relationships such as positive task correlation,
negative task correlation and task independence provide very useful information for characterizing
and transferring information to similar tasks.

Despite the expressive power of these two different research directions, the learning space is
restricted to a single kernel (per task), chosen by the user, that corresponds to a RKHS space.
Multiple Kernel Learning (MKL), on the other hand, allows the user to specify a family of base
kernels related to an application, and to use the training data to automatically learn the optimal
combination of these kernels. We learn the weights of the base kernels along with the model
parameters in a single joint optimization problem. There is a large body of work in the recent
years addressing several aspects of this problem, such as efficient learning of the kernel weights,
fast optimization and providing better theoretical guarantees [10, 28, 58, 59, 66, 89, 104].

Recent work in multiple kernel learning in a multitask framework focuses on sharing common
representations and assumes that the tasks are all related [53]. The motivation for this approach
stems from multitask feature learning that learns joint feature representation shared across multiple
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tasks [9, 105]. Unfortunately, the assumption that all the tasks are related and share a common
feature representation is too restrictive for many real-world applications. Similarly, based on
previous work [121], one can extend the traditional multitask relationship learning MTRL with
multiple task-specific base kernels. There are two main problems with such naive approach:
First, the unknown variables (task model parameters, kernel weights and task relationship matrix)
are intertwined in the optimization problem, and thus making it difficult to learn for large-scale
applications. Furthermore, the task relationship matrix is learned in the original feature space
rather than in the kernel spaces. We show in this chapter, that learning the relationship between the
kernel spaces empirically performs better than learning the relations among the original feature
spaces.

There have been a few attempts to imposing higher-order relationship between kernel spaces
using kernel weights. Kloft et al. [59] propose a non-isotropic norm such as

√
β>Σ−1β on kernels

weights β to induce the relationship between the base kernels in Reproducing Kernel Hilbert
Spaces. For example, in neuroimaging, a set of base kernels are derived from several medical
imaging modalities such as MRI, PET etc., or image processing methods such as morphometric
or anatomical modeling, etc. Since some of the kernel functions share similar parameters such
as patient information, disease progression stage, etc., we can expect that these base kernels are
correlated based on how they were constructed. Such information can be obtained from medical
domain experts as a part of the disease prognosis which then can be used as a prior knowledge
Σ. Previous work either assumes Σ as a diagonal matrix or requires prior knowledge from the
experts on the interaction of kernels [50, 59]. Unfortunately, such prior knowledge is not easily
available in many applications either because it is time-consuming or it is expensive to elicit. [62].
In such applications, we want to induce this relationship matrix from the data along with the
kernel weights and model parameters.

In this section, we address these problems with a novel regularization-based approach for mul-
titask multiple kernel learning framework, called multitask multiple kernel relationship learning
(MK-MTRL), which models the task relationship matrix from the weights learned from the latent
feature spaces of task-specific base kernels. The idea is to automatically infer task relationships in
(RKHS) spaces from their base kernels. We first propose an alternating minimization algorithm
to learn the model parameters, kernel weights and task relationship matrix. The method uses a
wrapper approach which efficiently uses any off-the-shelf SVM solver (or any kernel machine) to
learn the task model parameters. However, like previous work, the proposed iterative algorithm
suffers from scalability challenges. The run-time complexity of the algorithm increases with the
number of tasks and the number of base kernels per task, as it needs these base kernels in memory
to learn the kernel weights and the task relationship matrix.

For large-scale applications such as object detection, we introduce a novel two-stage online
learning algorithm following the recent work [64] that learns the kernel weights independently
from the model parameters. The first stage learns a good combination of base kernels in an online
setting and the second stage uses the learned weights to estimate a linear combination of the
base kernels, which can be readily used with a standard kernel method such as SVM or kernel
ridge regression [29, 34]. We provide strong empirical evidence that learning the task relationship
matrix in the RKHS space is beneficial for many applications such as stock market prediction,
visual object categorization, etc. On all these applications, our proposed approach outperforms
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several state-of-the-art multitask learning baselines. It is worth noting that the proposed multitask
multiple kernel relationship learning can be readily applied for heterogeneous and multi-view data
with no modification to the proposed framework [49, 119].

The rest of the chapter is organized as follows: we provide a brief overview of multitask
multiple kernel learning in the next section. In section 2.2.2, we discuss the proposed model
MK-MTRL, followed by our two-stage online learning approach in section 2.2.5. We then show
comprehensive evaluations of the proposed model against the six baselines on several benchmark
datasets in section 2.2.7.

2.2.1 Preliminaries

Before introducing our approach, we briefly review the multitask multiple kernel learning
framework in this section. Suppose there are T learning tasks available with the training set
D = {(xti,yti), i = 1 . . . Nt, t = 1 . . . T} , where xti is the ith samples from the task t and it’s
corresponding output yti. Let {Ktk}1≤k≤K be a set of task-specific base kernels, induced by the
kernel mapping function φk(·) on tth task data. The objective of multitask multiple kernel learning
problem is to learn a good linear combination of the task-specific base kernels

∑
k βtkKtk, βtk ≥ 0

using the relationship between the tasks.
In addition to the non-negative constraints on βtk, we need to impose an additional constraint

or penalty to ensure that the units in which the margins are measured are meaningful (assuming
that the base kernels are properly normalized). Recent work in MKL employs ‖β‖2

2 to constrain
the kernel weights. A direct extension of `2 regularized MKL to multitask framework is given as
follows 6:

min
B≥0

min
W,c,ξ

T∑
t=1

(
1

2

K∑
k=1

‖wtk‖2
Hk

βtk
+ C

Nt∑
i=1

ξti +
µ

2
‖βt‖2

2

)

s.t., yti(
K∑
k=1

w>tkφk(xti) + ct) ≥ 1− ξti, ξti ≥ 0

(2.14)

Similarly, we can use a general `p norm constraint with p > 1 on the kernel weights (‖β‖2
p).

This can be thought of as a simple extension of `p-MKL to multitask setting [58]. Without any
additional structural constraints on βtk, the kernel weights are learned independently for each task
and thus does not efficiently use the relationship between the tasks. Hence, we call the model in
equation (2.14) as Independent Multiple Kernel Learning (IMKL).

Jawanpuria and Nath [53] proposed Multitask Multiple Kernel Feature Learning (MK-MTFL),
that employs mixed (`1, `p), p ≥ 2 norm regularizer over the RKHS norm of the feature loadings
corresponding to the tasks and the base kernels. The mixed norm regularization promotes a
shared feature representations to combine the given set of task-specific base kernels. The `p-norm
regularizer learns the unequal weighting across the tasks, where as, `1-norm regularizer over the
`p-norm leads to learning the shared kernel among the tasks.

6For clarity, we use binary classification tasks to explain the preliminaries and the proposed approach. They can
be easily applied to multiclass tasks and also to regression tasks via kernel ridge regression.
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The objective function for MK-MTFL is given as follows:

min
W,c,ξ

(
1

2

K∑
k=1

( T∑
t=1

‖wtk‖p2
) 1
p

)2

+ C
T∑
t=1

Nt∑
i=1

ξti

s.t., yti(
K∑
k=1

w>tkφk(xti) + ct) ≥ 1− ξti, ξti ≥ 0

(2.15)

Note that the above objective function employs an `1-norm across the base kernels and `p norm
across tasks. The above optimization problem can be equivalently written in the dual space as
follows:

min
γ∈∆K

max
λj∈∆T,p̃

max
0≤α≤C

g(λ, α, γ)

s.t., α>t yt = 0,
(2.16)

where,

g(λ, α, γ) =
T∑
t=1

{
1>αt −

1

2
α>t Yt

[ K∑
k=1

γkKtk
λtk

]
Ytαt

}
Here αt is a vector of Langragian multipliers for the tth task, and corresponds to Nt constraints on
the task data. Y t is a diagonal matrix with entries as yt and Ktk is the gram matrix of the tth task
data w.r.t the kth kernel function. More specifically, γ selects the base kernels that are important
for all the tasks, where as λ selects the base kernels that are specific to individual tasks. With
this representation, MK-MTFL can be seen as a multiple kernel generalization to the multi-level
multitask learning proposed by Lozano and Swirszcz (2012) [105].

2.2.2 Proposed Method (MK-MTRL)

This section presents the details of the proposed model MK-MTRL. Since multitask learning seeks
to improve performance of each task with the help of other related tasks, it is desirable in multiple
kernel learning for the multitask framework to have a structural constraints on the task kernel
weights βtk to promote sharing of information from other related tasks. Note that the proposed
approach is significantly different from the traditional MTRL, as explained in the introduction.

When prior knowledge on task relationship is available, the multiple kernel multitask learning
model should incorporate this information for simultaneously learning several related tasks.
Neither the IMKL or MK-MTFL consider the pairwise task relationship such as positive task
correlation, negative task correlation, and task independence when learning the kernel weights
for combining the base kernels. Based on the assumption that similar tasks are likely to give
similar importance to their base kernels (and thereby, their respective RKHS spaces), we consider
a regularization on the task kernel weights tr(BΩ−1B>), where, for notational convenience, we
writeB = {β1,β2, . . . ,βT}. Mathematically, the proposed MK-MTRL formulation is written as
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follows:

min
Ω,B≥0

min
W,c,ξ

T∑
t=1

(
1

2

K∑
k=1

‖wtk‖2
Hk

βtk
+ C

Nt∑
i=1

ξti

)
+
µ

2
tr(BΩ−1B>)

s.t., yti(
K∑
k=1

w>tkφk(xti) + ct) ≥ 1− ξti, ξti ≥ 0

Ω � 0,

tr(Ω) ≤ 1

(2.17)

The key difference from the IMKL model is that the standard (squared) `p norm on βt is replaced
with a more meaningful structural penalty that incorporates the task relationship. Unlike in
MK-MTFL, the shared information among the task is separate from the core problem (T SVMs).
Here, Ω encodes the task relationship such that similar tasks are forced to have similar kernel
weights. It is easy to see that when Ω = IT×T , the above problem reduces to equation (2.14).

2.2.3 MK-MTRL in Dual Space
In this section, we consider the proposed approach in the dual space. By writing the above objective
function in Lagrangian form and introducing Lagrangian multiplier αtk for the constraints, we
can write the corresponding dual objective function as:

min
Ω,B≥0

max
0≤α≤C

h(α,B) +
µ

2
tr(BΩ−1B>)

s.t., α>t yt = 0,

Ω � 0,

tr(Ω) ≤ 1

(2.18)

where,

h(α,B) =
T∑
t=1

{
1>αt −

1

2
α>t Yt

( K∑
k=1

βtkKtk
)
Ytαt

}
Note that we can further reduce the problem by eliminating αtk, then the dual problem becomes:

min
Ω

max
0≤α≤C

T∑
t=1

{
1>αt −

1

2
‖G‖Ω

}
s.t., α>t yt = 0,

Ω � 0,

tr(Ω) ≤ 1

(2.19)

where Gtk = βtkα
>
t YtKtkYtαt which corresponds to ‖wtk‖

2
2

βtk
in the primal space and we write

‖G‖Ω =
√
tr(GΩG>). We will use this representation for deriving closed-form solution for the

task kernel weightsB
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2.2.4 Optimization

We use an alternating minimization procedure for learning the kernel weights and the model
parameters iteratively. We implement a two-layer wrapper approach commonly used in these
MKL solvers for our problem. The wrapper methods alternate between minimizing the primal
problem (2.17) w.r.t βt via a simple analytical update step and minimizing all other variables in
terms of the dual variables αt from equation (2.18).

When {B,Ω} are fixed, MK-MTRL equation (2.18) reduces to T independent sub-problems.
One can use any conventional SVM solver (or any kernel method) to optimize forαt independently.
We focus on optimizing the kernel coefficientsB and Ω next.

Optimizing w.r.tB when {α,Ω} are fixed

Given {α,Ω}, we findB by setting the gradient of equation (2.17) w.r.tB to zero and we get:

B =
1

µ
(W ◦B−2)Ω (2.20)

where B−2 = {β−2
kt , 1 ≤ k ≤ K, 1 ≤ t ≤ T},Wtk = ‖wtk‖2

Hk and A ◦B is an element-wise
product operation.

By incorporating the last term in equation (2.17) into the constraint set, we can eliminate the
regularization parameter µ to obtain an analytical solution forB. Because Ω � 0 andB ≥ 0, the
constraint tr(BΩ−1B>) ≤ 1 must be active at optimality. We can now use the above equation to
solve for µ.

B =
(W ◦B−2)Ω√

tr((W ◦B−2)Ω(W ◦B−2)>)
(2.21)

Since the task relationship matrix is independent of the number of base kernelsK, one may use
the above closed-form solution when the number of tasks is small. For some applications, it may
be desirable to employ an iterative approach such as first-order method (FISTA) or second-order
method (Newton’s). The parameter µ can be easily learned by cross-validation.

Optimizing w.r.t Ω when {α,B} are fixed

In the final step of the optimization, we fix α and B and solve the problem w.r.t Ω. By taking
the partial derivative of the objective function with respect to Ω and setting it zero, we get an
analytical solution for Ω[121]:

Ω =
(B>B)

1
2

tr((B>B)
1
2 )

(2.22)

Substituting the above solution in equation 2.17, we can see that the the objective function of
MK-MTRL is related to the trace norm regularization. Instead of `p norm regularization (as in
Lp-MKL) or mixed-norm regularization (as in MK-MTFL), our model seeks a low-rank B, using
‖B‖∗, such that similar base kernels are selected among the similar tasks.
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2.2.5 Two-Stage MK-MTRL
The proposed optimization procedure in the previous section involves T independent SVM
(or kernel ridge regression) calls, followed by two closed-form expressions for jointly learning
the kernel weights B, task relationship matrix Σ and the task parameters α. Even though this
approach is simple and easy to implement, it requires the precomputed kernel matrices to be
loaded into memory for learning the kernel weights. This could add a serious computational
burden especially when the number of tasks T is large [113].

In this section, we consider an alternative approach to address this problem inspired by [29, 34].
It follows a two-stage approach: first, we independently learn the weights of the given task-specific
base kernels using the training data and then, we use the weighted sum of these base kernels in
a standard kernel machines such as SVM or kernel ridge regression to obtain a classifier. This
approach significantly reduces the amount of computational overhead involved in the traditional
multiple kernel learning algorithms that estimate the kernel weights and the classifier by solving a
joint optimization problem.

We propose an efficient binary classification framework for learning the weights of these
task-specific base kernels, based on target alignment [34]. The proposed framework formulates
the kernel learning problem as a linear classification in the kernel space (so called K-classifier).
In this space, any task classifier with weight parameters directly corresponds to the task kernel
weights.

For a given set of T ∗ K base kernels {Ktk}1≤k≤K
1≤t≤T (K base kernels per task), we define a

binary classification framework over a new instance space (so called K-space) defined as follows:

zt,ii′ = {K1(xti,xti′),K2(xti,xti′), . . . ,KK(xti,xti′)}
lt,ii′ = 2.1{yti = yti′} − 1

(2.23)

Any hypothesis ht : RK → R for a task t induces a similarity function K̃ht(xti,xti′) between
instances xti and xti′ in the original space:

K̃ht(xti,xti′) = ht(zt,ii′)

= ht(K1(xti,xti′), . . . ,KK(xti,xti′))

Suppose we consider a linear function for our task hypothesis ht(zt,ii′) = βt.zt,ii′ with the non-
negative constraints βt ≥ 0, then the resulting induced kernel K̃ht is also positive semi-definite.
The key idea behind this two-stage approach is that if a K-classifiers ht is a good classifier in the
K-space, then the induced kernel K̃ht(xti,xti′) will likely be positive when xti and xti′ belong to
the same class and negative otherwise. Thus the problem of learning a good combination of base
kernels can be framed as a problem of learning a good K-classifier.

With this framework, the optimization problem for learning βt for each task t can be formu-
lated as follows:

min
B≥0

T∑
t=1

`(lt,ii′ , 〈βt, zt,ii′〉) +
µ

2
R(B)

`(lt,ii′ , 〈βt, zt,ii′〉) =
1(

Nt
2

)
+Nt

∑
1≤i≤i′≤Nt

[
1− lt,ii′βtzt,ii′

]
+

(2.24)
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where [1− s]+ = max{0, 1− s} andR(B) is the regularization function on the kernel weights
B. Since we are interested in learning task relationships using the task kernel weights βt, we can
directly extend the above formulation to incorporate the regularization on βt based on MK-MTRL.

min
Ω

min
B≥0

T∑
t=1

`(lt,ii′ , 〈βt, zt,ii′〉) +
µ

2
tr(BΩ−1B>)

Ω � 0,

tr(Ω) ≤ 1

(2.25)

Since the above objective function depends on every pair of observations, we consider an online
learning procedure for faster computation that learns the kernel weights and the task relationship
matrix sequentially. Note that with the above formulation, one can easily extend the existing
approach to jointly learn both the feature and task relationship matrices using matrix normal
penalty [120].

2.2.6 Algorithms
Algorithm 3 shows the pseudo-code for MK-MTRL. It outlines the update steps explained in
Section 3. The algorithm alternates between learning the model parameters, kernel weights and
task relationship matrix until it reaches the maximum number of iterations 7 or when there are
minimal changes in the subsequentB.

The two-stage, online learning of MK-MTRL is given in Algorithm 4. The online learning of
βt and Ω is based on the recent work by Saha et al., 2011 [97]. We set the maximum number of
rounds to 100, 000. Since we construct the examples in kernel space on the fly, there is no need
keep the base kernel matrices in memory. This significantly reduces the computational burden
required in computingB.

We use libSVM to solve the T individual SVMs (equation 2.26). All the base kernels are nor-
malized to unit trace. Note that equation 2.28 requires computing Singular Value Decomposition
(SVD) on (B>B). One may use an efficient decomposition algorithm such as the randomized
SV D to speed up the learning process [71].

2.2.7 Experiments
We evaluate the performance of our proposed model on several benchmark datasets. We compare
our proposed model with five state-of-the-art baselines in multitask learning and in multitask
multiple kernel learning. All reported results in this section are averaged over 10 random runs of
the training data. Unless otherwise specified, all model parameters are chosen via 5-fold cross
validation. The best model and models with statistically comparable results are shown in bold.

Compared Models

We compare the following models for our evaluation.

7maxIter is set to 50
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Algorithm 3: Wrapper method for Multitask Multiple Kernel Relationship
Learning (MK-MTRL)

Input :Base kernels {Ktk}1≤k≤K
1≤t≤T , labels {yt)}Tt=1,

regularization parameter µ > 0
Output :α,B,Ω
Initialize Ω = 1

T
IT×T ;

repeat
repeat

Set Kt ←
∑K

k=1 βtkKtk,∀t ∈ [T ];
Solve for αt, t ∈ [T ]

max
0≤αt≤C,α>t yt=0

{
1>αt −

1

2
α>t YtKtYtαt

}
(SVM) (2.26)

Solve forB = {β1,β2, . . . ,βT},

min
B≥0

1

2

T∑
t=1

K∑
k=1

‖wtk‖2
Hk

βtk
+
µ

2
tr(BΩ−1B>) (2.27)

where ‖wtk‖2
Hk = β2

tkα
>
t YtKtkYtαt

until converges;
Solve for Ω,

min
Ω�0,tr(Ω)≤1

tr(Ω−1(B>B)) (2.28)

until converges;

• Single-Task Learning (STL) learns the tasks independently. STL uses either SVM (in case
of binary classification tasks) or Kernel Ridge regression (in case of regression tasks) to
learn the individual models.

• Multitask Feature Learning (MTFL [9]) learns a shared feature representation from all the
tasks using regularization. It learns this shared feature representation along with the task
model parameters alternatively8.

• Multitask Relationship Learning (MTRL [121]) learns task relationship matrix under a
regularization framework. This model can be viewed as a multitask generalization for
single-task learning. It learns the task relationship matrix and the task parameters in an
iterative fashion9.

• Single-task Multiple Kernel Learning (IMKL) learns independent MKL for each task. This
baseline does not use any shared information between the tasks. We use `p-MKL for each

8The source code for this baseline is available at http://ttic.uchicago.edu/~argyriou/code/
mtl_feat/mtl_feat.tar

9The source code for this baseline is available at https://www.cse.ust.hk/~zhangyu/codes/MTRL.
zip
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Algorithm 4: Two-stage, online learning of (MK-MTRL)

Input :Base kernels {Ktk}1≤k≤K
1≤t≤T , labels {yt)}Tt=1,

regularization parameter µ > 0, Number of rounds R
Output :α,B,Ω
Initialize β(1)

t = 0,Ω = 1
T
IT×T ;

for r = 1 . . . R do
Construct (zt,ii′ , lt,ii′) using K for any two examples (xti, yti) and
(xti′ , yti′) and for any task t, where

zt,ii′ = {K1(xti,xti′),K2(xti,xti′),

. . . ,KK(xti,xti′)}
lt,ii′ = 2.1{yti = yti′} − 1

(2.29)

Predict l̂t,ii′ = β
(r)>
t zt,ii′

if (lt,ii′ 6= l̂t,ii′) then
for t′ = 1 . . . T do

β
(r+1)
t′ = β

(r)
t′ + 1

µ
lt,ii′Ωt,t′zt,ii′

Solve for Ω,
min

Ω�0,tr(Ω)≤1
tr(Ω−1(B>B)) (2.30)

Set Kt ←
∑K

k=1 β
(R)
tk Ktk, ∀t ∈ [T ];

Solve for αt, t ∈ [T ]

max
0≤αt≤C,α>t yt=0

{
1>αt −

1

2
α>t YtKtYtαt

}
(SVM) (2.31)

task. We tune the value of p from [2, 3, 4, 6, 8.67] using 5-fold cross validation.
• Multitask Multiple Kernel Feature Learning (MK-MTFL [53]) learns a shared kernel for

feature representation from all tasks. This is a multiple kernel generalization of multitask
feature learning problem. Again, we tune the value of p̃ from [2, 3, 4, 6, 8.67] using 5-fold
cross validation10.

Unless otherwise specified, the kernels for STL, MTFL and MTRL are chosen (via cross
validation) from either a Gaussian RBF kernel with different bandwidth or a linear kernel for
each dataset. The value for C is chosen from [10−3, . . . , 103]. We tune the value of µ from
[10−7, . . . , 103]. We use Newton’s method to learn the task kernel weight matrixB. We compare
our models on several applications: Asset Return Prediction, Landmine Detection and Object
Recognition. Note that different applications require different types of base kernels. There is no
common set of kernel functions that will work for all applications. We choose these base kernels

10The source code for this baseline is available at http://www.cse.iitb.ac.in/saketh/research/
MTFL.tgz
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Table 2.2: Mean Squared Error (MSE) for each company (×1000)

OLS Lasso MRCE FES STL IKL IMKL MK-
MTFL

MK-
MTRL

Walmart 0.98 0.42 0.41 0.40 0.44 0.43 0.45 0.44 0.44

Exxon 0.39 0.31 0.31 0.29 0.34 0.32 0.33 0.32 0.32

GM 1.68 0.71 0.71 0.62 0.82 0.62 0.60 0.61 0.56
Ford 2.15 0.77 0.77 0.69 0.91 0.56 0.53 0.55 0.49
GE 0.58 0.45 0.45 0.41 0.43 0.41 0.40 0.40 0.39
ConocoPhillips 0.98 0.79 0.79 0.79 0.84 0.81 0.83 0.80 0.80

Citigroup 0.65 0.66 0.62 0.59 0.64 0.66 0.62 0.62 0.60

IBM 0.62 0.49 0.49 0.51 0.48 0.47 0.45 0.45 0.43
AIG 1.93 1.88 1.88 1.74 1.91 1.94 1.88 1.89 1.83

AVG 1.11 0.72 0.71 0.67 0.76 0.69 0.68 0.68 0.65

based on the application and the type of data.

Asset Return Prediction

We begin our experiments with asset return prediction data used in [93] 11. It consists of weekly
log returns of 9 stocks from the year 2004. It is considered in linear multivariate regression
with output covariance estimation techniques [93]. We consider first-order vector auto-regressive
models of the form xt = f(xt−1) where xt corresponds to the 9-dimensional vector of weekly
log-returns from 9 companies as shown in table 2.2. The dataset is split evenly such that the
first 26 weeks of the year is used as the training set and the next 26 weeks is used as the test set.
Following [102], we use univariate Gaussian kernels with 13 varying bandwidth, generated from
each feature, as base kernels. The total number of base kernels sums to 117.

Performance is measured by the average mean-squared prediction error over the test set for
each task. The experimental setup for this dataset follows exactly [93]. We compare the results
from our proposed and baseline model with the results from Ordinary Least Square (OLS), Lasso,
Multivariate Regression with Covariate Estimation (MRCE) and Factor Estimation and Selection
(FES) models reported in [93] (See [93] for more details about the models). In addition to the
standard baselines, we include Input Kernel Learning (IKL), which learns a vector of kernel
weights β shared by all tasks [106].

After running MK-MTRL on these 117 base kernels, the model sets most of them to 0 except
for base kernels corresponding to bandwidths (1e− 4, 1). These bandwidth selections represent
the long-term and short-term dependencies common in temporal data. We reran the model with
the selected non-zero bandwidths and report the results for these selected base kernels. We can
see that the proposed model MK-MTRL performs better than all the baselines.

11http://cran.r-project.org/web/packages/MRCE/index.html
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Table 2.3: Average AUC scores for different samples of landmine dataset. The table reports the
mean and standard errors over 10 random runs.

30 samples 50 Samples 80 Samples

STL 0.6315 ± 0.032 0.6540 ± 0.026 0.6542 ± 0.027

MTFL 0.6387 ± 0.037 0.6968 ± 0.015 0.7051 ± 0.020

MTRL 0.6555 ± 0.034 0.6933 ± 0.023 0.7074 ± 0.024

IMKL 0.6857 ± 0.024 0.7138 ± 0.011 0.7278 ± 0.011

MK-MTFL 0.6866 ± 0.018 0.7145 ± 0.009 0.7305 ± 0.009

MK-MTRL 0.6870 ± 0.033 0.7242 ± 0.011 0.7405 ± 0.014

Landmine Detection

This dataset 12 consists of 19 tasks collected from different landmine fields. Each task is a binary
classification problem: landmines (+) or clutter (−) and each example consists of 9 features
extracted from radar images with four moment-based features, three correlation-based features,
one energy ratio feature and a spatial variance feature. Landmine data is collected from two
different terrains: tasks 1− 10 are from highly foliated regions and tasks 11− 19 are from desert
regions, therefore tasks naturally form two clusters. Any hypothesis learned from a task should be
able to utilize the information available from other tasks belonging to the same cluster.

We choose {30, 50, 80} examples per task for this dataset. We use a polynomial kernel with
power {1, 2, 3, 4, 5} for generating our base kernels. Note that we intentionally kept the size of the
training data small to drive the need for learning from other tasks, which diminishes as the training
sets per task become large. Due to class-imbalance issue (with few (+) examples compared to
(−) examples), we use average Area Under the ROC Curve (AUC) as the performance measure.
This dataset has been previously used for jointly learning feature correlation and task correlation
[120]. Hence, landmine dataset is an ideal dataset for evaluating all the models.

Table 2.3 reports the results from the experiment. We can see that MK-MTRL performs better
in almost all cases. When the number of training examples is small, MK-MTRL has difficulty
in learning the task relationship matrix Ω, but MK-MTFL performs equally well as it shares the
feature representation among the tasks which is especially useful when the number of training is
relatively low. As we get more and more training data, MK-MTRL performs significantly better
than all the other baselines.

Robot Inverse Dynamics

We consider the problem of learning the inverse dynamics of a 7-DOF SARCOS anthropomorphic
data 13. The dataset consists of 28 dimensions, of which first 21 dimensions are considered as
features and the last 7 dimensions are used as outputs. We add an additional feature to account for

12http://www.ee.duke.edu/~lcarin/LandmineData.zip
13http://www.gaussianprocess.org/gpml/data/
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the bias. There are 7 regression tasks and use kernel ridge regression to learn the task parameters
and kernel weights. The feature set includes seven joint positions, seven joint velocities and seven
joint accelerations, which is used to predict seven joint torques for the seven degrees of freedom
(DOF). We randomly sample 2000 examples, of which {15, 50, 100, 150, 200, 600} are used for
training sets and the rest of the examples are used for test set. This dataset has been previous
shown to include positive correlation, negative correlation and task unrelatedness and will be a
challenging problem for baselines that doesn’t learn the task correlation.

Following [121], we use normalized Mean Squared error (nMSE), which is the mean squared
error divided by the variance of the ground truth. We generate 31 base kernels from multivariate
Gaussian kernels with 10 varying bandwidth (based on the range of the data) and feature-wise
linear kernel on each of the 21 dimensions. We use linear kernel for single task learning. The
results calculated for different training set size is reported in Figure 2.2. We can see that MK-
MTRL performs better than all the baselines. Contrary to the results report in [53], MK-MTFL
performs the worst. As the model sees more data, it struggles to learn the task relationship and
even performs worse than the single task learning.

Table 2.4: Comparison for multiple kernel models using nMSE on SARCOS data

STL IMKL MK-MTRL

1st DOF 0.0862 ± 0.0033 0.0838 ± 0.0032 0.0717 ± 0.0075

2nd DOF 0.0996 ± 0.0041 0.0945± 0.0045 0.0686± 0.0070

3rd DOF 0.0918 ± 0.0042 0.0871 ± 0.0040 0.0649 ± 0.0071

4th DOF 0.0581 ± 0.0021 0.0514 ± 0.0020 0.0298 ± 0.0037

5th DOF 0.1513 ± 0.0063 0.1405 ± 0.0057 0.1070 ± 0.0053

6th DOF 0.2911 ± 0.0094 0.2822 ± 0.0081 0.1835 ± 0.0125

7th DOF 0.0715 ± 0.0025 0.0628 ± 0.0024 0.0457 ± 0.0036

AVG 0.1214 ± 0.0015 0.1146 ± 0.0013 0.0816 ± 0.0028

Moreover, we report the individual nMSE for each DOF in Table 2.4. It shows that MK-MTRL
consistently outperforms in all the tasks. Comparing the results to the one reported in [121], we
can see that MT-MTRL (with 0.0816 AVG nMSE score) performs better than MTFL and MTRL
(with 0.3149 and 0.0912 AVG nMSE scores respectively).

Exam Score Prediction

For completeness, we include the results for benchmark dataset in multitask regression 14. The
school dataset consists of examination scores of 15362 students from 139 schools in London.
Each school is considered as a task and the feature set includes the year of the examination, four

14http://ttic.uchicago.edu/~argyriou/code/mtl_feat/school_splits.tar
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Figure 2.2: nMSE vs Number of training example for SARCOS data

school-specific and three student-specific attribute. We replace each categorical attribute with
one binary variable for each possible attribute value, as in [9]. This results in 26 attributes with
additional attribute to account for the bias term. We generate univariate Gaussian kernel with 13
varying bandwidths from each of the 26 attributes as our base kernels. Training and test set are
obtained by dividing examples of each task into 60%-40%. We use explained variance as in [9],
which is defined as one minus nMSE. We can see that MK-MTRL is better than both IMKL and
MK-MTFL.

Table 2.5: Experiment on the usage of multiple kernels on school dataset school

Explained Variance

STL 0.1883 ± 0.020

IMKL 0.1975 ± 0.017

MK-MTFL 0.2024 ± 0.016

MK-MTRL 0.2134 ± 0.016

Object Recognition

In this section, we evaluate our two proposed algorithms for MK-MTRL with computer vision
datasets, Caltech10115 and Oxford flowers 16 in terms of accuracy and training time. Caltech101
dataset consists of 9144 images from 102 categories of objects such as faces, watches, animals,
etc. The minimum, average and maximum number of images per category are 31,90 and 800
respectively. The Caltech101 base kernels for each task are generated from feature descriptors
such as geometric blur, PHOW gray/color, self-similarity, etc. For each of the 102 classes, we
select 30 examples (for a total of 3060 examples per task) and then split these 30 examples into

15http://www.vision.ee.ethz.ch/~pgehler/projects/iccv09
16http://www.robots.ox.ac.uk/~vgg/data/flowers/17/datasplits.mat
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Figure 2.3: Top: Mean accuracy (left) and runtime (right) calculated for Caltech101 dataset with
varying training set sizes. Bottom: Mean accuracy (left) and runtime (right) calculated for Oxford
dataset with varying training set sizes.

testing and training folds, which ensures matching training and testing distributions. Oxford
flowers consists of 17 varies of flowers and the number of images per category is 80. The Oxford
base kernels for each task are generated from a subset of feature values. Each one-vs-all binary
classification problem is considered as a single task, which amount to 102 and 17 tasks with
38 and 7-base kernels per task, respectively. Following the previous work, we set the value of
C = 1000 for Caltech101 dataset.

In addition to the baselines used before, we compare our algorithms with Multiple Kernel
Learning by Stochastic Approximation (MKL-SA) [19]. MKL-SA has a similar formulation to that
of (MK-MTFL), except that it sets λtk = λt,∀k in equation 2.16. At each time step, it samples
one task, according to the multinomial distribution Multi(λ1, λ2, . . . , λT ), to update it’s model
parameter, making it suitable for multitask learning with large number of tasks.

The results for Caltech101 and Oxford shown in Figure fig:obj. The left plots show how the
mean accuracy varies with respect to different training set sizes. The right plots show the average
training time taken by each model with varying training set sizes. From the plots, we can see that
Caltech101 outperforms all the other state-of-the art baselines. But the run-time of MK-MTFL and
MK-MTRL grows steeply in the number of samples per class. Similar results are observed when
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we increase the number of tasks or number of base kernels per task. This explains the need for
efficient learning algorithm for multitask multiple kernel learning problems. We report MK-MTRL
with two-stage, online procedure as one of the baselines. On both Caltech101 and Oxford, the
two-stage procedure yields comparable performance to that of MK-MTRL.

The run-time complexity of two-stage, online MK-MTRL learning is significantly better than
almost all the baselines. Since AVG takes the average of the task-specific base kernels, it has the
lowest computational time. It is interesting to see that two-stage, online MK-MTRL performs
better than MKL-SA both in terms of accuracy and running time. We believe that since MKL-SA
updates the kernel weights after learning a single model parameter, it takes more iterations to
converge (in term of model parameters and the kernel weights).

2.3 Conclusions
In this chapter, we proposed a novel online multitask learning algorithm (OSMTL) that jointly
learns the per-task hypothesis and the inter-task relationships. The key idea is based on smoothing
the loss function of each task w.r.t. a probabilistic distribution over all tasks, and adaptively
refining such distribution over time. In addition to closed-form updating rules, we show our
method achieves the sub-linear regret bound. Effectiveness of our algorithm is empirically verified
over several benchmark datasets.

Following this work, we proposed a novel multiple kernel multitask learning algorithm that
uses inter-task relationships to efficiently learn the kernel weights. The key idea is based on
the assumption that the related tasks will have similar weights for the task-specific base kernels.
We proposed an iterative algorithm to jointly learn this task relationship matrix, kernel weights
and the task model parameters. For large-scale datasets, we introduced a novel two-stage online
learning algorithm to learn kernel weights efficiently. The effectiveness of our algorithm is
empirically verified over several benchmark datasets. The results showed that both multiple kernel
learning and task relationship learning for multitask problems significantly helps in boosting the
performance of the model.
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Chapter 3

Active Learning from Peers

Multitask learning leverages the relationship between the tasks to transfer relevant knowledge
from information-rich tasks to information-poor ones. Most existing work in multitask learning
focuses on how to take advantage of these task relationships, either by sharing data directly [31]
or learning model parameters via cross-task regularization techniques [9, 115, 121]. This chapter
focuses on a specific multitask setting where tasks are allowed to interact by requesting labels
from other tasks for difficult cases.

Following the previous chapter, we consider an online multitask setting where, at each round
t, the learner starts with receiving an example (along with a task identifier) and predicts the output
label. Note that one may also consider learning multiple tasks simultaneously by receiving K
examples for K tasks at each round t. Subsequently, the learner receives the true label and updates
the model(s) as necessary. This sequence is repeated over the entire data, simulating a data stream.
In this setting, the assumption is that the true label is readily available for the task learner, which
is impractical in many applications.

Recent works in active learning for sequential problems have addressed this concern by
allowing the learner to make a decision on whether to ask the oracle to provide the true label for
the current example and incur a cost or to skip this example. Most approach in active learning
for sequential problems use a measure such a confidence of the learner in the current example
[2, 24, 26, 37, 83]. In online multitask learning, one can utilize the task relationship to further
reduce the total number of labels requested from the oracle. This chapter presents a novel active
learning for the sequential decision problems using peers or related tasks. The key idea is that
when the learner is not confident on the current example, the learner is allowed to query its peers,
which usually has a low cost, before requesting a true label from the oracle and incur a high
cost. Our approach follows a perceptron-based update rule in which the model for a given task is
updated only when the prediction for that task is in error. The goal of an online learner in this
setting is to minimize errors attempting to reach the performance of the full hindsight learner and
at the same time, reduce the total number of queries issued to the oracle.

There are many useful application areas for online multitask learning with selective sampling,
including optimizing financial trading, email prioritization and filtering, personalized news,
crowd source-based annotation, spam filtering and spoken dialog system, etc. Consider the
latter, where several automated agents/bots servicing several clients. Each agent is specialized
or trained to answer questions from customers on a specific subject such as automated payment,
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troubleshooting, adding or cancelling services, etc. In such setting, when one of the automated
agents cannot answer a customer’s question, it may request the assistance of another automated
agent that is an expert in the subject related to that question. For example, an automated agent
for customer retention may request some help from an automated agent for new services to offer
new deals for the customer. When both the agents could not answer the customer’s question,
the system may then direct the call to a live agent. This may reduce the number of service calls
directed to live agents and the cost associated with such requests.

Similarly in spam filtering, where some spam is universal to all users (e.g. financial scams),
some messages might be useful to certain affinity groups, but spam to most others (e.g. an-
nouncements of meditation classes or other special interest activities), and some may depend on
evolving user interests. In spam filtering each user is a task, and shared interests and dis-interests
formulate the inter-task relationship matrix. If we can learn the task relationship matrix as well
as improving models from specific decisions from peers on difficult examples, we can perform
mass customization of spam filtering, borrowing from spam/not-spam feedback from users with
similar preferences. The primary contribution studied in this chapter is precisely active learning
for multiple related tasks and its use in estimating per-task model parameters in an online setting.

3.1 Problem Setup

Suppose we are given K tasks where the kth task is associated with Nk training examples. For
brevity, we consider a binary classification problem for each task, but the methods generalize to
multi-class settings and are also applicable to regression tasks. We denote by [N ] consecutive
integers ranging from 1 to N . Let

{
(x

(i)
k , y

(i)
k )
}Nk
i=1

be data for task k where x(i)
k ∈ Rd is the ith

instance from the kth task and y(i)
k is its corresponding true label. When the notation is clear from

the context, we drop the index k and write ((x(i), k), y(i)).

Let {w∗k}k∈[K] be any set of arbitrary vectors where w∗k ∈ Rd. The hinge losses on the example(
(x(t), k), y(t)

)
are given by `

(t)∗
kk =

(
1 − y(t)〈x(t), w∗k〉

)
+

and `
(t)∗
km =

(
1 − y(t)〈x(t), w∗m〉

)
+

,

respectively, where (z)+ = max(0, z). Similarly, we define hinge losses `(t)
kk and `(t)

km for the
linear predictors {w(t)

k }k∈[K] learned at round t. Let Z(t) be a Bernoulli random variable to
indicate whether the learner requested a true label for the example x(t). Let M (t) be a binary
variable to indicate whether the learner made a mistake on the example x(t). We use the following

expected hinge losses for our theoretical analysis: L̃kk = E
[∑

tM
(t)Z(t)`

(t)∗
kk

]
and L̃km =

E
[∑

tM
(t)Z(t)`

(t)∗
km

]
.

We start with our proposed active learning from peers algorithm based on selective sampling
for online multitask problems and study the mistake bound for the algorithm in Section 3.2. We
report our experimental results and analysis in Section 3.2.1. Additionally, we extend our problem
setting to learning multiple task in parallel at the end of the chapter.
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3.1.1 Related Work
While there is considerable literature in online multitask learning, many crucial aspects remain
largely unexplored. Most existing work in online multitask learning focuses on how to take
advantage of task relationships. To achieve this, Lugosi et. al [73] imposed a hard constraint on
the K simultaneous actions taken by the learner in the expert setting, Agarwal et. al [3] used
matrix regularization, and Dekel et. al [35] proposed a global loss function, as an absolute norm,
to tie together the loss values of the individual tasks. In all these works, their proposed algorithms
assume that the true labels are available for each instance.

Selective sampling-based learners in online setting, on the other hand, decides whether to ask
the human oracle for labeling of difficult instances [2, 24, 26, 37, 83]. It can be easily extended to
online multitask learning setting by applying selective sampling for each individual task separately.
Saha et. al [97] formulated the learning of task relationship matrix as a Bregman-divergence
minimization problem w.r.t. positive definite matrices and used this task-relationship matrix to
naively select the instances for labelling from the human oracle.

Several recent works in online multitask learning recommended updating all the task learners
on each round t [25, 80, 97]. When a task learner makes a mistake on an example, all the tasks’
model parameters are updated to account for the new examples. This significantly increases the
computational complexity at each round, especially when the number of tasks is large [113]. Our
proposed method avoids this issue by updating only the learner of the current example and utilize
the knowledge from peers only when the current learner requested them.

This work is motivated by the recent interests in active learning from multiple (strong or
weak) teachers [37, 41, 42, 110, 116, 117]. Instead of single all-known oracle, these earlier
works assume multiple oracles (or teachers) each with a different area of expertise. At round t,
some of the teachers are experts in the current instance but the others may not be confident in
their predicted labels. Such learning setting is very common in crowd-sourcing platform where
multiple annotators are used to label an instance. Our learning setting is different from their
approaches where, instead of learning from multiple oracles, we learn from our peers (or related
tasks) without any associated high cost. Finally, our proposed method is closely related to learning
with rejection option [13, 30] where the learner may choose not to predict label for an instance.
To reject an instance, they use a measure of confidence to identify difficult instances. We use a
similar approach to identify when to query peers and when to query the human oracle for true
label.

3.2 Learning from Peers
We consider multitask perceptron for our online learning algorithm. On each round t, we receive
an example (x(t), k) from task k. We will consider a different online learning setting later in
this chapter where we simultaneously receive K examples at each round, one for each task k.
Each perceptron learner for the task k maintains a model represented by w(t−1)

k learned from
examples received until round t− 1. Task k predicts a label for the received example x(t) using
hk(x

(t)) = 〈w(t−1)
k , x(t)〉 1. As in the previous works [13, 26, 37], we use |hk(x(t))| to measure

1We also use the notation p̂kk = 〈w(t−1)
k , x(t)〉 and p̂km = 〈w(t−1)

m , x(t)〉
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1. Receive an example x(t) for the task k
2. If the task k is not confident in the prediction for this example, ask

the peers or related tasks whether they can give a confident label to
this example.

3. If the peers are not confident enough, ask the oracle for the true
label y(t).

Figure 3.1: Proposed learning approach from peers.

the confidence of the kth task learner on this example. When the confidence is higher, the learner
doesn’t require the need to request the true label y(t) from the oracle.

Built on this idea, [26] proposed a selective sampling algorithm using the margin |hk(x(t))| to
decide whether to query the oracle or not. Intuitively, if |hk(x(t))| is small, then the kth task learner
is not confident in the prediction of x(t) and vice versa. They consider a Bernoulli random variable
P (t) for the event |hk(x(t))| ≤ b1 with probability b1

b1+|hk(x(t))| for some predefined constant b1 ≥ 0.
If P (t) = 1 (confidence is low), then the kth learner requests the oracle for the true label. Similarly
when P (t) = 0 (confidence is high), the learner skips the request to the oracle. This considerably
saves a lot of label requests from the oracle. When dealing with multiple tasks, one may use
similar idea and apply selective sampling for each task individually [27]. Unfortunately, such
approach doesn’t take into account the inherent relationship between the tasks.

In this chapter, we consider a novel active learning (or selective sampling) for online multitask
learning to address the concerns discussed above. Our proposed learning approach can be
summarized in Figure 3.1. Unlike in the previous work [25, 80, 97], we update only the current
task parameter wk when we made a mistake at round t, instead of updating all the task model
parameters wm,∀m ∈ [K],m 6= k. Our proposed method avoids this issue by updating only the
learner of the current example and share the knowledge from peers only when the assistance is
needed. In addition, the task relationship is taken into account, to measure whether the peers are
confident in predicting this example. This approach provides a compromise between learning
them independently and learning them by updating all the learners when a specific learner makes
a mistake.

As in traditional selective sampling algorithm [26], we consider a Bernoulli random variable
P (t) for the event |hk(x(t))| ≤ b1 with probability b1

b1+|hk(x(t))| . In addition, we consider a second
Bernoulli random variableQ(t) for the event |hm(x(t))| ≤ b2 with probability b2

b2+
∑
m∈[K],m 6=k τ

(t−1)
km |hm(x(t))|

.

The idea is that when the weighted sum of the confidence of the peers on the current example
is high, then we use the predicted label ỹ(t) from the peers for the perceptron update instead
of requesting a true label y(t) from the oracle. In our experiment in Section 3.2.1, we consider
the confidence of most related task instead of the weighted sum to reduce the computational
complexity at each round. We set Z(t) = P (t)Q(t) and set M (t) = 1 if we made a mistake at round
t i.e., (y(t) 6= ŷ(t)) (only when the label is revealed/queried).

The pseudo-code is in Algorithm 5. Line 14 is executed when we request a label from the
oracle or when peers are confident on the label for the current example. Note the two terms in
(M (t)Z(t)y(t) + Z̃(t)ỹ(t)) are mutually exclusive (when P (t) = 1). Line (15-16) computes the
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Algorithm 5: Active Learning from Peers
Input : b1 > 0, b2 > 0 s.t., b2 ≥ b1, λ > 0, Number of rounds T

1 Initialize w(0)
m = 0 ∀m ∈ [K], τ (0).

2 for t = 1 . . . T do
3 Receive (x(t), k)

4 Compute p̂(t)
kk = 〈x(t), w

(t−1)
k 〉

5 Predict ŷ(t) = sign(p̂
(t)
kk)

6 Draw a Bernoulli random variable P (t) with probability b1

b1+|p̂(t)kk |

7 if P (t) = 1 then
8 Compute p̂(t)

km = 〈x(t), w
(t−1)
m 〉 ∀m 6= k,m ∈ [K]

9 Compute p̃(t) =
∑

m 6=k,m∈[K] τ
(t−1)
km p̂

(t)
km and ỹ(t) = sign(p̃(t))

10 Draw a Bernoulli random variable Q(t) with probability b2
b2+|p̃(t)|

11 end
12 Set Z(t) = P (t)Q(t) & Z̃(t) = P (t)(1−Q(t))

13 Query true label y(t) if Z(t) = 1 and set M (t) = 1 if ŷ(t) 6= y(t)

14 Update w(t)
k = w

(t−1)
k + (M (t)Z(t)y(t) + Z̃(t)ỹ(t))x(t)

15 Update τ :
16

τ
(t)
km =

τ
(t−1)
km e−

Z(t)

λ
`
(t)
km∑

m′∈[K]
m′ 6=k

τ
(t−1)
km′ e

−Z(t)

λ
`
(t)

km′

m ∈ [K],m 6= k (3.1)

17 end

relationship between tasks τkm based on the recent work by [80]. It maintains a distribution over
peers w.r.t the current task. The value of τ is updated at each round using the cross-task error `km.
In addition, we use the τ to get the confidence of the most-related task rather than the weighted
sum of the confidence of the peers to get the predicted label from the peers (see Section 3.2.1
for more details). When we are learning with many tasks [113], it provides a faster computation
without significantly compromising the performance of the learning algorithm. One may use
different notion of task relationship based on the application at hand. Now, we give the bound on
the expected number of mistakes.

Theorem 3. let Sk =
{(

(x(t), k), y(t)
)}T

t=1
be a sequence of T examples given to Algorithm 5

where x(t) ∈ Rd, y(t) ∈ {−1,+1} and X = maxt ‖x(t)‖. Let P (t) be a Bernoulli random variable
for the event |hk(x(t))| ≤ b1 with probability b1

b1+|hk(x(t))| and let Q(t) be a Bernoulli random

variable for the event |hm(x(t))| ≤ b2 with probability b2
b2+maxm∈[K]

m 6=k
|hm(x(t))| . Let Z(t) = P (t)Q(t)

and M (t) = I(y(t) 6= ŷ(t)).

If the Algorithm 5 is run with b1 > 0 and b2 > 0 (b2 ≥ b1), then ∀t ≥ 1 and γ > 0 we have
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E
[∑
t∈[T ]

M (t)

]
≤ b2

γ

[
(2b1 +X2)2

8b1γ

(
‖w∗k‖2 + max

m∈[K],m 6=k
‖w∗m‖2

)
+
(
1 +

X2

2b1

)(
L̃kk + max

m∈[K],m 6=k
L̃km

)]
Then, the expected number of label requests to the oracle by the algorithm is∑

t

b1

b1 + |hk(x(t))|
b2

b2 + maxm∈[K]
m 6=k

|hm(x(t))|

The proof is given in Appendix A. It follows from Theorem 1 in [26] and Theorem 1 in [80]

and setting b2 = b1 + X2

2
+
‖w∗k‖

2
, where b1 = X2

2

√
1 + 4γ2

‖w∗k‖X2
L̃kk
γ

. Theorem 3 states that the

quality of the bound depends on both L̃kk and the maximum of {L̃km}m∈[K],m 6=k. In other words,
the worst-case regret will be lower if the kth true hypothesis w∗k can predict the labels for training
examples in both the kth task itself as well as those in all the other related tasks in high confidence.
In addition, we consider a related problem setting in which all the K tasks receive an example
simultaneously. We give the learning algorithm and mistake bound for this setting in Appendix B.

3.2.1 Experiments
We evaluate the performance of our algorithm in the online setting. All reported results in this
section are averaged over 10 random runs on permutations of the training data. We set the value
of b1 = 1 for all the experiments and the value of b2 is tuned from 20 different values. Unless
otherwise specified, all model parameters are chosen via 5-fold cross-validation.

To evaluate the performance of our proposed approach, we compare our proposed methods
to 2 standard baselines. The first baseline selects the examples to query randomly (Random)
and the second baseline chooses the examples via selective sampling independently for each
task (Independent) [26]. We compare these baselines against two versions of our proposed
algorithm 5 with different confidence measures for predictions from peer tasks: PEERsum where
the confidence p̃(t) at round t is computed by the weighted sum of the confidence of each task as
shown originally in Algorithm 5 and PEERone where the confidence p̃(t) is set to the confidence
of the most related task k (p̂(t)

k ), sampled from the probability distribution τ (t)
km, m ∈ [K], m 6= k.

The intuition is that, for multitask learning with many tasks [113], PEERone provides a faster
computation without significantly compromising the performance of the learning algorithm. The
task weights τ are computed based on the relationship between the tasks. As mentioned earlier,
the τ values can be easily replaced by other functions based on the application at hand 2.

In addition to PEERsum and PEERone, we evaluated a method that queries the peer with the
highest confidence, instead of the most related task as in PEERone, to provide the label. Since this
method uses only local information for the task with the highest confidence, it is not necessarily

2Our algorithm and theorem can be easily generalized to other types of functions on τ
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Figure 3.2: Average rate of mistakes vs. Number of examples calculated for compared models
on the three datasets (top). Average number of label and peer requests on the three datasets
(middle). Average rate of (training) mistakes vs. Number of examples with the query budget
of (10%, 20%, 30%) of the total number of examples T on sentiment (bottom). These plots are
generated during the training.

the best peer in hindsight, and the results are worse than or comparable (in some cases) to the
Independent baseline. Hence, we do not report its results in our experiment.

Figure 3.2 shows the performance of the models during training. We measure the average
rate of mistakes (cumulative measure), the number of label requests to the oracle and the number
of peer query requests to evaluate the performance during the training time. From Figure 3.2
(top and middle), we can see that our proposed methods (PEERsum and PEERone) outperform
both the baselines. Among the proposed methods, PEERsum outperforms PEERone as it uses
the confidence from all the tasks (weighted by task relationship) to measure the final confidence.
We notice that during the earlier part of the learning, all the methods issue more query to the
oracle. After a few initial set of label requests, peer requests (dotted lines) steadily take over in
our proposed methods. We can see three noticeable phases in our learning algorithm: initial label
requests to the oracle, label requests to peers, and as task confidence grows, learning with less
dependency on other tasks.

In order to efficiently evaluate the proposed methods, we restrict the total number of label
requests issued to the oracle during training, that is we give all the methods the same query
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Table 3.1: Average test accuracy on three datasets: means and standard errors over 10 random
shuffles.

Models Landmine Detection Spam Detection Sentiment Analysis
ACC #Queries Time (s) ACC #Queries Time (s) ACC #Queries Time (s)

Random
0.8905
(0.007)

1519.4
(31.9) 0.38

0.8117
(0.021)

753.4
(29.1) 8

0.7443
(0.028)

1221.8
(22.78) 35.6

Independent
0.9040
(0.016)

1802.8
(35.5) 0.29

0.8309
(0.022)

1186.6
(18.3) 7.9

0.7522
(0.015)

2137.6
(19.1) 35.6

PEERsum
0.9403
(0.001)

265.6
(18.7) 0.38

0.8497
(0.007)

1108.8
(32.1) 8

0.8141
(0.001)

1494.4
(68.59) 36

PEERone
0.9377
(0.003)

303
(17) 1.01

0.8344
(0.018)

1084.2
(24.2) 8.3

0.8120
(0.01)

1554.6
(92.2) 36.3

budget: (10%, 20%, 30%) of the total number of examples T on sentiment dataset. After the
desired number of label requests to the oracle reached the said budget limit, the baseline methods
predict label for the new examples based on the earlier assistance from the oracle. On the other
hand, our proposed methods continue to reduce the average mistake rate by requesting labels from
peers. This shows the power of learning from peers when human expert assistance is expensive,
scarce or unavailable.

Table 3.1 summarizes the performance of all the above algorithms on the test set for the three
datasets. In addition to the average accuracy ACC scores, we report the average total number of
queries or label requests to the oracle (#Queries) and the CPU time taken (seconds) for learning
from T examples (Time). From the table, it is evident that PEER* outperforms all the baselines
in terms of both ACC and #Queries. In case of landmine and sentiment, we get a significant
improvement in the test set accuracy while reducing the total number of label requests to the
oracle. As in the training set results before, PEERsum performs slightly better than PEERone. Our
methods perform slightly better than Independent in spam, we can see from Figure 3.2 (middle)
for spam dataset, the number of peer queries are lower compared to that of the other datasets.

The results justify our claim that relying on assistance from peers in addition to human inter-
vention leads to improved performance. Moreover, our algorithm consumes less or comparable
CPU time than the baselines which take into account inter-task relationships and peer requests.
Note that PEERone takes a little more training time than PEERsum. This is due to our implemen-
tation that takes more time in (MATLAB’s) inbuilt sampler to draw the most related task. One
may improve the sampling procedure to get better run time. However, the time spent on selecting
the most related tasks is small compared to the other operations when dealing with many tasks.

Figure 3.3 (left) shows the average test set accuracy computed for 20 different values of b2 for
PEER* methods in sentiment. We set b1 = 1. Each point in the plot corresponds to ACC (y-axis)
and #Queries (x-axis) computed for a specific value of b2. We find the algorithm performs well
for b2 > b1 and the small values of b2. When we increase the value of b2 to∞, our algorithm
reduces to the baseline (Independent), as all request are directed to the oracle instead of the peers.

Figure 3.3 (right) shows the snapshot of the total number of peer requests between the tasks in
sentiment at the end of the training of PEERone. Each edge says that there was one peer query
request from a task/domain to another related task/domain (based on the task relationship matrix
τ ). The edges with similar colors show the total number of peer requests from a task. It is evident
from the figure that all the tasks are collaborative in terms of learning from each other.
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Figure 3.3: Average test set ACC calculated for different values of b2 (left). A visualization of
the peer query requests among the tasks in sentiment learned by PEERone (right).

3.3 Learning with a Shared Annotator
In this section, we explore a related approach where multiple tasks are learned with a shared
annotator. In this setting, we assume that all tasks will be performed in each round. At time t, the
kth task receives a training instance x(t)

k , makes a prediction 〈x(t)
k , w

(t)
k 〉 and suffers a loss after

y(t) is revealed. Unlike the problem setting in Algorithm 5, we are allowed to query the Oracle
for at most κ examples out of the K examples received at round t where κ ≤ K. Our algorithm
follows a perceptron-based update rule, as in Algorithm 5, in which the model is updated only
when a task makes a mistake. The key idea is that the algorithm picks κ examples from K tasks
that desperately need human assistance.

Most recently, Cohen et. al. [27] proposed a selective sampling-based approach called
SHAMPO for this problem setting. Each task k is chosen for label request from oracle with
probability Pr(Ji = k) ∝ b1/(b1 + |p̂(t)

kk | −minKm=1 |p̂
(t)
mm|), ∀i ∈ [κ] and we choose at most κ

tasks for label requests to oracle. We define J = {Ji : i ∈ [κ]}. Unlike in Algorithm 5, we
perform a perceptron update when we make a mistake M (t)

k = I(y(t)
k 6= ŷ

(t)
k ) or when the example

has less confidence A(t)
k = I(0 < y

(t)
k p̂

(t)
kk ≤

γ
2
). In their proposed method, the examples from the

other tasks k /∈ J are not updated on this round. In addition, their methods doesn’t take into
account the relationship between the tasks. Our learning procedure from Algorithm 5 provides a
natural way to extend their method to learn from peers and to utilize the relationship between the
tasks efficiently.

The pseudo-code is in Algorithm 6. Lines (9 − 12) is similar to their proposed learning
framework. We add the lines (15 − 18) to query the peers for labels for the tasks that are not
selected at this round k /∈ J and the line 13 to incorporate the relationship between the tasks
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when the true labels are available. We give the (expected) mistake bound for the Algorithm 6 in
Theorem 4.

Algorithm 6: Learning with a Shared Annotator
Input : b1 > 0, b2 > 0 s.t., b2 ≥ b1, λ > 0, γ > 0 Number of

rounds T
1 Initialize w(0)

m = 0 ∀m ∈ [K], τ (0).
2 for t = 1 . . . T do
3 Receive K examples: {x(t)

k : k ∈ [K]}
4 Compute p̂(t)

kk = 〈x(t)
k , w

(t−1)
k 〉, k ∈ [K]

5 Predict K labels: ŷ(t)
k = sign(p̂

(t)
kk), k ∈ [K]

6 Draw κ tasks for query with probability
Pr(Ji = k) ∝ b1/(b1 + |p̂(t)

kk | −minKm=1 |p̂
(t)
mm|), ∀i ∈ [κ]

7 for k = 1 . . . [K] do
8 if k ∈ J then
9 Query true label y(t)

k

10 Set M (t)
k = 1 if ŷ(t)

k 6= y
(t)
k

11 Set A(t)
k = 1 if 0 < y

(t)
k p̂

(t)
kk ≤

γ
2

12 Update w(t)
k = w

(t−1)
k + (M

(t)
k + A

(t)
k )y

(t)
k x

(t)
k .

13 Update τ (t) as in Equation 3.1.
14 else
15 Compute p̂(t)

km = 〈x(t)
k , w

(t−1)
m 〉 ∀m 6= k,m ∈ [K]

16 Compute p̃(t)
k =

∑
m 6=k,m∈[K] τ

(t−1)
km p̂

(t)
km and

ỹ
(t)
k = sign(p̃

(t)
k )

17 Draw a Bernoulli random variable Z̃(t)
k with probability

|p̃(t)k |
b2+|p̃(t)k |

18 Update w(t)
k = w

(t−1)
k + Z̃

(t)
k ỹ

(t)
j x

(t)
k

19 end
20 end
21 end

Algorithm 6 chooses the observation with the lowest confidence at each round for the Oracle
query. The proposed approach doesn’t utilize the relationships between the tasks to choose an
observation and doesn’t help the peers to learn at this round. In order to address this concern, we
would like to choose an example at each round for which there will be a maximum knowledge
transfer to the other tasks i.e., knowing the label for the selected example from a task will reveal
more information for the other related tasks. Following our work in smooth multitask learning
(SMTL), We can define maximum transfer for an observation xk as:

˜̀(xk) =
∑
j

τjk`j(yk, 〈wj, xk〉),∀k ∈ [K]
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Algorithm 7: Learning with Explore-Exploit Strategy (PEERBan-
dits)

Input : α ∈ [0, 1],λ > 0, γ > 0 Number of rounds T
1 Initialize w(0)

m = 0, Task weights a(1)
m = 1 ∀m ∈ [K], τ (0).

2 for t = 1 . . . T do
3 Receive K examples: {x(t)

k : k ∈ [K]}
4 Compute p̂(t)

kk = 〈x(t)
k , w

(t−1)
k 〉, k ∈ [K]

5 Predict K labels: ŷ(t)
k = sign(p̂

(t)
kk), k ∈ [K]

6 Choose an example xk with maximum transfer with probability
p ∈ ∆K−1:

7

p
(t)
k = (1− α)

a
(t−1)
k

T (t−1)︸ ︷︷ ︸
Exploit

+α
1

K︸︷︷︸
Explore

,∀k ∈ [K] (PEERBandits)

8 Query true label y(t)
k

9 Set M (t)
k = 1 if ŷ(t)

k 6= y
(t)
k

10 Set A(t)
k = 1 if 0 < y

(t)
k p̂

(t)
kk ≤

γ
2

11 Update w(t)
k = w

(t−1)
k + (M

(t)
k + A

(t)
k )y

(t)
k x

(t)
k .

12 Update τ (t) as in Equation 3.1.
13 Update a:
14

a
(t)
k = a

(t−1)
k exp

(
− γ

˜̀(t)(xk)

p
(t)
k

)
and T (t) =

∑
j

a
(t)
j

15 end

To compute this measure for each observation, we require their true labels. Unfortunately, the
true labels for these examples (at round t) are not available to compute this value. The key idea
we consider is that we use the past history (as distribution over K tasks) to choose a task with
maximum transfer using explore-exploit strategy (multi-armed bandits). At each round, the bandit
keeps a distribution p over the K tasks using the weights a computed based on the past history.
The value of a are changed based on the loss vector using exponential weight updates. Algorithm
7 shows the approach with the explore-exploit strategy. In addition, we show how to choose an
observation that helps our learning from peers setting.

In addition to keeping the weights for each task, we can utilize the peer weights (task rela-
tionship matrix) maintained by each task as an expert advice. We consider each task as a weak
annotator and helps to choose the example that potentially gives better knowledge transfer among
the tasks.

Next, we show the theoretical analysis for the learning with a shared annotator setting. The
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Algorithm 8: Learning with Weak Annotators as Experts (PEER-
Experts)

Input : α ∈ [0, 1],λ > 0, γ > 0 Number of rounds T
1 Initialize w(0)

m = 0, Task weights a(1)
m = 1 ∀m ∈ [K], τ (0).

2 for t = 1 . . . T do
3 Receive K examples: {x(t)

k : k ∈ [K]}
4 Compute p̂(t)

kk = 〈x(t)
k , w

(t−1)
k 〉, k ∈ [K]

5 Predict K labels: ŷ(t)
k = sign(p̂

(t)
kk), k ∈ [K]

6 Choose an example xk with maximum transfer with probability
p ∈ ∆K−1:

7

p
(t)
k = (1− α)

∑
j a

(t−1)
j τ

(t−1)
jk

T (t−1)︸ ︷︷ ︸
Exploit

+α
1

K︸︷︷︸
Explore

,∀k ∈ [K]

(PEERExperts)
8 Query true label y(t)

k

9 Set M (t)
k = 1 if ŷ(t)

k 6= y
(t)
k

10 Set A(t)
k = 1 if 0 < y

(t)
k p̂

(t)
kk ≤

γ
2

11 Update w(t)
k = w

(t−1)
k + (M

(t)
k + A

(t)
k )y

(t)
k x

(t)
k .

12 Update τ (t) as in Equation 3.1.
13 Update a:
14

a
(t)
k = a

(t−1)
k exp

(
− γτ (t)

jk

˜̀(t)(xk)

p
(t)
k

)
and T (t) =

∑
j

a
(t)
j

15 end

theorem focuses on how the peer query improve the upper bound for the expected number of
mistakes and the expected number of the Oracle queries issued.

Theorem 4. ∀k ∈ [K], let Sk =
{(
x

(t)
k , y

(t)
k

)}T
t=1

be a sequence of T examples for the kth task
where x(t)

k ∈ Rd, y(t)
k ∈ {−1,+1} and ‖x(t)

k ‖2 ≤ R, ∀t ∈ [T ]. Let M (t)
k = I(y(t)

k 6= ŷ
(t)
k ) and

A
(t)
k = I(0 < y

(t)
k p̂

(t)
kk ≤

γ
2
).

If {Sk}k∈[K] is presented to Algorithm 6 with b1 > 0 (b1 ≥ γ) and b2 > 0 (b2 ≥ b1), then
∀t ≥ 1 and γ > 0 we have
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Figure 3.4: Comparison of proposed methods against SHAMPO in shared annotator with bandits
and expert settings. We report the average test set accuracy.

E
[ ∑
k∈[K]

∑
t∈[T ]

M
(t)
k

]
≤b2K

γ

[
(2b1 +X2)2

8b1γ

(
‖w∗k‖2 + max

m∈[K],m 6=k
‖w∗m‖2

)
+
(
1 +

X2

2b1

)(
L̃kk + max

m∈[K],m 6=k
L̃km

)]
+

(
γ

b1

− 1

)
E
[ ∑
k∈[K]

∑
t∈[T ]

A
(t)
k

]
The proof is straightforward and follows directly from the proof of Theorem 3 and Theorem 1

in [27]. The first two terms in the bound are same as in Theorem 3. The last term in the bound
accounts for the aggressiveness of the algorithm. The intuition is that when we set b1 to the margin
(i.e., b1 = γ), the last term will become 0 and the bound reduces to the one given in Theorem 3.
When b1 > γ, the aggressive term in the bound reduces the expected number of the mistakes made
by Algorithm 6 and increases the expected number of label requests to the peers and eventually to
the oracle.

3.3.1 Experiments
Figure 3.4 compares the PEER* implementation of Algorithms 6, 7 and 8 against SHAMPO in
terms of test set accuracy for sentiment dataset. The algorithm learns multiple tasks in parallel,
where at most κ out of K label requests to the oracle are allowed at each round. We select the
observations with low confidence at each round. While SHAMPO ignores the other tasks, our
PEER* allows peer query to related tasks and thereby improves the overall performance. As we
can see from the figure, when κ is set to small values, PEER* performs significantly better than
SHAMPO.

3.4 Conclusions
In this chapter, we proposed a novel online multitask learning algorithm that learns to perform
each task jointly with learning inter-task relationships. The primary intuition we leveraged here
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is that task performance can be improved both by querying external oracles and by querying
peer tasks. The former incurs a cost or at least a query-budget bound, but the latter requires no
human attention. Hence, our hypothesis was that with bounded queries to the human expert,
additionally querying peers should improve task performance. Querying peers requires estimating
the relation among tasks. The key idea is based on smoothing the loss function of each task w.r.t.
a probabilistic distribution over all tasks, and adaptively refining such distribution over time. In
addition to closed-form updating rules, we provided a theoretical bound on the expected number of
mistakes. The effectiveness of our algorithm is empirically verified over three benchmark datasets
where in all cases task accuracy improves both for PEERsum (sum of peer recommendations
weighted by task similarity) and PEERone (peer recommendation from the most highly related
task) over baselines such as assuming task independence.
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Chapter 4

Lifelong Learning of Multiple Tasks

Lifelong learning, inspired by established human learning principles, works by accumulating and
retaining the knowledge from the past and leverages this knowledge to acquire new skills and
solve new problems efficiently. It poses considerable challenges in terms of effectiveness and
overall computational tractability for real-time performance. Unlike traditional multitask learning,
where the tasks are presented simultaneously and an entire training set is available to the learner
([21]), in lifelong learning the tasks arrive sequentially ([107]).

When it comes to lifelong learning, it is natural to ask, Is it possible to use an existing multitask
algorithm to solve a lifelong learning problem? We propose a novel framework based on self-
paced learning (SP) which utilizes a curriculum defined dynamically by the learner ("self-paced")
instead of a fixed curriculum set a-priori by a teacher. It allows us to use a certain class of existing
multitask algorithms for solving lifelong learning setting.

The proposed approach starts with an easier set of tasks, and gradually introduces more
difficult ones to build the shared knowledge base. Our proposed method provides a natural way
to specify the trade-off between choosing the easier tasks to update the shared knowledge and
learning new tasks using the knowledge acquired from previously learned tasks. Our proposed
algorithm based on self-paced learning for multiple tasks addresses these three key challenges: 1)
it embeds task selection into the model learning; 2) it gradually learns the shared knowledge at
the system’s own pace; 3) it is generalizable to a wider group of existing multitask algorithms
such that they can be easily adapted to lifelong learning setting.

In addition, we propose a co-clustering approach to multitask and lifelong learning. In several
applications, we encounter clusters and overlapping groups among the tasks at hand. We provide
a flexible way to cluster both the features and the tasks using the shared feature representation
and task relationship matrix. Learning task relationships has been shown beneficial in (positive
and negative) transfer of knowledge from information-rich tasks to information-poor tasks [121],
whereas the shared feature representation has been shown to perform well when each task has a
limited number of training instances (observations) compared to the total number across all tasks
[9].

Existing research in multitask learning considers either the first approach and learns a task
relationship matrix in addition to the task parameters, or relies on the latter approach and learns
a shared latent feature representation from the task parameters. To the best of our knowledge,
there is no prior work that utilizes both principles jointly for multitask learning. We propose a

47



new approach that learns a shared feature representation along with the task relationship matrix
jointly to combine the advantages of both principles into a general multitask learning framework.
Our proposed approach is closely related to Output Kernel Learning (OKL) from the previous
chapter where we learn the kernel between the components of the output vector for problems such
as multi-output learning, multitask learning, etc. We extend the proposed methods to the lifelong
learning setting where the shared feature representation learned from the previous tasks is used to
solve unseen tasks.

Later in this chapter, we consider a continuous lifelong learning setting in which both the tasks
and the examples of the tasks arrive in an online fashion, without any predetermined order. We
propose a novel method called Online Output Kernel Learning Algorithm (OOKLA) for lifelong
learning setting by jointly re-estimating the inter-task relationships (output kernel) and the per-task
model parameters at each round. To avoid the memory explosion, a robust budget-limited version
of the proposed algorithm is introduced, which efficiently utilizes the relationships between the
tasks to bound the total number of representative examples in the support set.

Related Work

The concept of lifelong learning was first proposed by Thrun and Mitchell [1995] in autonomous
robot learning. There has been a very little progress in lifelong learning until very recently. Never-
Ending Language Learner (NELL) continuously learns to extract facts from the web and updates
its confidence in the previous beliefs [75]. Curriculum learning [17] and self-paced learning
[65] defines either a predefined or adaptive curriculum for the learner to acquire knowledge in
a progression of easier-to-harder tasks. Efficient Lifelong Learning Algorithm (ELLA), on the
other hand, learns shared basis from tasks that arrive sequentially and new tasks are represented
as a sparse linear combination of the columns of this shared basis [96]. This work was further
extended to policy gradient search for lifelong learning setting [7]. The recent survey of lifelong
learning approaches and their challenges can be found in [99]. This chapter provides an efficient
way to learn from multiple related tasks in the lifelong learning setting.

Most lifelong learning approaches use a single model for all the tasks or reuse the models
from the previous tasks to build a model for the new task ([5, 12, 51, 85, 86, 90, 94, 96]). These
approaches either increase the computation time on iterations where we encounter a novel task
or reduce the prediction power of the model learned from the previous tasks due to catastrophic
forgetting. To the best of our knowledge, relationships among the tasks have not been successfully
exploited in the lifelong learning setting due to the difficulty in learning a positive semi-definite
task relationship matrix in large-scale applications.

In related works, Cavallanti et al. [25] assume that relationships between the tasks are available
a priori. However often such task-relation prior knowledge is either unavailable or infeasible to
obtain for many applications especially when the number of tasks K is large ([113]) and/or when
the manual annotation of task relationships is expensive ([62]). [97] formulated the learning of
task relationship matrix as a Bregman-divergence minimization problem w.r.t. positive definite
matrices. The model suffers from high computational complexity as semi-definite programming
is required when updating the task relationship matrix at each online round. We show that with a
different formulation, we can obtain a similar but much cheaper updating rule for learning the
inter-task weights. [80] proposed an efficient method for learning the task relationship matrix
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using the cross-task performance measure, but their approach learns only the positive correlation
between the tasks. Our proposed approach learns positive and negative correlations between the
tasks for robust transfer of knowledge from the previously learned tasks.

Recent work in output kernel learning estimate the task covariance matrix in RKHS space,
inferred it directly from the data ([40, 54, 101]). The task covariance matrix is called the output
kernel defined on the tasks, similar to the scalar kernel on the inputs. Most recently, [54]
showed that for a class of regularization functions, we can efficiently learn this output kernel.
Unfortunately most of the proposed methods for learning output kernels require access to the
entire data for the learning algorithm, a luxury unavailable in online learning and especially in the
lifelong learning setting.

4.1 Self-Paced Multitask Learning with Shared Knowledge
Self-paced learning, inspired by established human education principles, defines a new machine
learning paradigm based on a curriculum defined dynamically by the learner ("self-paced") instead
of a fixed curriculum set a-priori by a teacher [17]. It is an iterative approach that alternatively
learns the model parameters and selects easier instances at first, progressing to harder ones [65].
However, naive extension of self-paced learning to the multitask setting may result in intractable
increases in the number of learning parameters and therefore inefficient use of shared knowledge
among the tasks. Existing work in this area is not scalable and/or lacks sufficient generality to
apply to several multitask learning challenges [69].

Not all tasks are equal. Some tasks are easy to learn and some tasks are complex, facilitated
by previously learned tasks to solve it efficiently. For example, classification task of whether an
image has a bird or not can be learned by solving easier component tasks first such as Is there a
wing?, Is there a beak?, Does it have feathers?, etc. The knowledge learned from these previously
learned easier tasks can be used to solve the complex tasks effectively and such shared knowledge
plays an important role in transfer of information between these tasks. This phenomenon is more
evident in many real-world data such as object detection, weather prediction, landmine detection,
etc.

We introduce a new learning framework for multiple tasks that addresses the aforementioned
issues. It starts with easier set of tasks, and gradually introduces more difficult ones to build the
shared knowledge base. Our proposed method provides a natural way to specify the trade-off
between choosing the easier tasks to update the shared knowledge and learning new tasks using the
knowledge acquired from previously learned tasks. Our proposed framework based on self-paced
learning for multiple tasks addresses these three key challenges: 1) it embeds task selection into
the model learning; 2) it gradually learns the shared knowledge at the system’s own pace; 3) it is
generalizable to a wider group of multitask problems.

We first briefly introduce the self-paced learning framework. Next, we describe our proposed
approach for self-paced multitask learning with efficient learning of latent task weights. We
give a probabilistic interpretation of these task weights, based on their training errors. We
apply our learning framework to a few popular multitask problems such as Multitask Feature
Learning, Multitask Learning with Alternating Structure Optimization (ASO), Mean regularized
Multitask Learning and show that self-paced multitask learning significantly improves the learning
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performance of the original problem. In addition, we evaluate our method against several
algorithms for sequential learning of multiple tasks.

4.1.1 Background
Given a set of N training instances along with their labels (xi, yi)i∈[N ], the general form of the
objective function for single task learning is given by:

Eλ{ŵ} = arg minw

∑
i∈[N ]

`(yi, f(xi,w)) + ργ(w) (4.1)

where ργ(w) is the regularization term on the model parameters and typically it is set to
ργ(w) = γ||w||22 (ridge or L2 penalty) or γ||w||1 (lasso or L1 penalty). γ is the regularization
parameter and [N ] is the index set {1, 2, . . . N}

Self-paced learning (SPL) provides a strategy for simultaneously selecting the easier instances
and re-estimating the model parameters w at each iteration [65]. We assume a linear predictor
function f(xi,w) with unknown parameter w. Self-paced learning solves the following objective
function:

Eλ{ŵ, τ̂} = arg min
w,τ∈Ω

∑
i∈[N ]

τi`(yi, f(xi,w)) + ργ(w) + λr(τ) (4.2)

where r(τ) is the regularization term, Ω is the domain space of τ , ργ(w) is the regularization term
on model parameters w as defined earlier, and λ is the regularization parameter that identifies the
difficulty of the instances. There are two unknowns in equation 4.2: model parameter vector w
and the selection parameter τ (restricted to the domain Ω).

A common choice of the constraint space C = {ργ(w), r(τ), Ω} in SPL is {γ||w||22,−||τ ||1}, {0, 1}N}.
See [55] for more examples on the constraint space. With this setting, equation 4.2 is a bi-convex
optimization problem over w and τ , which can be efficiently solved by alternating minimization.
Given a fixed τ , the solution for w can be obtained using any off-the-shelf solver and for a fixed
w, solution for τ can be given as follows:

τ̂i =

{
1 if `(yi, f(xi,w)) < λ

0 otherwise
∀i ∈ [N ] (4.3)

There exists an intuitive explanation for this alternative search strategy: 1) when updating τ
with a fixed w, a sample whose loss is smaller than a certain threshold λ is taken as an “easy”
sample because it is a sample with “less error”, and will be selected in training (τ ∗i = 1) or
otherwise unselected (τ ∗i = 0); 2) when updating w with a fixed τ , the classifier is trained only
on the selected “easy” samples. When λ is small, only “easy” samples with small losses will be
considered.

4.1.2 Learning with Shared Knowledge
Suppose we are given T tasks where the t-th task is associated with Nt training examples. Denote
by
{

(xti, y
t
i)
}Nt
i=1

and L(yt, f(Xt,wt)) = 1
Nt

∑
i∈[Nt]

`(yti , f(xti,wt)) the training set and loss for
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task t, respectively. In this section, we consider a more general formulation for multitask learning,
which is given by [15, 20, 44]:

E{Ŵ, Θ̂} = arg min
W,Θ∈Γ

∑
t∈[T ]

L(yt, f(Xt,wt)) + Pγ(W,Θ) (4.4)

where Pγ(W,Θ) is the regularization term on task parameters W, Θ is the knowledge
shared among the tasks which depends on the problem under consideration. We assume that
Pγ(W,Θ) can be written as

∑
t∈[T ] Pγ(wt,Θ), such that, for a given Θ, the above objective

function decomposes into T independent optimization problems. Pγ(wt,Θ) gives a scoring
function on how easier the task is, compared to that of the learned knowledge Θ. Several multitask
learning problems fall under this general characterization. For example, Multitask Feature
Learning (MTFL), Regularized Multitask Learning (MMTL), Multitask learning with manifold
regularization (MTML), Multitask learning via Alternating Structure Optimization (MTASO),
Sparse coding for multitask learning (SC-MTL), etc [4, 8, 43, 44, 74]. With this formulation, one
can easily extend the SPL framework to multitask setting, by considering instance weights for
each task.

Eλ{Ŵ, Θ̂, τ̂} = arg min
W,Θ∈Γ
τ∈Ω

∑
t∈[T ]

1

Nt

∑
i∈[Nt]

τti`(y
t
i , f(xti,wt)) + Pγ(W,Θ) + λr(τ) (4.5)

But there are two key issues with this naive extension of SPL: 1) The above formulation fails to
effectively utilize the knowledge shared among the tasks; 2) The number of unknown parameters
τ grows with the total number of instances N =

∑
tNt from all the tasks. This is a serious

problem especially when the number of tasks T is large [113] and/or when manual annotation of
task instances is expensive [62].

To address these issues, we consider task-level weights, instead of instance-level weights. Our
motivation behind this approach is based on the human educational process. When students learn
a new concept, they (or their teachers) choose a new task that is relevant to their recently-acquired
knowledge, rather that more distant tasks or concepts or other haphazard selections. Inspired by
this interpretation, we propose the following objective function for Self-Paced Multitask Learning
(spMTL):

Eλ{Ŵ, Θ̂, τ̂} = arg min
W,Θ∈Γ
τ∈Ω

∑
t∈[T ]

τt
[
L(yt, f(Xt,wt)) + Pγ(wt,Θ)

]
+ λr(τ) (4.6)

Note that the number of parameters τt depends on T instead of N and the τt depends on both
the training error of the task and the task regularization term for the shared knowledge Θ.

The pseudo-code is in Algorithm 9. The learning algorithm defines a task as "easy" task if it has
low training error 1

Nt

∑
i∈[Nt]

`(yi, f(xi,wt)) and similar to the shared knowledge representation
Pγ(wt,Θ). These tasks will be selected in building the shared knowledge Θ. Following Equation
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Algorithm 9: Self-Paced Multitask Learning: A General Framework
Input :D = {(Xt,yt)}Tt=1,Θ

(0), c > 1
Output :W,Θ
k ← 1, λ← λ0

repeat
Solve for w

(k)
t ← arg minwL(yt, f(Xt,w)) + Pγ(w,Θ

(k−1)) ∀t ;
Solve for τ (k) using equation (4.7) or equation (4.8) ;
Solve for Θ(k) :
Θ(k) ← arg minΘ

∑
t∈[T ] τ

(k)
t Pγ(w

(k)
t ,Θ);

λ← cλ;
k ← k + 1;

until ‖τ (k) − τ (k−1)‖2
2 ≤ ε;

4.3, by setting C = {γ||w||22,−||τ ||1, [0, 1]N}, we can define τt as 1:

τ̂t =

{
1 if L(yt, f(Xt,w

(k)
t )) + Pγ(w

(k)
t ,Θ(k−1)) < λ

δ otherwise
∀t ∈ [T ] (4.7)

For multitask setting, it is desirable to consider an alternative constraint space that gives
probabilistic interpretation for τ . By setting C = {γ||w||22,−H (τ) ,∆N−1} , we get

τ̂t ∝ exp(−[L(yt, f(Xt,wt)) + Pγ(wt,Θ)]/λ), (4.8)

where H (τ) = −
∑

t∈[T ] τt log τt denotes the entropy of the probability distribution τ over
the tasks. The key idea is that the algorithm, at each iteration, maintains a probability distribution
over the tasks to identify the simpler tasks based on the shared knowledge. Similar approach has
been used in learning relationship between multiple tasks in an online setting [80]. Using this
representation, we can use τ to sample, at each iteration, the "easy" tasks and thus makes the
learning problem scalable using stochastic approximation when the number of tasks is large. It
is worth noting that our framework can easily handle outlier tasks by a simple modification to
Algorithm 9. Since outlier tasks are different from the main tasks and are usually difficult to learn,
we can take advantage of this simple observation for early stopping, before the algorithm visits all
the tasks [92].

Our algorithm can be easily generalized to other types of updating rules by replacing exp
in (4.8) with other functions. In latter cases, however, τ may no longer have probabilistic
interpretations. Algorithm 9 shows the basic steps in learning the task weights and the shared
knowledge. The algorithm uses an additional parameter ′c′ that controls the learning pace of the
self-paced procedure. Typically, ′c′ is set to some value greater than 1 (in our experiments, we set
it to 1.1) such that, at each iteration, the threshold λ is relaxed to included more tasks. The input
to the algorithm also takes Θ(0), initial knowledge about the domain and can be initialized based
on some external sources.

1For correctness of the algorithm, we set τt = δ for the hard tasks, instead of τt = 0 with δ = 0.01.
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Handling Outlier Tasks

Our framework can easily handle outlier tasks by a simple modification to Algorithm 9. Since
outlier tasks are different from the main tasks and are usually difficult to learn, we can take
advantage of this simple observation for early stopping, before the algorithm visits all the tasks
(i.e., A = [T ]). Here, we introduce two early stopping criteria to achieve our goal. First, we
consider the maximum value that the λ can take: λmax. Second, we learn the joint Θ until our
active set contains consider number of tasks in the pool: |A| < T .

4.1.3 Motivating Examples

We give three examples to motivate our self-paced learning procedure. We briefly discuss how our
algorithm alters the learning pace of the original problem. Note that the existing implementation
of these problems can be easily "self-paced", by simply adding a few lines of code to get a better
performance of the original problem. We refer the readers to [4, 8, 43] for additional background.

Example 1: Self-Paced Mean Regularized Multitask Learning (spMMTL)

Mean Regularized Multitask learning assumes that all task parameters are close to some fixed
parameter w0 in the parameter space. spMMTL learns τ to select the easy tasks based on the
distance of each task parameter wt from w0.

EMMTL,λ = arg min
{w1,w2,...wT }

w0,τ∈Ω

∑
t∈[T ]

τtL(yt, f(Xt,wt)) + γ||wt −w0||22 + λ||τ ||1 (4.9)

In the above objective function, we can get the closed-form solution for w0 as w0 =
1
T

∑T
t=1 wt which is the mean of the task parameters.

Example 2: Self-paced Multitask Feature Learning (spMTFL) Multitask feature learning
learns a common feature representation D shared across multiple related tasks. In addition to
learning the task parameters and the shared feature representation, spMTFL learns τ to select the
easy tasks first, defined by the learning parameter λ. The algorithm starts with these easy tasks to
learn the shared feature representation which is used for solving progressively harder tasks.

EMTFL,λ = arg min
{w1,w2,...wT }

D∈Sd++
τ∈Ω

∑
t∈[T ]

τtL(yt, f(Xt,wt)) + γ
∑
t∈[T ]

τt〈wt,D
−1wt) + λr(τ) (4.10)

The value of τt determines the importance of a task in learning this shared feature representa-
tion, i.e., tasks with high probability contributes more towards learning D than the tasks with low
probability.

Example 3: Self-paced Multitask learning with Alternating Structure Optimization
(spMTASO)

Alternating Structure Optimization learns a shared low-dimensional predictive structure U on
a hypothesis space from multiple-related tasks. This low-dimensional structure along with the
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low-dimensional model parameters vt are learned gradually from easy tasks guided by τ .

EMTASO,λ = arg min
{w1,w2,...wT }
UU>=Ih×h

τ∈Ω

∑
t∈[T ]

τtL(yt, f(Xt,wt)) + γ
∑
t∈[T ]

τt||wt −U>vt||22 + λr(τ) (4.11)

Example 4: Self-paced Multitask learning with Manifold regularization (spMTML)
Manifold-regularized multitask learning assumes that all the task parameters lie on a mani-
fold M. It alternatively learns the task parameters and the manifold. Our proposed learning
algorithm 9 chooses the tasks that are good representatives for constructing a reliable manifold
structure. The objective function for spMTML is given as follows:

EMTML,λ = arg min
{w1,w2,...wT }

WM
τ∈Ω

∑
t∈[T ]

τtL(yt, f(Xt,wt)) + γ
∑
t∈[T ]

τt||wt −wMt ||22 + λr(τ) (4.12)

where wMt = g(h(wt)) is the projection distance of wt from the manifoldM.

4.1.4 Experiments
All reported results in this section are averaged over 10 random runs of the training data. Unless
otherwise specified, all model parameters are chosen via 3-fold cross validation. For all the
experiments, we update the τ values using the equation 4.8. We evaluate our self-paced multitask
learning algorithm on the four well-known multitask problems (MMTL, MTFL, MTASO), briefly
discussed in the previous section. We also compare our results with Independent multitask learning
(ITL) where each task is learned independently and Single-task learning (STL) where we learn a
single model by pooling together data from all the tasks.

Synthetic Experiment

Synthetic data (syn1) consists of 30 tasks that belong to 3 groups of tasks with 15 training
examples per task. We generate the task parameters as in [56]. Each example consists of 20
features. We randomly select a subset of tasks and increase their variance to (σ = 25), and
variances for the rest of the tasks are set to be low (σ = 5) in order to simulate the difference
between easy and hard tasks. With this setting, we expect that our self-paced learning algorithm
should be able to learn the shared knowledge from the easier tasks and use this knowledge to
improve the performance of the harder tasks.

Synthetic data (syn2) consists of 30 tasks with 15 training examples per task as before. We
randomly generate a 30-dimensional vector (s1, s2, s3, . . . , s30) such that the parameter for each
task t is given as wt = (s1, s2, . . . st, 0, 0, . . . , 0) and each example consists of 30 features. The
dataset is constructed in such a way that learning the task t is easier than learning the task t+ 1
and so on.

The result for syn1 and syn2 are shown in Table 4.1. We report the RMSE (mean and std) of
our methods. All of our self-paced methods perform better than their baseline methods on average
in both the synthetic datasets. Figure 4.1 (bottom-left) shows the τ learned using self-paced
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Figure 4.1: Error of MTFL and ITL vs. Error of spMTFL calculated for syn2 dataset (Top-left).
Values of τ̂ from spMTFL at each iteration calculated for syn2 dataset (Top-right). Error of
MTFL and ITL vs. Error of spMTFL calculated for school and cs datasets (Middle). Convergence
of the algorithm with varying threshold λ (Bottom-left) calculated from spMTFL for school
dataset. Convergence of the algorithm with different learning pace ′c′ (Bottom-right) calculated
from spMTFL for cs dataset. The experiment shows ′c′ = 1.1 for learning pace yields a stable
performance.

task selection (spMTFL) at each iteration. We can see that the tasks are selected based on their
difficulty and the number of features used in each task. Figure 4.1 (top-left) shows the task-specific
test errors for syn2 dataset (spMTFL vs. their corresponding baseline methods MTFL and ITL).
Each red point in the plot compares the RMSE of ITL with spMTFL and each blue point compares
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Models syn1 syn2 school cs sentiment landmine

STL 1.60 (0.02) 4.16 (0.09) 12.13 (0.08) 2.45 (0.13) 58.49 (0.40) 74.11 (0.50)

ITL 1.13 (0.07) 3.25 (0.10) 12.00 (0.04) 1.99 (0.14) 68.39 (0.34) 74.39 (1.11)

MMTL 1.12 (0.07) 3.24 (0.10) 12.10 (0.08) 1.99 (0.18) 68.54 (0.27) 75.50 (1.86)

spMMTL 1.03 (0.05) 3.24 (0.10) 10.34 (0.06) 1.89 (0.10) 68.54 (0.26) 75.73 (1.29)

MTFL 0.81 (0.06) 2.82 (0.13) 12.06 (0.08) 1.91 (0.18) 68.91 (0.31) 75.67 (1.03)

spMTFL 0.73 (0.05) 2.34 (0.12) 10.99 (0.08) 1.87 (0.15) 75.60 (0.17) 76.92 (1.06)

MTASO 0.56 (0.03) 2.66 (0.16) 11.14 (0.10) 1.38 (0.19) 72.03 (0.18) 72.58 (1.46)

spMTASO 0.52 (0.03) 2.54 (0.14) 11.14 (0.11) 1.12 (0.17) 72.36 (0.19) 75.73 (1.46)

Table 4.1: Average performance on six datasets: means and standard errors over 10 random runs.
We use RMSE as our performance measure for syn1, syn2, school, and cs and Area under the curve
(AUC) for sentiment and landmine. Self-paced methods with the best performance against their
corresponding MTL baselines (paired t-tests at 95% significance level) are shown in boldface.

the RMSE of MTFL vs. spMTFL. Points above the line y = x show that the self-paced methods
does better than ITL or their MTL baseline methods. From the (MTFL vs. spMTFL) plot, we
can see that our self-paced learning method spMTFL achieves significant improvement on harder
tasks (blue points in top-right) compared to the easier tasks (blue points in bottom-left). Based
on our learning procedure, these harder tasks must have been learned at the later part of the
learning and thus efficiently utilize the knowledge learned from the easier tasks to improve their
performances. Similar behaviour can be observed in the other two plots. Note that some of the
points fall slightly below the y = x line, but since the decrease in performance of these tasks are
small, it has very little impact on the overall score. We believe this can be avoided if we tune
different regularization parameter λt for each task. However, this will increase the number of
parameters to tune in addition to the task weight parameters τ .

Evaluation on Real Data

We use the following benchmark real datasets for our experiments on self-paced multitask learning.
London School data (school) consists of examination scores of 15, 362 students from 139

schools in London. Each school is considered as a task and the feature set includes year of the
examination, four school-specific and three student-specific features. We replace each categorical
feature with one binary variable for each possible feature value, as suggested in [9]. This results
in 26 features with additional feature to account for the bias term. We use the ten 20% − 80%
train-test splits that came with the dataset for our experiments.

Computer Survey data (cs) was collected from the ratings of 190 students on each of the
20 different personal computers. Each student here is considered as a single task and the rating
ranges from 0 − 10. There are 20 observations in each task. Each computer is represented by
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13 different features such as RAM, cache-size, CPU speed, etc. We add an additional feature to
account for the bias term. Train-test splits are obtained by selecting 75%− 25%, thus giving 15
examples for training and 5 examples for test set.

Sentiment Detection data (sentiment) contains reviews from 14 domains. The reviews are
represented by a bag of unigram/bigram TF-IDF features from a dictionary of size 28, 775. Each
review is associated with a rating from {1, 2, 4, 5}. We select 1, 000 reviews for each domain and
create two tasks (500 reviews per task), based on whether the rating is 5 or not and whether the
rating is 1 or not, in order to represent the different levels of sentiment. This gives us 28 binary
classification tasks. We use 120 reviews per task for training and the rest of the reviews for test
set.

Landmine Detection data (landmine) consists of 19 tasks collected from different landmine
fields. Each task is a binary classification problem: landmines (+) or clutter (−) and each example
consists of 9 features extracted from radar images. Landmine data is collected from two different
terrains: tasks 1-10 are from highly foliated regions and tasks 11-19 are from desert regions,
therefore tasks naturally form two clusters. We use 80 examples from each task for training
and the rest as the test data. We repeat the experiments on 10 (stratified) splits to measure the
performance reliably. Since the dataset is highly skewed, we use AUC score to compare our
results.

Table 4.1 summarizes the performance of our methods on the four real datasets. We can
see that our proposed self-paced learning algorithm does well on almost all datasets. As in our
synthetic experiments, we observe that spMTFL performs significantly better than MTFL, which
is a state-of-the-art method for multitask problems. It is interesting to see that when the self-paced
learning procedure doesn’t help the original algorithm, it doesn’t perform worse than the baseline
results. In such cases, our self-paced learning algorithm gives equal probability to all the tasks
(τt = 1

T
,∀t ∈ [T ]) within the first few iterations. Thus the proposed self-paced methods reduce

to their original methods and the performance of the self-paced methods are on par with their
baselines.

We also notice that if a dataset doesn’t adhere to the assumptions of a model, such as task
parameters lie on a manifold or low-dimensional space, then our self-paced methods result in little
improvement, as it can be seen in cs (and also in sentiment for spMTASO). It is worth mentioning
that our proposed self-paced multitask learning algorithm does exceptionally better in school,
which is a benchmark dataset for multitask experiments in the existing literature [4, 63]. Our
proposed methods achieve as much as 14% improvement over their baselines on some experiments.
Figures (top-middle) and (top-right) show the task-specific errors for school and cs dataset. We
can see similar pattern as in syn2. The easier tasks learned at an earlier stage help the harder tasks
at the later stages as it is evident from these plots.

Comparing spMTFL with Sequential Learning Algorithms

In this section, we briefly review two learning methods and compare them to our proposed learning
algorithm. Both these methods learn from multiple tasks sequentially in a specific order to either
improve the learning performance or to speedup the algorithm. Pentina et al. (2015) propose a
curriculum learning method (CL) for multiple tasks to find the best order of tasks to be learned
based on training error. The tasks are solved in a sequential manner based on this order by
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transferring information from the previously learned tasks to the next ones through shared task
parameters. They show that this sequential learning of tasks in a meaningful order can be superior
than solving the tasks simultaneously. The objective function of CL for learning the best task
order and the task parameters is given as follows:

ECL = arg min
{w1,w2,...wT }

π∈ΨT

∑
t∈[T ]

L(yπ(t), f(Xπ(t),wπ(t))) + γ
∑
t∈[T ]

||wπ(t) −wπ(t−1)||22 (4.13)

where ΨT is the symmetric group of all permutations over [T ]. Since, minimizing with respect
to all possible permutations π ∈ ΨT is an expensive combinatorial problem, they suggest a
greedy, incremental procedure for approximating the task order. Their method shares with ours
the motivation of learning from easier tasks first, and then gradually add more difficult tasks,
based on training errors. But unlike our proposed method, which utilizes shared knowledge from
all previous tasks, their method does not allow sharing between different levels of task relatedness.
In addition, the Euclidean distance based regularization in their objective function forces the
parameter of newly learned task to be similar to its immediate predecessor. This more myopic
approach can be a restrictive assumption for many applications.

1-AUC spMTFL
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Figure 4.2: Average performance on landmine for sequential learning algorithms and spMTFL:
means and standard errors over 10 random runs. We use (1− AUC) score as our performance
measure for comparison. Mean AUC score is shown in the bracket.

Perhaps the most relevant work to ours in the context of lifelong learning is from [96], which
learns the shared basis L from tasks that arrives sequentially. They propose an efficient online
multitask learning algorithm (ELLA) that allows the transfer of knowledge from previously learned
tasks to the new tasks using this shared basis. The task parameters are represented as a sparse
linear combination of the columns of the shared basis wt = Lst. The motivation for ELLA and
our method are significantly different. Whereas ELLA tries to achieve nearly identical to the
performance of batch MTL with increased speedup in learning, our proposed method focuses on
improving the learning performance over that of the original algorithm, with minimal changes
to said original algorithm. Unlike our proposed method, ELLA cannot be easily generalized to
existing multitask problems. It only uses efficient update equations specific to their proposed
objective function.
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ELLA optimizes the following objective function:

EELLA = arg min
L,{s1,s2,...sT }

1

T

∑
t∈[T ]

L(yt, f(Xt,Lst)) + µ‖st‖1 + λ‖L‖2
F (4.14)

Finally, we compare our self-paced multitask learning algorithm against these sequential
multitask learning algorithms (curriculum learning for multiple tasks [87] and efficient lifelong
learning [95, 96] 2. We choose spMTFL for comparison based on its overall performance in the
previous experiments. We use landmine dataset for evaluation. We use different variant of ELLA
for fair comparison against our proposed approach. The original ELLA algorithm assumes that the
tasks arrive randomly and the lifelong learner has no control over their order (ELLA-random).

Ruvolo and Eaton (2013) show that if the learner can choose the next task actively, it can
improve the learning performance using as few tasks as possible. They proposed two active
task selection procedures for choosing the next best task: 1) Information Maximization (ELLA-
infomax) chooses the next task to maximize the expected information gain about the basis L; 2)
Diversity (ELLA-diversity) chooses the next task as the one that the current basis L is doing the
worst performance. Both these approaches select the tasks that are significantly different from the
previously learned tasks (active task selection), rather than a progression of tasks that build upon
each other. Our proposed method selects the task based on the training error and its relevance to
the shared knowledge learned from the previous tasks (self-paced task selection).

Figure 4.2 shows the task-specific test performance results for this experiment on landmine
dataset. We compare our results from spMTFL against CL and variants of ELLA. We use
(1 − AUC) score for our comparison. As in Figure 4.1, points above the line y = x show that
the spMTFL does better than the other sequential learning methods. We can see that spMTFL
outperforms all the baselines on average (76.92). Compared to spMTFL, CL performs better on
easier tasks but worse on harder tasks. On the other hand, the performance of the variants of ELLA
on harder tasks are comparable to that of our self-paced method, but worse on some easier tasks.

It is interesting to see that the lifelong learning algorithm with active task selection does worse
than even ITL for some task selection strategy. It is because ELLA learns the tasks in an online
fashion and does not update the previously learned tasks whenever L is updated. This is less
of an issue if the tasks have considerable amount of data, but since we use limited data for our
experiment, it hurts the performance of the lifelong learning algorithm significantly.

4.2 Co-Clustering for Multitask and Lifelong Learning
Early work on latent shared representation includes [118], which proposes a model based on
Independent Component Analysis (ICA) for learning multiple related tasks. The task parameters
are assumed to be generated from independent sources. [9] consider sparse representations
common across many learning tasks. Similar in spirit to PCA for unsupervised tasks, their
approach learns a low dimensional representation of the observations [38]. More recently, [63]
assume that relationships among tasks are sparse to enforce that each observed task is obtained
from only a few of the latent features, and from there learn the overlapping group structure among

2http://www.seas.upenn.edu/~eeaton/software/ELLAv1.0.zip
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the tasks. [31] propose a K-means-like procedure that simultaneously clustering different tasks
and learning a small pool of m � T shared models. Specifically, each task is free to choose a
model from the pool that better classifies its own data, and each model is learned from pooling
together all the training data that belongs to the same cluster. [14] propose a similar approach that
clusters the T tasks into K task-clusters with hard assignments.

These methods compute the factorization of the task weight matrix to learn the shared feature
representation and the task structure. This matrix factorization induces the simultaneous clustering
of both the tasks and the features in the K-dimensional latent subspace [70]. One of the major
disadvantages of this assumption is that it restricts the model to define both the tasks and the
features to have same number of clusters. For example, in the case of sentiment analysis, where
each task belongs to a certain domain or a product category such as books, automobiles, etc., and
each feature is simply a word from the vocabulary of the product reviews. Clearly, assuming
both the features and the tasks have same number of clusters is an unjustified assumption, as
the number of feature clusters are typically more than the number of task clusters, but the latter
increase more than the former, as new products are introduced. Such a restrictive assumption may
(and often does) hurt the performance of the model.

Unlike in the previous work, our proposed approach provides a flexible way to cluster both
the tasks and the features. We introduce an additional degree of freedom that allows the number
of task clusters to differ from the number of features clusters [39, 112]. In addition, our proposed
models learn both the task relationship matrix and the feature relationship matrix along with the
co-clustering of both the tasks and the features [47, 100]. Our proposed approach is closely related
to Output Kernel Learning (OKL) where we learn the kernel between the components of the
output vector for problems such as multi-output learning, multitask learning, etc [40, 101]. The
key disadvantage of OKL is that it requires the computation of kernel matrix between every pair
of instances from all the tasks. This results in scalability constraint especially when the number of
tasks/features is large [113]. Our proposed models achieve the similar effect by learning a shared
feature representation common across the tasks.

A key challenge in factoring with the extra degree of freedom is optimizing the resulting
objective function. Previous work on co-clustering for multitask learning requires strong assump-
tions on the task parameters. [122] or not scalable to large-scale applications [114]. We propose
an efficient algorithm that scales well to large-scale multitask learning and utilizes the structure
of the objective function to learn the factorized task parameters. We formulate the learning
of latent variables in terms of a generalized Sylvester equation which can be efficiently solved
using the conjugate gradient descent algorithm. We start from the mathematical background and
then motivate our approach in Section 4.2.1. Then we introduce our proposed models and their
learning procedures in Section 4.2.2. Section 4.3.5 reports the empirical analysis of our proposed
models and shows that learning both the task clusters and the feature clusters along with the task
parameters gives significant improvements compared to the state-of-the-art baselines in multitask
learning.

4.2.1 Preliminaries
Suppose we have T tasks and Dt = {Xt, Yt} = {(xti, yti) : i = 1, 2, ..., Nt} is the training set for
each task t = {1, 2, . . . , T}. Let Wt represent the weight vector for a task indexed by t. These
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task weight vectors are stacked as columns of a matrix W, which is of size P × T , with P being
the feature dimension. Traditional multitask learning imposes additional assumptions on W such
as low-rank, `1 norm, `2,1 norm, etc to leverage the shared characteristics among the tasks. In this
paper, we consider a similar assumption based on the factorization of the task weight matrix W.

In factored models, we decompose the weight matrix W as FG>, where F can be interpreted
as a feature cluster matrix of size P ×K with K feature clusters and, similarly, G as a task cluster
matrix of size T ×K with K task clusters. If we consider squared error losses for all the tasks,
then the objective function for learning F and G can be given as follows:

arg min
F∈RP×K

G∈RT×K

F∈ΓF ,G∈ΓG

∑
t∈[T ]

‖Yt −XtFG
>
t ‖2

2 + Pλ1(F) + Pλ2(G)
(4.15)

In the above objective function, the latent feature representation is captured by the matrix
F and the grouping structure on the tasks is determined by the matrix G. The predictor Wt for
task t can then be computed from FG>t , where Gt is tth row of matrix G. In the above objective
function, Pλ1(F) is a regularization term that penalizes the unknown matrix F with regularization
parameter λ1. Similarly, Pλ2(G) is a regularization term that penalizes the unknown matrix G
with regularization parameter λ2. ΓF and ΓG are their corresponding constraint spaces. Without
these additional constraints on F and G, the objective function reduces to solving each task
independently, since any task weight matrix from F and G can also be attained by W.

Several assumptions can be enforced on these unknown factors F and G. Below we discuss
some of the previous models that make some well-known assumptions on F and G and can be
written in terms of the above objective function.

(1) Factored Multitask Learning (FMTL) [6] considers a squared frobenius norm on both F
and G.

arg min
F∈RP×K

G∈RT×K

∑
t∈[T ]

‖Yt −XtFG
>
t ‖2

2 + λ1‖F‖2
F + λ2‖G‖2

F (4.16)

It can be shown that the above problem can equivalently written as the multitask learning with
trace norm constraint on the task weight matrix W.

(2) Multitask Feature Learning (MTFL) [9] assumes that the matrix G learns sparse repre-
sentations common across many tasks. Similar in spirit to PCA for unsupervised tasks, MTFL
learns a low dimensional representation of the observations Xt for each task, using F such that
FF> = Ip.

arg min
F∈RP×K ,G∈RT×K

FF>=Ip

∑
t∈[T ]

‖Yt −XtFG
>
t ‖2

2 + λ‖G‖2
2,1 (4.17)

where K is usually set to P . It considers an `2,1 norm on G to force all the tasks to have a similar
sparsity pattern such that the tasks select the same latent features (columns of F). It is worth
noting that the Equation 4.17 can be equivalently written as follows:

arg min
W∈RP×T ,

Σ�0

∑
t∈[T ]

‖Yt −XtWt‖2
2 + λtr(W>Σ−1W)

(4.18)
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which then can be rewritten as multitask learning with a trace norm constraint on the task weight
matrix W as before.

(3) Group Overlap MTL (GO-MTL) [63] assumes that the matrix G is sparse to enforce that
each observed task is obtained from only a few of the latent features, indexed by the non-zero
pattern of the corresponding rows of the matrix G.

arg min
F∈RP×K

G∈RT×K

∑
t∈[T ]

‖Yt −XtFG
>
t ‖2

2 + λ1‖F‖2
F + λ2‖G‖1

1 (4.19)

The above objective function can be compared to dictionary learning where each column of F is
considered as a dictionary atom and each row of G is considered as their corresponding sparse
codes [74].

(4) Multitask Learning by Clustering (CMTL) [14] assumes that the T tasks can be clustered
into K task-clusters with hard assignment. For example, if the kth element of Gt is one, and all
other elements of Gt are zero, we say that task t is associated with cluster k.

arg min
F∈RP×K,G∈RT×K

Gt∈{0,1}K

‖Gt‖2=1,∀t∈[T ]

∑
t∈[T ]

‖Yt −XtFG
>
t ‖2

2 + λ1‖F‖2
F (4.20)

The constraints Gt ∈ {0, 1}K , ‖Gt‖2 = 1 ensure that G is a proper clustering matrix. Since the
above problem is computationally expensive as it involves solving a combinatorial problem, the
constraint on G is relaxed as Gt ∈ [0, 1]K .

These four methods require the number of task clusters to be same as the number of features
clusters, which as mentioned earlier, is a restrictive assumption that may and often does hurt
performance. In addition, these methods do not leverage the inherent relationship between the
features (via F) and the relationship between the tasks (via G). Note that these objective functions
are bi-convex problems where the optimization is convex in F when fixing G and vice versa.
We cannot achieve globally optimal solution but one can show that algorithm reaches the locally
optimal solution in a fixed number of iterations.

4.2.2 Proposed Methods: BiFactor MTL and TriFactor MTL
BiFactor MTL

Existing models do not take into consideration both the relationship between the tasks and
the relationship between the features. Here we consider a more general formulation that in
addition to estimating the parameters F and G, we learn their task relationship matrix Ω and the
feature relationship matrix Σ. We call this framework BiFactor multitask learning, following the
factorization of the task parameters W into two low-rank matrices F and G.

arg min
F∈RP×K,G∈RT×K

Σ�0,Ω�0

∑
t∈[T ]

‖Yt −XtFGt‖2
2 + λ1tr(F

>Σ−1F) + λ2tr(G
>Ω−1G) (4.21)

In the above objective function, we consider Pλ1(F) and Pλ2(G) to learn task relationship
and feature relationship matrices Σ and Ω. The motivation for these regularization terms is based
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on [9, 121] where they considered separately either the task relationship matrix Ω or the feature
relationship matrix Σ. Note that the value of K is typically set to value less than min(P, T ).

It is easy to see that by setting the value of G to IT 3 , our objective function reduces to
multitask feature learning (MTFL) discussed in the previous section. Similarly, by setting the
value of F to IP 4 , our objective function reduces to multitask relationship learning (MTRL)
[121]. If we set Ω = IT and Σ = IP , we obtain the factored multitask learning setting (FMTL)
defined in Equation 4.16. Hence the prior art can be cast as special cases of our more general
formulation by imposing certain limiting restrictions.

Optimization for BiFactor MTL

We propose an efficient learning algorithm for solving the above objective functionBiFactor MTL.
Consider an alternating minimization algorithm, where we learn the shared representation F while
fixing the task structure G and we learn the task structure G while fixing the shared representation
F. We repeat these steps until we converge to the locally optimal solution.

Optimizing w.r.t F gives an equation called generalized Sylvester equation of the formAQB>+
CQD> = E for the unknown Q. We will show in the next section on how to solve these linear
equation efficiently. From the objective function, we have:∑

t

(X>t Xt)F(G>t Gt) + λ1Σ
−1F =

∑
t

X>t YtGt (4.22)

Optimizing w.r.t G for squared error loss results in the similar linear equation:

(F>X>t XtF)Gt + λ1Ω
−1G = F>X>t Yt (4.23)

Optimizing w.r.t Ω and Σ: The optimization of the above function w.r.t Ω and Σ while fixing
the other unknowns can be learned easily with the following closed-form solutions [121]:

Ω =
(GG>)

1
2

tr((GG>)
1
2 )

Σ =
(FF>)

1
2

tr((FF>)
1
2 )

TriFactor MTL

As mentioned earlier, one of the restrictions in BiFactor MTL and factored models is that both
the number of feature clusters and task clusters should be set to K. This poses a serious model
restriction, by assuming both the latent task and feature representation live in a same subspace.
Such assumption can significantly hinder the flexibility of the model search space and we address
this problem with a modification to our previous framework.

Following the previous work in matrix tri-factorization, we introduce an additional factor
S such that we write W as FSG> where F is a feature cluster matrix of size P ×K1 with K1

3identity matrix of size T × T (assuming that the rank K is set to T )
4identity matrix of size P × P (assuming that the rank K is set to P )
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feature clusters and G is a task cluster matrix of size T ×K2 with K2 task clusters and S is the
matrix that maps feature clusters to task clusters. With this representation, latent features lie in a
K1 dimensional subspace and the latent tasks lie in a K2 dimensional subspace.

arg min
F∈RP×K1 ,

G∈RT×K2 ,

S∈RK1×K2

Σ�0,Ω�0

∑
t∈[T ]

‖Yt −XtFSG>t ‖2
2 + λ1tr(F

>Σ−1F) + λ2tr(G
>Ω−1G) (4.24)

The cluster mapping matrix S introduces an additional degree of freedom in the factored
models and addresses the realistic assumptions encountered in many applications. Note that we
do not consider any regularization on S in this paper, but one may impose additional constraint on
S such as `1 (sparse penalty), `2

2 (ridge penalty), non-negative constraints, etc, to further improve
performance.

Optimization for TriFactor MTL

We introduce an efficient learning algorithm for solving TriFactor MTL, similar to the optimization
procedure for BiFactor MTL. As before, we consider an alternating minimization algorithm,
where we learn the shared representation F while fixing the G and S, we learn the task structure
G while fixing the F and S and we learn the cluster mapping matrix S, by fixing F and G. We
repeat these steps until we converge to a locally optimal solution.

Optimizing w.r.t F gives a generalized Sylvester equation as before.∑
t

(X>t Xt)F(SG>t GtS
>) + λ1Σ

−1F =
∑
t

X>t YtGtS
> (4.25)

Optimizing w.r.t G gives the following linear equation:

(S>F>X>t XtFS)Gt + λ1Ω
−1G = S>F>X>t Yt (4.26)

for all t ∈ [T ].
Optimizing w.r.t S: Solving for S results in the following equation:∑

t

(F>X>t XtF)S(G>t Gt) =
∑
t

F>X>t YtGt (4.27)

Optimizing w.r.t Ω and Σ: The optimization of the above function w.r.t Ω and Σ while
fixing the other unknowns can be learned as in BiFactorMTL. Note that one may consider `1

regularization on Ω and Σ to learn the sparse relationship between the tasks and the features
[120].

Solving the Generalized Sylvester Equations

We give some details on how to solve the generalized Sylvester equations (4.22,4.23,4.25,4.26,4.27)
encountered in BiFactor and TriFactor MTL optimization steps. The generalized Sylvester equa-
tion of the formAQB>+CQD> = E has a unique solutionQ under certain regularity conditions
which can be exactly obtained by an extended version of the classical Bartels-Stewart method
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whose complexity is O((p + q)3) for p × q-matrix variable Q, compared to the naive matrix
inversion which requires O(p3q3).

Alternatively one can solve the linear equation using the properties of the Kronecker product:
(B> ⊗ A)vec(Q) + (D> ⊗ C)vec(Q) = vec(E) where ⊗ is the Kronecker product and vec(.)
vectorizes Q in a column oriented way. Below, we show the alternative form for TriFactor MTL
equations:∑

t

((SG>t GtS
>)⊗ (X>t Xt))vec(F) + λ1(IK1

⊗Σ−1)vec(F) = vec
(∑

t

X>t YtGtS
>) (4.28)

diag(S>F>X>t XtFS)Tt=1vec(G) + (IK2
⊗Ω−1)vec(G) = vec([S>F>X>t Yt]

T
t=1) (4.29)

∑
t

((G>t Gt)⊗ (F>X>t XtF))vec(S) = vec
(∑

t

F>X>t Yt
)

(4.30)

We can do the same for BiFactor MTL, enabling us to use conjugate gradient descent (CG)
to learn our unknown factors whose complexity depends on the condition number of the matrix
(B> ⊗ A) + (D> ⊗ C). To optimize F, G and S, we iteratively run conjugate gradient descent
for each factor while fixing the other unknowns until a convergence condition (tolerance ≤ 10−6)
is met. In addition, CG can exploit the solution from the previous iteration, low rank structure in
the equation and the fact that the matrix vector products can be computed relatively efficiently.
From our experiments. We find that our algorithm converges fast, i.e. in a few iterations.

4.2.3 Experiments
In this section, we report on experiments on both synthetic datasets and three real world datasets
to evaluate the effectiveness of our proposed MTL methods. We compare both our models with
several state-of-the-art baselines discussed in Section 4.2.1. We include the results for Shared
Multitask learning (SHAMO) [31], which uses a K-means like procedure that simultaneously
clusters different tasks using a small pool of m � T shared model. Following [14], we use
gradient-projection algorithm to optimize the dual of the objective function (Equation 4.20). In
addition, we compare our results with Single-task learning (STL), which learns a single model by
pooling together the data from all the tasks and Independent task learning (ITL) which learns each
task independently.

1. Single-task learning (STL) learns a single model by pooling together the data from all the
tasks.

2. Independent task learning (ITL) learns each task independently. In this case, there will
effectively be no transfer of information between the tasks.

3. Shared Multitask learning (SHAMO) [31], uses a K-means like procedure that simultane-
ously clusters different tasks using a small pool of m� T shared model.

4. Multitask Feature learning (MTFL) learns the feature relationship matrix Σ along with
the task parameters W alternatively5., as discussed in Section 4.2.1.

5The source code for this baseline is available at http://ttic.uchicago.edu/~argyriou/code/
mtl_feat/mtl_feat.tar
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5. Multitask learning by Clustering (CMTL) clusters T tasks into K task-clusters. We use
gradient-projection algorithm as suggested in [14] to optimize the dual of the objective
function (Equation 4.20). We show the results for CMTL as a baseline for sentiment analysis
since their algorithm is applicable only to classification tasks.

6. Group Overlap Multitask Learning (GO-MTL) considers a dictionary learning for task
parameters, as discussed in Section 4.2.1. .

The parameters for the proposed formulations and several state-of-the-art baselines are chosen
from 3-fold cross validation. Following [63], we fix the value of λ1 to 0.1 in order to reduce the
search space. The value for λ2 is chosen from the search grid {10−3, 10−2, . . . , 102, 103}. The
value for K, K1 and K2 are chosen from {2, 3, 5, 7, 9, 10, 15}. We evaluate the models using Root
Mean Squared Error (RMSE) for the regression tasks and using F -measure for the classification
tasks. For our experiments, we consider the squared error loss for each task. We repeat all our
experiments 5 times to compensate for statistical variability. The best model and the statistically
competitive models (by paired t-test with α = 0.05) are shown in boldface.

Synthetic Data

We evaluate our models on five synthetic datasets based on the assumptions considered in both
the baselines and the proposed methods. We generate 100 examples from Xt ∼ N (0, IP ) with
P = 20 for each task t. All the datasets consist of 30 tasks with 25 training examples per task.
Each task is constructed using Yt = XtWt + N (0, 1). The task parameters for each synthetic
dataset is generated as follows:

1. syn1 dataset consists of 3 groups of tasks with 10 tasks in each group without any overlap.
We generate K = 15 latent features from F ∼ N (0, 1) and each Wt is constructed from
linearly combining 5 latent features from F.

2. syn2 dataset is generated with 3 overlapping groups of tasks. As before, we generate
K = 15 latent features from F ∼ N (0, 1) but tasks in group 1 are constructed from features
1 − 7, tasks in group 2 are constructed from features 4 − 12 and the tasks in group 3 are
constructed from features 9− 15.

3. syn3 dataset simulates the BiFactor MTL. We randomly generate task covariance matrix Ω
and feature covariance matrix Σ. We sample F ∼ N (0,Σ) and G ∼ N (0,Ω) and compute
W = FG>.

4. syn4 dataset simulates the TriFactor MTL. We randomly generate task covariance matrix Ω
and feature covariance matrix Σ. We sample F ∼ N (0,Σ), G ∼ N (0,Ω) and S ∼ U(0, 1).
We compute the task weight matrix by W = FSG>.

5. syn5 dataset simulates the experiment with task weight matrix drawn from a matrix normal
distribution [120]. We randomly generate task covariance matrix Ω and feature covariance
matrix Σ. We sample vec(W) ∼ N (0,Σ⊗Ω).

We compare the proposed methods BiFactor MTL and TriFactor MTL against the baselines.
We can see in Table 4.2 that BiFactor and TriFactor MTL outperforms all the baselines in all the
synthetic datasets. STL performs the worst since it combines the data from all the tasks. We can
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Table 4.2: Performance results (RMSE) on synthetic datasets. The table reports the mean and
standard errors over 5 random runs. The best model and the statistically competitive models (by
paired t-test with α = 0.05) are shown in boldface.

Model syn1 syn2 syn3 syn4 syn5

STL 4.79 (0.04) 5.71 (0.05) 5.5 (0.04) 4.02 (0.02) 5.72 (0.06)

ITL 1.98 (0.08) 2.10 (0.09) 2.01 (0.06) 1.95 (0.06) 2.14 (0.07)

SHAMO 3.63 (0.22) 4.37 (0.27) 3.56 (0.23) 2.76 (0.13) 4.27 (0.31)

MTFL 1.91 (0.08) 1.95 (0.07) 1.64 (0.06) 1.47 (0.05) 1.91 (0.07)

GO-MTL 1.84 (0.10) 1.90 (0.08) 1.72 (0.04) 1.63 (0.06) 1.84 (0.06)

BiFactorMTL 1.85 (0.08) 1.85 (0.06) 1.68 (0.08) 1.37 (0.08) 1.74 (0.07)

TriFactorMTL 1.78 (0.08) 1.83 (0.07) 1.46 (0.05) 1.31 (0.02) 1.68 (0.10)

see that the SHAMO performs better than STL but worse than ITL which shows that learning these
tasks separately is beneficial than combining them to learn a fewer models.

As mentioned earlier, since MTFL is similar to FMTL in Equation 4.16, we can see how the
results of BiFactor MTL improve when it learns both the task relationship matrix and the feature
relationship matrix. Note that the syn1 and syn2 datasets are based on assumptions in GO-MTL,
hence, it performs better than the other baselines. BiFactor MTL and TriFactor MTL models
are equally competent with GO-MTL which shows that our proposed methods can easily adapt
to these assumptions. Synthetic datasets syn3, syn4 and syn5 are generated with both the task
covariance matrix and the feature covariance matrix. Since both BiFactor MTL and TriFactor
MTL learns task and feature relationship matrix along with the task weight parameters, they
performs significantly better than other baselines.

Exam Score Prediction

We evaluate the proposed methods on examination score prediction data, a benchmark dataset in
multitask regression reported in several previous articles [9, 63, 121] 6. The school dataset consists
of examination scores of 15, 362 students from 139 schools in London. Each school is considered
as a task and we need to predict exam scores for students from these 139 schools. The feature set
includes the year of the examination, four school-specific and three student-specific attributes. We
replace each categorical attribute with one binary variable for each possible attribute value, as
suggested in [9]. This results in 26 attributes with an additional attribute to account for the bias
term.

Clearly, the dataset has the school and student specific feature clusters that can help in learning

6http://ttic.uchicago.edu/~argyriou/code/mtl_feat/school_splits.tar
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Table 4.3: Performance results (RMSE) on school datasets. The table reports the mean and
standard errors over 5 random runs.

Models STL ITL SHAMO MTFL GO-MTL BiFactor TriFactor

20% 12.19 (0.03) 12.00 (0.04) 11.91 (0.05) 11.25 (0.05) 11.15 (0.05) 10.68 (0.08) 10.54 (0.09)

30% 12.09 (0.07) 12.01 (0.05) 10.92 (0.05) 10.85 (0.02) 10.53 (0.10) 10.38 (0.11) 10.22 (0.08)

40% 12.00 (0.10) 11.88 (0.06) 11.82 (0.06) 10.61 (0.06) 10.31 (0.14) 10.20 (0.13) 10.12 (0.10)

the shared feature representation better than the other factored baselines. In addition, there must
be several task clusters in the data to account for the differences among the schools. The training
and test sets are obtained by dividing examples of each task into many small datasets, by varying
the size of the training data with 20%, 30% and 40%, in order to evaluate the proposed methods
on many tasks with limited numbers of examples.

Table 4.3 shows the experimental results for school data. All the factorized MTL methods
outperform STL and ITL. We can see that both TriFactor MTL and BiFactor MTL outperform
other baselines significantly. It is interesting to see that TriFactor MTL performs considerably
well even when the tasks have limited numbers of examples. When there is more training data,
the result the advantage of TriFactor MTL over the strongest baseline GO-MTL is reduced.

Sentiment Analysis

We follow the experimental setup in [14, 31] and evaluate our algorithm on product reviews from
amazon7. The dataset contains product reviews from 14 domains such as books, dvd, etc. We
consider each domain as a binary classification task. The reviews are stemmed and stopwords
are removed from the review text. We represent each review as a bag of 5, 000 unigrams/bigrams
with TF-IDF scores. We choose 1, 000 reviews from each domain and each review is associated
with a rating from {1, 2, 4, 5}. The reviews with rating 3 is not included in this experiment as
such sentiments were ambiguous and therefore cannot be reliably predicted. h

We ran several experiments on this dataset to test the importance of learning shared feature
representation and co-clustering of tasks and features. In Experiment I, we construct 14 classifica-
tion tasks with reviews labeled positive (+) when rating < 3 and labeled negative (−) when rating
< 3. We use 240 training examples for each task and the remaining for test set. Since all the tasks
are essentially same, ITL perform better than all the other models (with an F -measure of 0.749)
by combining data from all the other tasks. The results for our proposed methods BiFactor MTL
(0.722) and TriFactor MTL (0.733) are comparable to that of ITL. See supplementary material for
the results of Experiment I.

For Experiment II, we split each domain into two equal sets, from which we create two
prediction tasks based on the two different thresholds: whether the rating for the reviews is 5 or
not and whether the rating for the reviews is 1 or not. Obviously, combining all the tasks together

7http://www.cs.jhu.edu/~mdredze/datasets/sentiment
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Table 4.4: Performance results (F-measure) for various experiments on sentiment detection. The
table reports the mean and standard errors over 5 random runs.

Data II III IV V VI VII

Tasks 28 56 84 42 86 126

Thresholds

(Splits)
2 (2) 2 (4) 2 (6) 3 (3) 3 (6) 3 (9)

Train Size 120 60 40 80 40 26

STL 0.429 (0.002) 0.432 (0.001) 0.429 (0.002) 0.400 (0.002) 0.399 (0.003) 0.397 (0.001)

ITL 0.433 (0.001) 0.440 (0.002) 0.431 (0.001) 0.499 (0.001) 0.486 (0.002) 0.479 (0.001)

SHAMO 0.423 (0.002) 0.437 (0.006) 0.429 (0.002) 0.498 (0.006) 0.460 (0.002) 0.496 (0.013)

CMTL 0.557 (0.016) 0.436 (0.007) 0.429 (0.004) 0.508 (0.002) 0.486 (0.002) 0.476 (0.002)

MTFL 0.482 (0.004) 0.473 (0.002) 0.432 (0.007) 0.522 (0.002) 0.487 (0.003) 0.481 (0.002)

GO-MTL 0.582 (0.012) 0.526 (0.013) 0.516 (0.007) 0.587 (0.004) 0.540 (0.005) 0.539 (0.008)

BiFactor 0.611 (0.018) 0.561 (0.013) 0.598 (0.002) 0.643 (0.013) 0.578 (0.020) 0.574 (0.052)

TriFactor 0.627 (0.008) 0.588 (0.006) 0.603 (0.012) 0.655 (0.013) 0.606 (0.020) 0.632 (0.029)

will not help in this setting. Experiments III and IV are similar to Experiment II, except that each
task is further divided into 2 or 3 sub-tasks.

Experiment V splits each domain into three equal sets to construct three prediction tasks based
on three different thresholds: whether the rating for the reviews is 5 or not, whether the rating for
the reviews is < 3 or not and whether the rating for the reviews is 1 or not. This setting captures
the reviews with different levels of sentiments. As before, we build the dataset for Experiments
VI and VII by further dividing the three prediction tasks from Experiment V into 2 or 3 sub-tasks.

The results from our experiments are reported in Table 4.4. The first four rows in the table
show the number of tasks in each experiment, number of thresholds considered for the ratings,
number of splits constructed from each domain and the total number of training examples in
each task. The general trend is that factorized models performs significantly better than the other
baselines. Since MTFL, BiFactorMTL and TriFactorMTL learn feature relationship matrix Σ in
addition to the task parameter, they achieve better results than CMTL, which considers only the
task clusters.

We notice that as we increase the number of tasks, the gap between the performances of
TriFactorMTL and BiFactorMTL (and GO-MTL) widens, since the assumption that the the
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Table 4.5: Performance results (F-measure) on 20Newsgroups dataset. The table reports the mean
and standard errors over 5 random runs.

Models Task 1 Task 2 Task 3 Task 4 Task 5

GO-MTL 0.42 (0.09) 0.57 (0.06) 0.42 (0.04) 0.47 (0.06) 0.40 (0.03)

BiFactorMTL 0.42 (0.09) 0.60 (0.05) 0.41 (0.04) 0.49 (0.03) 0.36 (0.01)

TriFactorMTL 0.49 (0.03) 0.63 (0.02) 0.54 (0.02) 0.54 (0.02) 0.51 (0.02)

number of feature and task clusters K should be same is clearly violated. On the other hand,
TriFactorMTL learns with a different number of feature and task clusters (K1, K2) and, hence
achieves a better performance than all the other methods considered in these experiments.

Learning to Transfer to New Tasks

Finally, we evaluate our proposed models on 20Newsgroups dataset for transfer learning 8. The
dataset contains postings from 20 Usenet newsgroups. As before, the postings are stemmed and the
stopwords are removed from the text. We represent each posting as a bag of 500 unigrams/bigrams
with TF-IDF scores. We construct 10 tasks from the postings of the newsgroups. We randomly
select a pair of newsgroup classes to build each one-vs-one classification task. We follow the
hold-out experiment suggested by [88] for the transfer learning setup. For each of the 10 tasks
(target task), we learn F (F and S in case of TriFactorMTL) from the remaining 9 tasks (source
tasks).

With F (F and S) known from the source tasks, we select 10% of the data from the target
task to learn Gtarget. This experiment shows how well the learned latent feature representation
from the source tasks in a K-dimensional subspace (K1-dimensional subspace for TriFactorMTL)
adapt to the new task. We evaluate our results on the remaining data from the target task. We
select GO-MTL as our baseline to compare our results. Since CMTL doesn’t explicitly learn F,
we did not include it in this experiment.

Table 4.5 shows the results for this experiment. We report the first 5 tasks here. See supple-
mentary material for the performance results of all the 10 tasks. We see that both GO-MTL and
BiFactorMTL perform almost the same, since both of them learn the latent feature representation
in aK-dimensional space. As is evident from the table, TriFactorMTL outperforms both GO-MTL
and BiFactorMTL, which shows that learning both the factors F and S improves information
transfer from the source tasks to the target task.

4.3 Lifelong Multitask Learning with Output Kernels
Lifelong learning poses considerable challenges in terms of effectiveness (minimizing prediction
errors for all tasks) and overall computational tractability for real-time performance. A lifelong

8http://qwone.com/~jason/20Newsgroups/
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learning agent must provide an efficient way to learn new tasks faster by utilizing the knowledge
learned from the previous tasks and also not forgetting or significantly degrading performance
on the old tasks. The goal of a lifelong learner is to minimize errors as compared to the full
ideal hindsight learner, which has access to all the training data and no bounds on memory or
computation.

This section addresses lifelong multitask learning by jointly re-estimating the inter-task
relations from the data and the per-task model parameters at each round. Following the online
setting, particularly from [25, 97], at each round t, the learner receives an example from a task,
along with the task identifier and predicts the output label for the example. Subsequently, the
learner receives the true label and updates the model(s) as necessary. This process is repeated as
we receive additional data from the same or different tasks. Our approach follows an error-driven
update rule in which the model for a given task is updated only when the prediction for that task
is in error.

In this work, we define the task relationship matrix as output kernels in Reproducing Kernel
Hilbert Space (RKHS) on multitask examples. We propose a novel algorithm called Online Output
Kernel Learning Algorithm (OOKLA) for lifelong learning setting. For a successful lifelong
learning with kernels, we need to address two key challenges: (1) learn the relationships between
the tasks (output kernel) efficiently from the data stream and (2) bound the size of the knowledge
to avoid memory explosion. The key challenge in learning with a large number of tasks is to
adaptively learn the model parameters and the task relationships, which potentially change over
time. Without manageability-efficient updates at each round, learning the task relationship matrix
automatically may impose a severe computational burden. In other words, we need to make
predictions and update the models in an efficient real time manner.

We propose simple and quite intuitive update rules for learning the task relationship matrix.
When we receive a new example, the algorithm updates the output kernel when the learner made
a mistake by computing the similarity between the new example and the set of representative
examples (stored in the memory) that belongs to a specific task. If the two examples have
similar (different) labels and high similarity, then the relationship between the tasks is increased
(decreased) to reflect the positive (negative) correlation and vice versa.

To avoid the memory explosion associated with the lifelong learning setting, we propose a
robust budget-limited version of the proposed algorithm that efficiently utilizes the relationship
between the tasks to bound the total number of representative examples in the support set. In
addition, we propose a two-stage budgeted scheme for efficiently tackling the task-specific budget
constraints in lifelong learning.

It is worth noting that the problem of lifelong multitask learning is closely related to online
multitask learning. Although the objectives of both online multitask learning and lifelong learning
are similar, one key difference is that the online multitask learning, unlike in the lifelong learning,
may require that the number of tasks be specified beforehand. In recent years, online multitask
learning has attracted extensive research attention [1, 25, 35, 73, 80, 97]. We evaluate our proposed
methods with several state-of-the-art online learning algorithms for multiple tasks.

There are many useful application areas for lifelong learning, including optimizing financial
trading as market conditions evolve, email prioritization with new tasks or preferences emerging,
personalized news, and spam filtering, with evolving nature of spam. Consider the latter, where
some spam is universal to all users (e.g. financial scams), some messages might be useful to
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certain affinity groups, but spam to most others (e.g. announcements of meditation classes or other
special interest activities), and some may depend on evolving user interests. In spam filtering each
user is a "task," and shared interests and dis-interests formulate the inter-task relationship matrix.
If we can learn the matrix as well as improving models from specific spam/not-spam decisions,
we can perform mass customization of spam filtering, borrowing from spam/not-spam feedback
from users with similar preferences. Our primary contribution is precisely the joint learning of
inter-task relationships and its use in estimating per-task model parameters in a lifelong learning
setting.

4.3.1 Problem Setup
Let ((xt, it), yt) be the example received by the learner from the task it (at the time step t) where
we assume that the xt ∈ X and yt is its corresponding true label. The task it can be a new task
or one seen by the learner in the previous iterations. We denote by [N ] the consecutive integers
ranging from 1 to N . Throughout this section, we do not assume that the number of tasks is
known to the learner ahead of time, an important constraint in lifelong learning problems. Let K
be the number of tasks seen so far until the current iteration t.

For brevity, we consider a binary classification problem for each task yt ∈ {−1,+1}, but the
methods generalize to multi-class cases and are also applicable to regression tasks. We assume
that the learner made a mistake if yt 6= ŷt where ŷt is the predicted label. Our approach follows a
mistake-driven update rule in which the model for a given task is updated only on rounds where
the learner predictions differ from the true label.

LetK : X ×X → R (kernel on input space) and Ω : N×N→ R (output kernel) be symmetric,
positive semi-definite (p.s.d) multitask kernel functions and denote H as their corresponding
RKHS of functions with the norm ‖ · ‖H on multitask examples ([40, 54, 103]). Using the above
notation, we can define a kernel representation of an example based on a set of representative
examples collected on the previous iterations (prototypes). Formally, given an example x ∈ X , its
kernel representation can be written using this set:

x 7−→ {K(x,xs) : s ∈ S}

S is the set of stored examples for which the learner made a mistake in the past. The set S is
called the support set. The online classification function is then defined as the weighted sum of
the kernel combination of the examples in the support set. To account for the examples from the
different tasks, we consider both the kernel on the input space K and the output kernel Ω in our
classification function.

f(·) =
∑

(xs,is)∈S

αsΩis·φ(xs) (4.31)

We set αs = ys. The predicted label for a new example is computed from the linear combination
of the labels of the examples from the support set S weighted by their input similarity K and the
task similarity Ω to the new example. Using the kernel trick, one can write:

f((xt, it)) = 〈φ(xt)
∑

(xs,is)∈S

αsΩisitφ(xs)〉 =
∑

(xs,is)∈S

αsΩisitK(xs,xt)
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Algorithm 10: Online Output Kernel Learning Algorithm
Initialize: S = ∅, Ω
for t = 1, 2, · · · do

Receive new example (xt, it)
Let f it =

∑
(xs,is)∈S ysΩisitφ(xs)

Predict ŷt = sign(f it(xt))
Receive label yt
if yt 6= ŷt then
S ← S ∪ (xt, it)
Update Ωitk∀k ∈ [K]

Ωitk ← Ωitk +
1

λ

∑
(xs,is)∈S
is=k

ytK(xt,xs)ys

(or)

Ωitk ← Ωitk exp

{
1

λ

∑
(xs,is)∈S
is=k

ytK(xt,xs)ys

}

end
end

4.3.2 Online Output Kernel Learning
Note that, in the above representation, we need to learn both the support set S and the output
kernel Ω from the data. As explained in the previous section, for a successful lifelong learning
with kernels, we need to address two key challenges: (1) learn the relationships between the tasks
(output kernel) efficiently from the data arriving in an online fashion and (2) bound the size of
the support set S to avoid memory explosion. We address these two challenges in the following
sections.

Our objective function for the lifelong learning problem is given as follows:

min
Ω∈S+,f∈H

∑
t

`(yt,f((xt, it))) +
1

2
‖f‖2

H + λR(Ω) (4.32)

where `(·) is some loss function such as hinge loss or logistic loss,R(·) is the regularization on the
task relationship matrix Ω and λ is the regularization parameter. Note that f in the above equation
depends on Ω. In order to reduce the time taken for each time-step, we require an efficient update
to the task relationship matrix Ω. Following the work of [54] in the batch setting, we consider a
subset of regularization functionsR for which we can efficiently learn the task covariance matrix.
Consider the dual function of the above equation, at time-step t (see [14, 54]):

max
Ω∈S+

1

2

∑
k

∑
(xs,is)∈S
is=k

αtK(xt,xs)αsΩitk − λR(Ω,Ω(t−1)) (4.33)
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When we consider the entry-wise lp norm between Ω and Ω(t−1) from the previous iteration as
our regularization i.e.,R(Ω,Ω(t−1)) =

∑
k |Ωitk − (Ω(t−1))itk|p for p ≥ 1 9, we get the following

update function:

Ωitk ← Ωitk +
1

λ

∑
(xs,is)∈S
is=k

ytK(xt,xs)ys (4.34)

Similarly, if we consider the generalized KL-divergence between Ω and Ω(t−1) i.e.,R(Ω,Ω(t−1)) =∑
k Ωitk log

Ωitk
(Ω(t−1))itk

− Ωitk + (Ω(t−1))itk, we get the following update function:

Ωitk ← Ωitk exp

{
1

λ

∑
(xs,is)∈S
is=k

ytK(xt,xs)ys

}
(4.35)

Unlike in the previous work, we update only the row (and the corresponding column) of the
task relationship matrix Ω specific to the task it, which significantly reduces the time taken per
example.

We can see that the update equations are simple and quite intuitive. For a given new example
(xt, it) at round t, the algorithm updates Ωitk (for some k ∈ [K]) by computing the similarity
between the new example and the examples in the support set S that belongs to the task k. If
the two examples have similar (different) labels and high similarity K(xt,xs), then the Ωitk

is increased to reflect the positive (negative) correlation and vice versa. A value close to 0
implies no significant relationship between the tasks. The update to the Ωitk is normalized by the
regularization parameter λ for scaling.

It is worth noting that our update equations do not violate the p.s.d constraints on Ω in Equation
4.33. If Ω from the previous iteration is a p.s.d matrix and the update is a p.s.d matrix (as it
is computed using the Gram matrix of the example from the previous iteration), the sum and
Hadamard product of two p.s.d matrices satisfy the p.s.d constraint (using the Schur Product
Theorem).

Algorithm 10 outlines the key steps in our proposed method. We write f((xt, it)) as fit(xt)
for notational convenience. At each time-step t, the learner receives an example xt ∈ X and
predicts the output label yt using ŷt = sign(f it(xt)). We update both the support set S and the
output kernel Ωit· when the learner makes a mistake.

4.3.3 Learning with a Budget
In Algorithm 10, we can see that both the classification function f and the update equations for
Ω use the support set S. When the target function changes over time, the support set S grows
unbounded. This leads to serious computational and runtime issues especially in the lifelong
learning setting. The most common solution to this problem is to impose a bound on the number
of examples in the support set S. There are several budget maintenance strategies proposed
recently ([23, 36, 84]). Unfortunately these schemes cannot be directly used in our setting due to

9We set p = 2 doe our experiments.
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Algorithm 11: Budgeted OOKLA
Initialize: S = ∅, Ω
for t = 1, 2, · · · do

Receive new example (xt, it)
Let f it =

∑
(xs,is)∈S ysΩisitφ(xs)

Predict ŷt = sign(f it(xt))
Receive label yt
if yt 6= ŷt then

if |S| < B then
S ← S ∪ (xt, it)

else
Find an example to remove

arg max
(xr,ir)∈S

∑
k∈[K]

Ωirk

[
yr
(
fk − yrΩirkφ(xr)

)
φ(xr)

]
(4.36)

S ← S ∪ (xt, it)\(xr, ir)
end
Update Ωitk∀k ∈ [K] as in Algorithm 10.

end
end

the output kernels in our learning formulation. [22] proposed multitask variants of these schemes
but they are impractical for the lifelong learning setting. We follow a simple support set removal
schemes based on Crammer et al. 2004. In single-task setting, when the number of examples in
the support set S exceeds the limit (say B), a simple removal scheme chooses an example xr with
the highest confidence from S . The confidence of an example xr is measured using yrf(xr) after
removing xr from the support set S.

arg max
xr∈S

[
yr
(
f − yrφ(xr)

)
φ(xr)

]
(4.37)

We extend the above approach to the multitask and lifelong learning settings. Since the support
set S is shared by all the tasks, we choose an example xr with high confidence to remove from
each task function fk, weighted by the relationship among the tasks. The objective function to
choose the example is shown in Equation 4.36. We show in the experiment section that this simple
approach is efficient and performs significantly better than the state-of-the-art budget maintenance
strategies. Algorithm 11 shows pseudocode of the proposed budgeted learning algorithm.

4.3.4 Two-Stage Budgeted Learning
In lifelong learning setting, the number of tasks is typically large. The support set S may have
hundreds or thousands of examples from all the tasks. Each task does not use all the examples
from the support set S . For example, in movie recommendations task, recommendation for each
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user (task) can be characterized by just a few movies (subset of examples) in the support set
S. Motivated by this observation, we propose a two-stage budgeted learning algorithm for the
lifelong learning setting.

Algorithm 12: Two-Stage Budgeted Learning
Initialize: S = ∅, Tk = ∅, k ∈ [K], Ω
for t = 1, 2, · · · do

Receive new example (xt, it)
Let f it =

∑
(xs,is)∈Tit

ysΩisitφ(xs)

Predict ŷt = sign(f it(xt))
Receive label yt
if yt 6= ŷt then
S ← S ∪ {t}\{r}
/* r=∅ if |S| < B, else choose r using

Equation 4.36 */
for k ∈ [K] do
Tk ← Tk ∪ {l}\{r}
/* remove r from Tk; choose l from
S − Tk */

end
Update Ωitk∀k ∈ [K] as in Algorithm 10.

end
end

Algorithm 12 shows pseudocode of the proposed two-stage budgeted learning algorithm. In
addition to the support set S, we maintain task-specific support set Tk. We choose the budget
for each task (say L) where L <<< B. Similar to the removal strategies for S, we remove an
example from Tk when |Tk| > L and replace with an example from the set S − Tk. The proposed
two-stage approach provides better runtime complexity compared to the budgeted algorithm in
Algorithm 11. Since only a subset of tasks may hold an example from S, the removal step in
Equation 4.36 requires only a subset of tasks for choosing an example. This improves the runtime
per iteration significantly when the number of tasks is large. One may consider a different budget
size for each task Lk based on the complexity of the task.

In addition, the proposed two-stage budgeted learning algorithm provides an alternative
approach to using state-of-the-art budget maintenance strategies. For example, it is easier to use
the Projectron algorithm ([84]) on Tk, rather than on S.

4.3.5 Experiments

In this section, we evaluate the performance of our algorithms. All reported results are averaged
over 10 random runs on permutations of the training data. Unless otherwise specified, all model
parameters are chosen via 5-fold cross validation.
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Benchmark Datasets

We use three benchmark datasets, commonly used for evaluating online multitask learning. Details
are given below:

Newsgroups Dataset10 consists of 20 tasks generated from two subject groups: comp
and talk.politics. We paired two newsgroups, one from each subject (e.g.,comp.graphics vs
talk.politics.guns), for each task. In order to account for positive/negative correlation between the
tasks, we randomly choose one of the newsgroups as positive (+) or negative (−) class. Each
post in a newsgroup is represented by a vocabulary of approximately 60K unique features.

Spam Dataset11 We use the dataset obtained from ECML PAKDD 2006 Discovery challenge
for the spam detection task. We used the task B challenge dataset, which consists of labeled
training data from the inboxes of 15 users. We consider each user as a single task and the goal is to
build a personalized spam filter for each user. Each task is a binary classification problem: spam
(+) or non-spam (−) and each example consists of approximately 150K features representing
term frequency of the word occurrences. Some spam is universal to all users (e.g. financial scams),
but some messages might be useful to certain affinity groups and spam to most others. Such
adaptive behavior of each user’s interests and dis-interests can be modeled efficiently by utilizing
the data from other users to learn per-user model parameters.

Sentiment Dataset12 We also evaluated our algorithm on product reviews from amazon.
The dataset contains product reviews from 25 domains. We consider each domain as a binary
classification task. Reviews with rating > 3 were labeled positive (+), those with rating < 3 were
labeled negative (−), reviews with rating = 3 are discarded as the sentiments were ambiguous and
hard to predict. Similar to the previous datasets, each example consists of approximately 350K
features representing term frequency of the word occurrences.

We choose 2000 examples (100 posts per task) for 20 Newsgroups, 1500 emails for spam (100
emails per user inbox) and 2500 reviews for sentiment (100 reviews per domain) as training set
for our experiments. Note that we intentionally kept the size of the training data small to simulate
the lifelong learning setting and drive the need for learning from previous tasks, which diminishes
as the training sets per task become large. Since these datasets have a class-imbalance issue (with
few (+) examples as compared to (−) examples), we use average Area Under the ROC Curve
(AUC) as the performance measure on the test set.

Results

To evaluate the performance of our proposed algorithm (OOKLA), we use the three datasets
(Newsgroups, Spam and Sentiment) for evaluation and compare our proposed methods to 5
baselines. We implemented Perceptron and Passive-Aggressive algorithm (PA) [33] for online
multitask learning. Both Perceptron and PA learn independent model for each task. These two
baselines do not exploit the task-relationship or the data from other tasks during model update.
Next, we implemented two online multitask learning related to our approach: FOML – initializes
Ω with fixed weights [25], Online Multitask Relationship Learning (OMTRL) [97] – learns a task

10http://qwone.com/~jason/20Newsgroups/
11http://ecmlpkdd2006.org/challenge.html
12http://www.cs.jhu.edu/~mdredze/datasets/sentiment
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Table 4.6: Average performance on three datasets: means and standard (test set) scores over 10
random shuffles.

Models Newsgroups Spam Sentiment
AUC nSV Time (s) AUC nSV Time (s) AUC nSV Time (s)

Perceptron
0.7974
(0.01) 1421.6 8.36

0.8621
(0.01) 1110.0 9.23

0.6363
(0.01) 1018.8 255.3

PA
0.7633
(0.02) 1926.6 9.89

0.8394
(0.01) 1482.1 11.5

0.5321
(0.01) 2500.0 357.7

FOML
0.7830
(0.01) 1592.0 18.46

0.8803
(0.01) 1228.2 16.0

0.6484
(0.01) 1030.0 266.0

OMTRL
0.7694
(0.01) 1560.4 72.36

0.8583
(0.01) 1266.3 45.4

0.5651
(0.01) 1057.6 328.2

OSMTL
0.7969
(0.02) 1426.2 18.18

0.8611
(0.01) 1115.1 17.3

0.6425
(0.01) 1021.8 264.3

OOKLA-sum
0.8512
(0.02) 884.9 15.58

0.8825
(0.01) 833.4 17.3

0.6261
(0.01) 925.0 306.6

OOKLA-exp
0.8382
(0.02) 886.9 15.50

0.8819
(0.01) 1062.5 19.2

0.6731
(0.01) 882.2 302.8

covariance matrix along with task parameters. Since OMTRL requires expensive calls to SVD
routines, we update the task-relationship matrix every 10 iterations. In addition, we compare our
proposed methods against the performance of Online Smooth Multitask Learning (OSMTL) which
learns a probabilistic distribution over all tasks, and adaptively refines the distribution over time
[80]. We implement two versions of our proposed algorithm with different update rules for the
task-relationship matrix: OOKLA-sum (Equation 4.34 OOKLA with sum update) OOKLA-exp
(Equation 4.35 OOKLA with exponential update) as shown in Algorithm 10.

Table 4.6 summarizes the performance of all the above algorithms on the three datasets. In
addition to the AUC scores, we report the average total number of support vectors (nSV) and the
CPU time taken for learning from one instance (Time).

From the table, it is evident that both OOKLA-sum and OOKLA-exp outperform all the
baselines in terms of bothAUC and nSV. This is expected for the two default baselines (Perceptron
and PA). The update rule for FOML is similar to ours but using fixed weights. The results justify
our claim that learning the task-relationship matrix adaptively leads to improved performance. As
expected, both OOKLA and OSMTL consume less or comparable CPU time than the subset of
baselines which take into account learning inter-task relationships. Unlike in the OMTRL algorithm
that recomputes the task covariance matrix every (10) iteration using expensive SVD routines,
the task-relationship matrix in our proposed methods (and OSMTL) are updated independently
for each task. We implement the OSMTL with exponential update for our experiments as it has
shown to perform better than the other baselines. One of the major drawbacks of OSMTL is that
it learn only the positive correlations between the tasks. The performance of OSMTL worsens
when the tasks are negatively correlated. As we can see from the table, our proposed methods
outperform OSMTL significantly in the Newsgroup dataset.

Table 4.7 compares the proposed methods with different budget schemes and budget sizes in
terms of test set AUC scores and the runtime. We use OOKLA-sum for this experiment. We set
the value of B to {50, 100, 150} for all the datasets. We compare our proposed budgeted learning
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Table 4.7: Evaluation of proposed methods with different budgets: means and standard AUC (test
set) scores over 10 random shuffles.

Models Newsgroups Spam Sentiment
Budget (B) 50 100 150 50 100 150 50 100 150

RBP
0.6272
(0.07)
6.5s

0.6954
(0.03)
6.4s

0.7373
(0.01)
7.4s

0.6426
(0.06)
14.5s

0.7197
(0.03)
18.5s

0.7536
(0.04)
16.3s

0.5679
(0.02)

1772.4s

0.5790
(0.02)

1666.9s

0.5889
(0.02)

1860.2s

Forgetron
0.6353
(0.07)
9.1s

0.6860
(0.05)
8.6s

0.7240
(0.01)
9.9s

0.6546
(0.06)
20.5s

0.7403
(0.04)
21.4s

0.7339
(0.04)
21.9s

0.5579
(0.02)

2219.1s

0.5847
(0.02)

2097.0s

0.6195
(0.02)

2272.6s

Projectron
0.6399
(0.03)
16.7s

0.6984
(0.02)
16.6s

0.6986
(0.02)
17.6s

0.6352
(0.03)
24.7s

0.6041
(0.05)
26.1s

0.6402
(0.05)
27.9s

0.5215
(0.01)

2712.0s

0.5187
(0.01)

2622.5s

0.5221
(0.02)

2804.5s

Budget
-OKL

0.6810
(0.02)
6.3s

0.7106
(0.03)
10.2s

0.7499
(0.03)
13.4s

0.6472
(0.03)
18.8s

0.6471
(0.03)
22.6s

0.6552
(0.04)
24.7s

0.5683
(0.02)

1708.8s

0.5732
(0.01)

1674.4s

0.6153
(0.01)

1935.2s

Budget
-OOKLA

0.7576
(0.04)
9.9s

0.7562
(0.04)
11.7s

0.7749
(0.03)
14.1s

0.7485
(0.08)
20.1s

0.7969
(0.04)
24.3s

0.8472
(0.02)
26.9s

0.6117
(0.06)

2250.5s

0.6901
(0.01)

2073.0s

0.7000
(0.04)

2334.3.3s
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Figure 4.3: Number of training examples vs Average rate of mistakes calculated for different
values of L.

algorithm (Algorithm 11) with the following state-of-the-art algorithms for online budgeted
learning: (1) Random Budgeted Perceptron (RBP) [23]- randomly chooses an example to remove
(2) (Self-tuned) Forgetron [36]- forgets the oldest example (3) Projectron++ [84]- projects the
new example on the others (4) Budgeted Online Kernel learning (Budget-OKL)- removes an
example using equation 4.37 (5) Budgeted Online Output Kernel Learning (Budget-OOKLA)-
removes an example using equation 4.36. Following [22], we implement the online multitask
version of RBP, Forgetron and Projectron for our experiments.

Table 4.7 shows both the test set AUC scores (first line) and time taken for learning from
one instance (including the removal step). It is evident from the table, our proposed budgeted
learning algorithm for online multitask learning significantly outperforms the other state-of-the-art
budget schemes on most settings. Our proposed algorithm uses the relationship between the tasks
efficiently to choose the next example for removal.
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Finally, we evaluate the performance of the proposed two-stage budgeted scheme compared
to the Algorithm 11. To study the effect of different budget sizes L, we compute the cumulative
mistake rate

∑
t I{yt 6=ŷt}

t
measured at each time-step t. Figures 4.3 show average rate of mistakes

against the number of training examples seen so far on newsgroup, spam and sentiment datasets
for different values of L. We fix the value of B = 100. As we can see from the figures, even
for small values of L, the average mistake rate of the two-stage budgeted learning algorithm is
comparable to the model which uses all the examples from the support set S . We observe similar
trend in the test set AUC scores. On average, we achieved over 16% improvement in running
time compared to the budget maintenance scheme in Algorithm 11. We believe that the time
consumption and the performance improvement will be even better for applications with larger
numbers of tasks.

4.4 Conclusions
In this chapter, we proposed novel algorithms for lifelong learning problem. We proposed a self-
paced learning framework for multiple tasks that jointly learns the latent task weights and shared
knowledge from all the tasks. The proposed method iteratively updates the shared knowledge
based on these task weights and thus improves the learning performance. By allowing the τ
to take the probabilistic interpretation, we can easily see which tasks are easier to learn at any
iteration, and prefer those for task selection.

We proposed a novel framework for multitask and lifelong learning that factors the task
parameters into a shared feature representation and a task structure to learn from multiple related
tasks. We formulated two approaches, motivated from recent work in multitask latent feature
learning. The first (BiFactor MTL), decomposes the task parameters W into two low-rank
matrices: latent feature representation F and task structure G. As this approach is restrictive on
the number of clusters in the latent feature and task space, we proposed a method called TriFactor
MTL, which introduces an additional degree of freedom to permit different clusterings. We
developed a highly scalable and efficient learning algorithm using conjugate gradient descent and
generalized Sylvester equations. We extended the proposed approaches to the lifelong learning
setting where the latent representations F and S (in case of TriFactor MTL) to transfer to the
novel tasks. Extensive empirical analysis on both synthetic and real datasets show that Trifactor
multitask learning outperforms the other state-of-the-art multitask and lifelong baselines, thereby
demonstrating the effectiveness of the proposed approach.

We proposed a lifelong learning algorithm using output kernels. The proposed method
efficiently learns both the model and the inter-task relationships at each iteration. Our update rules
for learning the task relationship matrix, at each iteration, were motivated by the recent work in
output kernel learning. In order to handle the memory explosion from an unbounded support set
in the lifelong learning setting, we proposed a new budget maintenance scheme that utilizes the
task relationship matrix to remove the least-useful (high confidence) example from the support
set. In addition, we proposed a two-stage budget learning scheme based on the intuition that each
task only requires a subset of the representative examples in the support set for efficient learning.
It provides a competitive and efficient approach to handle large number of tasks in many real-life
applications.
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The effectiveness of our algorithms are empirically verified over several benchmark datasets,
outperforming several competitive baselines both in the unconstrained case and the budget-limited
case, where selective forgetting was required. Future research includes other forms of budget limits
(e.g. time or reprocessing capacity), more complex inter-task relationships (e.g. hierarchical), and
additional factors such as task reliability (e.g. prefer transferring from a well-trained related task,
vs from a relatively data-sparse one, whose model is less reliable).
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Chapter 5

Conclusion

5.1 Summary
Inspired by established human learning principles, we proposed online and adaptive algorithms
for learning from multiple related tasks and leveraged the acquired knowledge to learn new
concepts and solve new problems efficiently. Our work in multitask and lifelong learning scales
to large-scale applications where both the tasks and the examples of the tasks arrive in an online
fashion. We utilized the inherent relationship between the tasks and their shared representation
to improve the performance of multitask and lifelong learning problems. Learning from related
tasks in this setting is a challenging problem. In this thesis, we proposed several methods that
address this problem under practical constraints:

1. Data from multiple tasks arrive sequentially. In chapter 2, we proposed Smoothed Multitask
Learning (SMTL) that learns the task structure adaptively from data in an online fashion
with simple update equations. We leveraged task relatedness structure to improve the
generalization capability by combining data from all tasks.
Based on the motivation to address the aforementioned challenges, we proposed an al-
gorithm that features probabilistic interpretation, efficient updating rules for learning the
asymmetric relationship between the tasks and flexible modulations on whether learners
focus on their specific task or on jointly address all tasks [80]. The key idea is based on
smoothing the loss function of each task w.r.t. a probabilistic distribution over all tasks,
and adaptively refining such distribution over time. We proved a sub-linear regret bound as
compared to the best linear predictor in hindsight.
We extended our learning setting to multiple kernel learning where each task is associated
with multiple kernels and proposed a two-stage learning approach to learn the model
parameters, optimal kernel weights, and the task relationship efficiently [77]. In addition
to the graph relations between the task, We explored other structural assumptions such as
clusters [81], overlapping groups, etc. under the online learning setting.

2. Human-generated labels are expensive. In chapter 3, we proposed selective sampling for
multitask learning to automatically decide whether or not to pay a unit cost and query the
teacher for the correct label from the Oracle. The primary intuition we leveraged in this
work is that task performance can be improved both by querying external oracles and by
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querying peer tasks, where the former incurs a cost or at least a query-budget bound, but the
latter requires no human attention. Hence, our hypothesis was that with bounded queries to
the human expert, additionally querying peers should improve task performance. Instead of
always requesting a label from a human oracle, our proposed method first determines if the
learner for each task can acquire that label with sufficient confidence from its peers either
as a task-similarity weighted sum or from the single most similar task. If so, it saves the
Oracle query for later use in more difficult cases, and if not it queries the human oracle.

3. Shared Annotator In the later part of chapter 3, we showed a learning framework for online
multitask learning when there is a shared annotator. We proposed learning from peers in
shared annotator setting. Unlike in the tradition approach, instead of choosing observation
with low confidence, we consider the observation with maximum transfer to the peers. In
addition to using the Oracle as a strong annotator, we utilize the peers as weak annotators
(experts) using the peer weights (task relationship matrix).

4. Tasks arrive sequentially. In chapter 4, we considered self-paced learning of multiple tasks
by gradually learning from easier to harder tasks. In this setting, the shared knowledge
learned from previously learned tasks are used to solve novel tasks, following a lifelong
learning paradigm. When it comes to lifelong learning, it is natural to ask, Is it possible
to use an existing multitask algorithm to solve a lifelong learning problem? Our proposed
framework based on self-paced learning utilizes a curriculum defined dynamically by the
learner ("self-paced") instead of a fixed curriculum set a-priori by a teacher [78]. It allowed
us to use a certain class of existing multitask algorithms for solving the lifelong learning
setting. Our proposed method starts with an easier set of tasks, and gradually introduces
more difficult ones to build the shared knowledge base. It provides a natural way to specify
the trade-off between choosing the easier tasks to update the shared knowledge and learning
new tasks using the knowledge acquired from previously learned tasks.

5. Data and tasks arrive sequentially. In the latter part of chapter 4, we considered a difficult
problem setting in lifelong learning where both the observation and task arrives sequentially
[79]. We defined the task relatedness as output kernels in Reproducing Kernel Hilbert
Space (RKHS) on multitask instances. We proposed a novel algorithm called Online Output
Kernel Learning Algorithm (OOKLA) for lifelong learning setting with simple and quite
intuitive update rules for learning the output kernel sequentially. When we receive a new
example, the algorithm updates the output kernel when the learner made a mistake by
computing the similarity between the new example and the set of representative examples
(stored in the memory) that belongs to a specific task. If the two examples have similar
(different) labels and high similarity, then the relationship between the tasks is increased
(decreased) to reflect the positive (negative) correlation and vice versa.
To avoid the memory explosion, we introduce a robust budget-limited version of the
proposed algorithm, which efficiently utilizes the relationships between the tasks to bound
the total number of representative examples in the support set. In addition, we proposed
an efficient two-stage budgeted scheme for tackling the task-specific budget constraints in
lifelong learning.
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5.2 Future Works

Our contributions in this thesis will be useful in several applications such as spam detection,
sentiment analysis, stock market prediction, object detection, autonomous robot learning, etc.
There are several interesting problems that remained unexplored in online multitask and lifelong
learning. Here we briefly discuss a few possible directions.

5.2.1 Lifelong Multi-agent Learning

In many applications, multiple agents interact and work together to solve a problem or to master a
new skill, etc. By considering each learning agent as a task, we can extend our work in this thesis
to multi-agent learning with the continuous adaptation of the learning system to the dynamic
environment especially when there are many learners (or agents) interacting with each other
under realistic assumptions. This problem has gained significant interests in related topics such as
multi-armed bandits and multi-agent reinforcement learning. We can consider this problem under
two different learning environments: 1) Collaborative where the learning agents work and interact
together to solve a problem 2) Competitive where the learning agents learn from their opponents
to solve a problem or compete with other agents to learn a new skill. We have already seen a
multi-agent learning in a collaborative setting in chapter 3 where several learners collaborate with
each other by querying from the peers for instances with low confidence.

Following our work on learning from peers and lifelong learning, we can pursue a similar
setting in lifelong multi-agent learning. Here the learning agents share the knowledge accumulated
in the past with the other agents. In addition to the latent structural assumption among the tasks,
we can consider the structural constraints on the environment. Towards this end, we can assume
that these structural constraints are only partially known to the agents and provide a learning
advantage by sharing the partial information with each other. This setting is common in multi-
agent reinforcement learning.

5.2.2 Distributed Multitask Learning

Unlike in the traditional multitask learning where we build models for data (from all the tasks)
collected at a centralized location, distributed multitask learning focuses on communication and
computationally-efficient algorithms for multitask learning where the data for each task resides
in different geographical locations. While the previous work in distributed multitask learning
considered selecting the features that affect all the tasks using shared sparsity (such as `1/`2), we
can leverage the pairwise interrelationship graph of the tasks for efficient communication between
the models. The motivation behind this approach is that since task relationship is asymmetric
and knowledge transfer is typically from information-rich tasks to information-poor ones, we can
reduce the communication cost significantly by learning and utilizing the inter-task relationship
graph. Based on this interest, we can extend this approach to developing privacy-preserving
multitask learning algorithm in a distributed setting with delayed and anonymous communication
feedbacks.
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5.2.3 Multitask approach to Hyper-parameter Optimization
Recent interests in model search and hyper-parameter optimization, fueled by the need for complex
models to represent the data from novel applications, can be viewed in the online and lifelong
learning setting. In lifelong learning, model search and hyper-parameter optimization on a novel
task can be greatly improved by utilizing the knowledge learned from the related tasks. This
approach can significantly reduce the search space by leveraging the shared structure among the
tasks.

In addition to the above topics, there are several possible directions for the future research
such as other forms of budget limits (e.g. time or reprocessing capacity) for lifelong learning
setting, more complex inter-task relationships (e.g. hierarchical), learning with outlier tasks,
structural constraints in the environment and additional factors such as task reliability (e.g. prefer
transferring from a well-trained related task, vs from a relatively data-sparse one, whose model is
less reliable), lifelong learning when there is no task demarcation such as task identifier etc.
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Appendix A

Online Multitask Learning Proofs

A.1 Second-order OSMTL

In case of squared error loss, the second order online algorithm for the proposed OSMTL is given
below.

Algorithm 13: Second-order Smoothed MTL (Supplementary)
Input: Number of Rounds T , Regularization Parameters γ, λ > 0
Initialize S0 = ∅,v0

j = 0p η s.t. ηj = ej, j = 1 . . . K
for round t = 1, 2, . . . T

1. Receive {xt1, xt2, · · · , xtK}
2. Predict ŷtj = sign(wt

jx
t
j), for j = 1 . . . K

where wt
j = (γI + St−1

j (St−1
j )>)−1vt−1

j

3. Receive yt1, y
t
2 . . . y

t
K

4. Update each task j = 1 . . . K if ytj 6= ŷtj :

(a) vj
t = vj

t−1 +
∑

k η
t
jky

t
kx

t
k

(b) Set Stj = [St−1
j , [ηtjkx

t
k]
K
k=1]

(c) for k = 1 . . . K, update ηtjk as in OSMTL

A.2 Proof of Theorem 1

Proof. Define ∆
(t)
k

def
= ‖w(t)

k − w∗k‖2 − ‖w(t+1)
k − w∗k‖2.

We can first upper bound
∑

t∈T ∆
(t)
k via

∑
t∈[T ] ∆

(t)
k =

∑
t∈[T ] ‖w

(t)
k −w∗k‖2−‖w(t+1)

k −w∗k‖2 =

‖w(0)
k − w∗k‖2 − ‖w(T+1)

k − w∗k‖2 ≤ ‖w∗k‖2.
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We further notice any non-zero ∆
(t)
k can be lower-bounded via

∆
(t)
k =‖w(t)

k − w
∗
k‖2 − ‖w(t)

k − C
∑
j∈[K]+

η
(t)
kj `

(t)
kj

′
− w∗k‖2 (A.1)

=2Cw
(t)
k

∑
j∈[K]+

η
(t)
kj `

(t)
kj

′
− 2Cw∗k

∑
j∈[K]+

η
(t)
kj `

(t)
kj

′
− C2

∥∥ ∑
j∈[K]+

η
(t)
kj `

(t)
kj

′∥∥2

2
(A.2)

≥2C
∑
j∈[K]+

η
(t)
kj

(
`

(t)
kj − 1

)
− 2C

∑
j∈[K]+

η
(t)
kj

(
`

(t)∗
kj − 1

)
− C2

∥∥ ∑
j∈[K]+

η
(t)
kj y

(t)
j x

(t)
j

∥∥2

2
(A.3)

=2C
∑
j∈[K]+

η
(t)
kj `

(t)
kj − 2C

∑
j∈[K]+

η
(t)
kj `

(t)∗
kj − C

2
∥∥ ∑
j∈[K]+

η
(t)
kj y

(t)
j x

(t)
j

∥∥2

2
(A.4)

≥2Cη
(t)
kk `

(t)
kk − 2C

∑
j∈[K]+

η
(t)
kj `

(t)∗
kj − C

2
( ∑
j∈[K]+

η
(t)
kj

∥∥x(t)
j

∥∥
2

)2

(A.5)

≥2Cη
(t)
kk

(
`

(t)
kk − `

(t)∗
kk

)
− 2C

∑
j∈[K]+,j 6=k

η
(t)
kj `

(t)∗
kj − C

2R2 (A.6)

≥2Cα
(
`

(t)
kk − `

(t)∗
kk

)
− 2C(1− α)`

(t)∗
kk − 2C

∑
j∈[K]+,j 6=k

η
(t)
kj `

(t)∗
kj − C

2R2 (A.7)

=2Cα
(
`

(t)
kk − `

(t)∗
kk

)
− 2C(1− α)

(
`

(t)∗
kk +

∑
j∈[K]+,j 6=k

η
(t)
kj `

(t)∗
kj

)
− C2R2 (A.8)

≥2Cα
(
`

(t)
kk − `

(t)∗
kk

)
− 2C(1− α)

(
`

(t)∗
kk + max

j∈[K]+,j 6=k
`

(t)∗
kj

)
− C2R2 (A.9)

Combining the aforementioned upper and lower bound over
∑

t∈[T ] ∆
(t)
k , we have

∑
t∈[T ]

(`
(t)
kk − `

(t)∗
kk

)
≤ 1

2Cα
‖w∗k‖2 +

(1− α)T

α

(
`

(t)∗
kk + max

j∈[K]+,j 6=k
`

(t)∗
kj

)
+
CR2T

2α
(A.10)

A.3 Proof of Corollary 2

Proof. By setting α =
√
T

1+
√
T

and C = 1+
√
T

T
, we have

∑
t∈[T ]

(`
(t)
kk − `

(t)∗
kk

)
≤
√
T

2
‖w∗k‖2 +

√
T
(
`

(t)∗
kk + max

j∈[K]+,j 6=k
`

(t)∗
kj

)
+

(1 +
√
T )2

2
√
T

R2 (A.11)

≤
√
T

2
‖w∗k‖2 +

√
T
(
`

(t)∗
kk + max

j∈[K]+,j 6=k
`

(t)∗
kj

)
+ 2
√
TR2 (A.12)

=
√
T

(
1

2
‖w∗k‖2 + `

(t)∗
kk + max

j∈[K]+,j 6=k
`

(t)∗
kj + 2R2

)
(A.13)
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Asymptotically, the average regret of our algorithm w.r.t the best predictor w∗ in hindsight goes to
0. Since our algorithm depends on C and α, our algorithm needs to know the value of T . We can
get rid of the dependence of our regret bound on T using the doubling trick.
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Appendix B

Active Learning from Peer Proofs

B.1 Proof of Theorem 3

Proof. We prove our theorem 3 for Algorithm 5 using the following lemma [26].

Lemma 5. For a given example at round t,
(
(x(t), k), y(t)

)
, let α be some constant and γ be the

margin. Let {w∗k}k∈[K] be any arbitrary vectors where w∗k ∈ Rd and its hinge loss on the examples(
x(t), y(t)

)
is given by `(t)∗

kk =
(
γ − y(t)〈x(t), w∗k〉

)
+

. We have the following inequality:

αγ + |p̂(t)
k | ≤ α`

(t)∗
kk ≤ α`

(t)∗
kk +

1

2
‖αw∗k − w

(t−1)
k ‖2 − 1

2
‖αw∗k − w

(t)
k ‖

2 +
1

2
‖w(t−1)

k − w(t)
k ‖

2 +
1

2
‖w(t−1)

k − w(t)
k ‖

2

Proof.

γ − `(t)∗
kk = γ −

(
γ − y(t)〈x(t), w∗k〉

)
+

≤ y(t)〈x(t), w∗k〉
= y(t)〈x(t), (w∗k − w

(t−1)
k + w

(t−1)
k )〉

= y(t)〈x(t), w
(t−1)
k 〉+

1

2
‖w∗k − w

(t−1)
k ‖2 − 1

2
‖w∗k − w

(t)
k ‖

2 +
1

2
‖w(t−1)

k − w(t)
k ‖

2

The above inequality holds for any γ > 0 and any arbitrary vector w∗k, we replace γ by αγ and w∗k
by αw∗k where α is some constant to be optimized. Since y(t)〈x(t), w

(t−1)
k 〉 ≤ 0 when we make a

mistake at round t, we get our inequality by using the notation p̂(t)
k = 〈x(t), w

(t−1)
k 〉.

αγ + |p̂(t)
k | ≤ α`

(t)∗
kk +

1

2
‖αw∗k − w

(t−1)
k ‖2 − 1

2
‖αw∗k − w

(t)
k ‖

2 +
1

2
‖w(t−1)

k − w(t)
k ‖

2

Note that, for a task m (m 6= k), y(t)〈x(t), w
(t−1)
m 〉 ≤ 0 is not necessarily true and ‖w(t−1)

m −
w

(t)
m ‖2 = 0 since w(t)

m = w
(t−1)
m at round t.
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To prove theorem 3, we bound the following two terms: b2

(
αγ+|p̂(t)

k |
)
+
∑

m∈[K]
m 6=k

τ
(t)
km|p̂

(t)
m |
(
αγ+

|p̂(t)
k |
)

where p̂(t)
m = 〈x(t), w

(t−1)
m 〉. Summing over t, we use w(t)

k = w
(t−1)
k when there is no mistake

(M (t) = 0) and ‖w(t−1)
k − w(t)

k ‖2 ≤ X2 otherwise. We use
∑T

t=1[1
2
‖αw∗k − w

(t−1)
k ‖2 − 1

2
‖αw∗k −

w
(t)
k ‖2] = α2

2
‖w∗k‖2 and w(0)

k = 0. Consider the mth task in the second term (m 6= k), we have:∑
tM

(t)Z(t)|p̂(t)
m |
(
αγ + |p̂(t)

k | − X2

2

)
≤
∑
t

M (t)Z(t)
[
α|p̂(t)

m |`
(t)∗
kk +

α2

2
|p̂(t)
m |‖w∗k‖2

]
≤
∑
t

M (t)Z(t)
[
α
(
γb2 − |p̂(t)

m |y(t)〈x(t), w∗k〉
)

+
+
α2b2

2
‖w∗k‖2

]
≤
∑
t

M (t)Z(t)
[
α
(
γb2 − (y(t)〈x(t), w∗m〉 −

1

2
‖w∗m‖2)(y(t)〈x(t), w

(t−1)
k 〉+

1

2
‖w∗k‖2 +

X2

2
)
)

+
+
α2b2

2
‖w∗k‖2

]
≤
∑
t

M (t)Z(t)
[
α
(
γb2 − (y(t)〈x(t), w∗m〉 −

1

2
‖w∗m‖2)b2

)
+

+
α2b2

2
‖w∗k‖2

]
≤
∑
t

M (t)Z(t)
[
b2

(
α`

(t)∗
km +

α2

2
‖w∗m‖2 +

α2

2
‖w∗k‖2

)]

where we have used the inequalities in Lemma 5 for both the tasks k and m (m 6= k). We set
b2 = b1+ 1

2
‖w∗k‖2+X2

2
. We choose α = (2b1+X2)/2γ. Now, combining both the terms, we have:

T∑
t=1

M (t)Z(t)

[(
b1 + |p̂(t)

k |
)
(b2 +

∑
m∈[K]
m6=k

τ
(t)
km|p̂

(t)
m |)
]
≤ b2

[
(2b1 +X2)2

8γ2

(
‖w∗k‖2 +

∑
m∈[K]
m 6=k

τ
(t)
km‖w

∗
m‖2
)

(2b1 +X2)

2γ

(∑
t

M (t)Z(t)`
(t)∗
kk +

∑
t

∑
m∈[K]
m 6=k

τ
(t)
kmM

(t)Z(t)`
(t)∗
km

)]

Taking expectation on both side and using L̃kk = E
[∑

tM
(t)Z(t)`

(t)∗
kk

]
gives the desired

result.
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Appendix C

Application: Industrial Scientific
Workplace Incident Prediction

C.1 Varying Coefficient Models for Temporal Data
Many real world applications, such as stock market, social network, network traffic, genomics,
etc, exhibit a time-varying characteristics. In this chapter, we consider one such application,
where the data is associated with temporal information (time stamp) and a complex, time-varying
dependency structure over the feature set (correlation graph). We consider a novel problem closely
related to the lifelong learning setting called Varying Coefficient models. This chapter focuses on
an application that involves the prediction of number of workplace incidents based on the safety
inspection data. Typically, the data is collected manually from different locations for different
projects by safety inspectors, but these data may also be collected from sensors deployed in
different locations.

The observation are recorded based on safety checklist, a set of simple yes/no questions such
as ’Is the person wearing a head protection?’ or ’Are there proper ventilation for the job?’. These
questions are categorized and they do overlap for different projects handled in a location. The
severity of the incidents ranges from simple sprain to person’s death and are collected based on
OSHA standards 1. In this year alone, there have been 825 fatalities reported to OSHA from across
the country. There is a necessity to predict the number of incidents in the future to prevent the
actual injuries.

As we can see in Figure C.1, the number of incidents change with time and, clearly, varying
coefficient model can explain this behavior better than any other parametric model. Similar trends
are seen in number of inspections and projects. In addition, we observe that the feature set can
be represented as a graph (for e.g., correlation graph), where each project in a location uses a
subgraph/subset of this feature set. Each project exhibit a different dependency structure over the
feature set and start and end dates of a project are unknown or not available.

The varying coefficient model is an important generalization of linear regression model and
has been studied extensively over the past decade [45, 48]. The model assumes that the regression
coefficients are an unknown function of some other variables, called effect modifiers [46]. In this

1https://www.osha.gov/
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Figure C.1: Number of Incidents/Inspections Vs Week for Workplace Incident Dataset.

work, we consider the regression coefficients as functions of time. For a set of random variables
Y,x1,x2, . . . xp and T, a time-varying coefficient model has the following form:

Yi = X′iβ(ti) + εi, i = 1, . . . , N

We assume that the regression coefficient function is multidimensional piecewise constant with
coefficient values and the dependency structure, i.e, there exists a K-way partition of the sample
{1, . . . , N} i.e., [t1 = τ1 < τ2 < . . . < τK = tN ], such that, β(t) = βτk , for t ∈ [τ(k−1), τk) and
the correlation graph associated with this interval, Gτk is same for all Xi, i ∈ [τ(k−1), τk). Since
we are dealing with high dimensional problem, we use the l1−sparsity constraint to select the
subset of features (or subgraph of the features) relevant to the outcome ([109]).

Our problem involves two unknowns: the K-way partition set and the graph constrained
and sparsity constrained regression coefficient function. Note that both the size of the partition
set (K) and the actual partition set are unknown. Several papers have discussed this problem
(multiple change-point detection, [11]). Most recently, [67] and [111] proposed change-point
detection for signal approximation with lasso and group lasso. While the former is proposed
for one dimensional signal approximation, the latter can be extended to multidimensional signal
approximation.

Based on [67], Kolar et al. (2009) estimated the partition boundaries for the varying coefficient
models with fused lasso, which penalize the coefficient values of adjacent temporal difference in
each dimension separately. In our application, the model requires that both the coefficient values
and their dependency structure changes at the (unknown) partition boundaries. To enforce this
constraint, we estimate the multiple change points with fused group lasso, instead of fused lasso
penalty. It ensures that all the coefficient values change at the partition boundaries, with which
we can estimate correlation graph for each partition separately [111]. From these partitions, we
can estimate the regression coefficient with graph and sparsity constraints. In this work, we use
graph-structured fusion penalty to estimate the coefficients with network constraints [57, 68].
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In the next section, we present temporally-fused lasso and its variants. We provide the
parameter estimation for our temporal models. Finally, we demonstrate the performance of our
temporal models on simulated and workplace incident dataset, followed by conclusion.

C.1.1 The Methodology
Notations

Suppose we have a sample of N observations, each represented by a p-dimensional feature vector.
Let X = (x1,x2, . . . ,xp) ∈ RN×p be the input matrix and Y ∈ RN represent the outcome
variable. We assume a varying coefficient model discussed in the introduction. Let β(ti) ∈ Rp be
the regression coefficient vector associated with the ith observation. We assume that the feature
variables xj are centered to have zero mean and unit variance, and the outcome variable y has
mean 0, so that, we consider the model without an intercept.

Temporal Graph-guided Fused Lasso

For our model assumptions, we consider the temporal graph-guided fused lasso penalty to predict
workplace incidents. We analyze the following estimator for our application:

min
β

1

2

N∑
i=1

(Yi −Xiβ(ti))
2 + λ

∑
i

||β(ti)||1

+ γ1

∑
i

||β(ti)
′G(β(ti)||α + γ2

N∑
i=2

||β(ti)− β(t(i−1))||2 (C.1)

where {λ, γ1, γ2} are regression coefficients that depend on N . The loss function estimates the
square loss between the true number of incidents and the estimated number of incidents. The
first penalty term promotes sparsity in the regression coefficients, the second penalty induces
graph structured constraints over the feature set and the third penalty term identifies the partition
boundaries.

For V = {1, . . . , p} and E = {(m, l) : ∀(m, l) ∈ V × V and w(rml) ≥ ρ}, G(β(ti)) is a
|V |×|E|matrix with entries: (m, (m, l)) =

√
(w(rml)) and (l, (m, l)) = −sign(rml)

√
(w(rml)).

w(rml) ∈ R denote the weight of the edge e = (m, l) ∈ E. We choose rml to represent
the strength of correlation between xm and xl. In this work, we use a simple strategy for
constructing the feature graph G by computing a pairwise correlation between xm and xl and
taking w(rml) = |rml|.

The parameter α takes the value in {1, 2}. When α = 1, the graph constrained penalty forces
the features sharing an edge to take the same coefficient values and when α = 2, their coefficient
values are closer to each other.

Estimation Procedures

When the partition boundaries and the graph structures of each partition are available a priori,
equation C.1 can be easily optimized. With the partition boundaries unknown (and hence the
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Figure C.2: Regression coefficients estimated by different models for a simulated dataset (p =
20, K = 20). We used threshold ρ = 0.6 for correlation graph and signal strength b = 0.8. Blue
pixels indicate positive values. (A) True coefficient matrix with each row corresponds to β(tτk)
(B) TESLA (C) Our Procedure.

associated correlation graph), we consider an adaptive procedure to estimate the values of the
regression coefficients in equation C.1. Due to the bias introduced by the fusion penalty [91],
we use a two-stage procedure: (1) estimate the partition boundaries (2) estimate the regression
coefficients with l1 -sparsity and graph constraints.

Estimating Partition Boundaries
We first estimate the partition boundaries with group fused lasso.

min
β

1

2

N∑
i=1

(Yi −Xiβ(ti))
2 + γ2

N∑
i=2

||β(ti)− β(t(i−1))||2 (C.2)

Proposition 6. Given dataset (X,Y), we define

X† = (x†1,x
†
2, . . . ,x

†
p) ∈ RN×Np,

x†i =


X1 0 · · · 0

X2 −X1 X2 · · · 0
...

... . . . ...
XN −XN−1 XN −XN−1 · · · XN −XN−1


(we removed the subscript i for clarity)

β† = (β†t1β
†
t2 . . .β

†
tN

)′ ∈ RNp

β†ti = βti − βti−1
, for i = 2 . . . N

and Y †i = Yi − Yi−1, Y †1 = Y1
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Algorithm 14: FISTA for detecting multiple change points with group fused lasso
Data: β0,X,Y, γ2, L−Lipschitz constant
Result: β̂
w0 = β0, α1 = 1;
while Convergence met do

gk = −X′(Y −Xwk)

βk =
(

1− γ2
L||wk− 1

L
gk||2

)
+

(wk − 1
L
gk)

αk = (wk+1 − βk)′(βk+1 − βk) > 0?1 : αk

αk+1 = 1
2
1 +

√
1 + 4(αk)2

wk+1 = βk + αk−1
ak+1 (βk − βk−1)

Equation C.2 can be written as

min
β†∈RNp

1

2
||Y† −X†β†||22 + γ2

N∑
i=2

||(β†)i||2 (C.3)

with ith group containing elements of the vector (βti − βti−1
).

Equation C.3 is an objective function with group lasso penalty, which has been studied
extensively. We use FISTA given in Appendix to solve the above optimization problem. From the
estimates of β†, we can get partition boundaries where β† 6= 0.

Estimating Regression Coefficients Let τk, k = 1 . . . K be the partition boundaries esti-
mated from the previous step. We compute the correlation graph for each partition G(β(τk)).
We construct X+ = diag(Xτ1 , Xτ2 , . . . , Xτk), a block diagonal matrix with diagonal elements
correspond to the matrix with observations from each partition, estimated in the previous step.

min
β

1

2

N∑
i=1

(Yi −Xiβ(ti))
2 + λ

∑
i

||β(ti)||1 + γ1

∑
i

||β(ti)
′G(β(ti)||α

When α = 1, we can use a coordinate descent algorithm given in Annex A.
Proposition 7. Given α = 2, we write

X∗ =
1√

(1 + γ1)

(
X+

√
γ1G

′

)
,Y∗ =

(
Y
0

)
(C.4)

where G ∈ Rp×
∑
τ |E|τ is a block diagonal with |V | × |E| matrices, one for each partition. Let

γ = λ√
1+γ1

and β∗ =
√

1 + γ1β, then equation C.4 is equivalent to:

minβ∗||Y∗ −X∗β∗||22 + γ||β∗||1 (C.5)

and the solution to equation C.4 is β = 1√
1+γ1

β∗
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Optimizing Equation C.1

When α = 1, equation 4 contains a non-smooth function which cannot be optimized. There are
efficient methods to solve this equation (Such as FISTA, ADMM, etc.), but we use a simplest
approach. We consider a smooth approximation of the non-smooth function by introducing
additional variables dτ,j, d′τ,τ−1,j, d

′′
τ,m,l that need to be estimated, along with the regression

coefficients.

min
B

T∑
τ=1

||Yτ −Xτβτ ||22 + λ

T∑
τ=1

p∑
j=1

βjτ
dτ,j

+ γ1

T∑
τ=2

p∑
j=1

(βjτ − β
j
τ−1)2

d′τ,τ−1,j

+ γ2

T∑
τ=1

∑
(m,l)∈Eτ

w2(rml)
(βmτ − sign(rml)β

m
τ )2

d′′τ,m,l

(C.6)

s.t
T∑
τ=2

p∑
j=1

d′τ,τ−1,j = 1,
T∑
τ=1

∑
(m,l)∈Eτ

d′′τ,m,l = 1,
T∑
τ=1

p∑
j=1

dτ,j = 1

d′τ,τ−1,j > 0, d′′τ,m,l > 0,

dτ,j > 0, ∀ τ, j,m, l

We solve the above problem by optimizing dτ,j, d′τ,τ−1,j, d
′′
τ,m,l and βτ,j . In each iteration, we fix

the value of βτ,j and estimate dτ,j, d′τ,τ−1,j, d
′′
τ,m,l, by taking their derivatives and setting it to 0.

We get the following update equations for dτ,j, d′τ,τ−1,j, d
′′
τ,m,l:

dτ,j =
|βjτ |∑
τ ′,j′ |β

j′

τ ′ |

d′τ,τ−1,j =
|βjτ − β

j
τ−1|∑

τ ′,j′ |β
j′

τ ′ − β
j′

τ ′−1|
(C.7)

d′′τ,m,l =
w(rml)|βmτ − sign(rml)β

m
τ |∑

τ ′,(m′,l′)∈Eτ w(rm ′l ′)|βm
′

τ ′ − sign(rm ′l ′)βl
′
τ ′ |

Based on the current estimates for dτ,j, d′τ,τ−1,j, d
′′
τ,m,l, we optimize over βτ,j using the following

update equation:

βjτ =

{
Nτ∑
n=1

xjn
(
yn −

∑
j′ 6=j

xj
′
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We repeat the above two steps iteratively until there is a little improvement in the objective function.
Regularization parameters λ and γ can be learned automatically using K-fold cross-validations.
We can choose the regularization parameters that minimizes the BIC criterion.

Implementation Details

1. We use position independent weights
√

N
i∗(N−i) for group lasso in equation (3) to avoid

boundary effects.

2. We can see that the results are highly sensitive to the correlated graph. But we have very
limited data in each partition. One approach might be to use the data from other location to
estimate the correlation graph. This might be misleading the observations in each location
are different.

3. To estimate, we need to use an adaptive version of the estimator in equation 3. One approach
might be to estimate β† and use this to minimize ||β†− β̃||2 + ||β̃||2. Alternatively, we used
bootstrap samples to estimate change points. Each change point is chosen with probability
#ChangePointsτkappearedinbootstrapsamples

#Samples

C.1.2 Experiments

In this section, we show the performance of the our procedure discussed in the previous section on
simulated and real datasets. We use Lasso [109], GRACE [68] and TESLA [60] as our baselines.
In addition to our procedure, we consider a model where G(β(t1)) = G(β(t2)) = . . . = G(β(tN)
in equation C.4, i.e., we use the same correlation graph estimated on (X) for all partition instead
of estimating correlation graph on (Xτk) for each partition. We call it tGRACE for temporal data.
We choose the regularization parameters λ and γ by minimizing BIC criterion. We assume that
the input matrix X and the outcome variable Y are standardized before the experiments.

Simulation Study

We conduct a simulation study to compare the performance of Lasso, GRACE, TESLA and our
procedure. We use K = 20 partitions of the input matrix with 20 features for generating simulated
datasets. We choose the number of observations in each temporal segment τk, Nτk ≈ 10, for both
training and test data.

We generate the data with both temporal dependencies and feature correlations using the
following procedure: we choose subsets {{1}, {1, 2}, {3, 4, 5}, {1, 2, 3, 4, 5}, {9}, {15, 16, 17},
{12}, {19}, {20}} of features as groups, and used these groups to sample a covariance matrix Σ
for each group separately. We generate the observations for each partition from a multivariate
Gaussian distribution with mean 0 and covariance Σ, based on the sparsity pattern of β(tτk) given
in Figure (C.2A). Each non-zero values of β(tτk) is set to 0.8.

For the first part of the simulated experiment, we restrict our attention to TESLA and our
procedure for recovering the true sparsity pattern in temporal domain. We estimate the regression
coefficients β on the simulated training data to compare them. Figure C.2(A) shows the true
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Figure C.3: Comparison of ROC curves for the recovery of true sparsity patterns with varying
threshold ρ for feature correlation graph. (a) ρ = 0.1, (b) ρ = 0.3, (c) ρ = 0.5, (d) ρ = 0.7.
Results are averaged over 50 simulated datasets. We use b = 0.8 for signal strength. X-axis: False
positive rate; Y-axis: True positive rate.

regression coefficients β for each partition. Figures (C.2B) and (C.2C) show the regression
coefficients β̂ estimated by TESLA and our procedure.

For alpha = 2, the coefficient estimates of β, for example {15, 16, 17}, will be closer to
each other, but may not be same. In order to recover the exact sparsity pattern, we use α = 1 in
equation C.4 for the simulated experiment. Note that there is no need to use α = 1 unless the
application requires it. We use it in the simulated experiment for the better visualization. We will
use alpha = 2 for the real data. Clearly we can see that our procedure succeeds in recovering the
true model. TESLA recovers the temporal smoothness, but without the feature correlation, TESLA
couldn’t recover the exact support of the regression coefficients.

We evaluate the models on test data with the receiver operating characteristics (ROC) curves
for the recovery of true sparsity pattern and prediction errors. performance of the our procedure
discussed in the previous section on simulated and real datasets. We use Lasso , GRACE and
TESLA to compare it against our procedure. We study the importance of threshold ρ for correlation
graph used in GRACE, tGRACE and our procedure.As we can see in Figure C.3, TESLA, tGRACE
and our procedure consistently outperform Lasso and GRACE, regardless of the threshold ρ, which
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Figure C.4: ROC Curve (left) and prediction error (right) estimated for (A) Lasso, (B) GRACE,
(C) TESLA and (D) tGRACE with ρ = 0.3 and for our procedure (E) with ρ = 0.85. The results
are averaged over 50 simulated datasets. (Left) X-axis: False positive rate; Y-axis: True positive
rate. (Right) Box shows the lower quartile, median, and upper quartile values, and the whiskers
show the range of prediction errors in the 50 simulated datasets.

make sense since we are dealing with temporal data.

For lower values of ρ, more edges are added to the correlation graph that includes edgesE with
strong correlations and edges with weak correlations due to the added noise in both covariance
matrix and the input data. It is worth noting that tGRACE exhibits better performances than the
other models for ρ = 0.3, since it uses the correlation constructed from the entire data. This
reduces the number of spurious edges added to the edge set E. When the threshold is higher (say
ρ = 0.7), there are no edges in the feature graph, and thus removes the graph constrained penalty
function. As a result, the performance curves of TESLA and tGRACE almost entirely overlap.
Similar performances can be noticed for GRACE and Lasso.

Even though the performances of our procedure are better than Lasso and GRACE, we can see
that our procedure performs worse than TESLA and tGRACE for all the values of ρ. As mentioned
before, since the correlation graph G(β(tτk)) is estimated on a subset of the observation, we
notice that significant number of spurious edges are added to the edge set Eτk , even when ρ = 0.7.
To overcome this problem, we choose the threshold value separately for our procedure to filter
these noisy edges.

We repeat the experiment with ρ = 0.85 for our procedure. For the other models, we choose
the threshold that gave the best results in Figure C.3 (ρ = 0.3). Figure C.4 shows the updated ROC
curve and prediction errors for the regression models. We can see that our procedure now performs
significantly better than all the other models, by utilizing correlation between the features in each
partition.

The evaluation results shown in Figures C.3 and C.4 are averaged over 50 randomly generated
datasets.
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Location/
Model Lasso Elastic Net GRACE TESLA Our Procedure

Complex 0 5.2803 4.7049 3.2828 5.6586 2.2483
Complex 1 14.0825 11.0319 0.5159 2.6186 0.5057
Complex 2 0.3901 0.3891 0.3075 0.2913 0.2932
Complex 3 10.8767 8.3318 0.3132 1.3766 0.3258
Complex 4 4.3131 4.0839 0.5904 0.9435 0.4996
Complex 5 0.9010 0.7970 0.1666 0.6119 0.1429
Complex 6 2.6956 2.6534 0.3143 0.9058 0.2924
All 0.6186 0.6186 0.6173 0.9194 0.5447

Table C.1: Mean Squared Error (MSE) estimated for Lasso, Elastic Net, GRACE, TESLA and Our
Procedure on all datasets. Threshold ρ = 0.3

Workplace Incident Dataset

Workplace incident dataset contains inspections and the records of incidents collected from
different projects at different locations in 2011 and 2012. The dataset consists of ≈ 4000
observations (≈ 2000 observations in each year) with 51 features collected from different locations,
each associated with a time stamp. Each observation is a weekly summary of safety inspections at
a location with number of incidents happened in that week as an outcome.

We conduct a preliminary experiment to test our real data with each model. For the first part
of our experiment, we consider naive assumptions about the dataset. We assume that the partition
boundaries are given. We split the dataset into K = 12 partitions based on months. We also
assume that the features with shared edge take same coefficient values i.e., we set α = 1. We use
the observations from 2012 for training/validation and the observations from the first month of
2012 as test set. We use the regression coefficient β(t12) to predict the number of incidents in the
test set.

We use training set to learn the regression coefficients and test set to measure the performance
of regression models. As in the simulation study, we notice that smaller value for threshold ρ
hurts the performance of our procedure. We pick the threshold value for our procedure separately.
We randomly sample data from each partition to build the validation set. We use this validation
set to choose ρ = 0.5 for GRACE, tGRACE, and ρ = 0.9 for our procedure.

Figure C.5 shows the prediction error for each model. We use sum of absolute errors (||Y −
Ŷ||1) to compare the performance of the models. We removed the Lasso results since the estimates
were beyond the y-axis scale shown in the figure. As we see in Figure C.5 that our procedure
performs significantly better than other models. This is good but these results doesn’t give any
information to explain the model behavior.

Each partition contains weekly observations collected from different locations, so it is hard to
interpret the regression coefficient values, as these values might be influenced by the observations
from the locations with larger projects. Moreover, we noticed that there are several locations with
temporal gap in the observations, either because there were no projects during that period or that
location handles small projects. Nonetheless, even with the shaky assumptions and unreliable
data, TESLA, tGRACE and Our Procedure did better than GRACE and Lasso.
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Figure C.5: Prediction errors for the workplace incident dataset. X-axis: (left-to-right) (A)
GRACE, (B) TESLA, (C) tGRACE and (D) Our Procedure; Y-axis: ||Y − Ŷ||1 (Sum of absolute
errors).

In the second part of our experiment, we considered the original problem where the partition
set size K and the actual partition set are unknown. In addition, we restricted ourselves to
7 locations for which the observations are available for all two years (Complex0, Complex1,
Complex2, Complex3, Complex4, Complex5 and Complex6). Each dataset now contains 104
observations, one for each week. We used every other observations for test data, i.e., observations
with odd week number belong to training data and the observations with even week number
belong to test dataset. We used this way to split the dataset so that we can use the regression
coefficient βτti of week i in the training data to predict the number of incidents for the week
(i+ 1) in the test data.

We chose GRACE and TESLA as our baseline models for our procedure. We included
Lasso and Elastic Net to compare the results with [68]. We used Mean Squared Error (MSE:
1
N
||Y − Ŷ||22) to compare the models. Table C.1 shows the results. In addition, we included the

result for dataset generated by combining observations from all 7 locations.
Lasso, Elastic Net and GRACE results are consistent with the results produced in [68]. We

can see that our procedure gave good results in most of the locations. Interestingly, GRACE
outperforms TESLA in most of the cases. This explains the importance of using graph constraints to
estimate regression coefficients. TESLA performs little better than GRACE and Our Procedure in
Complex2 due to the limited number of inspections available for that location. This is consistent
with [60]’s results for finite sample data. It is worth noting that Our Procedure gave much smalled
MSE than other models when we use all the datasets. This is due to the availability of better
correlation graphs for each partition estimated with additional data from all locations.

We used the regularization path for TESLA and Our Procedure to study the model behaviors.
We noticed that after computing the change points, almost all the locations contain change points
around week 40 and week 90. A simple observation revealed that the number of inspections and
the number of incidents were significantly low in the last few weeks of an year due to the holidays,
compared to the previous week. This shows that change point detection identifies the seasonality
which is common in our application.

Based on our previous observations, we analyzed the regularization paths for the last two
partitions under TESLA and Our Procedure. Figure C.6 shows the regularization paths for TESLA
and Our Procedure. Left column contains the regularization paths for (K − 1)th partition and
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Figure C.6: Regularization Path for TESLA (Top) and Our Procedure (Bottom) showing the last
two partitions for the location (Complex 5)

right column contains the regularization paths for Kth partition for Complex5. We can see that
with graph constraints over feature set, the regularization paths of our procedure are well formed.
The correlated features often travel together in the regularization path. Similar behavior can be
noticed in regularization path of GRACE. The dotted lines in the left and right paths correspond to
the features that belong to (K − 1)th and Kth partitions respectively. We can clearly see that the
correlation between the features changed between the partition boundaries, which is captured by
our procedure.

C.2 Discussions
We considered sparse regression models for our application that encourage temporal smoothness
and utilize the graph structure over the feature set to learn the true sparsity pattern in the regression
coefficients. We demonstrated with simulated and real datasets that using additional information
about the feature correlation can improve the prediction performance.

We noticed that the performance of tGRACE and our procedure depends on the quality of the
available feature graph. In this work, we have used a simple strategy based on pair-wise correlation
to construct the feature graph, more sophisticated methods can be employed for constructing this
graph. For example, we can learn both structure and regression coefficients together. This is
especially useful when we consider a dynamic network where the structure changes frequently
over time. Although this work focused on one application, this procedure can be easily extended
to other applications such as modeling disease progression, survival analysis, financial data and
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genome analysis, etc.

105



106



Bibliography

[1] Jacob Abernethy, Peter Bartlett, and Alexander Rakhlin. Multitask learning with expert
advice. In Learning Theory, pages 484–498. Springer, 2007. 1, 1.1.1, 2.1, 2.1.1, 4.3

[2] Alekh Agarwal. Selective sampling algorithms for cost-sensitive multiclass prediction.
ICML (3), 28:1220–1228, 2013. 3, 3.1.1

[3] Alekh Agarwal, Alexander Rakhlin, and Peter Bartlett. Matrix regularization techniques
for online multitask learning. EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2008-138, 2008. 2.1.1, 3.1.1

[4] Arvind Agarwal, Samuel Gerber, and Hal Daume. Learning multiple tasks using manifold
regularization. In Advances in neural information processing systems, pages 46–54, 2010.
4.1.2, 4.1.3, 4.1.4

[5] Pierre Alquier, The Tien Mai, and Massimiliano Pontil. Regret bounds for lifelong learning.
arXiv preprint arXiv:1610.08628, 2016. 4

[6] Yonatan Amit, Michael Fink, Nathan Srebro, and Shimon Ullman. Uncovering shared
structures in multiclass classification. In Proceedings of the 24th international conference
on Machine learning, pages 17–24. ACM, 2007. 4.2.1

[7] Haitham B Ammar, Rasul Tutunov, and Eric Eaton. Safe policy search for lifelong
reinforcement learning with sub-linear regret. In Proceedings of the 32nd International
Conference on Machine Learning (ICML-15), pages 2361–2369, 2015. 4

[8] Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from
multiple tasks and unlabeled data. Journal of Machine Learning Research, 6(Nov):1817–
1853, 2005. 4.1.2, 4.1.3

[9] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex multi-task
feature learning. Machine Learning, 73(3):243–272, 2008. 1, 1.1.1, 2.1, 2.2, 2.2.7, 2.2.7, 3,
4, 4.1.4, 4.2, 4.2.1, 4.2.2, 4.2.3

[10] Francis R Bach, Gert RG Lanckriet, and Michael I Jordan. Multiple kernel learning, conic
duality, and the smo algorithm. In Proceedings of the twenty-first international conference
on Machine learning, page 6. ACM, 2004. 2.2

[11] Jushan Bai. Estimation of a change point in multiple regression models. Review of
Economics and Statistics, 79(4):551–563, 1997. C.1

[12] Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. Efficient representations for
lifelong learning and autoencoding. In Conference on Learning Theory, pages 191–210,

107



2015. 4

[13] Peter L Bartlett and Marten H Wegkamp. Classification with a reject option using a hinge
loss. Journal of Machine Learning Research, 9(Aug):1823–1840, 2008. 3.1.1, 3.2

[14] Aviad Barzilai and Koby Crammer. Convex multi-task learning by clustering. In Pro-
ceedings of the 18th International Conference on Artificial Intelligence and Statistics
(AISTATS-15), 2015. 4.2, 4.2.1, 4.2.3, 5, 4.2.3, 4.3.2

[15] Jonathan Baxter et al. A model of inductive bias learning. J. Artif. Intell. Res.(JAIR), 12
(149-198):3, 2000. 4.1.2

[16] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and
Jennifer Wortman Vaughan. A theory of learning from different domains. Machine
learning, 79(1-2):151–175, 2010. 1.1.3, 2.1.1

[17] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum
learning. In Proceedings of the 26th Annual International Conference on Machine Learning,
pages 41–48. ACM, 2009. 4, 4.1

[18] John Blitzer, Mark Dredze, Fernando Pereira, et al. Biographies, bollywood, boom-boxes
and blenders: Domain adaptation for sentiment classification. In ACL, volume 7, pages
440–447, 2007. 2.1.6

[19] Serhat Bucak, Rong Jin, and Anil K Jain. Multi-label multiple kernel learning by stochastic
approximation: Application to visual object recognition. In Advances in Neural Information
Processing Systems, pages 325–333, 2010. 2.2.7

[20] Rich Caruana. Multitask learning. Machine Learning, 1(28):41–75, 1997. 4.1.2

[21] Rich Caruana. Multitask learning. In Learning to learn, pages 95–133. Springer, 1998. 1, 4

[22] Giovanni Cavallanti and Nicolo Cesa-Bianchi. Memory constraint online multitask classifi-
cation. arXiv preprint arXiv:1210.0473, 2012. 4.3.3, 4.3.5

[23] Giovanni Cavallanti, Nicolo Cesa-Bianchi, and Claudio Gentile. Tracking the best hyper-
plane with a simple budget perceptron. Machine Learning, 69(2-3):143–167, 2007. 4.3.3,
4.3.5

[24] Giovanni Cavallanti, Nicolo Cesa-Bianchi, and Claudio Gentile. Linear classification
and selective sampling under low noise conditions. In Advances in Neural Information
Processing Systems, pages 249–256, 2009. 3, 3.1.1

[25] Giovanni Cavallanti, Nicolo Cesa-Bianchi, and Claudio Gentile. Linear algorithms for
online multitask classification. The Journal of Machine Learning Research, 11:2901–2934,
2010. 1, 1.1.1, 2.1, 2.1.1, 2.1.3, 2.1.6, 3.1.1, 3.2, 4, 4.3, 4.3.5

[26] Nicolo Cesa-Bianchi, Claudio Gentile, and Luca Zaniboni. Worst-case analysis of selective
sampling for linear classification. Journal of Machine Learning Research, 7(Jul):1205–
1230, 2006. 3, 3.1.1, 3.2, 17, 3.2.1, B.1

[27] Haim Cohen and Koby Crammer. Learning multiple tasks in parallel with a shared annotator.
In Advances in Neural Information Processing Systems, pages 1170–1178, 2014. 3.2, 3.3,
15

108



[28] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Generalization bounds for
learning kernels. In Proceedings of the 27th International Conference on Machine Learning
(ICML-10), pages 247–254, 2010. 2.2

[29] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Two-stage learning kernel
algorithms. In Proceedings of the 27th International Conference on Machine Learning
(ICML-10), pages 239–246, 2010. 2.2, 2.2.5

[30] Corinna Cortes, Giulia DeSalvo, and Mehryar Mohri. Learning with rejection. In In-
ternational Conference on Algorithmic Learning Theory, pages 67–82. Springer, 2016.
3.1.1

[31] Koby Crammer and Yishay Mansour. Learning multiple tasks using shared hypotheses. In
Advances in Neural Information Processing Systems, pages 1475–1483, 2012. 1, 1.1.1, 2.1,
2.1.1, 2.1.3, 3, 4.2, 4.2.3, 3, 4.2.3

[32] Koby Crammer, Jaz Kandola, and Yoram Singer. Online classification on a budget. In
Advances in neural information processing systems, pages 225–232, 2004. 4.3.3

[33] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer.
Online passive-aggressive algorithms. The Journal of Machine Learning Research, 7:
551–585, 2006. 2.1.6, 4.3.5

[34] N Cristianini. On kernel-target alignment. Advances in Neural Information Processing
Systems, 2002. 2.2, 2.2.5

[35] Ofer Dekel, Philip M Long, and Yoram Singer. Online learning of multiple tasks with a
shared loss. Journal of Machine Learning Research, 8(10):2233–2264, 2007. 1, 1.1.1, 2.1,
2.1.1, 2.1.6, 3.1.1, 4.3

[36] Ofer Dekel, Shai Shalev-Shwartz, and Yoram Singer. The forgetron: A kernel-based
perceptron on a budget. SIAM Journal on Computing, 37(5):1342–1372, 2008. 4.3.3, 4.3.5

[37] Ofer Dekel, Claudio Gentile, and Karthik Sridharan. Selective sampling and active learning
from single and multiple teachers. Journal of Machine Learning Research, 13(Sep):
2655–2697, 2012. 3, 3.1.1, 3.2

[38] Chris Ding and Xiaofeng He. K-means clustering via principal component analysis. In
Proceedings of the twenty-first international conference on Machine learning, page 29.
ACM, 2004. 4.2

[39] Chris Ding, Tao Li, Wei Peng, and Haesun Park. Orthogonal nonnegative matrix t-
factorizations for clustering. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 126–135. ACM, 2006. 4.2

[40] Francesco Dinuzzo, Cheng S Ong, Gianluigi Pillonetto, and Peter V Gehler. Learning
output kernels with block coordinate descent. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages 49–56, 2011. 4, 4.2, 4.3.1

[41] Pinar Donmez and Jaime G Carbonell. Proactive learning: cost-sensitive active learning
with multiple imperfect oracles. In Proceedings of the 17th ACM conference on Information
and knowledge management, pages 619–628. ACM, 2008. 3.1.1

[42] Pinar Donmez, Jaime G Carbonell, and Jeff Schneider. Efficiently learning the accuracy

109



of labeling sources for selective sampling. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 259–268. ACM,
2009. 3.1.1

[43] A Evgeniou and Massimiliano Pontil. Multi-task feature learning. Advances in neural
information processing systems, 19:41, 2007. 4.1.2, 4.1.3

[44] Theodoros Evgeniou and Massimiliano Pontil. Regularized multi–task learning. In
Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 109–117. ACM, 2004. 4.1.2, 4.1.2

[45] Jianqing Fan and Wenyang Zhang. Statistical estimation in varying coefficient models.
Annals of Statistics, pages 1491–1518, 1999. C.1

[46] Jianqing Fan and Wenyang Zhang. Statistical methods with varying coefficient models.
Statistics and its Interface, 1(1):179, 2008. C.1

[47] Quanquan Gu and Jie Zhou. Co-clustering on manifolds. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining, pages
359–368. ACM, 2009. 4.2

[48] Trevor Hastie and Robert Tibshirani. Varying-coefficient models. Journal of the Royal
Statistical Society. Series B (Methodological), pages 757–796, 1993. C.1

[49] Jingrui He and Rick Lawrence. A graph-based framework for multi-task multi-view
learning. In Proceedings of the 28th International Conference on Machine Learning
(ICML-11), pages 25–32, 2011. 2.2

[50] Chris Hinrichs, Vikas Singh, Jiming Peng, and Sterling Johnson. Q-mkl: Matrix-induced
regularization in multi-kernel learning with applications to neuroimaging. In Advances in
neural information processing systems, pages 1421–1429, 2012. 2.2

[51] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015. 4

[52] Ali Jalali, Sujay Sanghavi, Chao Ruan, and Pradeep K Ravikumar. A dirty model for
multi-task learning. In Advances in Neural Information Processing Systems, pages 964–972,
2010. 2.2

[53] Pratik Jawanpuria and J Saketha Nath. Multi-task multiple kernel learning. In Society for
Industrial and Applied Mathematics. Proceedings of the SIAM International Conference on
Data Mining, page 828. Society for Industrial and Applied Mathematics, 2011. 2.2, 2.2.1,
2.2.7, 2.2.7

[54] Pratik Jawanpuria, Maksim Lapin, Matthias Hein, and Bernt Schiele. Efficient output
kernel learning for multiple tasks. In Advances in Neural Information Processing Systems,
pages 1189–1197, 2015. 4, 4.3.1, 4.3.2

[55] Lu Jiang, Deyu Meng, Shoou-I Yu, Zhenzhong Lan, Shiguang Shan, and Alexander
Hauptmann. Self-paced learning with diversity. In Advances in Neural Information
Processing Systems, pages 2078–2086, 2014. 2.1.2, 4.1.1

[56] Zhuoliang Kang, Kristen Grauman, and Fei Sha. Learning with whom to share in multi-task
feature learning. In Proceedings of the 28th International Conference on Machine Learning

110



(ICML-11), pages 521–528, 2011. 4.1.4

[57] Seyoung Kim and Eric P Xing. Statistical estimation of correlated genome associations to
a quantitative trait network. PLoS genetics, 5(8):e1000587, 2009. C.1

[58] Marius Kloft, Ulf Brefeld, Pavel Laskov, Klaus-Robert Müller, Alexander Zien, and Sören
Sonnenburg. Efficient and accurate lp-norm multiple kernel learning. In Advances in neural
information processing systems, pages 997–1005, 2009. 2.2, 2.2.1

[59] Marius Kloft, Ulf Brefeld, Sören Sonnenburg, and Alexander Zien. Lp-norm multiple
kernel learning. The Journal of Machine Learning Research, 12:953–997, 2011. 2.2

[60] Mladen Kolar, Le Song, and Eric P Xing. Sparsistent learning of varying-coefficient models
with structural changes. In Advances in Neural Information Processing Systems, pages
1006–1014, 2009. C.1, C.1.2, C.1.2

[61] Meghana Kshirsagar, Jaime Carbonell, and Judith Klein-Seetharaman. Multisource transfer
learning for host-pathogen protein interaction prediction in unlabeled tasks. In NIPS
Workshop on Machine Learning for Computational Biology, 2013. 2.1.1

[62] Meghana Kshirsagar, Jaime Carbonell, and Judith Klein-Seetharaman. Multitask learning
for host–pathogen protein interactions. Bioinformatics, 29(13):i217–i226, 2013. 2.1.1, 2.2,
4, 4.1.2

[63] Abhishek Kumar and Hal Daume. Learning task grouping and overlap in multi-task
learning. In Proceedings of the 29th International Conference on Machine Learning
(ICML-12), pages 1383–1390, 2012. 4.1.4, 4.2, 4.2.1, 4.2.3, 4.2.3

[64] Abhishek Kumar, Alexandru Niculescu-Mizil, Koray Kavukcuoglu, and Hal Daume III. A
binary classification framework for two-stage multiple kernel learning. In Proceedings of
the 29th International Conference on Machine Learning (ICML-12), 2012. 2.2

[65] M Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent
variable models. In Advances in Neural Information Processing Systems, pages 1189–1197,
2010. 2.1.2, 4, 4.1, 4.1.1

[66] Gert RG Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and Michael I
Jordan. Learning the kernel matrix with semidefinite programming. The Journal of Machine
Learning Research, 5:27–72, 2004. 2.2

[67] Céline Levy-leduc and Zaïd Harchaoui. Catching change-points with lasso. In Advances in
Neural Information Processing Systems, pages 617–624, 2008. C.1

[68] Caiyan Li and Hongzhe Li. Network-constrained regularization and variable selection for
analysis of genomic data. Bioinformatics, 24(9):1175–1182, 2008. C.1, C.1.2, C.1.2

[69] Changsheng Li, Fan Wei, Junchi Yan, Weishan Dong, Qingshan Liu, and Hongyuan Zha.
Self-paced multi-task learning. In AAAI, pages 2175–2181, 2017. 4.1

[70] Tao Li and Chris Ding. The relationships among various nonnegative matrix factorization
methods for clustering. In Data Mining, 2006. ICDM’06. Sixth International Conference
on, pages 362–371. IEEE, 2006. 4.2

[71] Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert.

111



Randomized algorithms for the low-rank approximation of matrices. Proceedings of the
National Academy of Sciences, 104(51):20167–20172, 2007. 2.2.6

[72] Jun Liu, Shuiwang Ji, and Jieping Ye. Multi-task feature learning via efficient l 2, 1-norm
minimization. In Proceedings of the twenty-fifth conference on uncertainty in artificial
intelligence, pages 339–348. AUAI Press, 2009. 2.2

[73] Gábor Lugosi, Omiros Papaspiliopoulos, and Gilles Stoltz. Online multi-task learning with
hard constraints. arXiv preprint arXiv:0902.3526, 2009. 1, 1.1.1, 2.1, 2.1.1, 3.1.1, 4.3

[74] Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. Sparse coding for
multitask and transfer learning. In ICML (2), pages 343–351, 2013. 4.1.2, 4.2.1

[75] Tom M Mitchell, William W Cohen, Estevam R Hruschka Jr, Partha Pratim Talukdar,
Justin Betteridge, Andrew Carlson, Bhavana Dalvi Mishra, Matthew Gardner, Bryan Kisiel,
Jayant Krishnamurthy, et al. Never ending learning. In AAAI, pages 2302–2310, 2015. 4

[76] Keerthiram Murugesan and Jaime Carbonell. Active learning from peers. In Advances in
Neural Information Processing Systems, pages 0–0, 2017. 2

[77] Keerthiram Murugesan and Jaime Carbonell. Multi-task multiple kernel relationship
learning. In Proceedings of the 2017 SIAM International Conference on Data Mining,
pages 687–695. SIAM, 2017. 1, 2, 1

[78] Keerthiram Murugesan and Jaime Carbonell. Self-paced multitask learning with shared
knowledge. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI-17, pages 2522–2528, 2017. doi: 10.24963/ijcai.2017/351. URL
https://doi.org/10.24963/ijcai.2017/351. 3, 4

[79] Keerthiram Murugesan and Jaime Carbonell. Lifelong learning with output kernels. 2018.
5

[80] Keerthiram Murugesan, Hanxiao Liu, Jaime Carbonell, and Yiming Yang. Adaptive
smoothed online multi-task learning. In Advances in Neural Information Processing
Systems, pages 4296–4304, 2016. 1, 2, 3.1.1, 3.2, 17, 4, 4.1.2, 4.3, 4.3.5, 1

[81] Keerthiram Murugesan, Jaime Carbonell, and Yiming Yang. Co-clustering for multitask
learning. arXiv preprint arXiv:1703.00994, 2018. 4, 1

[82] A-S Nemirovsky, D-B Yudin, and E-R Dawson. Problem complexity and method efficiency
in optimization. 1982. 2.1.4

[83] Francesco Orabona and Nicolo Cesa-Bianchi. Better algorithms for selective sampling. In
Proceedings of the 28th international conference on Machine learning (ICML-11), pages
433–440, 2011. 3, 3.1.1

[84] Francesco Orabona, Joseph Keshet, and Barbara Caputo. The projectron: a bounded
kernel-based perceptron. In Proceedings of the 25th international conference on Machine
learning, pages 720–727. ACM, 2008. 4.3.3, 4.3.4, 4.3.5

[85] Anastasia Pentina and Shai Ben-David. Multi-task and lifelong learning of kernels. In
International Conference on Algorithmic Learning Theory, pages 194–208. Springer, 2015.
4

112

https://doi.org/10.24963/ijcai.2017/351


[86] Anastasia Pentina and Ruth Urner. Lifelong learning with weighted majority votes. In
Advances in Neural Information Processing Systems, pages 3612–3620, 2016. 4

[87] Anastasia Pentina, Viktoriia Sharmanska, and Christoph H Lampert. Curriculum learning
of multiple tasks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5492–5500, 2015. 4.1.4, 4.1.4

[88] Rajat Raina, Andrew Y Ng, and Daphne Koller. Constructing informative priors using trans-
fer learning. In Proceedings of the 23rd International Conference on Machine Learning,
pages 713–720. ACM, 2006. 4.2.3

[89] Alain Rakotomamonjy, Francis Bach, Stéphane Canu, and Yves Grandvalet. Simplemkl.
Journal of Machine Learning Research, 9:2491–2521, 2008. 2.2

[90] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, and Christoph H Lampert. icarl: In-
cremental classifier and representation learning. arXiv preprint arXiv:1611.07725, 2016.
4

[91] Alessandro Rinaldo et al. Properties and refinements of the fused lasso. The Annals of
Statistics, 37(5B):2922–2952, 2009. C.1.1

[92] Bernardino Romera-Paredes, Andreas Argyriou, Nadia Berthouze, and Massimiliano Pontil.
Exploiting unrelated tasks in multi-task learning. In AISTATS, volume 22, pages 951–959,
2012. 4.1.2

[93] Adam J Rothman, Elizaveta Levina, and Ji Zhu. Sparse multivariate regression with
covariance estimation. Journal of Computational and Graphical Statistics, 19(4):947–962,
2010. 2.2, 2.2.7

[94] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks.
arXiv preprint arXiv:1606.04671, 2016. 4

[95] Paul Ruvolo and Eric Eaton. Active task selection for lifelong machine learning. In AAAI,
2013. 4.1.4

[96] Paul Ruvolo and Eric Eaton. Ella: An efficient lifelong learning algorithm. International
Conference on Machine Learning, 28:507–515, 2013. 4, 4.1.4, 4.1.4

[97] Avishek Saha, Piyush Rai, Suresh Venkatasubramanian, and Hal Daume. Online learning of
multiple tasks and their relationships. In International Conference on Artificial Intelligence
and Statistics, pages 643–651, 2011. 1, 1.1.1, 2.1, 2.1.1, 2.1.6, 2.1.6, 2.2.6, 3.1.1, 3.2, 4,
4.3, 4.3.5

[98] Shai Shalev-Shwartz and Yoram Singer. Online learning: Theory, algorithms, and applica-
tions. PhD Dissertation, 2007. 2.1.5

[99] Daniel L Silver, Qiang Yang, and Lianghao Li. Lifelong machine learning systems: Beyond
learning algorithms. In AAAI Spring Symposium: Lifelong Machine Learning, volume 13,
page 05, 2013. 4

[100] Vikas Sindhwani, Jianying Hu, and Aleksandra Mojsilovic. Regularized co-clustering
with dual supervision. In Advances in Neural Information Processing Systems, pages
1505–1512, 2009. 4.2

113



[101] Vikas Sindhwani, Ha Quang Minh, and Aurélie C Lozano. Scalable matrix-valued kernel
learning for high-dimensional nonlinear multivariate regression and granger causality. In
Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, pages
586–595. AUAI Press, 2013. 4, 4.2

[102] Vikas Sindhwani, Minh Ha Quang, and Aurélie C Lozano. Scalable matrix-valued kernel
learning for high-dimensional nonlinear multivariate regression and granger causality. In
Proceedings of the twenty-ninth conference on uncertainty in artificial intelligence. AUAI
Press, 2013. 2.2.7

[103] Alex J Smola and Bernhard Schölkopf. Learning with kernels. GMD-Forschungszentrum
Informationstechnik, 1998. 4.3.1

[104] Zhaonan Sun, Nawanol Ampornpunt, Manik Varma, and Svn Vishwanathan. Multiple
kernel learning and the smo algorithm. In Advances in neural information processing
systems, pages 2361–2369, 2010. 2.2

[105] Grzegorz Swirszcz and Aurelie C Lozano. Multi-level lasso for sparse multi-task regression.
In Proceedings of the 29th International Conference on Machine Learning (ICML-12),
pages 361–368, 2012. 2.2, 2.2.1

[106] Lei Tang, Jianhui Chen, and Jieping Ye. On multiple kernel learning with multiple labels.
In IJCAI, pages 1255–1260, 2009. 2.2.7

[107] Sebastian Thrun. Is learning the n-th thing any easier than learning the first? In Advances
in neural information processing systems, pages 640–646, 1996. 1, 4

[108] Sebastian Thrun and Tom M Mitchell. Lifelong robot learning. Robotics and autonomous
systems, 15(1-2):25–46, 1995. 4

[109] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996. C.1, C.1.2

[110] Ruth Urner, Shai Ben-David, and Ohad Shamir. Learning from weak teachers. In AISTATS,
pages 4–3, 2012. 3.1.1

[111] Jean-Philippe Vert and Kevin Bleakley. Fast detection of multiple change-points shared
by many signals using group lars. In Advances in Neural Information Processing Systems,
pages 2343–2351, 2010. C.1

[112] Hua Wang, Feiping Nie, Heng Huang, and Fillia Makedon. Fast nonnegative matrix tri-
factorization for large-scale data co-clustering. In Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, page 1553, 2011. 4.2

[113] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg.
Feature hashing for large scale multitask learning. In Proceedings of the 26th Annual
International Conference on Machine Learning, pages 1113–1120. ACM, 2009. 2.1.1,
2.2.5, 3.1.1, 3.2, 3.2.1, 4, 4.1.2, 4.2

[114] Linli Xu, Aiqing Huang, Jianhui Chen, and Enhong Chen. Exploiting task-feature co-
clusters in multi-task learning. In Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, pages 1931–1937. AAAI Press, 2015. 4.2

[115] Ya Xue, Xuejun Liao, Lawrence Carin, and Balaji Krishnapuram. Multi-task learning for

114



classification with dirichlet process priors. The Journal of Machine Learning Research, 8:
35–63, 2007. 1, 1.1.1, 2.1, 2.1.6, 2.2, 3

[116] Yan Yan, Glenn M Fung, Rómer Rosales, and Jennifer G Dy. Active learning from crowds.
In Proceedings of the 28th international conference on machine learning (ICML-11), pages
1161–1168, 2011. 3.1.1

[117] Chicheng Zhang and Kamalika Chaudhuri. Active learning from weak and strong labelers.
In Advances in Neural Information Processing Systems, pages 703–711, 2015. 3.1.1

[118] Jian Zhang, Zoubin Ghahramani, and Yiming Yang. Learning multiple related tasks using
latent independent component analysis. In Advances in neural information processing
systems, pages 1585–1592, 2005. 4.2

[119] Jintao Zhang and Jun Huan. Inductive multi-task learning with multiple view data. In
Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 543–551. ACM, 2012. 2.2

[120] Yi Zhang and Jeff G Schneider. Learning multiple tasks with a sparse matrix-normal
penalty. In Advances in Neural Information Processing Systems, pages 2550–2558, 2010.
2.2, 2.2.5, 2.2.7, 4.2.2, 5

[121] Yu Zhang and Dit-Yan Yeung. A regularization approach to learning task relationships in
multitask learning. ACM Transactions on Knowledge Discovery from Data (TKDD), 8(3):
12, 2014. 1, 1.1.1, 2.1, 2.2, 2.2.4, 2.2.7, 2.2.7, 2.2.7, 3, 4, 4.2.2, 4.2.2, 4.2.3

[122] Wenliang Zhong and James T Kwok. Convex multitask learning with flexible task clusters.
In Proceedings of the 29th International Conference on Machine Learning (ICML-12),
pages 49–56, 2012. 4.2

115


	1 Introduction
	1.1 Related Topics
	1.1.1 Multitask Learning
	1.1.2 Lifelong Learning
	1.1.3 Transfer Learning

	1.2 Problem Setup
	1.3 Thesis Overview
	1.4 Thesis Statement

	2 Online Multitask Learning
	2.1 Smooth Multitask Learning
	2.1.1 Related Work
	2.1.2 Setup
	2.1.3 Batch Formulation
	2.1.4 Online Formulation
	2.1.5 Regret Bound
	2.1.6 Experiments

	2.2 Multitask Multiple Kernel Relationship Learning
	2.2.1 Preliminaries
	2.2.2 Proposed Method (MK-MTRL)
	2.2.3 MK-MTRL in Dual Space
	2.2.4 Optimization
	2.2.5 Two-Stage MK-MTRL
	2.2.6 Algorithms
	2.2.7 Experiments

	2.3 Conclusions

	3 Active Learning from Peers
	3.1 Problem Setup
	3.1.1 Related Work

	3.2 Learning from Peers
	3.2.1 Experiments

	3.3 Learning with a Shared Annotator
	3.3.1 Experiments

	3.4 Conclusions

	4 Lifelong Learning of Multiple Tasks
	4.1 Self-Paced Multitask Learning with Shared Knowledge
	4.1.1 Background
	4.1.2 Learning with Shared Knowledge
	4.1.3 Motivating Examples
	4.1.4 Experiments

	4.2 Co-Clustering for Multitask and Lifelong Learning
	4.2.1 Preliminaries
	4.2.2 Proposed Methods: BiFactor MTL and TriFactor MTL 
	4.2.3 Experiments

	4.3 Lifelong Multitask Learning with Output Kernels
	4.3.1 Problem Setup
	4.3.2 Online Output Kernel Learning
	4.3.3 Learning with a Budget
	4.3.4 Two-Stage Budgeted Learning
	4.3.5 Experiments

	4.4 Conclusions

	5 Conclusion
	5.1 Summary
	5.2 Future Works
	5.2.1 Lifelong Multi-agent Learning
	5.2.2 Distributed Multitask Learning
	5.2.3 Multitask approach to Hyper-parameter Optimization


	A Online Multitask Learning Proofs
	A.1 Second-order OSMTL
	A.2 Proof of Theorem 1
	A.3 Proof of Corollary 2

	B Active Learning from Peer Proofs
	B.1 Proof of Theorem 3

	C Application: Industrial Scientific Workplace Incident Prediction
	C.1 Varying Coefficient Models for Temporal Data
	C.1.1 The Methodology
	C.1.2 Experiments

	C.2 Discussions

	Bibliography

