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Abstract

Speech interfaces are becoming pervasive among the common pub-
lic with the prevalence of smart phones and cloud-based computing.
This pushes Automatic Speech Recognition (ASR) systems to handle a
wide range of factors including different channels, noise conditions and
speakers with varying accents. State-of-the-art large vocabulary ASRs
perform poorly when presented with accented speech, that is either
unseen or under-represented in the training data. This thesis focuses on
problems faced by accented speakers with various ASR configurations
and proposes several adaptation techniques to address them.

The influence of accent is examined in three different ASR setups
including accent dependent, accent independent and speaker dependent
models. In the case of accent dependent models, a source ASR trained
on resource-rich accent(s) is adapted to a target accent using a limited
amount of training data. Semi-continuous decision tree based adaptation
is proposed to efficiently model contextual phonetic changes between
source and target accents and its performance is compared against tradi-
tional techniques. Active and semi-supervised learning techniques that
can exploit the contemporary availability of extensive, albeit unlabeled
data resources are also investigated.

In accent independent models, a novel robustness criterion is in-
troduced to evaluate the impact of accent in various ASR front-ends
including MFCC and Bottle-neck features. Accent questions are intro-
duced in addition to phonetic ones, to measure the ratio of accent models
in the ASR contextual decision tree. Accent aware training is also pro-
posed in the context of deep bottle-neck front-end to derive canonical
features robust to accent variations.

Finally, problems faced by accented speakers in speaker-dependent
ASR models is addressed. Several neighbour selection and adaptation al-
gorithms are proposed to improve the performance of accented speakers
using only a few minutes of data from the target speaker. Extensive anal-
ysis is performed to measure the influence of accent in the neighbours
selected for adaptation. Neighbour selection using textual features and
language model adaptation using neighbours data is also investigated.
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Chapter 1

Introduction

Speech recognition research has made great strides in the recent years and current
state-of-the-art ASRs scale to large systems with millions of parameters trained
on thousands of hours of audio data. For many tasks such as broadcast news
transcription, the Word-Error Rate (WER) has been reduced to less than 10% for
a handful of languages [MGA+06, SSK+09, GAAD+05, HFT+09]. This has led
to increased adoption of speech recognition technology in desktop, mobile and
web platforms for applications such as dictation, voice search [BBS+08], natural
language queries, etc. However, these systems suffer high vulnerability towards
variations due to accents that are unseen or under-represented in the training data
[SMB11, NMS12b]. The WER has been to shown to nearly double for mismatched
train/test accent pairs in a number of languages such as English [HW97, NMS12b],
Arabic [SMB11, NMS12b], Mandarin Chinese [HCC01] or Dutch/Flemish accents
[Com01]. Moreover, accent-independent ASRs trained on multiple, pooled accents
achieve 20% higher WER than accent-specific models [SMB11, BMJ12, Com01].

1.1 Accent variations

Human speech in any language, exhibits a class of well-formed, stylized speaking
patterns that are common across members that belong to the same clique. These
groups can be characterized by geographical confines, socio-economic class, ethnic-
ity or for second-language speakers, by the speakers’ native language. These spoken
language patterns can vary in their vocabulary, syntax, semantics, morphology and
pronunciation. These set of variations are termed as ’Dialects’ of a language. Accent

3



4 Chapter 1: Introduction

is a subset of dialect variations that is concerned mainly with the pronunciation,
although pronunciation can influence other choices such as vocabulary and word-
frequency [Wel82, MHu]. Although non-native pronunciations are influenced by
the speakers’ native language, we do not focus on explicitly modeling L2 variations
in this thesis. Pronunciation variations between different accents can be further
characterized by

• Phoneme inventory - Different accents can rely on different set of phonemes

• Phonetic realization - The same phoneme can be realized differently in each
accent

• Phonotactic constraints - The distribution of phonemes can be different

• Lexical distribution - The choice of words can vary between the accents

Speakers of a specific accent express both unique and common speech patterns
with members of other accents of the same language. These accent variations can
be represented by contextual phonological rules of the form

L −m+R → s (1.1)

where L represents the left-context, R the right-context, m the phone to be
transformed and s the realized phone. Such rules result in changes to canonical
pronunciation including addition, deletion and substitutions of sounds units. [Uni]
used such rules in a hierarchical way to convert an accent-independent pronuncia-
tion lexicon to a variety of English accents spanning across US, UK, Australia and
New Zealand.

1.2 Related work

The two main approaches for accent adaptation include lexical modeling and acous-
tic adaptation. Lexical modeling accounts for the pronunciation changes between
accents by adding accent-specific pronunciation variants to the ASR dictionary. It
is accomplished by either rules created by linguistic experts [BK03, Tom00] or au-
tomatically learned using data-driven algorithms [LG, HW97, NGM+11]. [Tom00]
used both knowledge-based and data-driven methods to generate pronunciation
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variants for improving native American ASR on Japanese English. In [Hum97], the
transformation rules from source accent (British English) to target accent (Ameri-
can English) pronunciations are automatically learnt using a phone decoder and
decision trees. It has also been shown that adding pronunciation variants to the
dictionary has a point of diminishing returns, as over-generated pronunciations can
lead to ambiguity in the decoder and degrade its performance [RBF+99].

The phonetic variations between accents can also be addressed by acoustic adap-
tation techniques like MLLR/MAP [LW95, GL94a] estimation. They are generally
model accent variations by linear transforms or Bayesian statistics [VLG10, DDNK97,
SK11, Tom00]. However, both MLLR and MAP adaptation are generic adaptation
techniques that are not designed to account for the contextual phonological varia-
tions presented by an accent. [CJ06] showed that MLLR has some limitations in
modeling accented speech, particularly if the target accent has some new phones
which are not present in the source. The polyphone decision tree in ASR, which is
used to cluster context-dependent phones based on phonetic questions is also a can-
didate for accent adaptation. It decides which contexts are important to be modeled
and which ones are merged, thus directly influencing the pronunciation. [WS03]
used Polyphone Decision Tree Specialization (PDTS) to model the pronunciation
changes between native and non-native accents. One of the limitations of PDTS is
that it creates too few contextual states at the leaf of the original decision tree with
the available adaptation data, thus having less influence in overall adaptation.

All these supervised adaptation techniques require manually labeled (accent
labels) target accent data for adaptation. The adaptation can benefit from additional
data, however it is costly to collect and transcribe sufficient amount of speech
for various accents. Active and semi-supervised training for the goal of accent
adaptation has received less attention in the speech community. [NSK11] uses
self-training to adapt Modern Standard Arabic (MSA) ASR to Levantine with limited
success. Self-training assumes the unlabeled data is homogeneous, which is not
the case for multi-accented datasets. [SMB11] used an accent classifier to select
appropriate data for MSA to Levantine adaptation on GALE BC corpus. It requires
sufficiently long utterances (≈ 20s) for both accents to reliably train a discriminative
phonotactic classifier to choose the data.

Finally, real-world datasets have multiple accents and the ASR models should be
able to handle such accents without compromising on the performance. The main
approaches used in these conditions are multi-style training, which simply pools all
the available data to train accent-independent model. Borrowing from Multilingual
speech recognition, [CMN09, KMN12] have used tagged decision trees to train
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accent-adaptive models. In a similar problem of speaker and language adaptive
training in speech synthesis, [ZBB+12] used acoustic factorization to simultaneously
train speaker and language adaptive models.

1.3 Thesis contributions

• Accent dependent modeling. Semi-continuous, polyphone decision trees are
introduced to adapt a source accent ASR to a target accent using relatively
limited adaptation data. The performance is evaluated on Arabic and English
accents produces a relative improvement of 4-13.6% WER compared to exist-
ing adaptation techniques [NMS12b]. The adaptation technique is extended
with active and semi-supervised learning algorithms using unlabelled data.
Relevance based biased sampling is proposed to augment traditional data
selection to choose an appropriate subset from a large speech collection with
multiple accents. The selected data is used to retrain the ASR for additional
improvements on the target accent. These techniques provide an additional
improvement of 8.5%-20.6% relative WER over supervised adaptation in
Arabic and English respectively [NMS12c, NMS12a].

• Accent independent modeling. An evaluation framework is proposed to
test various front-ends based on their robustness to accent variations. The
performance of MFCC and Bottle-neck features are analyzed on a multi-
accent Arabic and English datasets and showed that this framework can aid
in choosing accent robust features. Accent aware training is introduced to
efficiently using accent labels in the training data to derive bottle-neck features
and compared against accent agnostic training [NMS11, NGM+11].

• Speaker dependent modeling. The problems faced by accent speakers in the
context of speaker dependent ASR are analyzed and several neighbour selec-
tion and adaptation algorithms are proposed. Both maximum likelihood and
discriminative versions are investigated. It is shown that using 5 mins of target
speaker audio can be used to select neighbours to obtain an improvement of
10.1% relative WER over the MAP adapted model. Finally, neighour selection
using text based features and language model adaptation using neighbours
data have been investigated. The text based features are shown to augment
acoustic based neighbour selection for additional improvements [NFW+13].
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1.4 Thesis organization

In section II Accent dependent modeling, target accent adaptation using semi-
continuous polyphone decision tree adaptation is discussed. Several existing adapta-
tion techniques have been reviewed and a semi-continuous decision tree adaptation
is proposed. Additional gains from unlabelled data is also investigated using active
and semi-supervised learning. The section III on accent robust modeling deals
with evaluation of accent robustness in the ASR among MFCC and MLP Bottle-neck
front-ends. Accent robustness measure is introduced using accent-dependent ques-
tions in the ASR decision tree. Finally in section IV, the influence of accent in the
performance of speaker-dependent models is discussed in detail.
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Chapter 2

Target accent adaptation

In this chapter, we investigate techniques that can adapt an ASR model trained on
one accent (source) to a different accent (target) with limited amount of adaptation
data. With the wide-spread adoption of speech interfaces in mobile and web
applications, modern day ASRs are expected to handle speech input from a range of
speakers with different accents. The trivial solution is to build a balanced training
database with representative accents in the target community. It is quite expensive
to collect and annotate a variety of accents for any language, even for the few
major ones. While a one-size-fits-all ASR that can recognize seen/unseen accents
equally well may be the holy-grail, the practical solution is to develop accent-specific
systems, at least for a handful of major accents in the desired language. Since, it
is difficult to collect large amount of accented data to train an accent-dependent
ASR, the source models are adapted using a relatively small amount of target
data. The initial ASR is trained on available training data and adapted to required
target accents using the target adaptation data. It is imperative that the adaptation
technique should be flexible to efficiently use the small amount of target data to
improve the performance on the target accent. The target accent can either be a new
unseen accent or it can be a regional accent, under-represented in the training data.
In both cases, the source ASR models are adapted to match the target adaptation
data better.

11



12 Chapter 2: Target accent adaptation

2.1 Related work

Two main approaches to target accent adaptation include lexical modeling and
acoustic model adaptation. In lexical modeling, the ASR pronunciation dictionary is
modified to reflect the changes in the target accent. Both rule-based and data-driven
techniques have been used to generate additional pronunciation variants to better
match the decoder dictionary to the target accent.

The Unisyn project [Uni] uses a hierarchy of knowledge-based phonological
rules to specialize an accent-independent English dictionary to a variety of accents
spanning different geographical locations including, US, UK, Australia and New
Zealand. [BK03] used these rules on the British English BEEP dictionary to create
accent-specific ASRs and showed improved performance on cross-accent scenarios.
[Tom00] used both rule-based and data-driven rules to recognize Japanese-accented
English. [HW97, GRK04, NGM+11] also used data-driven rules to model different
accents in cross-accent adaptation. The main component of these data-driven
methods is a phone-loop recognizer which decodes the target adaptation data to
recover the ground truth pronunciations. These pronunciations are then aligned
with an existing pronunciation dictionary and phonological rules are derived. During
decoding, the learnt rules are applied to the existing dictionary to create accent-
dependent pronunciation variants.

In the case of acoustic model adaptation, [VLG10] used MAP adaptation and
compared the performance on multi-accent and cross-accent scenarios. [Liv99]
employed different methods including model interpolation to improve the perfor-
mance of a native American English recognizer on non-native accents. [SK11]
created a stack of transformations to factorize speaker and accent adaptive training
and reported improvements on the EMMIE English accent setup. Finally, [Hum97]
compared both the lexical and acoustic model adaptation techniques and showed
they can obtain complementary gains on two accented datasets. The polyphone
decision tree (PDT), in addition to the GMMs can also be a candidate for accent
adaptation. [SW00, Stü08] adapted the PDT on the target language/accent and
showed improved performance over MAP adaptation.

2.2 PDT adaptation

A polyphone decision tree is used to cluster context-dependent states to enable
robust parameter estimation based on the available training data. Phonetic binary



2.3 Semi-continuous PDT adaptation 13

questions such as voiced yes/no, unvoiced yes/no, vowel yes/no, consonant yes/no,
etc. are used in a greedy, entropy-minimization algorithm to build the PDT based
on the occupational statistics of all the contexts in the training data. These statistics
are accumulated by forced-aligning the training data with context-independent (CI)
models. The leaves of the PDT serve as final observation density functions in the
HMM models. The PDT has great influence in the overall observation modeling as it
determines how different contexts are clustered. Since the acoustic variations of
different accents in a language are usually characterized by contextual phonological
rules, it makes PDT an attractive candidate for accent adaptation.

PDT adaptation has been shown to improve the ASR adaptation for new lan-
guages [SW00] and non-native speech [WS03]. It involves extending the PDT
trained on the source data with relatively small amount of adaptation data. The
extension is achieved by force-aligning the adaptation data with the existing PDT
and its context-dependent (CD) models. The occupational statistics are obtained
in the same way as before based on the contexts in the adaptation dataset. The
PDT training is restarted using these statistics, from the leaves of the original tree.
The parameters of the resulting states are initialized from their parent nodes and
updated on the adaptation set using a MAP training. The major limitation of this
framework is that, each of the newly created states has a set of state-specific param-
eters (means, variance and mixture-weights) that need to be estimated from the
relatively small adaptation dataset. This limits the number of new contexts created
to avoid over-fitting.

For example, let us assume we have 3 hours of adaptation data and our source
accent model has 3,000 states with 32 Gaussians per state. We enforce a minimum
count of 250 frames (with 10ms frame-shift) per Gaussian. The approximate number
of additional states that can be created from the adaptation dataset is 135 or only
4.5% of the total states in the source model. Such small number of states have quite
less influence on the overall acoustic model. One solution is to significantly reduce
the number of Gaussians in the new states, but this will lead to under-specified
density functions. In the next section, we review the semi-continuous models with
factored parameters to address this issue.

2.3 Semi-continuous PDT adaptation

We propose a semi-continuous PDT adaptation to address the problem of data-
sparsity and robust estimation for PDT adaptation. A semi-continuous model extends
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a traditional fully-continuous system to incorporate additional states with GMM
mixture weights which are tied to the original codebooks. This factorization allows
more granulated modeling while estimating less parameters per state, thus efficiently
utilizing the limited adaptation data. We briefly review the semi-continuous models
and present the use of it in accent adaptation.

In a traditional semi-continuous system, the PDT leaves have a common pool
of shared Gaussians (codebooks) trained with data from all the context-dependent
states. Each leaf has a unique set of mixture weights (distribution) over these code-
books trained with data specific to the state. The fully-continuous models on the
other hand, have state-dependent codebooks (Gaussians) and distributions (mixture
weights) for all the leaves in the PDT. Although traditional semi-continuous models
are competitive in low-resource scenarios, they lose to fully-continuous models
with increasing data. The multi-codebook variant of semi-continuous models can
be thought of as an intermediary between semi-continuous and fully-continuous
models. They follow a two-step decision tree construction process: in the first
level, the scenario is the same as for fully continuous models, with clustered leaves
of PDT having individual codebooks and associated mixture-weights. The PDT is
then further extended with additional splitting into the second level, where all
the states that branched out from the same first level node, share the same code-
books, but have individual mixture-weights. For more details on the difference
between fully-continuous, traditional and multi-codebook semi-continuous models,
refer to [RBGP12]. These models are being widely adopted in ASR having per-
formed better than its counterparts, in both low-resource [RBGP12] and large-scale
systems [SSK+09].

One of the interesting features of multi-codebook semi-continuous models is that
the state-specific mixture weights are only a fraction of size of the shared Gaussian
parameters, i.e means and variances even in the diagonal case. This allows us to
have more states in the second-level tree with robustly estimated parameters, thus
more suitable for PDT adaptation on a small dataset of target accent. The codebooks
can also be reliably estimated by pooling data from all the shared states. The accent
adaptation using this setup is carried out as follows:

• We start with a fully-continuous system and its associated PDT trained on the
source accent.

• The CD models are used to accumulate occupation statistics for contexts
present in the adaptation data.
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• The second-level PDT is trained using these statistics, creating new states with
shared codebooks and individual mixture-weights.

• The mixture-weights of the second-level leaves or adapted CD models are then
initialized with parameters from their root nodes (fully-continuous leaves).

• Both the codebooks and mixture-weights are re-estimated on the adaptation
dataset using MAP training.

Recalling the example from previous section, if we decide to train semi-continuous
PDT on a 3 hour adaptation set and a minimum of 124 frames per state (31 free
mixture-weight parameters per state), we will end up with ≈8,000 states, 2.6 times
the total number of states in the source ASR (3,000)! The MAP update equations
for the adapted parameters are shown below.

Table 2.1: Multi-codebook semi-continuous model estimates.

Estimate Equation

Likelihood p(ot|j) =
∑Nk(j)

m=1 cjmN (ot µk(j),m,Σµk(j),m)

Mixture-weight cMAP
jm =

γjm+τMĉjm∑M
m=1 γjm+τ

Mean µMAP
km = θkm(O)+τµ̂km

γkm+τ

Variance σMAP 2

km =
θkm(O2)+τ(µ̂2km+σ̂2

km)

γkm+τ
− µMAP 2

km

γ, θ(O) and θ(O2) refer to zeroth, first and second-order statistics respectively.
The subscripts j refers to states, k to codebooks and m to Gaussian-level statistics.
k(j ) refers to state-to-codebook index. τ is the MAP smoothing factor.

2.4 CMU setup - speech corpus, language model and
lexicon

We evaluate the adaptation techniques on three different setups on Arabic and
English datasets. The training data for Arabic experiments come from Broadcast
News (BN) and Broadcast Conversations (BC) from LDC GALE corpus. The BN
part consists of read speech from news anchors from various Arabic news channels
and the BC corpus consists of conversational speech. Both parts mainly includes
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Modern Standard Arabic (MSA) but also various other dialects. LDC provided dialect
judgements (Mostly Levantine, No Levantine & None) produced by transcribers on
a small subset of the GALE BC dataset automatically chosen by IBM’s Levantine
dialect ID system. We use 3 hours of ’No Levantine’ and ’Mostly Levantine’ segments
as source and target test sets and allocate the remaining 30 hours of ’Mostly
Levantine’ segments as adaptation set. The ’No Levantine’ test set can have MSA
or any other dialect apart from Levantine. The Arabic Language Model (LM) is
trained from various text and transcription resources made available as part of
GALE. It is a 4-gram model with 692M n-grams, interpolated from 11 different LMs
trained on individual datasets [MHJ+10]. The total vocabulary is 737K words. The
pronunciation dictionary is a simple grapheme-based dictionary without any short
vowels (unvowelized). The Arabic phoneset consists of 36 phones and 3 special
phones for silence, noise and other non-speech events. The LM perplexity, OOV rate
and number of hours for different datasets are shown in Table 2.2.

We use the Wall Street Journal (WSJ) corpus for our experiments on accented
English. The source accent is assumed to be US English and the baseline models are
trained on 66 hours of WSJ1 (SI-200) part of the corpus. We assign UK English as
our target accent and extract 3 hours from the British version of the WSJ corpus
(WSJCAM0) corpus as our adaptation set. We use the most challenging configuration
in the WSJ test setup with 20K non-verbalized, open vocabulary task and default
bigram LM with 1.4M n-grams. WSJ Nov 93 Eval set is chosen as source accent
test set and WSJCAM0 SI ET 1 as target accent test set. Both WSJ and WSJCAM0
were recorded with the same set of prompts, so there is no vocabulary mismatch
between the source and target test sets. We use US English CMU dictionary (v0.7a)
without stress markers for all our English ASR experiments. The dictionary contains
39 phones and a noise marker.

2.5 Baseline systems

For Arabic, we trained an unvowelized or graphemic system without explicit models
for the short vowels, which are not written. The acoustic models use a standard
MFCC front-end with mean and variance normalization. To incorporate dynamic
features, we concatenate 15 adjacent MFCC frames (±7) and project the 195
dimensional features into a 42-dimensional space using a Linear Discriminant
Analysis (LDA) transform. After LDA, we apply a globally pooled ML-trained
STC transform. The speaker-independent (SI), CD models are trained using an
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Table 2.2: Database Statistics.
Dataset Accent #Hours Ppl %OOV

Arabic
Train-BN-SRC Mostly MSA 1092.13 - -
Train-BC-SRC Mostly MSA 202.4 - -
Adapt-TGT Levantine 29.7 - -
Test-SRC Non-Levantine 3.02 1011.57 4.5
Test-TGT Levantine 3.08 1872.77 4.9

English
Train-SRC US 66.3 - -
Adapt-TGT UK 3.0 - -
Test-SRC US 1.1 221.55 2.8
Test-TGT UK 2.5 180.09 1.3

entropy-based polyphone decision tree clustering process with context questions of
maximum width ±2, resulting in quinphones. The speaker adaptive (SA) system
makes use of VTLN and SA training using feature-space MLLR (fMLLR). During
decoding, speaker labels are obtained after a clustering step. The SI hypothesis is
then used to calculate the VTLN, fMLLR and MLLR parameters for SA decoding. The
resulting BN system consists of 6K states 844K Gaussians and and the BC system
has 3,000 states and 141K Gaussians. We perform our initial experiments with the
smaller BC system and evaluate the adaptation techniques finally on the bigger BN
system.

The BC SA system produced a WER of 17.8% on the GALE standard test set
Dev07. The performance of the baseline SI and SA on source and target accents
are shown in Table 6.1. We note that the big difference in WER between these
test sets and the Dev07 is due to relatively clean Broadcast News (BN) segments
in Dev07, while our new test sets are based on BC segments. Similar WERs are
reported by others on this task [SMB11]. The absolute difference of 7.8-9.0% WER
between the two test sets shows the mismatch of baseline acoustic models to the
target accent. For further analysis, we also include the WER of a system trained just
on the adaptation set. The higher error rate of this TGT ASR indicates that 30 hours
is not sufficient to build a Levantine ASR that can outperform the baseline for this
task. As expected, the degradation in WER is not uniform across the test sets. The
TGT ASR performed 11.1% absolute worse on unmatched source accent while only
0.4% absolute worse on matched target accent compared to the baseline.
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The English ASR essentially follows the same framework as Arabic ASR with
minor changes. It uses 11 adjacent MFCC frames (±5) for training LDA and triphone
models (±1 contexts) instead of quinphones. The decoding does not employ any
speaker clustering, but uses the speaker labels given in the test sets. The final SRC
English ASR has 3,000 states and 90K Gaussians. The performance of TGT ASR
trained on the adaptation set is worth noting. Although it is trained on only 3
hours, it has a WER 6.4% absolute better than the baseline source ASR, unlike its
Arabic counterpart. This result also shows the difference in performance of ASR in
decoding an accent, which is under-represented in the training data (Arabic setup)
compared to the one in which the target accent is completely unseen during training
(English setup). The large gain of 6.7% absolute for English SA system compared to
SI system on the unseen target accent, unlike the Arabic setup, also validates this
hypothesis.

Table 2.3: Baseline Performance.

System Training Set
Test WER (%)
SRC TGT

Arabic
SRC ML SI Train-SRC 51.2 59.0
SRC ML SA Train-SRC 47.1 56.7
TGT ML SA Adapt-TGT 58.2 57.1

English
SRC ML SI Train-SRC 13.4 30.5
SRC ML SA Train-SRC 13.0 23.8
TGT ML SA Adapt-TGT 33.5 17.4

2.6 Accent adaptation experiments

We chose to evaluate accent adaptation with three different techniques: MAP
adaptation, fully-continuous PDTS as formulated in [SW00] and semi-continuous
PDTS or SPDTS. MLLR is also a possible candidate, but its improvement saturates
after 600 utterances (≈ 1 hour), when combined with MAP [HAH01]. MLLR is
also reported to have issues with accent adaptation [CJ06]. The MAP smoothing
factor τ is set to 10 in all cases. We did not observe additional improvements by
fine-tuning this parameter. The SRC Arabic ASR had 3,000 states - the adapted
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fully-continuous PDTS had 256 additional states, while semi-continuous adapted
PDTS (SPDTS) ended up with 15K final states (3,000 codebooks). In a similar
fashion, SRC English ASR had 3k states - Adapted English PDTS had 138 additional
states while the SPDTS managed 8,000 final states (3,000 codebooks). In spite of
the difference in the number of states, PDTS and SPDTS have approximately the
same number of parameters in both setups. We evaluate the techniques under two
different criterion: Cross-entropy of the adaptation data according to the model and
WER on the target accent test set

The per-frame cross-entropy of the adaptation data D according to the model θ
is given by

Hθ(D) = − 1

T

U∑
u=1

uT∑
t=1

log p(ut|θ)

where U is the number of utterances, uT is the number of frames in utterance
u and T = ΣuuT refers to total number of frames in the training data. The cross-
entropy is equivalent to average negative log-likelihood of the adaptation data. The
lower the cross-entropy, the better the model fits the data. Figure 2.1 shows that the
adaptation data has the lowest cross-entropy on SPDTS adapted models compared
to MAP and PDTS.

The adapted models are used to decode both source and target accent test sets
and the WER of all the adaptation techniques are shown in Table 2.4.

Table 2.4: WER of MAP, PDTS and SPDTS on Accent adaptation.

System
Test WER (%)
SRC TGT

Arabic
MAP SA 47.6 51.2
PDTS SA 47.9 50.1
SPDTS SA 48.1 47.6

English
MAP SA 14.7 16.8
PDTS SA 15.1 15.6
SPDTS SA 16.7 14.5

MAP adaptation achieves a relative improvement of 9.7% for Levantine Arabic
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Figure 2.1: Cross-entropy of adaptation data for various models

and 29.4% for UK English. As expected, PDTS performs better than MAP in both
cases, but the relative gap narrowed down for Arabic. SPDTS achieves additional
improvement of 7% relative for Levantine Arabic and 13.6% relative for UK English
over MAP adaptation.

Finally, we tried MAP, PDTS and SPDTS techniques on our 1,100 hour large-
scale Arabic BN GALE evaluation ML system. We used a 2-pass unvowelized system
trained on the GALE BN corpus for this experiment. It has the same dictionary,
phoneset and front-end as the 200 hour BC system and it has 6,000 states and 850K
Gaussians. The results are shown below

We get 5.1% relative improvement for SPDTS over MAP in adapting a large-scale
ASR system trained on mostly BN MSA speech to BC Levantine Arabic. It is also
interesting to note the limitation of PDTS for large systems as discussed in Section
2.2. This experiment shows that Semi-continuous PDT Adaptation can scale well to
a large-scale, large vocabulary ASR trained on 1000s of hours of speech data.
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Table 2.5: Per-frame cross-entropy on the adaptation set.

System Cross-entropy
Arabic

Baseline SA 49.43
MAP SA 47.21
PDTS SA 46.89
SPDTS SA 46.28

English
Baseline SA 55.99
MAP SA 55.53
PDTS SA 55.01
SPDTS SA 54.75

Table 2.6: Accent adaptation on GALE 1100 hour ML system.

System
Test WER (%)
SRC TGT

Arabic
Baseline ML SA 43.0 50.6
MAP ML SA 44.5 49.1
PDTS ML SA 44.9 48.8
SPDTS ML SA 48.9 46.6

2.7 M*Modal setup - speech corpus, language model
and lexicon

2.7.1 Database

M*Modal dataset consists of anonymized medical reports in the internal medicine
domain, dictated by doctors across various US hospitals. The dictations are fast-
paced speech over a 8KHz telephony channel lasting approximately 5 mins each.
The dataset has speakers with wide variety of accents, recorded over different
devices from cellphones to landline telephones and with varying background noise
levels. The training dataset contains 1878 training speakers with a maximum of 1
hour per speaker. The total size of the corpus is 1,450 hours. Native US English is
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the majority accent in this dataset, while South-Asian speakers form the next major
group, which is our target accent. These speakers are from various countries in
the subcontinent including India, Pakistan, Bangladesh and Sri Lanka. We use 168
South Asian speakers as our adaptation set. For the test set, we use the 15 medical
reports from these same speakers with approximately an hour of speech per speaker.
For comparison we also include a second test set with 15 native US English speakers.
Table 2.7 shows the different datasets and their statistics.

Table 2.7: M*Modal datasets and their statistics.
Dataset Accent Speakers #Hours words

Train-SRC Multiple 1878 1450 1.2M
Adapt-TGT SouthAsian 168 132 126K
Test-TGT SouthAsian 10 10.72 86K
Test-SRC US English 15 6.23 32K

2.7.2 Baseline

The SI system is a fully-continuous, ML trained, GMM-HMM based ASR using
3,000 context-dependent states and 86K gaussians. The system uses MFCC features,
appended by first and second derivates and transformed to a 32 dimensional space
using a global HLDA matrix trained using the ML criterion. Additional improvements
can be obtained by training canonical models using Speaker Adaptive Training
(SAT) and Constrained Maximum Likelihood Linear Regression (CMLLR) matrices.
However, this is a one-pass system aimed at interactive dictation so we did not
include SAT in our baseline. The decoder uses a 4-gram language model with a
vocabulary size of 53K words. The language model has a OOV of 0.8% on the test
set.

Table 6.1 shows the WER of the SI system on the South Asian and Native US
English test sets.

Table 2.8: Baseline WERs.
System Test set WER
SI South Asian 45.73
SI US English 29.89
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Table 2.8 shows that SI WER on South Asian accented speakers is significantly
worse (53% relative) than native US English speakers, before any adaptation. We
conducted MAP and SPDTS adaptation and the results are shown in Table 2.9. The
final SPDTS system had 8,000 semi-continuous states, while PDTS ended up with
3200 fully-continuous states.

Table 2.9: Accent adaptation on M*Modal setup.

System
Test WER (%)
SRC TGT

Arabic
Baseline ML SI 29.89 45.73
MAP Adapt 31.17 36.89
PDTS Adapt 32.0 36.37
SPDTS Adapt 33.20 35.09

From the table, SPDTS system obtains 23.3% relative improvement over SI
baseline, 4.9% relative improvement over MAP and 3.5% relative improvement over
PDTS adaptation. Table 2.10 shows the results for discriminative baseline.

Table 2.10: Accent adaptation on M*Modal setup.

System
Test WER (%)
SRC TGT

Arabic
Baseline DT SI 22.79 34.55
sMBR MAP Adapt 25.41 32.67
PDTS Adapt 26.10 32.32
SPDTS Adapt 27.62 31.30

For discriminative adaptation, we implemented sMBR MAP, using 4 iterations of
extended Baum-Welch (EBW) updates. SPDTS is performed on top of the DT adapt
model. The mixture weights are calculated with ML training as in the previous ex-
periments. The final SPDTS system produced 4.2% relative improvement over sMBR
MAP and 3.2% relative improvement over PDTS. This shows that SPDTS adaptation
retains improvement over baseline and MAP adaptation involving discriminative
setup.
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2.8 Summary

We have introduced semi-continuous based decision tree adaptation for supervised
accent adaptation. We showed that the SPDTS model achieves better likelihood on
the adaptation data than other techniques. The technique obtains 7-13.6% relative
improvement over MAP adaptation for medium-scale and 4.2% - 5.1% relative for
large scale systems. SPDTS is evaluated under discriminative SI and adaptation
to show that the technique retains most of the improvement under discriminative
objective functions.



Chapter 3

Extensions to unlabelled data

Supervised adaptation using MAP/SPDTS requires transcribed accented target data
for adapting the source model to the target accent. As discussed in the previous
chapter, it is prohibitively costly to obtain large accented speech datasets, due to
the effort involved in collecting and transcribing speech, even for a few of the
major accents. On the other hand, for tasks like Broadcast News (BN) or Voice
search, it is easy to obtain large amounts of speech data with representative accents.
However, it is still difficult to reliably identify the accent of the speakers in such a
large collection. To make use of these data sets, active and semi-supervised accent
adaptation are explored in this chapter, in the context of building accent-dependent
models.

3.1 Active learning

Active learning is a machine learning technique commonly used in fields where the
cost of labeling the data is quite high [Set09]. It involves selecting a small subset
from vast amount of unlabeled data for human annotation. To reduce the cost and
ensure minimum human effort, the goal of data selection is to choose an appropriate
subset of the data, that when transcribed and used to retrain the model, provides
the maximum improvement in the accuracy. Active learning has been applied in
natural language processing [TO09], spoken language understanding [THTS05],
speech recognition [RHT05, YGWW10, YVDA10, ISJ+12], etc.

Many of the approaches in active learning, rely on some form of uncertainty
based measure for data selection. The assumption is that adding the most uncertain

25
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utterances provide the maximum information for re-training the model in the
next round. Confidence scores are typically used for active learning in speech
recognition [HTRG02] to predict uncertainty. Lattice [YVDA10] and N-best [ISJ+12]
based techniques have been proposed to avoid outliers with 1-best hypothesis.
Representative criterion in addition to uncertainty have also been shown to improve
data selection in some cases [HJZ10, ISJ+12].

In the case of accent adaptation, active learning is used to extend the improve-
ments obtained by supervised adaptation by using additional data from a large
speech corpus with multiple accents, but without transcriptions or accent labels.
The goal of active learning here, is to choose a relevant subset from this large
dataset that matches the target accent. The subset is then manually transcribed and
used to retrain the target adapted ASR, to provide additional improvements on the
target accent.

3.1.1 Active learning for accent adaptation

Most of the active learning algorithms strive to find the smallest subset from the
untranscribed data set that when labeled and used to re-train the ASR will have the
same effect of using the entire dataset for re-training, thereby reducing the cost.
However, in the case of accent adaptation using a dataset with multiple accents, our
goal is not to identify the representative subset but to choose relevant utterances
that best match the target test set. Data selection only based on informativeness or
uncertainty criterion, can lead to selecting utterances from the mis-matched accent.
Such a subset, when used to retrain the ASR, can hurt the performance on the
target accent. Hence the key in this case, is to choose both informative and relevant
utterances for further retraining to ensure improvements on the target accent.

A relevance criterion is introduced in addition to uncertainty based informative
measure for data selection to match the target accent. The experiment starts with the
ASR trained on a source accent. A relatively small, manually labeled adaptation data
is then used to adapt the recognizer to the target accent. The adapted model is then
employed to choose utterances from a large, untranscribed mixed dataset for human
transcription, to further improve the performance on the target accent. To this
end, a cross-entropy measure is calculated based on adapted and unadapted model
likelihoods, to assess the relevance of an utterance. This measure is combined with
uncertainty based sampling to choose an appropriate subset for manual labeling.
The technique is evaluated on Arabic and English accents and shown to achieve
50-87.5% data reduction for the same accuracy of the recognizer using purely
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uncertainty based data selection. With active learning on the additional unlabeled
data, the accuracy of the supervised models is improved by 7.7-20.7% relative.

3.1.2 Uncertainty based informativeness criterion

In speech recognition, uncertainty is quantified by the ASR confidence score. It is
calculated from the word-level posteriors obtained by consensus network decoding
[MBS00]. Confidence scores calculated on 1-best hypothesis are sensitive to outliers
and noisy utterances. [YVDA10] proposed a lattice-entropy based measure and
selecting utterances based on global entropy reduction. [ISJ+12] observed that
lattice-entropy is correlated with the utterance length and showed N-best entropy
to be an empirically better criterion. In this work, an entropy-based measure is
alse used as an informative criterion for data selection. The average entropy of the
alignments is calculated in the confusion network as a measure of uncertainty of
the utterance with respect to the ASR. It is given by

Informative score ui =

∑
A∈uEADA∑
A∈uDA

(3.1)

where EA is the entropy of an alignment A in the confusion network and DA is the
duration of the link with best posterior in the alignment. EA is calculated over all
the links in the alignment.

EA = −
∑
W∈A

PW log PW (3.2)

3.1.3 Cross-entropy based relevance criterion

In this section, a cross-entropy based relevance criteria is derived for choosing
utterances from the mixed set, for human annotation. The source-target mismatch
is formulated as a sample selection bias problem [CMRR08, BI10, BBS09] under
two different setups. In the multi-accented case, the source data consists mixed
set of accents and the goal is to adapt the model trained on the source data to the
specified target accent. The source model can be assumed as a background model
that has seen the target accent during training, albeit it is under-represented along
with other accents in the source data. In the second case, the source and target data
belong to two mis-matched accents. The source model is adapted to a completely
different target accent, unseen during training. The biased sampling criterion for
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both the multi-accented and mis-matched accent cases is derived separately in the
following sections.

Multi-accented case

In this setup, the source data contains a mixed set of accents. The target data, a
subset of the source represents utterances that belong to a specific target accent. An
utterance u in the data set is represented by a sequence of observation vectors and
its corresponding label sequence. Let X denote the space of observation sequences
and Y the space of label sequences. Let S denote the distribution over utterances
U ∈ X × Y from which source data points (utterances) are drawn. Let T denote
the target set distribution over X × Y with utterances Û ⊆ U . Now, utterances in T
are drawn by biased sampling from S denoted by the random variable σ ∈ {0, 1} or
the bias. When σ = 1, the randomly sampled u ∈ U is included in the target dataset
and when σ = 0 it is ignored. Our goal is to estimate the bias Pr[σ = 1|u] given
an utterance u, which is a measure for how likely is the utterance to be part of the
target data. The probability of an utterance u under T can be expressed in terms of
S as

PrT [u] = PrS[u|σ = 1] (3.3)

By Bayes rule,

PrS[u] =
PrS[u|σ = 1]Pr[σ = 1]

Pr[σ = 1|u]
=

Pr[σ = 1]

Pr[σ = 1|u]
PrT [u] (3.4)

The bias for an utterance u is represented by Pr[σ = 1|u]

Pr[σ = 1|u] =
PrT [u]

PrS[u]
Pr[σ = 1] (3.5)

The posterior Pr[σ = 1|u] represents the probability that a randomly selected
utterance u ∈ U from the mixed set belongs to the target accent. It can be used
as a relevance score for identifying relevant target accent utterances in the mixed
set. Since we are only comparing scores between utterances for data selection,
Pr[σ = 1] can be ignored in the above equation as it is independent of u. Further, we
can approximate PrS[u] and PrT [u], by unadapted and adapted model likelihoods.
Substituting and changing to log domain,

Relevance Score ur ≈ log Pr[u|λT ]− log Pr[u|λS] (3.6)
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The utterances in the mixed set can have different durations, so we normalize the
log-likelihoods to remove any correlation of the score with the duration. The length
normalized log-likelihood is also the cross-entropy of the utterance given the model
[ML10, NMS12c] with sign reversed. The score that represents the relevance of the
utterance to target dataset is given by

Relevance Score ur = (−HλT [u])− (−HλS [u]) (3.7)

where

Hλ(u) = − 1

Tu

Tu∑
t=1

log p(ut|λ) (3.8)

is the average negative log-likelihood or the cross-entropy of u according to λ and
Tu is the number of frames in utterance u.

Mis-matched accents case

In this case, source and target correspond to two different accents. let A denote
the distribution over observation and label sequences U ∈ X × Y . Let S and T be
the source and target distributions over X × Y and subsets of A, US, UT ⊆ U . The
source and target utterances are drawn by biased sampling from A governed by
the random variable σ ∈ {0, 1}. When the bias σ = 1, the sampled utterance u is
included in the target dataset and σ = 0 it is included in the source dataset. The
distributions S and T can be expressed in terms of A as

PrT [u] = PrA[u|σ = 1];PrS[u] = PrA[u|σ = 0] (3.9)

By Bayes rule,

PrA[u] =
Pr[σ = 1]

Pr[σ = 1|u]
PrT [u] =

Pr[σ = 0]

Pr[σ = 0|u]
PrS[u] (3.10)

Equating LHS and RHS

PrS[u]

PrT [u]
=

Pr[σ = 1]

Pr[σ = 0]

Pr[σ = 0|u]

Pr[σ = 1|u]
(3.11)

=
Pr[σ = 1]

Pr[σ = 0]

[
1

Pr[σ = 1|u]
− 1

]
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As in the previous case, we can ignore the constant terms that don’t depend on
u as we are only comparing the scores between utterances. The relevance score,
which is an approximation of Pr[σ = 1|u] is given by

Relevance score ur ≈
PrT [u]

PrT [u] + PrS[u]
(3.12)

Changing to log-domain,

Relevance score ur ≈ log PrT [u]

− log (PrT [u] + PrS[u])

= log PrT [u] (3.13)

− log

(
PrT [u]

[
1 +

PrS[u]

PrT [u]

])
= − log

(
1 +

PrS[u]

PrT [u]

)
log is a monotonous function, hence log(1 + x) > log(x) and since we are only
comparing scores between utterances, we can replace log(1 + x) with log(x). The
relevance score is then the same as the multi-accented case

Relevance Score ur ≈ log PrT [u]− log PrS[u]

≈ log Pr[u|λT ]− log Pr[u|λS]

Normalizing the score to remove any correlation with utterance length,

Relevance Score ur = (−HλT [u])− (−HλS [u]) (3.14)

3.1.4 Score combination

Our final data selection algorithm uses a combination of relevance and uncertainty
scores for active learning. The difference in cross-entropy is used a measure of
relevance of an utterance. The average entropy based on the confusion network is
used as a measure of uncertainty or informativeness. Both the scores are in log-scale
and we use a simple weighted combination to combine both the scores [ISJ+12].
The final score in given by

Final score uF = ur ∗ θ + ui (3.15)

The mixing weight, θ is tuned on the development set. The final algorithm for active
learning that uses both the relevance and informativeness scores is given below.



3.1 Active learning 31

Algorithm 1 Active learning using relevance and informativeness scores
Input: XT := Labeled Target Adaptation set ; XM := Unlabeled Mixed set ; λS :=

Initial Model ; θ := Mixing weight minScore := Selection Threshold
Output: λT := Target Model

1: λT := Adapt(λS,XT )
2: for all x in XM do
3: LoglikeS := −CrossEntropy(λS, x)
4: LoglikeT := −CrossEntropy(λT , x)
5: Len := Length(x)
6: RelevanceScore := (LoglikeT − LoglikeS)/Len
7: InformativeScore := −AvgCNEntropy(λT , x)
8: FinalScore := RelevanceScore ∗ θ + InformativeScore
9: if (FinalScore > minScore) then

10: Lx := QueryLabel(x)
11: XT := XT ∪ (x,Lx)
12: XM := XM \ x
13: end if
14: end for
15: λT := Adapt(λS,XT )
16: return λT

3.1.5 Experiment setup

Datasets

Active learning experiments are conducted on both multi-accented and mis-matched
accent cases. Multi-accented setup is based on GALE Arabic database discussed in
the previous chapter. 1100 hours of Broadcast News (BN) is used as the source
training data. It contains mostly Modern Standard Arabic (MSA) but also varying
amounts of other dialects. Levantine is assigned as the target accent and randomly
selected 10 hours from 30 hour LDC Levantine annotations and created our adapta-
tion dataset. The remaining 20 hours of Levantine speech is mixed with 200 hours
of BC data to create the Mixed dataset. This serves as our unlabeled dataset for
active learning.

For mis-matched accent case, English WallStreet Journal (WSJ1) is chosen as the
source data, as in the previous chapter. British English is used as the target accent
and the British version of WSJ corpus (WSJCAM0) for adaptation. 3 hours from
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WSJCAM0 are randomly sampled for the adaptation set. The remaining 12 hours
of British English speech is mixed with 15 hours of American English from WSJ0
corpus to create our mixed dataset. The test sets, LM and dictionary are similar to
our earlier setup. Table 3.1 provides a summary of the datasets used.

Table 3.1: Database Statistics.
Dataset Accent #Hours Ppl %OOV

Arabic
Training Mostly MSA 1092.13 - -
Adaptation Levantine 10.2 - -
Mixed Mixed 221.9 - -
Test-SRC Non-Levantine 3.02 1011.57 4.5
Test-TGT Levantine 3.08 1872.77 4.9

English
Training US 66.3 - -
Adaptation UK 3.0 - -
Mixed Mixed 27.0 - -
Test-SRC US 1.1 221.55 2.8
Test-TGT UK 2.5 180.09 1.3

Baseline systems

HMM-based, speaker-independent ASR systems are built on the training data.
They are Maximum Likelihood (ML) trained, context-dependent, fully-continuous
systems with global LDA and Semi-Tied Covariance (STC) transform. More details
on the front-end, training and decoding framework are explained in [MHJ+10,
NMS12b]. We initially adapt our baselines systems on the relatively small, manually
labeled, target adaptation dataset. We used semi-continuous polyphone decision
tree adaptation (SPDTS) [NMS12b] for the supervised adaptation. The WER of the
baselines and supervised adaptation systems are given in Table 3.2.

3.1.6 Implementation details

We use the supervised adapted systems to select utterances from the mixed set for
the goal of target accent adaptation. Our mixed sets were created by combining two
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Table 3.2: Baseline and Supervised adaptation WERs.

System # Hours
Test WER (%)
SRC TGT

Arabic
Baseline 1100 46.3 53.7
Supervised Adapt +10 51.4 52.1

English
Baseline 66 13.4 30.5
Supervised Adapt +3 21.0 17.9

datasets, American and British English or BC and Levantine Arabic. We evaluate 3
different data selection algorithms for our experiments: Random sampling, Uncer-
tainty or informative sampling and relevance augmented uncertainty sampling. In
each case, we select fixed amounts of audio data alloted to each bin and mix it with
the adaptation data. We then re-adapt the source ASR on the newly created dataset.
For this second adaptation, we reuse the adapted polyphone decision tree from the
supervised case, but we re-estimate the models on the new dataset using Maximum
A Posteriori (MAP) adaptation.

In random sampling, we pick at random the required number of utterances from
the mixed dataset. The performance of the re-trained ASR directly depends on the
composition of source and target utterances in the selected subset. Thus, ASR re-
trained on randomly sampled subsets will exhibit high variance in its performance.
To avoid varying results, we can run random sampling multiple times and report the
average performance. The other solution is to enforce that the randomly selected
subset retains the same composition of source and target utterances in the mixed
set. We use the latter approach for the results reported here.

For uncertainty based sampling, we used average entropy calculated over the
confusion networks (CN) as explained in section 3.1.2. We decode the entire mixed
set and choose utterances that have the highest average CN entropy. In the case
of relevance augmented uncertainty sampling, we use a weighted combination
of relevance and uncertainty or informativeness scores for each utterance. The
relevance score is derived from adapted and unadapted model cross-entropies with
respect to the utterance. We calculate cross-entropy or average log-likelihood scores
using the lattices produced during decoding. The uncertainty score is calculated
using average CN entropy as before. We tuned the mixing weights on the English
development set and we use the same weight (0.1) for all the experiments. We
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selected 5, 10, 15, 20 hour bins for English and 5, 10, 20, 40, 80 bins for Arabic.
We choose utterances for each bin and combine it with the initial adaptation set,
re-adapt the ASR and evaluate it on the target test set.

Table 3.3 shows WER of the oracle and select-all benchmarks for the two datasets.
The oracle involves selecting all the target (relevant) data for human transcription,
that we combined with source data to create the mixed dataset. The selected data
is added to the initial adaptation set and used to re-adapt the source ASR. We note
that in the case of Arabic, the source portion (BC) of the mixed dataset can have
additional Levantine utterances, so oracle WER is not the lower bound for Arabic.
Select-all involves selecting the whole mixed dataset for manual labeling. From
Table 3.3, we can realize the importance of the relevance measure for active learning.
In the case of Arabic, one-tenth of relevant data produces better performance on
the target test set than the whole mixed dataset. The case is similar for English,
where half of the relevant utterances help ASR achieve better performance than
presenting all the available data for labeling.

Table 3.3: Oracle and Select-all WERs.
System # Hours Target WER

Arabic
Oracle 10 + 20 48.7
Select-all 10 + 221.9 50.8

English
Oracle 3 + 12 14.2
Select-all 3 + 27 14.9

3.1.7 Active learning results

The results for active learning for Arabic is shown in Figure 3.1. It is clear from the
plot that the weighted combination of relevance and informative scores perform
significantly better than uncertainty based score and random sampling techniques.
We observe a 1.7% absolute WER reduction at the peak (40hours) for the weighted
score when compared to the CN entropy based data selection technique. Also, with
only 5 hours, the weighted score reaches WER of 49.5% while the CN-entropy based
technique required 40 hours of data to reach a similar WER of 49.8%. Thus the
combined score requires 87.5% less data to reach the same accuracy of CN-entropy
based sampling. It is also interesting to note that our algorithm has identified
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additional Levantine data than the oracle from the generic BC portion of the mixed
set which resulted in further WER reductions.

Figure 3.1: Active learning results for Arabic

Figure 3.2 shows the equivalent plots for English. The combined score outper-
forms other techniques in terms of the WER and reaches the performance of the
oracle benchmark. It obtains similar performance with 10 hours of data (14.5%)
compared to CN-entropy based technique at 20 hours (14.8%), thus achieving a
50% reduction in labeling costs.

3.1.8 Analysis

In this section we analyze the influence of relevance score in choosing the utterances
that match the target data in both the setups. We plot the histogram of both CN-
entropy and weighted scores for each task. Figure 3.3 shows the normalized
histograms for the American and British English utterances in the mixed set. We
note that the bins for these graphs are in the ascending order of their scores. Data
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Figure 3.2: Active learning results for English

selection starts with the high-scoring utterances, hence the utterances from the right
side of the plot are chosen first during active learning. Figure 3.3(a) shows the
entropy scores for source (American English) and target (British English) are quite
similar and the algorithm will find it harder to differentiate between relevant and
irrelevant utterances based solely on uncertainty score. Figure 3.3(b) shows the
influence of adding relevance scores to uncertainty scores. In this case, the target
utterances have higher scores than source utterances and the algorithm chooses
relevant ones for re-training the ASR.

Figure 3.4 shows similar plots for Arabic. The distinction between CN-entropy
and the weighted score in source/target discrimination is less clear here compared
to English plots. However, we can still see that target utterances achieve better
scores with weighted combination than the CN-entropy score. We observed many
of the utterances from ‘LBC NAHAR’ shows, part of the BC portion of the mixed
set, ranked higher in the weighted score. The plot of LBC scores in the histogram
shows these utterances from the BC portion have high scores in the weighted case.
They are recording of the ‘Naharkum Saiid’ (news) programmes from Lebanese
Broadcasting Corporation originating from the Levantine region and likely to have
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(a) Entropy (b) Weighted Score

Figure 3.3: Histogram of source and target scores for English.

Levantine speech. This observation shows that the relevance score identifies addi-
tional Levantine speech from the BC utterances.

3.2 Semi-supervised learning

Semi-supervised learning has become attractive in ASR given the high cost of
transcribing audio data. Unlike active learning, where one chooses a subset of
the untranscribed data for manual transcription, semi-supervised learning uses the
existing ASR to choose and transcribe the required data for further training.

Self-training is a commonly used technique for semi-supervised learning in
speech recognition [YGWW10, WN05, KW99, Ram05, MS08], whereby the initial
ASR trained using carefully transcribed speech is used to decode the untranscribed
data. The most confident hypotheses are chosen to re-train the ASR. Self-training
has been successfully employed under matched training conditions where the
labeled training set used to train the seed ASR and the unlabeled dataset have
similar acoustic characteristics. It has also enjoyed some success in cross-domain
adaptation where the source seed ASR is adapted using untranscribed data from a
different target language, dialect or channel [LGN09, NSK11]. In the latter task the
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(a) Entropy (b) Weighted Score

Figure 3.4: Histogram of source and target scores for Arabic.

target data, while different from the initial source training dataset, is still assumed
to be homogeneous. Our work differs from these setups as the unannotated data in
our experiments is not homogeneous. It can have multiple accents, with or without
transcriptions. The goal is to select the relevant subset to match the target accent.
Hence, choosing hypotheses solely based on confidence scores is not ideal for accent
adaptation in this case.

In this section we discuss cross-entropy based data selection to identify speakers
that match our target accent, before filtering the utterances by confidence scores.
The seed ASR is initially adapted on the target accent using limited, manually
labeled adaptation data. We then make use of the adapted and unadapted models to
select speakers based on their change in average likelihoods or cross-entropy under
adaptation. We couple the speaker selection with confidence based utterance-level
selection to choose an appropriate subset from the unlabeled data to further improve
the performance on the target accent. We evaluate our technique with Arabic
and English accents and show that we achieve between 2.0% and 15.9% relative
improvement over supervised adaptation using cross-entropy based data selection.
Self-training using only confidence scores fails to achieve any improvement over
the initial supervised adaptation in both tasks.

Semi-supervised learning for ASR adaptation involves three steps - training/adapting
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initial ASR on limited target data with manual labels, decoding the unlabeled data
with the initial adapted model and selecting a suitable subset to re-train the seed
ASR, thereby improving its performance on the target test set. The criteria to select
an utterance for further re-training, can be based on the following:

• Confidence - How confident is the system about the newly generated hypothe-
sis for the utterance?

• Relevance - How relevant is the utterance for additional improvement in the
target test set?

3.2.1 Self-training

Self-training employs confidence scores to select the data for re-training. Confidence
scores in ASR are computed using word-level posteriors obtained from consensus
network decoding [MBS00]. The selection can be done at utterance, speaker or
session level. The average confident score for the appropriate level is calculated as

CSS =

∑
WεS CWTW∑

WεS TW
(3.16)

where S can be utterance or speaker or session, CSS is average confidence score
for S and CW , TW are the word-level score and duration respectively for the 1-best
hypothesis. To avoid outliers with 1-best hypothesis, lattice-level scores have also
been proposed for semi-supervised training [YVDA10, FSGL11]. One of the issues
with self-training is that it assumes all the data to be relevant and homogeneous. So,
data selection is based only on ASR confidence and the relevance criteria is ignored.
In our experiments, the unlabeled data has speakers with different accents and data
selection based entirely on confidence scores fails to find suitable data for further
improvement with re-training.

3.2.2 Cross-entropy based data selection

In this section, we formulate cross-entropy based speaker selection to inform rele-
vance in addition to confidence based utterance selection for semi-supervised accent
adaptation. Let us assume that the initial model λS is trained on multiple accents
from unbalanced training set. It is then adapted on a limited, manually labeled
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target accent data set to produce the adapted model λT . We have available a large
mixed dataset without any accent labels. The goal is to select the target speakers
from this mixed dataset and re-train the initial ASR for improved performance on
the target test set. We formulate the problem of identifying target data in a mixed
dataset similar to sample selection bias correction [BI10, CMRR08, BBS09]. We
follow the same derivation as the active learning, but we calculate the relevance
at the speaker-level, as we work with speaker-adapted systems in the following
experiments.

The final score for target data selection for both the multi-accented and mis-
matched accents case is given by

Selection Score = (−HλT [s])− (−HλS [s]) (3.17)

where

Hλ(s) = − 1

Ts

Us∑
u=1

uT∑
t=1

log p(ut|λ) (3.18)

is the average negative log-likelihood or the cross-entropy of s according to λ, Us

is the number of utterances for s, uT is the number of frames in utterance u and
Ts = ΣuuT refers to total number of frames for s.

We can now sort the speakers in the mixed dataset using this selection score
and choose the top scoring subset based on a threshold. The algorithm 2 shows
the pseudo code for cross-entropy based semi-supervised learning for target accent
adaptation.

3.2.3 Implementation details

We start with a GMM-HMM model trained on the source data. We adapt this model
to the target accent using a small amount of manually transcribed target data. We
use enhanced polyphone decision tree adaptation based on semi-continuous models
(SPDTS) [NMS12b] for supervised adaptation. It involves using the fully continuous
source model to collect occurance statistics for each state in the target data. These
statistics are used to grow a semi-continuous, second-level decision tree on the
adaptation dataset to better match the new contexts with the target accent. We
then use Maximum A Posteriori (MAP) adaptation [GL94a] to refine the Gaussians
(codebooks) and associated mixture weights (distributions) on the adaptation data.
SPDTS gives additional improvements over the traditional MAP adaptation.
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Algorithm 2 Cross-entropy based semi-supervised learning
Input: XT := Target Adaptation set ; XM := Mixed set ; λS := Initial Model ;

minScore := Selection Threshold
Output: λT := Target Model

1: λT := Adapt(λS,XT )
2: for all x in XM do
3: LoglikeS := Score(λS, x)
4: LoglikeT := Score(λT , x)
5: Len := Length(x)
6: Score := (LoglikeT − LoglikeS)/Len
7: if (Score > minScore) then
8: XT := XT ∪ x
9: XM := XM \ x

10: end if
11: end for
12: λT := Adapt(λS,XT )
13: return λT

We use the target accent adapted ASR as the baseline and select suitable data
from the mixed set for further improvements on the target test set. Data selection
can be performed at multiple level segments: utterance, speaker or session. In
our experiments, we rely on both speaker-level and utterance-level scores for
both self-training and cross-entropy based data selection. All our baselines are
speaker adapted systems, so we need a reasonable amount of speaker-specific data
(minimum 15s) for robust Constrained Maximum Likelihood Linear Regression
(CMLLR) based speaker-adaptive training [PY12a]. Utterance-level selection alone
does not ensure this constraint. Secondly, the accent information (relevance)
and hypothesis accuracy (confidence) can be asserted reliably at the speaker and
utterance levels respectively. For self-training, we sort the speakers based on speaker-
level, log-likelihood scores normalized by number of frames. For each best-scoring
speaker in the list, we enforce the additional limitation that the selected speaker
should have at least 15s of utterances that passed the minimum confidence threshold.
This allows us to choose speakers with enough utterances for reliable CMLLR based
speaker-adaptive (SA) training. For cross-entropy based data selection, we replace
the speaker-level confidence score with the difference of length normalized log-
likelihoods as specified in Equation 3.17.

We experiment with two different setups. In the first task, the mixed set has
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transcriptions available, but doesn’t have accent labels. The goal is to choose a
relevant subset of audio and its transcription for re-training the initial model. We
evaluate both self-training and cross-entropy based data selection for choosing
useful data from the mixed set. Given that we have transcriptions available, we omit
confidence-based filtering at the utterance level during data selection for this task.
In self-training, we use the adapted model to Viterbi align the transcription with the
audio for the utterances of each speaker in the mixed set. The confidence score in
Equation 3.16 is replaced with the speaker-level, length normalized alignment score
for this task. We then select different amounts of data by varying the threshold and
re-train the seed ASR to test for improvements. In cross-entropy based data selection,
the normalized log-likelihoods corresponding to the adapted and unadapted models
are used to select the relevant speakers. Given the transcriptions for each utterance
of speaker s, Equation 3.18 becomes

Hλ(s) = − 1

Ts

Us∑
u=1

uT∑
t=1

log p(ut|λ,Wr) (3.19)

where Wr is the transcription of the audio.

For the second task, the mixed set does not have either transcriptions or accent
labels available. Self-training in this case, relies on confidence scores obtained
by consensus network decoding [MBS00]. The speaker-level scores are used to
choose the most confident speakers and for each speaker, utterances that have
an average confidence score greater than 0.85 are selected. 0.85 threshold was
chosen as it gave us a good trade-off between WER and amount of available data
for selection. Additionally, we enforce the 15s minimum constraint for all selected
speakers as explained above. In the case of cross-entropy based selection, we
replace the speaker-level confidence score with difference in cross-entropy between
adapted and unadapted models. The cross-entropy of a speaker with a model is
calculated based on the lattice instead of 1-best hypothesis to avoid any outliers.
The lattice-based cross-entropy can be calculated as

Hλ(s) = − 1

Ts

Us∑
u=1

uT∑
t=1

log p(ut|λ,W ) (3.20)

where W is the set of paths in the lattice of the decoded hypothesis and

p(u|λ,W ) =
W∑
w=1

p(u|λ,w)p(w) (3.21)
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where p(w) is LM prior probability of path w. We choose best scoring speakers on the
cross-entropy based selection score and for each speaker, we select utterances same
as self-training with minimum confidence score of 0.85. Speakers are constrained
to have minimum of 15s duration as above. We re-train the seed ASR using the
additional data and report improvements on the test set.

3.2.4 Experiment setup

We used the same setup as active learning for semi-supervised learning experiments.
However, unlike the SI baseline in active learning experiments, we used a speaker-
adaptive setup with CMLLR-SAT training and MLLR based model adaptation during
decoding. For semi-supervised learning, we start off with supervised adaptation of
baseline systems on the target accent using limited, manually labeled Adaptation set.
These adapted systems are used as seed models to select an appropriate subset from
the Mixed set to further improve the performance on the target accent. Table 3.4
shows the WER of the baseline and adapted systems.

Table 3.4: Baseline and Supervised adaptation WERs.

System # Hours
Test WER (%)
SRC TGT

Arabic
Baseline 1100 43.0 50.6
Supervised Adapt +10 44.0 47.8

English
Baseline 66 12.9 23.6
Supervised Adapt +3 13.7 14.5

Semi-supervised learning experiments

In this section we study semi-supervised learning on the Mixed set in two different
setups. In the first, we assume that the Mixed set is transcribed, but with no accent
labels. We compare self-training and cross-entropy data selection based on Viterbi
alignment scores to select appropriate speakers for improving the initial system.
In the second setup, we assign the Mixed set to have neither transcriptions nor
accent labels. In this experiment, we decode the utterances using initial ASR(s) to
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obtain the likely hypotheses. We then use lattice likelihoods and confidence scores
to choose the appropriate subset for accent adaptation.

Task 1 - Mixed set with transcriptions, no accent labels

For English, we choose 5, 10, 12, 15, 20 hours of audio from the mixed set to
re-train the initial ASR in the case of self-training and cross-entropy based selection.
We selected 10, 20, 30, 40 and 50 hours of audio data for Arabic from the mixed set.
Figure 1 shows the WER of English and Arabic semi-supervised data selection with
self-training and cross-entropy difference. The bin 0 corresponds to the supervised
adaptation on manually labeled adaptation data. The graphs contain two baselines
in addition to self-training and cross-entropy plots. Select-ALL refers to the scenario
where all of the available data in the mixed set (27 hours for English and 222
hours for Arabic) are selected for re-training. This corresponds to the lower bound
for semi-supervised learning. ORACLE refers to selection of all of the target data
in the mixed set. This includes 12 hours of British accent in the case of English
and 20 hours of Levantine for Arabic. We note that, ORACLE is only included for
comparison and doesn’t correspond to the upper bound for our task. A robust data
selection would exclude utterances with noise, wrong transcriptions, etc. which will
improve the accuracy of the re-trained model. In the case of Arabic, 20 hours of
Levantine only correspond to data annotated by LDC. The remaining BC data can
have more Levantine speech, which will also help improve on the ORACLE.

In both Arabic and English, self-training does not produce any improvements
from semi-supervised learning over the supervised adaptation baseline. In Table.3.4,
the WER on the target test set is higher than the source test set, even for the
adapted systems. Hence, log-likelihood or confidence based data selection based on
the adapted model cannot differentiate between relevant data (target accent) and
irrelevant data (source accent). The initial speakers selected for self-training belong
exclusively to the source accent which is the reason for the poor performance of
re-trained models. This experiment clearly shows that data selection based only on
confidence scores fails when the source ASR is adapted on a limited target data and
the unlabeled data is not homogeneous. Cross-entropy based selection on the other
hand, relies on change in log-likelihood before and after adaptation to identify the
relevant speakers from the mixed set. It obtains an improvement of 2.3% absolute
(or 15.9% relative @12 hours) for English and 1.8% absolute (or 3.8% relative @20
hours) for Arabic over the supervised baseline.

It is also interesting to note that in the case of English 90% of the selected
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Figure 3.5: Semi-supervised data selection with transcriptions

speakers at 12 hours were WSJCAM0 (British English) speakers, while only 40% of
the Arabic speakers at 20 hours were from the LDC annotated Levantine set. It is
also shown that some of the remaining speakers from the target accent left out for
data selection, had worse scores due to transcription errors, etc. This is probably the
reason for slight improvement of the best semi-supervised system over the ORACLE
(or fully-supervised) adaptation.

Task 2 - Mixed set without transcriptions and no accent labels

The same framework and bins are used as in the previous experiment. For self-
training, speaker and utterance selection rely on confidence scores as in Eq. 3.16.
For cross-entropy based data selection, speaker level selection is based on the
difference in lattice likelihoods as in Eq 3.20. Figure 2 shows the WER of semi-
supervised data selection with self-training and cross-entropy difference for English
and Arabic datasets. The Select-ALL and ORACLE numbers correspond to 1-best
hypothesis from the adapted target ASR.

As expected, the results are similar to the previous experiment as self-training
fails to obtain any additional improvements with the mixed data. 2% absolute
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Figure 3.6: Semi-supervised data selection without transcriptions

(or 13.8% relative @12 hours) improvement is obtained over supervised baseline
for English and 0.8% absolute (or 2.0% relative @12 hours) for Arabic. The total
improvement is lower for Arabic compared to English (2.0-3.8% relative vs. 13.8-
15.9% relative). However, it is comparable to the gain obtained using a dialect
classifier on a similar setup [SMB11].

3.3 Summary

In this chapter, the use of additional untranscribed data for the goal of accent
adaptation is investigated. A relevance criterion based biased sampling is proposed,
in addition to the informativeness criterion for data selection. The combined
criterion was evaluated under active and semi-supervised learning scenarios. It
performed better than random and informative sampling techniques in identifying
the relevant data for additional improvements on the target test set.
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Chapter 4

Robustness analysis

In this chapter, we deal with training ASR models on datasets with multiple accents.
Given that real-world datasets often have speakers with varying accents, it is
necessary for ASR to cope with such diversity in the training data. It can be achieved
in two different ways. In accent normalization, we seek models that are robust to
acoustic variations presented by different accents. As we discussed earlier, these
variations can include pronunciation changes, prosody and stress. In accent adaptive
training, we use a factorized model with accent-specific parameters and accent-
independent, canonical models. The goal is that the accent-specific parameters will
learn the intricate variations specific to a particular accent, while the canonical
models will learn the shared patterns between different accents. We explore both
the approaches in this chapter. Finally, we show that making the models aware of
the accent during training or accent-aware training, allows to reduce the influence
of accent in the final model.

4.1 Related work

Accent normalization has very little prior work in ASR, however robust ASR models
to compensate for other variations such as noise, channel, gender, etc. have been
investigated in the past. The normalization can be performed at the feature-level
or model-level. At the feature-level, front-ends such as PLP [HJ91] and RASTA
[HM94] have been proposed earlier. Probabilistic front-ends based on Multi-Layer
Perceptron (MLP) have also been tested for their noise robustness [IMS+04]. A
review of feature-based and model based techniques for noise robustness in speech

49
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recognition is presented in [Den11, Gal11a]. The idea behind the design of noise-
robust features is that these front-ends are independent of the noise conditions,
while still maintaining the discrimination in the phonetic space. Thus, when trained
on datasets with multiple noise conditions, the ensuing models are unaffected by
these variations. In a similar manner, we seek to evaluate different front-ends based
on their robustness to different accents.

Accent adaptive training has mainly involved techniques borrowed from multi-
lingual speech recognition. They include simple data pooling based multi-style
training, using accent-tags in the phonetic decision tree for data sharing [Che01,
CMN09, KMN12] and using individual distributions while sharing the codebooks
[KMN12]. [SK11] introduced stacked transforms, a two-level MLLR transforms to
integrate accent and speaker adaptation, similar to factorized CMLLR proposed in
[SA11]. As in normalization, accent adaptive training has also commonalities with
speaker [Gal11b] and noise [KG09] adaptive training.

4.2 Accent normalization or robustness

We focus on seeking robust features that will ensure accent-independent acoustic
models when trained on datasets with multiple accents. We formulate a framework
which can be used to evaluate different front-ends on their ability to normalize the
accent variations. We use ASR phonetic decision trees as a diagnostic tool to analyze
the influence of accent in the ASR models. We introduce questions pertaining to
accent in addition to context in the building of the decision tree. We then build
the tree to cluster the contexts and calculate the number of leaves that belong to
branches with accent questions. The ratio of such ’accent’ models to the total model
size is used as a measure for accent normalization. The higher the ratio, the more
models are affected by the accent, hence less normalization and vice versa.

4.2.1 Decision tree based accent analysis

Phonetic decision trees have been traditionally used in ASR to cluster context-
dependent acoustic models based on the available training data. The number of
leaves in a phonetic decision tree refers to the size of the acoustic model. In our
training process, the decision tree building is initialized by cloning the CI models
to each available context in the training data. Two iterations of Viterbi training
are performed to update the distributions while the codebooks remain tied to their
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respective CI models. Several phonetic classes of the underlying phones such as
voiced/unvoiced, vowels/consonants, rounded/unrounded, etc are presented as
questions, to the decision tree algorithm. The algorithm then greedily chooses
the best question at each step that maximizes the information gain in a top-down
clustering of CD distributions. The clustering is stopped once the desired model size
is reached or when the number of training samples in the leaves has reached the
minimum threshold.

In this framework, we combine questions about the identity of accents with
contextual questions and let the entropy-based search algorithm to choose the best
question at each stage. The resulting decision tree will have a combination of
accent and contextual phonetic questions. An example is shown in Figure 4.1. As
shown in the figure, the begin state of phoneme /f/ is clustered into 4 contexts.
f-b(1) and f-b(2) are considered accent-dependent contexts, as they are derived by
choosing a accent question (Is current phone belong to IRAQI accent?). f-b(3) and
f-b(4) are accent-independent contexts, because their derivation does not involve a
accent question in the decision tree. The earlier the question is asked, the greater
its influence on the ensuing models. In the above tree, a robust front-end should
push the accent questions as low as possible in the tree, so only a few models are
influenced by them. Hence, the ratio of accent leaves to total model size is used as
an estimate to evaluate MFCC and MLP front-ends. We build a decision tree using
the combined set of questions. For each leaf node, we traverse the tree back to the
root node. If we encounter a accent question in a node, then that leaf is assigned
as a accent-dependent model. The ratio of accent-dependent to total leaves is then
calculated. The experiment is repeated by varying the model size.

4.3 Accent aware training

In this section, we try to leverage accent labels on each speaker available during
training of ASR models. Accent labels can be obtained by eliciting from speakers
during enrollment or determined automatically using auxiliary information such
as geographic region or even manually labelling a small number of speakers. We
introduce the accent label as an additional feature in the training of bottle-neck
neural network. The accent is encoded as a 1-hot vector to the input of the neural
network and weights of these augmented features are trained along with other
feature weights during back-propagation. We compare the performance of the
accent-aware BN features to the one that is agnostic to the accent of the speaker.
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Figure 4.1: Decision tree for begin state of /f/
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We also compare the influence of the accent in accent-aware Vs accent-agnostic BN
front-ends using the decision tree based analysis described in the section above.

4.4 Experiments

Our experiments are carried out on the Pan-Arabic dataset provided by AFRL
and medical transcription by M*Modal. We analyze the influence of accents in
two different front-ends, MFCC and MLP. The following sections describe the
experiments carried out in each setup.

4.4.1 RADC setup

Dataset

RADC database consists of Arabic speech collected from regional Arabic speakers,
corresponding transcriptions and lexicons for 5 different accents - United Arab
Emirates (UAE), Egyptian, Syrian, Palestinian and Iraqi. It is a balanced data
set with approximately 50 recording sessions for each accent, with each session
comprising two speakers. The amount of data broken down according to accent is
shown in Table 4.1 below.

Table 4.1: PanArabic Dataset
Dataset Num. Hours

UAE (AE) 29.61
Egyptian (EG) 28.49

Syrian (SY) 28.51
Palestinian (PS) 29.29

Iraqi (IQ) 24.92
Total 140.82

Each speaker is recorded on separate channels, including long silences between
speaker-turns. Hence the actual conversational speech in the dataset amounts to
around 60 hours. The transcriptions of the speech are fully diacritized and included
both UTF8 and Buckwalter representations. The first 5 sessions in each accent are
held out and used as test data, while the remaining form the training set. The
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database also contains accent-specific pronunciation dictionaries. All the accents
have a common phone set, except for one minor variation. UAE, Egyptian and Iraqi
have the voiced postalveolar affricate, /dZ/ phone. Palestinian and Syrian have
the voiced post-alveolar fricative, the /Z/ phone instead. These two phones are
merged into one, while designing the ASR phone set. The final phone set contains
41 phones, including, 6 vowels, 33 consonants in SAMPA representation plus a noise
and a silence phone.

Baseline

The baseline ASR is trained on speech data pooled from all five accents. The individ-
ual, accent-specific dictionaries are merged to form a single ASR dictionary which
contains pronunciation variants derived from each accent. The total vocabulary
size is 75046 words with an average of 1.6 pronunciations per word. The language
model is a 3-gram model trained on the training transcriptions and Arabic back-
ground text, mainly consisting of broadcast news and conversations. The OOV rate
of the LM on the test data is 1.8%. The perplexity of LM on the test set is 112.3.

We trained two sets of acoustic models based on MFCC and MLP features.
For MFCC features, we extract the power spectrum using an FFT with a 10 ms
frame-shift and a 16 ms Hamming window from the 16 kHz audio signal. We
compute 13 MFCC features per frame and perform cepstral mean subtraction and
variance normalization on a per-speaker basis. To incorporate dynamic features, we
concatenate 15 adjacent MFCC frames (7) and project the 195 dimensional features
into a 42-dimensional space using a Linear Discriminant Analysis (LDA) transform.
After LDA, we apply a globally pooled ML-trained semi-tied covariance matrix. For
the development of our context dependent (CD) acoustic models, we applied an
entropy-based, poly-phone decision tree clustering process using context questions
of maximum width 2, resulting in quinphones. The system uses 2000 states with a
total of 62K Gaussians with diagonal covariance matrices assigned using merge and
split training. The total number of parameters in the acoustic model amounted to
7.8M.

In addition to MFCC system, we trained another set of acoustic models using
MLP Bottle-neck features [GF08, FWK08]. A multi-layer perceptron is trained using
ICSI’s QuickNet MLP package [Qui]. We stack 7 MFCC frames, which serve as input
to the MLP. The context-independent (CI) state labels are used as targets. The
MLP has a 4-layer architecture - input (195), 2 intermediate (1000, 42) and output
(125) layers, with a total of 243,292 parameters. The training data for the MLP
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is derived from the ASR training set, 90% of the training speaker list is used for
training MLP while the remainder 10% of the speakers is used as a development
set. For each training iteration MLP’s accuracy on the development set is calculated.
The training is stopped when the accuracy saturates on the development set. In our
case, MLP training took 5 epochs and reached a frame-level accuracy of 63.86%
on the training data and 63.56% on the development data. The activations in the
third layer, also called the bottle-neck layer [GKKC07] are used as inputs to build
GMM-based HMM acoustic models. Apart from MLP parameters, the MFCC and
MLP acoustic models used same number of parameters. The baseline Word Error
Rate (WER) for the MFCC and MLP system is given in Table 4.2 below. The WER
of MLP ASR system is 0.6% (absolute) lower than the MFCC system. The speaker
adapted system produces a WER of 26.8%

Table 4.2: Baseline Performance.

Accent
Baseline ASR
MFCC MLP

AE 28.7 28.2
EG 30.0 29.5
SY 27.9 27.2
PS 29.4 28.6
IQ 27.7 27.0
Average 28.7 28.1

Accent robustness

In the first experiment, we examine the influence of accent in MFCC front-end.
Table 4.3 summarizes the accent analysis for different model sizes.

We observe that speaker adaptation, including vocal tract length normalization
(VTLN) and feature space adaptation (FSA) training, only marginally reduce the
influence of accent (≈ 0.5% absolute) in the acoustic models. In the resulting
decision trees, we observe that the /Z/ appears very early in the split. This is the
phone we merged from /dZ/ and /Z/ that belongs to two different accent classes.
accent questions in the decision tree allowed the phone to split into its accent
counterparts. The distribution of different accents for each model size is shown in
Figure 4.2.
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Table 4.3: Ratio of accent nodes in MFCC decision tree.

Model Size Accent Nodes Non-Accent Nodes Ratio
MFCC

1000 13 987 1.3%
2000 82 1918 4.1%
3000 224 2776 7.5%
4000 483 3517 12.1%

MFCC (VTLN + FSA)
1000 9 991 0.9%
2000 72 1928 3.6%
3000 226 2774 7.5%
4000 465 3535 11.6%

Figure 4.2: Accent Distribution in MFCC models
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We noticed that most accent models belong to Egyptian across different model
sizes. This behavior is consistent with the results found in the literature, where
Egyptian is found to be most distinguishable from other accents [BHC10]. We also
observed that vowels are more influenced by accent than consonants. Table 4.4
shows the ratio of accent models to all clustered models for vowels and consonants.
Except for the case of model size 1000, vowels have more accent models and hence
more accent influence, than consonants. This result is in line with the fact that the
majority of differences between Arabic accents are characterized by vowels. These
observations indicate that decision trees can be used as an effective analytic tool to
evaluate the effect of different accents in acoustic models.

Table 4.4: Ratio of accent models for vowels and consonants.

Model Size Accent models
Ratio of Accent Models
Vowels Consonants

1000 13 1.1% 1.4%
2000 82 6.2% 2.9%
3000 224 10.8% 5.4%
4000 483 17.1% 8.8%

MFCC vs. MLP accent analysis

In this section, we examine the influence of accent in MLP and MFCC front-ends.
The number of accent models for MLP and MFCC systems is shown in Figure 4.3.
From the graph, it can be seen that speaker adaptation marginally reduces the
influence of accent in the final models, in both MFCC and MLP. Comparing, the two
front-ends, MFCC has less accent models than MLP for all cases.

To confirm the hypothesis that MLP features are more sensitive to accent, we
created a more rigorous setup. The pilot experiment used a combined dictionary
obtained by composing individual, accent-specific dictionaries. The use of different
”accent”’ pronunciation variants can render the models to be insensitive to accent
variations. Hence, in our next experiment, we constrained the dictionary to have
only one pronunciation for each word. The training data is force-aligned with the
combined dictionary and the most frequent pronunciation variant is selected for
each word, which is the only variant used in the experiment. Also, in the previous
experiment only singleton accent questions (eg. Is current phone IRAQI?) were
used. We experimented with combinations of accent questions in the following
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Figure 4.3: MLP vs. MFCC models
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setup (eg. Is current phone IRAQI OR EGYPTIAN?). This would allow more accent
questions to be available for clustering. Figure 4.4 shows the results of the new
setup. It can be observed that more MLP models are influenced with accent than
in the case of MFCC. These results show that MLP features are more sensitive to
linguistic variations, i.e. accent. We also note that similar framework has been used
for gender analysis and we find that both MLP and FSA based speaker adaptation
greatly reduce the influence of gender in the clustered models.

Figure 4.4: Single Pronunciation models

To analyze the accent sensitive behavior of MLP, we calculated the frame-level
accuracy of vowels and consonants in the MLP outputs on the development set. The
average accuracy for vowels and consonants is shown in Table 4.5.

It is clear from Table 4.5 that MLP frame level accuracy is higher for vowels than
consonants. We already observed that accented models are dominated by vowels,
which indicates that most accent variations occur in vowels in Arabic. Hence, we
hypothesize that the low MLP frame accuracy for vowels, rendered MLP to be more
sensitive to accent variations.
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Table 4.5: MLP frame accuracy for Vowels and Consonants.

Phone Class MLP Accuracy
Vowels 26.41

Consonants 40.80
Noise/Silence 85.78

4.4.2 M*Modal setup

The dataset and baseline for the M*Modal medical transcription setup has been
explained in chapter 3. In this section, we evaluate the accent robustness of MFCC
and Neural-network bottle-neck features on accented English.

Dataset and baselines

The 1876 training speakers in the M*Modal data set were manually classified into
one of 8 different accents. Table 4.6 shows the breakdown of the training speakers
interms of their accents.

Table 4.6: Accent distribution in M*Modal training set.

Accent # Speakers Ratio (%)
US 1397 74.4
South Asian 168 9.3
East Asian 106 5.6
Hispanic 93 4.9
Middle Eastern 52 2.7
African 24 1.2
Eastern European 17 0.9
Western European 11 0.5
Others 10 0.6

The MLP system included a 4-layer bottle-neck MLP trained using frame-level
cross-entropy with CI targets. Table 4.7 gives the WER of MFCC and MLP based
systems. We use two test sets as before, South Asian and US Native English.



4.4 Experiments 61

Table 4.7: WER of MFCC and MLP models .

System
WER (%)

Native South Asian
MFCC 45.73 19.89
MLP 42.07 28.75

Accent analysis

Accent questions are introduced in the decision tree build process as in Arabic
system. The accent models for different model sizes are calculated and shown in
Figure 4.5. The figure shows very minimal difference between MFCC and MLP
based systems.
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Figure 4.5: MFCC Vs MLP models

Given the recent interest in deep architectures for neural networks in ASR
[HDY+12], different Neural networks are trained to measure the robustness of
features with respect to accents. Table 4.8 shows 3 different NN setups. The first
system is trained with CI targets and 4 layer MLP as discussed in the previous
experiment. The second one has the same number of layers, but trained with CD
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labels. The 3000 context-dependent states are reduced to 1000 CD states by pruning
the decision tree. The alignments are still produced by the 3000 state system, while
they are mapped to 1000 CD states before NN training. The last system is a ”‘deep”’
NN with 7 layers and Bottle-neck layer in the 5th layer. All NN models have the
same number of 1M parameters. The hidden layers are adjusted accordingly to
achieve the desired parameter size. From the table, it is clear that Deep Bottle-Neck
Features (DBNF) perform the best with WER close to MFCC sMBR system.

Table 4.8: WER of MFCC and DBNF models .

Target # layers
WER (%)

South Asian Native
CI 4 42.07 28.75
CD 4 41.52 28.21
CD 7 34.75 24.96

The corresponding robustness analysis plot for the 3 systems are shown in 4.6.
The graph clearly shows that DBNF can do better normalization of accents than
MFCC and other 4 layer NNs.
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The effectiveness of accent normalization at different layers of DNN is explored
in Table 4.9. The table shows that the deeper layers provide better accuracy and
better accent normalization. Figure 4.7 shows accent robustness at different layers
of the DNN.

Table 4.9: WER of varying bottle-neck layer .

Bottle-neck Layer #
WER (%)

South Asian Native
3 42.10 28.86
4 37.33 25.87
5 35.74 24.96
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Figure 4.7: Robustness analysis of Bottle-neck layers

Accent aware training

In this experiment, we augment the input spectral features to the BN neural network
with the accent label of each training speaker. In the M*Modal dataset, each speaker
is assigned a label corresponding to one of 9 accent groups. The baseline neural
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network has an input dimension of 150 while the accent-aware neural network has
150 + 9 = 159 input features. Their weights are learnt along with other parameters
of the BN network during back-propagation. During testing, the accent of the test
speaker is added to the input to generate their BN features. The performance of the
accent-aware BN features is shown in Table 4.10.

Table 4.10: WER of accent-ware BN features.

Target # Training Hours
WER (%)

South Asian Native
Accent agnostic 150 35.74 25.41
Accent-aware 150 33.38 24.21
Accent agnostic 450 34.75 24.96

The results show that the accent-aware BN front-end has 6.6% lower relative
WER than accent-agnostic BN front-end for South Asian speakers and 4.7% lower
relative WER for Native US speakers. The table also shows the benefit of labeling a
subset of the training data with accent labels. Accent-aware model trained on 150
hours of training data with accent annotations performs better (33.38% Vs 34.75%
and 24.21% Vs 24.96%) than accent-agnostic model trained on 450 hours of speech
data. We also use decision tree framework to analyze the influence of accent in
accent-aware Vs accent agnostic front-ends. Figure 4.8 shows that the accent-aware
model is more robust to accent variations than the accent agnostic model.

4.5 Summary

We have presented an evaluation framework to test different front-ends for their
ability to normalize accent variations. We analyzed MFCC and MLP front-ends and
showed that decision tree based accent robustness is an effective tool to measure
tolerance to accent variations. Various architectures of MLP are analyzed and their
robustness towards accent variations is evaluated. It is shown that Deep neural
networks with bottle-neck layer close to the output layer produces lower WER and
better accent normalization criterion. We also show that annotating a subset of
speakers with accent labels and using them in an accent-aware training reduces the
WER over an accent agnostic ASR model trained on a larger dataset.
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Chapter 5

Speaker dependent ASR and accents

Speaker dependent (SD) models trained with sufficient data from a target speaker
perform significantly better than speaker independent (SI) models trained by pooling
data from multiple speakers. They form an important class of ASR models, widely
employed in applications characterized by personal and sustained usage over an
extended length of time. Traditionally, this use case was limited to dictation tasks
such as medical or law transcription services where a single user can potentially
dictate over 100s of hours of reports throughout his/her career on a personal
computer. However, with the recent adoption of smartphones and other handhelds,
speech interfaces are becoming more pervasive outside of desktop computers. These
devices also sport a large resident memory and increased computational power to
accommodate SD ASR models customized for the target user. This section of the
thesis is devoted to analyzing the influence of accents in SD ASR and addressing
some of the issues faced by accented speakers through speaker-based data selection
techniques.

5.1 Motivation for SD models

Speaker specific characteristics such as age, gender, vocal-tract length and accent
have significant influence on the ASR acoustic models. Speaker-independent systems
trained by pooling data from wide range of speakers perform poorly for speakers
whose features are under-represented in the training set, e.g. non-natives, female
speakers, etc. Speaker-adaptive systems handle these variations by mapping the
input signal to a canonical space using various normalization [ZW97] and adap-
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tation techniques [Gal98] and training the ASR models in this new feature space.
Speaker-dependent systems on the other hand, address this issue by fitting the ASR
models on the target speaker’s acoustic space using increased training data specific
to the speaker. This is achieved by either training SD models solely on the target
speaker or adapting an SI model using speaker-specific data. The following graphs
show the effectiveness of 1 hour of target speaker data on ASR performance.
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Figure 5.1: WER of SI Vs 1-hour SD models

Figure 5.1 shows test speakers from the two test sets discussed in 2.7.1 arranged
in ascending order of their SI WER. The graph also shows the WER of the same
speakers after adapting the SI models using 1 hour of speaker-specific data using
MAP adaptation. It is clear from the graph that there is significant improvement
across all speakers with SD data. More importantly, the speakers at the tail of the
WER curve improve a lot (5̃0% relative) compared to the speakers who have a low SI
WER. Hence, SD systems trained on data from a specific speaker have the potential
to increase the reach of ASR to wider range of speakers, who would otherwise find
a generic ASR unusable. This is also an important advantage of SD models over SI
counterpart in the context of unsupervised training. Given the availability of large
amounts of speech data in many applications, modern day ASR systems employ a
combination of first pass hypothesis and confidence based data selection for training.
The speakers with high SI WER will have erroneous transcriptions or get filtered
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during data selection due to low confidence and hence are unlikely to have lower
WER with SI models even if more data becomes available. SD systems on the other
hand, can produce significant improvements by adapting the SI model using less
speaker-specific data.

SD models, by virtue of being trained on the target speaker are sharper than the
SI models. They are more accurate, so they can effectively prune unlikely hypotheses
early in the decoding resulting in faster run-time performance. This is crucial for
ASR applications that require strict real-time performance on resource-constrained
environments such personalized assistants. Figure 5.2 plots WER and real-time
performance of SI and SD models for the same speakers in Figure 5.1.
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Figure 5.2: WER of SI Vs 1-hour SD models

The Real-Time Factor (RTF) is calculated for the same beam and other pruning
settings in the decoder for both the models. The graph shows that SD models are
2-3 times faster than SI models across a wide range of WERs. If there is a real time
constraint on the ASR, more aggressive pruning has to be employed for SI models
which will result in further degradation of WER. SD models on the other hand, are
already close to 1xRT constraints and thus require less aggressive or no pruning.
These characteristics ensure even less powerful SD models residing on the client to
perform better for the target speaker than powerful SI models hosted on the server.
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5.2 Accent issues in SD models

Although it has been established that SD models perform significantly better com-
pared to an SI ASR, they require sufficient data from the target speaker, which is
time-consuming to collect. In a real-world task, the user starts off with SI models
out of the box and the system adapts to the speaker’s data with continued usage.
This transition period from SI to a significantly better speaker-specific model with
data collected over time, is termed as the adaptation phase. A new speaker has
to painfully navigate through this adaptation phase with a low accuracy SI system
until he/she has produced sufficient data for adapting the initial model. Customer
satisfaction and adoption rates for commercial ASR systems suffer significantly
throughout this transition period.

This issue is more serious for accented speakers who encounter significantly
higher word error rates with SI system compared to native speakers. Figure 5.3
shows the same xRT Vs WER graph, but with additional accent information. It is
clear that accented speakers start off nearly 50% relative worse than native speakers.
After an hour of SD data, there is significant improvement in both the WER and RTF
for these speakers. However, during this period, they have to rely on inaccurate SI
system, which is almost unusable for applications such as dictation.

This section of the thesis aims to address the problem of building reliable speaker-
dependent models using limited target speaker’s data to reduce the adaptation
phase for accented speakers. The performance of the adaptation algorithms will be
measured on both accented and native speakers to analyze the influence of accent.

5.3 Related work

Speaker adaptation has a long history in ASR with popular techniques such as
Maximum A-Poteriori (MAP) adaptation [GL94b], Maximum Likelihood Linear
Regression (MLLR) [LW94] and Constrained-MLLR (CMLLR) [Gal98]. All of
these techniques are confined to the available adaptation data, which is only a few
minutes in our case. Several techniques have been exploreed in the literature to
address the problem of speaker adaptation with limited data. They can be classified
into 3 groups: subspace based adaptation, speaker clustering and speaker selection.



5.3 Related work 73

 0

 10

 20

 30

 40

 50

 60

 70

 0.5  1  1.5  2  2.5  3

W
ER

 (
%

)

xRT

Native SI
Native SD (1 hour)

South Asian SI
South Asian SD (1 hour)

Figure 5.3: WER of SI Vs 1-hour SD models

5.3.1 Subspace based speaker adaptation

Motivated by the success of Eigen faces in face recognition task, [KNJ+98] intro-
duced Eigen voices for speaker adaptation. It involves identifying a subspace of
model parameters that best explains the speaker variability in the training data
using fewer parameters. Principal Component Analysis (PCA) was performed on
speaker-dependent mean supervectors to project them onto a low-dimensional
subspace. The first few eigen vectors are chosen as representative dimensions or
Eigen voices and speakers are represented as a weighted combination of these basis
vectors. During adaptation, the weights for the new speaker in this low-dimensional
speaker space can be efficiently estimated on adaptation data using Maximum
Likelihood Eigen Decomposition (MLED). [NWJ99] proposed maximum likelihood
based instead of PCA to directly estimate the low-dimensional basis vectors referred
to as Maximum Likelihood Eigen Space (MLES). It used traditional Baum-Welch
like iterative estimation and the technique also supported Bayesian MAP estima-
tion with gender or dialect based priors, known as MAP Eigen Space (MAPES).
[MH07] introduced non-linear extensions to Eigen voices using kernel techniques
with additional improvements.
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An alternative to low-dimensional projection of SD mean vectors is to apply eigen
based methods for the estimation of transform parameters. [CLWL00] proposed
Eigen-MLLR, which is a low-dimensional estimation of MLLR transform on few
seconds of speaker’s data. The MLLR matrix space is decomposed into a set of
basis eigen matrices using PCA on the training speakers. The weights of these basis
matrices are estimated on the adaptation data using maximum likelihood. MAPLR
[CLWL00] extended MAP adaptation using eigen-based priors. It used Probabilisitic
PCA (PPCA) to derive the eigen voices and during adaptation the transformed
model is used as a prior for further MAP estimation. [PY12b] provided a detailed
recipe for estimating CMLLR using subspace projection and dynamically varying
the basis dimension based on the available adaptation data. Recently, [Bac13]
introduced efficient implementation of iVector based speaker adaptation for short
utterances using Map-Reduce framework. All of these subspace based techniques
provided significant improvements over unadapted baseline, for data between 5
and 15 seconds of speech. The performance saturates to traditional methods after
20 seconds of adaptation data. In the current experiments, the adaptation data is
assumed to be few minutes of audio for the target speaker obtained either by initial
speaker enrollment or after dictating the first report.

5.3.2 Speaker clustering

In clustering based techniques, the training dataset is grouped into multiple clusters
based on some similarity criterion. Model templates are trained for each cluster,
reducing the variability in the overall speaker space. During adaptation, the new
speaker is assigned to a specific cluster based on the same similarity criterion
between the adaptation data and the individual models. The target cluster models
are then used to decode the new speaker. [Fur89] introduced hierarchical clustering
and adaptation in the context of Vector Quantization (VQ) based ASR. This concept
was extended to HMM-GMM based ASR in [SBD95]. A hierarchical cluster tree is
built using agglomerative clustering based on relative entropy distance between
the training speakers. Instead of training individual models from scratch, only
transformation parameters are stored for each cluster. For a new test speaker, top N
clusters are chosen based on the relative entropy distance and their parameters are
averaged to derive the adapted model. [BVS10] experimented with KL divergence
on context-independent gaussian posteriors as a distance measure to build the
cluster tree. The hierarchical clustering was initialized with PCA and refined using
distributed VQ in a MAP-Reduce framework. Further analysis of the resulting
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clusters showed that pitch and loudness had significant influence which showed
that the clusters represented different gender and noise conditions.

[Gal00] introduced cluster-adaptive training (CAT), a form of soft-clustering of
the training speakers. The mean vectors of the models are represented as a weighted
combination of cluster means. The technique is similar to the eigen voices, however
both the cluster weights and the resulting clusters themselves are iteratively trained
using ML criterion. The eigen voices can also be used to initialize the clusters for
CAT training. [Gal01] evaluated various forms of CAT training schemes including
model, transform and bias clusters. [YG06] proposed a discriminative version of
CAT. The clustering based adaptation techniques are computationally efficient as
training the clusters can be done offline and only the cluster assignment is carried
out during adaptation. However, it is sub-optimal to precluster the speakers as its
difficult to obtain representative clusters for different factors such as age, gender,
accent, etc. that influence the acoustic space of each speaker.

5.3.3 Speaker selection

Speaker selection techniques extend the clustering based schemes by considering
one cluster for each speaker in the training data. The adaptation phase is then
a nearest neighbour selection problem, where the source (training) speakers are
ranked based on a similarity score calculated on the adaptation data of the target
speaker. It can also be viewed as an instance of exemplar-based technique [SRN+12]
at the speaker level. Top N neighbours are selected and their data is used to adapt
the SI model to represent the new speaker’s acoustic space. Many similarity criteria
have been proposed in the literature to compute acoustically similar speakers
and adaptation techniques to compute the adapted model. [PBNP98] trained
single gaussian source SD models and selected top N neighbours based on their
likelihood on the adaptation data. [WC01] used MLLR to approximate source
speakers and the likelihood of the adapted models as a similar criterion to the target
speaker. [HCC02] experimented with different configuration of source models
and similarity scores and concluded that GMM based likelihood score was both
accurate and efficient to compute compared to HMM based score and PCA on
MLLR matrices. Motivated by the work in speaker recognition using MLLR matrix
supervectors, [VRF10] proposed a distance measure adaptation matrices to select
similar speakers.

Once the neighbours are selected for a new speaker, several adaptation tech-
niques have been attempted on the neighbours’ data. [HP99] experimented with
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different ways to compute the SD models, including weighted MLLR means and
statistics, MAP adaptation and their combination. [YBM+01] used a simple strat-
egy to store SD accumulators separately which allowed quick re-estimation of the
adapted model on the selected speaker. [WC01] used a single-pass re-estimation
carried out on the neighbour’s data, weighted by the similarity scores. [HCC02]
proposed adaptive model combination to compute the adapted model using the pa-
rameters of the source models. MLLR and MAPLR have been compared in [VRF10]
in supervised and unsupervised setups. They also contrasted the speaker selection
approach with eigen voices and showed that its hard to scale the latter to large
systems due to significant computational issues in calculating the basis vectors.

In this thesis, the existing ASR models are used to directly compute the similarity
score between the source and target speakers. Several variations of this technique
are explored and empirically evaluated based on their performance on the target
speaker test set. Different parameters involved in the selection including the number
of neighbours, size of adaptation data, etc are also investigated in detail.

5.4 Neighbour selection and adaptation

This section of the thesis addresses the challenge of building SD models by auto-
matically selecting acoustically similar speakers to the target accented speaker, or
neighbours from a large and diverse set of existing users with large amounts of
training data. A few minutes of the speaker’s data is used to select the neighbours,
so the adaptation can be performed sooner than waiting for sufficient data from
the user. The neighbours’ data is utilized to build an initial SD system for the
target speaker. Such a neighbours initialized SD system performs significantly better
compared to the baseline SI models, thus helping to reduce the adaptation interval
for the accented speakers. Several speaker selection and adaptation techniques
are investigated in this section. Chapters 6 and 7 deal with using acoustic data
to select the target speaker’s neighbours. The neighbour selection and adaptation
using maximum likelihood criterion are explained in 6. Chapter 7 investigates
experiments with discriminative methods including State-level Minimum Bayes Risk
(sMBR) training and Deep Bottle-neck Features (DBNF). Chapter 8 explores the use
of text data in selecting neighbours for improved performance.



Chapter 6

Maximum likelihood neighbour
selection and adaptation

This chapter explores building SD models using only a few minutes of adaptation
data using neighbour selection and adaptation under maximum likelihood (ML)
criterion. Various parameters involved in selection including the number of neigh-
bours, the amount of adaptation data, etc are empirically evaluated. The influence
of accent in automatic neighbour selection is analyzed and the automatic selection
is compared to accent adaptation using manual annotations. Finally, unsupervised
adaptation is explored in the context of both neighbour selection and adaptation.

6.1 Neighbour selection

The goal of the neighbour selection is to identify a group of speakers who are
acoustically close to the target speaker using few mins of adaptation data. Two
different speaker selection techniques are studied in this chapter - likelihood based
and transformation based. The likelihood based approach aims to find source
speakers in the training set who are close to the given target speaker. It is performed
using the following steps:

• The SI model is adapted to each of the source speakers in the database.

• The resulting source SD models are used to calculate the likelihood of the
target speaker’s data, which serves as a similarity score between source and
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target speakers. Given a source model λS for the source speaker S, adaptation
utterances UT and their reference transcriptions Wr, for the target speaker T ,
the similarity score SST (S) is calculated as

SST (S) =
∑
u∈UT

logP (Ou,Wr|λS) (6.1)

• The training speakers are ranked based on their likelihoods and top N speakers
are selected for target speaker adaptation.

The transformation based approach attempts to choose neighbours who can be
transformed into the target speaker. It follows the likelihood based technique in
computing the source SD models. In addition, the SD models are adapted on the
target speaker’s data before calculating the likelihood score. The similarity score in
transformation based approach is given by

SST (S) =
∑
u∈UT

logP (Ou,Wr|fT (λS)) (6.2)

where fT (λS) is the source model adapted on the target speaker’s data. A
regression-tree based MLLR [Gal96] is used as the transformation function fT in
the experiments. The source speakers are ranked as before for the selection. The
final SD model will be calculated by adapting the source model on the neighbours’
data. Hence any mismatch between the source and target speakers, that can be
modeled by linear transformations, e.g. channel variations can be ignored during
neighbour selection. This is achieved by the additional adaptation step before
calculating the similarity score.

6.2 Experiments

The M*Modal data set described in section 2.7.1 is used for all experiments in this
chapter. Five mins for each speaker in the development data is used to choose the
neighbours and the results are evaluated on the test set. As a first step, the SI model
is adapted on 5 mins of the development set using regression-tree based MLLR. The
number of transforms for MLLR is automatically selected based on the amount of
available adaptation data. In the experiments reported, an average of 10 MLLR
transforms are used given 5 mins of adaptation data for each target speaker.
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Table 6.1 shows the WER of SI and MLLR adapted systems. The MLLR adapted
system produces a relative improvement of 10.4% over the SI model. Additional
improvements can be obtained by training canonical models using SAT and CMLLR.
However, the CMLLR matrices for the test speakers have to be computed on the
adaptation data as this is a one-pass dictation system. Such a SAT setup didn’t give
any significant improvement on top of regression-tree based MLLR adaptation with
5 mins of speaker-specific data in our previous experiments, so SAT is not included
in the baseline.

Table 6.1: Baseline WERs.
System Test set WER
SI South Asian 45.73
SI + MLLR South Asian 40.99

In likelihood based selection, the SI model is adapted to the source speaker using
MAP adaptation. The likelihood of the target speaker’s data on the adapted model
is computed. The source speakers are ranked based on their similarity score. In
the transformation based technique, an additional regression-tree based MLLR is
computed for the source model on the target data before the likelihood computation.
20 neighbours are selected using each criteria. The neighbours are constrained to
have at least 15 minutes of speech to ensure sufficient data for adaptation. Once
the neighbours are selected, MAP is used to adapt the SI model on the neighbours’
data. The neighbour initialized model is then further adapted using MLLR on the
target speaker’s data. The final target SD models are used to decode the test set.
Table 6.2 shows the WER for the likelihood and transformation based selection.
The results show that transformation based neighbour selection outperforms the
likelihood based approach. It also has 26.3% relative lower WER than the SI and
17.8% relative lower than MLLR adapted baseline.

The setup of creating SD models for each source speaker might seem compu-
tationally demanding. However, the neighbours are chosen from a set of existing
speakers with large amounts of data. Hence the SD models need to be created
only once for all new speakers in the development set, which can be done offline.
Moreover these speakers already have SD systems trained for their own dictation.
Only their parameters need to be accessed instead of creating source SD models
from scratch during selection. Only after the neighbours are chosen for a new
speaker, the data of these neighbours are accessed for adapting the SI model. Table
6.3 shows speaker-wise WER for the SI, SI + MLLR and neighbour MAP + MLLR
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Table 6.2: WER for neighbour selection techniques on South Asian speakers.

System
Selection

WER (%)
Source Target

SI - - 45.73
SI + MLLR - - 40.99
Likelihood MAP - 36.32
Transformation MAP MLLR 33.71

systems. The improvements over SI+MLLR are between 10.9% and 31.2% on this
test set. This shows that neighbour selection produces improvements for speakers
over a wide range of WERs. The following sections will analyze varying these
parameters and their influence on target WER. All the experiments from here on
will use transformation based neighbour selection.

Table 6.3: Adaptation WERs for South-Asian speakers.

Speaker
Test WER (%)

Impr (%)
SI SI + MLLR Neighbour

1 19.7 15.9 12.9 18.9
2 30.5 27.6 24.6 10.9
3 42.7 37.4 32.6 12.8
4 37.3 30.2 23.3 22.9
5 48.0 44.9 30.9 31.2
6 58.5 52.5 41.4 21.1
7 63.8 56.1 45.5 18.9
8 59.7 55.7 49.1 11.8
9 53.5 48.6 41.6 14.4

10 43.6 41.0 35.2 14.1
Avg 45.73 40.99 33.71 17.8

6.2.1 Varying number of neighbours

In this section, the number of neighbours chosen are varied from 1 to 80 and used to
initialize the SD system for the target speaker. Table 6.4 lists the WERs of adapting
with varying the neighbours. The adaptation step after neighbour selection involves
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MAP adaptation on the neighbour data followed by MLLR adaptation on the target
data. The respective WERs are listed below.

Table 6.4: Analysis of varying neighbours.

Neighbours
WER (%)

Neighbour MAP + Target MLLR
1 43.21 41.58
5 38.32 34.57

10 36.81 34.18
20 36.49 33.71
40 40.72 36.48
80 42.21 37.81

From Table 6.4, it is clear that 20 neighbours produces the lowest WER. However,
neighbours 5 and 10 are very close to the WER of 20 neighbours.

6.2.2 Varying the amount of adaptation data

In this experiment, the amount of target adaptation data is varied to measure its
effect on the neighbour selection. It should be noted that, to select different amounts
of target speaker data the utterances for each speaker are added to the development
set until the desired time in minutes is reached. However, the audio is not excised in
the middle of utterance to meet the time limit, so the exact duration will be slightly
higher than the expected length. The target data is varied by 1, 2, 5 and 60 minutes
for neighbour selection. In each case, 20 neighbours are chosen and adaptation
is carried out using neighbours-MAP followed by target-MLLR. Table 6.5 lists the
WERs for neighbour selection carried out for different amounts of development
data. To add clarity, the exact amount of target adaptation data (averaged across
speakers) chosen for each case is listed in the table.

Neighbour MAP WER in Table 6.5 can be used to compare the speaker selection
across different amount of adaptation data. The results show several interesting
properties. Focusing on the first three rows, better neighbours are obtained with
increasing target data. However, the neighbours chosen with just 2.58 minutes
perform quite close to the ones selected with 5.82 minutes of target speaker data.
This is attractive as most dictation systems perform an enrollment step which guides
the new user to read out a few phonetically balanced sentences. The average
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Table 6.5: Analysis of varying adaptation data.

Target speaker data
WER (%)

Neighbour MAP + Target MLLR
1.63 37.21 36.02
2.68 36.93 35.17
5.82 36.46 33.87
60.85 36.48 30.40

amount of data collected during the enrollment step is from 2 to 5 minutes which
could be used to select the neighbours to build a better SD model, rather than
waiting for the speaker to start using the system.

The last row reports results for neighbours selected with 1 hour of target speaker
data. It doesn’t perform any better than neighbours selected with 5 minutes. This
shows that neighbour selection can be performed with just a few minutes and
they don’t need to be re-selected them as more SD data becomes available. The
Target MLLR results for 60 minutes on the other hand is better than 5 minutes
due to additional speaker’s data available for adaptation and not because of better
neighbours.

6.2.3 Varying target speaker’s data

In this section, the behavior of SI and neighbours initialized SD models are examined
with increasing adaptation data. For each datapoint, both systems are adapted on
the chosen amount of adaptation data and evaluated on the test set. The MLLR
is calculated on the target data and the transformed means act as a prior model
for the ensuing MAP adaptation. The combined adaptation performed better than
using MLLR or MAP alone. Figure 6.1 shows the WER plot for SI and neighbour
initialized models. The datapoint at zero SD data, refers to the SI baseline. It is
interesting to note that, although the neighbours are chosen with only 5 minutes of
target speech, the neighbours initialized system continues to perform better than
adapted SI model with increased data.

To understand the impact of the neighbour adaptation technique on native
speakers, the same experiment was conducted on the test set of 15 US English
speakers. As in the South-Asian case, 5 minutes of each speaker is used to select the
neighbours. Figure 6.2 shows the WER plots for SI-Init and Neighbours-Init systems
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Figure 6.1: WER for SouthAsian speakers

with increasing adaptation data. The same pattern is shows for native speaker as
seen with accented speakers. However, the total improvement is less (7% relative at
5 minutes) compared to the South-Asian case (15% relative at 5 minutes), which is
expected as the majority of training set data is from native speakers.

6.3 Analysis

This section conducts an analysis of the neighbours selected and the influence of
accent and gender in automatic selection is reported.

6.3.1 Influence of gender and accent

The training data is manually annotated with accent and gender labels. For a few
speakers without gender labels, it is assigned based on VTLN [ZW97] warp factors.
These annotations are used to measure the influence of gender and accent on the
neighbours selected for a target speaker. 99% of the neighbours selected match
the gender of the target speaker. Hence, it can be concluded that gender has a
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Figure 6.2: WER for Native speakers

decisive impact in the neighbour selection. Figure 6.3 shows the cumulative count
of South-Asian and non-South-Asian neighbours in each rank added across all target
speakers.

The graph clearly shows that South-Asian speakers are ranked higher than others
in the neighbours list. Mann-Whitney U test [MW47], a non-parametric rank test
is conducted to verify the influence of accent. 100 ranked neighbours selected for
each speaker are grouped into South-Asian and non-South-Asian categories. The
test showed significant difference (p < 0.001) between the ranks of the two groups,
thus confirming accent has significant influence on choosing neighbours.

6.3.2 Automatic selection vs. manual annotations

In this experiment, automatic selection is compared against choosing neighbours
based on the manual annotations. There are 168 South-Asian speakers labeled in
the training set. Gender and accent labels are used to explicitly choose neighbours
that match the target speaker and the WER of the resulting SD models is compared
against the automatic selection technique. In all cases, once the neighbours are
decided adaptation is performed on neighbours’ data using MAP and MLLR on
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Figure 6.3: WER of SI Vs 1-hour SA models

the target speaker’s speech. Table 6.6 shows the WERs of adapted systems on
automatically selected neighbours and the ones based on manual labels.

Table 6.6: Automatic selection Vs. Manual annotations.
System Neighbours Selection WER (%)
Transform 20 Automatic 33.71
Accent 168 Accent 36.89
Random 20 Accent & Gender 36.35

The first row represents the best automatic selection technique, transformation
based 20 neighbours selection using 5 minutes of target speaker’s data. The second
row shows the WER of SI model adapted on the South-Asian subset. It is 3.2%
absolute worse than transformation based automatic selection. In the third row,
randomly selected 20 neighbours from a set of matched accent and gender speakers
is shown. The results were averaged across 5 trials in this case. Still the adapted
system is 2.6% absolute worse than the best system. Both of these results show that,
although gender and accent have significant influence on neighbours, the automatic
selection is better than using accent and gender labels for choosing neighbours.
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In the second set of experiments, automatic selection is combined with manual
annotations, by running transformation based neighbour search on the accent subset
instead of the whole training set. Table 6.7 lists the WER of automatic selection
without and with manual annotations.

Table 6.7: Automatic selection using manual annotations.

System Neighbours Selection WER (%)
Transform 20 Automatic 33.71
Accent 20 Automatic + Accent 33.73

The results show no major difference in performance between the two systems.
From both the above experiments, it can be concluded that gender and accent
have significant influence in automatic neighbours selection. However, the manual
annotations of these speaker characteristics don’t provide any additional benefits
over transformation based approach, whether used by themselves or combined with
automatic selection, except for reducing the search space.

6.4 Unsupervised adaptation

The experiments so far assumed availability of manual transcriptions for both the
neighbours and target speaker. However in many real-world cases only a subset
of available speakers are transcribed. Any additional target speaker data obtained
over time is folded into the training set using initial hypothesis obtained from the
existing ASR, as transcriptions. This section analyzes unsupervised training in the
context of neighbour selection and adaptation. Figure 6.4 shows the difference
between supervised and unsupervised adaptation with respect to the SI model.
In the unsupervised case, the adaptation makes use of automatic transcriptions
obtained using the SI model.

For the experiments in this section, the speakers in the training set and hence
the neighbours are assumed to have manual transcriptions. In the first task, the
supervised neighbour selection and adaptation is compared against the unsupervised
case. Unsupervised neighbour selection involves automatically transcribing the
beginning 5 mins of the target speaker and using it for selecting acoustically close
neighbours. Once the neighbours are selected, their manual transcriptions are
used to adapt the initial SI model and further adaptation is performed on the
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Figure 6.4: WER of supervised Vs unsupervised adaptation

automatic transcriptions from the target speaker. As more data from the target
speaker becomes available, it is further automatically transcribed and used for
adaptation.

Figure 6.5 shows the WER for South Asian speakers using SI- and neighbour-
initalized models with additional unsupervised data. Neighbour selection achieves
large improvements in the unsupervised case. With only 5 mins of target speaker
data, neighbour initialized models achieve WER of 35.60%, while SI-initialized
models require around 1 hour of data to obtain a similar improvement of 35.29%.

In the second experiment, unsupervised neighbour selection is compared againt
the supervised case. It is assumed that the beginning 5 mins of target speaker data
has manual transcriptions. As explained in section 6.2.2, this is practically feasible
with the enrollment step for the new speakers. Figure 6.6 shows the difference
between supervised and unsupervised neighbour selection. Table 6.8 compares the
quality of neighbours selected using manual Vs automatic transcription of the first 5
mins of target speaker data. The supervised selection produces better neighbours,
however the difference is very minimal, only 0.19% absolute.

Figure 6.6 shows the effect of additional target speaker data with supervised
and unsupervised neighbour selection. To directly compare both experiments,
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Table 6.8: WER for supervised Vs unsupervised neighbour selection.

Neighbour selection WER (%)
None (SI) 45.73
Unsupervised 38.12
Supervised 37.93

once the neighbours are selected only automatic transcriptions are used for further
adaptation. In this graph, the manual transcriptions for the first 5 mins of the target
speaker are only used for selection and not adaptation. As in Table 6.8, although
supervised selection produces lower WER, it is only 0.5-1.3% absolute lower than
the unsupervised case.

6.5 Summary and discussion

This chapter presented an adaptation technique to build SD models with a few
minutes of target speaker’s data. An improvement of 23% relative over SI is obtained
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Figure 6.6: WER of supervised Vs unsupervised neighbour selection

with just 5 mins of the adaptation data. In the unsupervised case, 5 mins of target
speaker data produced the same WER with neighbour selection as the SI-initialized
models with 1 hour of adaptation data. The selected neighbours are analyzed to
show that accent and gender play a crucial role in their selection. The automatic
selection is compared against choosing neighbours based on manual annotations
and concluded that the automatic approach performed better.





Chapter 7

Discriminative neighbour selection
and adaptation

This chapter investigates neighbour selection and adaptation in the context of
discriminative objective functions. Maximum Likelihood (ML) training aims to
maximize the likelihood of the model generating the data, given the reference
transcriptions. It guarantees optimal parameters assuming model correctness and
infinite data. Real speech is not produced by a Markovian process and there is only
a limited training data in practice, thus rendering ML objective function sub-optimal.
Discriminative training (DT) has been proposed to compensate for these limitations
of ML training. It makes use of information in the reference transcription and
competing hypothese to estimate the model parameters. The competitors in the
hypothesis space are usually compactly represented by a lattice. Different objective
functions for DT have been proposed in the literature including Maximum Mutual
Information (MMI) [VOWY97], Minimum Phone Error (MPE) [PW02], State-level
Minimum Bayes Risk (sMBR) [GH06], etc. In the experiments described here,
sMBR is used as a discriminative objective function. Discriminative training can also
be achieved by using bottle-neck features obtained by training a Neural network
using frame-level cross-entropy objective function.

In the experiments described in the previous chapter, various steps involved ML
objective functions. They are listed as follows along with the specific estimation
technique.

• Estimating SI model parameters (ML training).

• Neighbour selection (Likelihood/Transformation based selection).
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• Neighbour adaptation (MAP adaptation).

• Target speaker adaptation (MAP adaptation).

All of these steps can use discriminative objective functions to potentially improve
the performance of the final ASR. The first section analyzes neighbour selection
and adaptation using a discriminatively trained SI model. The following section
describes discriminative adaptation as an alternative to ML-based MAP adaptation
on neighbours’ data. Finally, neighbour selection involving a discriminative score is
investigated. Combination of these techniques is also presented.

7.1 Discriminative training of SI model

In this section, the ML-trained SI model is updated with few iterations of discrim-
inative training. The objective function used is state-level MBR which is given
by

F (λ) =
∑
u∈U

∑
W∈W ′

P (W |Ou, λ)A(Wr,W ) (7.1)

where λ represents model parameters and U the list of training utterances. The
reference transcription for a particular utterance is given by Wr and W ′ represents
its hypothesis space. The loss between the reference and a hypothesis transcription
is given by A(Wr,W ), which is this case is a hamming distance between frame-level
state labels. The optimization is achieved using Extended Baum-Welch (EBW) style
iterative updates with I-smoothing in each iteration to back-off to previous iteration.
The DT SI model is trained using 8 iterations of sMBR training weight of 350.

Table 7.1: Discriminative SI model.
System WER (%)

ML 45.73
DT (sMBR) 34.55

ML Neighbour Adapt 34.49

From Table 7.1, DT model obtains a WER of 34.55% which is 24.4% relatively
lower than ML SI model. The new SI model is used in transformation based speaker
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selection approach to choose 20 neighbours. Once the neighbours are chosen,
ML MAP adaptation is employed to adapt the SI model on the neighbours’ data.
Unlike the ML SI case, maximum likelihood neighbour adaptation fails to produce
any significant improvement over the DT baseline. Further adaptation with target
speaker’s data does not provide any improvements as well, as shown in figure 7.1.
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Figure 7.1: WER for Discriminative selection and adaptation

7.2 Discriminative neighbour adaptation

In this section, ML adaptation on the neighbours’ data is replaced using discrimi-
native adaptation. Discriminative versions of MAP adaptation including MMI-MAP
and MPE-MAP were introduced in [PGKW03]. The technique modifies the standard
EBW update equations to include two back-off schemes. The first one is the standard
I-smoothing, which borrows back-off statistics from the previous iteration. The
second scheme involves the traditional MAP adaptation with back-off statistics bor-
rowed from the ML model parameters. The implementation discussed here involved
4 iterations of sMBR based MAP adaptation on neighbours’ data. Table 7.2 shows the
WER of different neighbour adaptation techniques. The discriminative adaptation
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involving sMBR-MAP on neighbours’ data produced 8.5% relative improvement
over baseline SI model.

Table 7.2: Discriminative neighbour adaptation.

SI training Neighbour adaptation WER (%)
sMBR - 34.55
sMBR ML MAP 34.49
sMBR sMBR MAP 31.60

Further addition of target speaker adaptation continued to produce lower WER
for Neighbour-initialized model over the SI-initialized one, as shown in figure
7.2. The improvements however is lower compared to ML case. Discriminative
adaptation can also be applied to the target speaker data, however, with a maximum
of 1 hour of data sMBR-MAP did not produce significant improvement over the
ML-MAP hence the ML counterpart retained for this case.
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Figure 7.2: WER for Discriminative selection and adaptation

Table 7.3 shows the WER for different selection and adaptation setups. It can
be seen that there is almost no improvement by adapting the SI model on the
neighbours data using ML-MAP criterion. Discriminative adaptation [PGKW03]
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of the SI model on the neighbours data yielded a relative improvement of 8.5%
compared to the unadapted model.

7.3 Discriminative neighbour selection

Discriminative criterion can also be used for neighbour selection in addition to
adaptation. In this approach, the adaptation data of 5 mins is decoded using the SI
model to create lattices for the target speaker. Source speakers are chosen whose
models maximize the average sMBR accuracy on the target speaker lattices. The
sMBR accuracy is calculated as

sMBR AccuracyT (S) =
∑
u∈UT

∑
W∈W ′

γ(Ou,W |fT (λS))A(Wr,W ) (7.2)

where Wr is the reference transcription, W ′ are the competitor paths in the
denominator lattice, γ(Ou,W/λS) is the posterior of a lattice path according to the
(adapted) source model fT (λS). A(Wr,W ) is the raw accuracy between the reference
and competitor state sequences. Analogous to likelihood and transformation based
neighbour selection, discriminative method leads to choosing neighbours who make
less error on the target speaker’s data.

Table 7.3: Discriminative selection and adaptation.

Selection Adaptation WER (%)
- - 34.55 (SI)

ML transformation ML MAP 34.49
ML transformation sMBR MAP 31.60

sMBR Acc. ML MAP 31.97
sMBR Acc. sMBR MAP 31.00

From Table 7.3, it is interesting to note that neighbours selected using sMBR
accuracy produce 7.5% relative improvement over SI model, using ML MAP adap-
tation. Comparing rows 2 and 3, it is noted that discriminative selection can
lead to neighbours who produce less WER on target speaker data than ML based
selection. While the gains from discriminative selection and adaptation are not
additive, the combined technique still produces the best result of 10.3% relative
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Figure 7.3: WER for Discriminative selection and adaptation

improvement over the unadapted system. Figure 7.3 shows the WER of SI and
neighbours-initialized systems with increasing target data.

7.4 Deep bottle-neck features

In this section, neighbour selection and adaptation is studied in the context of
a neural network based ASR system. The GMMs in the system are trained with
features from the bottle-neck layer of a multi-layered perceptron (MLP). The input
to the neural network are the same features the GMMs are trained with in the MFCC
based system, i.e MFCC followed by LDA and STC. These features are stacked with
a window size of 5 and projected down to 150 dimensions using a second LDA
matrix. The second matrix helps with whitening the input features to the MLP in
addition to dimensionality reduction. This setup corresponds to the Type IV features
investigated in [RPVC13].

The MLP has 4 hidden layers with dimensionality 465 and a bottle-neck layer
of size 32. The architecture of the MLP is 150x465x465x465x32x465x1000 and
it has a total of 1M parameters. The output layer has 1000 nodes representing
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context-dependent states in the MFCC based system. The contextual decision tree
with 3000 states is pruned down to 1000 leaves, which are used as targets for the
MLP. However, the labels are obtained by force-aligning the utterances with the
3000 state system similar to [SHRY13]. It has been shown that bottle-neck features
performed better with a lower number of targets than the original MFCC system
[CCR+13]. Once the MLP is trained, the activations from the bottle-neck features
are extracted, stacked with a window size of 9 and projected down to 32 dimensions
with a final LDA transform.

MLP is trained using backpropagation using the ’newbob’ learning rate schedule.
The training starts with a learning rate of 0.008 until the accuracy on the held-out
data reduces and then it is divided in half for remaining epochs. The training stops
if there is no improvement of accuracy on the held-out set. The available training
data is subsampled to reduce the training time for the MLP. All the training speakers
are retained, but they are restricted to a maximum of 15 mins to ensure there is
ample diversity in the MLP training data. 450 hours from 1691 speakers is used as
a training set and 15 hour of data from 187 speakers is used as held-out set. The
training continued for 9 epochs with a batch size of 256. The final frame accuracy
of the MLP on the training set is 46.3% and 43.0% on the held-out set.

7.5 DBNF neighbour selection and adaptation

The neighbour selection for DBNF system follows the transformation based tech-
nique using ML criterion. The source speakers are ranked with the similarity score
using 5 mins of adaptation data. Top 20 neighbours are selected for each target
speaker. Once the neighbours are chosen, MAP adaptation is performed on the
neighbours data. Finally MLLR followed MAP adaptation is carried out on the target
speaker’s data. Figure 7.4 shows the WER plots of neighbour-initialized and SI
adapted systems for increasing target speaker’s data.

It is interesting to note that although DBNF system used ML based neighbour
selection and adaptation, its performance is similar to MFCC system with discrimi-
native adaptation. The additional MLP layers act as discriminatively trained models
for the ASR system.
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Figure 7.4: WER for DBNF neighbour selection and adaptation

7.6 Summary and discussion

The neighbour selection and adaptation techniques are studied for discriminative
models in this chapter. A discriminative version of neighbour selection is introduced
and compared with the DT adaptation. Their combination showed additional
improvements. Finally, neighbour selection using DBNF features is studied and
compared against MFCC based systems.



Chapter 8

Text based neighbour selection

This chapter explores text-based neighbour selection techniques for improved speech
recognition. In the first set of experiments, text-based selection is used to augment
acoustic data selection. When not enough acoustic data is available, it is shown that
text based selection improves the reliability of neighbours selected for adaptation.
In the second set of experiments, text based speaker selection is used to select
neighbours for language model adaptation. LM neighbours are analogous to acoustic
neighbours for a speaker, selected to reduce the perplexity of the target speaker on
the test set. Analysis on the neighbours selected based on domain and accent is also
presented.

8.1 Textual features for neighbour selection

The previous chapters presented various neighbour selection and adaptation tech-
niques using few mins of audio data from the target speaker. It is shown that as
the audio data available for the target speaker decreases, the quality of neighbour
selected for adaptation of target SD models also decreases. In this section, text
based features are investigated to augment the acoustic data selection. There are
many applications where text data for a speaker is available in abundance, while it is
difficult to collect the audio data. For example, in the case of medical transcription
if the doctor is starting with ASR for the first time, it is easy to access a list of
archived reports while the corresponding audio data may not be available. There
are also auxilliary text sources available in many applications to help improve the
performance of SD models. For example, in the case of desktop dictation, the users’
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emails may serve as representative text for the domain.

In this section, text-based features are used to select neighbours for adaptation
of the SI model. In the acoustic neighbour selection, source speaker models are
used to calculate likelihoods on the target speaker data. The speakers with the
highest likelihood are chosen as neighbours for adaptation. It was observed that
the majority of selected neighbours belong to the same accent. However when the
amount of adaptation data is varied, there was a deterioration in the quality of
neighbours selected. Table 6.2.2 showed WER of neighbour adapted system based
on the amount of target data available for selection. The goal of the following
experiment is to compensate this lack of acoustic data using text-based features. It
explores if additional text data can be used to augment acoustic neighbour selection.

A classifier is trained on the source speakers and their top 20 acoustic neighbours
using bag-of-word features. During testing, available text data for the test speaker
is used to pre-select the neighbours for adaptation. The second round of selection
is carried out using the small amount of enrollment audio data. Since the second
round of selection is carried out on pre-selected source speakers, it produces better
neighbours compared to choosing neighbours considering the whole training data.

8.1.1 Experiment setup

The same M*Modal medical transcription dataset is used here. For each of the 1876
training speakers, neighbours are calculated by scanning through the entire training
dataset. Choosing 20 neighbours was found to give the best acoustic adaptation
performance in the previous chapter. Hence the top 20 neighbours are used as
positive examples for the source speaker and 20 speakers with the lowest likelihood
score as negative examples. A vocabulary of 20k words based on frequency is used
to calculate the bag of word features. The steps for preparing a training dataset for
text-based neighbour predictor is listed as follows.

• For each source speaker, calculate 20 speakers that produce the highest likeli-
hood and 20 which produce the lowest likelihood.

• For each training example, 20k text features are extracted from the source
speaker’s reports based on unigram counts.

• It is appended with 20k text features extracted from the neighbour’s text data.
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• The output class is based on whether the neighbour belong to the highest or
lowest likelihood group.

Once the training examples are collected for all source speakers, a binary classi-
fier is trained based solely on text features. In this experiment, 90% of the source
speakers (1690) formed the training set and remaining 10% is used as a devel-
opment set. Linear SVM is used to train the text based neighbour predictor with
the help of LIBLINEAR [Lib] tool. The regularization constant is tuned using
the development set. The classifier had an accuracy of 68% but the classification
performance is not the main focus of this experiment. We are mainly interested in
the quality of neighbours selected for each test speaker. It is assumed we have 15
reports for each speaker during training and test. In testing, the text data available
for the test speaker and the source speaker is used to form the feature vector. The
output determines if the source speaker is a good neighbour for the test speaker.
Once the neighbours are chosen, acoustic adaptation of the SI model is carried out
using the audio data from the neighbours.

8.1.2 Experiments

Table 8.1 shows the WER 20 neighbours selected randomly (5 trials) and using a
text-based neighbour predictor. We can see that text-based neighbours provided 5%
relative improvement over the baseline. One of the reasons the random selection
yield poor results is that the training dataset has less than 10% of South-Asian
speakers. Hence most of the random neighbours belong to the different accent. In
the text-based selection, there are 40% South-Asian speakers on average, in the 20
neighbours selected for adaptation. It is still less than nearly 70% of neighbours with
matched accent using acoustic data. Hence, there is only a moderate improvement
with text-based features. However, the text-based predictor can be used as a pre-
selection criteria to augment acoustic selection in the case where there is only a
small amount of available target speech data.

Table 8.1: WER of neighbour selection using text-based selection.

Neighbour selection WER (%)
- (SI) 45.73
Random 50.12
Text-based 43.20
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The text-based predictor can be used as a first step to select matching accent
neighbours for cases where enough speech data is not available for the target
speaker. These neighbours can be rescored using the available audio data. In this
experiment, the amount of target speech data available is varied from 1 to 5 mins.
An initial set of 100 neighbours is chosen using the text-based selection and they
are rescored to choose 20 neighbours using acoustic neighbour selection as the
second step. Table 8.2 shows the WER of acoustic and combined neighbour selection
techniques. It can be seen that while reducing the amount of acoustic data from 5
mins to 1 min caused 0.75% absolute reduction in WER, the text based pre-selection
reduced it to only 0.4%.

Table 8.2: WER of neighbour selection using audio and text-based selection.

Target speaker data
WER (%)

Acoustic data + Text data
1.63 37.21 36.61
2.68 36.93 36.42
5.82 36.46 36.21

8.2 Language model adaptation

In the previous sections, we focussed our attention on adapting the acoustic model
to better model the target speaker. In this section, the neighbour selection and
adaptation is carried out for the goal of language model adaptation. The language
model can be influenced by a variety of factors including dialect/accent of the
doctor, vocabulary choices based on geographical origin, hospital they work for,
speciality of dictated content, etc. We use a different dataset with richer annotations
to allow us analyze these different factors influencing the language model. The new
M*Modal dataset consists of 1350 speakers from 27 different specialties including
Internal medicine, Radiology, Pediatrics, etc. Each specialty contained 50 doctors
in the training set. Each doctor in the dataset is also annotated with the hospital
they are from. The dataset contained 300K reports in total with 72M tokens and a
vocabulary of 58K words.

The LM neighbours are chosen as follows

• SI LM is trained using data from all source speakers.
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• For each source speaker, SD LM is trained using text data from the source
speaker.

• The 2 LMs are interpolated on the target speaker data, aka. transformation
based selection.

• The likelihood is then calculated on the target text data.

Once the neighbours are ranked based on the likelihood, the top N neighours
are chosen for adaptation. A neighbour LM is trained on their pooled data and
interpolated with the SI LM using the target speaker’s text data. We used the SI and
South Asian adapted acoustic models to label speaker whether they are South-Asian
or not based on the respective acoustic likelihood.

A test set of 15 speakers of South Asian accent with 50 reports each is used to
analyze the neighbour selection for LM adaptation. An additional 5 reports for each
speaker is used for neighbour selection and adaptation. They are randomly selected
from different specialties to ensure there is no significant overlap. The following
sections analyze the influence of various dialectal factors such as accent, hospital
origin and specialty in neighbour selection.

8.3 Analysis

In the first experiment, the influence of different factors in neighbour selection is
analyzed. Speciality of the doctor had the most significant influence on the LM
neighours compared to the accent and the hospital labels (Mann-Whitney U test,
p < 0.001). Figure 8.1 shows the neighbours at different ranks separated by those
from same domain as the target speaker and others. As the rank increases, the ratio
of same domain neighbours increases. There is a cross-over between the two curves
at the end, as all the neighbours from the same domain have been selected and the
remaining are out of domain ones. The graph clearly shows that the specialty of the
target speaker has significant influence in neighbours selected for LM adaptation.

These documents are highly specific reports of patients, so it is obvious to see
speciality playing a larger role in the language model compared to accent labels
automatically derived from acoustics. Comparing the experiments in section 8.1 and
8.2, we can confirm that accent manifests itself in textual content in addition to the
speech data. We can automatically identify this influence using a classifier trained
solely on the text, albeit with accents labels obtained using acoustic likelihoods. It
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Figure 8.1: Rank of neighbours from same and different specialties

is helpful for choosing neighbours for acoustic model adaptation, particularly when
only a small amount of target speech data is available. The neighbour selection and
adaptation can be extended to LM adaptation where the technique automatically
picks neighbours related to the speciality of the target speaker which has the highest
influence on the content of the speech data.

8.4 ASR experiments

In this section, LM neighbour selection and adaptation is carried out for the test
speakers in original M*Modal test set. We start with determining the optimal
number of neighbours for LM adaptation. Table 8.3 shows that perplexity of the
target LM adapted using varying number of neighbours. The best result can be
obtained using 30 neighbours.

In the next experiment, 30 neighbours are chosen for each test speaker and their
SD LMs are used in ASR decoding. Table 8.5 shows the WER of SI and neighbour
adapted LMs on the South Asian test set. It is to be noted that the SI LM trained on
the new M*Modal dataset is used to obtain the baseline WER instead of internal
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Table 8.3: Perplexity for varying neighbours in LM adaptation.

Rank Perplexity
1 97.0
10 95.1
20 92.7
30 88.1
40 89.5
80 91.3
100 93.7

medicine LM as in the previous experiments. Hence, the baseline WER is worse
(47.7%) than reported before (45.73%). From the table, there is 11.5% relative
reduction is perplexity which resulted in 6.7% relative reduction in WER.

Table 8.4: WER for neighbour selection based LM adaptation.

LM Perplexity WER (%)
SI 83.9 47.8
Neighbour adapt 74.2 44.6

Table 8.5 shows speaker WER for unadapted and neighbour adapted LMs. It can
be seen that the improvement is consistent across all speakers.

8.5 Summary and discussion

This chapter explored the use of text data for neighbour selection and adaptation.
Text-based features can be shown to augment acoustic neighbour selection, when
there is limited amount of speech data from the target speaker. The neighbour
selection in the context of LM adaptation is discussed. The specialty of the target
speaker is shown to influence LM neighbour selection through empirical analysis.
The neighbour adapted LM produced 11.5% reduction in perplexity and 6.7%
reduction in WER across 10 speakers.
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Table 8.5: WER for LM adaptation using neighbour selection.

Speaker
WER (%)

SI-LM Neighbour Adaptation
1 20.4 19.3
2 31.2 30.1
3 44.0 41.2
4 38.6 36.7
5 49.5 46.9
6 61.0 58.1
7 65.9 62.5
8 61.2 58.2
9 55.7 52.8
10 44.3 42.3
Avg 47.8 44.6
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Chapter 9

Summary and Future Directions

9.1 Thesis contributions

This thesis quantified the problems faced by accented speakers in 3 different ASR sce-
narios and proposed novel research to address them. Techniques are introduced to
handle accented speakers in accent dependent systems, accent independent systems
and speaker dependent systems. The following list summarizes the contributions in
each ASR setup.

• Accent dependent systems: A decision tree based adaptation technique is
proposed to specifically handle accent variations from source accent to the
target, given the limited amount of adaptation data. Semi-continuous poly-
phone decision tree specialization (SPDTS) is shown to efficiently use small
amount of adaptation data to adapt the baseline model to the target accent.
The technique is evaluated on different datasets ranging from medium-scale
to large-scale tasks including WSJ, GALE and M*Modal medical dictation in
two languages. Compared to traditional MAP adaptation, SPDTS obtained a
relative WER reduction of 4.2-13.6% on ML and discriminative baseline ASR
models.

Bias sampling is proposed in the context of active and semi-supervised learning
to leverage unlabeled target accent data in a large corpus. Active learning
technique resulted in a reduction of labelling cost by 50% and semi-supervised
learning provided additional improvement of 2-15.9% relative WER over
supervised baseline.

109
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• Accent independent systems: Decision tree based accent robustness analysis is
introduced to measure the accent normalization characteristics of different
front-ends. Traditional 4-layer bottle-neck MLP is shown to normalize for gen-
der, but are still sensitive to accent variations. Deeper architectures and deeper
bottle-neck layers are shown to have better normalization characteristics when
compared to MFCC or MLP.

Accent-aware training is proposed to augment accent labels to spectral features
during training of BN front-ends. It is shown that labelling a subset of speakers
with accents (150 hours) and using them as additional features in accent-
aware training results in a WER of 33.78% which is better than 34.75% WER
obtained by training an accent agnostic model on a much larger dataset (450
hours).

• Speaker dependent systems: The problems faced by accented speakers in the
context of speaker dependent models are highlighted. Neighbour selection
and adaptation techniques are proposed to create target speaker-dependent
ASR model using few mins of adaptation data. These technique produce an
improvement of 31.2% relative over SI+MLLR baseline. The neighbours are
further analyzed to show that accent plays a crucial role in the neighbours cho-
sen automatically for the target speaker. The neighbour selection is extensively
analyzed in different experiments including varying the number of neighbours,
amount of adaptation data and supervised Vs unsupervised adaptation.

A discriminative version of the neighbour selection using sMBR is formulated
and shown to provide gains of around 10.1% relative over ML neighbour
selection. Text-based neighbour selection is explored in the case of lack of
sufficient or no audio data from the target speaker and shown to provide
consistent gains of around 1-2% over audio-only neighbour selection. The
technique is ported to LM adaptation and the neighbour selection is analyzed
along different factors such as accent, speciality of the dictation content and
place of work. LM adaptation resulted in 11.5% reduction in perplexity and
6.7% relative reduction in WER compared to the unadapted LM.

9.2 Future Directions

This work can have several future directions. Some of them are listed below

• Dialect modeling using RNNLM: The current experiments mainly use Ngram
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models for language model adaptation. It will be interesting to think about
language model adaptation and interpolation in the context of RNN architec-
ture.

• The thesis has explored on acoustic and language model adaptation in the
context of accented speakers. Other models in the ASR such as vocabulary
can be adapted based on the dialect of the user.

• The accent dependent chapter introduced decision tree based accent adapta-
tion to model contextual rules in the target accent. This technique is comple-
mentary to pronunciation modeling whose aim is to change the surface forms
in the dictionary using re-write rules. It will be interesting to compare the
interplay between these two modules and investigate tighter integration of
both techniques.
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