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Abstract

Successful retrieval of information from text collections requires effective use of the in-
formation present in a collection. The structure of documents in the collection and the
relationships between elements within a document and other documents contain impor-
tant information about the meaning of these elements. For example, the words present in
the title of a web page may contain important clues about that page’s content. The text of
a link to the web page may also be an important indicator of the page’s content.

Researchers have long recognized that structure can be an important indicator of rel-
evance. Yet the majority of prior work is limited to experiments on small test collections
and evaluated on a single retrieval task. These limitations hamper the generality of the
conclusions. The recent construction of large and diverse test collections provides us the
opportunity to reconsider the general task of retrieval in collections with structure.

This dissertation draws on three retrieval tasks to identify important properties of re-
trieval systems supporting the use of structure and annotations. We investigate known-
item finding of web pages, retrieving elements from XML articles, and the retrieval of
answer-bearing sentences as a component of a question-answering system. The retrieval
model, an adaptation of the Inference Network model, clarifies the query language and
simplifies the process of smoothing using multiple representations. The experiments in
this dissertation show state-of-the-art results for these tasks and also provide novel in-
sights to the shape of the parameter space when using mixtures of language models.
Our experiments with question-answering further show how semantic predicates auto-
matically annotated on a collection can be used to improve a system’s ability to retrieve
answer-bearing sentences.
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Introduction
CHAPTER 1

It is generally understood that structure in both collections of documents and queries
should be beneficial for a wide range of retrieval tasks. Yet the field of Information Re-
trieval has created a much larger body of research focusing on supporting unstructured
keyword queries and document retrieval methods that do not make much use of the
structure. This focus is in large part a result of the test collections available. While many
have document structure, it has been difficult for researchers to find significant benefit
from the structure when investigating traditional document retrieval tasks.

Research in the last ten years has challenged earlier findings, resulting from a bet-
ter understanding of a wider range of users’ information needs and test collections de-
veloped with those information needs in mind. This dissertation focuses on three tasks
where document structure is important. These are the retrieval of known documents from
a collection (known-item finding), ranking the relevance of document parts (element re-
trieval), and the retrieval of sentences that may contain the answer to a question.

To illustrate these tasks, we consider a few information needs for an example news
article. Figure 1.1 shows this article, which has internal structure, such as the title and
paragraphs. It also has metadata: the author, publication date, and a link to an audio ver-
sion of the report. There may also be alternative representations of content external to the
document. For example, news publishers often provide summaries of recent articles in
RSS (really simple syndication) feeds. Figure 1.2 show a sample of an RSS feed containing
an item describing the news article. The news article is described by the fourth item in
the feed. This feed item contains the title of the article, a link to it, and a short description
of the content in the article.

1.1 Known-Item Finding

When users search the Web, they are often searching for documents they know exist.
Broder [6] estimates that these navigational searches may be 20%-25% of all Web search
queries. Some example information needs are the search for automobile manufacturer
Nissan’s homepage or the instructions for filling out a tax form.

Typical navigational Web search systems do not assume expert users with knowl-
edge of a complex query language or the structure of documents in the collection. The
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: A news article posted on the Internet.
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Figure 1.2: An RSS news feed on the Internet that contains a description of the article in
Figure 1.1.
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queries are short and only contain query terms, as in the queries nissan or irs 1040
instructions. If a user has read the example news article and would like to find it
again, they may remember that the report was published by the VOA (Voice of Amer-
ica) and about suicide bombings in Afghanistan. From this memory, a reasonable query
would be

1.1 VOA suicide bombings Afghanistan.

Despite the unstuctured nature of the query, document structure is still important for
effective ranking of documents for known-item searches. In the news article, most of the
query terms are contained in the article’s title, and it could be an effective technique to
place more emphasis on terms in the title when estimating the relevance of documents.
The alternative representation found in the RSS feed may also be helpful. VOA occurs in
the title of the RSS feed, and the query term suicide also occurs in the text of the article’s
image caption.

1.2 Retrieving Document Parts

In many cases, it may be preferable to rank parts, or elements, of documents. An element
corresponds directly to explicitly encoded structure in documents, such as the text of a
title, paragraph, or section. If users know this structure, they may wish to create complex
queries that better match their information needs. For example, many articles published
by Voice of America have audio segments. Rather than retrieving the whole article, a
query such as

1.2 RETURN audio OF (article MATCH suicide bombings)

specifies a user’s request that only the audio of articles that match the query terms sui-
cide bombings be returned.

However, the right unit of retrieval may vary by document or information need. For
example, a user with a general information need on the subject of suicide bombings and
may submit the query

1.3 suicide bombings

to the search engine. As the example news article is entirely on the subject of suicide
bombings, it would be appropriate to return the entire news article. On the other hand, if
the user’s information need is more specific and the user is only interested in text about
where suicide bombers are trained, they may use the query

1.4 training suicide bombers.

In this case, it may be more appropriate for the retrieval system to return only the fourth
paragraph in the document. Automatically identifying the relevant elements can be more
important in collections with long documents, such as journal articles or books.
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Regardless of whether the user has precise expectations about the structure of relevant
documents or is ambiguous about which elements should be retrievable, the document
structure may be useful during estimation of relevance. Estimating whether an element is
relevant may be particularly difficult when the element contains very little text. This small
sample problem is more pronounced in element retrieval than in document retrieval; in
many cases a system may have to rank elements containing only a few words.

As with known-item finding, knowledge of where keywords occur within the struc-
ture of an article may benefit ranking. With Query 1.3 it may be helpful for the system
to use the information that both query terms occur in the title of the article. This may
be good evidence that the system should return the entire article, and not just a single
element. When ranking elements for Query 1.4, the system may also use the evidence
that suicide and bombers occurs throughout the article when estimating the relevance
of the paragraphs. A paragraph which contains all three keywords in an article about
training counter-terrorism forces may not have as frequent use of the terms suicide and
bombers in the article, providing evidence to the retrieval system that the paragraph
about training suicide bombers is more likely to be relevant than the entire article.

1.3 Retrieval of Linguistic Structure

Finally, a retrieval system may also have access to annotations of the text in the news
article. For example, the text of the article may be annotated with PropBank style semantic
role labels:

1.5 [ARG1 most Afghani suicide bombers] were [TARGET trained],
supported, and many recruited, [ARGM-LOC in neighboring
Pakistan].

This bracket notation for annotations is typical of many linguistic annotation tools. The
verb trained is labeled as the target of the semantic predicate. The meanings of the
ARG clauses depend on the target verb. In this case, the ARG1 clause corresponds to the
recipient of the training, and the ARGM-LOC clause indicates the location of the training.

The third motivating application directly studied in this dissertation is the retrieval
component of a question answering system. Modern question answering systems use a
large text corpus to extract or compose answers for natural language questions, such as

1.6 Where are suicide bombers trained?

The typical process such a system performs consists of several steps.
The first step is question processing. In question processing, the system analyzes the

question to extract keywords and identify candidate answer types and also possibly an-
swer templates. For the question above, the question answering system might identify
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that a semantic predicate with a target verb trained that has an ARG1 clause containing
suicide bombers might contain the answer to the question in an ARGM-LOC clause.

Given the question analysis, a question answering system will then formulate queries
to search for passages that may contain the answer to the question. A question answering
system using a keyword-only information retrieval system may submit the query

1.7 suicide bombers trained

to the search engine. This query is not a very precise representation of the question an-
swering system’s information need. For example, a retrieval system ranking sentences
could return both of the following sentences with a high estimate of relevance:

1.8 Al Qaeda has trained many suicide bombers.

1.9 Hamas trained many of the suicide bombers used in Israel.

The first sentence can be easily ruled out as a candidate answer because it does not have
a location. Many retrieval systems provide support this directly in their query languages.
However, a retrieval system that simply supports the presence of locations in the retrieved
passages will still retrieve the second sentence.

If the retrieval system supports the indexing and querying of semantic annotations,
then the question answering system could issue the query

1.10 RETURN target (MATCH trained) AND (suicide bombers IN
./arg1) AND (HAS ./argm-loc) .

Here we assume that predicates are indexed by their target verb with the ARG clauses as
direct “children” of the target verb. The query requests that predicates be ranked by how
well the target verb matches the keyword trained, a child ARG1 clause (with child-hood
indicated by ./) of the target match suicide bombers, and that the target have a child
that is of the type ARGM-LOC.

Sentence 1.9 may be annotated with the semantic predicates

1.11 [ARG0 Hamas] [TARGET trained] [ARG1 many of the suicide
bombers used in Israel]

1.12 Hamas trained many of [ARG1 the suicide bombers] [TARGET
used] [ARGM-LOC in Israel]

Neither semantic predicate for Sentence 1.9 match the constraint in the query that the
ARGM-LOC clause be a child of the target verb matching trained. However, the example
predicate in Annotation 1.5 that answers the question does match the query.

In addition to the in-depth example provided above, there may be other important
challenges to retrieval systems. For example, should the results only contain elements
that exactly match all constraints, or should the result list contain partial matches, with
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those matching the query better placed in positions near the top of the result list? As
the linguistic annotations are produced by tools prone to error, the search system should
be robust to these errors, returning the best matches first and gracefully degrading with
less exact matches further down the result list. Furthermore, annotation tools may pro-
vide confidence values and alternative annotations. The search system should be capable
of incorporating confidence estimates and alternative annotations during indexing and
retrieval. Finally, the search system should have a query language and retrieval model
expressive enough to handle information needs of these forms.

1.4 Properties of Structured Retrieval Models

The previous sections provided concrete examples of when the use of structure may be
important. Each example highlighted some properties we believe are helpful for effective
retrieval in these environments. This section draws on those observations and states some
properties we believe are necessary for effective retrieval of structured documents.

result-universal: The model can return as results any document or any other structural
element.

Many of the traditional retrieval approaches have focused on document retrieval.
However, as published information has become more structured, it has become ap-
parent that users’ information needs may be satisfied not only by documents but
also by elements of the documents in a collection. Evidence of this need to rank
parts of documents can be seen in product search on the Web (a single document
may have many products listed), retrieval of elements, book search, and retrieval of
passages for question answering systems.

structure-aware: The model leverages query term occurrences found in related docu-
ments, representations, elements, or annotations.

When ranking structural elements or annotations, the system may be faced with
very small samples of text. We hypothesize that in order to achieve good estimates
of relevance, it will be important to place some weight on term occurrences from
related elements, such as the containing document or alternative representations.
We also hypothesize that it may be beneficial to place extra emphasis on elements of
certain types (such as titles) contained within the element being ranked. We feel that
a strong retrieval model for information retrieval on structured information sources
will be able to make use of these related elements when estimating relevance.

structure-expressive: The model supports a rich query language so that users can express
constraints on related elements.
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It should not be surprising that with more structured information comes a greater
need for structured representations of users’ information needs. Consider the com-
plexity of queries in databases, where very little of the information is unstructured.
We expect that it may be difficult for a non-expert user to formulate effective struc-
tured queries. However, there is a strong tradition within Information Retrieval of
automatic query-reformulation which could be leveraged to enrich a query with
more structural constraints. Additionally, there may be many retrieval environ-
ments where the users may be expert searchers. Librarians and users of legal in-
formation systems are frequently capable of forming very complex but effective
queries.

annotation-robust: The model is robust to errors in annotations.

The automatic creation of annotations on text is an error-prone process and will
always be so due to the inherent ambiguity of natural language. We believe that
the most effective retrieval systems leveraging annotations will not treat the anno-
tations as “ground truth” but instead the result of a process that may make errors.
Annotators may make many kinds of errors: missing/extra annotations, incorrect
boundaries or labels, and incorrect links between annotations.

1.5 Dissertation Overview

This dissertation is unique because it examines a wider range of retrieval tasks making
use of document structure and annotations. We first consider the tasks of known-item
finding and the retrieval of document parts in isolation, presenting experiments on these
tasks with retrieval models developed specifically for them (Chapter 4). While these re-
trieval models are effective, they suffer the same flaw as the bulk of prior work. Develop-
ment in isolation of other retrieval tasks limits their generality.

Prior work, reviewed in Chapter 3, focused on developing retrieval approaches sup-
porting some of the properties in Section 1.4, but not all. To this date, no comprehensive
work has been done examining a unified retrieval approach supporting this a wide range
of retrieval tasks. This dissertation corrects this, proposing adaptations of the Inference
Network model that supporting the properties. This dissertation also investigates simi-
larities and differences of successful model configurations across the three retrieval tasks
presented in this chapter.

The retrieval model proposed in this dissertation uses a graph-based representation of
the structure to improve system’s ability to estimate the subject of the text in an element,
annotation, or representation, making the retrieval model structure-aware. It does this by
using properties of the graph structure to identify related text to improve the estimation
of which topics are discussed. For example, a word in the title element of a news article
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may be more indicative of the subject of the document than other words in the docu-
ment. The text of an alternative description in RSS of the article may also serve as a good
representation of the article’s content.

The estimates of content formed using the approach described above can be used
within a probability framework known as the Inference Network model for retrieval. An
inference network is constructed from the query and document collection to estimate
whether a user’s information need is satisfied by the structural elements in the collection.
Queries written in an expressive query language specify how the probabilities should
be estimated in the inference network. The queries can be complex, allowing the use of
Boolean operations: one can say that all query terms or constraints should be matched
(AND), one of several terms or constraints should be matched (OR), or a term or con-
straint should not be matched (NOT). Users can also express phrasal constraints (e.g. the
phrase Voice of America should occur) and proximity constraints (e.g. suicide and
bombings should appear within ten words of each other).

In Chapter 5 we extend the retrieval model’s query language to make it more structure-
expressive and result-universal. For example, we may wish to retrieve articles with an im-
age caption containing Kabul. It supports the information needs of both human users
and other applications that use retrieval systems. While doing so, the retrieval model uses
established statistical modeling techniques to formally justify the rankings presented to
the users.

The probabilistic Inference Network model has several important motivating proper-
ties which encourage its application to structured document retrieval tasks. Prior work
with Inference Network models has demonstrated that it may be easily adapted to model
metadata or structured documents. Inference networks can be used to model complex in-
formation needs, providing a way to probabilistically model relevance for users (human
or computer) through expressions of information needs more sophisticated than those
expressed in simple keyword queries. By using statistical estimation techniques, we may
be better able to estimate for which queries the elements and annotations in a collection
are relevant. The statistical estimation techniques may also be easily adapted to robustly
handle uncertainty and errors in annotations in a principled manner, making the model
annotation-robust.

Chapter 6 demonstrates the effectiveness of the modeling and ranking approaches
presented in this dissertation on the tasks of element retrieval, ranking Web documents
for navigational search, and the retrieval of passages for question answering systems. The
analyses in these chapters show the strength and flexibility of the approach presented in
this dissertation. These chapters also provide insight into the individual tasks examined,
analyzing assumptions about related elements on these collections and the techniques
necessary for effective retrieval performance.
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1.6 Outline

The rest of the dissertation is organized as follows. Chapter 2 more explicitly describes
the retrieval problem and some motivating retrieval tasks. Chapter 3 presents the re-
lated work on structured retrieval and provides some important background material.
Chapter 4 introduces task-oriented models developed separately for known-item finding,
element retrieval, and the retrieval of answer-bearing sentences for question answering
systems. Drawing from observations regarding the limitations of the task-oriented mod-
els, Chapter 5 proposes modifications to the Inference Network model. Evaluation of the
approach for the tasks of navigational Web search, element retrieval, and answer-bearing
sentence retrieval are presented in Chapter 6. Chapter 7 concludes the dissertation by
summarizing the contributions and their significance, and presents open problems and
potential research applications.



Document Structure
CHAPTER 2

A retrieval system may make use of two forms of document structure: annotations and
structural markup. This chapter defines structural markup and annotations; they will be
important for our discussion for retrieval models in Chapters 4 and 5.

Annotations typically encode linguistic or semantic information and document mark-
up is commonly used to represent general layout of documents. The difference between
markup and annotations can be viewed as the source of the structure. We define our
usage of the phrase structural markup and the term annotations below.

structural markup: explicitly encoded information about the content of the document
present within the document. Structural markup is created as a part of the docu-
ment authoring and editorial process. The structure may encode information about
layout, as in title tags or paragraph tags, or citations and hyperlinks.

annotations: information about the document assigned by a process or human after the
original creation of the document, such as information provided by a named-entity
tagger or an automatic layout analysis tool. This information may be less certain
than structural markup, as the process or person creating the annotations may not
know the author’s original intent. Annotations are usually added for linguistic or
semantic information such as part-of speech tags, parse trees of sentences, named-
entities, reading difficulty, and language.

So that the system may know how to render the presentation in Figure 1.1, the struc-
ture in the document must be explicitly represented; Figure 2.1 shows how this structure
can be encoded using the structural markup language of XML. Just as the news article
can be represented in XML, so can the RSS feed shown in Figure 1.2. Figure 2.2 shows a
sample of the XML in the RSS feed.

Table 2.1 reviews some key concepts related to XML and structural markup. Each
metadata and structural field or element is encoded in the document by surrounding it in
a begin and an end tag. For example, the title field of the report is identified in the
document by surrounding the title text with <title> and <\title>. The article
element is the parent of each paragraph element. Each of the paragraph elements is a
child of the article element.

11
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<article>
<front_matter>

<title>
UN Report Says Suicide Bombings on Rise in Afghanistan

</title>
<author> Daniel Schearf </author>
<location> Islamabad </location>
<date> 09 September 2007 </date>
<audio>

<link> http://www.voanews.com/medi.....Bombers-Mp2.Mp3 </link>
<caption> Schearf report </caption>

</audio>
</front_matter>
<intro_paragraph>

A United Nations report says the number of suicide bombings in
Afghanistan is rising fast and would this year likely reach a
record high. As Daniel Schearf reports for VOA from Islamabad,
the report says most Afghani suicide bombers were trained,
supported, and many recruited, in neighboring Pakistan.

</intro_paragraph>
<image>

<link> http://www.voanews.com/englis.....g07_eng_195.jpg </link>
<caption>

Investigators check the scene after a suicide attack in Kabul,
31 Aug 2007

</caption>
</image>
<paragraph>

The U.N. report issued Sunday says the number of suicide
bombings by insurgents in Afghanistan has rocketed from 17
attacks in 2005 to 123 in 2006.

</paragraph>
<paragraph>

The report also says that record high number is likely to be
surpassed this year. In the first eight months there have
already been 103 suicide attacks, with more expected.

</paragraph>
<paragraph>

The report says most suicide bombers were Afghani nationals but
received training or support in neighboring Pakistan’s tribal
region where many were recruited from Islamic theology schools
called madrassas.

</paragraph>
</article>

Figure 2.1: The news article encoded in XML.
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<rss>
<channel>

<title> VOA News: War and Conflict </title>
<link> http://www.voanews.com/ </link>
<description>

Up to the minute news from Voice of America
</description>

.....

<item>
<title> Israeli Police Arrest Neo-Nazi Gang </title>
<link> http://www.voanews.com/english/20070909-voa13.cfm </link>
<description>

Police say a group of neo-Nazis is responsible for a wave of
attacks on Orthodox Jews, synagogues and gays

</description>
</item>
<item>

<title>
UN Report Says Suicide Bombings on Rise in Afghanistan

</title>
<link> http://www.voanews.com/english/20070909-voa16.cfm </link>
<description>

Suicide attacks reached 123 in 2006 and 103 in first eight
months of 2007

</description>
</item>
<item>

<title>
Palestinians Observe Strike Called by Fatah in Gaza

</title>
<link> http://www.voanews.com/english/20070909-voa18.cfm </link>
<description>

Fatah-dominated PLO called strike after Hamas militiamen used
clubs against Fatah activists who held outdoor prayer rallies
in Gaza on Friday

</description>
</item>

</channel>
</rss>

Figure 2.2: A sample of the RSS news feed in XML.
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Concept Definition
markup in-line specification of structure
field, element a part of a document
tag marks the beginning or end of an element
link a reference to another element or document
parent the element which directly contains another
child an element directly contained by another
ancestor an element that is a parent of the element

or is an ancestor of the element’s parent
descendant an element that is a child of the element

or is a descendant of one of the element’s children

Table 2.1: Key concepts in structural markup.

There are many formats for the specification of document structure other than XML.
Web pages are typically encoded in HTML, many documents were encoded using SGML
before the introduction of XML, and word processors such as Microsoft Word have their
own formats for encoding the structure of a document. However, the concepts in Table 2.1
are generally applicable other forms of structural markup.

The Introduction showed one example annotation. However, the semantic predicates
may overlap in complex ways. For example, the text in Annotation 1.5 also contains the
predicates:

2.1 [ARG1 most Afghani suicide bombers] were trained, [TARGET
supported], and many recruited, [ARGM-LOC in neighboring
Pakistan].

2.2 [ARG1 most Afghani suicide bombers] were trained,
supported, and many [TARGET recruited], [ARGM-LOC in
neighboring Pakistan].

There is one predicate for each of the target verbs trained, supported, and recruited.
This example shows that the structure of information in language is often more complex
than the simple hierarchical nesting that in-line annotation such as the square-brace no-
tation above or the markup of XML within the document can represent.

A natural solution to encoding linguistic annotations is to use offset, or standoff, an-
notation. In offset annotation, an index of structure separate from the original text of the
document contains cross-references to the original text. The cross-references are called off-
sets, and may be in terms of byte locations or token (word) positions. To keep our example
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simple, we will use token positions and assume the original text has been tokenized in
a uniform manner for all processing components. Below are the token identifiers for a
sample of the news article:

... (57) were (62) recruited
(53) most (58) trained (63) in
(54) Afghani (59) supported (64) neighboring
(55) suicide (60) and (65) Pakistan
(56) bombers (61) many ...

The three overlapping predicates may be represented in offset annotation in a separate
file:

<semantic-roles>
<target begin=‘58’ length=‘1’>

<arg1 begin=‘53’ length=‘4’/>
<argm-loc begin=‘63’ length=‘3’/>

</target>
<target begin=‘59’ length=‘1’>

<arg1 begin=‘53’ length=‘4’/>
<argm-loc begin=‘63’ length=‘3’/>

</target>
<target begin=‘62’ length=‘1’>

<arg1 begin=‘53’ length=‘4’/>
<argm-loc begin=‘63’ length=‘3’/>

</target>
</semantic-roles>

Each annotation has a label such as target, a begin attribute which indicates the to-
ken where the annotation begins, and a length attribute which specifies the number of
tokens contained within the annotation. As every semantic predicate has a single target
verb, we have chosen to make the target annotations the parents of the other arguments
in the predicate. This enables us to encode the relationship between the arguments and
target verb of each predicate in a simple way.

The concepts of parent, child, ancestor, and descendant are defined by the hierarchical
relationships present in the offset annotation file and not on the source text. With inline
encoding of structure, the text of the child must be contained within the text of its parent.
However, with offset annotation it is possible to express hierarchical relationships among
annotation elements where the parent text does not overlap with the text of its children.
For example, the text of the parent target trained does not contain the text of its child
most Afghani suicide bombers.
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Offset annotations allow for natural representation of the different annotations within
the text of a document. The approach is not limited to storing a single type of annota-
tion or structure. For example, a system may also identify named-entities, such as people
or locations. A named-entity recognizer run on the tokens labeled with locations above
might identify that Afghani is a nationality and that Pakistan is a country. The offset
annotation description of the document structure can be extended to encode this infor-
mation by including:

<named-entities>
<nationality begin=‘54’ length=‘1’/>
<country begin=‘65’ length=‘1’/>

</named-entities>

The news article and the related RSS feed concretely demonstrate encoding of struc-
tural markup, alternative representations, and linguistic annotations. The news article
and the feed items are not artificial; they are actual examples found on the Internet.
While the actual format of the presentation of structure may differ, these forms of doc-
ument structure are not uncommon. We believe it is essential that modern information
retrieval systems must effectively represent and make use of this structure to achieve the
best possible retrieval quality. In order to discuss how a system may use the structure,
Section 2.1 presents how the structure, annotations, and representations can be modeled
using a graph.

2.1 Representing Structure as a Graph

One can represent the relationships between elements and annotations in a document
collection using a graph. A graph is defined by a set of vertexes and edges between
vertexes. The vertexes correspond to the structural elements, which may be typed, such
as title, paragraph, and so on. Formally, given alphabets ΣV and ΣE specifying the
possible labels on vertexes and edges, a graph is defined as:

G = (V,E, `V )

where V is a finite set of vertexes (or nodes), E is a set of labeled directed edges between
vertexes denoted by pairs of the form (vi, l, vj) such that vi, vj ∈ V , l ∈ ΣE and `V is
a function of the form ` : V → ΣV specifying a labeling of the vertexes. The rest of
the section describes how document structure, multiple representations, and annotations
may all be represented.



2.1. REPRESENTING STRUCTURE AS A GRAPH 17

2.1.1 Document Structure

For the simple document structure formed by in-line tagging, the links in the graph are
used to represent the parent/child relationship explicitly coded in the text. To represent
structural markup one needs only a single edge type p (for parent) in ΣE to represent
documents with internal structural markup.

The structure of the news article can be represented visually as in Figure 2.3 or more
formally using the graph notation:

Vs = {v1, v2, . . . , v16}
Es = {(v1, p, v2), (v1, p, v10), (v1, p, v11), (v1, p, v14),

(v1, p, v15), (v1, p, v16), (v2, p, v3), (v2, p, v4),
(v2, p, v5), (v2, p, v6), (v2, p, v7), (v7, p, v8),
(v7, p, v9), (v11, p, v12), (v11, p, v13)}

and

`V (v1) = article `V (v7) = audio `V (v12) = link
`V (v2) = front matter `V (v8) = link `V (v13) = caption
`V (v3) = title `V (v9) = caption `V (v14) = paragraph
`V (v4) = author `V (v10) = intro paragraph `V (v15) = paragraph
`V (v5) = location `V (v11) = image `V (v16) = paragraph
`V (v6) = date

This graph-based representation depicts the structural relationships between the elements
in the news article. The vertexes and their labels correspond directly to the elements and
element types in Figure 2.1 in the order of the begin tags within the text. The parent/child
relationships present in the XML markup are explicitly represented in the edges between
vertexes. For example, the edge (v1, p, v2) exists in V because the article element is the
parent of the front matter element.

2.1.2 Multiple Representations

A simple way to extend the graph to capture representational relationships is to introduce
new edge types that provide connections across representations. Each structural element
may have multiple representations, and we can connect these representations through
the introduction of an additional edge type r to indicate that a vertex corresponds to an
alternative representation.

Returning to our news article, we can represent the structure of the RSS feed and the
alternative representation relationship by adding vertexes {v17, . . . , v41} and the following
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Figure 2.3: The graph representing document structure for the example news article.

edges to the graph:

Vr = Vs ∪ {v17, v18, . . . , v41}
Er = Es ∪ {(v17, p, v18), (v18, p, v19), (v18, p, v20), (v18, p, v21),

(v18, p, v22), (v22, p, v23), (v22, p, v24), (v22, p, v25),
(v18, p, v26), (v26, p, v27), (v26, p, v28), (v26, p, v29),
(v18, p, v30), (v30, p, v31), (v30, p, v32), (v30, p, v33),
(v18, p, v34), (v34, p, v35), (v34, p, v36), (v34, p, v37),
(v18, p, v38), (v38, p, v39), (v38, p, v40), (v38, p, v41),
(v1, r, v34)}

and

`V (v17) = rss `V (v26) = item `V (v34) = item
`V (v18) = channel `V (v27) = title `V (v35) = title
`V (v19) = title `V (v28) = link `V (v36) = link
`V (v20) = link `V (v29) = description `V (v37) = description
`V (v21) = description `V (v30) = item `V (v38) = item
`V (v22) = item `V (v31) = title `V (v39) = title
`V (v23) = title `V (v32) = link `V (v40) = link
`V (v24) = link `V (v33) = description `V (v41) = description
`V (v25) = description

The final edge, (v1, r, v34), connects the fourth RSS feed item to the article. This edge
indicates that the feed item is another representation of the article. Figure 2.4 shows how



2.1. REPRESENTING STRUCTURE AS A GRAPH 19

the graph may be drawn.
We choose to introduce the new link type rather than adding an additional node to

the graph grouping representations in order to preserve the property that each graph
node is anchored in a textual element present in the collection. In Chapter 5 we will
show how the graph structure can be “queried” to group related elements together during
model estimation. Furthermore, the introduction of the additional link type r allows us
to distinguish between links within a document and links across a document. These link
types will be used when grouping related elements in Chapter 5.

2.1.3 Annotations

The introduction to this chapter includes several examples of linguistic annotations on
the text. Recall that the relationships between annotations and their locations in text are
typically stored external to the original text, such as in offset annotation. These exter-
nally defined annotations explicitly contain the parent-child relationships between anno-
tations, which may not correspond to the textual containment relationships common to
structural markup. However, the relationships between annotations often have a similar
graph-like nature, making it is easy to encode these annotations within the same graph
framework. This section will not explicitly list the graph notation to represent the hierar-
chical relationships between annotations; the approach is the same as for inline structural
markup.

The following example demonstrates how annotations may have parent-child rela-
tionships, even though the text for an annotation may contain the text of its descendant
annotations. Recall the overlapping semantic predicates:

1.5 [ARG1 most Afghani suicide bombers] were [TARGET trained],
supported, and many recruited, [ARGM-LOC in neighboring
Pakistan].

2.1 [ARG1 most Afghani suicide bombers] were trained, [TARGET
supported], and many recruited, [ARGM-LOC in neighboring
Pakistan].

2.2 [ARG1 most Afghani suicide bombers] were trained,
supported, and many [TARGET recruited], [ARGM-LOC in
neighboring Pakistan].

These three separate annotations can be represented in a graph in the context of the text
in Figure 2.5. This figure shows how the annotations may be cleanly represented within
the collection graph structure, even though the text of the argument annotations are not
contained within the text of their parent target annotation.
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Figure 2.4: The graph representing the structure of the news article and part of the RSS
feed structure. The dashed arrow from v36 to v1 represents the explicit link from the RSS
item to the news article. The dotted arrow from v1 to v34 represents our view that the
item element of v34 is an alternative representation of the article element.
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Figure 2.5: The relationship between keywords and the annotations can be clearly con-
veyed by drawing the graph in the context of the text. The vertexes for the annotations
are drawn with square boxes above the terms contained within each annotation.

2.2 Summary

This chapter discussed encoding document structure, multiple representations, and an-
notations. Section 2.1 presented a way to represent the structural relationships between
document components, representations and annotations in a graph.

There are distinct similarities in structural markup and annotations; they can both be
represented using a graph. The vertexes in a graph represent the elements and annota-
tions. Aggregated across all documents in a collection, which we refer as the collection
graph structure. Yet there are differences between explicit structural markup and annota-
tions. Structural markup is created during authorship and is typically quite hierarchical
in nature, with elements containing the text of descendant elements. Annotations of text
are performed post authorship and may have complex relationships between annotations
which do not correspond to nesting of text. Annotations may be imprecise and imperfect,
which can have impact on their use in retrieval tasks.

For a retrieval system to be result-universal, it must be able to retrieve and provide
reasonable rankings for any structural element or annotation in the collection. As this
chapter shows, some annotations and elements may contain very small amounts of text,
making meaningful ranking difficult. Thus a system must be able to make use of related
and surrounding elements and annotations to provide good estimates of relevance, high-
lighting the need for a system to be structure-aware.
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Just as a system may need to make use of containment and the collection graph struc-
ture to do a good job of representing the elements and annotations in a collection, any
query language supporting retrieval of structured collections must be able to express the
relationships between elements, annotations, and keywords. Without this support, a re-
trieval system cannot fully be structure-expressive.

Finally, the imperfection of annotations calls for systems to be annotation-robust. A
system supporting the use of annotations should be able to make effective use of annota-
tions in its result-universality, structure-awareness, and structure-expresivity, but also be
robust to the errors introduced during annotation.

The formalization of structural markup and annotations is also important because it
gives us a framework for the discussion of related work in Chapter 3. Chapter 4 provides
more detailed examples of models adapted to use structure and annotations in retrieval
for some retrieval tasks, presenting experiments and discussing results. However, few
of the techniques discussed in Chapters 3 and 4 address the similarities and differences
between structural markup and annotations. The extended Inference Network model
presented in Chapter 5 draws extensively on the definitions in this chapter to provide a
more complete and direct integration of structural markup and annotations.



Related Work
CHAPTER 3

Given the large volume of prior work on structured document retrieval problems, it is
no mean task to provide a thorough and concise summary. Nevertheless, this is precisely
what this chapter aims to do. Much of the research focuses on the adaptation of the popu-
lar vector space, probabilistic, inference network, and statistical language model retrieval models
for information retrieval. This chapter has sections covering the research for each of these
models. The discussions throughout the chapter also note which of the five properties
presented in Section 1.4 are addressed in the related work. In addition to the detailed text
summary, Figure 3.1 shows a timeline of major research on structured document retrieval.

One of the common themes of adapting existing retrieval models to support structured
document retrieval is what we will call the small document model. In the small document
model, elements or alternative document representations are treated in the same way as
documents within the retrieval model. Using this approach, one can directly apply exist-
ing ranking models to the document elements. This chapter uses the notion of the small
document model throughout to simplify the discussion of related work. It is also com-
mon to layer score combination on top of the small document model to combine evidence
from multiple representations or elements to produce a single score for an element, which
this chapter also notes.

This chapter first presents examples of the earliest research of structured document
retrieval. Sections 3.2 through 3.5 present each of the highly adapted retrieval models
and their applications to structured document retrieval. Section 3.6 reviews other tech-
niques. Section 3.7 summarizes the related work while reviewing the properties desirable
for structured retrieval.

3.1 Exact Match Boolean Retrieval

Researchers have long recognized that document structure is important to effective re-
trieval. Some of the earliest systems supporting structure focused on providing sup-
port for querying of the fielded information. This research had strong connections to
the library sciences, where fielded search of citations is important, such as those in the
MAchine-Readable Cataloging (MARC) format. A common approach to handling fielded
queries was to treat constraints literally, perhaps providing a ranking of the query cor-

23
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responding to how well the multiple constraints are met. Two exmaples are the Nor-
ton Cotton Cancer Center (NCCC) On-Line Personal Bibliographic Retrieval System and
the SCAT-IR citation search system. Both systems provided a structure-expresssive and
Boolean query language, although exact match Boolean retrieval was the result; issues of
ranking were not considered.

3.2 Vector Space Model

In the vector space retrieval model [74, 76, 69], documents and queries are represented as
vectors. The dimensions in the vector could be any feature of the document, but they are
typically words in the vocabulary. The length, or weight, on each dimension is often a
variant of tf · idf . Term frequency (tf ) is a function of the number of occurrences of the
term in the represented text. It captures the intuition that frequent terms in a document
are more representative of the document’s content. Inverse document frequency (idf ) is
a function of the frequency of the term in the collection and represents the intuition that
occurrences of common words are less informative than occurrences of rare words. In
addition, vectors may have a normalization component, which helps control document
length biases.

A summary of vector components commonly used in the vector space model for struc-
tured document retrieval is in Table 3.1. For example, the notation lnn.ltc indicates that
the query vector components lnn = I(w ∈ q)(1+log tf(w, q)) ·1 ·1 has qw = (1+log tf(w, q))
for terms in the query and 0 otherwise. The document vector components are

dw =
(1+log tf(w,d))·log N

df(w)√∑|W |
i=1((1+log tf(w,d))·log N

df(w))
2 (3.1)

for terms in the document and 0 otherwise. For structured document retrieval, a few
variants components N and df(w). Exceptions to using global, document-based idf com-
putation will be noted in the descriptions of systems below. This version of the vector
space model is representative of applications of the vector space model to the retrieval of
documents with structure in that it does not make use of pivoted length normalization
(Singhal et al [81]).

Documents and queries may be compared by using the dot product of the two vectors:

q · d =

|W |∑
w=1

qwdw (3.2)

where |W | is the number of words in the vocabulary. The closer the vectors representing
the query and document are to each other, the greater q · d.
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Term frequency component

b I(w ∈ x)

n tf(w, x)

l I(w ∈ x)(1 + log tf(w, x))

Term importance component

n 1

t log N
df(w)

Normalization component

n 1

c 1

/√∑|W |
i=1 x

2
i

l 1/|x|
L 1/ log(|x|)

Table 3.1: Commonly used components of the vector space model in structured document
retrieval.

3.2.1 Applications to Structured Retrieval

Fox Fox performed some of the earliest research in applying the vector space model
to structured retrieval using a small document approach [19]. Fox compared paragraph
retrieval to section retrieval; these early experiments were result-universal in the sense that
a fixed non-document unit of retrieval could be specified in advance, but the research did
not consider rankings of mixed element types.

The p-norm model introduced by Salton et al. [75] is a generalization of exact match
Boolean retrieval approaches to provide more flexible ranking of documents. The ap-
proach is expressive as queries can be combinations of ANDs and ORs of query terms,
while providing ranked result lists of documents and also allowing the user to specify
weights on query terms. The ranking model has an adjustable parameter which specifies
the trade-off between matching the Boolean constraints and high similarity in the query
clauses.

In the p-norm model, the query clauses can be nested, resulting in an expressive query
language. Fox [19] suggests that this approach can be naturally extended for use in struc-
tured document collections, but stops short of proposing actual extensions to the model.

Burkowski Burkowski [7] presents a model for searching and retrieving components
of a hierarchically structured text database using the small document and vector space
models. The structure-expressive query language allows the user to specify the unit of re-
trieval and supports enforcement of components being contained within others, as well as
providing support for standard Boolean operations. As any element could be retrieved,
the model is result-universal. Burkowski shows particular foresight in supporting multi-
ple hierarchical structures on the text. However, the structured queries in the model are
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treated as exact match results, with ranking provided only on the results that satisfy an
exact match query. Burkowski discarded the structure of the elements and documents for
ranking, using nnn.ltL with standard global, document-based idf .

Fuller et al Fuller et al [26] present a result-universal model for retrieval of elements that
combined the score of child elements with the score for the element itself. This structure-
aware ranking formula is:

RSV(q, e) = αt(e)(q · e) +

|c(e)|∑
i=1

q · ci
βi−1

(3.3)

where ci ∈ c(e) are the children of the element e sorted in order of descending q·ci and αt(e)

is a weight for t(e), the type of the element. β is a constant greater than one that reduces
the bias toward elements with more children. Fuller et al experimented with both btc.ntc
and btn.btl with standard global, document-based idf values.

We call the approach for creating a structure-aware retrieval model in Equation 3.3 score
combination; the final ranking formula is a combination of the retrieval scores from each
of the representations deemed important for estimating relevance. An advantage of score
combination is that it is easy to compute; one need only use a pre-existing retrieval model
to rank each of the representations and then combine the scores.

Wilkinson Wilkinson [91] performed the first systematic evaluation of many of the hy-
potheses previously posed about structured document retrieval. Wilkinson’s work fo-
cused on four general hypotheses: (1) document retrieval can be done just using retrieval
of their elements, (2) document retrieval can be enhanced by using scores for documents
and elements, (3) element retrieval can be done just using retrieval of documents, and (4)
element retrieval can be enhanced by using both scores for documents and elements. In
his experiments, Wilkinson used the small document and vector space models to rank
documents. By using score combination Wilkinson was able to replicate the same effec-
tiveness of document retrieval:

RSV(q, d) =
∑
ei∈d

αt(e)
q · e
βi−1

(3.4)

where the section elements in the summation are sorted by decreasing q · e. Wilkinson
used β = 2 and hand-tuned the α weights on element types. For similarity computation
in q · e, Wilkinson used nnc.ntc. The idf values for documents were computed using
document counts while the idf values for sections were computed where N equaled the
number of sections in the corpus and df(w) counts were based on the number of sections
containing the term.
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Using a linear combination of Equation 3.4 normalized by the maximum RSV(q, d) and
q · d normalized similarly resulted in a slight boost to early precision, providing evidence
that structure-aware retrieval algorithms may do better than standard document retrieval
algorithms for some tasks.

These two experiments verify Wilkinson’s first two hypotheses. Ranking using only
document scores did not perform well when compared to directly ranking elements, thus
rejecting the Wilkinson’s third hypotheses. By linearly combining normalized scores of
the element and its document, Wilkinson found that incorporating the document’s con-
text during ranking improved retrieval effectiveness, confirming his fourth hypothesis.

Wilkinson’s work is important as it provides some of the earliest thorough experi-
ments demonstrating that structure-aware systems can provide effective retrieval. This
work is also the first using thorough assessments on elements, providing an early empir-
ical evaluation of result-universal techniques.

JuruXML A more recent application of the vector space model to structured document
retrieval is implemented in the JuruXML system [49, 46, 47, 8]. Carmel et al apply the
vector space model to ranking XML elements against queries represented as structure-
expressive XML fragments. For example, the query

3.1 <article> <title> bombings </title> </article>

expresses the information need that article elements with title elements about bomb-
ings should be returned. Note that a strict interpretation of this query would not return
the example article in Chapter 2 as the title element in that article is not a child of the
article element but rather a descendant. However, Carmel et al treat the XML fragment
as a vague information need, where an exact match of the structure is preferred, but other
approximate matches are also returned. They do so through the inclusion of cr(ci, cj),
a context resemblance function which models the user’s tolerance to imperfect matches.
The context of the term is defined by its path from the root element of the document or
query to the term. Carmel et al define a partial match context resemblance function as

cr(ci, cj) =

{
1+|ci|
1+|cj | iff ci is a subsequence of cj, and
0 otherwise.

(3.5)

JuruXML applies this context resemblance function in a variant of cosine similarity:

RSV(q, d) =

∑
(w,ci)∈q

∑
(w,cj)∈d qw,cidw,cjcr(ci, cj)

u(q) · u(d)
(3.6)

where u(q), u(d) are the number of unique terms in the query and document, and dw =
log(tf(w, d) + 1) · log(N/df(w)) and qw = log(tf(w, q) + 1) . The retrieval model is structure-
aware as terms from other contexts in the document may match a specific query term and
context pair.
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Mass and Mandelbrod [46] apply the small document model to ranking elements for
ranking unstructured queries in JuruXML. For N and df(w) they used counts for the el-
ement type and the element frequency, rather than standard document frequency. They
found it important to normalize the scores in Equation 3.6 by dividing the highest achiev-
able score by hypothetical element of the same type, because the idf statistics and average
element lengths can be quite different across the element types in a collection.

Carmel et al [8] consider the impact of the context resemblance function and explore
variants of context sensitive idf which accumulates counts where cr > 0. For element
retrieval with strict interpretation of the requested result type, they found that using
the standard, global document-based idf and discarding structural constraints on query
terms worked as well as other more complex approaches.

Mass and Mandelbrod [47] consider a linear score combination of an element’s score
with that of the document. This work also extends the XML fragment query language to
support Boolean operations.

Chu-Carroll et al [11] later applied the XML fragments query language to retrieval of
documents leveraging annotations for the support of a question answering system. Un-
fortunately, the work does not thoroughly investigate how the quality of the annotations
affects the degree to which the model is annotation-robust.

Despite the strengths of the JuruXML system, we feel that the vector space model
in JuruXML is not as structure-expressive as one might like. For example, when ranking
articles against the query

3.2 <article> <paragraph> suicide bombings </paragraph>
</article>

the retrieval model does not recognize the user’s desire that the terms suicide and
bombings occur in the same paragraph element; the ranking function in Equation 3.6
does not reward articles where both terms are present in the same paragrah.

3.3 Okapi

The Okapi retrieval model and related probabilistic retrieval models have been exten-
sively applied to the retrieval of structured documents. These probabilistic models are
based on the probability ranking principle [71], which asserts that the best ordering of re-
sults is by descending probability of usefulness to the user.

The applications of the probabilistic retrieval models presented in this section are
mostly variants of Okapi, which is an approximation to the two Poisson model [28]. The
two Poisson model directly models the probability ranking principle, but in practice has
too many parameters to estimate. Robertson and Walker [72] approximate the two Pois-
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son model with:

bm25(q, d) =
∑
w∈W

(k3 + 1) · tf(w, q)
k3 + tf(w, q)

(k1 + 1) · tf(w, d)

k1

(
(1− b) + b |d|

avdl

)
+ tf(w, d)

log
N − df(w) + 0.5

df(w) + 0.5
.

(3.7)
where k1, k3, and b are constants that must be tuned to a retrieval task and collection.
While the applications of the probabilistic models may use a different approximation,
Equation 3.7 is a representative example.

3.3.1 Applications to Structured Document Retrieval

While the applications to structured document retrieval presented below may use differ-
ent approximations of the probability ranking principle, the general techniques remain
the same. As with the vector space model, many of the techniques use the small docu-
ment model and score combination.

XPRES Wolff, Flörke, and Cremers [92] present the XPRES system for retrieval of struc-
tured documents. It is a result-universal retrieval model, allowing any element in a struc-
tured document to be ranked. The query language is also structure-expressive; queries
consist of a set of terms and contexts (contexts are called roles in their work). Elements are
ranked using the small document model; when a more specific context is requested for a
query term, the element’s contribution to the retrieval status value for that query term is
computed by forming a small document from the descendent elements that match the re-
quested context. As with the JuruXML system, XPRES does not allow the user to express
the desire that two query terms occur in the same element. Wolf et al use role specific
counts for N and df(w).

Justsystem The earliest adaptations of the probabilistic model to create structure-aware
approaches performed score-combination. Fujita [25] of Justsystem combines the scores
from several different representations to perform document retrieval of web pages for
the task of homepage finding. The model uses a weighted linear combination of small
document scores estimated on numerous document representations and query indepen-
dent predictors of relevance. Example representations for web document retrieval include
the title of the document and a small document formed by concatenating the text of all
elements with large fonts. The choice of N , df(w), and average length for different repre-
sentations was not specified in [25].

Beitzel et al Many others have used the score combination approach for structure-aware
applications of the probabilistic model. For example, Beitzel et al [1] combine the Okapi
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scores from title, in-link, and full text indexes using the combMNZ (combine, multiply by
non-zero) result fusion algorithm for web document retrieval. CombMNZ [21] combines
rankings of the top n results across several search engines (one for each representation
type) by summing the scores observed in the ranked documents and multiplying the
sum by the number of rankings where a representation of the document was returned.
The formula can be written as

combMNZ(q, d) =

(∑
r∈R

I(rr(q, d) ≤ n)

)
·

(
1

|R|
∑
r∈R

I(rr(q, d) ≤ n) · sr(q, d)

)
(3.8)

where
R is a set of rankings from search engines,
sr(q, d) is the score of d from the search engine r,
rr(q, d) is the rank of d for the search engine r, and
I returns 1 when the argument is true and 0 otherwise.

(3.9)

Beitzel et al [1] apply the combMNZ fusion algorithm to rankings returned by scoring
the different document representations of title, in-link text, and full document text. The
scores across the different representations are often not very comparable. To improve the
comparability of the scores, Beitzel et al use a variant of the ZNORM score normalization
proposed by Montague and Aslam [57]:

sz(q, d) =
s(q, d)−mean(s(., q))

var(s(., q))
(3.10)

where mean(s(., q)) and var(s(., q)) are the mean and variance of the scores for query q over
the top n results. Beitzel et al’s modification is to apply the exponential function to the
BM25 scores from each of the representations, s(q, d) = exp(bm25(q, d), before applying
the ZNORM normalization. As they create a separate index for each of the represen-
tations, the average document length and inverse document frequency components are
conditioned on the representation type. Lu et al [45] also apply combMNZ to the output
of several Okapi rankings for Web search.

Vittaut et al In addition to applications of Okapi to web document retrieval, it has also
been adapted to element retrieval. Vittaut et al [88] use the small document model for
ranking elements. Vittaut and Gallinari [87] propose a structure-aware approach to rank-
ing XML elements by using a weighted linear combination of small document scores for
the element, its parent, and the element’s document. The weights in the linear combina-
tion are estimated on training topics and judgments by minimizing exponential loss over
ranking preferences on pairs of elements. Vittaut and Gallinari use global, document-
based values for idf but use element type specific estimates for average length.
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BM25F However, Robertson et al [73] openly criticize the score combination approach to
adapting the probabilistic model to be structure aware. They list several problems with the
approach. One concern is that score combination breaks the nonlinear aspects of the term
frequency normalization present in the original Okapi BM25 algorithm. 2.1. Suppose we
rank documents by

|R|∑
i=1

αi · bm25(q, ri(d)) (3.11)

where R is a list of document representations and ri ∈ R. If we assume dfri(w) = df(w),
αi = αj for all i, j, and |ri(d)| = avdli, then a document’s score a for single term query is
equivalent to ranking by

|R|∑
i=1

(k1 + 1) · tf(w, ri(d))

k1 + tf(w, ri(d))
≥
|R|∑
i=1

I(tf(w, ri(d)) > 0)
(k1 + 1) · 1
k1 + 1

=

|R|∑
i=1

I(tf(w, ri(d)) > 0).

(3.12)
This linear increase in score when matching additional representations is contrary to the
spirit of Okapi. A linear increase in term matches in a document causes a non-linear
increase in the bm25(q, d) score, and Robertson et al assert that this property should also
hold for matches across multiple representations.

Robertson et al [73] propose to address this concern by reweighting the document
vector input to Okapi BM25 through the use of a linear weighted combination of the
document vectors from each of the fields or representations:

tfR(w, d) =

|R|∑
i=1

αi · tf(w, ri(d)). (3.13)

The document length and average document length components of BM25 are also up-
dated to reflect the modified term weights:

|d|R =
∑

w tfR(w, d) and

avdlR = 1
N

∑
d |d|R.

(3.14)

tfR, |d|R, and avdlR are substituted in place of tf, |d|, and avdl in Equation 3.7. Robertson et
al use standard global, document-based values forN and df(w) for the computation of the
idf component of Okapi. This approach is referred to in the literature as Okapi BM25F.
We call the general approach of combining representations within the model in-model
combination. In-model combination of representations preserves many of the properties
of the original retrieval model, while still allowing a weighted combination of evidence
from alternative representations or related elements.
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BM25E Lu, Roberston, and MacFarlane [44] adapt Okapi BM25F for XML element re-
trieval. Their approach, Okapi BM25E, arises from the hypothesis that Okapi BM25F is
naturally applicable to ranking elements in addition to documents. They further state
the desire to allow for the text of other elements to be considered during estimation of
the term occurrences for an element. The resulting structure-aware and result-universal
Okapi BM25E is a simple element based modification of BM25F, where the documents in
BM25F are substituted with elements in BM25E. For BM25F, avdlR is defined over docu-
ments, while for BM25E, the average length is defined over all elements in the collection.
However, Lu et al approximate the proposed average with the BM25F avdlR presented in
Equation 3.14, stating concerns about the efficiency of averaging the element length over
all elements in the collection. As with BM25F, BM25E uses document-based values for N
and df(w).

Summary

As can be seen by the above examples, the Okapi BM25 approximation of the two Poisson
model for information retrieval is a popular choice for adaptation to structured retrieval
tasks. It has been extensively applied to Web retrieval tasks and XML element retrieval.
The recent introduction of Okapi BM25F allows researchers to flexibly rank elements and
documents leveraging multiple representations of the text while still preserving the non-
linear attributes of the original Okapi BM25 weighting function. We agree with Robertson
et al [73] that the in-model combination of fields, representations, or elements is a more
principled approach to adapting the probabilistic model than earlier work using score
combination.

The major goals in research of adapting the probabilistic model for structured docu-
ment retrieval have been to create structure-aware and result-universal systems. The adap-
tations of the probabilistic model have not extensively addressed structure-expressiveness
and annotation-robustness.

3.4 Statistical Language Models

Statistical language modeling for information retrieval has recently gained popularity
due to its ability to make use of common statistical estimation methods (Ponte and Croft [67]
and Hiemstra [30]). In the language modeling approach, the text of the document is
viewed as a sample from an unknown latent model of the information present in a docu-
ment. Generally, the latent model of the information in the document is represented by a
unigram language model. A unigram language model specifies a multinomial probabil-
ity distribution over words in a vocabulary. We use the symbol θ to represent a language
model. The probability of observing a word w given the language model θ is written as
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P (w|θ). For a multinomial probability distribution,
∑

w∈W P (w|θ) = 1. These models are
based on combinations of maximum likelihood or Bayesian estimators, leaving few pa-
rameters that must be tuned by the researcher. This section first reviews the approaches
to ranking the latent document models then presents some options for the estimation of
the latent models for documents and queries.

3.4.1 Ranking Models

The most common approaches to using language models for ranking in information re-
trieval have been the generative query-likelihood model [31, 90, 96], the model compar-
ison approaches of Kullback-Leibler divergence [93], and the generative relevance mod-
els [41]. The most widely applied of these to structured document retrieval is the query-
likelihood model.

The generative query-likelihood approach was first introduced by Ponte and Croft [67].
In Ponte and Croft’s approach, queries are represented as a binary vector over the vocab-
ulary. However, later work by Hiemstra [31], Westerveld et al. [90], and Zhai [96] treats
queries as a list of words rather than a binary vector. This allows for placing more weight
on frequently occurring query terms, as in Zhai [96]:

P (q |θd ) =
∏
w∈q

P (w |θd )tf(w,q)
rank≡

∑
w∈q

tf (w, q) logP (w |θd ) (3.15)

Documents more likely to have produced the query are ranked higher.
Lafferty and Zhai [39] discuss the role of relevance in language modeling, proposing

that one rank by

logP (Q = q|D = d,R = 1) + log
P (R = 1|D = d)

P (R = 0|D = d)
(3.16)

where Q and D represent the random variables for the query and document and R = 1
indicates relevance. Lafferty and Zhai [39] assert that one may reasonably estimate

P (Q = q|R = 1, D = d) ≈ P (q|θd). (3.17)

Kraaij et al [38] instead propose an alternative interpretation where rankings use

P (Q = q|R = 1, D = d)P (R = 1|D = d). (3.18)

For many retrieval tasks, we do not have prior information about what documents
may be relevant. In these cases it is common to assume that P (R = 1|D = d) is a constant
that can be omitted during ranking, resulting in ranking solely by P (q|θd). Upon reflection
of Equation 3.17, one can see that a good language model θd is one which accurately
represents the queries for which the document d is relevant.
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Prior Probability of Relevance

One advantage of using the query-likelihood model for ranking documents is that it is
compatible with prior probabilities of relevance. That is, we may have a query-independ-
ent estimate of relevance for documents in a collection for a specific retrieval task. In
order to make use of the characteristics of relevant documents, one can assumption that
P (R = 1|D = d) is a not constant.

Westerveld et al [90] used URL types to inform document priors for homepage search.
The URL types corresponded to root pages, sub-root (a single directory deep), deeper
directory pages, and URLs corresponding to other files.

Kamps et al [33] applied prior probabilities to XML element retrieval. The priors were
assumed to be proportional to the length of the element raised to the power β:

P (R = 1|D = d) = c · |d|β (3.19)

where c is an unknown constant that can be neglected during ranking. This allows the
introduction of a bias toward retrieving longer elements, where larger β values bias the
scores toward ranking longer elements near the top of the result list for a query.

3.4.2 Model Estimation and Smoothing

To estimate θd for document retrieval in the statistical language modeling framework, it
is common to linearly interpolate the language model estimated from the document with
a collection model. The maximum-likelihood estimate (MLE) of the document model,
assuming an underlying multinomial model, is given by

P (w |MLE (d)) = tf (w, d) / |d| , (3.20)

where |d| is the length in terms of the observed document. Linear interpolation is a simple
approach to combining estimates from different language models:

P (w |θ ) =
M∑
m=1

λmP (w |θm ) , (3.21)

where M is the number of language models we are combining, and
∑M

m=1 λm = 1. An
equivalent shorthand to Equation 3.21 is

θ =
M∑
m=1

λmθm. (3.22)
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Method λd λC

Jelinek-Mercer 1− λ λ

Dirichlet priors |d|
|d|+µ

µ
|d|+µ

Two-stage (1−λ)|d|
|d|+µ

λ|d|+µ
|d|+µ

Table 3.2: Common interpolation parameters for smoothing a document with a collection
model.

Applying Equation 3.22 to the maximum likelihood estimate of the document’s lan-
guage model and use a collection language model, we may write

θ̂d = λdMLE(d) + λC θ̂C . (3.23)

The most common choices for setting the λC and λd are outlined shown in Table 3.2. These
include Jelinek-Mercer smoothing, smoothing using Dirichlet priors [95, 96, 62, 90], and
two-stage smoothing [96]. The two-stage smoothing weights shown in the table reflect
the choice to model the background query model using the same collection model used
for documents.

3.4.3 Multiple Bernoulli Model

Metzler et al [53, 84] proposes an approach (Model B) which views a document as a col-
lection of samples from a multiple Bernoulli distribution. The model assumes that the
multiple Bernoulli distribution is sampled once for each word in the document; a sample
is associated with a word wi ∈ W in a vector r where ri = 1 and 0 at all other locations in
the vector. As with the other language modeling approaches, the features rj in the vector
are assumed to be independent. This approach uses a Bayesian approach to the param-
eter estimation of the model θ, imposing a multiple beta prior over the parameters in θ.
Doing so results in estimates where

P (ri = 1|d, α, β) =

∫
θ

P (ri = 1|θ)P (θ|D,α, β) =
#(ri = 1, d) + α

|d|+ α + β
. (3.24)

In the above, #(ri = 1, d) = tf(wi, d), or the number of observation vectors r in d where
ri = 1.

Setting α = µP (wi|θC), β = µ(1 − P (wi|θC)), and θC = MLE(C) results in a model
that produces identical probability estimates to the multinomial model using the Dirich-
let smoothing estimate. This approach formalizes a connection between the multiple-
Bernoulli model and the multinomial model. This formulation is particularly important
as it is used in modern applications of the Inference Network model, which is presented
in Section 3.5.
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3.4.4 Applications to Structured Document Retrieval

Statistical language modeling techniques have been applied to web document retrieval as
well as element retrieval.

Web Document Retrieval

Research in Web document retrieval has largely focused on structure-aware adaptations of
statistical language models.

Kraaij, Westerveld, and Hiemstra The earliest applications of statistical language mod-
eling to structured document retrieval were for the task of known-item Web search tasks.
Kraaij, Westerveld, and Hiemstra [38] propose a structure-aware approach which uses a
linear interpolation (Equation 3.21 ) of smoothed language models estimated from the
title, document, and in-link text. Kraaij et al propose to use this as the representation of
the document in the generative ranking model (Equation 3.15). However, they do not test
this model, but instead linearly combine the query-likelihood scores resulting from each
of the models evaluated separately: ∑

r

λrP (q|θr) (3.25)

where P (q|θr) is estimated by linearly interpolating the maximum likelihood estimate
from the representation with a a representation type specific collection model. The repre-
sentation type specific collection model is estimated using the maximum-likelihood esti-
mation from all document representations of the same type. As this is a score combination
approach, it is open to the same criticism the Okapi score combination approaches pre-
sented in Section 3.3.1.

Ogilvie and Callan Ogilvie and Callan [63] implement and test the structure-aware mix-
ture of language models proposed but untested by Kraaij et al [38] on the task of known-
item Web search. The work was the first experimental comparison of the in-model and
score combination approaches. Ogilvie and Callan form a mixture model for each docu-
ment from language models formed from document representations, such as the title text,
text of the entire document, in-link text, and image alternate text. They do so by first esti-
mating a language model using Dirichlet prior smoothing for each of the representations
and then linearly interpolating these models (Equation 3.21). Like Kraaij et al, Ogilvie
and Callan smooth the representation language models with representation-type specific
collection models. A side-by-side comparison of the mixture model to the CombMNZ
score combination approach (Equation 3.8) and other common score and rank combina-
tion approaches demonstrate that the mixture model is at least as effective and robust as
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score and rank combination approaches. The mixture modeling approach also has the
appeal that the evidence combination happens within the generative framework, and not
as a post-retrieval ad-hoc combination of scores. Robertson et al [73] cite this work as in
the same spirit as the Okapi BM25F retrieval model.

Ogilvie and Callan [65] later apply the mixture of multinomials approach to investi-
gating known-item finding of emails in email discussion lists. They considered represen-
tations of the email message text, the subject of the thread, the text of the entire message
thread, and the text of replies to the email. They also optionally applied a prior probabil-
ity of relevance estimated based on the depth of the email in the thread, placing a strong
bias on retrieving emails that started a discussion thread. This work reinforced earlier
experiments finding that the in-model combination of mixture models was again at least
as robust as score combination. Apart from the text of the email itself, the most beneficial
representation was the subject of the email thread.

XML Element Retrieval

The statistical language modeling techniques have also been applied to XML element
retrieval, creating models that are both structure-aware and result-universal.

Sigurbjörnsson, Kamps, and de Rijke Sigurbjörnsson et al [78] rank XML elements us-
ing a score combination of the element’s query-likelihood, the document’s query-likelihood,
and a prior probability of relevance estimated using elements in place of documents in
Equation 3.19 and β = 1. Later work by Sigurbjörnsson et al [77] uses an in-model com-
bination of language models estimated from the collection, element text, and document
text. Kamps et al [34] thoroughly investigate of the use of element length prior probabili-
ties, considering a wider range of values for β. For smoothing, they use a single language
model estimated from all elements in the collection.

Sigurbjörnsson et al [80] also investigate structure-expressive applications of statisti-
cal language modeling techniques. They decompose content-oriented XPath (NEXI, Ap-
pendix A) queries into pairs of location paths and keyword queries. While similar to the
contexts of JuruXML (Section 3.2.1), these pairs are more expressive as they allow the user
to request that multiple query terms occur in the same element.

The system first estimates P (qi|θe) for each of the keyword queries qi, preserving only
the elements that match the corresponding path pi. Elements matching the target restric-
tions of the query are then combined by multiplying the scores of the elements matching
the sub-queries. In a case where multiple elements match a sub-query, then the maximum
scoring element is used. The final score for an element is a weighted geometric mean of
the scores from each of the subqueries.

This construction of rankings is a fairly strict interpretation of the NEXI query, al-
though they do ignore the distinction between AND and OR operations. Sigurbjörnsson et
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al [80] discuss other ways that the NEXI queries could be interpreted. Some alternatives
include the following query reconstructions.

• full content query: the query is converted into a simple flat text query with only the
target element’s path preserved.

• partial term propagation: query terms may be propagated up several levels, relaxing
the context restraints.

• full term propagation: the structure of the query is preserved, but each clause is aug-
mented to contain all query terms.

These reconstructions vary the degree of how strict the constraints in the original query
are interpreted. All are still strict in the sense that the returned elements are all of the type
requested in the original query. Sigurbjörnsson et al find that the full term propagation
reconstruction improves the recall of elements in queries that have multiple subqueries.
When the notion of relevance is relaxed to allow elements that do not match the expressed
desired target element path, Sigurbjörnsson et al [79] find that a simple keyword query
constructed from all query terms evaluated against elements in the collection outperforms
the above reconstructions.

While Sigurbjörnsson et al propose the structure-expressive, structure-aware, and result-
universal retrieval model detailed above, the authors do not describe how the structure-
expressive combination of evidence and query reformulations fit within the language mod-
eling framework.

Tijah List et al [43] present the Tijah system, which ranks elements using the generative
query-likelihood model (Equation 3.15) with Jelinek-Mercer smoothing and prior prob-
abilities of relevance estimated proportional to the length of the element. The collection
language model used for smoothing is a single, document-based collection model. List
et al focus more on providing a structure-expressive retrieval model leveraging statistical
language modeling techniques. They extend a region algebra by including probabilities.
A region algebra provides operators such as containment and Boolean operations over re-
gions of text. Regions are defined by a begin location, end location, and a probability. The
probabilistic region algebra allows implementations that leverage database techniques
for query optimization.

List et al describe how their model can support queries written in the NEXI query
language. For combination of probabilities resulting from multiple about filters, List et
al preserve the minimum belief for Boolean AND operators and the maximum probability
for Boolean OR operators.
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Ogilvie and Callan Ogilvie and Callan [61] propose a structure-aware and result-universal
approach that explicitly models the hierarchical structure of the documents. They esti-
mate a language model θ̂′′ for each element by smoothing the maximum likelihood esti-
mates up then down the hierarchical structure:

1. Estimate base model: θ̂e = (1− λC) ·MLE(e) + λC · θ̂C

2. Smooth up: θ̂′e = λc(e) · θ̂e +
∑

c∈c(e) λ
′
c(c) · θ̂′c

3. Smooth down: θ̂′′e =


θ̂′e if p(e) = ∅

(1− λp) · θ̂′e + λpθ̂
′′
p(e) otherwise

(3.26)

where c(e) returns the children of e and p(e) returns the parent of e. One difference be-
tween this model and others is that the text of the element e used in the maximum like-
lihood was taken to be the the text in that element not contained in any of its children.
However, in experimentation Ogilvie and Callan chose λc(e) and λ′c(c) such that θ̂′e would
be identical to θ̂e if its maximum likelihood were estimated from all of the text in that
element and its descendants.

This model allows flexible combination of evidence from the direct children and par-
ent language models. However, the model leaves many smoothing parameters unspeci-
fied per document, so this model was only ever investigated using simple length-based
weighting schemes for λc(e) and λ′c(c), sacrificing much of the potential power for sim-
plicity and efficiency. Despite the flexibility in smoothing there are some weaknesses to
this hierarchical smoothing approach. For example, it is not possible in this model to di-
rectly control the weight on a document’s language model in θ̂′′. As an element is deeper
in the tree, the weight on the document language model decreases rapidly.

In experiments at INEX, Ogilvie and Callan ranked elements using the generative
likelihood model with the element length based prior probabilities. They did not find
that setting λp > 0 significantly improved ranking effectiveness.

Ogilvie and Callan also discuss using the NEXI query language. They combine the
evidence from multiple subqueries through multiplication of the probabilities (using a
probabilistic AND). When there are multiple elements matching a subquery, they take the
probability of the maximum matching element. Rather than rewriting queries by copying
terms to multiple about clauses as in Sigurbjörnsson et al’s full term propagation strategy,
Ogilvie and Callan hope that the richer hierarchical smoothing will have a similar effect
while preserving the original intent of the user.

Ogilvie and Callan’s approach has the intuitive appeal that there is extensive in-model
combination of the evidence present within the document. However, setting the λc param-
eters differently or the use of a non-zero λp requires that much of the document struc-
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ture be loaded into memory during ranking. For efficient retrieval, Ogilvie and Callan
found that this may require efficient in-memory storage of the entire collection’s struc-
ture or replicating much of the the structure in the inverted index term postings, which
can be difficult in a large-scale information retrieval system. Nevertheless, we feel that
this model has intuitive appeal, and we draw inspiration from this work in Chapter 5.

Kim, Xue, and Croft Kim, Xue, and Croft [36] draw inspiration from Ogilvie and Callan
[61] but hypothesize that the best weights for different elements may vary across query
terms. Their model closely resembles the mixtures of representations presented in Ogilvie
and Callan [63], but replaces the static λr weights with PM(Ej|w) values dependent upon
the query terms:

PM(Ej|w) =
PM(w|Ej)PM(Ej)∑

Ek∈E PM(w|Ek)PM(Ek)

where Ej is the type of an element or representation. PM(Ej) allows a prior probability
to be placed upon an element type and the authors used the maximum likelihood esti-
mator for PM(w|Ej). For most experiments, the authors chose PM(Ek) to be equal for all
representations, but they did perform some experiments suggesting non-equal priors for
element types may provide slight boosts.

The estimates of PM(Ej|w) result in weights roughly proportional to the relative fre-
quency of a query term in each of the element types in the collection. Although the set of
training queries used in evaluation is quite limited, their results suggest that query-term
dependent weights on representations may improve results over document retrieval and
mixtures of representations.

3.5 The Inference Network Model

The Inference Network Model is based on Bayesian networks and is implemented in the
InQuery [86] and Indri [84] retrieval systems. Inference networks have been success-
fully applied to many retrieval tasks over the years. The presentation of the model will
closely follow the presentation of inference networks for information retrieval used in
the Indri retrieval system [84]. The work with inference networks dates back to Tur-
tle and Croft’s [86] presentation, which included an expressive query language for the
creation of inference networks to represent users’ information needs through query op-
erators representing Boolean relationships, synonymy, and structural relationships. The
resulting model is structure-aware. This retrieval model has more recently been adapted
to be result-universal and structure-expressive.

A Bayesian network is a directed acyclic graph where the nodes are random variables
and the edges specify conditional dependencies between the variables. In the application
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Figure 3.2: An example of Indri’s Inference Network model.

of Bayesian networks to the Inference Network model of information retrieval, a Bayesian
network is instantiated for each document and query. Queries are considered to be com-
posed of concepts which represent terms, phrases, or other complex features. Documents
are supposed relevant when the concepts in the query are present. Note that a term query
concept being present in a document is not the same as the term occurring in the docu-
ment; a document may contain the term ‘surfing’ without being about the concept of
surfing. Yet an occurrence of ‘surfing’ does provide some evidence that the document
may be about the concept.

Figure 3.2 depicts the general structure of the networks created using the Inference
Network model. The shaded nodes correspond to observed nodes, such as the document
d and model parameters α and β. The language models θ are estimated from the obser-
vations in the document and the prior parameters. Documents are ranked according to
P (I|d, α, β), the belief that the information need is met given our observation of d and the
parameters α and β.

The representation nodes, labeled ri, correspond to estimates of the belief that the con-
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α,β
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d

Figure 3.3: Belief estimation for field evaluation (left) and field restriction (right).

cept ri was observed. These concepts are represented as a vector of binary values, where
the location corresponding to feature ri is 1 and all other values equal to 0. Given the
structure of the network, the probability of observing concept ri is dependent on d, α, and
β. The probabilities P (r|θ) in this model are estimated using the multiple-Bernoulli model
presented in Section 3.4.3. Indri uses Equation 3.24 to estimate the beliefs for these repre-
sentation nodes. The earlier formulations of the Inference Network model implemented
in the InQuery system [86] used a linear combination of Okapi BM25 with a default belief.

3.5.1 Query Operators

The internal query nodes qi correspond directly to the query operators expressed in the
query that we will refer to as belief combination operators. These operators may include
Boolean operations or weighted combinations of term/feature representation nodes or
other query nodes. This section outlines the Indri query language, focusing on opera-
tors of specific interest for the material presented in this dissertation. There are several
components to Indri queries: terms, feature representation operators, belief combination
operators, and weights.

Terms in Indri refer directly to words in the vocabulary observed in a collection. Terms
occurrences may be limited to a field type using field restriction: grant.person will only
count occurrences of the term grant that occur in person fields during belief estima-
tion. Alternative representations of the document can be created from fields using field
evaluation, for example grant.(title). This creates a language model from the title
fields in the document. This is referred to as context restriction. Figure 3.3 shows how the
two different representation beliefs are estimated in an inference network.
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One would typically use the field evaluation syntax (grant.(title)) to create repre-
sentations for use in ranking and use the field restriction syntax (grant.person) in cases
where a term may be ambiguous and the annotation may help disambiguate its use in the
document. For example, when searching for documents about people with the last name
Grant, grant.person would be the appropriate way to restrict the count of occurrences
for the term grant to named-entities indexed with the person type. If we wished to
create representations from title elements present in a document, then field evaluation is
appropriate.

The exact formula for the belief corresponding to grant.(title) is

P (r1 = 1|d, α, β) = P (r1 = 1|θtitle(d))

P̂ (r1 = 1|θtitle(d)) = #(r1,title(d))+αtitle

|title(d)|+αtitle+βtitle

(3.27)

where

r1 refers to the concept grant,
title(d) is a representation formed from all title elements in d,
#(r1, title(d)) is the number of observed occurrences of grant in title(d),
αaml is set to µP (r1|MLE(title(C))), and
βtitle is set to µ(1− P (r1|MLE(title(C)))).

In contrast, the formula for the belief estimate corresponding to grant.person is

P (r2 = 1|d, α, β) = P (r2 = 1|θd)

P̂ (r2 = 1|θd) = #(r,d)+αd

|d|+αd+βd

(3.28)

where

r2 refers to the concept grant.person,
which are occurrences of grant in person elements,

#(r2, d) is the number of observed occurrences of grant.person in d,
αd is set to µP (r2|MLE(C)), and
βd is set to µ(1− P (r2|MLE(C))).

The difference in belief estimation for grant.(title) and grant.person is two-fold.
For the former, the combined title elements is used as the context. Therefore, the length
used in estimation is the length of the combined title elements. Also, the smoothing
is not with a general collection model, but one estimated from only title elements in
the collection. For the field restriction grant.person, the context is preserved as the
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Operator Name Description
#ODN(f1 f2 . . . fn) ordered window features separated by no more than N tokens

#UWN(f1 f2 . . . fn) unordered window features in a window of N tokens in any order

#SYN(f1 f2 . . . fn) synonym treat all terms/features as the same feature

#ANY:type any matches occurrences of an element type

#PRIOR(name) prior include beliefs from prior name

Table 3.3: Feature representation operators in the Indri query language.

document, and the smoothing uses the standard collection model estimated from all text
in all documents.

Feature representation operators allow the creation of complex features such as prox-
imity and order constraints on terms and synonyms. Table 3.3 outlines the feature repre-
sentation operators. The ordered window and unordered window operators allow the
expression of phrasal and proximal constraints on features and terms. For example,
#OD1(suicide bombers) specifies a feature where the words suicide and bombers
occur in that order directly adjacent to each other. The synonym operator allows the terms
and features to be aggregated together as a single feature. The “any” operator creates a
feature representation node that matches occurrences of elements of the requested type.

As with terms, complex features can be restricted to occurrences within fields. A
term/feature representation node is created for each term and feature representation
operator not nested within another feature representation operator. Only feature rep-
resentation operators not nested within other feature representation nodes have a cor-
responding inference network node in the query network. For example, in the query
#OD1(suicide bombers), the query network does not have representation nodes for
suicide or bombers; there is only a single representation node created for the concept
#OD1(suicide bombers).

The prior operator allows the inclusion of features of the document independent of
query terms to be a factor in the model. The beliefs produced by the inference network
node for a prior are externally computed and stored within the system for run-time access.
One example may be an estimate of the probability that a web document will satisfy
the user’s information need conditioned on the observed length of the document’s URL.
Unlike the other feature representation operators, the prior operator cannot be nested
within other feature representation query operators. The interpretation and use of prior
probabilities in the Inference Network model depends on how the prior operator is used
in the query; we will return to this point later.

The belief combination operators combine the belief estimates of the nested terms,
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Operator Combination Function Description
#AND(b1 b2 . . . bn)

∏n
i=1 bel(bi) probabilistic and

#NOT(b) 1− bel(b) probabilistic not

#OR(b1 b2 . . . bn) 1−
∏n
i=1(1− bi) probabilistic or estimate

#WAND(w1 b1 . . . wn bn)
∏n
i=1 bel(bi)

wi weighted and

#MAX(b1 b2 . . . bn) max(bel(b1), bel(b2), . . . , bel(bn)) takes the maximum belief

#WSUM(w1 b1 . . . wn bn)
∑n

i=1wibel(bi) weighted and

Table 3.4: Belief combination operators in the Indri query language.

feature representation, and belief operators. The terms and operators specified in the
parameters to the operator indicate conditional dependencies in the inference network.
The choice of the belief operator specifies how the distributions on which the inference
network node is dependent are combined to form the belief estimates for the inference
network node. The belief combination operators are presented in Table 3.4. We use
bel(qi) as a shorthand notion for the belief P (qi|d, α, β). The belief combination operators
of #AND, #OR, and #NOT provide probabilistic applications of basic Boolean operators.
The #WAND operator provides a weighted version of the #AND operator. For example,
#WAND(0.3 terrorist 0.7 #OD1(suicide bomber)) ranks documents on how
well they match the concepts terrorist and #OD1(suicide bomber), placing more
emphasis on matching #OD1(suicide bomber).

In addition to the construction of inference networks for ranking documents, the Indri
query language supports extent retrieval. Extent retrieval allows the ranking of document
elements of a specific type. Any belief operator can be modified by placing the desired
element type σv in square braces prior to the list contained in parentheses. For example,
if the user desires that only the paragraph elements be ranked against the query terms
“suicide bombings”, then the corresponding query would be:

3.3 #AND[paragraph]( suicide bombings )

This specification of result element types changes the inference network constructed. In
this network, the d node is replaced by a node for a paragraph element. A separate in-
ference network is constructed for each paragraph element. The smoothing parameters
α and β are updated in this case to use a background paragraph element models.

Extent retrieval is used instead of field restriction and field evaluation when there is a
need to retrieve elements instead of documents. Extent retrieval can also be applied to
belief operators nested within another belief operator. The nesting of extent retrieval has
legitimate use cases (some examples of which we outlined in Chapter 1), but its use can
be confusing. We will discuss these uses some in Chapter 5.
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3.5.2 Applications to Structured Document Retrieval

Despite the long history of support for structured document retrieval in the Inference Net-
work model, there is a surprisingly small amount of literature surrounding applications
and experiments on applications to structured document retrieval.

Myaeng et al One application of the Inference Network model to structured document
retrieval is provided by Myaeng et al [58]. This model, predating the current approach
used in Indri described above, replaces the document or element nodes in Figure 3.2 with
the entire structure of the document. Edges are created from parents to their children.
In contrast to the current Indri retrieval model, a term occurrence is assumed to only be
present in its leaf node. As a result, the representation nodes are connected to each of the
leaf nodes.

Myaeng et al also describe how the model can be structure-expressive through restrict-
ing the connections of representation nodes to subsets of the structural element nodes.
These subsets are constructed through the query specification. For example, a query re-
questing articles with “suicide bombings” matching paragraphs in the article could be
converted to an inference network by connecting representation nodes for suicide and
bombings to only the paragraph nodes in the inference network that are contained
within the article element being ranked.

One challenge of this model is how the conditional probabilities in the inference net-
work must be estimated. The authors choose to restrict belief estimation to the positive
events when conditioning on the parent, resulting in computationally more simple model
that has fewer conditional probabilities that must be specified. For inference network
nodes corresponding to elements in the document, the authors consider two options. The
first assumes that the probability of the event corresponding to that node given the obser-
vation of its parent is set to be proportional to the length of the element. This approach
treats all term occurrences the same, regardless of the leaf element length or depth in the
hierarchical structure of the document. The other approach assumes that some elements
are more representative of its parent than others. They consider two ways of setting
weights; the first weights the element by a type specific weight and its similarity to the
parent, while the other weights the element proportionally to its similarity to other sibling
elements.

In experiments, Myaeng et al use the former method, weighting the belief proportional
to its similarity to the parent element. The authors find that this approach improves the
retrieval effectiveness for keyword retrieval of patent documents, suggesting that the ap-
proach may be able to filter out the effect of “noisy” elements. They also find that when
placing extra emphasis on the BSUM element type, which is the “brief summary” of the
patent, improves retrieval effectiveness even more.

Through its use of element type weights and the similarity of an element to its parent
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during estimation, the model achieves structure-aware properties. As it can rank any el-
ement and users can express structure constraints, the model is also result-universal and
structure-expressive. However, one cannot incorporate context during ranking, such as the
term occurrences in the document when ranking an element.

Indri The presentation of Indri and its inference network approach to modeling has
built-in structure-expressive properties. Metzler et al [54] performs known-item retrieval
of Web documents using the query template #WAND( 0.15 ql 0.25 qt 0.10 qh 0.50
q ). Each sub-query uses terms restricted to the corresponding language models using
the term.(type) field evaluation syntax. The types they consider are a representation
formed from in-link text, the title elements, html header elements, and the text of the
Web page. Metzler et al find that a combination of this approach and phrasal expan-
sions improves retrieval effectiveness over the rankings given by using a simple keyword
query.

Annotation Retrieval in Indri Our work in Bilotti, Ogilvie, Callan, and Nyberg [5] re-
ports on experiments using Indri to rank and retrieve answer-bearing sentences to factoid
questions. They indexed semantic predicates found in sentences by the ASSERT seman-
tic role labeler [68]. The semantic predicates identified by ASSERT are in the style of
PropBank [37] predicates, where each predicate has a target verb indicating an action and
multiple arguments and modifiers which specify the use of the target in the sentence. The
target of a predicate were indexed as the parent of the arguments and modifiers of the
predicate. They also indexed named-entities identified in the text by BBN Identifinder [2].

Bilotti et al investigated the ability to retrieve answer-bearing sentences using two
retrieval approaches. The most basic approach converted questions into a keyword +
named entity query by identifying keywords in the questions and dropping stopwords.
For questions where a specific named-entity type is expected as the answer, they added an
#ANY:type operator to that query. These queries can be easily constructed automatically
from the questions themselves. For example, the question

What year did Wilt Chamberlain score 100 points?

was converted into the Indri query

3.4 #AND[sentence]( #ANY:date wilt chamberlain score 100
points ) .

The authors considered another approach which converted known answer-bearing
sentences into structured-queries. A sentence is said to be answer-bearing if it contains
the answer to the question without requiring inference using knowledge present in other
parts of the document. These sentences were converted into queries by converting the
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semantic predicates identified in the sentence into query clauses. The first step in the
conversion was the identification of keywords and answer named-entity shared by the
question and the answer-bearing sentence. For example, the answer-bearing sentence

3.5 On March 2, 1962, Chamberlain scored a record 100 points
in a game against the New York Knicks.

shares date named-entity containing the answer and the keywords chamberlain, score,
100, and point.

These keywords were located within the named-entities present in the sentence, wrap-
ping the terms of each named-entity with a query clause restricted to that named-entities
type. The answer type was converted into an #ANY operator. For Sentence 3.5, Indenti-
finder’s annotations were

3.6 On [DATE March 2, 1962,] [PERSON Chamberlain] scored
record 100 points in a game against the [ORG New York
Knicks.]

The named-entity conversion step resulted in the following query components: #ANY:date,
#MAX( #AND[arg0]( chamberlain )), score, 100, and point.

The next step located components in semantic predicates and added this structure to
query components. For our example sentence, ASSERT identified the semantic predicate

3.7 [ARGM-TMP On March 2, 1962,] [ARG0 Chamberlain] [TARGET
scored] [ARG1 record 100 points] [ARGM-LOC in a game
against the New York Knicks.] ,

which was used to add structure to the partial query:

3.8 #MAX( #AND[target](
score
#MAX( #AND[argm-tmp]( #ANY:date ) )
#MAX( #AND[./arg0](

#MAX( #AND[person]( Chamberlain ) )
) )
#MAX( #AND[./arg1]( 100 point ) )

) )

Indri’s query language was modified for these experiments to support the ./ operation in
extent retrieval in order to represent the relationships between a target and its arguments.

The final structured query was constructed by wrapping all query components, in-
cluding keywords and named-entities not present in a semantic clause, with a sentence
retrieval operation:
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3.9 #AND[sentence](
#MAX( #AND[target](

score
#MAX( #AND[argm-tmp]( #ANY:date ) )
#MAX( #AND[./arg0](

#MAX( #AND[person]( Chamberlain ) )
) )
#MAX( #AND[./arg1]( 100 point ) )

) )
) .

These queries were constructed for all known answer-bearing sentences in the collection
for a given question.

The experiments compared the ability of Indri to retrieve answer-bearing sentences
for the simple keyword + named-entity approach and the structured retrieval approach.
The intent of the structured queries was to measure the ability of the retrieval system
in the presence of a question-answering system that would formulate queries match-
ing a semantic template for answers to the question. In the absence of such a system,
Bilotti et al were forced to emulate an ideal question-answering system by constructing
these queries from the answer-bearing sentences in the collection. Because the struc-
tured queries were constructed directly from answer-bearing sentences, the evaluation
was optimistic, measuring the ability of the system to re-retrieve these sentences using
the keywords shared between the question and answer-bearing sentence and the struc-
ture present in the answer-bearing sentence. The experiments found that the inclusion of
the semantic structure in the queries did result in improved precision.

Further experiments explored the role of annotation quality. For these experiments,
the authors explored sentence re-retrieval using hypothetical questions. The PropBank [37]
corpus used had manually annotated semantic predicates on roughly one million words
of news text. The queries were automatically constructed from the manually annotated
semantic predicates. Retrieval was then performed on the manually annotated corpus
and the corpus annotated by ASSERT, which correctly identified and labeled about 88.8%
of the arguments and modifiers of semantic predicates. The experiments found that even
when querying the corpus with semantic predicates identified by ASSERT, the semantic
structure present in the query still helped the system achieve higher precision results than
a keyword only baseline. These experiments, which smoothed the element/annotation
with the document and corpus, provide some of the first experiments on investigating
the role of annotation-robustness in a retrieval system.
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3.6 Other Approaches

There is also related work that do not use any of the above retrieval models.

CODER Fox and France’s work with knowledge-based modeling for retrieval of struc-
tured documents [20] modeled the structure of documents using frames. A frame is an ob-
ject with typed attributes. For example, a paragraph frame may have a list of sentence
frames, while sentences maybe lists of text items (words). This work was ambitious
and required the construction of an extensive knowledge base. As such, there were few
experiments evaluating this approach.

Proximal Nodes Navarro and Baeza Yates [59] considered the problem of querying
structured text. They argue strongly for structure-expressive query languages and provide
a detailed comparison of their proposed algebraic query operators to much of the related
work in the area. While they do not explicitly address issues of ranking, it is an important
piece of work as it establishes many desirable structure-expressive query operations.

Logistic Regression Larson [40] apply logistic regression of multiple factors to estimate
the log-odds of each element’s relevance. The logistic regression approach tries to es-
timate the probability of relevance for an element by a linear combination of features.
Larson applies logistic regression to XML element retrieval by combining features of
query length, element length, average tf for query terms in the element, average idf for
query terms, and the number of the query terms present in the element. This approach is
result-universal, but does not detail how it may be adapted to structure-aware or structure-
expressive applications.

MultiText The MultiText system (Clarke et al [13]) supports passage retrieval and in-
dexes documents and structural markup. This structural markup may be explicitly queried
using the GCL query language [12]. The query language provides structure expressivity,
and results may be passages or elements matching the query text.

XQuery XQuery∗ is a query language for querying XML document collections. It is
quite powerful, allowing complex element selection and transformation. The query lan-
guage is certainly structure expressive, but it is targeted toward supporting text retrieval.
The power of the language makes efficient implementations difficult; furthermore, the
language is very complex, making it difficult to use by non-expert users.

∗http://www.w3.org/TR/xquery/

http://www.w3.org/TR/xquery/
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3.7 Summary

We have attempted in this chapter to succinctly but accurately discuss the related research
on structured document retrieval. Given the sheer volume of literature on the subject, it is
perhaps unsurprising that the chapter is not terribly succinct. However, we have aimed
to discuss each work in the context of their retrieval model and whether they have the
desirable properties for structured retrieval models. Figure 3.1 provides a visual timeline
of major work in the area, but we will further summarize the desirable properties here.

Result-Universal The desire to rank any element has been addressed by much related
research. One of the most salient findings is that length normalization is very important
for result-universal retrieval systems. There has also experiments addressing whether a
single background model for idf or smoothing is adequate, or element type specific mod-
els give better results. In general, the research has found that a single background model
is sufficient.

Structure-Aware Many researchers have investigated whether treating the occurrences
of terms in different element types differently can improve retrieval effectiveness. For
Web page retrieval of known-items, this has been clearly shown to be beneficial. For
more ad-hoc retrieval tasks, the benefit of a structure-aware retrieval model has been less
clear. Some of this results in difficulties in parameter estimation.

A parallel debate has been how the evidence from related elements should be com-
bined. A simple and efficient way to do this is to use score combination approaches. How-
ever, in-model combination is often more intuitively appealing as the combination is ex-
plicitly addressed in the retrieval model. In addition score combination can have the un-
desirable side effect of breaking model properties, such as causing linear term frequency
effects.

Structure-Expressive It has been a challenge to create structure-expressive retrieval mod-
els on top of other retrieval models in a principled way. Work built on top of the vector
space and language models has been largely ad-hoc. However, the inference network
retrieval model has some structure-expressive adaptations which remain largely untested.
One unanswered question in structure-expressive systems is how should the evidence
from multiple nested elements matching a query term be combined when ranking an
outer element.

Annotation-Robust Work in passage retrieval for question answering systems has done
little beyond using traditional text retrieval models with simple extensions to treat named-
entities elements as query terms in ranking. JuruXML is among the first works to be
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applied to element retrieval for question answering, but the use of annotations in the
retrieval system has not been thoroughly investigated.

There have been few approaches that are simultaneously result-universal, structure-ex-
pressive, and structure-aware. There has been very little research on annotation-robust re-
trieval systems. We next explore these properties in the context of task-oriented retrieval
models developed for the tasks of known-item finding of web documents and element re-
trieval. We draw from observations on these experiments and the related work presented
in this chapter to present extensions to Inference Network retrieval model in Chapter 5.



Task-Oriented Retrieval Models
CHAPTER 4

This chapter presents baseline models developed for each of the three example retrieval
tasks of known-item finding of web pages, XML element retrieval, and retrieval support-
ing a question answering system. Each model reflects an effective retrieval model adapt-
ing a state-of-the-art statistical language modeling and inference network techniques to
the retrieval task at hand.

The language model presented for known-item finding in Section 4.1 serves primarily
as a validation that a simple language modeling approach performs very strongly for
retrieval of known items. The XML element retrieval models presented in Section 4.2
focus on a simple language modeling approach to support keyword retrieval and a basic
extension of that approach to inference network models to support structured queries.
Finally, Section 4.3 considers the extended inference network model for the retrieval of
sentences containing linguistic annotations.

4.1 Language Models for Known-Item Finding

When ranking web pages for the task of known-item finding (Section 1.1), we observe
that structural features of the text (such as titles) or inter-document structure (such as link
text) can serve as useful representations of the content of a web page. Furthermore, for the
specific task of known-item finding, words occurring in these alternative representations
can be especially predictive of which queries a page is relevant. This work closely reflects
the mixture of language models investigated by Ogilvie and Callan [63]. The approach to
combining the evidence from multiple representations used in this model has the effect
of in-model combination, and was cited by Robertson et al [73] as in the same spirit as the
fielded Okapi BM25F retrieval model.

A simple model for ranking web pages estimates a unigram language model for each
representation of a document. The retrieval model estimates a representation’s language
model by smoothing the maximum likelihood estimate formed from the text of the repre-
sentation with that of the collection representation model formed from the concatenation
of all representations of that same type:

θd,r = λd,rMLE(dr) + λC,rMLE(Cr), (4.1)

54
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where r is a representation type, dr is document d’s representation of type r, and Cr is the
text of all representations of type r in the collection. The retrieval model combines these
language models using linear interpolation to form a single model for a document:

θd =
∑
r∈R

λrθd,r. (4.2)

The retrieval model then ranks documents for a query by the probability of observing the
query string generated from the unigram language model for the document:

P (q|θd) =
∏
w∈q

P (w|θd)tf(w,q). (4.3)

As smoothing using Dirichlet priors is generally quite effective, we choose to use it in this
approach, setting λd,r = |dr|/(|dr| + µr) and λC,r = µr/(|dr| + µr). We choose as µr the
average length of dr in the collection.

While Dirichlet priors are used for smoothing, recall that we can also apply a prior
probability of relevance to documents, such as those described in Section 3.4.1. These
prior probabilities, P (R = 1|D = d), may be used in ranking by multiplying the result of
Equation 4.3 by this prior probability:

P (R = 1|D = d) ·
∏
w∈q

P (w|θd)tf(w,q). (4.4)

We choose to optionally apply URL types priors, following Westerveld et al [90]:

root if the URL of r matches the pattern http://xxx.com/ possibly followed by index.html,

subroot if the URL of r matches http://xxx.com/yyy/ possibly followed by index.html,

path if the URL matched http://xxx.com/yyy/.../zzz/ possibly followed by index.html, and

file if the URL of r did not match any of the previous cases.

While we use the same classes of pages, we do re-estimate parameters specific to the tasks
and corpora upon which we center our evaluations in this section. The prior probability
may be estimated for documents belonging to a particular URL type class by dividing the
number of relevant documents in the relevance judgments on training topics with that
URL type by the number of documents in the collection with that same URL type.

This simple structure-aware retrieval model has the benefit that it is easy to construct
and has only the λr parameters left unspecified. In addition, its in-model combination of
the representations exhibits the non-linear term frequency aspects desirable in ranking.
For known-item finding of Web page documents, we choose as representations title text,
in-link text, and the body of the document.
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WT10G .GOV
Number documents 1,692,096 1,247,753
Size (GB) 10 18
Document types html html, doc, pdf, ps
Task types homepage finding homepage and named-page

t10ep samp. t10ep off. t12ki t13mi
Number topics 100 145 300 150

Table 4.1: Known-item finding testbeds

4.1.1 Evaluation Methodology

The TREC Web Tracks included a known-item search task several of the years during
the existence of the track. Table 4.1 outlines the testbeds and corpora we use to evaluate
the retrieval model. TREC 10 included a homepage finding task on the WT10G corpus,
providing 100 sample and 145 official evaluation topics. We use Equation 4.2 to combine
three representations: the title text, the anchor text from documents that link to the page
being ranked, and the body text of the entire web page.

We use the sample topics (t10ep sample) and the official topics (t10ep official) for two-
fold cross-validation to evaluate the retrieval model. Using these two folds will allow us
to compare the results here directly with other results published for the task. The training
phase of cross-validation sets the λr parameters and the URL type priors, while the test
phase uses these parameters on the held-out testbed to evaluate results.

TREC 12 included a known-item finding task on the .GOV corpus, which consisted
of 300 homepage and named-page finding topics. TREC 13 provided a mixed homepage
finding, named-page finding, and topic distillation task using the .GOV corpus, from
which we omit the topic-distillation task to make the topic set more comparable to that
of the TREC 12 topics. The resulting subset contains 150 topics. As with the TREC 10 ex-
periments, we use two-fold cross-validation with the TREC 12 known-item topics (t12ki)
and the subset of the TREC 13 mixed topics (t13mi).

To evaluate the Homepage Finding task and the Named-Page Finding task, we use
mean-reciprocal rank (MRR). MRR is the average over all topics of one over the rank
where the first correct result was found. MRR was an official measure at TREC [29, 16]
and emphasizes early success.
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Representation t10ep samp. t10ep off. t12ki t13mi

No priors

{ Body 0.274 0.309 0.351 0.333
Link 0.508 0.531 0.478 0.446
Title 0.397 0.333 0.359 0.355

URL priors

{ Body 0.747 0.695 0.441 0.374
Link 0.635 0.615 0.527 0.486
Title 0.771 0.636 0.472 0.504

Table 4.2: Performance of individual representations (MRR).

Combination Method t10ep samp. t10ep off. t12ki t13mi

No priors

{ Equal λr 0.670 0.608 0.647 0.607
MRR train λr 0.673 0.616 0.643 0.619
MRR test λr 0.679 0.605 0.645 0.622

URL priors

{ Equal λr + train priors 0.888 0.799 0.707 0.673
Equal λr + test priors 0.890 0.813 0.706 0.666
MRR train λr + priors 0.889 0.803 0.707 0.664
MRR test λr + priors 0.890 0.813 0.701 0.665

Table 4.3: Performance of combined models (MRR).

4.1.2 Results

Table 4.2 shows the training performance of the individual representations using Dirichlet
prior smoothing with and without URL priors. These individual representations show
varying degrees of effectiveness, and the relative effectiveness may change with the use
of the prior probabilities. The values in this table were used to compute the λr parameters
in the cross-validation.

We consider two approaches to setting λr parameters; equal parameters and parame-
ters set proportional to the the MRR performance on the training topics. Table 4.3 shows
the results of these approaches. The “train” approaches are results set using weights and,
if applicable, prior probabilities estimated from the same set of topics, while the “test”
approaches use weights and prior probabilities estimated from the corresponding fold
of training topics in an effort to show how well the “train” parameters generalize. For
example, the MRR test parameters for the t10ep sample approach are estimated from the
t10ep official topics.
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The t10ep official results using prior probabilities are better than the best official re-
sults for the task (0.774) [29]. The t12ki results are also similar to our prior results of 0.727
at TREC (best official results, [17]). Our official submission [64] also used the text of the
URL, image alternate text, and meta tag keywords and descriptions, which resulted in
a slight boost in performance over the results presented here. The t13mi are strong, but
not as strong relative to the best systems at TREC [18]. The best performing system, sub-
mitted by Microsoft Research Cambridge [94], received a MRR of 0.738 on the homepage
and named-page finding topics. Their system introduced Okapi BM25F and made use
of PageRank instead of a URL type prior. Microsoft Research Asia submitted the second
best system [83], which achieved a MRR of 0.703 through the use of HostRank (similar
to PageRank, but for domains) and a wide array of keyword methods including some
using term proximity. The third best system was submitted by the University of Ams-
terdam [35]. Their system received a MRR of 0.649 by using a very similar mixture of
language models but a link in-degree prior in place of a URL type prior.

These results demonstrate that a simple unigram language model and a URL type
prior can provide results competitive with other strong systems. Yet using the estimated
λr values does not improve the performance over equally distributing weight across the
representations. One potential cause for this unsatisfying result is that heuristically choos-
ing λr proportional to the performance of a representation may not result in the best per-
formance, even on the training set. Another possibility is that the estimated parameters
do not transfer well from the training topics to the test topics. We explore these issues in
the context of element retrieval below (Section 4.2).

4.2 Language Models and Inference Networks for Element
Retrieval

In this section we propose a model for retrieving parts of documents, also known as
element retrieval (Section 1.2). The model we propose for the retrieval of XML elements is
also based on mixtures of language models. However, this retrieval model explicitly uses
the structure of the document to smooth each element’s language model. The hierarchical
language model we propose estimates the language model for an element e using:

θe = λeMLE(e) + λdMLE(d(e)) + λCMLE(C), (4.5)

where d(e) is the document containing e. This model is similar in spirit to the hierarchical
smoothing of Ogilvie and Callan [61] while being more efficient to evaluate in an element
retrieval system. This estimation approach also allows more weight to be placed on the
document’s language model during smoothing.
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In order to bias retrieved elements by their length, we include a length-based element
prior (Section 3.4.1):

P (R = 1|E = e,Q = q) ∝ P (R = 1|E = e)P (Q = q|R = 1, E = e), (4.6)

where
P (R = 1|E = e) = c · |e|β (4.7)

and
P (Q = q|R = 1, E = e) ≈ P (q|θe) =

∏
w∈q

P (w|θe)tf(w,q). (4.8)

Recall that the constant c may be omitted during ranking. This simple model utilizes
in-model combination of evidence through smoothing to incorporate the context of its
containing document to improve estimates for which queries the element is relevant. The
approach is both result-universal and structure-aware.

We also extend this model to support a subset of NEXI query operations (Appendix A)
by converting the queries into the format supported by the inference network model (Sec-
tion 3.5). However, we replace the beliefs estimated at the representation nodes with
P (w|θe). The counts for composite nodes such as ordered window nodes input to the lan-
guage models are computed as described in Section 3.5. The model interprets structural
constraints strictly, meaning that only elements of the requested types will be ranked; for
the query

4.1 //paragraph[about(., suicide bombings)]

only paragraph elements are ranked. The corresponding translation of the NEXI query
is

4.2 #AND[paragraph]( suicide bombings )

For queries where the user requests that descendent elements of the requested element
match query terms, we surround the nested extent restriction with a #MAX operator. For
example, the query

4.3 //article[about(.//paragraph, suicide bombings)]

requests that article elements be ranked by how well a paragraph element contained
within the article matches the query terms suicide bombings. The corresponding in-
ference network query is

4.4 #AND[article]( #MAX(
#AND[paragraph]( suicide bombings )

) )

The inclusion of the #MAX operator is important because the default Inference Network
implementation would connect all matching paragraphs to the inference network node
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for the article, resulting in a multiplication of these beliefs. Zhao and Callan [97] discuss
this issue in depth and we also revisit this question in Section 5.2 and Chapter 6.

Some NEXI queries place constraints on broader contexts than that of the result ele-
ment. For example, the query

4.5 //article[about(., terrorism)]
//paragraph[about(., suicide bombings)]

specifies that paragraph elements about suicide bombings be returned in articles about
terrorism. There is no previously introduced query operator that expresses this, so we
introduce the #CONTEXT operator, which treats elements or extents matching the first
argument as the desired result, multiply its belief with those of the other arguments. We
translate Query 4.5 into

4.6 #CONTEXT[article](
#AND[paragraph]( suicide bombings )
#AND( terrorism ) )

This model applies the length prior probabilities only to the element being ranked,
allowing the user to specify a preference for longer or shorter elements. This structure-
expressive extension of the inference network model allows for some limited support of
structured queries.

4.2.1 Evaluation Methodology

For these experiments, we use INEX’s IEEE v1.4 and v1.8 journal article test collections
[23, 24]. We focus on evaluating element retrieval two query types: those with keywords
only, and those with keywords and structural constraints. Table 4.4 outlines the testbeds
and corpora we use to evaluate the retrieval model. The i2004k and i2005k topics cor-
respond to INEX 2004’s CO (content-only) and INEX 2005’s CO topics. The i2003s and
i2004s topics correspond to INEX 2003’s CAS (content-and-structure) and INEX 2004’s
CAS topics. The queries for the keyword and structure topics are in the NEXI format
(Appendix A). The official evaluation of the INEX 2004 CAS topics used a loose interpre-
tation of the structured query, allowing any element to be considered relevant. However,
we pruned the relevance judgments to contain only elements satisfying the structural
constrains of the NEXI queries in the topic definition. This approach for constructing rel-
evance judgments for strict interpretation of the structural constraints was common prac-
tice among those wishing to evaluate a systems ability to rank only the desired target ele-
ments. In addition to the conversion of NEXI queries described above, we ignore phrasal
constraints and the ‘+’ in front of phrases or keywords, and drop terms and phrases pre-
fixed with a ‘-’ from the query. These interpretations of the phrasal constraints, ‘+’, and
‘-’ suggestions are common practice among many INEX participants.
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IEEE v1.4 IEEE v1.8
Number documents 11,980 17,000
Size (MB) 531 764

i2004k i2005k
Keyword topics 34 29

i2003s i2004s
Keyword and structure topics 30 26

Table 4.4: Element retrieval testbeds

As with the known-item finding experiments, using the two folds per task allows us
to compare the results here directly with other results submitted to INEX. To evaluate
system performance, we use MAP, which corresponds to a variant of the official MAep
used in INEX 2005 (mean average effort-precision) where all elements marked relevant to
any degree are considered equally relevant. All statistical significance tests are performed
using a one-sided permutation test with a sample size of 50,000 [82]. Tests are corrected
within a collection and topic set by controlling the false discovery rate using Benjamini
and Hochberg’s method with a desired p-value of 0.05 (Section 10.7 of [89]). Statistical
significance tests are performed between the experimental results presented here and all
of the official submissions.

We restrict ourselves to using the title fields of topics, even though description and
keyword fields may also be present. In any case requesting a ranking where any el-
ement type may be returned (keyword queries, or structured queries with a wildcard
filter), we restrict ourselves to ranking elements covered by the (somewhat long) list of
element types listed in Appendix B. For keyword queries, we dropped quotations, ignor-
ing phrasal requests and dropped terms with a minus in front.

4.2.2 Grid Search for Parameter Estimation

While the choices of parameters in Section 4.1 provided strong results for known-item
retrieval, we do not feel it is sufficient for estimating the parameters of this element re-
trieval model. It was unclear whether the estimated parameters were any more appropri-
ate than simply distributing the weight equally across the representations. Furthermore,
the method of estimation required ranking elements by each of the representations. The
model in Section 4.1 used Dirirchlet priors to smooth each representation with an element
specific collection model. The Dirichlet prior weights were chosen heuristically without
any exploration. Finally, the model presented in this section uses Jelinek-Mercer smooth-
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ing of the representations, where we use a single collection model as a representation
and do not do Dirichlet prior smoothing of the other representations. This reduces the
number of parameters we must estimate, but also means that we cannot use the method
of setting representation weights proportional to the performance of each representation.
Indeed, it does not make sense to rank elements solely by the collection language model.
The method also provides no guidance on the choice of the element length prior β.

A very straightforward and simple approach to parameter estimation is to use a grid
search to optimize the desired retrieval metric on some training topics. This direct max-
imization approach has some distinct advantages over methods that perform a guided
search [50]. Grid search directly optimizes the desired retrieval measure and is also read-
ily applicable to any form of parameters for any retrieval system. Other methods of op-
timization compute gradients [9, 10, 51], requiring adaptations of the retrieval source
code or custom source code. Some methods only work on linear combinations of fea-
tures [14, 15, 32, 22].

Computational complexity might be a concern, but it is surprisingly manageable. It is
easy to optimize cache usage in the retrieval system by scanning many parameter values
one query at a time. This method can be easily parallelized across multiple machines.
Other approaches must make a decision about the next set of parameter choices to eval-
uate after analyzing results across all queries. While still possible to dedicate machines
to the evaluation of a query in the other approaches, this code is more specialized and
queries of differing complexity may result in underutilized machines.

There are challenges when using a grid search to set model parameters. The granu-
larity of the step size in the search can limit the optimality of the resulting parameters.
If the retrieval performance is not very peaked in the search space relative to the step
size, then we can be confident in our parameter selection. Otherwise, grid search will be
insufficient, or a detailed and computationally expensive search would be required.

The number of parameter values that must be tested is exponential in the number of
steps taken per parameter and the number of parameters. If we test s steps per parameter,
with r representations and p additional parameters (such as a length prior parameter),
then the number of total combinations of parameter values is given by

C(s+ r − 1, r − 1) · (s+ 1)p =
(s+ r − 1)!

(r − 1)! · s!
· (s+ 1)p (4.9)

For example, a search with 20 steps per parameter (s = 20), the use of three representa-
tions (e.g. collection, document, and element language models) and the estimation of an
element length prior (p = 1) results in C(20 + 3 − 1, 3 − 1) · 211 = C(22, 2) · 21 = 4851
parameter combinations that must be tested. With 20 steps per parameter, each λr will
be tested with a step size of 1/20 = 0.05 over the values (0, 0.05, 0.10, . . . , 1). Figure 4.1
shows the relationship between the number of representations and the number of valid
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Figure 4.1: The number of parameter combinations for a range of representations, includ-
ing an additional free parameter (such as a length prior parameter).

parameter combinations that must be tested for a range of steps per parameter and a
single additional parameter (p = 1).

If we assume that each query/parameter combination can be evaluated in one second
on average, 100,000 parameter combinations would take just under 28 hours to perform
all combinations for a single query on a single-core single-processor machine. Multiple
cores and/or processors further reduce the time required. Given current hardware limita-
tions and testbed sizes, testing up to 100,000 parameter combinations is reasonable, thus
one can easily experiment with 10 steps per parameter for up to six representations and
one additional parameter.

If we require a smaller step size when estimating parameters, we must rely on a mul-
tiple pass grid search, where the first step searches at course granularity and the subse-
quent steps do more refined grid searches. In this case, we are left with the same draw-
back of other parameter estimation methods: if the search space is not convex, we do not
know whether we have reached a local or a global maximum. However, if the granularity
of the earlier passes are fine enough relative to the steepness of the retrieval performance,
we can be fairly confident of the quality of the resulting parameters.

A simple grid search does not control overfitting. Yet there are practical ways to re-
duce the risk of overfitting. Working with retrieval models that have only a few parame-
ters that must be estimated can greatly control the risk of overfitting. Expert knowledge
of the retrieval task can be valuable in developing a model with a good feature set that is
not too large. The expense of grid search will help control the risk of overfitting, because
the researcher must choose a small set of features to make the search tractable. Another
approach to reducing the risk of overfitting is to ensure that the training collection con-
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Parameter i2004k i2005k i2003s i2004s
Element 0.12 (0.04, 0.32) 0.24 (0.12, 0.40) 0.48 (0.04, 0.88) 0.48 (0.16, 0.84)
Collection 0.64 (0.40, 0.80) 0.36 (0.16, 0.60) 0.12 (0.04, 0.48) 0.20 (0.04, 0.40)
Document 0.24 (0.16, 0.32) 0.40 (0.20, 0.64) 0.40 (0.08, 0.88) 0.32 (0.00, 0.56)
Length 0.96 (0.72, 1.20) 1.20 (0.84, 1.68) 0.96 (0.60, 1.20) 0.84 (0.60, 1.08)

Table 4.5: Parameters estimated using a grid search with 25 steps per parameter. A 95%
bootstrap confidence interval for the best parameter values is shown in parentheses for
each parameter.

tains many representative queries. Finally, analysis on the results of the grid search can
help verify that the parameter choices are reasonable.

4.2.3 Results

To estimate the parameters, we used a grid search with increments of 0.04 for the mix-
ture model parameters and increments of 0.12 for the length prior parameter over the
range [0,3]. These choices resulted in 25 steps per parameter and a total of 9,126 param-
eter combinations. This level of granularity is sufficient to find nearly globally optimal
parameters. The solid blue lines (without boxes) in Figures 4.2 show the results of the
search. The smoothness of these lines and relative flatness in most regions suggest that
the granularity of the search is reasonable.

We also performed a search with 10 steps per parameter, or a step size of 0.1 per mix-
ture model parameter and 0.3 for the length prior parameter. The corresponding searches
are shown in black with boxes in Figure 4.2. The search with 10 steps per parameter ap-
proximates the 25 step search, providing similar maxima with only 726 parameter com-
binations. The close approximation of the curve shape suggests that a search where sub-
sequent passes have a small number of possible parameter values limited to a narrowing
range of values would be a reasonable method for mixtures of language models for ele-
ment retrieval tasks. The insignificant loss in performance suggests that a search with a
step size of 0.1 for mixture model parameters may be sufficiently granular for this task.

Table 4.5 shows the resulting parameters from the grid search when using 25 steps per
parameter. The table also shows a 95% confidence estimate for each parameter. We esti-
mated the confidence interval using the bootstrap method, which repeatedly resamples
the query set with replacement to estimate variance. In each sample, the summary statis-
tic is computed (in this case, the parameter that optimizes MAP) and recorded. After the
summary statistics for all samples have been computed, we constructed a 95% bootstrap
percentile confidence interval from the summary statistics using the percentile method,
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Figure 4.2: The grid search with 25 steps per parameter shows a fairly smooth search
space. The height of the line represents the best mean average precision observed with
the parameter value set to the value specified in the horizontal axis. A grid search with 10
steps per parameter approximates the shape of the more refined search reasonably well.
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Combination Method i2004k i2005k i2003s i2004s

25 steps
{ Train λr, β 0.240 0.116 0.387 0.287

Test λr, β 0.235 0.113 0.384 0.284

10 steps
{ Train λr, priors 0.239 0.116 0.386 0.286

Test λr, priors 0.234 0.112 0.384 0.280

Table 4.6: Performance of the element retrieval model (MAP). Using 10 steps per param-
eter instead of 25 during the grid search results in nearly identical performance.

which takes the middle 95% of the sorted statistics to form the confidence interval. We
used bootstrap 10,000 samples during estimation. Chapter 8 of [89] contains a more de-
tailed description of the bootstrap and its use to estimate confidence intervals. We can
see in Table 4.5 that for most parameters the confidence interval is quite wide. Figure 4.2
demonstrates that for most topic sets and parameters there is a wide range of values that
can achieve near optimal performance. It is perhaps unsurprising that the confidence
intervals around the best parameter choices may be similarly wide. However, it is still
true that as the training set size increases, it is expected that the width of the confidence
intervals will decrease.

The variance of parameter optimality across test collections and query types should
not be worrying. Figure 4.2 reminds us that despite these differences, the parameter es-
timate curves are remarkably similar, even with the small query sets used in this evalu-
ation. As the training sets increase, we’d expect the curves for a query type to converge
across the different evaluation folds. It is not a concern that the parameters for different
query types (structured vs. unstructured) may be different; naturally one will get the best
performance with representative training queries, but Figure 4.2 suggests that using any
of the parameters in Table 4.5 on any of the test collections will yield reasonably good
results.

Comparison to official submissions

The comparison to official results in this subsection focus on the use of parameters es-
timated on the corresponding training fold. That is the i2004k results use parameters
estimated from the i2005k testbed (and vice versa). The i2003s results use parameters
estimated on the i2004s testbed (and vice versa).

Table 4.6 shows the results in MAP of the element retrieval model. Comparing the
i2004k test results to official INEX submissions, we find that our results would have
placed better than all of the official submissions. Our approach performed statistically
significantly better than all but three of the submissions.
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The three runs our system did not perform statistically significantly better than in-
cluded one submission from the University of Amsterdam (0.235) [79], which used pseudo-
relevance feedback. IBM Haifa submitted strong runs with MAP of 0.216 and 0.212 [47].
Their top scoring submission used pseudo-relevance feedback. Their other submission is
interesting because it used a similar feature set to our approach. They linearly interpo-
lated the cosine similarity of tf-idf weighted vectors for the element to the query with that
of the document and the query.

Our i2005k results have a higher MAP than the official submissions, and all but eleven
of these differences are statistically significant. Three runs from the University of Ams-
terdam with MAP of 0.104, 0.103, and 0.102 were the results of a language model system
using features similar to the model presented here, but performed experiments on vari-
ations on which elements were indexed [77]. University of Waterloo’s submission used
term proximity features with OKAPI BM25 to achieve MAP of 0.102∗. IBM Haifa submit-
ted a system with query expansion similar to their INEX 2004 submission that received a
MAP of 0.101 [48].

For the i2003s testbed, our system receives a higher MAP than any of the official sy-
sems. Our system performed statistically significantly better than all but 6 of the 34 sub-
missions. The top performing system, with a MAP of 0.379, was submitted by the Univer-
sity of Amsterdam [78]. Their submission combined the results of three rankings, each of
which used queries constructed from words present in the title and description fields of
the topic. The only use of the structural constraints they made was to filter the result list
by desired result element. An article and element ranking was performed using pseudo-
relevance feedback. The third ranking used the unexpanded queries to rank elements.
The final ranking was computed by combining the scores of the element rankings with
the score of the element’s article.

The official evaluation of systems for the i2004s testbed interpreted the structural con-
straints in the NEXI queries only as suggestions. Many of the systems took this view of
the topics, but some systems did interpret these constrains literally. Our system adopts
the literal interpretation of the NEXI queries, so this comparison to official submissions
from i2004s should only serve as a guide that our results are reasonable. For the i2004s
testbed, no systems performed statistically significantly better than our model, and the
model performed statistically significantly better than all but 7 of the submissions. The
top performing system measured by MAP was the University of Twente’s submission
(0.352) [56]. Their approach takes a fairly strict interpretation of the NEXI query and
combines language model beliefs estimated for each query clause and combines mul-
tiple matching subordinate elements by using a length weighted average of each ele-
ment’s belief. This submission also duplicates each about clause that has a structural

∗There was no paper published describing this submission, but the method was described in the com-
ments of the official submission
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constraint with an about clause that does not have that same restriction. For example,
//article[about(.//kwd, genetic algorithm)] would become

4.7 //article[about(.//kwd, genetic algorithm)
and about(., genetic algorithm)]

Their second best submission, with a MAP of 0.295, did not perform this query rewrite.
The University of Amsterdam’s top submission (0.303) also used language model beliefs,
but propagated all query terms to every about clause [79].

Query Analysis

Figure 4.3 shows a by-query comparison for the i2004k and i2005k testbeds of our model
to the top performing system (per query) and the 75th percentile system (per query).
Apart from Topics 190 and 229, our model performs quite well when compared to the
75th percentile results. The submissions to INEX’s 2004 CO task used here for comparison
on i2004k were optimized for a variety of tasks, while for i2005k we were able to restrict
comparison to the CO.Thorough submissions of INEX 2005. Systems submitted to the
CO.Thorough task were explicitly optimized for an evaluation measure very similar to
the MAP measure used here, which could explain why the 75th percentile system per
query seems to perform closer to the top system on the i2005k testbed than the i2004k
testbed.

Figure 4.4 shows the by-query comparison of our system to official submissions on the
i2003s and i2004s testbeds. Our model performed quite poorly relative to other submis-
sions on Topics 61, 63, 77, 81, and 84 in the i2003s. The comparison to official submissions
on the i2004s testbed includes systems which did not take a strict interpretation of the
structural constraints, returning elements of types not considered relevant in our evalu-
ation. This could be one cause of why the average precision of 75th percentile system is
low for many topics. However, we note that many submissions did take the literal in-
terpretation of structural constraints present in the queries. This is reflected in the high
average precision for the best performance observed for many queries.

Table 4.7 shows a categorization of system failures on the keyword and structured
testbeds. We also present an example topic from each of the failure modes. The author
of Topic 229 requested information about latent semantic indexing and latent semantic
analysis. Our system processed the topic title,

4.8 "latent semantic anlysis" "latent semantic indexing"

by removing the quotation marks from the query to create a keyword query. The mis-
spelling ”anlysis” was not corrected. Official submissions should also have been run
without a spelling correction, so we do not believe that is the reason for our poor results.
Upon further inspection, we observed that our results had many bibliography elements
returned for this query, which the topic author explicitly stated were not relevant in the
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Figure 4.3: Results on keyword queries compared to systems submitted to INEX. Topics
are sorted in descending order by the observed performance of the 75th percentile sys-
tem for each query. With the exception of Topics 190 and 229, our results compare quite
favorably with the INEX submissions. We expect there is more room for improvement of
our system with the i2004k testbed than with the i2005k testbed.
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Figure 4.4: Results on structured queries compared to systems submitted to INEX.
Queries are sorted in descending order by the observed performance of the 75th percentile
system for each query. Our model performed worse than the 75th percentile system for
several of the queries on the i2003s testbed. It is interesting that the 75 percentile system
tended to perform quite closely to the best system for each topic in the i2003s testbed.
This is not true for the i2004s testbed, although many systems did not take the strict in-
terpretation of the topics that we used for evaluation. Our system performed noticeably
worse than other submissions for only Topic 137 in the i2004s testbed.
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Topic Ids
i2004k i2005k i2003s i2004s

Results biased toward irrelevant element type 229

Too much smoothing 82

Handling of poorly structured query 61, 63, 77 137

No use of phrase clues 190 72, 84

Table 4.7: A categorization of system failures for keyword and structure queries, for topics
where performance was noticeably worse than that of the 75th percentile system.

narrative of the topic. We suspect that higher performing submissions for this topic may
have done a better job of returning fewer bibliography elements in their results for this
query.

For Topic 82 better parameters would have greatly improved performance. The as-
sessments for Topic 82’s NEXI query

4.9 //article[about(.,handwriting recognition) AND
about(.//fm//au,kim)

took a very strict view on the requirement that the author contain kim. Our best results
would have been achieved by using no length prior and performing no smoothing of an
element with the collection or document language models. Doing so would have resulted
in an average precision of 0.6 for that topic, which is closer to but still somewhat lower
than the highest scoring systems.

Topic 63 is a clear example of a mismatch between the query structure and the infor-
mation need. The query

4.10 //article[about(.,"digital library") AND
about(.//p, +authorization

+"access control" +security)]

places a restriction that there be a paragraph discussing “security, authorization, or access
control matters” in digital library systems. The narrative similarly requests that there be
“one or more paragraphs” discussing the security aspects. However, we believe that the
query would better represent the information need by placing all keywords and phrases
in the first about clause and dropping the paragraph clause. Any article discussing these
issues at all will have at least one paragraph on the matter. Indeed, our performance
for this query was strongest when we placed almost no weight on the element language
model, instead placing most emphasis on the collection and document language models.

Finally, in some cases we believe ignoring phrasal suggestions may have harmed per-
formance. The query for Topic 84 is one example:
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4.11 //p[about(.,overview "distributed query processing" join)]

We believe that a better handling of phrases would have resulted in improved perfor-
mance for several queries.

Summary

Our retrieval model performed quite strongly for the keyword testbeds, with no official
submissions demonstrating statistically significantly stronger performance. Systems with
higher MAP often performed query expansion or used additional fields of the topic.

For the structured query evaluations, our system performed strongly despite our very
literal interpretation of the structural constraints in the queries. None of the official sub-
missions performed statistically significantly better than our model, even though a few
had much larger MAP. This is in part due to the small query sets, but it is also due to differ-
ences in query handling from one system to another. Strict interpretations for structural
constraints on keywords in queries hurts performance sometimes, but may be advanta-
geous in other situations. Finally, our interpretation of phrasal constraints may have been
detrimental to performance in some cases.

However, we do not wish to focus further investigation on query rewrites to relax our
strict interpretations of structural constraints. Nor do we wish to expend effort on study-
ing the interpretation of phrasal constraints in NEXI queries. This dissertation focuses on
how best to use document structure in the ranking, making the most of the queries with
which we are presented. We feel that these results demonstrate strong systems for use as
baselines in further experiments regarding the use of document structure.

4.3 Inference Networks for Annotation Retrieval

This section proposes a model for the task of retrieving annotations to support other nat-
ural language processing applications. Specifically, we focus on the information needs of
the hypothetical question answering system motivated in Section 1.3. We propose here
that the adaptations of the Inference Network model used in Section 4.2 can be directly
applied with some simple extensions to the query language. Taking the view that an
annotation can be represented similarly to fields in the Inference Network model, the
application of the model is fairly straightforward.

The experiments presented in this section are in a similar spirit to our prior work
in Bilotti et al [5], there is one very important difference. In the prior work, we for-
mulated queries directly from answer-bearing sentences, resulting in experiments which
were overly optimistic about a question-answering system’s ability to hypothesize the
structure of semantic predicates contained in answer-bearing sentences. In this section,
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we form queries from a manual analysis of the predicates contained directly in the ques-
tions themselves. While still optimistic about the system’s ability to analyze the structure
of a question, this form of analysis is analogous to the type of analysis performed when
identifying the semantic predicates in the sentences present in the corpus. It is not beyond
the realm of possibility for question answering system to perform this sort of analysis on
questions. This results in experiments that are share no overlap with those in our prior
work, and we feel this change in query construction greatly improves the realism of the
retrieval scenario.

In order to support the queries in Section 1.3, the Indri query language needs a way
to express a parent-child structural constraint between annotations. This need is accom-
modated by the addition of an XPath-like structural constraint. Specifically, in an extent
restriction nested in a query, the syntax ./type allows the restriction of the query clause
to rank elements of the requested type that are indexed as children of the outer element.
For example, the query

4.12 RETURN target MATCH trained AND (suicide bombers) IN
./arg1

can be expressed as

4.13 #AND[target]( trained
#MAX( #AND[./arg1]( suicide bombers ) ) ) .

Prior to supporting retrieval of annotations, the Indri retrieval system did not have
sufficient index structures to support structural constraints. We briefly discuss extensions
to the Indri index structures developed to support this model. The most simple way to
support arbitrary structural constraints is to index the document structure as a graph and
allow loading it for a document during query operator evaluation. However, loading the
document structure for each document in a large corpus can be inefficient.

We can improve the efficiency of evaluating structural constraints by indexing addi-
tional information in the Indri retrieval system’s field lists. An Indri field list is specific
to an element type and stores the list of documents and elements of that type within each
document. It is very similar to an inverted list with term locations, except that instead
of storing a single location, the begin location and end location of the element must be
stored. This allows Indri to efficiently identify which terms or elements are contained
within the element in question during inference network evaluation. We extend the field
list structure to additionally store a unique element identifier within a document and an
identifier for the the parent of the element (Figure 4.5). Augmenting the field list in this
way enables parent and child structural constraints to be efficiently computed using a
simple join operation on the field lists for the two element types.
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Figure 4.5: Field lists can be augmented with structural information for more efficient
parent/child restrictions.

4.3.1 Experimental Methodology

The experiments in this section focus on the retrieval of sentences that contain the an-
swers to factoid questions. The “MIT 109” questions [3, 42] we use have near-exhaustive
document-level judgements for the AQUAINT corpus [27]. The AQUAINT corpus has
1,033,162 documents totaling 3.0 GB of text and contains news articles from the Associ-
ated Press (1998-2000), the New York Times (1998-2000), and stories written in English
from the Xinhua News Agency (1996-2000).

Sentence level judgments are also available for the relevant documents in this collec-
tion [4, 5]. These sentence level judgments indicate whether the correct answer to the
question can be inferred from the sentence and do not require additional context from the
rest of the document for the inference.

Our goal is to retrieve these answer-bearing sentences from the AQUAINT collection.
We have identified sentence boundaries with MXTerminator [70], named entities using
BBN Identifier [2], and semantic predicates identified in sentences using ASSERT v0.11c
[68]. The semantic roles identified by ASSERT use PropBank [37] style annotations. We in-
dexed these annotations along with the AQUAINT corpus using Indri, the Krovetz stem-
mer, and the Inquery stopword list.

The MIT 109 questions have been manually processed [4] to identify named entities,
semantic predicates, and the type of semantic argument or named-entity that would con-
tain an answer to the question. The manual tagging of the questions is unfortunately
required because ASSERT is not able to process questions.

For training and testing, we use 5-fold cross-validation using the same folds as Bil-
otti [4]. The evaluation measure we use is MAP over retrieved sentences, making these
experiments directly comparable to those in Chapter 6 of [4]. There are 18 questions
with no relevant sentences in the AQUAINT corpus, so MAP is computed over the 91
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questions with relevant sentences.
We consider two retrieval approaches. The first uses keywords and named-entity

placeholders that correspond to the answer type. This approach is representative of most
approaches to passage retrieval in question answering systems. The second approach
makes explicit use of the semantic structure of the question and candidate sentences dur-
ing ranking.

Keyword + named-entity

This simple query creation method takes all keywords identified in the question and uses
a #ANY operator for the answer type if a named-entity is the expected answer type. For
example, question 1403

4.14 When was the internal combustion engine invented?

is converted into the query

4.15 #AND[sentence](
internal combustion engine invent
#ANY:date

) .

This simple conversion method is representative of much of the work around retrieval for
question answering systems.

Structured queries

We convert the semantic predicates in the questions into structured queries by creating
a clause for each semantic predicate, where the target verb is connected with the terms
in the arguments. This method is similar in spirit to the conversion of answer-bearing
sentences into queries presented in [5], but uses the structure present in the query rather
than a known relevant sentence.

Question terms not present in any semantic predicate are included in the #AND[sent-
ence] operator that surrounds these terms and the subqueries for the semantic pred-
icates. We also use an #ANY operator if the target answer type is a named-entity. For
example, question 1403 is converted into the structured query
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Held-Out Fold
Parameter 1 2 3 4 5
Element 0.3 (0.1, 0.5) 0.2 (0.1, 0.6) 0.3 (0.1, 0.5) 0.3 (0.1, 0.5) 0.3 (0.1, 0.5)
Collection 0.5 (0.3, 0.8) 0.7 (0.2, 0.8) 0.5 (0.2, 0.8) 0.5 (0.3, 0.8) 0.5 (0.3, 0.8)
Document 0.2 (0.1, 0.2) 0.1 (0.1, 0.3) 0.2 (0.1, 0.3) 0.2 (0.1, 0.2) 0.2 (0.0, 0.3)
Length 2.1 (1.2, 2.7) 1.5 (1.8, 3.0) 2.1 (1.2, 3.0) 2.1 (1.5, 2.1) 2.1 (1.5, 2.7)

Table 4.8: Estimated parameters for keyword + named-entity queries on the training sets
corresponding to the held-out folds. A 95% confidence interval for each parameter is
shown in gray.

4.16 #AND[sentence](
#MAX( #AND[target](

invent
#MAX( #AND[./arg1](

internal combustion engine
) )

) )
#ANY:date

) .

Answer-bearing sentences that match the semantic structure and keywords identified in
the query should be ranked near the top of the result list.

4.3.2 Results

We employ a grid search with increments of 0.1 per λr parameter over the range [0,1] and
0.3 for the length prior parameter over the range [0,3], resulting in 11 possible values per
parameter. Tables 4.8 and 4.9 show the parameter estimates on each of the training sets
for the keyword + named-entity and structured queries. Figures 4.6 and 4.7 show the
parameter estimate curves for the two query types. From these figures we see there is a
fairly wide range of good parameter estimates for each parameter. While the magnitude
of MAP can vary widely from one test fold to another, the shapes of the curves for the test
folds are usually quite similar to those for their training data.
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Figure 4.6: Parameter estimates for keyword + named-entity queries on training folds and
test folds. While the test performance can vary significantly from fold to fold, the shapes
of performance of the training folds are quite similar to with the test folds.
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Figure 4.7: Parameter estimates for structured queries on training folds and test folds.
While the test performance can vary significantly from fold to fold, the shapes of perfor-
mance of the training folds are quite similar to with the test folds.
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Held-Out Fold
Parameter 1 2 3 4 5
Element 0.4 (0.2, 0.6) 0.4 (0.2, 0.8) 0.4 (0.1, 0.5) 0.5 (0.1, 0.7) 0.4 (0.1, 0.6)
Collection 0.4 (0.1, 0.7) 0.3 (0.1, 0.7) 0.4 (0.1, 0.8) 0.3 (0.1, 0.7) 0.4 (0.1, 0.8)
Document 0.2 (0.1, 0.4) 0.3 (0.1, 0.5) 0.2 (0.1, 0.4) 0.2 (0.1, 0.3) 0.2 (0.1, 0.5)
Length 2.1 (0.0, 2.4) 2.1 (0.0, 2.4) 2.1 (0.0, 2.4) 2.1 (1.5, 2.4) 2.1 (1.2, 2.7)

Table 4.9: Estimated parameters for structured queries on the training sets corresponding
to the held-out folds. A 95% confidence interval for each parameter is shown in gray.

The first row of Table 4.10 shows the performance (MAP). We see from these results
that the keyword + named-entity queries outperform the structured queries. Bilotti [3]
(Chapter 6) uses a similar keyword + named-entity baseline, Tbbn, reporting a MAP of
0.190. Bilotti wraps keywords occurring in a named-entity within #MAX( #AND[type](
terms ) ). The stronger results reported here could be attributed to the differences in
queries, the more thorough tuning provided by the grid search, or the inclusion of the
length prior. Our results are worse than the learning-to-rank method proposed by Bilotti
(with a MAP of 0.233), which includes numerous features that make use of the semantic
structure and named-entities present in the query and candidate sentences.

Bilotti [3] (Chapter 6) observes that 54 of the 91 questions with answer-bearing sen-
tences in the MIT 109 collection do not have semantic predicates. These shallow questions
are a direct result of the fact that PropBank does not cover certain verbs, such as is, be,
and become. The queries for these questions are identical for the two query conversion
methods. Deep questions are those with semantic predicates. The second and third rows
of Table 4.10 show the results if we estimate parameters separately on the shallow and
deep questions (using the same five-fold cross-validation as before). The final row shows
the combined results; training weights separately on shallow and deep questions does
not improve performance for either query creation method.

Query Analysis

Figure 4.8 directly compares the performance of the structured queries with the keyword
+ named-entity queries. We see 9 questions for which the structured query had at least
0.05 greater AP than the corresponding keyword + named-entity query and 14 where
the structured queries performed at least 0.05 lower than the keyword + named-entity
queries.

Inspection of these questions where the performance between the two query meth-
ods is large does not yield any obvious trends, so we present the two questions for each
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Partition Keyword + named-entity Structured
All 0.218 0.201
Shallow 0.197 0.197
Deep 0.232 0.206
Combined 0.211 0.201

Table 4.10: MAP for retrieving answer-bearing sentences. The first row shows perfor-
mance on test folds when using parameters optimized across all query types. The rows
below show performance when using parameters optimized separately for shallow and
deep queries, with the last row showing the combined shallow and deep results. Training
separately for shallow and deep questions provides no improvement.
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Figure 4.8: While the structured queries perform on average worse than the keyword +
named entity queries, there are some questions where the structured query noticeably
outperform the keyword + named-entity query. Questions where the structured query
has AP at least 0.05 greater than the keyword + named-entity query are on the left of the
graph in blue with numbers listed below. Questions where the structured query has AP
at least 0.05 less than the keyword + named-entity query are shown on the left in red with
numbers listed above.
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method where the improvement over the other method was greatest. The biggest‘ im-
provement for the use of a structured query is for Question 1410, What lays blue
eggs?. The keyword + named-entity query conversion is

4.17 #AND[sentence]( lay blue egg )

and the structured query for it is

4.18 #AND[sentence](
#MAX( #AND[target](

lay
#MAX( #AND[./arg1](

blue egg
) )

) )
)

This structured query makes light use of structure, where the target verb lay is connected
to an arg1 argument matching blue egg. The arg1 argument in this case is the recipient
of the “laying” action. There is only one relevant sentence for this question:

4.19 A special breed of Araucana hen comes in many hues, from
dusty pink to slate grey, and lay pale green or blue eggs.

which was annotated with two predicates, one of which did not match any query terms,
the other marking lay as the target verb and pale green or blue eggs as its ARG1.
Even though the identified semantic predicate was not perfect, failing to find A special
breed of Araucana hen as its ARG0, the structure in the query and the semantic pred-
icate match very well.

The other question for which the structured query outperformed the keyword + named-
entity approach was Question 1460,

What was the name of the dog in the Thin Man movies?

This question contains no identifiable semantic predicates, so the difference in perfor-
mance is only a result of the different smoothing parameters chosen during training.
Question 1460 was in fold 2, which had placed a weight of 0.7 on the collection model
for the keyword + named-entity queries; the collection weight for structured queries on
fold 2 was only 0.3, with a weight of 0.4 on the element model and 0.3 on the document
model. These more even weights for fold 2 on the structured queries are the cause for
better the structured query approach’s strong performance for Question 1460.

Question 1494 was most harmed by the structured query. The question

Who wrote "East is east, west is west and never the twain
shall meet"?
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was converted into the keyword + named-entity query

4.20 #AND[sentence]( wrote east east west west never twain
shall meet #ANY:person )

and the structured query

4.21 #AND[sentence](
#MAX( #AND[target](

wrote
#MAX( #AND[./arg1](

east east west west never twain shall meet
) )

) )
#ANY:person

)

There is only one answer-bearing sentence in the collection,

4.22 One hundred years ago, Kipling wrote, ‘‘Oh, East is East,
and West is West, and never the twain shall meet.’’

ASSERT correctly identified that there was a semantic predicate with the target verb
wrote and BBN did identify Kipling as a person. However, ASSERT failed to pick up
the quotation as the ARG1 clause of the semantic predicate. Here we see that the retrieval
model is not sufficiently annotation-robust to use the structured query for this question;
annotation errors cause the more specific structured query to fail in this case.

Question 1453, Where was the first J.C. Penney store opened?, was the
second most harmed question by the structured query approach. It was converted into
the keyword + named-entity query

4.23 #AND[sentence]( first jc penney store open #ANY:location )

and the structured query

4.24 #AND[sentence](
#MAX( #AND[target](

open
#MAX( #AND[./arg1]( first jc penney store ) )

) )
#ANY:location

)

There is a single answer-bearing sentence, which is duplicated twice in the collection:

4.25 In 1902, J.C. Penney opened his first store, in Kemmerer,
Wyo.
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This sentence was tagged with a single semantic predicate, with opened as the tar-
get verb, J.C. Penney as the predicate’s ARG0, his first store as the ARG1, and
Kemmerer and Wyo. tagged as locations. While this is a correct interpretation of the
sentence, the ARG1 his first store is a poor match to the query’s parse, which ad-
ditionally placed jc penney in the ARG1.

Summary

The question-answering experiments presented in this section demonstrate that while the
use of semantic structure in queries is intuitively appealing, the retrieval model used here
is not sufficiently annotation-robust to provide strong results. These results on the surface
may seem contradictory to our prior work in [5], which found that even in the presence
of errors in the annotation process a structured query could give better results than a
keyword query. However, in the prior work, the queries were formed directly from the
answer-bearing sentences. This resulted in retrieval scenarios we feel were overly opti-
mistic about the question-answering systems ability to identify, in advance of retrieval,
the structures that contain the answer to the questions. The results in this section repre-
sent a more realistic scenario, which relied only on the semantic predicates present in the
questions themselves.

When the semantic structure in the question and the answer-bearing sentences match
perfectly, the structured queries can do a better job of retrieving these sentences than an
approach which does not use the structure. However, Questions 1494 and 1453 illustrate
that this method is not robust to errors in the annotations or a mismatch between the
structure in the query and the answer-bearing sentence. Yet for both of these questions
there is a partial match between these semantic predicates. We believe that improving
the annotation-robustness of the retrieval model may result in boosts to retrieval perfor-
mance. We propose specific ways to address annotation robustness in Section 5.4, and
revisit these experiments in Section 6.3.

4.4 Summary

This chapter presented retrieval models developed separately for each task of known-
item retrieval of web pages, element retrieval, and retrieval of annotations supporting
natural language processing applications. These models serve as baselines in the exper-
iments in Chapter 6. Each model has its own strengths; the mixture of language models
for known-item finding effectively combines evidence from alternative document rep-
resentations, the element retrieval models present related approaches to ranking parts of
documents and provides some support for structured queries, and the Inference Network
model for annotation retrieval allows complex information needs to be expressed.
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Section 4.2.2 provided a thorough investigation of the use of grid search for parameter
estimation. The costs of grid search are surprisingly manageable on modern architectures,
readily applicable to parameters of any form for any retrieval system, and can be used to
directly optimize the evaluation measure of interest. The grid search results are helpful
during failure analysis, enabling the examination the parameters yielding the best perfor-
mance for that query. The data from the grid search also provide the ability to estimate
confidence intervals around parameters.

The grid search employed for element and sentence retrieval demonstrate that a fairly
coarse grid search is sufficient for estimating mixture-model parameters, with relatively
flat performance estimates over a fairly wide range of parameter values. The wide values
for the bootstrap confidence intervals for parameter estimates provides additional evi-
dence that a coarse grid search is appropriate for parameter estimation in these retrieval
tasks.

Yet the development of these models leaves us wanting. That they are different mod-
els makes it difficult to analyze properties of models that serve these three tasks well.
The known-item retrieval experiments used a generative language-modeling approach.
The approach to element retrieval for keyword queries used a different generative model,
opting to use Jelinek-Mercer smoothing with a single collection model instead of using
representation-specific collection models for smoothing using Dirichlet priors. These be-
lief estimates were heuristically used within the Inference Network model for used struc-
tured queries in the element and answer-bearing sentence retrieval experiments.

The models separately address some of the desirable properties of models supporting
the retrieval of structured documents and information needs, but none of them satisfy
all properties. Each of these models uses statistical language modeling techniques for
belief estimation, leading us to conclude that a unified retrieval model inspired by these
separate models will form a better framework for understanding the properties necessary
for effective retrieval.



An Extended Inference Network Model
CHAPTER 5

This chapter proposes a retrieval model based on the Inference Network model, extended
to provide more support for structured document retrieval. Section 3.5 presented the In-
ference Network model and detailed how it has some desirable structure-expressive and
result-universal properties. The model in this chapter connects the task-oriented retrieval
models presented in Chapter 4 to the Inference Network model to provide a single frame-
work for the investigation of the retrieval of structured documents, elements, and annota-
tions. We also propose specific extensions to make it the Inference Network model more
structure-aware and annotation-robust.

The changes proposed in this chapter are also motivated by a desire to clarify the use
of the Inference Network model and the Indri query language. While the Indri query lan-
guage may not have been designed for the casual user, it was designed with the researcher
in mind. Our own anecdotal experience has found that researchers not intimately famil-
iar with the Inference Network model and the internals of Indri have difficulty under-
standing how to construct good queries. In our adaptations of the model, we attempt to
simplify the query language wherever possible, moving smoothing decisions outside the
query language. We also propose changes to the query language to make experimenter
decisions about extent retrieval in structured queries more explicit.

It is important that the distinctions between prior work and proposed extensions be
explicitly stated. Metzler et al [53] formally connected the Inference Network model and
statistical language modeling techniques through the introduction of multiple-Bernoulli
estimation for belief operators. Strohman et al [84] provided new extensions to network
creation with the introduction of the Indri query language. These extensions allow rank-
ing document elements using the extent restriction operator and the dynamic creation of
mixture models through the use of the weighted sum operator and field restriction. They
also recognized the need for document priors when ranking.

However, many issues surrounding ranking of structured documents, elements, and
annotations remain unaddressed. The use of weighted sum and field evaluation in In-
dri allows limited ability to smooth across related representations for a document (Sec-
tion 5.1), but its use and intuitions are not formally connected to the Inference Network
and the multiple-Bernoulli model in prior work. Section 5.1 discusses these operations
and formally connects the mixture models and the multiple-Bernoulli model in the Infer-
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ence Network model. Section 5.1 also extends the representations available for smoothing
beyond those contained strictly within the element being ranked.

The semantics of nested extent restrictions in the Indri query language are not well
described in prior work. Section 5.2 considers issues surrounding how the evidence from
multiple matching extents should be combined when ranking. In order to clarify the
semantics of extent restriction, the unified model in this chapter uses a new #SCOPE op-
erator to perform extent restriction rather than allowing extent restrictions on arbitrary
belief nodes.

Finally, prior work with inference networks did little to address errors in annotations.
Section 5.4 describes how one could model annotation errors within the Inference Net-
work model.

5.1 Structure-Aware

In order to elegantly and flexibly specify and combine multiple representations within
the Inference Network model, we introduce a representation layer (Section 5.1.2). The
representation layer allows the grouping of related elements within a collection to form
a representation (Section 5.1.3). Multiple representation nodes can be combined to form
a smoothed model for an element (Section 5.1.4). This approach gracefully combines
multiple representations and allows for the grouping of model choices within parameter
files, simplifying the query construction process. First, we motivate why the existing
approach within the Inference Network model is not sufficiently clear.

5.1.1 Motivation

While there is support within Indri to create structure-aware retrieval, we do not feel that
this support is adequate. Consider a scenario where one wishes to place extra emphasis
in ranking on terms occurring in the title elements in a document. There are several
mechanisms within the Inference Network model and the Indri query language to isolate
term occurrences in fields. We will use the example where we are searching for arti-
cles about suicide bombings, and consider transformations of the base query suicide
bombings.

The first approach is through field restriction, which restricts counts in estimation to
occurrences within that field. For example, in the query

5.1 #AND( suicide bombings suicide.title bombings.title )

the belief operator for suicide.title counts only occurrences of the term suicide in
the document that occur in a title field. The belief estimate for this field restriction does
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not create a separate representation of the title fields, but uses the document language
model. Specifically, the belief estimate for suicide.title is

P (suicide.title|d, αd, βd) =
#(suicide in title of d) + αd

|d|+ αd + βd
. (5.1)

The use of field restriction does not effectively create an alternative representation of the
document, it just restricts counts to the requested field. As a result, field restriction is
more commonly used to restrict term occurrences to annotations of certain types, such as
a part-of-speech or a named entity type.

A different approach to using the title field is through extent retrieval, such as

5.2 #AND( suicide bombings
#MAX( #AND[title]( suicide bombings ) ) )

In this approach, all title fields in the document are ranked and the belief of the best
matching title field is selected. This method results in a score-combination approach, be-
cause the score of the best matching title element is multiplied by the scores of the
concept nodes for suicide and bombings. We would ideally prefer an in-model combi-
nation method.

The first step for in-model combination is to use field evaluation to form a representa-
tion from the title field. Field evaluation is done through the syntax term.(field), for
example suicide.(title). The belief estimate is formed by using the language model
formed from the title fields present in the document:

P (suicide.(title)|d, αtitle(d), βtitle(d)) =
#(suicide in title of d) + αtitle(d)

|title of d|+ αtitle(d) + βtitle(d)
. (5.2)

To use field evaluation to combine beliefs in a query, one could write

5.3 #AND(#WAND(0.6 suicide 0.4 suicide.(title))
#WAND(0.6 bombings 0.4 bombings.(title)))

The document’s language model is used for the suicide and bombings query terms,
while the title language model is used for suicide.(title) and bombings.(title).
Since the term occurrences in the title elements are also contained in the text of the
document, this approach will place additional emphasis on the titles.

While this approach is in a sense an in-model combination as the ranking can be ex-
pressed by a single query, the effect is in practice identical to that of score combination.
For Query 5.3, applying the belief estimation in the inference network shown in Table 3.4
results in a belief estimate of

P (I = 1|D = d, α, β) =
[
P (rs|θd)0.6 · P (rs|θt(d))0.4

]
·
[
P (rb|θd)0.6 · P (rb|θt(d))0.4

]
= [P (rs|θd) · P (rb|θd)]0.6 ·

[
P (rs|θt(d)) · P (rb|θt(d))

]0.4 (5.3)
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where rs denotes a representation vector where rs = 1 and the s dimension is represents
the suicide concept and rb corresponds to an observation of the bombings concept.
Equation 5.3 shows that this application of the Inference Network model is no different
from multiplying the belief of documents satisfying the information need expressed by
the query suicide bombings by the belief for that same query estimated using a rep-
resentation for those documents estimated from the title elements:

5.4 #WAND(0.6 #AND(suicide bombings)
0.4 #AND(suicide.(title) bombings.(title)))

This is not what we believe the users would intend; they do not wish to rank documents
by the belief that the document and its title representation are both about suicide
bombings.

The developers of Indri were aware of this shortcoming, and introduced the #WSUM
operator to allow for in-model combination. This weighted sum operator has the syntax
#WSUM(w1 b1 w2 b2 . . . wn bn) and combines beliefs using the formula

∑n
i=1wi · bel(bi).

Thus, our example query may be better written as

5.5 #AND(#WSUM(0.6 suicide 0.4 suicide.(title))
#WSUM(0.6 bombings 0.4 bombings.(title)))

which results in documents being ranked by

P (I = 1|D = d, α, β) =
[
0.6P (rs|θd) + 0.4P (rs|θt(d))

]
·
[
0.6P (rb|θd) + 0.4P (rb|θt(d))

]
(5.4)

where θd and θt(d) are estimated by smoothing the counts with Dirichlet prior parameters
given by α, β, αt, and βt.

Here we see a major point of confusion. The α and β parameters for smoothing are
specified as parameters to the retrieval model, while the mixture models and their corre-
sponding weights must be specified in the query language. Both are done with smoothing
and the combination of representations in mind, but some parameters are in the queries
and others are in parameter files. Placing some parameters in the query and others in pa-
rameter files is confusing. Furthermore, this approach requires the construction of long
queries, where query terms are duplicated for each representation.

These smoothing parameters and representation choices are commonly set only at the
batch experiment level. For most research, it makes sense to group all of these model
choices within the parameter files. For example, in when one invokes IndriRunQuery,
which searches for a set of queries and returns formatted results, one can easily set the
smoothing parameters on the command line or in a parameter file. To use Dirichlet prior
smoothing with prior parameter of 1500, one could include the parameter file:

<parameters>
<rule>method:dirichlet,mu:1500</rule>

</parameters>
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These smoothing parameters would used for all queries. It would be natural to devise a
similar mechanism for the specification of representations and the weights these represen-
tations should have. Grouping these model and smoothing choices within the parameter
files would clarify and simplify the design and implementation of these experiments, re-
moving the need to create complicated queries to perform conceptually simple smoothing
tasks. Specifically, one would no longer need to use the weighted sum operator; Query 5.5
could be simplified to #AND( suicide bombings ), with the choice of representations
(title, document) and representation weights (0.6, 0.4) specified in the parameter file and
not in the query. In order to facilitate this, we need a mechanism to formalize the model
choices one makes during representation selection, combination, and smoothing.

The Inference Network model presented in Section 3.5 uses a maximum-a-posteriori
method to estimate the language models. It uses estimates of P (ri|C) formed from ob-
servations across the entire collection to set the parameters α and β of the multiple-Beta
prior. It is conceivable that a structure-aware adaptation of the model could simply do this
through choices of α and β of the multiple-Beta prior that also make use of the related
elements, such as titles, or related representations, such as in-link text. However, using
the prior in this way obfuscates the process. The model itself would provide little guid-
ance on how the observations in these multiple related representations, elements, and the
collection model estimate should be combined to form a meaningful prior.

Yet another approach would use the method of Robertson et al. [73] to weight obser-
vation of terms from related elements. While this approach would effectively bias the
estimation process to incorporate the evidence from related text, it does not explicitly
state how the weighted term combination relates to statistical estimation techniques.

Instead, we believe that the introduction of a representation layer to the Inference Net-
work model effectively captures the process used to create representations and combine
them for ranking.

5.1.2 The Representation Layer

Rather than assuming that the text of an element or representation are the only valid
observations of the concepts for which that element or representation are relevant, we
instead assume that any observation in the collection may influence this estimate. The
model achieves this by introducing a model representation layer, which is an intermedi-
ate layer between the observed text in the element nodes and the model nodes for the
elements (Figure 5.1).

The model representation layer is similar in spirit to the text representation layer es-
poused by Turtle [86]. The observed collection elements are similar to the document
nodes in Turtle’s inference network. However, Turtle chose a one-to-one correspondence
between the document and text representation nodes for simplicity. As a result, many
presentations of Turtle’s application of the Inference Network model simply omit the text
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Figure 5.1: The proposed inference network modifies prior inference networks by intro-
ducing the representation models φ between the observation nodes and the model nodes.

representation nodes. Our work reintroduces this concept through (model) representa-
tion nodes but does not restrict them with a one-to-one correspondence; a representation
for an element may be estimated from one or many elements in a collection.

The (element) model nodes we use correspond directly to the language model nodes of
modern applications of the Inference Network model proposed by Metzler et al [52], ex-
cept that we estimate them through an interpolation of the representation nodes. Metzler
et al’s approach makes the same simplifying choice Turtle made: a one-to-one correspon-
dence between model nodes and representation nodes.

The model nodes estimate for which concepts the element is likely to be relevant. It is
typical that each model node is estimated by combining the evidence from a small num-
ber of representations. These representation nodes group the observations from related
nodes into a single inference network node for use with the model nodes. Most represen-
tation nodes are connected to only a few observation nodes. However, the model does
explicitly allow for representation nodes connected to very many observation nodes, such
as one grouping all document elements to form a collection language model.

For example, the model node for news article in Figure 1.1 can be estimated from
a representation node for the article itself, one for the title of the article, and a collec-
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Figure 5.2: An example of an inference network for the query #AND( suicide
bombings ) using element, title, and collection representations.

tion language model. Figure 5.2 shows an instantiation of the inference network for es-
timating the belief that the article element v1 is relevant to the query #AND( sucide
bombings ). The model node θv1 is estimated using a mixture of three representations:
the article element itself (φ1), the title of the article (φ2), and one formed from all elements
in the collection (φ3). The element representation φ1 is only connected to the element’s
vertex v1. Similarly, the title representation φ2 for element v1 is only connected to the ver-
tex v3, the title of v1. Finally, the collection representation φ3 is connected to all vertexes
in the collection.

5.1.3 Creating Representation Nodes

The unified Inference Network model uses functions of the collection graph structure to
identify the element observation nodes forming a representation for a model node. Each
function f of the graph structure maps a vertex v ∈ V to a set of vertexes. Recall the
one-to-one mapping between vertexes in the collection graph structure and elements. We
use the terms “vertex” and “element” interchangeably. For example, the “self” function
simply returns a set containing only the vertex to which the function is applied:

s(v) = {v}.
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Similarly, the “document” function returns a single element set containing only the doc-
ument that contains the element:

d(v) = {vi ∈ V : vi is the document containing v}.

On the other hand, the “collection” function returns a set containing all documents in the
collection:

Cd(v) = {vj ∈ V : vi ∈ V ∧ vj ∈ d(vi)}

Here, the Cd function returns all “document” elements. One could define a title collec-
tion function Ctitle, which constructs a set containing all title elements. The self and
document functions are one-to-one, but the collection function returns a set of vertexes
corresponding to the notion of “document” vertexes. In a corpus of news articles like the
one presented in Chapter 2, the collection function may return all vertexes of the article
type.

The functions return sets of elements that represent the model in a common manner, so
it is reasonable to treat each observation of a term or complex feature within an element in
that set as equally representative of the representation model. We view the observations
of concept vectors contained within an element as sets of observations anchored in text.
Therefore, when estimating the representation nodes, we form a set of observations from
the set of elements returned by the function f(v). A maximum likelihood estimator is a
reasonable estimator for φf(v):

P (ri|φf(v)) = P (ri|MLE(f(v))) =
obs(ri, f(v))

obs(f(v))
(5.5)

where obs(ri, f(v)) is the number of observations of the feature ri in the union of the sets
of observations for elements in f(v) and obs(f(v)) is the total number of observations in
the union of the sets of observations for elements in f(v).

5.1.4 Estimating Model Nodes

Introducing the representation nodes and functions of the collection graph structure for
their creation enables a very simple and direct way to specify how to create and estimate
the model nodes. By specifying a set of representation functions, the designer of the in-
ference network explicitly expresses which representation nodes should be instantiated
and connected to the model node for an element. Generally, the choice of representation
functions depends on both the corpus and the task. In principle, one could condition the
set of representation functions on the element or its type. For example, a medical record
search system may have element types where smoothing may best be performed by con-
ditioning the representation function on the element type; it may be important to smooth
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free-text patient notes differently than more structured fields such as treatments. How-
ever, for simplicity, this dissertation focuses on choosing a single set of representation
functions for all elements in the collection.

Given a set of representation functions F , the retrieval model estimates θv using a
mixture of multiple-Bernoulli models:

P (ri|θv) =
1

ZF,v

∑
f∈F

(
P (f(v)

r→ θv) · P (ri|φf(v))
)

(5.6)

where
ZF,v =

∑
f ′∈F

P (f ′(v)
r→ θv) (5.7)

is a normalizing constant. P (f(v)
r→ θv) represents the belief that an observation from the

elements in f(v) is representative of the model of concepts for which v is relevant.
In derivations where the vertex being passed to a function of the collection graph

structure is unambiguous, we may choose to simplify notation by omitting (v). For ex-
ample, Equation 5.6 can be rewritten as

P (ri|θv) =
1

ZF,v

∑
f∈F

(
P (f

r→ θv) · P (ri|φf )
)

Writing P (f
r→ θv) has the nice property that if one believes that set of observations in

two different representation functions fi and fj are equally representative of θv, then one
can simply assert that P (fi

r→ θv) = P (fj
r→ θv).

In traditional presentations of generative models, it is more common to write

P (ri|θv) =
∑
f∈F

(
P (f(v)) · P (ri|φf(v))

)
(5.8)

where P (f(v)) is the probability of choosing the representation f(v) in the generation
process. The traditional presentation of generative models is misleading. It does not
fully stress the goal that θv be a model of the queries to which the element v is relevant.
Using P (f

r→ θv) reminds us of this process, and that we make assumptions about how
representative a representation function is of the queries to which the target element is
relevant when we choose a smoothing method.

Equivalences with Smoothing Methods

By choosing F = {s,Cd}, φ(f(v)) = MLE(f(v)), and making additional assumptions
about how P (f

r→ θv) should be estimated, it is possible to show connections between
this model and the smoothing approaches presented in Section 3.4.2.
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Jelinek-Mercer Smoothing One can achieve the same effects as Jelinek-Mercer smooth-
ing [96] by setting P (f

r→ θv)/ZF,v = λf :

P (ri|θv) =
∑

f∈F
P (f

r→θv)
ZF,v

P (ri|φ(f(v))

= λs · P (ri|φ(s)) + λCd
· P (ri|φ(Cd))

= λs · P (ri|MLE(v)) + λCd
· P (ri|MLE(C))

(5.9)

Jelinek-Mercer smoothing is equivalent to setting P (f
r→ θv) = λf ·ZF,v. Although the con-

stant ZF,v is unknown, Jelinek-Mercer smoothing asserts a belief that the relative repre-
sentativeness of a representation function is a constant relative to the other representation
functions. That is, P (s

r→ θv)/P (Cd
r→ θv) = λs/λCd

is a constant.

Smoothing with Dirichlet Priors We can derive an estimate equivalent to that of smooth-
ing with Dirichlet priors [95, 96, 62, 90] by assuming that the document collection func-
tion Cd has a constant probability of being representative of the queries for which v is
reelvant, while the probability of representativeness of the observations from the element
itself increases linearly with the element’s length. We can model these assumptions by
estimating

P (s
r→ θv)) = α · |v|, and

P (Cd
r→ θv) = α · µ.

(5.10)

Applying these assumptions to Equation 5.6 results in estimating

P (ri|θv) = α·|v|
α·|v|+α·µ · P (ri|φ(s) + α·µ

α·|v|+α·µ · P (ri|φ(Cd))

= |v|
|v|+µ · P (ri|MLE(v)) + µ

|v|+µ · P (ri|MLE(C)).

(5.11)

Here we see that smoothing using Dirichlet priors asserts that the representativeness of
an element relative to the collection increases linearly as an element’s length increases.
That is, P (s

r→ θv)/P (Cd
r→ θv) = |v|/µ.

Two-Stage Smoothing To show the relationship between the mixture of multiple Ber-
noullis and two-stage smoothing, we must make a rather different assumption. We must
assume that the representativeness of the element approaches a constant times our esti-
mated representativeness of collection model as the length of the element increases. We
can achieve this behavior by setting

P (s
r→ θv) =

|v|
|v|+ α

· β · P (Cd
r→ θv) (5.12)
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where α, β > 0. By making this assumption, we find that

P (Cd
r→θv)

ZF,v
= P (Cd

r→θv)
|v|

|v|+α ·β·P (Cd
r→θv)+P (Cd

r→θv)

= 1
|v|

|v|+α ·β+1
= |v|+α
|v|·β+|v|+α

= |v|+α
(β+1)·|v|+α =

|v|
β+1

+ α
β+1

|v|+ α
β+1

.

(5.13)

If we set β = 1−λ
λ

where 0 < λ < 1 then

β + 1 = 1−λ
λ

+ 1

= 1
λ
.

(5.14)

If we also set α = µ
λ

, then
P (Cd

r→ θv)

ZF,v
=
λ · |v|+ µ

|v|+ µ
. (5.15)

From this derivation we can see that the two-stage smoothing approach of Zhai and Laf-
ferty [96] can be expressed in the unified Inference Network model by assuming Equa-
tion 5.12 and using φ(f(v)) = MLE(f(v)). If we examine the relative representativeness
of the element’s representation function to that of the collection, we see that

P (s
r→ θv)/P (Cd

r→ θv) =
|v|
|v|+ α

· β

β controls the asymptote of representativeness of the element relative to the collection
(similar to the constant λs/λCd

in Jelinek-Mercer smoothing), while α controls the rate at
which the element’s estimated representativeness increases as a function of observations.

5.1.5 Observations

We have created a process for estimating model nodes in inference networks from multi-
ple representations. This process consists of three steps:

1. Choose a small set of representation functions F appropriate for the collection and
retrieval task.

2. Specify how the observations from elements returned by a representation function
should be combined to estimate φ(f(v)).
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3. Estimate or choose the combination parameters P (f(v)
r→ θv).

By the using the functions F = {s,Cd}, φ(f(v)) = MLE(f(v)), and making specific
choices about P (f(v)

r→ θv) we have shown that the model estimation techniques used
in this chapter can be equivalent to the statistical language model estimation techniques
presented in Section 3.4.2. These equivalences lead us to believe that the using the maxi-
mum likelihood estimator for φ(f(v)) is reasonable. The estimation process outlined here
makes explicit our assumptions about the relative merit of the element text and collection
text in the estimation of the element’s model. This process also casts new light on the
traditional estimation methods.

We reassert here that the goal of the model estimation process is one where we wish
to estimate the model of queries for which the element is relevant. The first approaches
used straightforward combinations of models estimated from the text of the element and
the text of the entire collection. This approach makes sense when little is known about
the retrieval task or characteristics of the text collection. However, in some cases, biasing
the estimation process using alternative representations has been shown to be successful
for various retrieval tasks. Many of these cases are described in Section 3.4.4. The model
presented here formalizes this process in the inference network framework.

Knowledge of the task and corpus should guide the researcher to choose an appro-
priate set of functions F that represent assumptions about which related vertexes in the
graph G should be used in the estimation of a language model for vertexes. This section
has already introduced three functions, the “self” function s, the “document” function d,
and the collection function, Cd. Table 5.1 lists these and other example functions of doc-
ument and collection structure. These functions can easily be applied to many retrieval
tasks.

To keep the number of parameters we must estimate to a minimum, we choose to set
the representativeness of each function of θv as a constant, implying that

P (f(v)
r→ θv)

ZF,v
= λf . (5.16)

This approach is equivalent to using Jelinek-Mercer smoothing to combine the represen-
tation models. While it may be possible to have a more accurate estimation method by
making different model choices, they introduce additional parameters that we must esti-
mate. The choices we have made for the model results in |F | − 1 unspecified parameters
(the knowledge that the λ values must sum to one reduces the number of parameters by
one). Making different choices is likely to increase the number of unspecified parame-
ters. By doing so, it either increases the amount of training data needed to estimate the
parameters for the |F | − 1 parameters or reduces the number of functions for which we
can reliably estimate an effective parameters with any given training collection.
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Function Definition Description
s(v) = {v} the vertex itself
d(v) = {vj ∈ V : vj is the document containing v} the “document” containing the vertex

oσV
(v) = {vj ∈ V : vj contains v, `V (vj) = σV } all vertexes of type σV containing the vertex

Cd(v) = {vj ∈ V : vi ∈ V ∧ vj ∈ d(vi)} the set of “document” vertexes
CσV

(v) = {vj ∈ V : `V (vj) = σV } all vertexes of type σV
p(v) = {vj ∈ V : (vj ,p, v) ∈ E} the parent of a vertex
l(v) = {vj ∈ V : (vj , r, v) ∈ E} the elements linking to the vertex

kσV
(v) = {vj ∈ V : (v,p, vj) ∈ E, `V (vj) = σV } all children (kids) of type σV

deσV
(v) = {vj ∈ V : de(vj , v), `V (vj) = σV } all descendants of type σV
r(v) = {vj ∈ V : v ∈ de(vj),p(vj) = ∅} root of tree containing v

Table 5.1: Example functions of the graph structure encoding assumptions about related
structural elements. A small subset of these functions is chosen for F when constructing
a retrieval model.

Through choosing to estimate φ(f(v)) using the maximum likelihood estimator, using
Jelinek-Mercer to combine the representation models, one can recreate retrieval models
known to be effective for a variety of tasks. For example, for known-item retrieval of web
documents, a choice of

F = {s,Cd, detitle, l} (5.17)

results in a θv that is estimated by interpolating a maximum likelihood estimators formed
from the text of the document, the collection text, the title text, and in-link text from other
documents. These choices recreate the language models investigated by Kraaij et al. [38].
One can recreate the highly effective keyword rankings of Sigurbjörnsson et al. [77] for
XML element retrieval by choosing

F = {s,Cd, d}, (5.18)

using the maximum likelihood estimator for φ(f(v)), Jelinek-Mercer smoothing, and an
element length prior.

While the estimation methods presented here are on some level just a new formalism
describing the smoothing approaches used in Chapter 4, the presentation here is impor-
tant. It formally justifies the use of mixtures of multiple-Bernoulli models for in-model
combination of the evidence from multiple representations. The use of the mixtures of
multinomials for belief estimation in the Inference Network model used in Chapter 4,
while mathematically equivalent, was not well justified for complex concepts.

The introduction of the representation layers closely parallels the choices most exper-
imenters will make in setting up retrieval tasks, resulting in simplifications to queries
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that were unnecessarily verbose for the most common use cases. This allows grouping
the representation functions F , estimation choice φ, and combination choices P (f

r→ θv)
within parameter files outside of queries, greatly clarifying the estimation process and
reducing the need for excessively verbose queries to create in-model combination.

It’s important to note that the representation layer will fill most researchers’ needs,
greatly simplifying query construction for them. However, we do not wish to sacrifice
the power introduced by field evaluation and the #WSUM operator. There are cases where
a researcher may wish to explore models where the weights on representations vary from
one concept to another. For example, Petkova and Croft [66] use collection statistics to
weight terms per representation. One may also wish to use a weighted list of synonyms
in a field when querying semantic annotations.

5.2 Structure-Expressive

The structure-aware adaptations proposed in Section 5.1 allow for the creation and in-
terpolation of multiple representations. However, there are situations where combining
representations and keyword retrieval is not a sufficient representation of a user’s in-
formation need. The user may wish to retrieve elements of a certain type, touching on
result-universality, or have the need to specify relationships between elements and key-
words.

We first motivate the need for more expressivity than keywords in the retrieval lan-
guage, highlighting challenges in clearly conveying the impact of element retrieval op-
erators to the query creators. Section 5.2.2 then proposes the #SCOPE query operator
that helps makes the impact of nesting element restrictions in a query more explicit to
the user. Finally, Section 5.2.3 shows an important connection between one form of the
#SCOPE operator and keyword retrieval.

5.2.1 Motivation

We described how one can produce rankings on elements of a specific type in Section 3.5.1.
It may also be desirable to nest queries of this form. For example, a user may wish to re-
trieve articles about suicide bombings containing images of investigators in Kabul.

Recall the XML of our sample news article (Figure 2.1), which grouped image links
with their captions in an image element. A query for the user’s information need may
combine matches of the keywords Kabul and investigators in the image elements
with the score of the article element matched against the keywords suicide and
bombings. One way to express a query such as this in the Indri query language is
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5.6 #AND[article](
suicide bombings
#AND[image](Kabul investigators)

)

The outer #AND[article] is needed to in order to retrieve article elements; without
it, image elements would be ranked. Indri’s current implementation does not specify
how the beliefs of multiple matching image extents should be combined. The default
behavior is to include the belief of each extent in the containing operator. In this example,
the containing operator, #AND[article], would be used, resulting in a multiplication of
the beliefs and exhibiting a bias toward retrieving articles with a sole image that matches
the query terms. One could wrap the #AND[image] query clause with other operators,
such as #OR or #MAX. However, it is easy to overlook the need to specify a combination
method when using extent restrictions or other structural constraints, and this is a com-
mon error when creating structured queries.

5.2.2 Scope Operator

Here we assert that for clarity, one should separate the context restriction to image el-
ements from the #AND operator and replace it with a new #SCOPE query operator that
corresponds to the inserted inference network node. In addition to specifying an extent
restriction for selecting desired elements, the #SCOPE operator has a mandatory argu-
ment specifying how the evidence from multiple matching elements should be combined.

Table 5.2 shows available combination techniques. The ψ(v) function operates on el-
ements. It evaluates the structural constraints on v, identifying the elements in the col-
lection that satisfy the structural constraints specified in the scope operator for the input
element v. It then returns tuples of the concept nodes constructed for the nested query
with their paired vertexes in the collection graph structure.

The #SCOPE belief operator requires the combination method and extent restriction as
qualifiers, as well as a single belief operator as its nested query clause. Query 5.6 can be
written using the #SCOPE operator as

5.7 #SCOPE[result:article]( #AND(
suicide bombers
#SCOPE[or:image]( #AND( Kabul investigators ) )

) ) .

If any other operator is the outermost query operator, document retrieval is performed
by the retrieval system. When a scope operator is nested within a query, the elements
matching that inner context and also contained within the element being evaluated as its
outer context are the ones used and combined by the scope operator.
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Method Formula Remarks

result return b(t) for each tuple t ∈ ψ(v)
used when #SCOPE is outermost query
operator to specify retrieval unit

or 1−
∏

t∈ψ(v)(1− b(t)) rewards multiple matching elements

and
∏

t∈ψ(v) b(t)
biased toward few elements matching
with all having high belief

avg 1
|ψ(v)|

∑
t∈ψ(v) b(t) balanced average of beliefs

min mint∈ψ(v) b(t) minimum belief of matching elements

max maxt∈ψ(v) b(t) maximum belief of matching elements

Table 5.2: This table describes the combination method parameter of the #SCOPE operator.
The ψ function returns tuples of inference network nodes and elements satisfying the
structural constraint of the scope operator for element v. The b(t) is a belief estimated
using the inference network for the tuple t. For the standard element retrieval without
prior probabilities, t = (qi, vj) ∈ ψ(v) and b(qi, vj) = P (qi|θvj).

In addition to providing support for matching subqueries on elements contained within
the result elements, the unified Inference Network model introduces operations for spec-
ifying constraints on the graph structure. Table 5.3 shows the structural constraints we
add to the Indri query language. For example, in the query

5.8 #SCOPE[result:title]( #AND(
afghanistan
#SCOPE[or:.\\article]( #AND( suicide bombings ) )

) ) ,

the user requests that title elements be ranked by how relevant the title element is to
afghanistan and the title element’s ancestor article elements are relevant to the
query #AND( suicide bombings ). In this query, “outer context” of the .\\article
scope context restriction is the title context restriction in this query.

In many collections, there are often elements of different types that a user may wish
to view as equivalent during ranking. One way to support this would be to conflate the
types during indexing. However, this has the disadvantage that different users of the
system may have different views about which element types are equivalent. The example
article in Chapter 2 has an intro paragraph element as well as several paragraph
elements. For some information needs, it may be appropriate to treat elements of the type



5.2. STRUCTURE-EXPRESSIVE 101

Constraint Syntax
child #SCOPE[method:./type](...)

descendant #SCOPE[method:.//type](...)

parent #SCOPE[method:.\type](...)
ancestor #SCOPE[method:.\\type](...)

Table 5.3: Structural constraints for nested information needs. A * may be substituted in
place of a type to express that elements of any type matching the structural constraint are
permissible. The slash notation used to express structural relationships is similar to that
used in XPath.

intro paragraph the same as paragraph elements, while for other needs, it may be
appropriate to retrieve only elements of the intro paragraph type. To facilitate this at
retrieval time the extended query language allows a list of element types in parentheses
wherever a single element type is permitted. For example, the query

5.9 #SCOPE[result:(paragraph,intro paragraph)](
#AND( suicide bombers )

)

allows for retrieval of elements with the types paragraph or intro paragraph.

5.2.3 Observations

There is an important relationship between the avg combination method and statistical
language modeling. Suppose we index special token elements, where each token in the
document is tagged within its own token element. Consider ranking the query

5.10 #SCOPE[result:document](
#SCOPE[avg:token]( afghanistan )

)

with F = {s,Cd}, φ(f(v)) = MLE(f(v)), and Jelinek-Mercer smoothing. The ψ(d) func-
tion returns a tuple (ci, vj) for every token element in the document d. The ci components
of the tuples are the concept nodes connected to the afghanistan concept and the ele-
ment vj . Then, the belief node Id for a document d is estimated using

P (Id|(ci, vj) ∈ ψ(d)) = 1
|ψ(d)|

∑
(ci,vj)∈ψ(d) P (ci = 1|θ(vj))

= 1
|d|
∑

(ci,vj)∈ψ(d) P (q1|θ(vj)),
(5.19)
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where q1 corresponds to the term afghanistan and vj corresponds to a token element
in the document. Recall that ψ(v) returns tuples of concept nodes ci paired with their cor-
responding vertices vj in the collection graph that satisfy the structural constraint speci-
fied in the query. Expanding the estimation of θv using F ,

P (Id|(ci, vj) ∈ ψ(d)) = 1
|d|
∑

(ci,vj)∈ψ(d)[λsP (q1|φ({vj})) + λCd
P (q1|φ({docs ∈ V }))]

= 1
|d|
∑

(ci,vj)∈ψ(d)[λsP (q1|MLE(vj))) + λCd
P (q1|MLE(C))].

(5.20)
By separating the two terms in the summation and simplifying, we find that

P (Id|(ci, vj) ∈ ψ(d)) = 1
|d|
∑

(ci,vj)∈ψ(d) λsI(q1 ∈ vj) + 1
|d|
∑

(ci,vj)∈ψ(d) λCd
P (q1|MLE(C))

= λs
1
|d|
∑

(ci,vj)∈ψ(d) I(q1 ∈ vj) + λCd
P (q1|MLE(C))

= λsP (q1|MLE(d)) + λCd
P (q1|MLE(C)),

(5.21)
which is equivalent to belief estimation for the query

5.11 #SCOPE[result:document]( afghanistan ) .

This example demonstrates that the use of the avg belief combination process behaves
similarly to how statistical language modeling techniques combine the evidence of mul-
tiple matching terms when constructing a language model. Nevertheless, it is not clear
that the combination methods that work well when estimating beliefs for terms will work
well when combining the evidence of multiple elements matching an extent restriction;
we investigate this problem experimentally in Chapter 6.

5.3 Result-Universal

The previous section described how the model can be extended to specify ranking of ar-
bitrary elements. Adding the ability to specify a retrieval unit is perhaps the most impor-
tant component to having a result-universal retrieval model. However, the addition of this
functionality highlights the importance of the common need to bias the rankings of re-
trieved elements based on properties of the elements. This need arises because the biases
present in the unified Inference Network model may be different from those of relevant
elements. As such, this section focuses on the use of priors to improve result-universality.
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5.3.1 Motivation

In previous work, priors have been applied in two use cases. In the first use case, the
researcher has knowledge that certain document or element types are more likely to be
relevant and there is no inherent bias by the ranking algorithm with respect to these dif-
ferent types. An example of this use case is the use of URL type priors in homepage or
known-item finding of Web pages. The other use case is one where in addition to knowl-
edge that some document or element types are more likely to be relevant, there is a known
bias of the retrieval algorithm. An example of this use case is the use of element length
priors to bias results toward retrieving longer elements.

Length biases in retrieval model are a well-known phenomena, dating back at least to
the work of Singhal et al in the vector-space retrieval model [81]. This problem is even
more pronounced in element retrieval because the retrieval system may need to estimate
the relevance of very short elements as well as very long elements for a single query. The
length bias results from properties of the model estimation. When using Jelinek-Mercer
smoothing of maximum likelihood estimates, language modeling systems have a bias
toward ranking short elements highly [34]. Smoothing using Dirichlet-priors and two-
stage smoothing are not as strongly biased toward ranking short elements highly, but
their biases may still not match our expected distribution of which elements are relevant.

Previous work with the Indri retrieval system does support a prior probability op-
erator in its query language (Table 3.3, [55]), but places few restrictions on its use. For
example, one could write

5.12 #OR( #PRIOR(length) afghanistan )

which would request that either the document be estimated relevant using the “length”
prior or that it be relevant to the query “afghanistan.” We do not feel that this is a typical
or appropriate use of prior probabilities in the Inference Network model; we have diffi-
culty imagining an information need where this behavior is desirable. The unrestricted
use of priors in the Inference Network model is confusing and does not guide the user
about when priors are appropriate and how they should be used in queries.

5.3.2 Prior Probabilities Belong on Scope Operations

The application of priors in the statistical language models (Section 3.4.1) combines the
prior probabilities with the probability of the query given the document observation.
These #PRIOR probabilities are applied only to the scores of elements being ranked ac-
cording to some query or subquery with an element restriction. This is exactly where the
#SCOPE operators apply; it is appropriate to attach our choice of prior probabilities to the
#SCOPE operator, such as in the query

5.13 #SCOPE[result:*:length]( #AND( suicide bombings ) ) .
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v

#AND

suicide bombings

q

#SCOPE[result:*:length]Iv

lv v

θv

Figure 5.3: A partial inference network for query 5.13 which uses an element length prior.

When the prior probability is used in a result #SCOPE operator, the belief of relevance for
the element is directly multiplied by the prior probability estimate. Figure 5.3 shows a
partial inference network for Query 5.13.

When we have a nested scope operator, it would be appropriate to apply priors that
adjust biases inherent in the retrieval algorithm to the inner operators, such as in the
query

5.14 #SCOPE[result:article](
#SCOPE[or:paragraph:length]( #AND(suicide bombings) )

) .

Figure 5.4 shows a partial inference network for this query. The combination methods in
Table 5.2 are extended to support the priors by choosing b(pi, qi, vj) = P (pi = 1) ·P (qi|θvj),
where the (pi, qi, vj) ∈ ψ(v) tuples have vj matching the structural or extent restriction for
v, pi as the prior node for element vj , and qi as the nested query node for element vj .

Returning to our two use cases, we see that it makes sense to apply priors used to
adjust belief estimation biases, notably length-based priors, directly to the #SCOPE oper-
ators that contain belief estimation for query terms. This is because we are adjusting the
belief estimates resulting from properties of these elements. For the first type of prior,
when we have knowledge of the relevance of result elements, it makes sense to apply the
priors to the #SCOPE[result...] operator. Restricting placement of prior probabilities
of relevance on scope operations is also consistent with our theme of clarifying the use
query language.
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suicide

#AND

bombings suicide

#AND

bombings

. . .

#SCOPE[or:paragraph:length]

qi qn

qv

#SCOPE[result:article]Iv

pi pn

θvj θvk

Figure 5.4: A partial inference network for Query 5.14 which uses an element length prior
in a nested #SCOPE operator.

5.4 Annotation-Robust

An annotation-robust retrieval model should address issues surrounding both queries that
may use annotation constraints and the types of errors an annotation tool may make.
Section 1.3 described how a question answering system may make use of annotations to
perform retrieval of linguistic structures annotated in a text corpus.

Recall query 1.10, which requested that the system return target predicates having
a child arg1 element about suicide bombers also having an unspecified child argm-loc
element:

1.10 RETURN target MATCH trained AND (suicide bombers) IN
./arg1 AND HAS ./argm-loc .

On the surface, it may seem that the unified Inference Network model only needs an
extension to the #ANY operator permitting structural constraints:

5.15 #SCOPE[result:target]( #AND(
trained
#SCOPE[and:./arg1]( #AND( suicide bombers ) )
#ANY:./argm-loc

) ) .

However, we feel there are still unaddressed issues. Automated annotation tools may
make errors through incorrect annotation boundaries, incorrect annotation labels, or in-
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correct structure. Furthermore, automated annotation tools may produce confidence
scores which may be help the search engine provide better rankings.

5.4.1 Annotation Boundary Errors

Prior treatment of the model estimates each representation node from observations strictly
contained within the element or annotation boundaries. Similarly, the elements consid-
ered in a nested #SCOPE operator with a containment restriction must be entirely con-
tained within the outer element. This makes sense for XML elements, but may fail to
perform well when retrieving annotations. Consider searching for predicates where Pres-
ident Ulysses Grant vetoed bills. A query for this information need might look like

5.16 #SCOPE[result:target(
veto
#SCOPE[and:./arg0](

#SCOPE[and:person]( president ulysses grant )
)

) .

In this query, the user requests that the person annotation be contained within the arg0
annotation. Consider some example annotations of an answer-bearing sentence:

5.17 In 1874, President [PERSON Ulysses Grant] vetoed the
Inflation Bill.

5.18 In 1874, [ARG0 President Ulysses] Grant [TARGET vetoed]
[ARG1 the Inflation Bill].

Due to errors in the annotation process, the person annotation overlaps with but is not
contained in the arg0 annotation. Furthermore, not all of the query terms are contained
within the person annotation, but they are located near the annotation boundary.

We handle the first problem by generalizing the ψ function to support partial contain-
ment for nested #SCOPE operators. We handle the second problem by allowing proba-
bilistic observations of concepts when estimating the representation models.

Probabilistic Containment

We have already shown how the combination of beliefs in the #SCOPE operator can be
generalized for prior probabilities (Section 5.3). This section further generalizes the belief
estimation and combination of the #SCOPE operator.

We do so by relaxing the containment restriction to allow overlapping elements and
weighting b(t) by the probability that a randomly observed concepts from the inner ele-
ment is one that is also present in the outer element. One way to estimate this probability
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is
P (c ∈ v|c ∈ vi) =

∑
c∈vi

I(c ∈ v)

|vi|
(5.22)

where c is an observation vector anchored in the text of vi. That is, we may estimate the
probability that one element is contained within another, such as the probability that the
person annotation of 5.17 (v) is contained within the arg0 annotation in 5.18 (vi). The
model incorporates this estimate into the #SCOPE belief operator using

b(pi, qi, vj) = P (c ∈ v|c ∈ vi) · P (pi = 1) · P (qj|θj) (5.23)

and modifying ψ(v) to return all tuples (pi, qi, vj) where P (c ∈ v|c ∈ vi) > 0. This ap-
proach permits overlapping elements to contribute to the belief estimation process while
penalizing elements vi not completely contained within the element v. We justify the in-
clusion of P (c ∈ v|c ∈ vi) here by remarking that this probability was implicitly present in
the prior stated belief estimation and combination process; when evaluating φ, we were
implicitly asking the question “what is the probability that element vi is contained in ele-
ment v?” In cases of explicitly coded structure, the probability of containment is known
to be one or zero, so it was natural to overlook this in belief estimation.

When applying Equation 5.22 to estimating the beliefs in the inference network for
Query 5.16, the probability that the person annotation in 5.17 is contained within the
arg0 annotation of 5.18 is

P (c ∈ v|c ∈ vi) = 1/2 = 0.5. (5.24)

This example illustrates how the inclusion of P (c ∈ v|c ∈ vi) in the #SCOPE belief estima-
tion process improves the robustness of the model to annotation boundary errors.

Probabilistic Observations

We can provide additional robustness by allowing concept observation vectors outside
but near the boundary of the annotation to influence our estimate for the representation
nodes. As we do not believe these observations are as likely to be as good observations
as those within the annotation, we introduce the notion of uncertain observations by al-
lowing a probability to be attached to an observation.

P (ri|φ(f(v))) =

∑
c:ci=1 P (c ∈ f(v))∑
c′ P (c′ ∈ f(v))

. (5.25)

The numerator sums up the probabilities of observation where the term or feature corre-
sponding to the ith dimension in the observations. The denominator sums this probabil-
ity over all observations to get a valid multiple-Bernoulli probability distribution. Setting
P (c ∈ v) = 1 if the observed concept vector c is contained within the annotation v’s
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boundaries and 0 otherwise results the maximum likelihood estimate in Equation 5.5.
However, through different choices of P (c ∈ f(v)) we can achieve different behavior. For
example, we may wish to set P (c ∈ f(v)) = 0.5 for the observations just one token outside
the annotation boundaries of elements in f(v).

Consider estimating the representation model for the function f = s and the person
annotation in 5.17. Let us choose P (c ∈ f(v)) = 0.5 for concept vectors observed imme-
diately adjacent to the boundaries of the annotations and P (c ∈ f(v)) = 1 for concept
vectors observed inside the boundaries of the annotations returned by f(v). Then for ri
corresponding to the concept vector for the token ulysses, the model estimates

P (ri|φ(s(v))) =
1

0.5 + 1 + 1 + 0.5
≈ 0.333. (5.26)

For rj corresponding to the concept vector for the token president, the model estimates

P (rj|φ(s(v))) =
0.5

0.5 + 1 + 1 + 0.5
≈ 0.167. (5.27)

The example illustrates how probabilistic observations of concept vectors can improve the
robustness of the model to annotation boundary errors when estimating representation
models.

5.4.2 Annotator Confidence Estimates

If the annotation tool provides confidence estimates on the correctness of an output anno-
tation, then it is natural to believe that use of these estimates ought to be useful in ranking
when using annotations as a part of the information need. For example, consider an an-
notator that outputs a probability distribution over the label types for each annotation.
These distributions can be used in the b(t) belief in the #SCOPE operator by estimating

b(pi, qi, vj, σ) = P (`(vj) = σ) · P (c ∈ v|c ∈ vi) · P (pi = 1) · P (qi|θvj). (5.28)

where P (`(vj) = σ) is the annotator’s confidence estimate of the label for the annotation.
Our justification for the use of P (`(vj) = σ) is similar to that of the probability of contain-
ment. We are already implicitly asking what the probability of label match is when using
explicitly coded structure, but because the label is known, this probability is always zero
or one. In the case of annotations, the label value may be an estimate, and it is natural to
include the estimation in this way.

5.5 Summary

This chapter formally connected the mixtures of statistical language models to the Infer-
ence Network model using mixtures of multiple Bernoullis. This is achieved through the
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introduction of the representation layer and the creation of representations via functions
of the graph structure. The representation layer, akin to Turtle’s text representation layer,
formalizes the process of selecting text representations. This makes the modeling choices
researchers regularly make explicit.

The chapter also addresses the confusing nature of extent restrictions, which in prior
work could be attached to any belief query operator. The retrieval model’s behavior in
prior work defaulted to treating this as an expansion operation, simply duplicating the
query nodes within the inference network. Without intimate knowledge of the infer-
ence network model and this behavior, writing effective queries with extent restrictions
required luck. We addressed this confusing nature by introducing the #SCOPE opera-
tor, which explicitly calls out the extent restriction process and forces the query writer to
think about and choose an appropriate method for combining the beliefs from multiple
matching elements.

Finally, this chapter dicusses how the Inference Network model may be extended to
be more annotation-robust. We did this by proposing an alternative approach to the esti-
mation representation language models, generalizing the notion of extent containment,
and proposing an approach to incorporating annotator confidence estimates.

This extended Inference Network model can elegantly support a greater range of re-
trieval tasks than before. However, this greater flexibility results in a number of model
choices that a researcher must make.

• What is the best estimator for the representation models φ(f(v))? We have argued
that the maximum likelihood estimator is well-suited to this task.

• Which set of representation functions F is most appropriate for the retrieval task?
This will depend on the collection’s structure and the nature of the retrieval task, but
there may be noteworthy trends across tasks and collections. This task is typically
not difficult; researchers make this choice regularly. For example, for a web search
system it is common to choose the title text, web page text, the text of in-links as
representations, and use a collection language model for smoothing. This choice is
expressed by setting F = {s, detitle, l,Cd}.

• How should the λf parameters be chosen? We argued for the use of fixed parame-
ters through Jelinek-Mercer smoothing and directly optimizing an evaluation mea-
sure using a training collection. The choice of fixed parameters results in only |F |−1
linear combination parameters that must be estimated. Furthermore, while smooth-
ing using Dirichlet priors and two-stage smoothing is straightforward for smooth-
ing when F = {s,Cd}, these methods do not generalize easily to more parameters.
The use of fixed parameters is common practice for when |F | > 2; we will use the
same approach here.
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• Which, if any, priors should be used during retrieval? As with other choices, this
will depend on the collection and retrieval task. It may also depend upon the choice
of the λf parameters and the information need.

• If working with structured queries, which combination methods should be used
with #SCOPE operators? The choice of combination method can have a profound
impact on ranking. We have shown how the avg combination method can behave
similarly to term ranking methods, but have not investigated empirically which
combination methods work well for which query types.

• Finally, we proposed methods for robustly handing the errors of imperfect annota-
tors. We must investigate whether these extensions improve the robustness of the
retrieval model.

Throughout the chapter we made a concerted effort to clarify use of the query lan-
guage and its implications on the structure of the inference networks. The previous adap-
tations of language modeling to the Inference Network model required a mixture of plac-
ing smoothing parameters in the query language and parameter files in order to recon-
struct mixtures of multiple representations. This chapter greatly simplifies this process by
allowing the specification of representations and the smoothing choices to be expressed
solely in parameter files outside of the query. These simplifications reduce the complexity
of creating good queries.

Similarly, the impacts of nested extent restrictions in Indri queries is not obvious and
can be confusing. We proposed the introduction of the #SCOPE operator to clarify the pro-
cess of extent restriction, proposing a required argument specifying belief combination
and restricting prior probabilities of relevance to placement on these #SCOPE operators.

The following chapters revisit the experiments on known-item finding and element
retrieval to investigate the validity of the maximum likelihood estimator for φ(f(v)), the
choice of F for these tasks, and the choice of combination methods for #SCOPE operators.



Experimental Results
CHAPTER 6

This chapter presents direct evaluation of the unified retrieval model presented in Chap-
ter 5, comparing it to the task-oriented retrieval models presented and evaluated in Chap-
ter 4. In addition to verifying that our adaptations to the Inference Network model result
in a system with strong performance for these tasks, we use these experiments to verify
and investigate the model with respect to some of the properties we previously argued as
important for retrieval of documents with structure and annotations. We investigate the
structure-aware property in known-item and element retrieval experiments through our
choice of representation functions (Sections 6.1 and 6.2). Our experiments with element
retrieval in Section 6.2 investigate the result-universal property. Section 6.2 also contains
a thorough investigation of the use of the inference network and #SCOPE combination
methods, exploring the structure-expressive property. Finally, we explore how annotation-
robust the model is through the retrieval of answer-bearing sentences (Section 6.3).

6.1 Known-Item Finding

The role of the known-item finding experiments in this chapter serve largely as a verifi-
cation of the model’s performance relative to the task-oriented mixture model presented
for the task in Section 4.1. These experiments touch on the model’s ability to be structure-
aware and the stability of estimated parameters.

We investigate a small number of functions to select related language models in these
experiments. We chose the functions in Table 6.1. This specific model is instantiated
by choosing F = {d, l, detitle, deheader, demeta,Cd}, φ(f(v)) = MLE(f(v)), and constant λf
values across all documents. This is equivalent to using Jelinek-Mercer smoothing to
combine the representation language models. The evaluation collections we use are the
same as those in Section 4.1.1. We convert the topics’ keyword queries into queries of the
form

6.1 #SCOPE[result:document:url](
#AND( term1 term2 ... termN )

)

using the same URL-type based prior as used in Section 4.1.

111
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Label Function Description
document d Text of the web page
link l In-Link text
title detitle Titles in the document
header deheader Text included in hn tags (h1, h2, h3, ...)
meta demeta Text of meta keywords and descriptions
collection Cd The collection model

Table 6.1: Functions of graph structure chosen in known-item finding experiments.

This model differs from the task-oriented model presented in Section 4.1 in two ways.
First, we use add the header and meta representations. Second, the model in Section
4.1 used a linear interpolation of models estimated by smoothing the representation with
a representation type specific collection model using Dirichlet priors. The model in this
section drops the Dirichlet prior smoothing in favor of using a single collection model
with a fixed weight in the linear interpolation. This simplification allows us to include
estimating the collection’s weight during the grid search process. Doing so with the task-
oriented model in Section 4.1 would require the estimation of an extra parameter for each
representation type specific collection model. With 10 steps per parameter, 5 interpolation
parameters and 5 Dirichlet prior parameters, a grid search for estimating the parameters
of the task-oriented model would require the evaluation of over 161 million parameter
combinations. Instead, the simplifications used in this section result in a tractable param-
eter estimation process.

To estimate the parameters for the Inference Network model, we performed a grid
search with a step size of 0.1 per λ parameter, resulting in 11 possible values for each
of the 6 parameters and a total of 3003 parameter combinations in the grid search. Fig-
ures 6.1 and 6.2 show the best attained MRR when setting the λ parameter for one of the
representations constant. The figures are evocative of those in Section 4.2.3, and we use
this as evidence that this parameter sweep identifies sufficiently good parameters. Ta-
ble 6.2 shows the parameter estimates for these testbeds with a 95% bootstrap confidence
interval. Given the relative flatness of the curves in Figures 6.1 and 6.2, we expect that the
parameter estimates will transfer well from the training folds to the test folds. The results
of the experiments are shown in Table 6.3. For the test results we use the parameters es-
timated from the corresponding training topics. For example, we use the t10ep samples
parameters and priors for test evaluation on the t10ep official testbed and we used the
t13mi maximized parameters and priors for test evaluation on the t12ki testbed.
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Figure 6.1: The results of the grid search on the t10ep sample and t10ep official topics.
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Figure 6.2: The results of the grid search on the t12ki and t13mi topics.
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Parameter t10ep samp. t10ep off. t12ki t13mi
document 0.3 (0.1, 0.6) 0.4 (0.2, 0.5) 0.2 (0.1, 0.4) 0.3 (0.1, 0.3)
link 0.2 (0.1, 0.5) 0.2 (0.1, 0.2) 0.2 (0.2, 0.4) 0.3 (0.1, 0.5)
title 0.2 (0.1, 0.7) 0.2 (0.1, 0.3) 0.2 (0.1, 0.3) 0.2 (0.1, 0.3)
header 0.1 (0.0, 0.4) 0.0 (0.0, 0.5) 0.3 (0.0, 0.4) 0.1 (0.0, 0.4)
meta 0.0 (0.0, 0.0) 0.0 (0.0, 0.2) 0.0 (0.0, 0.1) 0.0 (0.0, 0.2)
collection 0.2 (0.0, 0.4) 0.2 (0.1, 0.5) 0.1 (0.1, 0.3) 0.1 (0.1, 0.6)

Table 6.2: Estimated parameters for the unified retrieval model on the task of known-item
finding. A 95% bootstrap estimated confidence interval for each parameter is shown in
parentheses.

Combination Method t10ep samp. t10ep off. t12ki t13mi

Task-Oriented

{ Equal λr + train priors 0.888 0.799 0.707 0.673
Equal λr + test priors 0.890 0.813 0.706 0.666
MRR train λr + priors 0.889 0.803 0.707 0.664
MRR test λr + priors 0.890 0.813 0.701 0.665

Inference Network
{

Train λr + priors 0.905 0.829 0.704 0.671
Test λr + priors 0.891 0.821 0.702 0.650

Table 6.3: Performance on known-item finding (MRR). The top 4 rows of results are du-
plicated from Table 4.3 for convenience, while bottom two rows show results using the
Inference Network model proposed in Chapter 5.
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Label Function Description
self s Text of the element
collection Cd The collection model
document d The text of the document
titles dest Text of section titles contained within the element
fig defgc The text of figure captions contained within the element

Table 6.4: Functions of graph structure chosen in element retrieval experiments.

When we compare these results to those provided by our task-oriented model pre-
sented in Section 4.1, we see that these two systems behave quite similarly. The per-
formance of the model examined here is slightly stronger than our task-oriented model
on the t10ep testbeds, but slightly worse than the task-oriented model on the t12ki and
t13mi testbeds. However, none of the differences are statistically significantly different.
While the experiments in this section are brief, they do verify that the model satisfies the
structure-aware property. The estimated parameters seem relatively stable from one query
set to another, and the performance of the model is as strong as the relatively strong task-
oriented retrieval model presented Section 4.1.

6.2 Element Retrieval

In this section we apply the retrieval model to the task of element retrieval using the same
reference collections as in Section 4.2. The experiments around the keyword topics exist
mostly to verify the model’s performance on the task, while the experiments surrounding
the structured topics explore the role of scope combination. We choose model parame-
ters of F = {s,Cd, d, dest, defgc}, φ(f(v)) = MLE(f(v)), and constant λf values across all
documents. Table 6.4 describes the functions in F .

Our handling of phrasal constraints, ‘+’, and ‘-’ in keyword sections of queries remains
the same as in the task-oriented model presented for element retrieval in Section 4.2; we
discard phrasal constraints, ‘+’ characters in front of terms or phrases, and drop the terms
or phrases prefixed by a ‘-’ character from the query. The primary differences in the model
are the addition of the titles and fig representations and the use of the #SCOPE operator
in place of Indri’s extent retrieval.

Our separation of extent retrieval and structural constraints from belief operators into
the newly introduced #SCOPE operator proposed in Section 5.2 require a different con-
version of NEXI queries. To keep our results as comparable to the experiments with our
task-oriented baseline, we will apply a similarly literal conversion of the NEXI queries.
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We use the same example queries for conversion as those in Section 4.2. The first example
query, which requested paragraphs about suicide bombings,

4.1 //paragraph[about(., suicide bombings)]

was previously converted into

4.2 #AND[paragraph]( suicide bombings )

With our query language changes, this query is instead written

6.2 #SCOPE[result:paragraph:prior]( #AND( suicide bombings) )

where prior is the name of a prior estimation method. The query requesting articles hav-
ing paragraphs about suicide bombings,

4.3 //article[about(.//paragraph, suicide bombings)]

was previously converted into

4.4 #AND[article]( #AND[paragraph]( suicide bombings ))

but is now written

6.3 #SCOPE[result:article:prior](
#SCOPE[method:paragraph:prior](

#AND( suicide bombings )
)

)

where method is one of the scope combination methods described in Table 5.2. Our im-
proved support for structural constraints in the query language eliminates the need for
the #CONTEXT operator introduced for the conversion of the query

4.5 //article[about(., terrorism)]
//paragraph[about(., suicide bombings)]

This NEXI query was translated into the query

4.6 #CONTEXT[article](
#AND[paragraph]( suicide bombings )
#AND( terrorism ) )

However, this query is now written more clearly as

6.4 #SCOPE[result:paragraph:prior](
#AND(

#AND( suicide bombings )
#SCOPE[method:.\\article:prior]( terrorism )

)
)
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With this extended support for structural constraints in the query language, we could
have more precisely expressed Query 6.3 as

6.5 #SCOPE[result:article:prior](
#SCOPE[method:.//paragraph:prior](

#AND( suicide bombings )
)

)

However, given the strictly hierarchal structure corresponding directly containment of
text within the INEX collection, these queries will result in identical results.

In summary, the adaptations to the Inference Network model proposed in Chapter 5
have greatly clarified the query construction process. The #SCOPE operator makes ex-
plicit the process of combining evidence from multiple elements that match a structural
constraint, clarifying to the user the need to make this choice. The enhanced support
for structural operations in the #SCOPE operator facilitate the removal of the awkward
#CONTEXT operator that was introduced in Section 4.2, and the inclusion of priors on
the #SCOPE operator allows the explicit invocation of an element length prior. In the ap-
proach used in Section 4.2, we had to modify Indri source code to make use of an element
length prior.

For the purposes of comparison, it may be illustrative to characterize the task-oriented
model presented in Section 4.2 in terms of our extended Inference Network model. That
task-oriented model is mathematically equivalent to choosing F = {s,Cd, d}, φ(f(v)) =
MLE(f(v)), and constant λf values across all documents. The query conversion method
used for the task-oriented model is equivalent to the conversion described above with
a length prior on the result scope operator and using the MAX method of scope com-
bination with no length prior for nested scope operators. The differences explored in
this chapter include the addition of more representation functions and the exploration of
different combination methods for nested scope operators.

6.2.1 Results

We employ a grid search with increments of 0.1 per λf parameter (for the five represen-
tation functions in Table 6.4) over the range [0, 1] and 0.3 for the length prior parameter
over the range [0, 3], resulting in 11 possible values per parameter. This results in a total
of 11,011 different valid combinations of parameters.

Table 6.5 shows the parameter estimates for keyword queries on the i2004k and i2005k
testbeds. The similarity of the parameter estimates on the two test collections suggest
that the two testbeds are relatively representative of each other. Figure 6.3 shows the
parameter estimate curves for the two testbeds. Given the estimated values of 0 for the
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Parameter i2004k i2005k
self 0.1 (0.1, 0.3) 0.3 (0.1, 0.4)
collection 0.7 (0.4, 0.7) 0.3 (0.1, 0.6)
document 0.2 (0.2, 0.3) 0.4 (0.2, 0.6)
fig 0.0 (0.0, 0.1) 0.0 (0.0, 0.2)
titles 0.0 (0.0, 0.0) 0.0 (0.0, 0.1)
length 0.9 (0.9, 1.2) 1.2 (0.9, 1.5)

Table 6.5: Parameter estimates maximizing MAP for the keyword queries. The grid search
used 10 steps per parameter, resulting in increments of 0.1 for the mixture model param-
eters and 0.3 for the length prior parameter. A 95% confidence interval estimated using
bootstrap resampling of topics is shown in parentheses.

Combination Method i2004k i2005k

Task-Oriented
{

Train λr + priors 0.240 0.116
Test λr + priors 0.235 0.113

Inference Network
{

Train λr + priors 0.239 0.116
Test λr + priors 0.234 0.112

Table 6.6: Performance of the element retrieval model on keyword queries (MAP).

fig and titles representation functions, we do not expect very different results from those
presented in Section 4.2.3. Indeed, Table 6.6 shows that results are nearly identical.

Table 6.7 shows the estimated parameters resulting from the grid search on the i2003
and i2004s testbeds for each of the scope combination methods. We do see some difference
across the methods. Figures 6.4 - 6.8 show the corresponding plots for the best possible
MAP achievable for any given parameter. While the shape of these plots do not vary
wildly from one method to another, some of the combination methods do result in higher
MAP than others.

Table 6.8 shows the MAP of the results on the i2003s and i2004s testbeds when using
training and testing parameters for each of the scope combination methods. Focusing
first on the training data, we would choose the MIN combination method from the i2003s
training data to use for test evaluation on the i2004s testbed. When examining the i2004s
training data, we would choose the AVG combination method for test evaluation on the
i2003s testbed.
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Figure 6.3: The results of the grid search testing 10 steps per parameter on the i2004k and
i2005k topics. The lines show the best found MAP given the value for a specific parameter.
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i2003s

Parameter AND AVG MAX MIN OR
self 0.4 (0.2, 0.7) 0.3 (0.1, 0.7) 0.4 (0.0, 0.7) 0.4 (0.1, 0.7) 0.3 (0.1, 0.7)
collection 0.0 (0.0, 0.5) 0.2 (0.1, 0.6) 0.2 (0.1, 0.5) 0.2 (0.1, 0.6) 0.2 (0.1, 0.5)
document 0.5 (0.1, 0.7) 0.5 (0.2, 0.6) 0.4 (0.2, 0.8) 0.4 (0.1, 0.5) 0.5 (0.2, 0.7)
fig 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.1) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0)
titles 0.1 (0.0, 0.1) 0.0 (0.0, 0.1) 0.0 (0.0, 0.1) 0.0 (0.0, 0.1) 0.0 (0.0, 0.1)
length 0.9 (0.9, 1.2) 0.9 (0.6, 1.2) 1.2 (0.6, 1.2) 1.2 (0.9, 1.8) 0.9 (0.6, 1.2)

i2004s

Parameter AND AVG MAX MIN OR
self 0.5 (0.3, 0.8) 0.5 (0.3, 0.8) 0.5 (0.3, 0.8) 0.5 (0.2, 0.7) 0.5 (0.3, 0.8)
collection 0.2 (0.0, 0.4) 0.2 (0.1, 0.4) 0.2 (0.1, 0.4) 0.2 (0.1, 0.4) 0.2 (0.1, 0.4)
document 0.3 (0.0, 0.5) 0.3 (0.0, 0.5) 0.3 (0.0, 0.5) 0.3 (0.2, 0.5) 0.3 (0.0, 0.5)
fig 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0)
titles 0.0 (0.0, 0.1) 0.0 (0.0, 0.1) 0.0 (0.0, 0.1) 0.0 (0.0, 0.1) 0.0 (0.0, 0.1)
length 0.9 (0.6, 1.2) 0.9 (0.6, 1.2) 0.9 (0.6, 1.2) 0.9 (0.6, 1.2) 0.9 (0.6, 1.2)

Table 6.7: Parameters for the structured queries estimated on the i2003s testbed (above)
and the i2004s testbed (below).

Combination Method i2003s i2004s
train test train test

Task-Oriented { (MAX) 0.387 0.384 0.286 0.280

Inference Network

{ AND 0.282 0.273 0.224 0.174
AVG 0.403 0.401 0.294 0.290
MAX 0.386 0.384 0.286 0.280
MIN 0.407 0.403 0.291 0.285
OR 0.403 0.400 0.290 0.284

Table 6.8: Performance of the element retrieval model on structured queries (MAP).
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Figure 6.4: The results of the grid search testing 10 steps per parameter for the AND
combination method.
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Figure 6.5: The results of the grid search testing 10 steps per parameter for the AVG
combination method.
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Figure 6.6: The results of the grid search testing 10 steps per parameter for the MAX
combination method.
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Figure 6.7: The results of the grid search testing 10 steps per parameter for the MIN
combination method.
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Figure 6.8: The results of the grid search testing 10 steps per parameter for the OR com-
bination method.
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On the test data, we see that the scope combination method choices result are reason-
able; while the choice of MIN for application to the i2004s test data does not result in
the best performance, the difference in MAP is minimal. Indeed, on the two keyword +
structure testbeds only the AND combination method performs statistically significantly
differently than the other combination methods. The results of our model show small
improvements over the strong task-oriented approach presented in Section 4.2. With a
relatively simple retrieval model and small set of representation functions, our results ri-
val those that perform query rewrites, use pseudo-relevance feedback, or additional fields
from the topic. While these subjects are not the focus of the dissertation, we would expect
that using techniques such as those would additionally improve our results.

6.2.2 Discussion

The difference in results from one scope combination method to another for the struc-
tured queries warrants further investigation. Specifically, it is interesting to examine these
methods relative to each other to see if the differences result from a few or many queries.

Figures 6.10 and 6.11 show a query-by-query comparison of the different scope com-
bination methods using the best global parameters for each of the i2003s and i2004s
testbeds. There are two causes for differing performance in these plots. The first is the
scope combination method. The second results from the fact that the best global model
parameters may be different from one method to another, which can impact even the
queries which do not have nested scope operators. Queries with only a scope result op-
erator will only be affected by parameter changes. If a scope operator is guaranteed to
return only one element for all results due to the structure of the document collection, the
rankings for these queries will also only be affected by parameter changes. There are 13
queries for the i2003s testbed and 16 queries for the i2004s testbed that are only affected
by parameter changes. This leaves 17 queries in the i2003s testbed and 10 queries in the
i2004s testbed that are directly affected by the choice of the scope combination method.

Examining Figure 6.10, we see that on the i2003s testbed the AVG scope combina-
tion method improves the performance over other methods most frequently, while the
MIN scope combination method tends to hurt performance compared to other methods
least frequently. Figure 6.11 shows a reversal of this behavior in the i2004s testbed, with
AVG harming the performance on fewer queries and MIN improving the performance
on more queries. For both testbeds, the AND method performs poorly for many queries.
Given this analysis and the performance of the training parameters shown in Table 6.8,
we would still probably choose the MIN method for test evaluation on the i2004s topics
and the AVG method for test evaluation on the i2003s topics. This would be the wrong
conclusion for the i2004s testbed, although this difference is very slight and certainly not
statistically significant.



128 CHAPTER 6. EXPERIMENTAL RESULTS

0.0

0.2

0.4

0.6

0.8

1.0

i2003s Results per Query, AVG combination

Query

A
ve

ra
ge

 P
re

ci
si

on

79 82 61 62 83 65 75 88 70 73 90 63 78 81 77 67 66 74 64 87 68 80 76 86 69 84 85 89 72 71

Best System per Query
75th Percentile System per Query

0.0

0.2

0.4

0.6

0.8

1.0

i2004s Results per Query, MIN combination

Query

A
ve

ra
ge

 P
re

ci
si

on

15
3

13
7

13
3

13
9

13
1

13
6

14
9

13
2

12
7

12
8

14
3

14
5

15
1

14
0

15
6

13
5

14
1

15
0

12
9

13
4

15
5

14
4

13
0

15
7

15
2

Best System per Query
75th Percentile System per Query

Figure 6.9: Results on structured queries compared to systems submitted to INEX.
Queries are sorted in descending order by the observed performance of the 75 percentile
system for each query.
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Figure 6.10: A comparison of the nested scope combination methods on i2003s with pa-
rameters chosen to maximize MAP across all queries. The plots show the unscaled differ-
ence in AP of queries of the row method with the column method. Queries for each plot
are sorted in descending difference, with blue bars for systems where the row method
received an AP at least 0.05 higher than the column method, and red bars for systems
where the row system received an AP 0.05 or more less than the column method. Gray
bars indicate a difference of less than 0.05 between the two methods. The gray horizontal
lines indicate increments of 0.1. Query numbers in red in the top portion of the charts are
queries where the row method performed worse than the column method, while query
numbers in blue in the bottom indicate stronger performance by the row method.
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Figure 6.11: A comparison of the nested scope combination methods on i2003s with pa-
rameters chosen to maximize MAP across all queries. The gray horizontal lines indicate
increments of 0.1. Query numbers in red in the top portion of the charts are queries where
the row method performed worse than the column method, while query numbers in blue
in the bottom indicate stronger performance by the row method.
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The optimal parameters may change somewhat from one method to another, result-
ing in different performance even in the queries that are not directly affected by the choice
of scope combination method. It is natural then to try and isolate the effect of parame-
ter choice to see if there are inherent limitations for the scope combination method for
these queries. To do so, we recompute the query-by-query comparison plots using the
best parameters for each query instead of parameters chosen to maximize MAP across all
queries. (Figures 6.12 and 6.13).

With the exception of the AND combination method, there seems to be very few
queries for which one method greatly underperforms or outperforms other methods.
There may be few queries for which there are a combination method has inherent lim-
itations. Instead, we see artifacts of how these methods interact with the smoothing. That
is, either the stronger performing scope combination methods may be less sensitive to
smoothing parameters or they tend to have more consistency across queries.

Nevertheless, the few queries for which there are clear advantages or disadvantages
of a specific scope combination method are worth investigation. Using the AVG combina-
tion method tends to outperform other methods for Topic 81, with out regard to whether
we use the best parameters for the query or parameters optimized to for global perfor-
mance. This topic is oriented toward retrieval of articles and is converted into the query

6.6 #SCOPE[result:article:length]( #AND(
#SCOPE[avg:p]( multi concurrency control )
#SCOPE[avg:p]( algorithm )
#SCOPE[avg:.//fm//atl]( databases )

) )

Articles with a greater proportion of paragraphs are on the subject of algorithms for multi
concurrency control in databases are more likely to be relevant. The AVG scope combina-
tion method simply averages the beliefs for each of the paragraphs being ranked (there is
only one element that matches .//fm//atl per article, the article’s title).

The MIN scope combination method provides a very strong advantage for Topic 63,
for which we use the query

6.7 #SCOPE[result:article:length]( #AND(
digital library
#SCOPE[min:p]( #AND(

authorization access control security
) )

) )

The nested scope operator, to which the MIN combination method applies, selects the
minimum belief from all paragraphs in the article; it need not contain one of the query
terms to be considered by the model for ranking. It would be surprising if every para-
graph in an article contain at least one of the query terms in the nested scope operator,
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Figure 6.12: A comparison of the nested scope combination methods on i2003s with the
best known parameters per query. The gray horizontal lines indicate increments of 0.1.
Query numbers in red in the top portion of the charts are queries where the row method
performed worse than the column method, while query numbers in blue in the bottom
indicate stronger performance by the row method.
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Figure 6.13: A comparison of scope combination methods on i2004s with the best known
parameters per query. The gray horizontal lines indicate increments of 0.1. Query num-
bers in red in the top portion of the charts are queries where the row method performed
worse than the column method, while query numbers in blue in the bottom indicate
stronger performance by the row method.
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so in effect we expect for most articles the selected belief will in effect disregard the ele-
ment or other narrowly defined language models and instead rely on the document and
collection language models.

It is interesting to compare Topics 63 and 81; they both request articles and have similar
nested scope operators on paragraphs. In both cases we have cause to question whether
the paragraph constraints are appropriate for the query, yet the MIN method has a strong
advantage over the AVG method for Topic 63 while the MIN method performs worse
than the AVG method for Topic 81. At one level, the MIN and AVG methods seem to
express similar requests; the MIN method should prefer elements where all of the nested
matching elements match the subordinate query, while the AVG method prefers elements
where the nested matching elements tend to match the subordinate query well. However,
if this were so, we would not expect the dramatic differences in performance observed.

We suspect the difference between the two queries’ performance lies in query nodes
nested within the scope operators themselves. For Topic 81, the nested scope operators
contains query terms: multi concurrency control and algorithm. It is likely
that many paragraphs will match these concept nodes in relevant documents. On the
other hand, the nested scope operator of Topic 63 contains three concept nodes, auth-
orization, access control, and security. It is unlikely that many paragraphs will
receive high scores for this scope operator in relevant documents, because it is unlikely
that paragraphs will contain all of these concepts. We feel it may be the case that aver-
aging the scores of the paragraphs in this case may poorly estimate how well the article
is about the topic’s information need. Conversely, using the MIN combination for Topic
63 will in effect use beliefs estimated using the document and collection models, effec-
tively ignoring the noisy element scores. The dominance of MIN over other combination
methods is strong evidence of a poorly formed query.

However, the MIN combination method performs poorly for queries where the struc-
ture is important. For example, the NEXI query for Topic 139 makes heavy use of struc-
tural constraints:

6.8 //article[
(about(.//bb//au//snm, Bertino)

or about(.//bb//au//snm , Jajodia))
and about(.//bb//atl, security model)
and about(.//bb//atl,

-"indexing model" -"object oriented model")]

The MIN combination method’s reliance on the document and collection representations
discards any context of bibliography entries in ranking, resulting in the relatively poor
performance compared to other combination methods.

The OR scope combination method seems to have limited ability for Topic 135. It
appears its query is poorly structured:
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6.9 //article[about(.//atl, summaries)]
//sec[about(., "Internet security")

or about(.,"network security")]

The about(.//atl, summaries) clause would match all article titles, including those
in the bibliography.

The OR combination method will by the nature of its definition be at least as large
as the maximum belief, increasing moderately with each additional element that has
high belief values and increasing modestly for additional elements with low belief val-
ues. When there are few elements matching a scope operator, we would expect the OR
method to perform similarly to the MAX method. When there are many elements that
match the structural constraints of the scope operator, it is possible that the OR method
could be very sensitive to the number of elements that match, even perhaps favoring ele-
ments with multiple matches to the structural constraints over ones with fewer elements
matching keywords in the query.

If the poor structure of the NEXI queries is the cause of poor performance for the
OR combination method, we must wonder why we do not observe a similar inherent
limitation for the MAX scope combination method. For Topic 135, the MAX method
achieves its best performance when no weight is placed on the element’s representation
function. The MAX combination method in this case reverts almost entirely to estimating
beliefs based on the document and collection representations. The OR method, on the
other hand, is sensitive to the number of matching elements; when the weight on the
element representation function is zero, the OR method will exhibit a bias to elements
where there are multiple matches to the nested scope operator.

6.2.3 Summary

The experiments with element retrieval presented in this Section first provided verifica-
tion on another task that the model has desirable structure-aware properties. The strong
results for the element retrieval task for both keyword and keyword plus structure queries
helped to demonstrate that the result-universal adaptations to the retrieval model are ef-
fective. Finally, we explored aspects of how the model is also structure-expressive using
the keyword plus structure queries. These experiments focused on the use of scope com-
bination methods when combining the beliefs for multiple matching elements of nested
scope operators.

It is difficult to draw strong conclusions with any certainty on such small sets of topics,
but we do see hints of a trend. The AVG and MIN methods seem most resilient to super-
fluous constraints in the queries, with the AVG method striking a balance between using
article and element evidence beliefs and the MIN method essentially ignoring more de-
tailed constraints during belief estimation. The MIN method’s reliance on the article evi-
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Label Function Description
self s Text of the element
collection Cd The collection model
document d The text of the document
sentence osentence Text of sentence outside the element

Table 6.9: Functions of graph structure chosen in question answering experiments.

dence could harm performance when there are very specific structural constraints present
in the query. The MAX and OR method perform similarly in practice, although the OR
method may be sensitive when many elements match the structural constraints present
in a nested scope operator.

6.3 Annotation Retrieval

This section revisits the experiments in Section 4.3 on the retrieval of answer-bearing
sentences. We found previously that the Inference Network model was insufficiently
annotation-robust to use heavily structured queries. A simple keyword + named entity an-
swer placeholder baseline outperformed the richly structured queries. This section uses
a similar query conversion process for each query method, simply replacing the extent
retrieval operations with the appropriate #SCOPE operators.

We explore two approaches two improving the annotation-robustness of the retrieval
model. First, Section 6.3.1 explores the use of a sentence representation to include context
during ranking. The second approach, presented in Section 6.3.2, pads elements and an-
notations with probabilistic observations to include additional context and accommodate
annotation boundary errors.

6.3.1 Better Representations

One way to improve the robustness of the retrieval model to the annotation errors ob-
served in Section 4.3 is to simply improve the set of representation functions used. In
addition to the self function s, the collection function Cd, and the document representa-
tion function d, we add the representation function osentence, which creates a representa-
tion from the sentence containing the element in question. These functions are listed in
Table 6.9. As with other experiments, we use the maximum likelihood estimator for φ and
constant λf values across all elements.
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Held-Out Fold
Parameter 1 2 3 4 5
Element 0.1 (0.0, 0.2) 0.1 (0.1, 0.3) 0.1 (0.0, 0.1) 0.1 (0.0, 0.2) 0.1 (0.0, 0.1)
Collection 0.4 (0.2, 0.7) 0.4 (0.2, 0.7) 0.4 (0.3, 0.7) 0.4 (0.2, 0.8) 0.5 (0.4, 0.8)
Document 0.2 (0.1, 0.2) 0.2 (0.1, 0.3) 0.2 (0.1, 0.3) 0.2(0.1, 0.3) 0.2 (0.0, 0.2)
Sentence 0.3 (0.1, 0.4) 0.3 (0.1, 0.4) 0.3 (0.1, 0.3) 0.3(0.1, 0.5) 0.2 (0.1, 0.3)
Length 2.1 (1.2, 2.1) 2.1 (0.0, 2.4) 2.1 (0.0, 2.4) 2.1(0.0, 2.4) 2.1 (0.0, 2.4)

Table 6.10: Estimated parameters for structured queries for the AVG combination method
on the training sets corresponding to the held-out folds. A 95% confidence interval for
each parameter is shown in gray.

The AVG scope combination method performed best on the training data sets, and Fig-
ure 6.14 shows the parameter estimate curves for this method. The improvements gained
by using a non-zero weight on the sentence representation function show in this figure
suggests that the addition of the sentence representation does improve the annotation-
robustness of the retrieval model. Table 6.10 shows the parameter estimates on the training
folds and their confidence intervals. The relatively high weight on the sentence represen-
tation demonstrates its usefulness, while the presence of non-zero weight on the element
itself suggests that the structure in the queries can help improve results. Despite the low
weight on the element representation function, we see from these curve estimates that
structure is important; no weight on the element is clearly worse than a small weight.

The results in Table 6.11 verifies that the inclusion of the sentence representation does
indeed provide a boost in the retrieval effectiveness. We see that the addition of the sen-
tence representation yields a MAP of 0.240, which is higher than that of the keyword +
named entity baseline. These results are at least as good as the feature-rich learning-to-
rank model presented in Chapter 6 of Bilotti [4], which reports a MAP of 0.232. The AVG
combination method performs statistically significantly better than the AND and MAX
methods, but no statistically significant improvement was detected for the AVG method
over the keyword + named-entity baseline, the Bilotti approach, or the MIN and OR com-
bination methods. The failure to detect a statistically significant difference between the
keyword + named-entity baseline and the structured query approach using the AVG com-
bination method is a direct result of the large number of shallow questions in the testbed
for which both approaches use the same queries (57 of 91). For the deep questions only,
the AVG method performed statistically significantly better than the AND method and
the keyword + named-entity baseline.
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Figure 6.14: Parameter estimates for structured queries on training folds and test folds
when using the AVG scope combination method. While the test performance can vary
significantly from fold to fold, the shapes of performance of the training folds are quite
similar to with the test folds.
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Paritition Keyword + named-entity AND AVG MAX MIN OR
All 0.218 0.166 0.240 0.206 0.201 0.213
Shallow 0.197 0.197 0.197 0.197 0.197 0.197
Deep 0.232 0.182 0.303 0.296 0.242 0.270
Combined 0.211 0.191 0.240 0.238 0.215 0.227

Table 6.11: MAP of the structured query approach using the different combination meth-
ods. The AVG method performs strongest, outperforming the keyword + named-entity
approach. Training separately on shallow and deep questions does not consistently yield
an improvement over globally optimized parameters.

The simple addition of a sentence representation greatly improved the annotation-
robustness of the retrieval model. Without the adaptations proposed in Chapter 5, it would
have been difficult to describe and implement a similar improvement. Indeed, implemen-
tation of the sentence representation model for these results required extensive modifica-
tion of the Indri source code. Indri has no notion of field evaluation using a broader
extent (other than the document). Without the language to describe representations we
proposed in Chapter 5, the use and construction of this representation might not be obvi-
ous to other researchers. With the extensions proposed in Chapter 5, the inclusion of the
sentence representation becomes a natural choice.

For completeness, Table 6.11 also shows the results when using the other scope op-
erator combination methods. We see again that the AVG combination method provides
the largest boosts, verifying the conclusions made in Section 6.2. However, we see greater
variation across the combination methods for this dataset, underscoring the need to make
the combination method explicit. Training separately on the shallow and deep questions
does not seem to provide consistent improvements, although it does not seem to hurt the
effectiveness of the structured queries (Table 6.11).

Figure 6.15 shows the query-by-query comparison of the structured query method
and AVG combination to the keyword + named-entity baseline results. Questions 1494
and 1453, which were most harmed by using the structured queries with the task-orientd
model in Section 4.3, are no longer greatly harmed by the structured queries. For both
questions, the structured query method now provides an average precision of 1, ranking
the answer-bearing sentences over all other sentences in the collection.

Of the six remaining questions where the structured queries perform worse than the
keyword + named entity baseline, the performance for Questions 1463 and 1537 is only
worse due to different parameters because these questions have no semantic predicates.

The remaining questions for which the structured queries performed worse than the
baseline all had fairly structured queries. For example, Question 1453,
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Figure 6.15: The structured query method with the AVG combination method helps more
queries than it hurts relative to the keyword + named entity baseline.

What site did Lindbergh begin his flight from in 1927?

was converted into the query

6.10 #SCOPE[result:sentence:length]( #AND(
#SCOPE[avg:target]( #AND(

begin
#SCOPE[avg:./argm-loc]( site )
#SCOPE[avg:./arg0]( lindbergh )
#SCOPE[avg:./arg1]( flight )
#SCOPE[avg:./argm-tmp]( 1927 )

) )
#ANY:location

) ) .

Many of the answer-bearing sentences for this question were quite long, for example:

6.11 The pope’s visit could attract crowds that may even
surpass the 700,000 who welcomed Charles Lindbergh back
home a few weeks after his record flight from New York to
Paris in 1927.

Long sentences like these often have multiple semantic predicates. ASSERT identified
three semantic predicates for this sentence:
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6.12 [ARG0 The pope’s visit] [ARGM-MOD could] [TARGET attract]
[ARG1 crowds that may even surpass the 700,000 who
welcomed Charles Lindbergh back home a few weeks after
his record flight from New York to Paris in 1927.]

6.13 [ARG0 crowds] [R-ARG0 that] [ARGM-MOD may] [ARGM-ADV even]
[TARGET surpass] [ARG1 the 700,000 who welcomed Charles
Lindbergh back home a few weeks after his record flight
from New York to Paris in 1927.]

6.14 [ARG0 the 700,000] [R-ARG0 who] [TARGET welcomed] [ARG1
Charles Lindbergh] back [ARGM-TMP home a few weeks]
[ARGM-TMP after his record flight from New York to Paris]
[ARGM-TMP in 1927.]

BBN’s Identifinder correctly identified New York and Paris as locations and Charles
Lindbergh as a person.

None of the target verbs match flight and none of the ARG0 annotations match
lindbergh. All that matches the structured in the query is that one of the ARGM-TMP
annotations in the third semantic predicate matches 1927. While this answer-bearing
sentence clearly contains the answer, its wording does not yield an obvious semantic
predicate closely resembling the one in the question. We do not expect these simple struc-
tured queries to do a good job at retrieving answer-bearing sentences when the structure
is this different.

6.3.2 Probabilistic Observations

Section 5.4.1 proposed two methods for handling annotation boundary errors. Proba-
bilistic containment of elements is not important to the annotation retrieval experiments
because the semantic annotation process was performed on sentences themselves; we can
be confident that the target annotations are contained within the sentences. However,
the use of probabilistic observations around the boundary of an annotation may have an
impact on the retrieval performance.

We explore an approach to padding the extents with probabilistic observations based
on the distance of the observed token or concept from the annotation. This approach
uses a pad width, where observations outside the annotation boundaries plus/minus
the pad width get zero weight, but observations within the pad region receive a weight
proportional to the distance of the observation from the annotation boundary.

Recall that an observed concept vector c is anchored at a location in text and is a binary
vector. The dimensions of the vector are possible concepts and the values indicates the
presence or absence of the concept at the observed concept vector’s location in the text.
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Then, we can estimate the probability that a specific observation vector is located within
the set of vertexes (elements or annotations) returned by a representation function using:

P (c ∈ f(v)) =


1 ∃vi ∈ f(v) : c is located in vi,

1−minvi∈f(v) d(c, vi)/pad ∃vi ∈ f(v) : d(c, vi) < pad, and

0 otherwise,

(6.1)

where d(c, vi) measures the distance between observed concept vector’s location and the
element vi’s location in text:

d(c, vi) =


begin(vi)− location(c) if location(c) < begin(vi),
location(c)− end(vi) if location(c) > end(vi), and
0 otherwise.

Using these definitions, the belief estimate P (ri|φ(f(v))) becomes

P (ri|φ(f(v))) =

∑
c:ci=1 P (c ∈ f(v))∑
c′ P (c′ ∈ f(v))

. (6.2)

The numerator sums the observation probabilities over all observed concept vectors (lo-
cations) for which the concept i was observed. The denominator sums over all concept
vectors in the padding regions to compute a “weighted” length of these padded elements.

We explore the use of these probabilistic observations as an alternative to the use of
the sentence representation function used in Section 6.3.1. We consider a wide range of
pad widths: 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512. A small pad width provides local
smoothing of extents, while a large pad width provides passage-level smoothing.

Figure 6.16 shows the parameter estimates across the five folds for a system using ex-
tent padding and the representation functions F = {s,Cd, d}. These figures suggest that
pad width 4 or smaller provides little to no benefit to retrieval, while a large pad width
is detrimental to the system’s ability to retrieve answer-bearing sentences. Indeed, the
results in Table 6.12 clearly show that this method of extent padding only provides small
improvements, giving a MAP of 0.206, while the task-oriented model achieved a MAP of
0.201. We also explored the use of probabilistic observations in the element retrieval ex-
periments for both structured and keyword queries. For these datasets, we also observed
tiny but insignificant improvements for results.

While these results suggest that probabilistic observations may provide modest im-
provements to a system’s annotation-robustness, a better representation function can
provide much greater improvements to the robustness of the retrieval model. When
we reflect on the nature of the errors found during failure analysis in Section 4.3.2, this
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Figure 6.16: Parameter estimates for structured queries on training folds and test folds
when using the AVG scope combination method and extent padding.
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Partition Sentence Padding Neither
All 0.240 0.206 0.201
Shallow 0.197 0.197 0.197
Deep 0.303 0.210 0.206
Combined 0.240 0.202 0.201

Table 6.12: MAP for retrieving answer-bearing sentences. The first row shows perfor-
mance on test folds when using parameters optimized across all query types. The rows
below show performance when using parameters optimized separately for shallow and
deep queries, with the last row showing the combined shallow and deep results. While
a weighted padding of extents does not work as well as the inclusion of a sentence rep-
resentation, padding may provide modest improvements in the absence of the sentence
representation.

is perhaps not surprising; many of the failures of the structure retrieval approach for
answer-bearing sentence retrieval were a result of mislabeled or missing annotations. It
is tempting to hypothesize that the use of annotator confidence estimates and indexing
n-best annotations would help improve robustness for this retrieval task. Unfortunately,
few annotation tools provide this output.

It is also tempting to dismiss the use of probabilistic observations as unimportant for
retrieval. To do so would be premature. There are many ways one could estimate the
observation probabilities, and better estimates and control of the contribution of these
observations could result in greater improvements; we do not yet fully understand their
use in retrieval. While the specific use probabilistic observations investigated in this sec-
tion showed only small improvements for the retrieval of answer-bearing sentences, there
may be other tasks for which this form of smoothing could be important.

6.3.3 Summary

The extensions to the Inference Network model proposed in Chapter 5 facilitated the nat-
ural inclusion of a sentence representation function. The use of a sentence representation
function greatly improved the performance of the structured query method, enabling it to
out-perform the keyword + named-entity baseline method presented in Section 4.3 and be
at least as good as the more feature-rich learning-to-rank model investigated in Chapter
6 of Bilotti [4].

The improvement in performance was a direct side-effect of the improved ability for
the Inference Network model to provide annotation-robust retrieval results. The use of
probabilistic observations to pad extents did not result in significant improvements to the
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retrieval performance, suggesting that careful choice of representations can have greater
impact.

6.4 Chapter Summary

This chapter revisited the experiments of Chapter 4 to investigate the extended Inference
Network model. The extensions to the Inference Network model yielded performance
comparable to or better than each of the task-oriented models. The extended Inference
Network model has the benefit of being a single retrieval model easily applied to all three
tasks.

The use of the extended Inference Network model for each of the tasks has several
specific benefits. A single model provides a shared vocabulary for the presentation and
investigation of results. The modifications proposed for the Inference Network model
include a clarified query language, where the effects of query construction are more obvi-
ous and direct. Using a mixture of multiple-Bernoullis driven by representation functions
for inference network belief estimation resulted in a much cleaner model construction.

It is helpful to highlight the differences between the inference networks and queries
used for the three retrieval tasks evaluated in this chapter. The only differences were the
choice of representation functions and prior probabilities of relevance:

• F = {d, l, detitle, deheader, demeta,Cd} and a URL-type prior for known-item finding,

• F = {s,Cd, d, dest, defgc}, and result length prior for XML element retrieval, and

• F = {s,Cd, d, osentence} and a result length prior for answer-bearing sentence re-
trieval.

The use of a shared model across all tasks allowed us to focus on the investigation of
model properties, delivering results at least as good as strong task-specific models.

The experiments in this chapter have shown that the model is structure-aware, through
the ability to choose an appropriate and useful set of representation functions to combine
evidence from multiple representations. We have demonstrated the model is structure-
expressive through the shared query language appropriate for all three tasks. The exper-
iments on element retrieval and answer-bearing sentence retrieval found that the AVG
scope combination method is a robust way to combine evidence when multiple elements
match a nested scope operation. This chapter shows how the model is result-universal
through the structure-expressivity of the query language, enabling the restriction results
to requested element types, and the use of prior probabilities. This property is ver-
ified through the strong results for element retrieval and answer-bearing sentence re-
trieval. Finally, although probabilistic observations provided minimal improvements to



146 CHAPTER 6. EXPERIMENTAL RESULTS

the annotation-robustness of the model, we have found that an appropriate choice of rep-
resentation functions can greatly improve the annotation-robustness of rankings. Specifi-
cally, we showed that a sentence representation function can improve results when the
structure of the query only partially matches that of the answer-bearing sentences.



Conclusions
CHAPTER 7

This chapter summarizes the work presented in the dissertation, considers the major con-
tributions, and highlights directions for future research.

7.1 Summary

This dissertation took a holistic view of retrieval of documents with structure and anno-
tations, considering a wider variety of retrieval tasks than prior work. This resulted in the
articulation of several properties important for retrieval in these scenarios. Specifically,
any retrieval system hoping for generality and broad applicability to tasks of retrieving
documents with structure and annotations should be structure-aware, structure-expressive,
result-universal, and annotation-robust. The structure-aware property asserts that the re-
trieval model should be able to use evidence about relevance from multiple represen-
tations of the content of an element within a document. A structure-expressive query
language should have the ability to specify constraints on the relationships between key-
words and elements within a document. A result-universal retrieval model should be
able to rank and mix results of any result type. Retrieval models that are annotation-
robust can recover from errors in annotations to effectively make use of the structure
present in the query and documents. To the best of our knowledge, no prior work has
explicitly identified all four of these properties as important.

In Chapter 4, we performed experiments on known-item finding, element retrieval,
and the retrieval of answer-bearing sentences for question-anwering. These experiments
used retrieval models designed for these tasks. These statistical language modeling and
inference network approaches are representative in spirit and effectiveness of the ap-
proaches used in recent research. The mixture of multinomials used for known-item find-
ing closely resembled the model used by Ogilvie and Callan [63], which first investigated
the differences between in-model combination and score-combination. While the presented
approaches are similar models, they made different choices for smoothing (smoothing
using Dirichlet priors vs. Jelink-Mercer). The inference networks used in the question-
answering experiments closely resembled our work in Bilotti et al [5] and [60], which
highlighted the potential for using semantic structure during retrieval to better serve
question-answering systems. However, the forcing of the mixture of multinomial be-
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lief estimates into the Inference Network model to gain result-universality and structure-
expressiveness was ad-hoc and unjustified. Chapter 4 also discussed the use of grid
search for parameter estimation, demonstrating that a fairly coarse grid search can yield
good parameter estimates for length priors and mixture model parameters.

Chapter 5 proposed an extended inference network model specifically designed to
address each of the four properties for supporting structure and annotations.

In order to support the structure-aware property within the Inference Network model,
we showed how different representations for an element may be combined using a mix-
ture of multiple-Bernoullis, similar to the mixture of multinomials within the language
modeling framework. We formalized the process of creating representations through the
use of representation functions. These representation functions operate on elements in
the collection’s structure and annotations to group related elements into representations.
The choice of functions explicitly encodes our assumptions about which elements, anno-
tations, or representations are related to the element whose score is being estimated. The
introduction of the representation functions also simplifies the construction of queries in
the most common uses cases for mixture models within the Inference Network retrieval
model, removing the need for the weighted sum operator and the use of field evaluation
when the representations and their weights are the same for each query term or concept.

While prior work with Inference Network models had provided some support for
structure-expressive and result-universal retrieval, the query languages provided limited
support for structural constraints and were unclear about the proper use of priors and
belief estimation with nested extent restrictions. We proposed the replacement of arbi-
trarily located extent restrictions with the #SCOPE operator. The scope operator allows
extended support for structural constraints and make explicit the method used for the
combination of beliefs. The requirement that priors be placed within the specification of
a scope operation also clarified the use of prior probabilities in ranking.

Finally, we discussed the extended Inference Network model to make it more anno-
tation-robust. We described how the model could be made more robust to annotation
boundary errors through probabilistic containment and probabilistic observations. We
also described how annotator confidence estimates could be easily used during ranking
within the Inference Network model.

Chapter 6 explored properties of the extended Inference Network model with experi-
ments on known-item finding, element retrieval, and the retrieval of answer-bearing sen-
tences. We applied the model to achieve state-of-the art performance rivaling that of
the best published results for these tasks, verifying the model’s structure-aware, structure-
expressive, and result-universal properties. The use of the maximum likelihood estimator
for the multiple-Bernoulli is reasonable, provided the choice of representation functions
include a collection function for smoothing. We verified that using λf parameters tuned
using grid-search to combine the multiple-Bernoullis can achieve state-of-the-art retrieval
effectiveness. Experiments on the element retrieval and answer-bearing sentence retrieval
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suggested that averaging the beliefs of multiple extents matching a nested structural con-
straint provides good results for element retrieval. Finally, we showed how the extended
Inference Network model allows for the easy inclusion of a sentence representation, im-
proving the annotation-robustness of the model for answer-bearing sentence retrieval.

The experiments in Chapters 4 and 6 also demonstrated previously unknown proper-
ties of mixtures of language models with respect to retrieval effectiveness. The parameter
estimate curves enabled by the grid search show remarkably smooth and flat curves. This
highlights the robustness of the mixture models and in-model combination, as well as un-
derscoring the fact that only a fairly coarse grid search is required for good estimates.

7.2 Contributions

As the field of Information Retrieval has matured, researchers have considered a wider
variety of search tasks. It is true that researchers have studied the use of multiple rep-
resentations and document structure for years, but it has only been recently that large
reusable test collections have been available for tasks such as these. The Text Retrieval
Conference (TREC) and the Initiative for the Evaluation of XML Retrieval (INEX) have
recently created large Web and XML test corpora which has drawn extra attention to
tasks and techniques that can benefit from the use of document structure and multiple
representations. In parallel, the rapid growth and success of commercial search engines
on very large samples of the World Wide Web has renewed researcher’s beliefs that doc-
ument structure and multiple representations are crucial for effective search in very large
scale systems.

With this renewed interest in the use of structure and multiple representations, re-
searchers within the field of Information Retrieval have proposed numerous modeling
and ranking techniques. The effectiveness of these techniques demonstrated the useful-
ness of structure and representations for ranking. However, techniques are often heuris-
tic adaptations specific to one problem domain. There has been little work to develop a
model that is flexible and effective for a wide variety of search tasks that leverage docu-
ment structure and annotations.

This dissertation fills the hole by providing a well-motivated theoretical model of the
structure of information in a collection and demonstrates how it can be leveraged for
ranking across a variety of problems. This work builds on top of proven techniques for
statistical language modeling and the Inference Network model. The model makes ex-
plicit researchers’ assumptions about which structural information is related. The param-
eters estimated for the model directly reflect the accuracy of the researchers’ assumptions.
The effectiveness of a coarse grid search removes the burden of estimation from other re-
searchers and allows them to focus on which features of the structure are important for
effective ranking with their specific tasks and corpora.
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Even if other researchers choose not to work within the extended Inference Network
model presented in this dissertation, we have identified four important properties for
retrieval of documents with structure and annotations. We feel that explicit recognition
of these properties will help guide other’s research in these tasks.

Apart from the applications of XML element retrieval, known-item finding of Web
documents, and answer-bearing sentence retrieval investigated in this dissertation, the
model is easily applicable and adaptable to other applications where structure and mul-
tiple representations could be helpful in modeling and ranking. There is no requirement
within the model that the information or beliefs be estimated on text representations;
for example, measures of image similarity could be used for comparing image elements
within documents. Other measures of similarity could be used for numeric elements,
names, or dates. Example applications where the model could be applied include multi-
media text retrieval, search of medical records, and legal document retrieval.

The work in this dissertation also highlights that the information needs of natural lan-
guage processing applications are different than those of a human user. Natural language
processing applications often have much more precise expectations about the form of use-
ful information. That is, the applications have greater sensitivity to the structure of the
text itself. In many cases, these expectations are expressible in terms of constraints on the
relationships between keywords and annotations of the linguistic structure of the text.

The extensions to the Inference Network model also made important strides in reduc-
ing the sensitivity to badly formed queries and noisy document structure. Our failure
analysis in the task-oriented retrieval models showed that there was often a mismatch
between the structured query and the actual information need in the element retrieval
experiments. The use of the AVG combination method for nested scope operators pro-
vided a good balance between effectively using good structural constraints, while being
robust and providing reasonable results when there was a poorly chosen structural con-
straint. The strength of averaging the beliefs of multiple matching elements was more
pronounced in our answer-bearing sentence retrieval experiments, where there may be
mismatch between the annotations in the documents and the structure of the query. This
mismatch may be a result of difference in the language itself, but also common errors in
the output of natural language processing tools. We have shown that the AVG combina-
tion method used in conjunction with a good set of representations can provide consistent
and strong improvements for the use of structure in queries.

Some of our early work in this area [61] proposed a more complex hierarchical model
to create structure aware retrieval models. This model smoothed elements using the hier-
archy present in each document. One goal at the time was to develop a structure aware re-
trieval model that hid many of the smoothing decisions from the system administrator or
information retrieval researcher. However, this approach proved difficult to interpret and
had many unspecified retrieval model parameters. The use of representation functions,
which exposes smoothing decisions to the researcher in a simple and interpretable man-
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ner, is in some ways more powerful and more transparent. We still rely on the researcher
to choose a good set of candidate representations in order to narrow the parameter search;
it behooves us to ensure that these choices will be clear to other researchers. Similarly, the
choice of belief combination for nested extent retrieval in structure-expressive queries ex-
poses complexity to the query authors during retrieval. Averaging the beliefs may prove
to be a good default, but the different methods do result in different behavior during
ranking. As we learn more about these retrieval tasks, we may be able to hide more of the
retrieval model decisions from the experimenters, but at this time it will serve us best to
expose these decisions as simply and as transparently as possible.

The extensions and modifications to the Inference Network model proposed in this
dissertation are driven by desires to simplify the setup of experiments for other research-
ers. Specifically, the introduction of the model representation layer in the Inference Net-
work (Section 5.1) enables moving the in-model combination out of the query language
and into system parameters. Thus, one should no longer need to write long queries with
duplicated query terms and field evaluations in #WSUM operators. This use multiple rep-
resentations within Inference Networks is frequent enough that it deserves to be handled
in a simple way that reduces the burden on other researchers, improving the likelihood
they will write effective queries. Similarly, the suggested introduction of the #SCOPE op-
erator is intended to clarify the appropriate construction of queries with nested structural
constraints. This operator makes the use of prior probabilities and belief combination
methods explicit, thus reducing the likelihood that an researcher may omit an important
combination method or fail to understand the impact of nested extent retrieval during
ranking. The proposed modifications are important. Misuse of nested extent retrieval is
a common source of errors, and the #SCOPE operator clarifies extent retrieval. Moving
representations and their weights from queries into system parameters also makes the
construction of inference networks using multiple representations much more straight-
forward, thus reducing the risk of poorly formed queries.

7.3 Future Work

This section describes areas of future work that build upon the results of this dissertation.

Scaling structured queries and multiple representations to larger collections As more
test collections grow beyond a terabyte of text, it is crucial to scale the methods of con-
structing representations and evaluating structured queries. In general, search on a pre-
built index is at worst case linear in the number of ranked documents and in practice
sub-linear. Yet there are cases where the indexing costs are non-linear. Similarly, the cost
per candidate result during retrieval may be high.
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The choice of representation functions one may wish to use during retrieval can have
an impact on the organization of the index structures. It is common practice to group the
text of all representations one may wish to use within an “expanded document.” This
allows fast access to these representations during retrieval, as well as the use of struc-
tured queries and extent retrieval restricted within a representation. The construction of
the expanded documents requires a pre-processing pass of the text in a collection and a
large sort of the alternative representations in order to group the text of these represen-
tations with the document. With the exception of the in-link text of web documents, this
dissertation largely focused on representations that are formed from elements within a
document. As we wish to explore more representations that exist outside a document,
it will be important understand and improve the indexing and retrieval structures and
algorithms to ease experimentation.

Furthermore, nested extent retrieval in large collections can be expensive. For exam-
ple, consider the case where we wish to place additional constraints on the text of in-links
to a document. Some documents will have many links. Current implementations of the
structured query operators require computing the beliefs over all links, resulting in very
slow retrieval performance. Despite retrieval sub-linear in the number of documents in
the collection, the cost per document can be high.

Now that we have a better sense of what representation creation functions are im-
portant and common effective uses of structure in queries, we can use this knowledge to
focus our efforts in optimization and approximation. Our link example may be improved
by an approximation to the AVG combination method. Other optimizations to structured
query operators and the use of representations will be important to their practicality in
large test collections.

Scaling to many representations Currently it is practical to estimate parameters for
up to around seven representations. The exponential nature of the grid search makes it
difficult to scale to larger representation sets and this approach relies upon a researcher
to choose a set of promising representations. While for many retrieval tasks only a small
number of representations may be important, search at web scale may benefit from a
larger number of representations. There are two primary approaches to considering a
larger number of representations. The first would be to automatically reduce the number
of representations used during ranking; the second would be to use parameter estimation
methods that are not exponential in the number of representations.

The representation functions provide a language for the construction of possible repre-
sentations. These representation functions are analogous to features in machine learning.
We believe that simple analysis of a large set of potential representations on a test collec-
tion may be sufficient to automatically select a small set of promising representations. For
example, one could choose the representation functions that yield the best retrieval per-
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formance when combined with collection representation. Or more sophisticated methods,
drawing from feature selection literature in machine learning or statistics could yield bet-
ter choices of representations. Understanding correlations between representations could
also help the process of choosing a good set of representations.

Once a promising set of representations has been selected, it may be important to
use a more scalable method than grid search. While grid search may remain the most
reliable method of parameter estimation, we may use grid search on a smaller number of
representations to validate the optimality of other parameter estimation methods. To the
best of our knowledge, no prior work exists on comparing methods for the estimation of
mixture model parameters such as line search, approximations of gradient ascent, using
regression parameters, or learning to rank. The use of a grid search as a reference across
many test collections would provide valuable insight to the stability of parameters these
search methods employ, such as search step sizes or regularization parameters.

Using knowledge to improve annotation retrieval The failure analysis of answer-bear-
ing sentence retrieval demonstrated that mismatch between language use resulted in
queries that did not match the language and structure of the answer-bearing sentences.
There are multiple ways we believe using additional knowledge about language structure
could improve the results on annotation retrieval.

The mismatch resulting in annotation errors could be addressed through indexing
multiple annotation structures per semantic predicate, weighted by belief of accuracy.
This data would need to come from the annotation tools themselves, but having the alter-
native annotations indexed could greatly improve the robustness of these methods.

Mismatch in word use may be partially addressed through the use of synonymy. Care-
ful, weighted expansion, such as expanding the target verb with a list of synonyms may
enable effective use of knowledge about meaning. Since such an expansion would be
anchored to the target verb of a specific semantic predicate, this use of meaning may be
controlled enough to overcome the limitations of prior attempts to use synonymy in text
retrieval systems.

A similar form of knowledge would be the understanding of other equivalent ways
to structure the semantic predicate that may contain an answer. One could then create
multiple queries, one for each potential answer-bearing semantic structure.

Ultimately, the best way to improve the annotation-robustness of retrieval systems
will be through more careful failure analysis of the errors annotators make and how those
errors interact with retrieval models. Additional careful data analysis should be used to
identify which methods of annotation-robustness seem the most promising.



Bibliography

[1] S. Beitzel, E. Jensen, R. Cathey, L. Ma, D. Grossman, and O. Frieder. Iit at trec 2003,
task classification and document structure for known-item search. In The Twelfth Text
Retrieval Conference (TREC 2003), pages 311–320, 2004.

[2] D. M. Bikel, R. L. Schwartz, and R. M. Weischedel. An algorithm that learns whats
in a name. Machine Learning, 34(1-3), 1999.

[3] M. Bilotti. Query expansion techniques for question answering. Master’s thesis,
Massachusetts Institute of Technology, 2004.

[4] M. Bilotti. Linguistic and Semantic Passage Retrieval Strategies for Question Answering.
PhD thesis, Carnegie Mellon University, 2009.

[5] M. W. Bilotti, P. Ogilvie, J. Callan, and E. Nyberg. Structured retrieval for question
answering. In SIGIR ’07: Proceedings of the 30th annual international ACM SIGIR con-
ference on Research and development in information retrieval, pages 351–358, New York,
NY, USA, 2007. ACM.

[6] A. Broder. A taxonomy of web search. SIGIR Forum, 36(2):3–10, 2002.

[7] F. J. Burkowski. Retrieval activities in a database consisting of heterogeneous col-
lections of structured text. In Proceedings of the Fifteenth Annual International SIGIR
Conference on Research and Development in Information Retrieval, pages 112–125, 1992.

[8] D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass, and A. Soffer. Searching xml
documents via xml fragments. In SIGIR ’03: Proceedings of the 26th annual international
ACM SIGIR conference on Research and development in informaion retrieval, pages 151–
158, New York, NY, USA, 2003. ACM Press.

[9] V. R. Carvalho, J. L. Elsas, W. W. Cohen, and J. G. Carbonell. A meta-learning ap-
proach for robust rank learning. In Proceedings of the SIGIR 2008 Workshop on Learning
to Rank for Information Retrieval, 2008.

[10] V. R. Carvalho, J. L. Elsas, W. W. Cohen, and J. G. Carbonell. Suppressing outliers
in pairwise preference ranking. In Proceedings of the 17th Annual ACM Conference on
Information and Knowledge Management (CIKM 2008). ACM Press, 2008.

154



BIBLIOGRAPHY 155

[11] J. Chu-Carroll, J. Prager, K. Czuba, D. Ferrucci, and P. Duboue. Semantic search via
xml fragments: a high-precision approach to ir. In SIGIR ’06: Proceedings of the 29th
annual international ACM SIGIR conference on Research and development in information
retrieval, pages 445–452, New York, NY, USA, 2006. ACM Press.

[12] C. L. A. Clarke, G. V. Cormack, and F. J. Burkowski. Schema-independent retrieval
from heterogeneous structured text. In Fourth Annual Symposium on Document Anal-
ysis and Retrieval, Las Vegas, NV, pages 279–290, 1995.

[13] C. L. A. Clarke, G. V. Cormack, and C. R. Palmer. An overview of multitext. SIGIR
Forum, 32(2):14–15, 1998.

[14] W. W. Cohen, R. E. Schapire, and Y. Singer. Learning to order things. Journal of
Artificial Intelligence Research, 10:243–270, 1999.

[15] K. Crammer and Y. Singer. Pranking with ranking. In Advances in Neural Information
Processing Systems 14, pages 641–647. MIT Press, 2001.

[16] N. Craswell and D. Hawking. Overview of the trec-2002 web track. In The Eleventh
Text REtrieval Conference, pages 86–95. NIST Special Publication 500-251, 2002.

[17] N. Craswell and D. Hawking. Overview of the trec 2003 web track. In The Twelfth
Text REtreival Conference, pages 78–92. NIST Special Publication 500-255, 2003.

[18] N. Craswell and D. Hawking. Overview of the trec 2004 web track. In The Thirteenth
Text REtreival Conference. NIST Special Publication 500-261, 2004.

[19] E. A. Fox. Composite document extended retrieval. In Proceedings of the Eighth Annual
International SIGIR Conference on Research and Development in Information Retrieval,
pages 42–53, 1985.

[20] E. A. Fox and R. K. France. A knowledge-based system for composite document
analysis and retrieval: Design issues in the CODER project. Technical Report TR-86-
6, Virginia Tech, 1986.

[21] E. A. Fox and J. A. Shaw. Combination of multiple searches. In Proceedings of the
Second Text REtrieval Conference (TREC), pages 243–249, 1994.

[22] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for
combining preferences. J. Mach. Learn. Res., 4:933–969, 2003.

[23] N. Fuhr, N. Goevert, G. Kazai, and M. Lalmas, editors. Proceedings of the First Work-
shop of the INitiative for the Evaluation of XML Retrieval (INEX). ERCIM, 2003.



156 BIBLIOGRAPHY

[24] N. Fuhr, M. Lalmas, S. Malik, and G. Kazai, editors. Advances in XML Information
Retrieval and Evaluation: Fourth Workshop of the INitiative for the Evaluation of XML
Retrieval (INEX 2005), volume 3977 of Lecture Notes in Computer Science. Springer
Verlag, Heidelberg, 2006.

[25] S. Fujita. More reflections on “aboutness” TREC-2001 evaluation experiments at just-
system. In The Tenth Text REtrieval Conference (TREC 2001), pages 331–338, 2002.

[26] M. Fuller, E. Mackie, R. Sacks-Davis, and R. Wilkerson. Structured answers for a
large structured document collection. In Proceedings of the Sixteenth Annual Inter-
national SIGIR Conference on Research and Development in Information Retrieval, pages
204–213, 1993.

[27] D. Graff. The AQUAINT Corpus of English News Text, volume Cat. No. LDC2002T31.
Linguistic Data Consortium (LDC), 2002.

[28] S. Harter. A probabilistic approach to automatic keyword indexing. Journal of the
American Society for Information Science, 26:197–206, 280–289, 1975.

[29] D. Hawking and N. Craswell. Overview of the trec-2001 web track. In The Tenth Text
REtrieval Conference, pages 61–67. NIST Special Publication 500-250, 2001.

[30] D. Hiemstra. A linguistically motivated probabilistic model of information retrieval.
In Proceedings of the Second European Conference on Research and Advanced Technologies
for Digital Libraries, pages 569–584, 1998.

[31] D. Hiemstra. Using language models for information retrieval. PhD thesis, University of
Twente, 2001.

[32] T. Joachims. Optimizing search engines using clickthrough data. In ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD), pages 133–142, 2002.

[33] J. Kamps, M. de Rijke, and B. Sigurbjörnsson. Length normalization in xml retrieval.
In SIGIR ’04: Proceedings of the 27th annual international ACM SIGIR conference on Re-
search and development in information retrieval, pages 80–87, New York, NY, USA, 2004.
ACM Press.

[34] J. kamps, M. de Rijke, and B. Sigurbjörnsson. The importance of length normaliza-
tion for xml retrieval. Information Retrieval Journal, 8:631–654, 2005.

[35] J. Kamps, G. Mishne, and M. de Rijke. Language models for searching in web cor-
pora. In The Thriteenth Text REtrieval Conference. NIST Special Publication 500-261,
2004.



BIBLIOGRAPHY 157

[36] J. Kim, X. Xue, and W. Croft. A probabilistic retrieval model for semistructured data.
In Proceedings of the 31st European Conference on Information Retrieval, pages 228–239.
Springer, 2008.

[37] P. Kingsbury, M. Palmer, and M. Marcus. Adding semantic annotation to the penn
treebank. In Proceedings of the 2nd International Conference on Human Language Tech-
nology Research (HLT 2002), 2002.

[38] W. Kraaij, T. Westerveld, and D. Hiemstra. The importance of prior probabilities for
entry page search. In Proceedings of the 25th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, pages 27–34. ACM, 2002.

[39] J. Lafferty and C. Zhai. Language Modeling in Information Retrieval, chapter Probabil-
isitic Relevance Models Based on Document and Query Generation. Kluwer Inter-
national Series on Information Retrieval. Kluwer, 2003.

[40] R. Larson. A fusion approach xml structured document retrieval. Information Re-
trieval Journal, 2005.

[41] V. Lavrenko. A Generative Theory of Relevance. PhD thesis, University of Mas-
sachusetts at Amherst, 2004.

[42] J. Lin and B. Katz. Building a reusable test collection for question answering. Journal
of the American Society for Information Science and Technology, 57(7):851–861, 2006.
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NEXI query language
APPENDIX A

The content-oriented XPath query syntax described here is called NEXI [85]. Although
other filters such as numeric operations exist in NEXI, the discussion here of NEXI focuses
on the about relevance filter as it is more intimately related to ranking than the other
filters. Paths prefixed xp take the form (//type)+ where type can be any of the element
types in the corpus or * indicating that any element type is satisfactory. The // denotes a
descendant relationship.

In pattern XP1, the query expresses the request that elements matching path xp1 with
descendant elements matching path xpA that are about the query qtA be returned to the
user. For example, the query

A.1 //front matter[ about(.//title, bombings) ]

requests that the system return front matter elements that have a title element
about bombings. Any path within an about filter may simply be the character ‘.’ which
indicates that the query expressed in the filter should match the outer element itself. The
query

A.2 //paragraph[ about(., number suicide bombings 2006) ]

requests that paragraphs discussing the number of suicide bombings in 2006 be ranked
and returned to the user.

Label Pattern Description
XP1 xp1[about(.xpA, qtA)] elements matching xp1 containing

element xpA which is about qtA
XP2 xp1[about(.xpA, qtA) op about(.xpB, qtB)] xp1 must have xpA about qtA

and/or xpB about qtB
XP3 xp1[about(.xpA, qtA)]xp2[about(.xpB, qtB)] xp1.xp2 having xpB about qtB

and xp1 has xpA about qtA

Table A.1: Summary of some content-oriented XPath query patterns.
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Pattern XP2 shows how conjunctions of about filters may be expressed in NEXI. The
operator op may be either a Boolean AND or an OR. The query

A.3 //article[ about(., bombings) AND
about(.//image//caption, investigators) ]

requests that article elements about bombings having image captions about investigators
be ranked and returned to the user.

Pattern XP3 shows how elements may be ranked with the consideration of related
elements higher up in the document structure hierarchy. The query

A.4 //article[ about(., bombings)]//image[
about(.//caption, investigators) ]

requests that image elements with a caption about investigators in an article about
bombings be ranked and returned.



IEEE Elements Retrieved
APPENDIX B

We restrict our experiments in the IEEE collections to retrieving a subset of all XML ele-
ment types for efficiency reasons. The list was constructed by taking all element types that
had at least 100 relevant elements across the test collections. We found in our experiments
that adding more element types only improved the MAP of the systems, but felt that this
list created a reasonable compromise between efficiency and MAP. These element types
are sorted by descending frequency: p, sec, article, it, tmath, ss1, ref, ip1, bb, art, bdy, b, st,
sub, item, fig, vt, abs, ss2, bm, tf, fm, li, atl, label, scp, fgc, list, ti, obi, au, en, entry, fnm, url, bib,
bibl, snm, yr, super, app, pdt, no, enum, lc, pp, ss, tt, index-entry, row, tbl, loc, cty, p1, mo, tig, la,
math, term.
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