

Federated Ontology Search

Vasco Calais Pedro

CMU-LTI-09-010

Language Technologies Institute

School of Computer Science

Carnegie Mellon University

5000 Forbes Ave. Pittsburgh, PA 15213

www.lti.cs.cmu.edu

Thesis Committee:

Jaime Carbonell, Chair

Eric Nyberg

Robert Frederking

Eduard Hovy, Information Sciences Institute

Submitted in partial fulfillment of the requirements

 for the degree Doctor of Philosophy

In Language and Information Technologies

Copyright © 2009 Vasco Calais Pedro

For my grandmother, Avó Helena, I am sorry I wasn’t there

Abstract

An Ontology can be defined as a formal representation of a set of concepts within a domain and

the relationships between those concepts. The development of the semantic web initiative is

rapidly increasing the number of publicly available ontologies. In such a distributed environment,

complex applications often need to handle multiple ontologies in order to provide adequate

domain coverage.

Surprisingly, there is a lack of adequate frameworks for enabling the use of multiple ontologies

transparently while abstracting the particular ontological structures used by that framework.

Given that any ontology represents the views of its author or authors, using multiple ontologies

requires us to deal with several significant challenges, some stemming from the nature of

knowledge itself, such as cases of polysemy or homography, and some stemming from the

structures that we choose to represent such knowledge with.

The focus of this thesis is to explore a set of techniques that will allow us to overcome some of

the challenges found when using multiple ontologies, thus making progress in the creation of a

functional information access platform for structured sources. In this thesis we try to address the

question “How do we integrate and use information contained in a set of heterogeneous

ontologies?” This question is becoming crucial as the world gets more connected. As the amount

of information grows, so does the amount of resources that encode domain knowledge in different

forms. At the same time, as we deal with problems that span a large number of domains, such as

search, question answering and semantic analysis, the need for concurrent access to multiple

ontologies becomes ever more self-evident.

We model our approach on the general framework proposed in Federated Search and transpose

the set of problems to the ontological domain. We start by illustrating the variety of available

ontologies and focusing on automatic ontology creation. We proceed to describe the use of pro-

active ontology selection to guide the ontology selection process at the query level. We then

propose a set of operators for ontological search centered on the user’s information needs and

expand the basic operator set through composition of basic operators. We address the problem of

graph merging within Ontology Search and propose a scoring metric for results that is based in

the proposed operator set.

Finally, we present results of using the Federated Ontology Search (FOS) engine in a set of task

based evaluations. Our task set is comprised of type checking for question answering, concept

coverage, concept disambiguation and content recommendation. We show that in all of the

evaluated tasks, the FOS system outperforms the use of individual ontologies.

1

1 INTRODUCTION ... 6

1.1 MOTIVATING EXAMPLE ... 12
1.1.1 Question Answering ... 12
1.1.2 Example 1 .. 12

1.2 BASIC DEFINITIONS ... 20
1.2.1 Ontologies and Graphs .. 20

1.3 CHALLENGES TO BE ADDRESSED .. 22
1.4 SUMMARY OF CONTRIBUTIONS .. 22
1.5 EVALUATION OF RESULTS .. 23
1.6 OVERVIEW OF THESIS ORGANIZATION.. 24
1.7 SUMMARY.. 24

2 BACKGROUND AND RELATED WORK .. 26

2.1 ONTOLOGY SELECTION .. 26
2.2 WORD SENSE DISAMBIGUATION .. 27
2.3 RESULT MAPPING AND MERGING .. 29

3 AUTOMATIC ONTOLOGY CREATION ... 32

3.1 AUTOMATIC CREATION OF ONTOLOGIES FROM SEMI STRUCTURED RESOURCES 32
3.2 RELATED WORK .. 33
3.3 THE WIKIPEDIA STRUCTURE .. 34
3.4 GENERAL METHODOLOGY ... 35
3.5 FEATURE EXTRACTION .. 35
3.6 GENERATING LABELED DATA ... 36

3.6.1 List Based Labeling ... 37
3.6.2 Context Based Labeling ... 37

3.7 DIRECTIONAL FEEDBACK EDGE LABELING ALGORITHM ... 39
3.8 UMLS AND OKINET... 42
3.9 EXPERIMENTAL SETTING ... 43
3.10 RESULTS ... 43

4 ONTOLOGY SELECTION .. 47

4.1 CHARACTERIZATION OF ONTOLOGICAL RESOURCES ... 47
4.2 ONTOLOGICAL REPRESENTATION LANGUAGES ... 52

4.2.1 Knowledge Interchange Format (KIF) .. 52
4.2.2 Resource Description Framework (RDF).. 52
4.2.3 Web Ontology Language (OWL) ... 53
4.2.4 CycL .. 54

4.3 PROACTIVE ONTOLOGY SELECTION ... 55
4.3.1 Cooperative Ontology Selection .. 55
4.3.2 Uncooperative Ontology Selection .. 56

5 ONTOLOGICAL SEARCH ... 62

5.1 ONTOLOGY QUERY LANGUAGES ... 62
5.1.1 Simple Protocol and RDF Query Language (SPARQL) .. 62
5.1.2 Metaweb Query Language (MQL)... 63
5.1.3 User Centric Approach to Ontology Query Languages .. 64

5.2 PROPOSED QUERY APPROACH ... 67
5.2.1 Operators... 68
5.2.2 Query ... 80
5.2.3 Query Results .. 81

5.3 SUMMARY.. 82

6 RESULT MERGING AND SCORING ... 83

6.1 PROBLEM DEFINITION .. 83

2

6.2 SEMANTIC DISTINCTION OF RESULTS .. 84
6.3 CONCEPT NORMALIZATION USING SYNONYM RESOURCES ... 85
6.4 EDGE NORMALIZATION ... 88

6.4.1 Label Synonym Identification .. 88
6.5 MERGING PROCEDURE ... 89

6.5.1 Graph Similarity .. 89
6.5.2 Granularity Resolution .. 92

6.6 SCALABILITY ... 97
6.7 RESULT SCORING ... 98

7 RESULT DISCUSSION .. 102

7.1 TYPE CHECKING .. 103
7.1.1 Experimental Setup .. 103
7.1.2 Results and Analysis .. 103

7.2 CONTENT MATCHING .. 106
7.2.1 Task Definition .. 106
7.2.2 Experimental Setup .. 106

8 RESULT ANALYSIS .. 111

9 CONCLUSIONS AND FUTURE WORK ... 121

9.1 SUMMARY OF CONTRIBUTIONS .. 121
9.2 FUTURE WORK .. 122
9.3 CONCLUSION ... 123

10 BIBLIOGRAPHY .. 127

3

Table of Figures

Figure 1 - an example of a basic ontology .. 21

Figure 2 - A graph structure .. 21
Figure 3 - Ontology Extraction Example .. 39
Figure 4 - Example of Directional Labeling. .. 40
Figure 5 - Sample Ontology Categorization ... 49
Figure 6 - RDF Example in XML notation ... 53

Figure 7 - OWL Example ... 54
Figure 8 - CycL Example .. 55
Figure 9 - Overview of query Run Time ontology Selection ... 59
Figure 10 - SPARQL Example ... 63
Figure 11 - MQL Example .. 63

Figure 12 - MQL Result Example .. 64

Figure 13 - SPARQL Impossible Example ... 65
Figure 14 - MQL Transitive Query ... 66

Figure 15 - Simple relation Query .. 66
Figure 16 - Search Operator Example .. 71
Figure 17 - relation operator general form .. 72

Figure 18 – relation operator ... 73
Figure 19 - Concurrent Operator General Form ... 74

Figure 20 - Concurrent Operator expressed in terms of the relation operator 75
Figure 21 - The define operator as a formulation of the relation operator 76
Figure 22 - Define Operator .. 76

Figure 23 – Base case for children operator ... 77
Figure 24 - The Children operator as a function of the relation operator 77

Figure 25 – Base case for parents operator ... 78
Figure 26 - The parents operator as a function of the relation operator 78

Figure 27 - The and operator .. 78
Figure 28 – and operator ... 79

Figure 29 - The or operator ... 79
Figure 30 – or operator ... 80

Figure 31 - Decomposition of operators ... 80
Figure 32 - Scenarios for Result Merging... 84
Figure 33 - Example of Concept Normalization ... 86
Figure 34 - Counter Example of Concept Normalization ... 87
Figure 35 – Pseudo code for concept normalization ... 88

Figure 36 – Localized Boosting Algorithm .. 91
Figure 37 - Granularity Problem Example.. 93

Figure 38 - Intial Merging... 94
Figure 39 - Merging Result ... 96
Figure 40 - Result scoring example 1 ... 98
Figure 41 - Result scoring example 2 ... 98
Figure 42 - Result scoring example 3 ... 98
Figure 43 - Example of Mechanical Turk task ... 107

file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243567
file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243570
file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243571
file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243572
file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243573
file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243574
file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243575
file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243576
file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243577
file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243578
file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243579
file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243580
file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243581
file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243583
file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243584
file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243585
file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243586
file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243588
file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243590
file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243591
file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243593
file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243598
file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243599
file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243604
file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243605
file:///C:/Users/Vasco/Documents/thesis/FOS-Thesis-Final-EN11.docx%23_Toc239243606

4

Figure 44 - Agreement between reviewers ... 109

Figure 45 - relevancy of products ... 110
Figure 46 - Agreement between reviewers ... 110
Figure 47 - Coverage Results .. 113

Figure 48 - Disambiguation Example ... 116
Figure 49 - Disambiguation Results ... 117
Figure 50 - precision results .. 119
Figure 51 - Examples of semantically related non-overlapping words 120

5

Acknowledgements

It is expected that during such a journey one should somehow change, grow as a person.

If I were to stand at the doorstep of graduate school, I would have never guessed how

much that could be possible. In knowing that the voyage is really just beginning, I hope

that, besides bringing me back to CMU once in a while, the rest of it will be at least as

amazing has it has been so far.

I would like to start by thanking my advisors, Jaime Carbonell and Eric Nyberg,

who made sure that the excitement of being lost always led to good port. To Jaime I

thank the many hours of guidance and the support in every part of my stay at CMU. To

Eric I thank the instilled respect for sound software principles, learning the value of

integration and the power of research in the real world. To a native engineer like me, My

advisors were truly an inspiration of the potential that lies in the application of great ideas

to real problems. I would also like to thank my committee, Robert Frederking and Eduard

Hovy for all the generous comments and support during my thesis which helped me to

push myself a little further.

The list of friends grows too numerous, and the number of teams and intramurals,

activities and clubs, which made so much of my academic life, would take the best part of

a page to acknowledge. Thanks to Ulas, Kenji, Alicia, Kevin, Thomas, Ashish, Betty, Le,

Jasmine, Udhai, Sourish, Lucian, Andre, Guy, Catherine, Kornel, Paul (Bennett and

Ogilvie), John, Arthur, Yan, Giovanni and so many others that made my life here so

much, much better. To the Portuguese speaking, Bernardo, Margarida, Graça, Francisco,

André, Sara, Evandro and Rosemeri, thank you for bringing a little bit of home to

Pittsburgh. To all of the people that I have the honor to call friends, thank you.

To my mother Emilia Ribeiro, the guiding inspiration in my career, I thank from

the bottom of my heart for always demanding more, for the sacrifices made to ensure a

better life for her children and for the unwavering love and support in everything I do.

To my grandmother Maria Helena Santos, who died before seeing the end of this

journey, I hope that she can see in my soul the deep love and complete gratitude that I

feel for having had her in my life. She was my rock, my shelter and her complete

selflessness left a mark in all who were touched by it.

To Joao and Célia Carreira, my in-laws, avid supporters of everything CMU, I

thank for the support and wonderful energy that every visit would bring. To my sister

Catarina Pedro, my father Manuel Pedro, and the rest of my family, I thank you for the

support and confidence in my work.

To my daughters Beatriz, Mariana and Sofia Calais-Pedro, I thank you for putting

everything into perspective. Your innocent eyes make everything simple; your smiling

faces make everything wonderful.

Finally, I want to thank the love of my life, my wife, my friend and companion of so

many travels, Maria João Calais Pedro. Her sacrifice in face of adversity, her tenderness

on tired days, her humor on the face of desperation, her amazing management skills with

lack of resources, her willingness to be by my side in every turn and her enduring and

ever present love have really made this thesis possible. I will always love the pilgrim soul

in you.

6

1 Introduction

In everyday life we use structured and semi-structured information collections. They play

a fundamental role in providing information that we can use to fulfill daily tasks such as

purchasing decisions, map routes and voting decisions. Yet, when it comes to computer

applications that use structured domain information, most applications use only one

information source, thus limiting themselves severely in the breadth and amount of

supporting information used within the goal of that application. The main reason for this

is the lack of a transparent and efficient way to access, process and utilize a set of

structured domain information sources. Given that any encoded representation of domain

knowledge represents the views of its author or authors, using multiple sources require us

to deal with several significant challenges, some stemming from the nature of

information itself, such as polysemy and structural ambiguity, and some stemming from

the structures that we choose to represent the collective data, such as graph merging.

The focus of this thesis is to explore a set of techniques that will allow us to overcome

some of these challenges, thus making progress in the creation of a functional

information access platform for structured sources. In this thesis we try to address the

question “How do we integrate and use information contained in a set of heterogeneous

resources that model domain knowledge?”

This question is becoming crucial as the world gets more connected. As the amount of

information grows, so does the amount of resources that encode domain knowledge in

different forms. At the same time, as we deal with problems that span a large number of

domains, such as search, question answering and semantic analysis, the need to use

domain knowledge becomes ever more self-evident. The problem is that, unlike the

expert systems of the 70’s which focused on a small number of domains, the current

problems require a global solution to the domain knowledge access problem.

Within computer science, the resources that encode world and domain knowledge are

called taxonomies, dictionaries, knowledge bases, expert systems or more generally

7

Ontologies. Each name represents a slight variation on the properties of the domain

resource, but as usual, the number of definitions far outnumbers the things being defined.

As a first step towards a general approach we consider those domain resources to be a

type of ontology, which we now define.

Despite several definitions (Guarino 1998), an Ontology can be defined as a model that

represents a domain and is used to reason about objects in that domain and the relations

between them. It is usually composed of concepts, relations between those concepts,

concept properties and instances. Within the scope of this work we consider taxonomies,

semantic nets (Quillian 1967) and lexical resources such as Wordnet (Miller 1995) as

ontologies. The use of ontologies is now widespread in areas as diverse as biomedical

research, information extraction and knowledge engineering and management.

For the purposes of our research, an ontology can be as simple as a semantic network

(Quillian 1967), where no distinction is made between concepts and instances, and the

only relation possible is of the is-a type, or as complex as CYC (Lenat 1995), with a clear

distinction between concepts and instances, where multiple inheritance is allowed and

there is an extremely rich set of possible relations. In order to accommodate the breadth

of representational possibilities we reduce the representation to the general form of graph,

where the nodes represent concepts and the edges represent relations, making no

assumption as to the limit of what relations can exist. This casts the majority of the

addressed problem as a graph approach problem, addressing ontology merging as a form

of graph merging.

In the last decades the number of available ontologies has grown considerably. Several

proprietary and open-domain ontological resources such as CYC (Lenat 1995), SUMO

(Niles and Pease 2001), Omega (Philpot, Fleischman et al. 2003), Scone (Fahlman 2005),

ThoughtTreasure (Mueller 1997), Wordnet (Miller 1995), VerbNet (Schuler 2003),

Framenet (Baker, Fillmore et al. 1998) and Propbank (Kingsbury and Palmer 2002) have

become available. Swoogle (Ding, Finin et al. 2004) has now indexed more than 10 000

ontologies. These resources offer the promise of easily-accessible, open-domain

8

ontological information, but the existence of such diverse ontologies raises the issue of

information merging and reuse. A comparison of the ontologies reveals both redundant

and complementary coverage, but the variety of frameworks and languages used for

ontology development makes it a challenge to merge query results from different

ontologies. The number of available languages for ontological knowledge engineering

such as RDF, OWL, DAML+OIL and CYCL, combined with the existence of

independent interfaces aggravates the issue.

The problem is not just seen in general domains, where one would expect the knowledge

to be more readily available, but also in more specific domains such as the medical

domain. In the medical domain the number of ontologies has also grown considerably.

These ontologies enable the use of previous medical knowledge in a structured way.

Applications of medical ontologies include: more effective search of patient records,

hospital quality improvement programs, (semi)automatic ICD-9 coding for insurance

reimbursement, preliminary symptom-based diagnosis, ambiguity reduction when

choosing medical tests, and classification of diseases, symptoms, and other medical

concepts. For example, when trying to answer whether a patient was prescribed Aspirin

(for hospital quality improvement measures), one needs to consider similar terms (such as

Ecotrin, Bayer pain reliever, etc). Also, when performing (semi)automatic patient ICD-9

coding, it is useful to map conditions that can be described in various ways (Heart Attack

can be also stated as AMI or MI or Myocardial Infarction or simply Infarction). For

preliminary diagnosis at the point of care, ontologies can help by quickly returning

diseases that have a given set of symptoms (instances of symptoms and diseases are

concepts related by the “symptom of” relationship).

As an effort to solve some of the problems mentioned previously, several proprietary and

public ontological resources, either in the form of the ontology data or as a public web

service, such as MESH (Lipscomb 2000) and SNOMED (Spackman, Campbell et al.

1997) have become available. UMLS (Bodenreider) is a resource that combines a number

of other resources, is rapidly becoming a de facto standard for medical ontologies,

containing more than 100 dictionaries. Other medical ontologies include: RadLex

9

(Radiology Information Resource), OMIM (Online Mendelian Inheritance in Man),

MEDCIN (medical terminology), LOINC (Logical Observation Identifiers Names and

Codes) and ICD-9/ICD-10 Codes.

The existence of the integration problems across both general and specific domains

suggest an urgent need for frameworks and techniques that allow for the effective

integration of the information contained in the different sources that pertain to these

domains. The necessity of using more that ontology can be illustrated by practical

scenarios such as Question Answering, Content Recommendation and Sentiment

Analysis. In all of the open-domain problems, it is unlikely that one single ontology will

provide the required coverage for concept understanding and content correlation.

In Question answering, there is the need to verify that potential answers are of the

expected answer type. For example, given the question “what is the capital of Italy?” we

are expecting a city to be the answer. Thus every candidate answer should at least be of

the type city. While it is possible to have one ontology that covers all the cities in the

world, that is but one single type of question, if we take multiple type of questions we

quickly realize that in order to adequate type check potential answers we will need to

combine several ontologies.

In content recommendation, we need to first identify the concepts that relate to both the

content that we will base our recommendation as well as the content that we might

recommend. Again in this scenario in order to correctly identify the concepts of interest,

as well as correlate them across content, we will most likely require the use of several

ontologies. By and large, the inexistence of general purpose framework significantly

hampers the development of solutions that rely on these ontologies.

Currently, the main approaches to a solution for these problems focus on ontology

integration, by creating a mapping between the concepts and relations of different

ontologies. Some cases, such as the Semantic Web project (Bemers-Lee, Hendler et al.

2001) primarily rely on merging two ontologies by establishing a full mapping between

10

them. Some efforts have tried to produce a merged ontology automatically using a

bottom-up approach such as FCA-Merge (Stumme and Maedche 2001); most involve

some degree of semi-supervised mapping. Other approaches, such as the one taken by

CYC, try to absorb other ontologies into a single main ontology while maintaining

coherence (Reed and Lenat 2002). One disadvantage of these approaches is the

prohibitive cost of producing a mapping or absorbing an ontology, given their increasing

scale and rate of availability. Another disadvantage is that it is not always possible to

establish a one-to-one mapping between the concepts and relations in one ontology and

the concepts and relations in another. Furthermore, there is the problem of keeping the

mappings updated as the original ontologies evolve. A large number of available

ontologies are considered works in progress and are updated frequently, which implies a

constant updating of any mappings associated with those resources.

The aforementioned approaches have several drawbacks, as discussed in (Klein 2001;

Serafini and Tamilin 2005), such as (i) non-scalability, (ii) loss of language and reasoning

specificity of distinct ontologies, (iii) loss of privacy and autonomy of ontological

knowledge (iv) language level mismatches such as syntax mismatches, differences in

logical representation and different semantic primitives and (v) Ontology level

mismatches, such as difference in scope, coverage and granularity, making this challenge

thus far too daunting in practice. A second approach is to query more than one ontology

via different interfaces, and interpret the results of each ontology individually, essentially

moving the entire challenge from the ontology provider to the application builder.

We propose to build an ontological middleware level which supports retrieval and

merging of small fragments of ontologies which permits us to:

 Query multiple ontologies and then merge the query results from multiple

knowledge base systems, much like Federated Search in information retrieval (Si

and Callan 2005).

11

 Follow ontological chains and inferences across ontologies, using partial query

results from one ontology to query another. This is a more complex version of

cross-data-base joins, where the data schemas are sufficiently compatible.

The majority of applications that use ontological information would benefit from an

approach that models the information need, queries the relevant ontologies and retrieves

the best result while providing a single unified interface to the client application. If we

look to other domains for inspiration on how to proceed, we can find a similar problem in

the field of Federated Search (Callan 2000; Fryer 2004). Information Retrieval is usually

based on a single database model of text retrieval. But to cope with proprietary

information spread around the world in separate databases, distributed information

retrieval explicitly models multiple databases for text retrieval. Each database is queried

independently, the results are merged when possible and a new global ranking is

established.

In the same fashion, we can model our ontologies as individual sources, construct a query

that describes the information need, query each ontology independently and merge the

results into one ranked list.

Using Federated Ontology Search we can parallelize query execution while respecting

the structure of the individual ontologies, taking advantage of both redundant and

complementary knowledge in the available ontologies to improve the overall

performance of the system.

The hypothesis governing this thesis is as follows; by using a federated approach we hope

to be able to overcome the problem of ontology integration and reuse that prevent the use

of multiple ontologies within open domain applications. This thesis will defend and

explain the advantages of incorporating the set of available ontologies using a federated

approach and decompose the problem into four sub problems, namely: Resource

selection, Query Execution, Result Merging and Ranking.

12

1.1 Motivating Example

Although there are many applicable areas for this research, type checking in the factoid

QA domain is suitable to prove the utility of our approach. The advantages of this are

threefold. First, the application of this research in factoid QA can be well defined and the

ontological operations involved are conceptually clear but yet not trivial. Second, the

training and test data created for the TREC QA evaluations (Voorhees 2003), consisting

of corpora, question sets and answers keys, provide the required evaluation material.

1.1.1 Question Answering

In Question Answering, the goal is to take a question in natural language and provide an

answer also in natural language. In the JAVELIN I question answering system (Nyberg,

Mitamura et al. 2003) a set of modules is used, specifically the Question Analyzer (QA

module) module, which analyzes the question; the Retrieval Strategist (RS) modules,

which retrieves the relevant documents; the Information Extractor (IX) module, which

analyzes the documents retrieved by the RS and provides candidate answers; and finally

the Answer Generator (AG) module which analyzes the candidate answers and generates

a final ranked list of answers. Ontological information is typically used within JAVELIN

to determine the relation between the expected answer type and the candidate answers or

to provide answer verification, if the answer can be found directly in an available

ontological resource (Ko, Hiyakumoto et al. 2006).

1.1.2 Example 1

For this example let’s assume that we have access to the following ontologies described

in Table 1.

Ontology

CYC

13

Wordnet

U.S. Gazetteer

Table 1 - Available Ontologies for example 1

Let’s consider the question: What is the largest city in Germany?

Part of the QA module’s responsibilities in analyzing the question is to determine,

amongst other things, the type of answer we are expecting and the constraints on that

answer. In this case the QA module determined that the type of answer is location with

an additional constraint that the answer must be a city. Table 2 shows a partial output

from the QA and Table 3 shows Javelin’s output.

Question What is the largest city in Germany

Answer Type location

Subtype Constraint city

Table 2 – Output of the Question Analyzer. We can see the constraints

expected in the answer.

AG output

Rank Answer Judgment

1 Italy Not a City

2 Berlin (Correct) Correct

3 Horten Incorrect

4 Norway Not a City

5 South Africa Not a City

6 Dusseldorf Incorrect

7 Spain Not a City

8 Moscow Incorrect

9 France Not a City

14

10 Swiss Not a City

11 London Incorrect

12 Oslo Incorrect

13 Cologne Incorrect

14 Pretoria Incorrect

Table 3 – Output of the Answer Generator

As we can see the correct answer is ranked second. Furthermore, the first ranked answer,

as well as several others, violates the constraints set by the QA module because it is not a

city. We need a way to enforce those constraints on the candidate answers. One

possibility is to use ontological knowledge to verify these constraints, but given that QA

is an open domain area, one single ontology most likely will not not provide adequate

coverage for the type of interest.

Consider an example which illustrates the federated ontology search approach. The main

idea in this case is that we would submit each of the candidate answers along with the

answer type constraints for verification.

I will show the procedure for the first two answers in the ranked set. The rest of the

answers would proceed in similar fashion.

Constraints : city, location

a) Answer1 : Italy

a. The available ontologies are queried regarding if there is any relation

between Italy and city

Wordnet CYC U.S.

Gazetteer

relation(Italy,[city, location])?

15

b. The results are collected. Each result contains a confidence of the

correctness of the result as well as a source confidence. Note that in the

case of the U.S Gazetteer, Italy is a city in Texas.

c. Merge and rank the results. When two results are merged, their

confidence is boosted

Wordnet CYC
U.S.

Gazetteer

Italy

Country

Location

Merging and Ranking

Confidence(R1) = x

R1

Italy

Country

Location

Confidence(R2) = y

R2

Italy

City

Location

Confidence(R3) = z

R3

16

d. Finally a ranked list is produced by the server and the highest ranking

answer is that Italy is a country rather than a city.

Italy

Country

Location

R1

Italy

Country

Location

Confidence(R2) = y

R2

Confidence(R1) = x

Italy

Country

Location

Confidence(R12) = xy

R12

Italy

City

Location

Confidence(R3) = z

R3

17

Where the confidence of R12 is given by a function f that combines x and y.

also, since the ranking is based on the confidence, f(x,y) > z.

1

2

Italy

Country

Location

Confidence(R12) = f(x,y)

Italy

City

Location

Confidence(R3) = z

Rank

Result

18

b) Answer 2: Berlin

a. Step a would be the same as before

b. The results are collected. Each result contains a confidence of the

correctness of the result as well as a source confidence

c. Merge and rank the results. When two results are merged, their

confidence is boosted.

Wordnet CYC
U.S.

Gazetteer

Berlin

City

Location

Merging and Ranking

Confidence(R1) = x

R1

Berlin

City

Location

Confidence(R2) = y

R2

Berlin

City

Location

Confidence(R3) = z

R3

19

d. Finally a ranked list is produced by the server shows Berlin as the only

answer

After applying this procedure to all the answers, Table 4 shows the final ranked list of

answers. We can see that the correct answer is now on ranked first.

1

Berlin

City

Location

Confidence(R123) = xyz

Rank

Result

Berlin

City

Location

R1

Berlin

City

Location

Confidence(R2) = y

R2

Confidence(R1) = x

Berlin

City

Location

Confidence(R12) = xyz

R123

Berlin

City

Location

Confidence(R3) = z

R3

20

AG output

Previous Rank New Rank Answer Judgment

2 1 Berlin (Correct) Correct

3 2 Horten Incorrect

6 3 Dusseldorf Incorrect

8 4 Moscow Incorrect

11 5 London Incorrect

12 6 Oslo Incorrect

13 7 Cologne Incorrect

14 8 Pretoria Incorrect

Table 4 – Output of the Answer Generator

1.2 Basic Definitions

1.2.1 Ontologies and Graphs

Although there is no consensual definition of ontology, a good start comes from G.

Stumme and A. Maedche (Stumme and Maedche, 2001). The authors claim that most

ontologies share a few common items such as

 Concepts, a hierarchical IS-A type relation and further relations.

 Some ontologies have constraints, functions or axioms

A basic ontology definition could given by a tuple O:= (C; is a; R), where C is a set

whose elements are called concepts, is a establishes a partial order on C and R is a set

whose elements are called relation names. An example is given below.

21

Figure 1 - an example of a basic ontology

A graph definition could be given by G = (V,E) where V is the set of vertices and E is

the set of edges. An example is given below.

Figure 2 - A graph structure

Given the two definitions one can see that graphs represent the basic structure of

ontologies very well. Vertices are considered concepts, Labeled edges as relations.

v1

v2

v3

v4

v5

e1

e3

e2

e4

e5

bird vertebrate

animal

chicken

hen

is a

is a

hyponym

synonym

hyponym

22

Query is a request for information from the set of existing ontologies. It is comprised of

operators, as defined in section 5.2.1.

Result is the rooted directed acyclic graph (RDAG) that results from executing a query.

1.3 Challenges to be addressed

In creating a federated approach to ontology querying, several challenges must be

addressed and will shape the solutions we will develop.

Federated Search identifies three key areas of research for a problem solution. We will

show that the same problems apply in the area of Federated Ontology Search:

Resource selection focuses on the problem of selecting the correct ontologies from

within the available ontology set. In order to increase efficiency and reduce ambiguity,

the selected ontology set will provide the range of possible answers to the query as well

as corroborating evidence for the answers provided.

Query Execution will focus the actual querying mechanism and the set of operations

required to provide a query language that is both powerful and fine grained enough to

provide the desired functionality.

Result merging and scoring will focus on the challenges of taking each individual result

and merging the results that corroborate each other. This is one of the central topics

addressed by this thesis. Scoring refers to ranking the results in terms of the amount of

information they are providing and the relevance of that information.

1.4 Summary of contributions

The main contributions of this thesis are:

A framework to incorporate, query and locally merge the knowledge contained in a set

of ontologies. This framework addresses the issues of ontology selection, ontology

querying and result merging and scoring.

23

A system that implements the proposed ideas, creating a platform available for research

that incorporates a number of available resources with a unique and transparent interface,

running as a web service.

An evaluation of this system to two different problem areas, namely type checking and

content recommendation. The evaluation will follow a task-based evaluation

methodology.

A test set that can be used by other approaches to evaluate and develop further the

methodologies proposed in this research. This test set will be made public and will

contain labeled data as well as the results obtained in this thesis, as an improved baseline.

1.5 Evaluation of results

Given the subjective nature of ontology evaluation we will demonstrate the results of this

thesis using a task based evaluation where we will compare using the proposed federated

approach versus a baseline of the individual ontologies, when used separately. We will do

so within two different tasks, Type Checking within question answering and Content

Recommendation. Content Recommendation is in turn composed of several sub tasks,

specifically; String Coverage, where we measure the coverage provided by the

Federated Approach; Concept Co-Disambiguation, where we measure the ability to

disambiguate concepts using the Federated Approach; and finally Concept Set

Matching, where we measure the ability to match sets of concepts using the federated

approach. These tasks will allows us to observe the impact of using a federated approach

in coverage and precision within the main task of content recommendation. Using FOS,

we demonstrate a performance increase of 30% using the F1 measure. on type checking

better than both the individual baselines and the baseline formed by summing the

individual baselines. Also, Using FOS, we demonstrate an increase in precision of 47%

on Content Recommendation when compared to the baselines obtained by using the

individual ontologies as well as the baseline obtaining by combining the individual

baselines.

24

1.6 Overview of thesis organization

This document is organized as follows. In the rest of this chapter we will give a

motivating example, define the basic principles of ontologies and graphs and provide an

overview of the federated approach to ontology querying. In Chapter 2 we will talk about

the related and background work and how it relates to the current work. In Chapter 3 we

will describe innovations on the automatic process of ontology creation. We will then talk

about ontology selection in Chapter 4, followed by ontological search in chapter 5 and we

will conclude the presentation of the framework in chapter 6 with discussion result

merging and scoring. In Chapter 7 we will present the results of the experiments and the

discussion of those results and finally in Chapter 8 we will conclude with final remarks

and future work.

1.7 Summary

In this chapter we explained and motivated the goal of this thesis, which is to create a

framework for ontology integration and search. We described the main problems with the

current approaches and provided an hypothesis for the solution of the challenges that the

creation of such a framework presents.

To achieve our goal with these challenges in mind we use the idea of federated search

and transport the sub problems found in federated search to the domain of federated

ontology search. Out approach assumes independence of ontological resources and

provides an elegant way to incorporate new resources without having to merge them in

their entirety. Rather we focus on merging the results of small operations on each

ontology, represented in graphs.

We give a motivating example and describe the fundamental definitions that will be used

throughout this document. Finally we describe the expected evaluation metrics and

baseline and layout the organization of this thesis document.

25

We believe that this thesis represents a significant improvement over the current methods

of ontological integration by creating an extensible framework that is representation and

location independent while providing the parallelism required for efficient scalability.

26

2 Background and Related work

The work described on this thesis is orthogonal to many areas, such as Information

Extraction, Information Retrieval, Ontology Management, Graph Merging, Federated

Databases and Semantic Analysis, making it impractical to adequately cover and explain

all the correlations between the aforementioned areas and Federated Ontology Search.

Therefore we will limit ourselves to works that have a direct comparison with the work

described in this thesis, either as a whole or in specific parts. More specifically we will

look at works that have an impact in the two main areas of this thesis, namely ontology

selection and result merging.

2.1 Ontology Selection

Ontology selection deals with the selection of an ontology given a query. SWOOGLE

(Ding, Finin et al. 2004) uses traditional Information Retrieval techniques to retrieve

semantic web documents (SWD), specifically character based N-Grams, n-character

segments of the text which spans inter-word boundaries, or URIrefs as keywords. The

system indexes ontologies primarily designed with the OWL language which supplies by

design a set of metadata which is extremely useful for identification of the SWD. Since

the words are usually compounded into URIref terms, this N-Gram approach is

particularly efficient to index and retrieve the SWD. While this approach provides an

efficient index for the acquired ontologies, each ontology is considered a totally

independent resource. SWOOGLE lacks the ability to merge the acquired ontologies,

either globally or in part, representing a catalog of ontologies rather a unified ontological

resource. The ontology selection returns all the ontologies that contain the required term,

much like retrieving documents, proving little understanding of the different grouping of

each retrieved ontology in respect to different representations of concepts.

Link analysis is used in (Patel, Supekar et al. 2003; Zhang, Vasconcelos et al. 2004) to

rank ontologies in respect to queries in the OntoSearch system and in the OntoKhoj

system. Alani and Brewster in (Alani and Brewster 2005) create the AKTIVERANK

algorithm, aggregate a number of measures that look into the structural features of

27

concepts such as concept similarity and structural density. Both these works allow for the

ranking of ontologies as a independent resources, but they do not provide rankings for

individual query results, that is, they do not segment the particular portion of the ontology

that answers the performed query, thus not allowing for the effective merging of the

ontology subsets. This is discussed in Result Merging and Scoring

It is important to note that this work, despite being inspired by the framework of

Federated Search, it is not a direct extension of that framework. Federated search {Fryer,

2004 #157},{Si, 2005 #29},{Lu, 2006 #159}. While in federated search the goal is to

search full text documents, typically indexed by keywords, Federated Ontology Search

deals with searching over large graphs and combining sub graphs. The metaphor works in

so far as the goal of selecting resources, but not in the type of information of the

algorithms required for combination. In fact, in Federated Search the combined ranking

does not use merging of individual results.

2.2 Word Sense Disambiguation

Necessary to the task of ontology selection is the subtask or word sense disambiguation.

Word Sense Disambiguation is the problem of determining the actual meaning of a word

given a specific context. This task has been studied extensively and while it is not the

main focus of this thesis, it is important to note the most prominent works in the area.

Within the context of this work word sense disambiguation can be cast as mapping the

strings in the query to concepts in the ontologies. The area of word sense disambiguation

is described in detail, along with algorithms and applications in the book “Word Sense

Disambiguation, Algorithms and Applications” (Agirre and Edmonds). Within word

sense disambiguation there are three types of approaches, namely Knowledge-based,

Unsupervised corpus-based and supervised corpus-based.

Knowledge based refers to using a hand crafted set of disambiguation rules or a set of

heuristics to decide the correct sense of the word, the seminal work of Michael Lesk

{Lesk, 1986 #153}, estimates the word sense by overlapping the definition of the

28

ambiguous words in dictionaries with nearby words in the text. Unsupervised corpus-

based methods cluster word occurrences in text, automatically inducing senses. The

intuition here is that similar word meanings occur in similar contexts, so by clustering the

occurrences of words in text, we can induce the different meanings. These methods are

typically hard to evaluate since the induced meanings still have to be mapped to a known

dictionary. A well known algorithm of this family is given in Gale {Gale, 1992 #155}.

Supervised corpus-based techniques use machine learning techniques such as SVM

applied to manually tagged corpora to deduce the word sense, a prominent example is

given in the work by Eric Brill and Jun Wu {Brill, 1998 #156}.

The techniques described in this thesis focus on using graph approaches to word sense

disambiguation, relying on the structure of the relations that connect concepts to deduce

the correct sense. They are more a form of unsupervised ontology based sense

disambiguation.

Resnik in (Resnik 1995) uses information content, as defined in (Ross 1976), to

determine the semantic similarity of two concepts, the author restricts himself to the use

of is-a relations to calculate the concept similarity. While this is extremely useful, it does

not provide a complete solution for ontologies that contain more than is-a type

relationships, since only is-a relations are considered. One could think of extending the

relationship set used in determining the similarity measure to include other relationships,

but the characteristics of each relation type differ thus making it impossible to extend the

algorithm easily. Jiang and Conrath (Jiang and Conrath 1997) combines a lexical

taxonomy with corpus statistical information to measure semantic similarity between

words and concepts. The technique suggests promising results for local domain

ontologies, but the lack of coverage of the lexical taxonomy, as well as the need to have

common corpora for the available ontologies reduces the suitability of the technique for

the application to an open ended set of ontologies.

29

2.3 Result Mapping and Merging

Although work as been done in ontology integration such as (Reed and Lenat 2002) and

(Hovy, Fleischman et al. 2003), where the goal is to incorporate several ontologies into

one larger ontology, recently the focus seems to be in ontology mapping. In our

perspective, incorporating several ontologies into one comprehensive resource inevitably

leads to integration problems. Hovy and Fleischman’s work on Omega suggests that there

is a threshold above which every new concept being added causes an increasing number

of collisions with existing concepts, making it impracticable to merge a large set of

ontologies.

Stumme and Maedche in (Stumme and Maedche 2001) based their work on the work of

Ganter and Wille’s (Ganter and Wille 1997) work on formal concept analysis. Their

method, the FCA-Merge is semi-automatic method for merging ontologies that uses

natural language techniques to derive a lattice of concepts which is then explored by a

knowledge engineer. The FCA-Merge assumes that a corpus relevant to both ontologies

to be merged is available and relies on the availability of classified instances in those

ontologies. The assumption of the existence of a corpus common to both ontologies

reduces the usability of this method for a large set of ontologies, despite a generally high

level of accuracy in the experiments performed.

Using the Barwise-Seligman theory of information flow (Barwise and Seligman 1997),

Kalfoglou and Shorlemmer (Kalfoglou and Schorlemmer 2002) created the IF-MAP

method, a method for automatic ontology mapping. IF-Map generates a logic

isomorphism given two ontologies. This method relies on a partial translation from the

source ontologies to Horn clauses, which is then used to discover the isomorphism, if

any. The result is stored for future reference. Despite providing an interesting approach to

ontologies in similar domains, it does address the issue of using ontologies in different

domains. That is, if no such isomorphism exist between ontologies, the IF-MAP method

does not allow us to use both ontologies.

30

Ontology mapping and alignment has been tackled by Noy and Musen through the

creation of several tools that work as plug-ins for the open-source Protégé-2000 ontology

editor (Grosso, Eriksson et al. 1999). The first tool was SMART (Noy and Musen 1999),

followed by PROMPT (Noy and Musen 2000) and PROMPTDIFF (Noy and Musen

2002) . The tools use linguistic similarity metrics for matching concepts. The authors

claim that PROMPT not only uses linguistic similarity but also the similarities of the

surrounding structures of the concepts to be merged. A set of heuristics is then applied to

the performed the merging procedure. The PROMPT tool, as well as Chimaera

(McGuinness, Fikes et al. 2000), provide semi-automatic guidance for the knowledge

engineer. Similarly the SHOE system (Heflin, Hendler et al. 2003) provides with a set of

heuristics designed to align ontologies, offering the user a set of suggestions regarding

ambiguous concepts. All of these tool focus on providing guidance to the knowledge

engineer, thus not supporting full automatic mapping. Furthermore, these tools create

maps at the ontology level and not at partially on an on demand basis.

Another approach is to use machine learning to develop a mapping between ontologies,

examples of this kind of approach are given by Lacher and Groh (Lacher and Groh 2001),

with the CAIMAN system, Doan et. al. (Doan, Madhavan et al. 2004), with the GLUE

system, use a set of practical similarity measures to indentify similar concepts. A

Bayesian approach is used by Prasad et. al. (Prasad, Peng et al. 2002) for deciding

between similarity comparisons. Even though it presents an intriguing application of

several promising machine learning techniques, the GLUE system is meant to be just a

component of a more encompassing tool, envisaged to have a strong human-interaction

component, which would be suitable for an on demand querying system like the one we

propose. The CAIMAN system considers the concepts in an ontology implicitly

represented by the documents assigned to each concept. Using machine learning

techniques for text classification, a concept in a personal ontology is mapped to a concept

in community ontology. This is an interesting perspective but it assumes the existence of

documents assigned to each concept in the ontologies, which is not the case in most

available ontologies, thus making it unsuitable for a general approach.

31

OntoMorph (Chalupsky 2000) presents a method for translation of symbolic knowledge,

integrated within the PowerLoom knowledge representation system (MacGregor,

Chalupsky et al. 1997). Using syntactic rewriting through pattern matching, the author

claims that the potential of this translation system is adequate to handle complicated

syntactic transformations. Semantic rewriting is applied to conflate large classes of

concepts. The OntoMorph system focuses on provided a rule based language that can

describe complex concepts but, unlike the proposed approach, it does not focus on the

retrieval and integration of the knowledge contained in heterogeneous sources.

DRAGO (Serafini and Tamilin 2005) uses the peer-to-peer paradigm with Distributed

Description Logics to supply distributed reasoning services in multiple ontologies.

Within what the authors call the contextual reasoning paradigm, the authors propose a

distributed tableau algorithm to avoid the drawbacks of scalability and proprietary

information and is able to provide with a distributed verifiability capability. DRAGO as

system works by enabling a peer-to-peer network of ontologies, but it does not provide a

central query point for those ontologies. Thus, each ontology can use the other

ontologies, but an external user might find it difficult to access the combined knowledge

in the available ontologies due to a lack of a central access point.

Piazza (Halevy, Ives et al. 2003) proposes a language based in XQuery (Boag,

Chamberlin et al. 2002) that is used to described semantic queries and that can be used

with RDF style sources, although primarily developed for XML. OBSERVER (Mena,

Illarramendi et al. 2000) uses interontology relationships such as synonyms, hyponyms

and hypernyms to rewrite user queries to obtain translations across ontologies. A more

extensive survey on the subject can be found in (Kalfoglou and Schorlemmer 2003) and

in (Noy 2004). By and large, the methods for querying multiple ontologies so far hinge

on the user understanding the structures that define the ontologies to be queried. Unlike

the FOS method, the referred query languages don’t allow the user to simply define their

information need, but rather requires a knowledge of the structure of the target ontology,

that is, the query must specify some portion of the concepts as well as the specific

structure of the ontology.

32

3 Automatic Ontology Creation

Although the main focus of this thesis is the problems that arise from querying and

integrating the knowledge contained in different ontologies, recent developments in

semantic analysis have produced a new type of ontology that is poised to have a

significant impact on the number of available ontologies. The availability of mechanisms

for the automatic creation of ontological resources from unstructured text will most likely

lead to a large increase in the number of available ontologies. Given the unsupervised

nature of the most promising approaches (Yates, Cafarella et al. 2007) the type of

ontologies and the level of noise in the information contained in those ontologies is

expected to present challenges to the integration of that knowledge with current

ontologies. In order to explore these types of ontologies and to allow the user to

understand the issues central to this theme, this chapter focuses on the automatic creation

of ontologies and the introduction of an algorithm for the extension and creation

ontologies from a semi-structured source.

3.1 Automatic Creation of Ontologies from Semi Structured

Resources

Most of the currently available ontologies were hand created by experts, but a new field

is emerging that deals with the automatic creation of ontologies. Ideally we would like to

take unstructured text and mine the knowledge contained in the text to create an ontology

that describes it, similarly to the process that human experts employ in constructing

ontologies. Several approaches have demonstrated some success in this area, such as in

(Snow, Jurafsky et al. 2005), but general text mining for ontology building is still too

noisy for use in a full automatic process. Fortunately we can address the issue by

focusing on an intermediate step of sorts, the use of semi-structured text.

Large sources of encyclopedic knowledge are becoming readily available in wiki like

form. Resources such as Wikipedia (Denoyer and Gallinari 2006), the largest

collaboratively edited source of encyclopedic knowledge (Krotzsch, Vrandecic et al.

33

2005; Völkel, Krötzsch et al. 2006), Scholarpedia (Izhikevich 2007), Citizendium

(Sanger 2007) and the recently launched, incipient Google Knols Project are examples of

semi-structured encyclopedic knowledge bases that provide a natural way to collect

human knowledge (Lih 2003), with the advantage of naturally solving, to a large degree,

the problem of consensus.

These resources represent an intermediate step between unstructured text and structured

knowledge and are seen as potential viable sources of knowledge for automatic

construction of medical ontologies.

In this chapter we propose a general framework to mine structured knowledge from Wiki

like resources and apply it to the creation of a medical ontology. The chapter proceeds as

follows: we first discuss related work, and then describe the general framework for

building a medical ontology from Wikipedia, presented as a test case. We demonstrate

our Directional Feedback Edge Labeling algorithm on a task of labeling the relations in

Okinet, a Wikipedia based medical ontology. We conclude with a description of the

Okinet browser as well as some interesting and promising ideas for future work.

3.2 Related Work

Maedche(Maedche and Staab 2002; Maedche 2002) and Navligli et al.(Navigli, Velardi

et al. 2003) explored semi-automatic methods for concept and relation extraction,

focusing on building ontologies from broad domain documents. Blake and Pratt(Blake

and Pratt 2002) worked on extracting relationships between concepts from medical texts.

Khoo et al.(Khoo, Chan et al. 2002) matched graphical patterns in syntactic parse trees in

order to look for causal relations.

Several pieces of previous work focused on the link structure of Wikipedia to derive

structure. Kozlova (Kozlova 2005) mined the link structure in Wikipedia for document

classification. Milne et al.(Milne, Medelyan et al. 2006) used the basic link structure to

construct domain specific thesauri and applied it to the agriculture domain. Bhole et

al.(Bhole, Fortuna et al. 2007) used document classification techniques to determine

34

appropriate documents in Wikipedia that were later mined for social information (people,

places, organizations and events).

Powerset (Converse, Kaplan et al.), a semantic search engine recently acquired by

Microsoft, uses semantic analysis on Wikipedia to provide a richer and more accurate

search. Using Freebase as its knowledge base and shallow semantic parsing, including

semantic role labeling, to parse Wikipedia pages, it provides the user with the ability to

search based on specific roles, presenting results enriched with freebase information.

Powerset’s goal is to extend its techniques to general unstructured web documents, and

some of its technology seems to be used in Bing, Microsoft’s new search engine.

Despite promising efforts in using Wikipedia to generate semantic structures, the work so

far has lacked the ability to use structural predictions to minimize the amount of data

needed for labeling, on which we focus on our work.

3.3 The Wikipedia Structure

Wikipedia general structure consists of an article name, which is unique within the

particular wiki structure and thus suitable for a concept name, and links connecting

articles, which are suggestive of semantic relations between them. Each article is

typically divided in sections and sometimes contains tables that synthesize information

pertinent to the article.

Within the different types of inter-article links, we often find redirects (articles that

consist solely of a link to another article) and when we find this type of link we can

interpret the two concepts described by those articles as synonyms. Each article is

normally inserted into one or more categories, thus creating a set of hierarchical relations.

Even though each link seems to carry semantic information between two concepts, only a

small percentage is typically used in mining Wikipedia, namely the redirects and

categories. The main challenge of this work is to assign the correct semantic label to the

extracted links deemed of interest, when the link is not a redirect.

35

3.4 General Methodology

We propose that we should take an inclusive approach rather than a selective approach to

create a medical ontology, where we start by including all the article names as concepts

and all the existing links as potential relations. We subsequently rely on extracted

features to assign labels, finally discarding links without labels.

The goal is to first create a directed unlabeled graph that mimics the link structure, use

the extracted features to generate a small amount of labeled data and run a Directional

Feedback Edge Labeling Algorithm to extend the labels to the rest of the links, discarding

the links with confidence below a preset threshold.

3.5 Feature Extraction

For every link extracted we store a set of features that are associated with that link. The

set of features consist of the following:

 Document Title

o The title of the document where the link was found. This corresponds to

the source concept.

 Section Header Path

o The path composed of the sections up to the section where the link was

found. E.g. Diagnosis → Symptoms.

 Context

o The context surrounding the link. This consists of up to 3 words before

and after the link.

 Link Type

o The type of link. This can be redirect, anchor, category or regular.

 A redirect link redirects the user from one page to another.

 An anchor link is created when the text of the link is different from

the name of the page it links to.

 A category link connects an article with it’s category

 A regular link is any other type of link. The majority of links are

of the regular type.

36

 Part of List

o Binary feature that is positive if the link was found within a list, such as –

Fatigue, Headache, Nausea and Vomiting.

In Table 1 we show an example of the information that the extraction of one link

generates.

Sample Feature Extraction

Concept fever

Document Title Influenza

Header Path Symtpoms and diagnosis >

Symptoms

Context Extreme coldness and

fever

Link Type regular

Part of List yes

Table 1. Sample Feature Extraction

Even though we extracted five features, for the purposes of this work, we used only three

features. We expect to use context and header path in future work for the purpose of

increasing performance.

3.6 Generating Labeled Data

Once we process the entire Wikipedia, we have a directed unlabeled graph where each

edge represents a relation between two concepts. For each edge we also have a set of

associated features.

After we decide the set of labels we are interested in, we use a combination of heuristics

to bootstrap the labeling process. Besides using the redirect anchor and category links to

label synonyms and hypernyms, we rely on the following two strategies.

37

3.6.1 List Based Labeling

Uses articles that list concepts and assigns labels to the instances of those lists that are

under corresponding sections. E.g. if we find fever under the section symptoms in article

flu and fever is also in the list of medical symptoms article, then we assign symptom as

label for the link between flu and fever.

3.6.2 Context Based Labeling

Assigns the section title as label if the context shows that the link is displayed within a

list. E.g. If we find –fever, headache and nausea under the section symptoms under article

flu, we assign symptom as a label for the link between flu and fever.

After the bootstrapping process, we have a directed graph with a partially labeled relation

set. In the next section we introduce the Directional Feedback Edge Labeling Algorithm

which starts with a small such set of labeled links and uses graph probability propagation

to label the remaining links/relations in the ontology.

As an example, let’s consider the following portions of Wikipedia pages.

Page 1 - Influenza

Page 2 – Leukemia

38

From these pages, by applying the heuristics described, we would extract the following

relationships, not shown in full here in benefit of clarity. In this case we focus on the

symptom_of relationship

From Page 1

Headache symptom_of influenza

Fever symptom_of influenza

Fatigue symptom_of influenza

Abdominal Pain symptom_of influenza

From page 2

Infection symptom_of leukemia

Fatigue symptom_of leukemia

Diarrhea symptom_of leukemia

Penumonia symptom_of leukemia

Headache symptom_of leukemia

Fever symptom_of leukemia

From these links, we could construct the following symptom_of ontology.

39

As we can see, even with this tiny ontology, we are already able to answer the query

“What diseases have fatigue, headache and fever as common symptoms?” In this case we

can produce a set of labeled relations, which will be expanded using the Directional Edge

feedback algorithm.

3.7 Directional Feedback Edge Labeling Algorithm

The Directional Feedback Edge Labeling Algorithm relies on neighboring edge trends

and directionality to update the confidence of possible labels that can be assigned to an

unlabeled relation. The steps of this algorithm are described in Algorithm 1. It is

important to note this algorithm assumes that the each link can only be labeled by one of

a finite set of known labels.

Each unlabeled edge starts with equal probability of label assignment. At each iteration,

in STEP 1, for each node we update the probabilities of the labels of the outgoing edges

by smoothing them with the overall probability distribution of labels over the outgoing

edges of that node (essentially multiplying the two probability distributions). This assures

we take into account both our current belief about that edge and the overall information

contained in the edges going out of that node. To give an intuition why both types of

information are important, consider the example in Figure 1. The dashed and the dotted

leukemia influenza

infection

diarrhea

fever

fatigue
pneumonia

headache

abdominal pain

Figure 3 - Ontology Extraction Example

40

edges represent edges which were labeled during the bootstrapping phase. The dashed

edges represent label SymptomOf and the dotted edges represent label Treats. The solid

edges are unlabeled and therefore it is natural to assume that, in the absence of other

information, each label is equally likely. However, based on the already labeled outgoing

edges at C1, the unlabeled edge (C1,C10) has a 2/3 probability to have label SymptomOf

and 1/3 probability to have label Treats. Therefore, our initial belief of the edge (C1,C10)

needs to be updated by incorporating this new information.

Figure 4 - Example of Directional Labeling.

C1
C2

C5

C4

C3

C6

C7

C8

C9

1,0

1,0

1,0 1,0

1,0

0,1
0.5,0.5

C10

C13
C11

C12

0,1

0.5,0.5
0,1

0.5,0.5

0.5,0.5

41

Algorithm 1. Directional Feedback Edge Labeling Algorithm.

In STEP 2, we then perform the same procedure for each node, but based on incoming

edges. Because an edge is an incoming edge for a node and an outgoing edge for another,

the label probability distribution for that edge is influenced by the label distributions in

both its endpoints. Therefore, after a number of iterations, the label probabilities can be

influenced by other label probabilities at any distance in the graph.

Back to the example in Figure 1, the edge (C1,C10) has a 2/3 probability to be labeled

SymptomOf if we look only at the outgoing edges from C1 whereas it has a probability of

1 to be labeled Treats if we look only at the incoming edges to C10. This justifies the need

to perform the same operation for both incoming and outgoing edges. The need to

perform both steps iteratively is twofold: to assure convergence and to allow knowledge

to propagate across the network. After convergence, we select only the edges with labels

above a predefined threshold and discard the rest as unreliably labeled.

For each node C, perform Steps 1 and 2, then repeat until
convergence.

STEP 1. Let pik be the probability of the i

th
 outgoing edge

(out of n possible) from node C to have the k
th

 label (out of
m possible labels). Update the outgoing edge probabilities:

STEP 2. Update the incoming edge probabilities similar to
the previous step.

STEP 3. Once convergence is reached via the above two
steps, assign the maximum probability label to an edge as
long as this probability is higher than a predefined
threshold.

m

l

n

j

jlPilP

n

j

jkPikP

ikP

1

)

1

(

1

42

3.8 UMLS and Okinet

UMLS is perhaps the most important medical ontology currently available. It uses a

semantic network to combine the knowledge contained in the set of available dictionaries

and allows for easy access to a set of standard ontological relations. The work of mapping

the vocabularies demands a large human effort and is very time consuming. Due to the

structure of UMLS, certain semantic relations exist only at the semantic network level.

This means that in UMLS we are not able to determine symptoms of particular diseases,

but rather between classes of concepts. For example, we are not able to find out what are

the symptoms_of flu, but rather what categories of concepts could represent symptoms of

flu, which is a problem.

Okinet is a Wikipedia-based (Pedro, Niculescu et al. 2008) ontology and is currently

being developed at Siemens Medical Research. Automatically extracting an ontology

from Wikipedia presents unique challenges since the underlying data is very large and the

source is updated frequently. Compared to previous automatic ontology extraction work,

we use a combination of feature based and graph based approaches to ontology building.

Okinet currently contains more than 4 million concepts and encodes a wide range of

semantic relations both traditional semantic relations such as synonyms, hypernyms and

as instance based semantic relations such as medical specific relations such as

symptom_of, causes, medication, etc. Okinet is high coverage (open domain ontology),

high depth, low cost (existing knowledge), high noise (automatic processes) and high

connectivity ontology.

We built Okinet as a complement to UMLS, allowing the rapid and automatic creation of

relations at the instance level, which enables the use of inference processes using both

ontologies.

43

3.9 Experimental Setting

In order to test our approach, we used Wikipedia as a test case, even though the

methodology could be applied to any other wiki like resource. Our goal is to create an

ontology of causes, treatments, symptoms, diagnoses and side effects.

We started by selecting all the concepts contained in the list of diseases article, which

contains 4000+ diseases and syndromes. We then expanded our article set to include all

the articles that linked or were linked to by any of the articles contained in the current set.

Next we performed the feature extraction process followed by the bootstrapping

procedure. The results were manually checked to create a gold standard set. This resulted

in an ontology with 4308 concepts and 7465 relations divided as depicted in Figure 2.

Figure 2. Distribution of relation labels.

3.10 Results

We experimented using a variable percentage of the labeled data, between 10% and 90%,

as a training seed for the Directional Edge Feedback Labeling algorithm while

considering the remaining edges unlabeled. The results of the labeling algorithm were

then compared with the original labels. In our experiments, we varied both the percentage

Labeled Data Distribution

0

500

1000

1500

2000

2500

3000

N
u

m
b

e
r

o
f

R
e
la

ti
o

n

causes

treats

symptom of

diagnosis

side effect of

44

of the labeled training data (seed size) as well as the threshold above which we assign a

label. We evaluated the results using precision and recall:

Precision The percentage of label assignments that were correctly assigned to the proper

class.

Recall The percentage of possible labels that were correctly assigned.

Figure 3. Algorithm performance with threshold 0.9 and variation on the seed size

In Figure 3 we can see the results of varying the size of labeled seed set at a threshold for

label assignment at 0.9, which means that we only assign a label with high confidence.

Even though we are only showing micro precision and micro recall, the results for macro

precision and recall were very similar and were thus not presented for simplicity

purposes. Each point in the average line represents a run with a labeled seed size of the

indicated value. For each seed size we ran 100 runs. The precision and recall average

vary between 70% and 90% while seeds vary from 10% to 90% of the total labeled set.

Even though the results are very promising, we explored ways to boost the results at

small seed sizes. Due to the propagation nature of this algorithm, by stopping after a few

Edge Feedback Labelling T-0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Seed Size

Micro Precision

Micro Recall

Micro Recall Average

45

iterations, we are in fact preventing long-range labeled edge influences and therefore we

can restrict the process of labeling an edge to local neighborhood in the graph. Figure 4

shows the results of stopping the labeling algorithm after two iterations. Given the

number of iterations, only edges with a fast convergence rate will update the probabilities

distribution enough to get assigned a label. This means that the higher the threshold, the

more accuracy we get, even though the recall is sharply reduced. This variation is

particularly useful in situations where the precision is more important than recall. Using

this technique we would be able to extend the labeled data set with highly accurate labels.

Figure 4. Precision and recall with 10% seed size, algorithm stopped after two iterations and varying the

assignment threshold.

Finally we looked at our algorithm as way to reduce uncertainty. Figure 5 shows the

results of taking the two highest confidence labels for each edge and considering as

correct if either of the assigned labels is correct.

Edge Feedback Labeling - Seed 0.1 - K2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Threshold

Micro Precision

Micro Recall

Micro Precision Avg

Micro Recall Avg

46

Figure 5. Precision and Recall when considering looking at the two labels with the highest probability

Edge Feedback Labeling - Two Best

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 0.2 0.4 0.6 0.8 1

Seed Size

Micro Precision

Micro Recall

Micro Recall Avg

47

4 Ontology Selection

In this chapter we will focus on the sub problem of ontology selection. Ontology

selection deals with selecting the appropriate resources to query given a specific query.

As the number of ontologies grows so does number of ontologies that contain

information that might be considered pertinent for a given query. The first question one

must address is how to decide if an ontology does indeed contain pertinent information

given a query. This problem is not the main focus of this thesis and as such the

approaches taken are not exhaustive. Even though we will discuss several possible

approaches, a lot of the work will be left as future work. Our contribution here is twofold.

On one hand we propose a characterization methodology for ontologies. On the other

hand we discuss the possible scenarios and the variables that are relevant to the problem

and suggest different approaches to the problem of ontology modeling, while taking a

pragmatic approach for practical considerations.

The chapter is organized as follows. We will start by proposing a general method for

Ontology Characterization and describing current ontological representation languages.

We then propose an approach to ontology modeling and selection and discuss the

practical implications of such approach.

4.1 Characterization of Ontological Resources

The challenge of retrieving and merging knowledge from multiple ontologies is amplified

by the fact that to date there are no simple methodologies to describe and classify

available ontologies. Even in vertical domains, such as the medical domain, there is a

considerable diversity in the resource space, which includes highly focused resources

(e.g. radiology-specific ontology), broad collections of resources (e.g. UMLS), and

institution-specific ontologies. These differ drastically in terms of coverage, relevance,

and scope.

48

We propose a more formal characterization of ontological resources which describes

resources according to the following dimensions

1. Scope (or coverage) is the percentage of broad semantic topics covered by the

ontology. The broader the coverage the more diverse is the ontology. The scope

of an ontology can be estimated using different methods (Brank, Grobelnik et al.

2005), for example accounting for loosely connected components, that is,

counting the number of clusters which are semi isolated from the rest.

2. Depth is the amount and complexity of knowledge encoded in the ontology on a

particular subject. The depth of an ontology can be estimated, for example, using:

a. The average path length in the ontology. The higher the average path the

more specialized is the ontology

b. The average number of concepts in each semantic topic, as defined in

Scope.

3. Cost of building the ontology can be determined by a function 𝑓 𝑇𝑐 , 𝐶𝑐 , where 𝑇𝑐

is the average time spent per ontology node (concept) and 𝐶𝑐 is the (financial)

effort in constructing it. The range varies from fully automatic ontologies, which

require almost no human effort, to specialized, fully manually generated

ontologies - which take considerable time to be built and are expensive in terms of

human expertise.

4. Noise is the percentage of concepts in the ontology that carry no semantic

meaning. Given a set of concepts, a human should be able to determine which

concepts carry semantic meaning. This issue pertains especially to automatically

created ontologies, which tend to introduce semantically irrelevant concepts

because of the extraction process.

5. Connectivity describes how connected the average concept is to other nodes, as

well as the variety of relation types that the ontology contains. This can be given

by the average number of relation types connecting each concept to the rest of the

ontology

49

These measures were designed to be of a general nature. They can be used to characterize

any ontology and provide meaningful statistics in the selection/merging process. The

main use within the Federated Ontology Search Approach for the Ontology

Categorization Measures is the creation of default confidence measures. When we find an

unseen ontology, we use these measures to get a default confidence value for the

ontology. The intuition behind this approach is that there is a correlation between the

measures, sometimes an inverse correlation. E.g. Ontologies that are generated

automatically typically present a high level of noise and low cost level. The more

expensive and depth an ontology has, the higher the confidence in the knowledge it

contain, since there is usually less ambiguity and noise.

Figure 5 - Sample Ontology Categorization

Figure 5 shows the description of several ontologies according to proposed categorization

scheme. Five ontologies were chosen to exemplify the range of the different

characteristics: Wordnet, Freebase, UMLS, Okinet and CYC. These ontologies are

described below. In Table 5 we place them in the newly defined description space.

 Depth Noise Connectivity Scope Cost

Wordnet Low Low Medium Medium-High Medium-High

Wordnet Freebase UMLS Okinet CYC

Ontology Categorization

Depth Noise Connectivity Scope Cost

50

Freebase Medium-High Medium-High High High Low

UMLS High Medium Medium-Low Low High

Okinet High High High High Low

CYC Medium-High Low Medium-High High High

Table 5 - Ontology Categorization

Although the exact score of each ontology is subjective, this scale is meant to describe

ontologies in a broad sense. Generally speaking it should be able to compare any two

ontologies given these dimensions. We consider that there are possibly many

characterization schemes for ontologies, although they are contradictory with the one

proposed here. We now describe what we consider to be clear examples of different

ontology types according to the characterization given above.

Wordnet (Miller 1995) is a semantic lexicon for the English language and one of the

most widely used general ontologies. It groups words into sets of synonyms, provides

succinct definitions, and records various semantic relations among synonym sets. It

currently holds 155327 unique concepts and relations. It constitutes the canonical

example of an ontology with high coverage, low depth, medium cost, low noise and

medium connectivity.

Freebase (Bollacker, Evans et al. 2008) is a highly structured collaborative online

database and website developed by Metaweb. Freebase contains data harvested from

sources such as Wikipedia and MusicBrainz, as well as individually contributed data

from its users. It represents a new paradigm on ontology creation. It contains a large

number of relation types. Freebase represents a large collaborative ontology example and

has high coverage (a large number of potential topics), Low cost (most of the knowledge

is generated automatically, medium noise (the knowledge entered by users tends to lead

to ambiguity, medium depth and high connectivity (there is a large number of relation

types).

51

UMLS (Unified Medical Language System) (Bodenreider 2004) is both an ontology

and a set of ontologies. It aims to bring together a set of medical dictionaries (currently

holding roughly 100) and contains information about medical concepts, semantic types,

and the relations between concepts and semantic types. It is manually maintained and it

is the result of a 15 year long project that involved on the order of thousand of man hours.

It currently contains over 1 million concepts. UMLS represents the largest effort of

manual ontology mapping to date. Due to its specific nature and medical domain

expertise, UMLS has low coverage (focuses on the medical domain), high depth (it is

very specialized), high cost (highly specialized knowledge providers), low noise (human-

inserted concepts have semantic meaning) and low connectivity (only very relevant

relations).

In our previous work we created Okinet (Pedro, Niculescu et al. 2008), a Wikipedia-

based ontology currently being developed at Siemens Medical Research. Automatically

extracting an ontology from Wikipedia presents unique challenges since the underlying

data is very large and the source is updated frequently. Compared to previous automatic

ontology extraction work, we use a combination of feature based and graph based

approaches to ontology building. Okinet currently contains more than 4 million concepts

and encodes a wide range of semantic relations both traditional semantic relations such

as synonyms, hypernyms and as instance based semantic relations such as medical

specific relations such as symptom_of, causes, medication, etc. Okinet is high coverage

(open domain ontology), high depth, low cost (existing knowledge), high noise

(automatic processes) and high connectivity ontology.

In development since 1984, the Cyc Knowledge Base (KB) (Lenat 1995) is a general-

purpose repository of common sense and specialized knowledge consisting of over

328,000 concepts and over 3,500,000 explicitly declared assertions.Knowledge in Cyc is

represented in CycL, a higher-order logical language based on predicate calculus. Every

CycL assertion occurs in a context, or microtheory, allowing for the representation of

competing theories, hypotheses, and fictional claims. Cyc’s inference engine combines

52

general theorem proving (rule chaining) with specialized reasoning modules to handle

commonly encountered inference tasks, such as transitivity.

4.2 Ontological Representation Languages

A large set of representation languages is available for ontology representation. We do

not intend to exhaustively describe all the available languages, but rather to describe and

compare some of the most widely used and those with particular significant relevance to

the work described in this thesis. For a more in depth look at the particularities of

ontological languages, the reader is directed to (Gómez-Pérez and Corcho 2002) and

(Staab 2004).

4.2.1 Knowledge Interchange Format (KIF)

KIF (Genesereth and Fikes 1992) is a computer-oriented language for the interchange of

knowledge among disparate programs. It has declarative semantics (i.e. the meaning of

expressions in the representation can be understood without appeal to an interpreter for

manipulating those expressions); it is logically comprehensive (i.e. it provides for the

expression of arbitrary sentences in the first-order predicate calculus); it provides for the

representation of knowledge about the representation of knowledge; it provides for the

representation of nonmonotonic reasoning rules; and it provides for the definition of

objects, functions, and relations. It was a direct result of the DARPA Knowledge sharing

effort and achieved some success as a language for knowledge transfer.

4.2.2 Resource Description Framework (RDF)

RDF is a metadata data model based on the idea of making statements about web

resources in the form of subject predicate-object expressions, called triples in the RDF

terminology. The subject indicates the resource; the predicate denotes a trait or aspect of

the resource and basically expresses a relationship between the subject and object.

RDF is a major component of the W3C’s Semantic web effort. Several additional

languages can be built on top of RDf, such as RDFS and OWL. Bellow is an example of

RDF. Table 6 shows the content in a table form and Figure 6 shows the RDF

representation of the same content.

53

Table 6 - RDF Example in table Form

Title Artist Country Company Price Year

Empire Burlesque Bob Dylan USA Columbia 10.90 1985

Hide your heart Bonnie Tyler UK CBS Records 9.90 1988

4.2.3 Web Ontology Language (OWL)

OWL (McGuinness and van Harmelen 2004) is family of knowledge representation

languages for authoring ontologies. Owl is a W3C’s endorsement and is based in two

semantic, namely OWL DL and OWL Lite, which in turn are based in Description Logics

(Baader and Nutt 2003). OWL is currently considered one of the main technologies

underpinning the semantic web effort and has demonstrated academic value as well as

commercial value.

Figure 6 - RDF Example in XML notation

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:cd="http://www.recshop.fake/cd#">

<rdf:Description

 rdf:about="http://www.recshop.fake/cd/Empire Burlesque">

 <cd:artist>Bob Dylan</cd:artist>

 <cd:country>USA</cd:country>

 <cd:company>Columbia</cd:company>

 <cd:price>10.90</cd:price>

 <cd:year>1985</cd:year>

</rdf:Description>

<rdf:Description

 rdf:about="http://www.recshop.fake/cd/Hide your heart">

 <cd:artist>Bonnie Tyler</cd:artist>

 <cd:country>UK</cd:country>

 <cd:company>CBS Records</cd:company>

 <cd:price>9.90</cd:price>

 <cd:year>1988</cd:year>

</rdf:Description>

</rdf:RDF>

54

The main intuition behind OWL is the interpretation of OWL as a set of individuals and a

set of property assertions. Basically OWL allows the introduction on constraints on top of

RDF Graphs and the introduction of relations between classes of individuals.

 OWL Lite supports primarily a classification hierarchy and simple constraints. It

supports cardinality constraints, but only with values of 0 or 1.

 OWL DL is the most expressive version of the OWL family that is still able to

guarantee computational completeness and decidability.

Below is an example of OWL. In this example we are setting a constraint on the property

name of the Airport class. We are stating that all values for the property name must be of

type string.

4.2.4 CycL

CycL (Lenat and Guha 1991) is the ontology language used by Doug Lenat’s artificial

intelligence project. CycL is a declarative language based on first-order logic. It contains

extensions for modal operators and higher order quantification. CycL is used to represent

knowledge contained in CYC (Lenat 1995). CycL has the following main concepts:

 The statement of general rules that support inference about concepts.

 The truth or falsity of a statement is context subjective. CYC uses the concept of

microtheories to define contexts.

Figure 7 - OWL Example

<rdfs:Class rdf:ID="Airport">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#name"/>

 <owl:allValuesFrom rdf:resource=

"http://www.w3.org/2001/XMLSchema#string"/>

 </owl:Restriction>

 </rdfs:subClassOf>

</rdfs>

55

The main predicates in CYC are the #$isa and the #$genls. #$isa describes the instance

relationship between some collection and an item. #$genls describes the relationship of

subcollection between two collections.

Below is an example of the transitivity rule in CycL.

Figure 7 is a CycL example that states that if A is an instance of B and B is sub collection

of C, then A is an instance of C.

4.3 Proactive Ontology Selection

The increasing trend in the availability of resources suggests that often we will be able to

find overlapping sources for a given query. Ideally we would like to be able to select the

resources to query in order to maximize the probability of success. It is important to find

the right tradeoff between querying a sufficient number of ontologies, thus maximizing

the amount of relevant information retrieved, and reducing the number of ontologies

queried, thus minimizing querying overhead. The more ontologies we query the more

likely is that we are increasing result ambiguity, merging and result complexity.

4.3.1 Cooperative Ontology Selection

A cooperative source is a source whose knowledge is fully available for querying and

indexing. In many cases though, it’s not realistic and maybe not even desirable to expect

cooperative sources. The proprietary content in some ontologies might not be made

available by its authors, or perhaps only part of the ontology might be available, with

filters to control access to the information contained in such ontology. Examples of this

Figure 8 - CycL Example

(#$implies

 (#$and

 (#$isa ?OBJ ?SUBSET)

 (#$genls ?SUBSET

?SUPERSET))

 (#$isa ?OBJ ?SUPERSET))

56

can be taken from CYC, which releases OpenCyc as a free smaller portion of the

knowledge contained in the full CYC. Although at this moment they are separate entities,

one could conceive of a controlled access paradigm. We must also consider cases where

the ontology has incorporated inference engines and logic mechanisms, the use of which

is advantageous and important.

For an example of the importance of resource description, we refer to the example in [cite

reference here to the example], where selecting the wrong resource would lead to wrong

results, Where without an adequate resource description, it will be extremely hard to

differentiate between expert and non-expert sources.

In the case of cooperative sources the problem can be satisfactorily addressed by

indexing the ontology using a search engine such as the Lemur Search Engine

(Avrahami, Yau et al. 2006). This approach is taken by initiatives such as the Freebase

approach, where the search operation, rather than query the ontology directly, queries the

indices created over the ontological concepts. This presents a good good strategy, since

search engines are fairly mature and primed for scaling and performance. The result is a

very fast access to concepts contained in the ontology,

4.3.2 Uncooperative Ontology Selection

While in seems that there is trend in ontological work to assume that ontological

resources are cooperative resources, this is not always the case and in fact it is not

desired. Cooperative sources allow for full indexation of the knowledge, but have a

couple of disadvantages. Having the data locally can have higher maintenance issues, e.g.

when a new version of the ontology is available, and typically we lose access to the

inference engines that were created specifically for that ontology. Also, it might not be

even possible to have the whole data, in the case of proprietary ontologies such as CYC.

By creating a model that is able to deal with uncooperative sources, that is sources that

are not entirely available for indexing, we are able to punt the maintenance issue to the

ontology owner, use specific inference engines that might have been created for that

57

ontology and we able to foster an distributed environment where each person is

encouraged to create his or her own ontologies. By maintaining autonomy of ontologies

users can profit from content creation directly, since it is possible to determine the

relevance of an ontology for each query, which would allow for models of revenue

sharing according to relevance, which in turn would foster the creation of more

knowledge.

The main problem thus becomes the selection of the right ontologies in situations where

we are dealing with both cooperative and uncooperative sources.

In order to tackle this problem we take inspiration in the work by Donmez and Carbonell

(Donmez and Carbonell 2008) and apply the concept of proactive learning to Ontology

Selection. Proactive learning is basically a generalization of active learning where each

oracle is modeled has having different properties that are taken into account at labeling

time. A similar strategy can be applied to ontology selection. The intuition behind this

idea is that each ontology is considered an expert in some domain, like an oracle, that has

certain properties to it, namely noise, domain, level of expertise, etc. The goal, like in

Proactive learning, is to select the best set of ontologies at query time. This goal is

accomplished by modeling the ontologies a priori using a set of sample queries. The

queries are then clustered according to a clustering algorithm such as the k-medoid

clustering algorithm (Kaufman and Rousseeuw 1990) and new queries are compared

against the samples in order to choose the best set of ontologies.

4.3.2.1 Sample extraction for ontology modeling

In order to model the available ontologies regarding the potential for answering queries,

we must create a set of sample queries that we can have the ontologies answer in order to

estimate the correct parameters of each ontology, thus taking a similar approach to the

work in federated search by Si and Callan in (Si and Callan 2005). In our case, the main

problem in creating the sample query set is the fact that query operators must be taken

into account when creating the queries, which makes the creation of a query sample set

58

that is truly representative an impossible task, since there are potentially infinite operator

combinations possible due to the combinatorial nature of the query operators.

We can begin to approximate the problem by focusing on the search operator and a

simple relation operator expression, thus creating a sample set that we can use as base to

approximate to other queries to a large extent. The sample queries sets are produced

sequentially, first creating the sample set for the search operator and then using the

results to create a set of relational operators.

The main idea is to take a dictionary and use the dictionary entries to generate a set of

search queries. That is, for every word x in dictionary D, we generate query qx such that

𝑞𝑥 = "𝑆𝑒𝑎𝑟𝑐(𝑥)".

Then for each qx and for each ontology O we generate RO(qx), that is the result of

executing qx in O. Let’s say for example that the dictionary D contains the words JAG

and JAGUAR. The queries generated in this case would be q1 = Search(JAG) and q2 =

Search(JAGUAR) respectively. Let’s say that we have O1, O2, O3 and O4 as our

ontologies, with domains D such that

Table 7 - Domains of sample ontologies

Domains

𝑫𝑶𝟏
= CARS

𝑫𝑶𝟐
= ANIMALS

𝑫𝑶𝟑
= TV SERIES

𝑫𝑶𝟒
= FRUITS

We would then take q1 and q2 and get the following hypothetical results. Each result

consists of a concept that can be represented by the query string.

Table 8 - Sample Query Result

Result

𝑹𝑶𝟏
 𝒒𝟏 = JAGUAR (CAR)

𝑹𝑶𝟏
 𝒒𝟐 = JAGUAR (Animal)

𝑹𝑶𝟐
 𝒒𝟏 = Null

59

𝑹𝑶𝟐
 𝒒𝟐 = JAGUAR (ANIMAL)

𝑹𝑶𝟑
 𝒒𝟏 = JAG (TV SERIES)

𝑹𝑶𝟑
 𝒒𝟐 = Null

𝑹𝑶𝟒
 𝒒𝟏 = Null

𝑹𝑶𝟒
 𝒒𝟐 = Null

As we can see in Table 8, not all ontologies return results. The last step is to take the

results obtained in the previous step and create the relationship queries.

For every concept c1, c2 we create a relationship query Rel(c1,c2) and again run it in the

available ontologies.

Thus starting with a set of words 𝑊 = 𝑤1, … , 𝑤𝑛 we get a set of search queries

𝑄𝑠 = 𝑞𝑤1
, … , 𝑞𝑤𝑛

 , 𝑡𝑎𝑡 returns a set of concepts 𝐶 = 𝑐1, … , 𝑐𝑛 , which in turn generate

a set of relationship queries 𝑄𝑟 = 𝑞 𝑐1 ,𝑐1 , … , 𝑞 𝑐𝑛 ,𝑐𝑛 . The query sets Qs and Qr are the

sample sets that we will use to model each ontology. For every query q in Qs or Qr, we

select as the target ontologies those that return non-empty results.

4.3.2.2 Run Time Ontology Selection

After creating the sample query sets and running them against the available ontologies,

the process of selecting the appropriate ontologies for query qt at run time is done by

selecting the query from the sample that is closest to qt and querying the ontologies that

returned non-empty result sets for the sample query that we selected.

qt
…

q1
q2

q3

q4
q5 q6

q7

q8

O1 O2 O3

Figure 9 - Overview of query Run Time ontology Selection

60

There are two types of primary queries, search queries and relation queries. Search

queries deal with the relationship of string and concepts. Relation queries deal with the

relations between concepts. The set that is used depends of the type of query. If we are

performing a search query then we use the search sample query set, otherwise we use the

relation sample query set. In order to find the closest query to qt, we can use any number

of similarity algorithms. In the case of the search operator we must use string based

methods, since we are comparing strings. That is, given query qt we compare it with all

sample queries q1,..,qn using a method like the Q-Gram measure (Gravano, Ipeirotis et al.

2001) or any number of other string similarity measures.

When comparing relation queries, it is important to note that we are now dealing with

concepts rather than strings, so we should use semantic similarity methods as described in

(Espinoza, Trillo et al.) The goal is to use a subset of the available ontologies to measure

the semantic distance between the query and the cluster medoids. Medoids are

representative objects of a data set or a cluster with a data set whose average dissimilarity

to all the objects in the cluster is minimal. Medoids are similar in concept

to means or centroids, but medoids are always members of the data set. We use the

medoids since comparing to all possible queries is computationally expensive. This is

achieved by measuring the semantic distance between each of the concepts in the query.

This relies on the assumption that certain general ontologies such as wordnet will always

be available. For example, let us say that we have two queries q and q’.

𝑞 = 𝑟𝑒𝑙(𝑐𝑎𝑟, 𝑑𝑟𝑖𝑣𝑒𝑟)

𝑞′ = 𝑟𝑒𝑙(𝑎𝑢𝑡𝑜𝑚𝑜𝑏𝑖𝑙𝑒, 𝑑𝑟𝑖𝑣𝑒𝑟)

The semantic distance Ds between q and q’ can be expressed as

𝐷𝑠 𝑥, 𝑧 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝑜𝑝𝑠 𝑓𝑟𝑜𝑚 𝑥 𝑡𝑜 𝑧 𝑖𝑛 𝑡𝑒 𝑐𝑜𝑠𝑒𝑛 𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦

or

𝐷𝑠 𝑟𝑒𝑙 𝑥, 𝑦 , 𝑟𝑒𝑙(𝑧, 𝑤) =
𝐷𝑠 𝑥, 𝑧 + 𝐷𝑠 𝑦, 𝑤

2

That is

61

𝐷𝑠 𝑞, 𝑞′ =
𝐷𝑠 𝑐𝑎𝑟, 𝑎𝑢𝑡𝑜𝑚𝑜𝑏𝑖𝑙𝑒 + 𝐷𝑠 𝑑𝑟𝑖𝑣𝑒𝑟, 𝑑𝑟𝑖𝑣𝑒𝑟

2

The distance is then calculating by traversing the designated general ontology and

returning the number of hops, or null, if the two terms are not connected.

If the available ontology does not contain one or more concepts that we are trying to

compare, then we back off to taking the concept and treating it individually as a query of

type Search(x). That is, in case of query q describe above, if the ontology does not have

knowledge about car, we then query all the ontologies for search(car). This will give us,

in the worst case scenario, a set of ontologies that is larger than the optimal set, but it

expands our coverage significantely.

62

5 Ontological Search

In this chapter we will focus on the sub problem of the query language used for querying

a federated system of ontologies and the process of ontology selection. We will start by

describing current query languages and briefly discuss the advantages and shortcomings

of the described languages regarding a federated approach to ontology search. We will

then describe the proposed operator based query language and finally we will address the

issue of ontology selection for a given query.

5.1 Ontology Query Languages

A distinction must be made between representation and query languages. With the

exception of CycL, which is used to both represent and query CYC content, all the

representation languages described in the previous chapter are used specifically for

representation purposes. Specific query languages are typically used to query the

information contained in the ontologies that are represented in one of the previously

described representation languages. It is not the scope of this thesis to describe each

query language exhaustively, but rather to expose the reader to the most important, the

most commonly used and the most relevant to the work described in this thesis. For a

more in-depth look at ontology query languages the reader is directed to (Staab 2004).

5.1.1 Simple Protocol and RDF Query Language (SPARQL)

SPARQL (McCarthy 2005) is quickly becoming the de facto language to query RDF

graphs. It is the W3C candidate recommendation query language for RDF and it is

considered by the W3C as a vital component of the semantic web. SPARQL allows for a

query that consists of triple patterns, conjunctions, disjunctions and optional patterns.

SPARQL does not have a native inference mechanism incorporated into the language.

SPARQL queries return only what is contained in the information model in the form of

graph bindings. Figure 10 shows a SPARQL query that returns all capitals of country

within Europe.

63

Variables are indicated by the “?” or “$” prefix. In the query shown in Figure 10,

bindings for ?capital and ?country will be returned. The query will attempt to match the

triples in the graph pattern to a given model. Every biding becomes a query solution. It is

important to note that SPARQL has a “property orientation” feature, where only class-

attributes and properties can be matched to the query triples. For a good tutorial on

SPARQL, we recommend (McCarthy 2005).

5.1.2 Metaweb Query Language (MQL)

MQL (Freebase 2007) is a recently developed query language for the open knowledge

product from Metaweb, Freebase (Bollacker, Evans et al. 2008). It is built on top of the

JSON protocol and it returns JSON objects. The language itself was created to allow

online access to the Freebase Web Service. It is an effective approach to frame based

querying using JSON notation and is quickly gaining traction. It does not easily allow

transitivity operations and there is no notation for variable specification, but the

simplicity of MQL is suitable for fast transactions and direct information access. It does

not inherently contain a native inference mechanism.

{

 "type" : "/music/artist",

 "name" : "The Police",

 "album" : []

}

PREFIX pref: <http://example.com/exampleOntology#>

SELECT ?capital ?country

WHERE {

 ?x pref:cityname ?capital ;

 pref:isCapitalOf ?y .

 ?y pref:countryname ?country ;

 pref:isInContinent abc:Europe .

}

Figure 10 - SPARQL Example

Figure 11 - MQL Example

64

Figure 11 shows a simple MQL query. In this case we are querying for all the albums

from an artist with the name “The Police”. The result for the query described in Figure 11

would be something like Figure 12. Basically the idea is to complete the missing

information expressed in the query.

One important issue with using MQL in the federated ontology search framework is that

MQL requires the user to be familiar with the structure of freebase, since it requires

specific information in the query. For example, when specifying the type the query must

be precise or no type will be matched, which means that the user must be familiar with

the types available in Freebase. Given that in the federated approach the source

ontologies can have an unlimited number of possible structures which the user cannot be

expected to be familiar with, MQL in its current form is ill suited for a federated

approach.

5.1.3 User Centric Approach to Ontology Query Languages

The main problem with the current available languages for ontology querying in a

federated approach is the presupposition that the user has a priori knowledge of the

structure of the ontology. This represents a data centric approach to querying where the

user is asked to formulate the query in terms of the data contained in the ontology source

rather than his or her information needs. In order to achieve independence from any one

{

 "type": "/music/artist",

 "name": "The Police",

 "album": [

 "Outlandos d'Amour",

 "Reggatta de Blanc",

 "Zenyatta Mondatta",

 "Ghost in the Machine",

 "Synchronicity",

]

}

Figure 12 - MQL Result Example

65

specific ontology structure the query language in a federated approach has to be based on

what is constant, independently of which ontologies will ultimately be queried.

One solution would be to normalize all ontologies into one specific ontological language.

This approach has been attempted several times throughout the years [cite], always to no

avail. Most large ontologies currently in existence are written in a specific format, whose

authors argue, most times justly, has advantages over all other languages, be it in the

inference mechanism associated with the ontology and native to the particular language

or any other feature such as expressiveness, simplicity or efficiency. Also it is important

to note that those resources already exist and thus it would be costly to convert them into

a different representation. A federated approach should be agnostic to the underlying

representation of the ontologies it queries, as far as the user is concerned.

Furthermore, we propose that the query language must focus on the user information

needs rather than the structure of the available data. Thus we propose a language that is

User Centric rather than Data Centric, that is, the query language models the information

needs of the users, independently of the data structures available punting the burden of

structure matching to the ontology search engine.

Let’s take the following example. The user wishes to know the possible relationships

between two concepts, concept A and concept B.

In SPARQL we would have to specify the relations that we would like to query for, the

specific ontology that we were querying, etc. It is not possible to have something like

Figure 13, where we would get all the relations between A and B.

PREFIX pref: <http://example.com/exampleOntology#>

SELECT ?x WHERE {

 A pref:?x B ;

}

Figure 13 - SPARQL Impossible Example

66

In MQL the problem is less acute, it is possible to get all the links between A and B, but

only direct links. Exceptions are made in specific cases, where it is possible to devise

highly customized queries that use nested queries. In Figure 14 we show a transitive

query for locations. In this case the id /guid/9202a8c04000641f8000000000959f60

represents the concept US.

The data centric approach forces the user to construct specific queries for specific

languages forcing the user to adapt his or hers information needs to the data structure

available.

Ideally we would like to be able to use a simple query like this

Where is the user is stating his or hers information needs by using operators that have a

semantic meaning. In this case, the user does not care about the particular underlying

structure but rather the goal of the query, that is, the information need.

Furthermore, it is important for any query language to allow adequate expression power

while maintaining simplicity.

Figure 14 - MQL Transitive Query

rel(A,B)

Figure 15 - Simple relation Query

{

 "query":

[{"/location/location/containedby":

[{"/location/location/containedby":

[{"/location/location/containedby":

[{"id":"/guid/9202a8c04000641f8000000000959f60"}],

 "name":null}],

 "name":null}],

 "name":null,

 "type":"/education/university"}]

}

67

In order to achieve this we start with the desirable properties of a query language for a

federated approach.

 Simplicity

o A Query language should be simple such that the occasional user can use

it for simple tasks without a big overheard in learning the language.

 Compositionality

o Compositionality allows for the creation of complex queries based on

simple operators. It gives the language flexibility to be used both by

beginner and advanced users.

We approach this problem by proposing an operator based query language, inspired by

the INQUERY query language (Callan, Croft et al. 1992). INQUERY was successfully

used in a federated approach to IR (Si and Callan 2005) and is based on the same

principles that we propose for a Federated Ontology Search approach. We will now

describe a simple language for a User Centric ontology querying approach.

5.2 Proposed Query Approach

The success of the proposed approach hinges on the definition of a search method that is

independent of any ontology. For this purpose we introduce the concept of operator and a

concept of query based on operators. The main purpose of an operator is to decouple the

search process from the information need. Instead of describing a complete semantic

framework, the goal is to describe the information request in terms of a decomposable

query that can be transformed into a set of operators. This would provide an elegant

abstraction from the formal representations implemented by our ontological sources,

allowing each operator to be an independent request.

68

It is important to note that by defining a set of operators we are in fact delegating

responsibility for their execution to the ontologies themselves, therefore making no

restrictions on whatever processes are executed in order to obtain the necessary

information. This means that operators can be implemented using extended features of

ontologies (e.g. inference, grounding, restrictions and theorem-provers). The only

constraint is that the output of each query execution is a Directed Acyclic Graph (DAG).

5.2.1 Operators

An atomic operator is an atomic search operation on an ontology. It takes as input a graph

and produces a ranked list of graphs as output. An operator is defined as an operation on

op(g): g g’, where g, g’ is a DAG or

op(g): g [g1’..gx’], where g, gn’ is a DAG

That is, an operator takes a graph g as input and return either g’ or a list of graphs

[g1’…gx’] as a result.

In this framework we divide the operator set into three operator types: Primary,

Secondary and Boolean Operators.

Primary Operators form the core of the query procedure. They represent the basic

operations that are typically performed in an ontology. They are fairly flexible and

customizable. Secondary operators represent in fact a type of meta operators. They are

specific configurations of the primary operators written in direct form for simplicity.

Boolean operators perform the basic “and” and “or” operations in order to customize the

query. Below we show the operator set followed by a description of the operators.

Operator Name Operator Format
Operator

Description
Example

Primary Operators

Search operator #search(S, opt) Search takes a string #search(“car”)

69

and return a list of

graphs that represent

the possible nodes

that are represented

by that string

Relation Operator #rel(A, B, rels, opt)

Relation takes two

concepts and returns

the graph list that

represent different

paths from A to B

#rel(audi,machine)

Secondary Operators

Concurrent

Operator

#cont(

 [B1..Bn],

 rels,

 opt

)

Concurrent takes one

or more concepts

and finds concepts

that are related with

those concepts.

#conc(

 [

 cough,

 fever,

 headache

],

 symptom_of

)

Define Operator #define(X)

Define returns the

graph representing

the neighborhood of

the concept X

#define(car)

Children Operator #children(X)

Children returns the

graph representing

the children of

concept X

#children(car)

Parents Operator #parents(X)

Parents returns the

graph representing

the parents of

#parents(car)

70

concept X

Boolean Operators

And Operator #and(X,Y)

And returns the

intersection of the

two graphs

#and(

 #children(car),

 #children(plane)

)

The first thing one might notice when looking at the operator table is that we have only

two primary operators. We will see how we can express all the other operators as a

modified version of the relation operator. This is very good news. It actually means that

in the worst case all we need is for an ontology to implement the two primary operators

and we get all the other operators automatically implemented. In most cases there is

benefit in implementing some of the other operators directly, but it is not a requirement.

By reducing the number of operators we are actually alleviating the amount of work

required to incorporate a new ontology into the system.

5.2.1.1 Primary Operators

There are two Primary operators, the search operator and the relation operator. The

relation operator is mostly focused on finding relationships between concepts. Below we

explain each operator in detail.

5.2.1.1.1 The search operator

The goal of the search operator is to return the available nodes that could correspond to a

string. It takes optional arguments in order to contextualize the string. The search

operator is denoted by the following general form

#search(S,{optional arguments})

71

The goal of the search operator is to make the correspondence between strings and

concepts. It is the typically the first operation a user performs on an ontology, and is an

exception to the rule, given that the input is a string rather than a graph.

The search operator takes as optional arguments a set of strings, whose purpose is the

disambiguation of the possible concepts. That is, the context serves as a constraint on the

matching between strings and concepts. Table 9 describes the optional arguments for the

search operator.

Table 9 - Search Operator Optional Arguments

Optional Argument Possible Values Description

context
A set of Strings

Strings that are used to disambiguate

the different meanings.

5.2.1.1.2 The relation operator

The relation operator is the most important operator of the operator set, since all the

secondary operators are derived from it. The goal of the relation operator is to find

relationships between two or more concepts. It takes relation constraints and optional

arguments in order to constraint the operator.

“car”

car motor vehicle
s1

g'

is_a

car compartment

g’’

is_a

Figure 16 - Search Operator Example

72

The relation operator is denoted by the following general form

The relation operator takes as arguments a set 𝑆 = 𝐴1, … , 𝐴𝑥 and a concept B, a set of

relation constraints and a set of optional arguments. The constraints are optional and

default to unconstrained values. Table 10 specifies the optional arguments the operator

can take.

Table 10 - Optional Arguments for relation Operator

Optional

Argument
Possible Values Description

Relation

Constraints

A set of String

values in the form

[R1,R2…Rn]

The relations the operator should restrict itself

to. This can be interpreted as the restrictions on

the paths the operator should use to propagate

itself.

ContextA
Any set of string

values

A set of strings that define concepts that might

surround the concept A.

ContextB
Any set of string

values

A set of strings that define concepts that might

surround the concept B.

Edges

All

Out

In

Determines if the operator should use all edges,

outgoing edges or incoming edges.

Expand 1..N
Determines how far the operator should

propagate.

Figure 18 is an example of the relation operator in terms of graph representation.

#rel([A1,…,Ax],B,[relation constraints],{optional arguments})

Figure 17 - relation operator general form

73

Example : #rel([car], vehicle,[is_a])

Figure 18 – relation operator

One important feature of the operator set is the use of null a possible variable. In the case

of a null value, the operator finds possible bindings to the variable denoted by the null

value.

This principle is found in query languages such as MQL and Programming languages

such as Lisp and Prolog, but when applied to the query operators it allows a new level of

flexibility. The argument can be made that in fact all operations in an ontology are a

version of one of two things: Finding a relation or finding a concept. One might counter

argue that concept properties are modeled many times as something different than a

concept, but in federated search a concept property is node in a graph with a relation to

the concept, therefore the operator will return relations and nodes, be those nodes

concepts or properties. By generalizing the representation we lose some expression

power, namely the ability to restrict queries to properties, but we gain in flexibility.

In the case of null arguments consider the following question, “what are the different

types of car?”

The query could be expressed as follows: #rel([car],null,[type],edges=out). This could

also be read as “find all the concepts that are the descendents of car using the relation

type”. By having the second argument as null we are able not only find the paths from

car to the second argument, but also consider multiple concepts as the second argument.

car

car

motor

vehicle

vehicle

vehicle g1

g'

is_a is_a

g2

74

Later we will see the correspondence between secondary operators and the relation

operator, but for now will give examples of how we can translate different questions into

relation queries. As we can see in Table 11 the relation operator accounts for several

different question types.

Table 11 - Example of the relation operator

Question Query

What is the relation between car and

machine?
#rel([car],machine)

Is car and machine connected by a type

relation?
#rel([car],machine,[type],edges=out)

What are the different types of car? #rel([car],null,[type],edges=out)

What are the parents of car? #rel([car],null[type],edges=in)

What are the possible diseases have the

symptoms of fever and headache?
#rel([fever,headache],null,[symptom_of])

What concepts are directed related to car? #rel([car],null, expand=1)

5.2.1.2 Secondary Operators

5.2.1.2.1 Concurrent Operator

The goal of the concurrent operator is to find nodes that are concurrently related with a

set of nodes. The concurrent operator tries to answer questions of the type “Given a set of

nodes, what are the nodes related to this set?” One example of this question is the

question “Given a set of symptoms, which diseases could the person have?”. The

concurrent operator has the following general form.

#conc([Concept Set], {Relation Constraints},{Optional Arguments})

Figure 19 - Concurrent Operator General Form

75

The concurrent operator takes as arguments a concept set, a set of relation constraints

and some optional arguments.

Table 12 - Concurrent Operator

Optional

Argument
Possible Values Description

Relation

Constraints

A set of String

values in the form

[R1,R2…Rn]

The relations the operator should restrict itself

to. This can be interpreted as the restrictions on

the paths the operator should use to propagate

itself.

ContextA
Any set of string

values

A set of strings that define concepts that might

surround the concept A.

ContextB
Any set of string

values

A set of strings that define concepts that might

surround the concept B.

Edges

All

Out

In

Determines if the operator should use all edges,

outgoing edges or incoming edges.

Expand 1..N
Determines how far the operator should

propagate.

The concurrent operator can be expressed in terms of the relation operator in the

following way.

#conc([Concept Set], {Relation Constraints},{Optional Arguments})

=

#rel([Concept Set], null, {Relation Constraints},{Optional Arguments})

Figure 20 - Concurrent Operator expressed in terms of the relation operator

76

5.2.1.2.2 Define Operator

The define operator’s goal is to define a concept based on the node to which that concept

is related. Basically the define operator is a convenience method to the following form of

the relation operator:

The define operator makes it trivial to the get a set of relations and concepts that define

the concept.

Figure 22 is an example of the define operator. In this case we are depicting the definition

of car as a set of relations to some possible concepts that are associated with the concept

car.

#define(A) = #rel(A,null,{expand=1})

car car

motor

vehicle

g1

g'

is_a

Compact

Car

is_a

wheels

contains

engine

contains

Figure 22 - Define Operator

Figure 21 - The define operator as a formulation of the relation operator

77

5.2.1.2.3 Children operator

The children operator takes a graph g as input and expands each concept in g to the set of

children concepts. Let’s look at an example where the set of vertices of g, V(g) = 1, that

is, the graph is comprised of one concept.

Query : #children(g)

Figure 23 – Base case for children operator

The children operator can be defined as a specific formulation of the relation operator,

given by

As we can see in Figure 24, the children operator can be expressed as the relation

operator where the target concept is left null, the expansion is limited to one level, the

relations are constrained to is_a relations and only the outgoing edges are considered.

5.2.1.2.4 Parents Operator

The parents operator takes a graph g as input and expands each concept in g to the set of

parent concepts. Let’s look at an example where the set of vertices of g, V(g) = 1, that is,

the graph is comprised of one concept.

#children(A) = #rel(A,null,[is_a],{ edges=out, expand=1})

car
car

van

coupe

sedan

taxi
g

g'

is_a
is_a

is_a

is_a

Figure 24 - The Children operator as a function of the relation operator

78

Query : #parents(g)

Figure 25 – Base case for parents operator

The parents operator can be defined as a specific formulation of the relation operator,

given by

As we can see in Figure 26 , the parents operator can be expressed as the relation

operator where the target concept is left null, the expansion is limited to one level, the

relations are constrained to is_a relations and only the incoming edges are considered.

5.2.1.3 Boolean Operators

5.2.1.3.1 and operator

The and operator represents the intersection operation. It takes g1 and g2 and return g’

where g’ is the intersection of the two.

Example

#and(g1,g2)

#parents(A) = #rel(A,null,[is_a],{ edges=in, expand=1})

car
car

Wheeled

vehicle

coupe

sedan

machine
g

g'

is_a
is_a

is_a
is_a

Figure 26 - The parents operator as a function of the relation operator

Figure 27 - The and operator

79

Figure 28 – and operator

5.2.1.3.2 or operator

The or operator represents the intersection operation. It takes g1 and g2 and return g’

where g’ is the union of the g1 and g2. This operator does not apply boosting. Given two

similar edges one of the edge is picked arbitrarily.

Example

car

machine auto

g'

car

automobile auto

car

auto

g1 g2

#or(g1,g2)

 Figure 29 - The or operator

80

Figure 30 – or operator

5.2.2 Query

A query operation is composed of atomic operators and Boolean operators. Each query is

reduced to a linear sequence of atomic operators.

Figure 31 - Decomposition of operators

In Figure 31 we can see an example of operator decomposition. The property of

compositionality allows us to create complex queries based on simple operators. This is

extremely important but at the same time presents a problem of state explosion.

Original Query : #rel(#sim(lymphoma),cancer)

Query 1 : #sim(lymphoma) g

Query 2 : #rel(g,cancer) g1

car

machine auto

g'

car

automobile auto

car

auto

g1 g2

automobile machine

81

As the number of basic operators accumulates in a complex operator, the number of both

the results and the concepts inside each result has a tendency to grow, rapidly becoming

intractable. Therefore any implementation of this framework must take care to avoid this

state explosion problem, by pruning query results to a limit of relations and operators.

This will have an impact in accuracy, but is essential to make any system function

efficient.

5.2.3 Query Results

A query result is a Directed Acyclic Graph (DAG). The graph contains labeled edges and

concepts and attributes are modeled as nodes. Each edge contains a confidence associated

with it. This confidence expresses the confidence of the source in the relation.

Example

The intuition behind this is that even though typically ontologies model knowledge in a

binary fashion, much of the knowledge that is modeled by ontologies has a probabilistic

nature. Let’s look at the medical domain for an example. If we were to ask the question,

“what is the best treatment for a torn ligament?” we might base our answer on the

probability of success given the conditions of the patient. It might be “surgery” or

“physical therapy”. But in both cases, we would be able to assign a confidence to each

treatment that the reflects the probability of the treatment working. Similarly, if we were

to look at types of car we might be able to say that the most frequent type of is a sedan,

given the number of cars sold worldwide. In this case, the confidence reflects which is

the most frequent type of car. This type of information, even though many times not

encoded in an ontology, is very important in federated search, since it plays a crucial role

in the merging procedure. It is the job of the application layer to take the results of the

queries, e.g. the graphs and interpret them in the appropriate fashion at a later stage.

car

auto machine

similar, 0.6 similar, 0.4

82

5.3 Summary

Querying in the federated ontology search approach is proposed as a set of composite

search operators, designed to describe the user needs rather than the data. It is the

responsibility of the system to interpret the operators correctly and to apply them to each

ontology. The operators are divided into primary and secondary operators. The secondary

operators can be expressed by a specific configuration of the primary operators.

In this chapter we looked at ontological search. We described some languages used for

ontological search, proposed a set of ontological query operators that take a user centric

approach to ontological querying rather than a data centric approach. We discussed some

of the shortcomings of the compositionally of the operators and described the query

approach for Federated Ontology Search.

83

6 Result Merging and Scoring

This chapter describes and discusses the process of result merging and scoring. The goal

of merging results is twofold. The first goal is to eliminate redundancy in the results

when we have repeated results. The second goal is to use corroborating results to boost

the confidence of the resulting results. We will first define the problem, talk about

semantic distinction of results, describe concept normalization using synonym resources

followed by issues in edge normalization and finally describe the merging algorithm and

give some examples cases of merging.

As we discussed in the previous chapter, for every search query on the selected

ontologies, one or more results is produced. Before we can produce a final set of results,

we must maximize the utility of each result by merging the results whenever appropriate.

The goal is to provide results that contain the combined consistent knowledge expressed

in the union of the selected ontologies, thus making merging a crucial step in the process.

Below we give an overview and contextualization of the result merging process.

6.1 Problem Definition

Let nooO 1 be the set of available ontologies. Let q be the query performed. For

each q we have a set of initial results iR , such that
nooi RRR

1
 , where R is the result

of applying function f to ontology ox, or xo ofR
x
 and

nxx oox rrof
1

 , where xr is a

Rooted Directed Acyclic Graph (RDAG). That is, given the set of available ontologies

and a query, each ontology produces a set of results, thus each query produces an initial

result set that is a set of sets of results. Merging can be described a transformation 𝜃 on

the initial result Ri into the final result set Rf, or if RR , where nnf rrrrR 11 , .

That is, the goal of Merging is to transform the initial result set, which is a set of result

sets, into the final result set, which is a set of semantically distinct results.

In order to do this we follow the procedure of first defining equivalent and distinct

results, merging equivalent result pairs until we are left with a set of distinct results.

84

6.2 Semantic Distinction of Results

Within a set of results, all the results were generated from the same query. This is an

important point because it means that all the results are anchored either in the same

concept or homonym concepts, or the root of the graph. Therefore, semantic distinct

results are determined by the semantic distinction of the root. The fact that the root acts

as a determiner for semantic equivalent results increases the efficiency of the result

similarity algorithms, since we can reduce the search to the root of the graph and the

children of the root.

Figure 32 - Scenarios for Result Merging

Figure 32 illustrates the possible scenarios we can face when merging two results. S1, S3

and S5 represent situations with the same root concept. S2 and S4 represent situations

where the root concepts are different. Scenarios S2 and S4 represent two results in which

the roots are homonyms. Even though in S4, G1 and G2 have some common overlapping,

we do not wish to merge the two results since their root concepts are different, thus

representing different result. Let’s consider the example were we perform a query

regarding the concept conductor. Let us assume that we have two initial results that refer

to conductor as the person who leads a musical group and conductor as a substance that

readily conducts electricity. In this case, even if there is some common sub graph

G1

G2
S1

G1

S2

G2

G1

S3

G2
G1

S4

G2 G1

S5

G2

85

(Scenario S4), we should present to the user two unmerged results, since they refer to

distinct interpretations of the concept conductor.

Scenarios S3 and S5 represent two results where the root concepts of the graphs refer to

the same concept. These cases represent the classical situation where it is desirable to

merge the results, since each result complements the other. In the case of S3, since G2

contains G1, G1 will serve mainly for corroboration purposes.

The hardest case is S1, where the root concepts are the same, but there is no other overlap

in the results. This case is extremely difficult to distinguish from S2, since we do not

have further information in the results that can easily be used for disambiguation. In these

cases we take the cautious route and do not merge the two results.

Determining the similarity of the results root concept hinges therefore on determining the

overlap of the concepts in the concepts immediately adjacent to the root concept. If we

can find overlap between the adjacent nodes in both results, then this is a strong indicator

that we have a case of synonyms rather than homonyms and thus we should proceed to

the merging algorithm.

The first step in merging two results is to normalize the results in order to minimize

semantic ambiguities. Given that a result is a Rooted Directed Labeled Acyclic Graph

(RDLAG) we focus on Edge Label normalization and Concept Normalization.

In the following sections I will describe the approach for graph normalization followed

by the merging procedure.

6.3 Concept Normalization Using Synonym Resources

Concept normalization refers to the process of identifying and normalizing the synonym

concepts. Given that the concepts are represented as nodes in graphs, the process consists

86

of identifying pairs of nodes from different graphs and replacing all occurrences with the

same concept name in both graphs.

The basic idea is to use the resources created in chapter 3 as well as all the available

ontologies to determine synonyms and solve terminological mismatches. On one hand we

are addressing the problem of synonym terms, but we must avoid the problem of

normalizing homonym terms. In order to avoid this we must replace sub graphs rather

than individual nodes. The general intuition is that by normalizing subsets of the results

that promote structural similarity we hope to avoid the problem of homonym terms.

Figure 33 - Example of Concept Normalization

In Figure 33 we can see an example that illustrates the process. If car and automobile are

synonyms, they will only be normalized if exists at least one other node to which they are

both related. In this case we can see that transport and conveyance are also synonyms, so

we perform a multiple node substitution. This prevents cases of homonym concepts, as

demonstrated by the example below.

car automobile

transport conveyance

is_a hypernym

syn

syn

87

As we can see in Figure 34, even though conveyance could be considered as the same

concept, but since document is not a synonym of automobile, and we only replace sub

graphs, we avoid replacing in this case. This heuristics eliminates most errors in

homonym replacement, with the exception of homonyms sub graphs, which, even though

it is possible, it is very rare due to the nature of concept organization.

More specifically Given 111 ,ECR and 222 ,ECR where 21,RR are results, 21,CC

are the concept sets and 21, EE are the edge sets and given 2211 , CcCc where 1c and

2c are determined to be synonyms, we replace 1c with 2c if and only if yx cc , such that

there is a relationship rx connecting c1 and cx and a relationship ry connecting c2 and cy, or

 yyxx ccrccr 21 , and xc and yc are synonyms.

Normalizing the concepts is a two step process. First we identify replacement candidates

using both the available synonym resources and a similarity measure such as the Q-Gram

measure (Gravano, Ipeirotis et al. 2001). Finally we use the multiple node substitution to

normalize the concept names. The pseudo code for the algorithm is given in Figure 35.

document automobile

conveyance conveyance

is_a hypernym

Same?

syn

Figure 34 - Counter Example of Concept Normalization

88

Once we have normalized the concepts in both results we can then try to normalize the

edge labels.

6.4 Edge Normalization

The relations found in the returned results represent edge labels and thus present a

particular problem for graph normalization. Even though there is some consistency in

traditional labels, such as is-a or part-of, a variety of relations exist that describe complex

relations and typically consist of compound names that aggregate more than one word. In

such cases we must find a way to normalize the edge labels by assigning the same labels

to both results to be compared. One approach is to select the set of labels belonging to

one result and apply them to the other result. The selected approach relies on the

identification of synonym relation labels using a combination of methods, namely, direct

synonym identification, string edit distance and structural similarity.

6.4.1 Label Synonym Identification

Similar to Section 6.3 we use the available resources created for synonym identification

as the first step towards identification of synonym edge labels. Given graph G1 and G2

with edge label sets L1 and L2 respectively, we take each 1Ll and find the intersection

between the synonyms generated by the synonym resources available and L2. This

constitutes our initial candidate set. We extend our candidate set by calculating similarity

between labels using a version of the edit distance measure, name the Q-Gram measure.

For each pair of labels in the intersection we then compare the structures that contain the

label pair. Given that the concept normalization was performed before hand, if we find

overlapping structures, we choose one of the labels to normalize both labels. Given that

we can have multiple candidate sets, it is possible that we generate more than one

For each pair x, y, x is synonym of y

 For each pair w, z : w ≠ x, z ≠ y

 If w is connected with x and z is connected with y

 Replace x and w with y and z, respectively

 Exit for

 Else continue

Figure 35 – Pseudo code for concept normalization

89

possible substitution label set. Each substitution set consists of the labels in each result

plus the substitution. The final label set is the one that results in the graph with the

highest confidence.

6.5 Merging Procedure

6.5.1 Graph Similarity

Graph similarity Distance [A. Sanfeliu & K. Fu, 1981] is typically calculated in one of

the following ways: Cost Based Distance, Feature Based Distance or Maximum Common

Subgraph.

Cost Based Distance is based on edit operations on the graph, typically add nodes or

edges, remove nodes or edges and re-label nodes or edges, where each operation is

associated with a cost. Given two graphs g1 and g2, the edit distance between g1 and g2 is

the minimum number of edit operations necessary to transform g1 into g2.

Feature based distances use a set of invariants established from the graph structural

description, using these features in a vector representation to which we then apply

distance or similarity measures.

The goal of the Maximum Common Subgraph approach is to find the largest Subgraph

common to both g1 and g2. To address this requirement, current approaches use the

concept of maximum clique detection, or the concept of maximally connected sub graphs.

Given the NP complete nature of the problem, the problem is then changed into finding

the Maximum Common Edge Subgraph, which focuses on finding graphs with the

maximum number of edges. In our case we use a variation of the overlapping coefficient

for graphs, a measure whereby if graph g contains g’ or the converse then the similarity

coefficient is a full match.

90

6.5.1.1 Localized Boosting Algorithm

As stated before, Inexact Graph Matching is an NP complete problem. In order to tackle

this problem, we take advantage of the fact that our graphs are RDAG’s to reduce the

complexity of the problem. The goal here is to create a set of tuples that will be the basis

for comparison of the two graphs.

Given g1 and g2 as results of a query, the algorithm is as follows. After applying a

screening procedure to determine the upper bound on similarity, as defined in (Raymond,

Gardiner et al. 2002), we are left with graphs where sim(g1,g2) > T, that is, graphs where

the similarity between g1 and g2 is above a certain threshold T, defined in the screening

procedure. The screening procedure produces a subgraph for each graph given, which

means that we now basically want to determine g1 g2 for which we will apply localized

boosting and then add the nodes and edges that were previously discarded. The final step

is to resolve granularity differences in the graphs.

The basic intuition behind the confidence boosting is that the confidence of the edges is

boosted whenever two edges are merged. The boosting is determined through the use of

the Soft Or, given by the formula:

The motivation of using Soft Or to determine the boosting is that this gives us a smooth

boosting curve with an upper bound of 1.

E.g. A = 0.8, B = 0.7, Result = 1-(1-0.8)(1-0.7) = 1-(0.2 x 0.3) = 0.94

In order to apply confidence boosting we apply the concept of tuples, where tx = (cx,cy,r)

is a tuple, cx,cy are concepts and r is a relation.

First we split g1 and g2 into tuples tx = (cx,cy,r), cx,cy,r g, such that cx and cr are adjacent

and r(cx,cy). We then compare the sets of tuples from g1 and g2 and if sim(tx,ty)>T then we

boost the confidence of tx.

i

ic)1(1

91

An example is given in Figure 34, where two tuples are marked for merging and thus the

confidence of the edge is boosted.

Figure 36 – Localized Boosting Algorithm

6.5.1.2 Tuple Similarity

Tuple similarity measures are based on the linear combination of the edge similarity

measure and the concept similarity measure.

When comparing concepts or relations, we use the Q-Gram distance on the strings that

represent them (Gravano, Ipeirotis et al. 2001). A q-gram is character based N-Gram

measure. The intuition behind the use of q-grams as a foundation for distance metric is

that when two strings s1 and s2 are within a small edit distance of each other, they share a

large number of q-grams in common. This metric is fairly robust to orthographic errors,

morphological errors and compound words, which makes it suitable for our purposes.

The similarity between two tuples is given by the minimum similarity of the concepts and

relations contained in the tuples, the intuition behind selecting the minimum similarity is

basically to establish a conservative measure in which two tuples are only as similar as its

most different part. If we look at different tuples, having different sources, target or

relations makes them entirely different, therefore this relation requires that all parts be

car

auto automobile

similar, 0.6
car

auto machine

g1 g2

similar, 0.7 similar, 0.5 similar, 0.7

car
auto

similar, 0.7
car

auto

similar, 0.7

t1 t2

car
auto

similar, 0.91

t1’

92

similar. By using the minimum similarity we are saying that if either part is not similar

then we will not merge the tuples. Formally

Given that we already proceeded with the concept and edge normalization, determining

similarity is basically a string comparison operation. The final step in the merging

procedure is the Granularity Resolution, where we try to solve issues of different

granularity in the two graphs.

6.5.2 Granularity Resolution

One of the biggest issues when merging two graphs is the problem of granularity

resolution. Granularity problems stem basically from different granularity in the

representation of the same information by two different ontologies and is one of the most

interesting and unique problems to ontology merging.

Granularity issues typically describe a situation where the relation AyC in G1, denoting

the relation between concept A and concept C, is described as AyB, AyC in G2. Figure 37

is a typical example.

),(

),(

),(

min),(22

11

yx

yx

yx

yx

rrsim

ccsim

ccsim

ttsim

93

Figure 37 - Granularity Problem Example

In Figure 37 we can see two results that describe essentially the same information, but

with different granularities. The relation animal is-a dog remains consistent across

results, giving us an the overlap required for merging, but while G1 contains

animal is-a feline is-a cat

G2 describes the relation as simply

animal is-a cat

Differences in granularity arise due to differences in the view of a domain, or simply due

to the differences in the information need of the creators of the source ontologies.

Perhaps the author of O1, from which G1 is a result had the need to describe felines in a

more detailed fashion than the author of O2, from where G2 stems. Or perhaps O2 is

describing the popular view of domestic animals. In either case both views must be

considered without prejudice and assignment of correctness. The problem remains of how

to solve the granularity issue when merging two graphs.

animal

feline

cat

dog

animal

cat dog

G1 G2

is-a

is-a

is-a is-a is-a

94

When solving the granularity issue, there are two factors we must take under

consideration. First, the goal of Federated Ontology Search is not to generate the most

correct ontologies or even to insure the plausibility of the results, but rather to retrieve

and present information contained in the available ontologies, and do so in a best way to

allow direct access to the requested information. Secondly, we have information

associated with the ontologies and with each relation that allows us to compare both

granularity views in respect to the overall confidence of the final result.

Therefore, we must merge the different granular paths in a way that maximizes the

overall result confidence. Below is the example of what happens in the case of Figure 37.

Figure 38 - Intial Merging

Initially the merging procedure merges all the nodes that do not overlap. After this initial

step we find the nodes that have more than one incoming edge. These nodes represent the

end nodes of structurally different paths. If the both incoming edges represent the same

relation, then we use the Dijkstra algorithm (Fredman and Tarjan 1987) to calculate the

best path to the source, the one with best confidence. Given that the final result score will

be based on the confidence of the sources and the confidences of the relations in the

results, we maximize the confidence of the result by maintaining the path with the best

confidence.

animal

feline

cat

dog

G12

is-a

is-a

is-a

is-a

95

The formula for the estimation of confidence is given by

)(Sr

lj

j

r

lj

j

OC

e

eC

Where l is the leaf node, r is the root node, that is, the root of the divergent paths, C is the

confidence and OS is the source ontology. That is, the confidence is determined by

average confidence multiplied by the confidence in the source ontology. After we

determine which path contributes the most to the result score, we eliminate the weakest

incoming edge.

Regarding the previous example, let’s see what would happen given the following

confidences table.

Source Concept Target Concept Confidence

Animal Dog 0.8

Animal Feline 0.7

Animal Cat 0.8

Feline Cat 0.6

Table 13 - Eaxmple Confidence Table

Source Ontology Confidence

Ontology 1 0.8

Ontology 2 0.7

Table 14 - Example Source Ontology Confidence

Confidence(animal is-a feline is-a cat) = (0.7+0.6/2) * 0.8 = 0.52

Confidence(animal is-a cat) = 0.8 * 0.7 = 0.56

96

Thus the result is the following result since, all the paths represent the highest confidence

from the root node to the leafs.

Figure 39 - Merging Result

One question that might arise is the argument that we are possibly loosing information,

since we no longer have the edge feline is-a cat, but I would argue that from the

point of view of the user, the most reliable information is readily accessible. If this was

the result of the query “what is the relation between animal, cat and dog?” the merged

output would represent an appropriate result given the source ontologies.

Furthermore, one counter-intuitive result of the merging process is the possibility of

having dangling non-leaf concepts. In the example presented previously, we can observe

that the relation animal is-a feline is maintained even though it doesn’t have any

more children. One could argue that non-leaf nodes should also be deleted, but in fact

that depends of the semantic type of the relations. If instead of is-a relation we have a

synonym relation, then all nodes are in fact potentially leaves. It is left for future work to

determine what types of relations that can safely be removed whenever there are no child

nodes left. This is an important issue because by leaving dangling leaves that were

previously intermediate nodes we are creating structures that were inexistent in any of the

existing ontologies. Even though this might not constitute a problem per se, changing

structures carries unforeseen implications that need to be further studied.

animal

feline

cat

dog

G12

is-a
is-a

is-a

97

The merging step leads to the final step in the search, the scoring algorithm, which we

will discuss in the following section.

6.6 Scalability

The algorithms and procedures for matching results are mainly dependent on two factors,

number of nodes and number of edges. For every pair of sub graphs we compare every

tuple, which is comprised of two nodes and an edge. Since the nodes might be repeated,

the best case scenario is the number of comparison is E, where E is the number of edges

and the worst case scenario is E + 2N-X, where N is the number of nodes and X is the

number of overlapping nodes in the tuples.

The algorithm is in the family of N
2
 algorithms and as such it is not scalable to large

graphs, but then the graphs are never quite big, and for good reason.

It is Important to note that the graphs returned by the ontologies are always farily small.

There are two main reasons to justify this. First, the fact that the queries are anchored in a

specific concept or concept reduces the ambiguity and size of the returned graphs.

Second because even when an ontology has a large average path size, which is not

common, meaningful relations between concepts suggest a correlation to close conptes in

the ontology. Also, for computational purposes, large graphs are not computable in real

time, so it is computationally desirable to maintain the size small.

As the number of ontologies grow, the proactive ontology selection algorithm will

provide the scalability necessary, since we can impose restrictions on the maximum

number of ontologies to be queried, based on the order of relevancy of those ontologies

for a particular query.

98

6.7 Result Scoring

The goal of result Scoring is to rank the results after the merging procedure. The more

complete, direct and trustworthy a result is, the higher it should rank. The scoring metric

should thus give preference to results that have a higher average span and shorter path

lengths. Let’s take the following simple examples.

In the example 1, the result that should be scored the highest is the first, since it contains

headache

gastroenteritis flu mumps

R1 R2

Query: conc(headache,fever)

fever headache

gastroenteritis flu

fever

machine car

machine car vehicle

R1

R2

Query: rel(car, machine)

car

ambulance sedan cab

car

ambulance sedan

R1 R2

Query: children(car)

Figure 40 - Result scoring example 1

Figure 41 - Result scoring example 2

Figure 42 - Result scoring example 3

99

more information. In the second example, result 1 had a direct connection between the

source and the target of the query. We argue that given that the user query pertains to the

relationship between car and machine, if we are able to find a direct connection between

those two concepts, that forms a stronger bond than the result R2, thus scoring higher.

Also, we posit that the correlation between the confidence of the edge and the confidence

that the relation described by that edge satisfies the query decreases with the increase of

the distance to the source node.

In example 3 we can see a query that tries to identify possible diseases that contain the

symptoms of fever and headache. Again, result 1 should score higher since it contains

more information. In all these examples we can observe the principles we outlined

earlier. Larger average spans and shorter paths.

Thus we propose the following scoring metric that adequately models the desired

behaviors:

𝐶𝑟 = 𝐶𝑜 ×

𝐶𝑒𝑖

𝜑𝑒𝑖

𝑛
𝑖=1

 𝑒
× ∆𝑑

Where Cr is the confidence of the result, Co is the confidence of the source, φei is the

distance of the target of ei to the source of the path, Cei is the confidence of the edge ei, |e|

is the number of edges and Δd is the edge degree delta, described below.

∆𝑑=
𝐴𝑣𝑔 𝐷𝑒𝑔𝑟𝑒𝑒

𝑀𝑎𝑥 𝐴𝑣𝑔 𝐷𝑒𝑔𝑟𝑒𝑒

Where Avg Degree is the average degree of the result and Max Avg Degree is the

maximal average degree from all the results being considered.

100

Let’s observe what happens in example 2 if the following conditions. Let us assume that

the source ontology for R1 and R2 have the same confidence of 1, that is, we assume that

they are completely reliable in the information they contain, and that each edge has the

same confidence of 1, that is , we also trust each edge completely. Even though these

conditions are not typical, they serve the purpose of illustrating the scoring metric.

For R1, the score would be

𝐶𝑅1 = 1 ×

1
1

1
𝑖=1

1
× 1 = 1 × 1 × 1 = 1

For R2, the score would be

𝐶𝑅1 = 1 ×
1 +

1
2

2
× 1 = 1 × 0.75 × 1 = 0.75

So the final ranking would be:

Final Ranking

R1

R2

If we experiment with different confidences or different examples, we can see that the

scoring outcomes follow the intuitions that guided our scoring principles. Even though

the ultimate goal of the scoring metric is to provide an immediate value of how good the

result satisfies the query, at this point we do not make such claims. We believe that

correlation between the values and the quality of the results is not well enough

established, thus making only use of the scoring metric for ranking purposes and leaving

the quality correlation as future work.

The description of the scoring metric concludes the presentation of the thesis framework.

In the next chapter we will discuss the results obtained during this thesis work, followed

by conclusions.

101

102

7 Result Discussion

Evaluating Ontological based research has been traditionally a difficult task. Given the

multitude of ontology languages and the lack of existing standard test sets for ontologies

the most common approach to ontology evaluation is a task centered evaluation process

 (Porzel and Malaka, 2004). The goal of task based evaluation is to indirectly evaluate an

ontology by the effect that the ontology has on the task performance. Though this method

does not directly evaluate the quality of the ontology, it is debatable if that is even

possible. An ontology is, after all, a view of a domain from the perspective of one or

more people, and its structure and contents highly subjective. The attempt at evaluating

the quality of the knowledge contained in an ontology often proves as subjective as the

ontology itself. The method of task based evaluation provides us with clear metrics that,

despite not perfect, allow us to judge the usefulness of a particular ontology in a

particular task. This method is particularly suited for the evaluation of a Federated

Approach, since the goal in this case is to compare the Federated Approach with a

standard approach. By evaluating on a task based evaluation, we can acquire clear

comparative data of the two approaches and the advantages and disadvantages for a

Federated Approach.

In this chapter we focused on the evaluation at a broad level, where we are concerning

ourselves mainly with the performance of the whole system. The evaluation of individual

portions of the system, such as the automatic creation of ontologies, is presented in the

chapters pertaining to the portion of the system in question.

This chapter is divided in two parts. First I will describe experiments performed in the

area of question answering, where Federated Ontology Search was applied to the task of

Type Checking, where the goal is to improve the performance of the question answering

system by boosting the answer candidates that are of the correct type. Second I will

describe the experiments performed in the area of content matching. Here I will describe

the impact of Federated Ontology Search in three tasks; Concept Recognition, Concept

Disambiguation and Concept Matching.

103

7.1 Type Checking

The task of type checking tries to determine if, given a type T and a concept C, C is of

type T. In the case of the federated approach, we can achieve this by using three

operators, the relation operator, the parents operator and the children operator, as

previously described.

Type checking using federated ontology search can be viewed as the task of finding an is-

a based path between two concepts. Our approach has the advantage of using indirect

paths when no direct path is found. An indirect path consists of partial ordered sub paths

that exist in separate ontologies but form one path when combined. Finding an indirect

path is possible by simply applying either the parents operator or the children operator to

the source node in one ontology and using the resulting nodes to query for a direct path in

another ontology. The resulting path is the combination of these partial paths. Using

indirect paths provides a promising way of combining information that by itself would be

incomplete and enabling the deduction of previously non-existent paths.

7.1.1 Experimental Setup

A total of 9558 pairs were extracted from results of the Javelin question answering

system in TREC QA 2003 [Nyberg et al., 2003]. Each pair consists of the expected

answer type or subtype and the candidate answer.

 For the purposes of our evaluation we used two of the currently available

ontologies, Wordnet and ThoughtTreasure. The purpose of this preliminary evaluation is

to contrast the performance of each of the ontologies individually, which would be a

typical scenario for a project using one ontology as a knowledge base, with the

performance of the set of ontologies using a federated approach.

 We have evaluated the recall and precision of the retrieved results..

7.1.2 Results and Analysis

 Table 1 shows the recall after running the test set with different configurations.

Configuration Recall

104

Wordnet 4278 (44.7%)

ThoughtTreasure 730 (7.6%)

Combined 4686 (49%)

Merge 4686 (49%)

Merging + Indirect 6870 (71.8%)

Test size 9558

Table 1: Recall using different configurations with the full set of pairs

Wordnet and ThoughtTreasure were experiments where Wordnet and ThoughtTreasure

were used individually. The Combined experiment queried each of the ontologies

individually, picking only the top ranked result. The recall is lower than the direct sum of

the individual results due to knowledge overlap in the ontologies. The Merge experiment

queries both ontologies but merges the results using the merging algorithm described

previously. Finally we use merging as well as indirect path query to perform the last

experiment

An indirect path is a path that is comprised of partial paths contained in different

ontologies, as shown below.

a

b

c

d

e

x

b

z

a b z

Indirect path

Ontology A Ontology B

105

Although the recall remained the same when applying the merging procedure, the

average confidence of the top result, in cases where there was more than one result,

increased significantly (28%), as shown in Table 2.

 avg. confidence

Without merging 0.72

With merging 0.93

Increase 28.7%

Table 2 – The Increase in the average confidence of the top ranked result due to the merging algorithm.

In order to test the accuracy of the federated approach, we created a gold standard for a

subset of the full set of pairs. Using random sampling, we selected 1300 pairs, which we

then proceeded to judge manually. For each pair in the gold standard subset we generated

a tuple of the form (type, concept, judgment), where judgment reflects if the concept is of

the type type.

We compared the answers of the Federated Search with the gold standard by applying a

variation on the result score threshold. If a score is below the threshold then the concept

is considered not to be of the type type.

 Precision Recall F1 Measure

Combined (W+T) 0.59 0.49 0.53

FOS (M+I) 0.67 0.71 0.69

Increase 30.18%

Table 15 - Precision and recall of the Federated System using Wordnet and ThoughtTreasure

We obtained a significant increase in performance when using the federated search

approach. The optimal threshold for this experiment is T=0.1 with a precision of P =

106

0.676. The recall was very close to the one obtained in the full set with a recall of 0.71

(71%). In Table 15 we can see the F-Measure of the system.

7.2 Content Matching

The goal of content matching in general is to determine the how well two content pieces

fit together. Let’s say for example that we have two images, Image A and Image B. The

goal of the task, generally speaking, is to determine how well Image A and Image B

match. In the context of this work this is restricted to content that contains a set of

keywords that describe it. Thus, content matching is the task of matching two sets of

keywords. This task has many practical applications, such as content recommendation,

filtering, online ad matching, content personalization, etc. This task is also particularly

suited to highlight the potential of the federated approach, since the keywords can contain

any string, thus challenging the coverage of any ontology. As previously mentioned,

there are currently no standard test sets suited for ontology testing. Part of the task is the

definition of the task itself, the acquisition and labeling of data and the creation of the test

set, which constitutes one of the deliverables of this thesis.

7.2.1 Task Definition

The task consists of the following. Given two objects, A and B, described each by a set of

keywords 𝐾𝐴 = 𝐴1, … , 𝐴𝑛 , 𝐾𝐵 = 𝐵1, … , 𝐵𝑛 , the goal is to determine 𝑆(𝐴, 𝐵) which is

the semantic distance between A and B. We want S to correlate with semantic distance

such that the highest the score the closer the two sets are semantically. Given that we

compare set A with sets B and C, if 𝑆 𝐴, 𝐵 > 𝑆(𝐴, 𝐶) then it should be expected that A

is closer to B than to C as judged by a person.

7.2.2 Experimental Setup

Our data comes from two sources. First we use the data collected by Louis Von Ahn

(cite) with the ESP Game, that consists of images labeled with keywords, also known as

tags. Our dataset consists of 50.000 images with the respective tags. We then take 10.000

randomly selected images and use the tags of each image to search for products in

Amazon’s product API. For each image we collect 10 products, each product containing

107

tags that were inserted by Amazon users. There is no restriction in either tag set. The

products are ordered by relevancy regarding the image.

We then take each set comprised of the image and the 10 ordered results and label each

relation in the form of (Image, Product, Rank) using Mechanical Turk. Each relation is

labeled by three different people as either relevant or not relevant. In order to minimize

cultural bias, only Mechanical Turk users from the United States were allowed to

participate in the study. The final determination of relevance was determined by simple

majority of the labels. That is, for every given relation, 0 or 1 labels of relevant will

produce a final not-relevant label, 2 or 3 labels of relevant will produce a final label of

relevant. Figure 43 shows an example of one of the Mechanical Turk task.

Figure 43 - Example of Mechanical Turk task

After data collection and labeling we have a set of tagged images, each with a set of

ordered tagged products, and for each product a label of either relevant of non-relevant.

Below is an example of the final result, which constitutes our gold standard. In this

example, we have one image with 12 associated products. For each product we got 3

different people to judge whether the product is relevant to the image. The products are

ranked from 1 to 12 and only products 11 and 12 were considered relevant, since all three

108

labelers thought they were relevant. Products 4, 9 and 10 were considered irrelevant even

though 1 labeler out of 3 said the product was relevant.

Image Tags Rank Product Tags Score Relevance

Season

Collection

Series

Dvd

Cd

Show

Tv

Box

Pink

red

1

canning kit, canning,

food preservation,

canner,

canning rack

0 No

2

pressure canner,

canner, canning

equipment, pressure

cooker, canning

0 No

3

pressure canner,

canning equipment,

pressure cooker, built

like a diving bell,

canner

0 No

4

david cook, american

idol, analog heart,

axiom, american idol

winner

1 No

5

classical music,

joshua bell, music,

baroque, chamber

music

0 No

6

jersey boys,

broadway, four

seasons, musical,

broadway musical

0 No

7

Disney, movie

classics, vhs, cross

reference, dick van

dyke

0 No

8

Boxing, Ireland,

dowery, irish, john

wayne

0 No

109

9

childrens movies, dvd

1 No

10

the office, steve

carell, john krasinski,

comedy, rainn wilson

1 No

11

Heroes, superheroes,

series, tv, dvd

3 Yes

12

greys anatomy, tv

series, katherine heigl,

ellen pompeo, female

main character

3 Yes

Table 16 - Example of Product Review

Below we present some results regarding the agreement of the users that reviewed the data in

Mechanical Turk. Due to the lack of overlap of reviewers, given the distributed nature of

Mechanical Turk, agreement cannot be calculated using a K measure. To alleviate this problem

we describe the agreement in terms of the general measure of relevancy. That is we measure

agreement at a local level, since each task was done by three different reviewers. In figure 44,

unanimous represents when all reviewers agreed on the answer either positive or negative. Figure

45 and 46 show the distribution of relevance and agreement, respectively.

Figure 44 - Agreement between reviewers

110

Figure 45 - relevancy of products

Figure 46 - Agreement between reviewers

19.6

80.4

Relevancy

relevant

not-relevant

66.9

33.1

Agreement

agree

disagree

111

8 Result Analysis

The matching procedure uses the FOS engine for all the steps requires to produce a

matching score. The goal is to take two sets of keywords and return a relevancy score. In

this particular task the keywords represent the tags associated with a particular content.

Table 17 - Example of Matching Inputs

Picture Tags Tags Product

Season, Collection,

Series, Dvd, Cd,

Show, Tv, Box,

Pink, red

Match

greys anatomy, tv

series, katherine

heigl, ellen pompeo,

female main

character

It is important to note the subjectivity of this task. Relevance judgments are notoriously

subjective to the people that make them and especially in this case, since the association

is made with little information. There are many factors that can account for difference in

judgments of the same thing by different people. Some of those factors, such as culture,

were controlled by limiting the US persons participating in the task, but we acknowledge

that it is impossible to account for all the factors and in fact we do not try to do so. The

goal of the task is to try and capture the subjectivity of a task that humans perform on

daily basis but the goal of the thesis is not to demonstrate improvements in relevance,

even though we do in some cases, it is to demonstrate the effect of federated ontology

search in the task. Thus we focus not on increasing accuracy, but rather in demonstrating

the effect of our approach in both the main task and the subtasks contained in it.

In order to measure the results obtained in the subtasks performed, we used a set of

ontologies comprised of Wordnet, Freebase, OpenCyc, UMLS, UMBEL and DBPedia

incorporates within the Federated Ontology Search system. This ontology set provides an

interesting combination of various ontology types. Wordnet and OpenCyc are carefully

supervised ontologies, Freebase is user generated, DBPedia is automocatically generated

from Wikipedia and UMLS is a collection of dictionaries from the medical domain. We

112

measured our results by comparing the performance of the individual ontologies in each

subtask with the performance of the system as a whole.

In order to obtain the final relevance result, we subdivide the task into three subtasks.

Namely string coverage, concept disambiguation and concept set matching.

8.1.1.1.1 String Coverage

The first step in the matching process is to produce a set of possible concepts for each of

the keywords. This is equivalent of using the search operator in the federated ontology

search engine. We take each set of keywords and for each keyword we execute search

operator. That is, for each keyword kx in the keyword set 𝐾 = 𝑘1, … , 𝑘𝑛 we execute

search(kx). This produces a set of potential concepts of the form 𝐶𝑘𝑥
= 𝑐1, … , 𝑐𝑛 . Table

18 exemplifies a search operation and the results.

Keyword Car

Query search(car)

Result

car(motor vehicle)

car(wheeled vehicle)

car(compartment)

car(Greek mythology)

car(Musical Track)

Table 18 - Search Operator Example

We can observe the effect of federated ontology search in this task by measuring the

coverage within fundamentally different keywords sets. The keywords used in the images

are of a more general nature, with the 3 most frequent words being red, blue and black.

The keywords used in the Amazon products are much more specific since they refer to

specific aspects of each product and thus create a bigger challenge for this task.

Below we present the results of comparing the performance of the FOS system and a set

of baselines.

113

Figure 47 - Coverage Results

Coverage Wordnet Freebase OpenCyc UMLS UMBEL DBPedia FOS

Images 89.75 95.74 92.23 3.12 45.56 93.2 99.6

Products 34.65 55.68 40.54 1.23 15.43 44.3 75.4

Table 19- Coverage Results Table

When comparing the best baseline to using the FOS system, we can observe that

Freebase had 95.74% coverage of the image tags and 55.68% of product tags coverage.

The FOS system presented an improvement of 4% and 35% of coverage increase in the

images and products respectively.

The results shown can be explained by the difference in nature from the tags used in the

image to the tags used in the Amazon products. Even big ontologies such as Freebase

contain a large portion of general use words in the English language, but are not

particularly effective in covering specific nouns and especially in compound words such

as pressure canner, garment steamer of christian movie. By adding ontologies such as

DBPedia Wordnet and OpenCyc, the coverage of the system expands into concepts that

used in specific environments by real users, allowing for a significant increase in

coverage.

0

20

40

60

80

100

120

Tag Coverage

Images

Products

114

8.1.1.2 Concept Co-Disambiguation

Once we have the possible concepts for each string, we need to select the right concept.

We do this by searching for relationships between concepts and using belief propagation

(Murphy, Weiss et al. 1999) to find the most likely configuration. We disambiguate

words based on a simple principle of cues. For humans, it is very easy to disambiguate

turkey in (turkey, Istanbul) into the country turkey, versus turkey in (turkey,

thanksgiving) into the bird turkey. Humans can do this because surrounding concepts

allow them to disambiguate easily when taken in conjunction. We use the same principle

by disambiguating strings in pairs and call this method co-disambiguation. For every pair

of possible concepts within the tag set, we find the possible relationships for that pair. We

then create a graph in which each tag is a random variable, where the concepts are the

possible values for the variable. We then run loopy belief propagation to get the MAP

assignment for the variables.

In disambiguating, we found that disambiguating to the wrong concept is more costly

than not to disambiguate at all, since it will lead the matching procedure into the wrong

path. Therefore we only disambiguate when there is enough confidence to so, which

leads to a smaller number of disambiguated concepts. Figure 48 shows an example of the

whole process.

For each set of tags we start by extracting all the possible concepts for each of the tags in

the set. We then search for all the possible relationships between each of the concepts in

different keywords. Afterwards we create the belief graph and finally we run loopy belief

propagation in order to disambiguate the tags into concepts.

115

Im
ag

e

results

T
a

g
s

Uganda Kilimanjaro Nairobi Kenya mount victoria

C
o

n
ce

p
ts

C1uganda

 country

C2uganda

 song

C3kilimanjaro

 peak

C4kilimanjaro

 album

C5kilimanjaro

 song

C6nairobi

 capital

C7nairobi

 song

C8kenya

 country

C9kenya

 song

C10mount

 attach

C11mount

 increase

C12mount

 fix

C13mount

 horse

C14mount

 rise

C15mount

 elevation

C16mount

 music

C17victoria

 queen

C18victoria

 deity

C19victoria

 lake

C20victoria

 city

Q
u

e
ri

e
s

rel(C1,C3)

rel(C1,C4)

rel(C1,C5)

rel(C1,C6)

rel(C1,C7)

rel(C1,C8)

…

rel(C2,C15)

rel(C2,C16)

rel(C2,C17)

rel(C2,C18)

rel(C2,C19)

rel(C2,C20)

rel(C3,C6)

rel(C3,C7)

rel(C3,C8)

rel(C3,C9)

rel(C3,C10)

rel(C3,C11)

…

rel(C5,C15)

rel(C5,C16)

rel(C5,C17)

rel(C5,C18)

rel(C5,C19)

rel(C5,C20)

rel(C6,C8)

rel(C6,C9)

rel(C6,C10)

rel(C6,C11)

rel(C6,C12)

rel(C6,C13)

…

rel(C7,C15)

rel(C7,C16)

rel(C7,C17)

rel(C7,C18)

rel(C7,C19)

rel(C7,C20)

rel(C8,C10)

rel(C8,C11)

rel(C8,C12)

rel(C8,C13)

rel(C8,C14)

rel(C8,C15)

…

rel(C9,C15)

rel(C9,C16)

rel(C9,C17)

rel(C9,C18)

rel(C9,C19)

rel(C9,C20)

rel(C10,C17)

rel(C10,C18)

rel(C10,C19)

rel(C10,C20)

…

rel(C16,C17)

rel(C16,C18)

rel(C16,C19)

rel(C16,C20)

116

R
e

su
lt

s

B
e

li
e

f
G

ra
p

h

F
in

a
l

re
su

lt

Figure 48 - Disambiguation Example

The results of the disambiguation task are shown in Figure 49 and Table 20.

uganda Kilimanjaro Nairobi Kenya mount victoria

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

C18

C19

C20

uganda

Kilimanjaro

Nairobi

Kenya

mount

victoria

uganda Kilimanjaro Nairobi Kenya mount victoria

C1 C3 C6 C8 C15 C19

117

Figure 49 - Disambiguation Results

Disambiguation Wordnet Freebase OpenCyc UMLS UMBEL DBPedia FOS

Images 52.62 55.23 53.2 0 25 48.34 63.73

Products 18.23 25.76 20.44 0 8.2 23.65 34.5

Table 20 - Disambiguation Increase Percentage

By using the FOS system, we are able to get a 15% increase in the image tags and a 33%

increase in the disambiguation of the product tags, even with a conservative process of

concept selection. It is important to note that the compounding effect of lack of coverage

affects the disambiguation process significantly.

The results do not reflect the upper bound on disambiguation results, since there are

multiple techniques that could potentially lead to better results. The goal is to measure the

difference between using a baseline and the FOS system.

8.1.1.3 Concept Set Matching

The final task in the matching procedure is to match both sets of concepts after the

disambiguation process. Given two sets of concepts, C1 and C2, the goal of this task is to

0
10
20
30
40
50
60
70

Concept Disambiguation

Images

Products

118

return a score that describes the semantic similarity of the two sets. In this task we use the

rel operator to find the similarity between concepts in the different sets.

In order calculate the final score we sum all the distances between the concepts and

divide by the total number of concepts. This provides a way to normalize the score. The

score is calculated by

𝑆 =
 𝑑 𝐶𝑖 , 𝐶𝑝

 𝑖 + 𝑝

Where S is the score, Ci is the image concept; Cp is the product concept |i| is the number

of image concepts and |p| is the number of product concepts. We calculate this score for

each product/image pair and re-rank the products according to the generated score.

turkey(bird)

thanksgiving(day)

turkey(bird)

holiday(day)

119

Figure 50 - precision results

Increase
FOS

M NM

FOS

M Freebase

Precision 5.3% 14.5%

Percent

coverage
20% 71%

Table 21 - Increase in Matching Accuracy

Figure 50 shows the results from running the matching algorithm of the Amazon data.

We can see a large increase in precision when using the FOS based algorithm when

0
10
20
30
40
50
60
70
80

Content Matching

precision

percent covered

Content Matching amazon keyword Wordnet Freebase OpenCyc UMLS UMBEL DBPedia
FOS

No Merging

FOS

Merging

Precision 19.6 15.3 64 54.54 70 0 75 48 59.316 62.45

Percent coverage n/a n/a 3 7 4 0 2 5 10 12

Table 22 - Results of Content Matching

120

compared to the Amazon results, the main reason being that Amazon treats each tag as a

keyword, using a Boolean query for search. Given the nature of the tags, where we can

find different spellings of the same words, amongst other things, in most cases this results

in a lack of documents found that match the query terms leading to a back off strategy of

using the terms with the highest idf amongst the image keywords. This in turns leads to

poor specification, which might help explain Amazon’s poor results.

FOS achieves an increase of 14.5% in precision when compared to Freebase, and more

than 100% increase when compared to Amazon and a keyword based baseline. This

increase may sound tremendous, but is explicable due to the fact that there are many

cases in which the words are semantically related but do not overlap. Some examples are

presented below.

Figure 51 - Examples of semantically related non-overlapping words

As we can observe in figure 48, the boxes on left represent image tags, and the boxes on

the right represent product tags. These examples illustrate how we can benefit from using

semantic relations to identify relationships between concepts rather than rely on keyword

matching.

121

9 Conclusions and Future Work

9.1 Summary of Contributions

There are many contributions that have been made in the course of our exploration of

summarization. Some are summarized in the list below.

 Ontology Querying Framework

o We propose a new approach to ontology querying. We modeled our

approach on the concept of federated search and motivated our topic of

Federated Ontology Search.

 Automatic Ontology Creation

o We create a new algorithm for automatic ontology creation and

demonstrated its uses on the medical domain.

 Ontology Selection

o We proposed a new framework to characterize ontologies from a set of

different dimensions that is independent of a particular ontology, allowing

for an immediate estimation of the utility of that ontology.

o We suggest the use of five dimensions to characterize an ontology,

namely, scope, depth, cost, noise and connectivity.

o We proposed the use of pro-active ontology selection to tackle the

ontology selection problem

 Graph Merging

o We suggested that there are four basic merging scenarios for ontology

merging, depending of the overlapping positions of the source concept.

o We proposed a procedure that accounts for structural and string merging,

focusing on the information need instead of the original source

 Scoring

o We proposed a new algorithm for scoring ontological results that depends

on the operators that were used in that query.

122

o We suggested that we should look at the completeness of the result in

order to score its relevancy as a primary measure. We also suggested that

both the confidence of the source and the source’s confidence on the

relations in that result should be taken into account for scoring.

 Evaluation

o We suggested the use of a task based evaluation for evaluating the work

performed in this thesis. We evaluated the FOS system on the tasks of type

checking, concept coverage, concept disambiguation and content

recommendation.

o We created a data set for ontology performance that consists of 100.000

labeled pairs of matches between tagged products and tagged images.

o The FOS system achieved a performance increase of up to 100% against a

set of proposed set of baselines comprised of using the individual

resources.

9.2 Future Work

 For Automatic Ontology Creation, future research might

o Develop algorithms to create ontologies from unstructured data.

o Explore what relations can adequately be extracted from unstructured text.

o Extend the proposed algorithm to deal with a larger number of possible

relation labels.

 For Ontology Selection, future research might

o Extend the proposed algorithm to adapt the training data to new ontologies

automatically, thus reducing the amount of training required.

o Explore different metrics for ontology selection. How can we accurately

predict the best ontologies at a query level?

 For Ontology Querying, future research might

o Extend the current set of operators to account for different phenomena

such as exclusion.

o Study the state explosion problem in the compound operator execution.

123

 For result Merging, future research might

o Explore machine learning approaches to graph merging applied to

ontology merging.

o Analyze and catalogue the semantic properties of each semantic relation

and how can those semantic properties be used to infer semantic distances.

o Propose new algorithms for ontology merging that might allow for a one-

to-many mapping between local graphs.

o Study automatic transformations for related semantic relations.

o Explore federated ontology search in a multilingual setting.

9.3 Conclusion

In the last decades the number of available ontologies has grown considerably. Several

proprietary and open-domain ontologies have become available. These resources offer

the promise of easily-accessible, open-domain ontological information, but the existence

of such diverse ontologies raises the issue of information merging and reuse. A

comparison of the ontologies reveals both redundant and complementary coverage, but

the variety of frameworks and languages used for ontology development makes it a

challenge to merge query results from different ontologies. The number of available

languages for ontological knowledge engineering such as RDF, OWL, DAML+OIL and

CYCL, combined with the existence of independent interfaces aggravates the issue. The

lack of a formal way to access and combine the knowledge from different ontologies is

an obstacle to more effective re-use and combination of these resources.

In this thesis we proposed an approach to the multi-ontology issue that builds an

ontological middleware level for only small fragments of ontologies in an on-demand

basis, that is:

 Query multiple ontologies and then merge the query results from multiple

knowledge base systems, much like Federated Search in information retrieval (Si

and Callan 2005).

124

 Follow ontological chains and inferences across ontologies, using partial query

results from one ontology to query another. This is a more complex version of

cross-data-base joins, where the data schemas are sufficiently compatible.

We started by presenting work done in the automatic ontology creation that provides a

basis for automatically extending the coverage of the Federated Ontology Search

approach. We note that this is but one of the possible methods for ontology acquisition, a

field that is currently very active with several methods reveling promise.

We described several issues in ontology selection, result merging and scoring and

presented a flexible framework that focuses on parallelizing ontology access and

providing a simplified description of the information need for searching ontologies. We

proposed a set of operators that allows for a combinatorial construction of complex

operators, allowing for rich queries that describe complex information needs, using only

simple operators as a basis.

In merging results, we focused on concept normalization, homonym detection and

merging with structural differences. Our research suggests that by focusing the results on

the need of the user, we are able to bypass some of the more problematic issues that

typically crop up in ontology merging. By anchoring the queries in concepts, and dealing

with merging after querying the selected ontologies, we were able to avoid a large portion

of the ambiguity problems that are typically seen in the field of ontology merging.

We tested our approach in two major tasks one of which consisting of four subtasks. We

demonstrated improved results by using the federated approach in type checking, string

coverage, concept disambiguation and content matching. As an artifact of this thesis, we

create a test set for testing ontologies that will be made available as a by-product of this

thesis.

Some of the issues were not within the scope of this thesis, namely compare string

comparison algorithms for ontology merging, which certainly have an impact in any

125

practical application of the work done in this thesis. We have chosen not to dive deep in

discussions of ontological formalisms due to the contentious nature of any such

formalisms. We believe that ontologies are above all a point of view over a domain, a

point of view shared by one or more persons at a given point in time, and as such

fundamentally incompatible when considered for a complete merger. Yet, we suggest that

by taking pragmatic approach to ontology integration, it is possible to create a set of

resources that is of tremendous use to a set of problems that ontologies have always

shown promise but often revealed impractical for actual solution.

Within the course of this research, many obstacle were found in the evaluation of a

federated ontology set. The lack of standard resources for evaluation hides the

fundamental problem with ontology evaluation, the inherent subjective nature of all

ontological resources. The authors have worked hard to provide a set of tools that allows

other researched to continue to explorer further ways to integrate ontologies and make no

claims to the universality of this work. We believe that in the end, the most important part

of the work done for this thesis was to define the parameters for the set of deep questions

that are yet unanswered. Question such as “what makes a good ontology?”, “what the

breadth of possible relations and how are they characterized across ontologies?” “what

characterizes the relations between concepts in the same domain?” are some examples of

questions that have tremendous impact in the way we will be able process and use

ontological knowledge. These questions were not the scope of this thesis, rather we

focused on examining the conditions upon which a set of disparate resources can be used

effectively to solve real world problems, and what practical concerns arise from such

problems. We hope we have succeeded in presenting some interesting new directions for

ontology integration and we look forward to contribute further to the field of Federated

Ontology Search.

126

127

10 Bibliography

Agirre, E. and P. Edmonds "Word sense disambiguation: Algorithms and applications."

Computational Linguistics 33(2).

Alani, H. and C. Brewster (2005). "Ontology ranking based on the analysis of concept

structures." Proceedings of the 3rd international conference on Knowledge

capture: 51-58.

Avrahami, T. T., L. Yau, et al. (2006). "The FedLemur Project: Federated Search in the

Real World." JOURNAL-AMERICAN SOCIETY FOR INFORMATION

SCIENCE AND TECHNOLOGY 57(3): 347.

Baader, F. and W. Nutt (2003). "Basic description logics."

Baker, C. F., C. J. Fillmore, et al. (1998). "The Berkeley FrameNet project." Proceedings

of COLING-ACL 98.

Barwise, J. and J. Seligman (1997). Information flow: the logic of distributed systems,

Cambridge University Press.

Bemers-Lee, T., J. Hendler, et al. (2001). "The Semantic Web." Scientific American

284(5): 34-43.

Bhole, A., B. Fortuna, et al. (2007). "Mining Wikipedia and relating named entities over

time." Bohanec, M., Gams, M., Rajkovic, V., Urbancic, T., Bernik, M., Mladenic,

D., Grobelnik, M., Hericko, M., Kordeš, U., Markic, O. Proceedings of the 10 th

International Multiconference on Information Societz IS 8: 12.

Blake, C. and W. Pratt (2002). "Automatically Identifying Candidate Treatments from

Existing Medical Literature." AAAI Spring Symposium on Mining Answers from

Texts and Knowledge Bases.

Boag, S., D. Chamberlin, et al. (2002). "XQuery 1.0: An XML Query Language." W3C

Working Draft 15.

Bodenreider, O. (2004). "The Unified Medical Language System (UMLS): integrating

biomedical terminology." Nucleic Acids Research 32(1): D267-D270.

Bollacker, K., C. Evans, et al. (2008). Freebase: a collaboratively created graph database

for structuring human knowledge, ACM New York, NY, USA.

Brank, J., M. Grobelnik, et al. (2005). A survey of ontology evaluation techniques.

Conference on Data Mining and Data Warehouses (SiKDD 2005). Ljubljana,

Slovenia.

Callan, J. (2000). Distributed information retrieval. Advances in information retrieval,

Kluwer Academic Publishers.

Callan, J. P., W. B. Croft, et al. (1992). The INQUERY retrieval system, Valencia, Spain.

Chalupsky, H. (2000). "OntoMorph: A Translation System for Symbolic Knowledge."

Principles of Knowledge Representation and Reasoning 185.

Converse, T., R. M. Kaplan, et al. "Powerset’s Natural Language Wikipedia Search

Engine."

Denoyer, L. and P. Gallinari (2006). "The Wikipedia XML corpus." ACM SIGIR Forum

40(1): 64-69.

128

Ding, L., T. Finin, et al. (2004). "Swoogle: a search and metadata engine for the semantic

web." Proceedings of the Thirteenth ACM conference on Information and

knowledge management: 652-659.

Doan, A., J. Madhavan, et al. (2004). "Ontology matching: A machine learning

approach." Handbook on Ontologies in Information Systems: 397-416.

Donmez, P. and J. G. Carbonell (2008). "Proactive learning: cost-sensitive active learning

with multiple imperfect oracles."

Espinoza, M., R. Trillo, et al. "Discovering and Merging Keyword Senses using

Ontology Matching." Ontology Matching.

Fahlman, S. E. (2005). Scone user’s manual.

Fredman, M. L. and R. E. Tarjan (1987). "Fibonacci heaps and their uses in improved

network optimization algorithms." Journal of the ACM (JACM) 34(3): 596-615.

Freebase. (2007). "Metaweb Query Language(MQL) Reference Guide."

Fryer, D. (2004). "Federated search engines." Online(Weston, CT) 28(2): 16-19.

Ganter, B. and R. Wille (1997). Formal Concept Analysis: Mathematical Foundations,

Springer-Verlag New York, Inc. Secaucus, NJ, USA.

Genesereth, M. R. and R. E. Fikes (1992). Knowledge Interchange Format, Version 3.0

Reference Manual, Technical Report Logic-92-1, Computer Science Department,

Stanford University, 1992.

Gómez-Pérez, A. and O. Corcho (2002). "Ontology Languages for the Semantic Web."

IEEE INTELLIGENT SYSTEMS: 54-60.

Gravano, L., P. G. Ipeirotis, et al. (2001). "Using q-grams in a DBMS for Approximate

String Processing." IEEE Data Engineering Bulletin 24(4): 28-34.

Grosso, W. E., H. Eriksson, et al. (1999). "Knowledge Modeling at the Millennium (The

Design and Evolution of Protege-2000)." Proceedings of the Twelfth Workshop

on Knowledge Acquisition, Modeling and Management (KAW99): 16-21.

Guarino, N. (1998). Formal ontology in information systems, IOS Press.

Halevy, A. Y., Z. G. Ives, et al. (2003). "Piazza: data management infrastructure for

semantic web applications." Proceedings of the twelfth international conference

on World Wide Web: 556-567.

Heflin, J., J. A. Hendler, et al. (2003). "SHOE: A blueprint for the semantic web."

Spinning the Semantic Web: 29-63.

Hovy, E. H., M. Fleischman, et al. (2003). The Omega Ontology, prep.

Izhikevich, E. M. (2007). "Scholarpedia, the free peer-reviewed encyclopedia." from

http://www.scholarpedia.org/.

Jiang, J. J. and D. W. Conrath (1997). "Semantic similarity based on corpus statistics and

lexical taxonomy." Proceedings of International Conference on Research in

Computational Linguistics: 19-33.

Kalfoglou, Y. and M. Schorlemmer (2002). "Information-flow-based ontology mapping."

On the Move to Meaningful Internet Systems 2002: CoopIS, DOA, and

ODBASE: 1132–1151.

Kalfoglou, Y. and M. Schorlemmer (2003). "Ontology mapping: the state of the art." The

Knowledge Engineering Review 18(01): 1-31.

Kaufman, L. and P. J. Rousseeuw (1990). "Finding groups in data. an introduction to

cluster analysis." Wiley Series in Probability and Mathematical Statistics. Applied

Probability and Statistics, New York: Wiley, 1990.

http://www.scholarpedia.org/

129

Khoo, C., S. Chan, et al. (2002). "Chapter 4." The Semantics of Relationships: An

Interdisciplinary Perspective.

Kingsbury, P. and M. Palmer (2002). "From Treebank to PropBank." Proceedings of the

3rd International Conference on Language Resources and Evaluation (LREC-

2002): 1989–1993.

Klein, M. (2001). "Combining and relating ontologies: an analysis of problems and

solutions." Workshop on Ontologies and Information Sharing, IJCAI 1.

Ko, J., L. Hiyakumoto, et al. (2006). "Exploiting multiple semantic resources for answer

selection." Proceedings of of LREC.

Kozlova, N. (2005). Automatic ontology extraction for document classification, Saarland

University.

Krotzsch, M., D. Vrandecic, et al. (2005). "Wikipedia and the Semantic Web-The

Missing Links." Proceedings of Wikimania.

Lacher, M. and G. Groh (2001). "Facilitating the Exchange of Explicit Knowledge

through Ontology Mappings." Proceedings of the 14th International FLAIRS

Conference.

Lenat, D. B. (1995). "CYC: a large-scale investment in knowledge infrastructure."

Communications of the ACM 38(11): 33-38.

Lenat, D. B. and R. V. Guha (1991). "The evolution of CycL, the Cyc representation

language." ACM SIGART Bulletin 2(3): 84-87.

Lih, A. (2003). "Wikipedia as Participatory Journalism: Reliable Sources? Metrics for

evaluating collaborative media as a news resource." Nature 2004.

Lipscomb, C. E. (2000). "Medical Subject Headings (MeSH)." Bull Med Libr Assoc

88(3): 265-266.

MacGregor, R., H. Chalupsky, et al. (1997). "PowerLoom Manual." ISI, University of

South California.

Maedche, A. and S. Staab (2002). "Measuring similarity between ontologies."

Proceedings of the European Conference on Knowledge Acquisition and

Management (EKAW): 251–263.

Maedche, A. D. (2002). Ontology Learning for the Semantic Web, Kluwer Academic

Publishers.

McCarthy, P. (2005). "Search RDF data with SPARQL." from

http://www.ibm.com/developerworks/xml/library/j-sparql/.

McGuinness, D. L., R. Fikes, et al. (2000). "The Chimaera Ontology Environment."

Proceedings of the 17th National Conference on Artificial Intelligence.

McGuinness, D. L. and F. van Harmelen (2004). "OWL Web Ontology Language

Overview." W3C Recommendation 10: 2004-2003.

Mena, E., A. Illarramendi, et al. (2000). "OBSERVER: An Approach for Query

Processing in Global Information Systems Based on Interoperation Across Pre-

Existing Ontologies." Distributed and Parallel Databases 8(2): 223-271.

Miller, G. A. (1995). "WordNet: A Lexical Database for English."

COMMUNICATIONS OF THE ACM 38: 11-39.

Milne, D., O. Medelyan, et al. (2006). "Mining Domain-Specific Thesauri from

Wikipedia: A Case Study." Proceedings of the 2006 IEEE/WIC/ACM

International Conference on Web Intelligence: 442-448.

Mueller, E. T. (1997). Natural Language Processing with Thoughttreasure, Signiform.

http://www.ibm.com/developerworks/xml/library/j-sparql/

130

Murphy, K., Y. Weiss, et al. (1999). Loopy belief propagation for approximate inference:

An empirical study.

Navigli, R., P. Velardi, et al. (2003). "Ontology learning and its application to automated

terminology translation." Intelligent Systems, IEEE [see also IEEE Intelligent

Systems and Their Applications] 18(1): 22-31.

Niles, I. and A. Pease (2001). "Towards a standard upper ontology." Proceedings of the

international conference on Formal Ontology in Information Systems-Volume

2001: 2-9.

Noy, N. F. (2004). "Semantic integration: a survey of ontology-based approaches." ACM

SIGMOD Record 33(4): 65-70.

Noy, N. F. and M. A. Musen (1999). "SMART: Automated Support for Ontology

Merging and Alignment." Twelth Workshop on Knowledge Acquisition,

Modeling, and Management, Banff, Canada.

Noy, N. F. and M. A. Musen (2000). "PROMPT: Algorithm and Tool for Automated

Ontology Merging and Alignment." Proceedings of the National Conference on

Artificial Intelligence (AAAI).

Noy, N. F. and M. A. Musen (2002). "PromptDiff: A fixed-point algorithm for comparing

ontology versions." 18th National Conference on Artificial Intelligence (AAAI-

2002).

Nyberg, E., T. Mitamura, et al. (2003). "The javelin question-answering system at trec

2003: A multi-strategy approach with dynamic planning." Proceedings of the

Twelfth Text REtrieval Conference (TREC2003).

Patel, C., K. Supekar, et al. (2003). "OntoKhoj: a semantic web portal for ontology

searching, ranking and classification." Proceedings of the fifth ACM international

workshop on Web information and data management: 58-61.

Pedro, V., S. Niculescu, et al. (2008). Okinet: Automatic Extraction of a Medical

Ontology From Wikipedia.

Philpot, A., M. Fleischman, et al. (2003). "Semi-Automatic Construction of a General

Purpose Ontology." Proceedings of the International Lisp Conference. New York,

NY. Invited.

Prasad, S., Y. Peng, et al. (2002). "Using explicit information to map between two

ontologies." Proceedings of the AAMAS 2002 Wokshop on Ontologies in Agent

Systems (OAS’02): 52–57.

Quillian, M. R. (1967). "Word concepts: a theory and simulation of some basic semantic

capabilities." Behav Sci 12(5): 410-430.

Raymond, J. W., E. J. Gardiner, et al. (2002). "RASCAL: Calculation of Graph Similarity

using Maximum Common Edge Subgraphs." The Computer Journal 45(6): 631-

644.

Reed, S. and D. Lenat (2002). "Mapping ontologies into cyc." AAAI 2002 Conference

Workshop on Ontologies For The Semantic Web, Edmonton, Canada, July.

Resnik, P. (1995). "Using information content to evaluate semantic similarity in a

taxonomy." Proceedings of the 14th International Joint Conference on Artificial

Intelligence 1: 448-453.

Ross, S. M. (1976). A first course in probability, Macmillan.

Sanger, L. (2007). "Citizendium." from www.citizendium.org.

http://www.citizendium.org/

131

Schuler, K. K. (2003). VerbNet: A Broad-Coverage, Comprehensive Verb Lexicon, Ph.

D. thesis proposal, University of Pennsylvania.

Serafini, L. and A. Tamilin (2005). "Drago: Distributed reasoning architecture for the

semantic web." Proc. of the Second European Semantic Web Conference

(ESWC’05) 3532: 361–376.

Si, L. and J. Callan (2005). "Modeling search engine effectiveness for federated search."

Proceedings of the 28th annual international ACM SIGIR conference on Research

and development in information retrieval: 83-90.

Snow, R., D. Jurafsky, et al. (2005). Learning syntactic patterns for automatic hypernym

discovery.

Spackman, K. A., K. E. Campbell, et al. (1997). "SNOMED RT: A reference terminology

for health care." Proc AMIA Annu Fall Symp 640(4): 503-512.

Staab, S. (2004). Handbook on Ontologies, Springer.

Stumme, G. and A. Maedche (2001). "FCA-Merge: Bottom-up merging of ontologies."

7th Intl. Conf. on Artificial Intelligence (IJCAI’01): 225–230.

Völkel, M., M. Krötzsch, et al. (2006). "Semantic Wikipedia." Proceedings of the 15th

international conference on World Wide Web: 585-594.

Voorhees, E. M. (2003). "Overview of the TREC 2003 Question Answering Track."

Proceedings of the Twelfth Text REtrieval Conference (TREC 2003).

Yates, A., M. Cafarella, et al. (2007). "TextRunner: Open Information Extraction on the

Web." Proceedings of the NAACL HLT Demonstrations Program.

Zhang, Y., W. Vasconcelos, et al. (2004). "Ontosearch: An ontology search engine."

Proc. 24th SGAI Int. Conf. on Innovative Techniques and Applications of Artifial

Intelligence.

