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Abstract

Current state-of-the-art text-to-speech systems produce intelligible
utterances, but lack the prosody of natural speech. This is due to poor
models of prosody built from single sentence recordings such as CMU
ARCTIC. Building better models of prosody involves development of
prosodically rich speech databases. However, development of such
speech databases requires a large amount of effort and time. An alter-
native is to exploit story style monologues (long speech files) in audio
books. These monologues already encapsulate rich prosody including
varied intonation contours, pitch accents and phrasing patterns. Thus,
audio books act as excellent candidates for building prosodic models
and natural sounding synthetic voices. The processing of such audio
books poses several challenges including segmentation of long speech
files, detection of mispronunciations, extraction and evaluation of repre-
sentations of prosody.

In this thesis, we address the issues of segmentation of long speech
files, capturing prosodic phrasing patterns of a speaker, and conversion
of speaker characteristics. Techniques developed to address these issues
include – text-driven and speech-driven methods for segmentation of
long speech files; an unsupervised algorithm for learning speaker-specific
phrasing patterns and a voice conversion method by modeling target
speaker characteristics.

The major conclusions of this thesis are –

• Audio books can be used for building synthetic voices. Segmenta-
tion of such long speech files can be accomplished without the need
for a speech recognition system.

• The prosodic phrasing patterns are specific to a speaker. These
can be learnt and incorporated to improve the quality of synthetic
voices.

• Conversion of speaker characteristics can be achieved by modeling
speaker-specific features of a target speaker.

• Finally, the techniques of segmentation of long speech files and
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prosodic phrasing open possibility of leveraging a large number of
audio books available in the public domain for prosody research.
This enables building better prosodic models and hence better
story telling voices. The technique of voice conversion allows
personalization of story telling voices.



Executive summary

While current state-of-the-art text-to-speech (TTS) systems produce understandable
speech, the prosody of synthesized utterances is not as good as naturally spoken
utterances. Prosody of speech involves variation in intonation, duration, loudness
and formant frequencies of speech units. In current TTS systems, prosodic models
are built using speech databases such as CMU ARCTIC. These speech databases
consist of isolated utterances which are short sentences or phrases such as “He
did not rush in.” and “It was edged with ice.” . These sentences are selected to
maximize the coverage of phones. Such utterances are not semantically related to
each other, and elicit only one type of intonation, i.e., declarative. Other variants
of intonation corresponding to paragraphs and utterances such as wh-questions
(what time is it?), unfinished statements (I wanted to ..), yes/no questions (Are
they ready to go?) and surprise (What! The plane left already!?), are typically not
captured. A prosodically rich speech database includes intonation variations; pitch
accents which make words perceptually prominent, as in, I didn’t shoot AT him, I
shot PAST him; and phrasing patterns - whereby certain words are grouped within
the utterances - for naturalness and comprehension. Such databases aid in building
better prosodic models and consequently natural sounding synthetic voices.

The process of building better prosodic models involves development/acquisition
of prosodically rich speech databases. Development of such speech databases (audio
data and transcript) requires a large amount of effort and time. An alternative
is to exploit story style monologues in audio books. These monologues already
encapsulate rich prosody including varied intonation contours, pitch accents and
phrasing patterns. Thus audio books act as excellent candidates for building prosodic
models and natural sounding synthetic voices. This thesis aims to develop techniques
which aid in building natural and stylistic voices by leveraging prosodically rich
audio books. However, processing of audio books poses several challenges including
segmentation of long speech files, detection of mispronunciations, extraction and
evaluation of representations for prosody. In this thesis we address the issues of
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segmentation of long speech files, capturing phrasing patterns specific to a speaker
and conversion of speaker characteristics.

Segmentation of monologues: Monologues in audio books are long speech files.
Segmentation of monologues is a non-trivial issue as memory requirements of
the Viterbi algorithm increases with the length of speech files. Earlier works
have addressed this issue by breaking long speech files into smaller segments
using silence regions as breaking points. These smaller segments are given to an
automatic speech recognition (ASR) system to hypothesize transcriptions. As the
original text of utterances is also available, the search space of ASR is constrained
using n-grams or finite state transducer based language model. In spite of search
space being constrained, the hypothesized transcriptions are not always error-free;
especially at the border of small segments where the constraints represented by
language models are weak. Hence the original text is aligned with the hypothesized
transcription to obtain, what are referred to as, islands of confidence. Between the
islands of confidence, the Viterbi algorithm is employed to force-align the speech
with the original text to obtain word/phone level boundaries. Apart from the
practical difficulty in implementing this approach in the context of a TTS system, it
strongly implies that a speech recognition system should be readily available before
building a speech synthesis system. In this thesis, we propose an approach based
on modifications to the Viterbi algorithm to process long speech files in parts. This
enables segmentation of long speech files without a need for an ASR.

Speaker-specific phrasing: Phrasing is a phenomenon whereby speakers group
certain words within the utterances. Automatic annotation of speech databases with
prosodic phrase breaks aid in building better prosodic models. However, there is
no agreement on describing the phrasing patterns in terms of acoustic features in
the speech signal. The relationship between syntactic structure and prosodic phrase
breaks is also not well understood. Moreover, prosodic phrasing may vary with
speakers. In this thesis, we investigate whether prosodic phrase breaks are specific
to a speaker, and if so how to annotate a speech database with speaker-specific
phrase breaks. We demonstrate that prosodic phrase breaks are specific to a speaker,
and propose an unsupervised algorithm to learn speaker-specific phrase breaks.

Conversion of speaker characteristics is another important issue from a listener’s
perspective. Conversion includes rendering a synthesized utterance in a voice
preferred by the listener. This can be accomplished by learning a transformation
function which converts a synthetic voice to a specified target speaker. To learn
such a transformation, current voice conversion techniques rely on the existence of
a parallel corpus, i.e., the same set of utterances recorded by both the source and
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target speakers. However, the collection of parallel data may not always be feasible.
For example, if the target speaker is a celebrity or speaks a different language, then
he/she may not be available to record these parallel utterances. While there have
been earlier works which avoid the need for parallel data, they still require speech
data (though non-parallel) from source speakers a priori to build a conversion
model. In this thesis, we address the issue of building voice conversion models
by asking the question “can we capture speaker-specific characteristics of a target
speaker from the speech signal (independent of any assumptions about a source
speaker) and super-impose these characteristics on the speech signal of any arbitrary
source speaker to perform voice conversion?”. In this thesis, we propose a method
to capture speaker-specific characteristics of a target speaker and avoid the need for
speech data from a source speaker to train/adapt a voice conversion model.

The conclusions of this thesis are as follows:

• Audio books can be used for building synthetic voices. Segmentation of long
speech files can be accomplished without the need for an ASR.

• Prosodic phrase breaks are specific to a speaker. Incorporation of speaker-
specific phrase breaks improve the quality of synthetic voices.

• Artificial neural network based voice conversion performs as good as Gaussian
mixture model based voice conversion. To build a voice conversion model, it
is not necessary to have parallel or pseudo-parallel data. It can be achieved by
modeling target speaker characteristics in the form of a nonlinear mapping
function using artificial neural networks.

• Finally, the techniques of segmentation of long speech files and prosodic
phrasing open possibility of leveraging a large number of audio books available
in the public domain for prosody research. This enables building better
prosodic models and hence better story telling voices. The technique of voice
conversion allows personalization of story telling voices. We believe, this is an
important milestone in prosody modeling and in building natural sounding
synthetic voices.
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Chapter 1

Introduction to text-to-speech

The use of a commuting device such as a mobile phone on the move allows informa-
tion services anytime, anywhere. Such a service require text-to-speech system to
produce voice output in an intelligible, natural and robust manner.

A spoken language based search is another service being offered today to provide
information about travel, health, finance and entertainment. For example, the ser-
vices provided on telephone/cellphone by TELLME (1-800-555-tell) and GOOGLE
(1-800-GOOG-411 ) fall under this category. Spoken language based search inter-
faces provide a natural and convenient mode for a majority of information exchange
purposes. Such interfaces involve the following subsystems – a speech recognition
system that converts speech into text, a spoken language understanding system
that maps the words into actions and plans to initiate sequence of actions and a
text-to-speech system that conveys information in spoken form [Huang et al., 2001].
The recent advances in these three subsystems are due to increase in storage and
computation power of computers which has led to the use of data-driven statistical
methods to build spoken language systems.

Of all the three subsystems the conversion of text into spoken form is deceptively
nontrivial. A näıve approach is to consider storing and concatenation of basic
sounds (also referred to as phones) of a language to produce a speech waveform.
But, natural speech consists of co-articulation i.e., effect of coupling two sound
together, and prosody at syllable, word, sentence and discourse level, which cannot
be synthesized by simple concatenation of phones. Another method often employed
is to store a huge dictionary of the most common words. However, such a method
may not synthesize millions of names and acronyms which are not in the dictionary.
It also cannot deal with generating appropriate intonation and duration for words in

1



2 Chapter 1: Introduction to text-to-speech

Figure 1.1: Architecture of a text-to-speech System

different context. Thus a text-to-speech approach using phones provides flexibility
but cannot produce intelligible and natural speech, while a word level concatenation
produces intelligible and natural speech but is not flexible. In order to balance
between flexibility and intelligibility/naturalness, subword units such as diphones
which capture essential coarticulation between adjacent phones are used as suitable
units in a text-to-speech system.

1.1 Components of a text-to-speech

A typical architecture of a Text-to-Speech (TTS) system is as shown in Fig. 1.1.
The components of a text-to-speech system could be broadly categorized as text
processing and methods of speech generation.

1.1.1 Text processing

In the real world, the typical input to a text-to-speech system is text as available
in electronic documents, news papers, blogs, emails etc. The text available in real
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world is anything but a sequence of words available in standard dictionary. The text
contains several non-standard words such as numbers, abbreviations, homographs
and symbols built using punctuation characters such as exclamation ‘!’, smileys
‘:-)’ etc. The goal of text processing module is to process the input text, normalize
the non-standard words, predict the prosodic pauses and generate the appropriate
phone sequences for each of the words.

Normalization of non-standard words

The text in real world consists of words whose pronunciation is typically not found
in dictionaries or lexicons such as “IBM”, “CMU”, and “MSN” etc. Such words are
referred to as non-standard words (NSW). The various categories of NSW are: 1)
numbers whose pronunciation changes depending on whether they refer to currency,
time, telephone numbers, zip code etc. 2) abbreviations, contractions, acronyms
such as ABC, US, approx., Ctrl-C, lb., 3) punctuations 3-4, +/-, and/or, 4) dates,
time, units and URLs.

Many NSW’s are homographs, i.e., words with same written form but different
pronunciation. Some of the examples are: 1) IV which may be variously four (Article
IV), the fourth (Henry IV), or I.V. (IV drip), 2) three or four digit numbers which
could be dates and ordinary numbers (in 2040, 2040 tons). Machine learning
models such as Classification and Regression Trees (CART) are used to predict the
class of NSW which is typically followed by rules to generate appropriate expansion
of a NSW into a standard form [Sproat et al., 2001].

Grapheme-to-phoneme conversion

Given the sequence of words, the next step is to generate a sequence of phones. For
languages such as Spanish, Telugu, Kannada, where there is a good correspondence
between what is written and what is spoken, a set of simple rules may often suffice.
For languages such as English where the relationship between the orthography and
pronunciation is complex, a standard pronunciation dictionary such as CMU-DICT
is used. To handle unseen words, a grapheme-to-phoneme generator is built using
machine learning techniques [Black et al., 1998].
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Prosodic analysis

Prosodic analysis deals with modeling and generation of appropriate duration and
intonation contours for the given text. This is inherently difficult since prosody is
absent in text. For example, the sentences – where are you going?; where are you
GOING? and where are YOU going?, have same text-content but can be uttered
with different intonation and duration to convey different meanings. To predict
appropriate duration and intonation, the input text needs to be analyzed. This
can be performed by a variety of algorithms including simple rules, example-based
techniques and machine learning algorithms. The generated duration and intonation
contour can be used to manipulate the context-insensitive diphones in diphone
based synthesis or to select an appropriate unit in unit selection voices [Black and
Taylor, 1994].

1.1.2 Methods of speech generation

The methods of conversion of phone sequence to speech waveform could be catego-
rized into parametric, concatenative and statistical parametric synthesis.

Parametric synthesis

Parameters such as formants, linear prediction coefficients are extracted from the
speech signal of each phone unit. These parameters are modified during synthesis
time to incorporate co-articulation and prosody of a natural speech signal. The
required modifications are specified in terms of rules which are derived manually
from the observations of speech data. These rules include duration, intonation,
co-articulation and excitation function. Examples of the early parametric synthesis
systems are Klatt’s formant synthesis [Klatt, 1987] and MITTalk [Allen et al., 1987].

Concatenative synthesis

Derivation of rules in parametric synthesis is a laborious task. Also, the quality of
synthesized speech using traditional parametric synthesis is found to be robotic. This
has led to development of concatenative synthesis where the examples of speech
units are stored and used during synthesis. The speech units used in concatenative
synthesis are typically at diphone level so that the natural co-articulation is retained
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[Olive, 1977]. Duration and intonation are derived either manually or automatically
from the data and are incorporated during synthesis time. Examples of diphone
synthesizers are Festival diphone synthesis [Taylor et al., 1998] and MBROLA
[Dutoit et al., 1996].

The possibility of storing more than one example of a diphone unit, due to
increase in storage and computation capabilities, has led to development of unit
selection synthesis [Hunt and Black, 1996]. Multiple examples of a unit along
with the relevant linguistic and phonetic context are stored and used in the unit
selection synthesis. The quality of unit selection synthesis is found to be more
natural than diphone and parametric synthesis. However, unit selection synthesis
lacks the consistency i.e., in terms of variations of the quality [Black and Taylor,
1997].

Statistical parametric synthesis

Statistical Parametric Synthesis (SPS) is one of the latest trends in TTS. The SPS
methods produce speech from a set of parameters learned from the speech data.
Unlike traditional parametric synthesis methods which require manual specification
and hand-tuning of the parameters, the SPS methods use statistical machine learning
models such as CART, HMMs, etc., to estimate the parameters of speech sounds
and their dynamics. The SPS methods offer simplicity in storage by encoding the
speech data in terms of a compact set of parameters, and also provide mechanisms
for manipulation of prosody, voice conversion etc. The SPS methods are found
to produce intelligible and consistent speech as compared to natural and often
inconsistent speech by unit selection techniques [Black et al., 2007, Bennett and
Black, 2006, Zen et al., 2007]. Please refer to Appendix A for details on different
SPS techniques.

1.2 Reviewing the state-of-the-art

To review the current state-of-the-art in speech synthesis, we have used results from
the Blizzard speech synthesis challenge. The purpose of Blizzard Challenge is to
compare and contrast different speech synthesis techniques and systems on a bench
marked database [Black and Tokuda, 2005]. Since 2005, several universities and
companies have participated in this challenge. This has led to the congregation of
several researchers on a common platform in Blizzard workshops to compare and
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Figure 1.2: Box plots of mean opinion scores of TTS systems and natural speech for Voice-A
adapted from [Fraser and King, 2007]. The scores are on a scale of 1 (completely natural) to 5
(completely unnatural). Each box indicates the mean and standard deviation of scores of a TTS
system or natural speech.

contrast different synthesis techniques, with the goal to build naturally speaking
synthesis systems. Blizzard 2010 is the current Blizzard Challenge, sixth in the
series, in which participants built voices from a common dataset [Black, 2010].

In this thesis, we refer to the results of Blizzard 2007 challenge [Fraser and
King, 2007], where a large listening test was conducted which allows comparison
of speech synthesis systems in terms of naturalness and intelligibility. Eight hours of
speech data spoken by a single speaker was provided to each participant to build a
speech synthesis system [Nil et al., 2007]. This speech data consisted of 3.7 hours
of News genre, 3.6 hours of conversational genre and 0.8 hours of ARCTIC data
[Kominek and Black, 2004]. Each participant had submitted up to three voices
Voice-A, Voice-B and Voice-C. The Voice-A was built using a full data set of about 8
hours speech; Voice-B was built using ARCTIC subset of about 1 hour and Voice-C
was built using participant-selected subset of about 1 hour.

Each voice was evaluated in a listening test of 400 held-out utterances generated
from the following genres: 1) Conversational - 100 2) News - 100 3) ARCTIC - 100
4) Modified Rhyme Test (MRT) - 50 and 5) Semantically Unpredictable Sentences
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(SUS) - 50. The evaluation was based on mean opinion scores, pairwise comparisons
and type-in tasks. Fig. 1.2 shows the box plots displaying the mean opinion scores
of the synthesis systems and natural speech, where the letter I represents natural
speech. From Fig. 1.2, it could be observed that in spite of having 8 hours of speech,
the synthesis systems have scored lower in comparison with natural speech. It is
evident from the Blizzard challenge 2007 that the current techniques for speech
synthesis have limitations in generating natural, consistent and stylistic synthetic
voices [Fraser and King, 2007].

1.3 Thesis statement

While current state-of-the-art text-to-speech (TTS) systems produce understand-
able/intelligible speech, the prosody of synthesized utterances is not as good as
naturally spoken utterances. Prosody of speech involves variation in intonation, du-
ration, loudness and formant frequencies of speech sounds. In current TTS systems,
prosodic models are built using speech databases such as CMU ARCTIC [Kominek
and Black, 2004]. These speech databases consist of isolated utterances which are
short sentences or phrases such as “He did not rush in.” and “It was edged with ice.” .
These sentences are selected to maximize the coverage of phones. Such utterances
are not semantically related to each other, and elicit only one type of intonation,
i.e., declarative. Other variants of intonation corresponding to paragraphs and
utterances such as wh-questions (what time is it?), unfinished statements (I wanted
to ..), yes/no questions (Are they ready to go?) and surprise (What! The plane left
already!?), are typically not captured.

Speech databases rich in prosody help in building better prosodic models. A
prosodically rich speech database includes intonation variations; pitch accents
which make words perceptually prominent, as in, I didn’t shoot AT him, I shot PAST
him; and phrasing patterns which divide an utterance into meaningful chunks for
comprehension and naturalness. The process of building better prosodic models
involves development/acquisition of a prosodically rich speech database, annotation
of prosodic events such as pitch accents and phrasing patterns in the speech database,
learning to predict these prosodic events from text and realizing the same in output
speech.

Development of prosodically rich speech databases requires a large amount of
effort and time. An alternative is to exploit story style monologues in audio books.
These monologues already encapsulate rich prosody including varied intonation
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contours, pitch accents and phrasing patterns. Thus audio books act as excellent
candidates for building prosodic models and a natural sounding synthetic voice.
This thesis aims to develop techniques which aid in building natural and stylistic
voices by leveraging prosodically rich audio books.

However, processing of audio books poses several challenges. A few of them are
as follows.

• Segmentation of monologues: Monologues in audio books are long speech
files. The issue in segmentation of large speech files is to align a speech
signal (as large as 10 hours or more) with the corresponding text to break
the speech signal into utterances corresponding to sentences in text and/or
provide phone-level time stamps.

• Filtering: Often recordings may have multiple sources, thus filtering of multi-
speakers data, music and speech and nullifying the noisy or channel effects
may be needed.

• Detection of mispronunciations: During the recordings, a speaker might delete
or insert at syllable, word, sentence level and thus the speech signal does not
match with the transcription. It is important to detect these mispronunciations
using acoustic confidence measures so that the specific regions or the entire
utterances can be ignored while building voices.

• Detection of pronunciation variants: Speakers may incorporate subtle varia-
tions at the sub-word during pronunciation of content words, proper nouns
etc. and these pronunciation variants have to be detected and represented so
that they could be produced back during synthesis.

• Features representing prosody: Another issue is the identification, extraction
and evaluation of representations that characterize the prosodic variations at
sub-word, word, sentence and paragraph level. These include prosodic phrase
breaks and emphasis or prominence of specific words during the discourse of
a story.

1.3.1 Issues addressed in this thesis

In the scope of this thesis we address the issues of segmentation of long speech
files, capturing of phrasing patterns specific to a speaker and conversion of speaker
characteristics.
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Segmentation of monologues: Monologues in audio books are long speech files.
Segmentation of monologues is a non-trivial issue as memory requirements of the
Viterbi algorithm increases with the length of speech files. Earlier works have
addressed this issue by breaking long speech files into smaller segments using
silence regions as breaking points. These smaller segments are given to an automatic
speech recognition (ASR) system to hypothesize transcriptions. As the original text
of utterances is also available, the search space of ASR is constrained using n-grams
or finite state transducer based language model. In spite of search space being
constrained, the hypothesized transcriptions are not always error-free; especially at
the border of small segments where the constraints represented by language models
are weak. Hence the original text is aligned with the hypothesized transcription
to obtain, what are referred to as, islands of confidence. Between the islands of
confidence, the Viterbi algorithm is employed to force-align the speech with the
original text to obtain word/phone level boundaries. Apart from practical difficulty
in implementing this approach in the context of a TTS system, it strongly implies
that a speech recognition system should be readily available before building a speech
synthesis system. In this thesis, we propose an approach based on modifications to
the Viterbi algorithm to process long speech files in parts. This enables segmentation
of long speech files without an ASR.

Speaker-specific phrasing: Phrasing is a phenomenon whereby speakers group
certain words within the utterances. Automatic annotation of speech databases with
prosodic phrase breaks aid in building better prosodic models. However, there is
no agreement on describing the phrasing patterns in terms of acoustic features in
the speech signal. The relationship between syntactic structure and prosodic phrase
breaks is also not well understood. Moreover, prosodic phrasing may vary with
speakers. In this thesis, we investigate whether prosodic phrase breaks are specific
to a speaker, and if so how to annotate a speech database with speaker-specific
phrase breaks. We demonstrate that prosodic phrase breaks are specific to a speaker,
and propose an unsupervised algorithm to learn speaker-specific phrase breaks.

Conversion of speaker characteristics is another important issue from a listener’s
perspective. Conversion includes rendering a synthesized utterance in a voice
preferred by a listener. This can be accomplished by learning a transformation
function which converts a synthetic voice to a specified target speaker. To learn
such transformation, current voice conversion techniques rely on the existence of
parallel corpus, i.e., the same set of utterances recorded by both the source and
target speakers. However, the collection of parallel data may not always be feasible.
For example, if the target speaker is a celebrity or speaks a different language,
then he/she may not be available to record these parallel utterances. While there
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have been earlier works which avoid the need for parallel data, they still require
speech data (though non-parallel) from source speakers a priori to build a voice
conversion model. In this thesis, we address the issue of building voice conversion
models by asking the question “can we capture speaker-specific characteristics of
a target speaker from the speech signal (independent of any assumptions about a
source speaker) and super-impose these characteristics on the speech signal of any
arbitrary source speaker to perform voice conversion?”. In this thesis, we propose
a method to capture speaker-specific characteristics of a target speaker and avoid
the need for speech data from a source speaker to train/adapt a voice conversion
model.

1.4 Organization of the thesis

Chapter 2 discusses the modifications to the Viterbi algorithm for segmentation of
large speech files. Using these modifications, two different methods of segmenting
a large speech file are proposed and evaluated.

Chapter 3 discusses the application of modified Viterbi algorithm on large speech
files found in audio books. The modifications to the Viterbi are implemented in a
package referred to as INTERSLICE. A brief description of INTERSLICE is provided,
and the experiments are conducted to demonstrate the usefulness of INTERSLICE
in building several voices from audio books in the public domain. Synthetic voices
are built in English as well as in Telugu.

Chapter 4 exploits the single speaker recordings of the audio books to build a
speaker-specific prosodic phrasing module. An unsupervised algorithm is proposed
to detect the prosodic phrase breaks in the speech signal. The usefulness of these au-
tomatically detected speaker-specific phrase breaks is demonstrated in the synthetic
voices of English as well in Telugu.

Chapter 5 discusses the need for personalization of synthetic voice, and ex-
plains an Artificial Neural Network (ANN) based framework for voice morph-
ing/conversion. Experiments are conducted to demonstrate that ANN based voice
conversion performs as good as that of the state-of-the-art voice conversion based
on Gaussian Mixture Models (GMM).

Chapter 6 proposes a method of capturing speaker-specific features using an
ANN model, which allows to transform an arbitrary voice to a specified target
speaker. Such models do not make use of any a priori knowledge of the speech data
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of the source speakers. Various demonstrations are provided on how such a voice
conversion model can help to personalize a synthetic voice.

Chapter 7 concludes the thesis by providing a summary, important conclusions
and future work.





Chapter 2

Segmentation of monologues

Building synthetic voices involves segmentation of speech into phone level units.
This can be accomplished by force-aligning an entire utterance with its text using
the Viterbi algorithm. Such simple solution fails for utterances longer than a few
minutes as memory requirements of the Viterbi algorithm increases with the length
of utterances.

Monologues in audio books are long speech files, and segmentation of mono-
logues is a non-trivial issue [Moreno and Alberti, 2009]. Earlier works have ad-
dressed this issue by breaking long speech files into smaller segments using silence
regions as breaking points [Toth, 2004]. These smaller segments are then tran-
scribed by an automatic speech recognition (ASR) system to produce hypothesized
transcriptions. As the original text of utterances is also available, the search space
of ASR is constrained using an n-gram or a finite state transducer based language
model [Trancoso et al., 2006], [Moreno and Alberti, 2009]. In spite of search
space being constrained, the hypothesized transcriptions are not always error-free;
especially at the border of small segments where the constraints represented by a
language model are weak [Stolcke and Shriberg, 1996], [Moreno and Alberti, 2009].
Hence the original text is aligned with the hypothesized transcription to obtain,
what are referred to as, islands of confidence. Between the islands of confidence,
the Viterbi algorithm is employed to force-align the speech with the original text to
obtain word/phone level boundaries [Moreno and Alberti, 2009], [Moreno et al.,
1998]. Apart from practical difficulty in implementing this approach in the context
of a TTS system, it strongly implies that a speech recognition system should be
readily available before building a speech synthesis system.

In this thesis, we propose an approach based on modifications to the Viterbi

13
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algorithm to process long speech files in parts. Our approach differs significantly
from [Trancoso et al., 2006], [Moreno et al., 1998] and [Moreno and Alberti,
2009], as we do not need a large vocabulary ASR or employ language models
using n-grams or a finite state transducer to constrain the search space. Since the
proposed approach is based on modifications to the Viterbi algorithm, it is suitable
for languages (especially for low resource languages), where ASR systems are not
readily available.

2.1 The Viterbi algorithm

Let Y = {y(1),y(2), . . . ,y(T )} be a sequence of observed feature vectors1 extracted
from an utterance of T frames. Let S = {1, . . . , j, . . . , N} be a state sequence
corresponding to the sequence of words in text of the utterance. A forced-alignment
technique aligns the sequence of feature vectors (Y ) with the given sequence of
states (S) using a set of existing acoustic models2. The result is a sequence of states
{x(1), x(2), . . . , x(T )}, unobserved so far, for the observation sequence Y . The steps
involved in obtaining this unobserved state sequence are as follows.

Let p(y(t)|x(t) = j) denote the emission probability of state j for a feature vector
observed at time t and 1 ≤ j ≤ N , where N is the total number of states. Let us
define αt(j) = p(x(t) = j,y(1),y(2), . . . ,y(t)). This is a joint probability of being in
state j at time t and of having observed all the acoustic features up to and including
time t. This joint probability could be computed frame-by-frame using the recursive
equation

αt(j) =
∑
i

αt−1(i)ai,jp(y(t)|x(t) = j) (2.1)

where ai,j = p(x(t) = j|x(t− 1) = i). Note that the Eq. (2.1) indicates sum of paths,
and it transforms to the Viterbi algorithm if the summation is replaced with a max
operation, as shown in Eq. (2.2).

αt(j) = max
i
{αt−1(i)ai,j}p(y(t)|x(t) = j). (2.2)

1Speech signal is divided into frames of 10 ms using a frame shift of 5 ms. Each frame of speech
data is passed through a set of Mel-frequency filters to obtain 13 cepstral coefficients [Rabiner and
Juang, 1993].

2The acoustic models used to perform segmentation of large audio files are built using about four
hours of speech data collected from four CMU ARCTIC speakers (RMS, BDL, SLT and CLB). These
acoustic models are context-independent (CI) HMM models where each phone has three emitting
states and two null states. More details can be found in [Prahallad et al., 2006].
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The values of ai,j and p(y(t)|x(t) = j) are significantly less than 1. For large values
of t, αt(.) tends exponentially to zero, and its computation exceeds the precision
range of any machine [Rabiner, 1989]. Hence αt(.) is scaled with term 1

max
i
{αt(i)} , at

every time instant t. This normalization ensures that values of αt(.) are between 0
and 1 at time t.

Given αt(.), a backtracking algorithm is used to find the best alignment path. In
order to backtrack, an addition variable φ is used to store the path as follows.

φt(j) = argmax
i
{αt−1(i)ai,j}, (2.3)

where φt(j) denotes a state at time (t− 1) which provides an optimal path to reach
state j at time t. Given values of φt(.), a typical backtracking for forced-alignment is
as follows:

x(T ) = N (2.4)
x(t) = φt+1(x(t+ 1)), t = T − 1, T − 2, . . . , 1. (2.5)

It should be noted that we have assigned x(T ) = N . This is a constraint in the
standard implementation of forced-alignment which aligns the last frame y(t) to
the final state N . An implied assumption in this constraint is that the value of
αT (N) is likely to be maximum among the values {αT (j)} for 1 ≤ j ≤ N at time
T . The forced-alignment algorithm implemented using Eq. (2.4) and Eq. (2.5) is
henceforth referred to as FA-0.

In order to illustrate the usefulness of Eq. (2.4), let us consider the following
example. A sequence of two syllables separated by a short pause <pau>, as in
“ba <pau> sa”, is uttered and feature vectors are extracted from the speech signal.
This sequence of feature vectors is forced-aligned with a sequence of HMM states
corresponding to phones /b/, /aa/, /pau/, /s/ and /aa/. Fig. 2.1 displays the values
in alpha matrix (HMM states against time measured in frames). These values are
obtained using Eq. (2.2) and are normalized between 0 and 1 at each time frame.
The dark band in Fig. 2.1 is referred to as beam and it shows how the pattern of
values of α closer to 1 is diagonally spread across the matrix. From Fig. 2.1, we
observe that at the last frame (T = 201), the last3 HMM state (N = 15) has the
highest value of α, thus justifying the use of Eq. (2.4) in standard backtracking.

3There are five phones in the sequence. Each phone has three emitting states. Hence the last
HMM state N = 15.
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Figure 2.1: An alpha matrix obtained for the alignment of feature vectors corresponding to utter-
ance of “ba <pau> sa” with the HMM state sequence corresponding to phones /b/, /aa/, /pau/,
/s/ and /aa/. The markers along the axis of time indicate manually labeled phone boundaries.

2.2 Modifications to the Viterbi algorithm

The constraint x(T ) = N is useful when an entire utterance is force-aligned with
its text. As noted earlier, it is not a viable approach for long speech files such as
monologues in audio books. This could be addressed by aligning the long speech file
in parts. We propose two different methods for aligning a long speech file in parts
(see Section 2.3 for more details). Each of these methods is explained below with
examples. The numerical values used in these examples are for descriptive purposes
only.

In method-I, the long speech file is sliced into chunks of 30 seconds. The
first 30-second chunk is force-aligned with first 120 words in text. If we assume
a speaking rate of three words per second, then 30 seconds of speech should
roughly corresponds to first 90 words of 120 word sequence. The unknown variable
here is the length of word sequence corresponding to the 30-second chunk of
speech. This situation is similar to state sequence S ′ ⊂ S emitting Y , where S ′ =
{1, . . . , j, . . . , N ′} and N ′ < N . If the Viterbi algorithm is modified to handle S ′ ⊂ S
emitting Y , i.e., to identify the word sequence corresponding to first 30 seconds of
speech, then we succeed in obtaining hidden state sequence for first 30 seconds of
speech. This process could then be repeated for the next 30-second chunk of speech
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until the end of long speech file.

In method-II, the text corresponding to long speech file in sliced into chunks
of words. The first 90-word chunk is force-aligned with first 60 seconds of speech.
Assuming a speaking rate of three words per second, the 90-word sequence should
roughly correspond to first 30 seconds of speech signal. The unknown variable here
is the length of speech signal corresponding to the 90-word sequence. This situation
is similar to state sequence S emitting Y ′ ⊂ Y , where Y ′ = {y(1),y(2), . . . ,y(T ′)}
and T ′ < T . If the Viterbi algorithm is modified to handle S emitting Y ′ ⊂ Y , i.e., to
identify the speech portion corresponding to first 90 words in text, then we succeed
in obtaining an alignment for first 90 words in text. This process could then be
repeated for the next 90-word chunk until the end of the audio book.

In other words, the constraint x(T ) = N in the Viterbi algorithm needs to be
modified for situations when 1) the sequence of feature vectors Y is an emission of
a sequence of states S ′ ⊂ S or 2) the state sequence S emits a sequence of feature
vectors Y ′ ⊂ Y . The following sections describe the proposed modifications to the
Viterbi algorithm required for handling these situations.

2.2.1 Emission by a shorter state sequence

Given that Y is an emission sequence for a corresponding sequence of states S ′ ⊂ S,
then the backtracking algorithm can be modified as in Eq. (2.6).

x(T ) = argmax
1≤j≤N

{αT (j)} (2.6)

x(t) = φt+1(x(t+ 1)), t = T − 1, T − 2, . . . , 1. (2.7)

Equation (2.6) presents the modified constraint that the last frame y(T ) could
be aligned to a state which has the maximum value of α at time T . This modified
constraint allows the backtracking process to pick a state sequence which is shorter
than S. The forced-alignment algorithm implemented using Eq. (2.6) and Eq. (2.7)
is henceforth referred to as FA-1.

In order to examine the suitability of Eq. (2.6), the feature vectors correspond-
ing to utterance of “ba <pau>” are force-aligned with the HMM state sequence
corresponding to phones /b/, /aa/, /pau/, /s/ and /aa/. Fig. 2.2(a) displays the
alpha matrix of this alignment. It should be noted that the dark band in Fig. 2.2(a)
- the beam of alpha matrix - is not diagonal. Moreover at the last frame (T = 109),
the last state (N = 15) does not have the highest value of α. Thus Eq. (2.4) will
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Figure 2.2: (a) An alpha matrix obtained for the alignment of feature vectors corresponding to
utterance of “ba <pau>” with the HMM state sequence corresponding to phones /b/, /aa/, /pau/,
/s/ and /aa/. The markers along the axis of time indicate manually labeled phone boundaries. (b)
Alpha values of all states at the last frame (T = 109).

fail to obtain a state sequence appropriate to the aligned speech signal. From Fig.
2.2(b), we can observe that the HMM state 9 has the highest alpha value at the
last frame, and Eq. (2.6) can be used to pick HMM state 9 automatically as the
starting state of backtracking. Thus the use of Eq. (2.6) and Eq. (2.7) provides a
state sequence, which is shorter than the originally aligned state sequence, but has
an appropriate match with the aligned speech signal.

2.2.2 Emission of a shorter observation sequence

When a given state sequence S emits a sequence Y ′ ⊂ Y , the backtracking algorithm
can be modified as follows. Let T ′ < T be the length of Y ′. To obtain the value of T ′,
the key is to observe the values of αt(N) for all t. If 1 ≤ t << T ′ then αT ′(N) < 1,
and as t → T ′ then αt(N) → 14. This property of state N could be exploited to
determine the value of T ′. Eq. (2.8) formally states the property of state N , and

4From Eq. (2.2), it is trivial to observe that a state j achieves an alpha value of 1 at time t,
only if it is highly likely to be observed at t. This is dictated by the terms max

i
{αt−1(i)ai,j} and

p(y(t)|x(t) = j). The alpha value of state N being 1 at time T ′ implies that the state N is highly
likely to be observed at T ′, and thus the length of observation sequence Y ′ is T ′.
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Figure 2.3: (a) An alpha matrix obtained for the alignment of feature vectors corresponding to
utterance of “ba <pau> sa” with the HMM state sequence corresponding to phones /b/, /aa/ and
/pau/. The markers along the axis of time indicate manually labeled phone boundaries. (b) Alpha
values of the last state (N = 9) for all frames.

could be used to determine the value of T ′.

αt(N) =

{
< 1 1 ≤ t < T ′

= 1 t ≥ T ′
(2.8)

Given T ′ < T , the backtracking algorithm is modified as follows.

x(T ′) = N, (2.9)
x(t) = φt+1(x(t+ 1)), t = T ′ − 1, . . . , 1. (2.10)

Equation (2.9) presents the modified constraint that the last stateN could be aligned
to a feature vector at time T ′ < T , where T ′ denotes the length of Y ′ by satisfying
the Eq. (2.8). The modified constraint in Eq. (2.9) allows the backtracking process
to pick an observation sequence which is shorter than Y . The forced-alignment
algorithm implemented using Eq. (2.9) and Eq. (2.10) is henceforth referred to as
FA-2.

In order to examine the suitability of Eq. (2.9), the feature vectors corresponding
to utterance of “ba <pau> sa” are force-aligned with the HMM state sequence
corresponding to phones /b/, /aa/ and /pau/. Fig. 2.3(a) displays the alpha matrix
of this alignment. From Fig. 2.3(b), it can be observed that the time instant at
which the alpha value for the last state (N = 9) reaches 1 also denotes the length
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of shorter observation sequence (“ba <pau>”). Thus Eq. (2.9) and Eq. (2.10) can
be used to pick a shorter observation sequence corresponding to the state sequence
used for alignment.

2.3 Segmentation of long speech files

So far, we have discussed the modifications to the Viterbi algorithm to handle cases
of S ′ ⊂ S emitting Y and S emitting Y ′ ⊂ Y . In this section, these modifications
are shown to be useful in processing long speech files. Two different methods to
process long speech files are described below.

2.3.1 Segmentation using FA-1

In this method, the large speech file is sliced into chunks of db seconds. To begin
with, the first chunk of speech is force-aligned with a sequence of words from the
beginning of the text. The unknown variable here is the length of this sequence. To
resolve this issue, we overestimate the length based on average speaking rate of
three words per second [Picheny et al., 1986]. Thus a longer sequence of words is
force-aligned with the chunk of speech. This leads to the case of S ′ ⊂ S emitting Y ,
which could be handled by FA-1. The result of using FA-1 is the correct length of
word sequence corresponding to the first chunk of speech. This process is repeated
until the end of the long speech file. This method of segmenting a long speech file
using FA-1 is henceforth referred to as SFA-1. The formal description of SFA-1 is as
follows.

Let Φ denote an audio book and {w(1), . . . , w(m), . . . , w(M)} denote the se-
quence of words present in Φ. Let {y(1), . . . ,y(t), . . . ,y(T )} be the sequence of T
feature vectors extracted from Φ. Let nf denote the number of frames in a chunk
of db seconds of speech. The value of db is 30 seconds in this experiment, and the
choice of this value is not critical. Let nw denote the number of words in db seconds,
estimated as nw = η ∗ db ∗ λ, where η = 3 indicates a speaking rate of three words
per second. The value of λ = 1.5 is chosen such that the estimate of nw is higher
than the actual number of words in db seconds of speech.

1. m = 1, t = 1.

2. Let F = {y(t),y(t+1) . . . ,y(t+nf )} and let W = {w(m), w(m+1), . . . , w(m+
nw)}. A sentence HMM representing W is constructed such that it introduces
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an optional silence model between two adjacent words. This optional silence
HMM model helps to capture any pause regions inserted by the speaker
between two adjacent words.

3. Force-align F with a sentence HMM ofW using FA-1. Let x(t), x(t+1), . . . , x(t+
nf ) be the state sequence obtained as a result of forced-alignment between F
and W . In FA-1, the observation vector y(t+nf ) is aligned to a state x(t+nf ),
which has the maximum alpha value at time (t+ nf).

4. Note that the speech block F is an ad hoc block considered without any
knowledge of pause/word/sentence boundary. The state x(t+ nf ) need not
be an ending state of a word HMM and hence only an initial portion of state
sequence is considered. Let δ be the minimum non-negative integer value
(δ ≥ 0) such that x(t+nf − δ) is an ending state of a word HMM in the vicinity
of x(t+ nf ). Considering the state sequence {x(t), x(t+ 1), . . . , x(t+ nf − δ)},
the corresponding sequence of words W ′ = {w(m), w(m+ 1), . . . , w(m+ n′w)}
is obtained, where n′w ≤ nw. Starting from w(m), a word w(m+n′′w) is located
such that there exists a pause of 150−200 ms after the word w(m+n′′w), where
n′′w < n′w. Let n′′f be the number of frames aligned with the word sequence
{w(m), w(m+ 1), . . . , w(m+ n′′w)}.

5. t = t+ n′′f , m = m+ n′′w.

6. Repeat the steps 2-6 until the end of Φ.

2.3.2 Segmentation using FA-2

In this method, the text corresponding to large speech file is divided into para-
graphs5. In an audio book, the text is naturally arranged in paragraphs. Each
paragraph consists of one or more sentences, and usually deals with a single thought
or topic or quotes a character’s continuous words. Let Φ consists of a sequence
of K paragraphs {u(1), . . . , u(k), . . . , u(K)}. The words in the first paragraph u(1)
are force-aligned with the first du seconds of speech data. As du is not known
a priori, we overestimate its value. Thus a longer speech chunk is force-aligned
with the words in u(1). This leads to the situation of S emitting Y ′ ⊂ Y , which
could be handled by FA-2. The result of FA-2 is the correct length of speech chunk
corresponding to the words in the first paragraph u(1). This process is repeated for

5The definition of a paragraph is not critical for this method. A simple grouping of words can
also be used.
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the remaining paragraphs until the end of text. The method of segmenting a large
audio file using FA-2 is henceforth referred to as SFA-2. The steps involved in SFA-2
are as follows.

1. k = 1, t = 1.

2. Let U = [u(k), u(k + 1)]

3. A heuristic estimate of duration of U is defined as du = np ∗ dp, where np is the
number of phones in utterance U and dp denotes the duration of a phone. The
value of dp is 0.1 seconds. It is chosen such that the estimated value of du is
higher than the actual duration of the utterance U . Let nf denote the number
of frames in du seconds and let F = {y(t),y(t+ 1) . . . ,y(t+ nf )} denote the
sequence of feature vectors.

4. Force-align F with the sentence HMM representing U using FA-2. As a result of
this forced-alignment, the shorter observation sequence {y(t),y(t+1) . . . ,y(t+
n′f )} emitted by U is obtained, where n′f < nf .

5. Given that U is force-aligned with a longer observation sequence, the ending
portion of alignment may not be robust - for example, the silence HMM model
at the end of U might observe a few observation vectors of next utterance
u(k + 2), especially if u(k + 2) begins with a fricative sound. Hence the
observation sequence {y(t),y(t+ 1) . . . ,y(t+n′′f )} corresponding to utterance
u(k) alone is considered, where n′′f < n′f .

6. t = t+ n′′f , k = k + 1.

7. Repeat steps 2-6 until k = K.

8. In order to obtain phone boundaries for the last utterance u(K) perform
forced-alignment of u(K) with {y(t),y(t+ 1) . . . ,y(T )} using FA-0.

2.4 Evaluation

To evaluate SFA-1 and SFA-2, we have used the speech databases of RMS from
the CMU ARCTIC [Kominek and Black, 2004] and EMMA from Librivox [LibriVox,
2010]. The RMS speech database consists of 1132 utterances corresponding to
1132 paragraphs in text. Here each paragraph contains only one sentence. For our
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experiments, 1132 utterances were concatenated to create an artificial large speech
file, henceforth referred to as Φr. The duration of Φr is 66 minutes. It could be
argued that an artificial long speech file may not represent a distribution of pauses
in an authentic long speech file. To enable such comparison, around 45 minutes of
speech data - corresponding to first three chapters of EMMA in Librivox - was hand
labeled to mark the beginning and ending of sentences. This database is referred to
as Φe. Segmentation of long speech files can be evaluated in the following ways.

• Boundaries of utterances: The utterance boundaries obtained automatically
from long speech files can be compared with hand labeled utterance bound-
aries in EMMA (Φe) or known utterance boundaries in RMS (Φr). This evalua-
tion methodology is referred to as E1.

• Phone boundaries: The phone boundaries obtained automatically from long
speech files can be compared with phone boundaries obtained from FA-0
(forced-alignment of utterances with their paragraph-length text). This evalu-
ation methodology is referred to as E2.

• Mel-cepstral distortion (MCD): We can use the utterances obtained from seg-
mentation of long speech files in a voice building process such as CLUSTER-
GEN, and evaluate the quality of the resulting synthetic voice. CLUSTERGEN
is a statistical parametric synthesis engine [Black, 2006]. As a part of the voice
building process, CLUSTERGEN takes the utterances and the corresponding
text, and derives HMM state level boundaries using FA-0. Hence, this is an
another type of evaluation for utterance boundaries. Depending on whether
the utterance boundaries have errors or not, we hope to obtain a good/poor
quality voice. Typically, errors in utterance boundaries lead to misalignment of
utterances with its corresponding text. This results in a poor quality synthetic
voice.

The quality of a synthetic voice can be measured using Mel-cepstral distortion
as follows. The utterances given to the voice building process are divided into
mutually exclusive sets - referred to as training set and held-out set. A TTS
voice is built from the utterances of the training set. This TTS voice is used to
synthesize utterances of the held-out set from their corresponding text. The
MCEPs of the synthesized version of an utterance is compared with the MCEPs
of the corresponding natural version, and a Mel-cepstral distortion (MCD) is
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Table 2.1: Evaluation of SFA-2 on RMS and EMMA voice. E1 measures the difference between
utterance boundaries obtained automatically and the hand labeled/known utterance boundaries in
the long speech file. E2 measures the difference between phone boundaries (including silence)
obtained automatically from long speech files and the phone boundaries obtained from FA-0. All
values are measured in milliseconds.

E1 E2
(µ, σ) (µ, σ)

Φr (35, 21) (35, 22)
Φe (138, 88) (20, 52)

computed as below.

MCD = (10/ ln(10)) ∗

√√√√2 ∗
25∑
l=1

(csl − col )2 (2.11)

where csl and col denotes the lth coefficient of the synthesized and the original
utterances, respectively. This method is referred to as E3.

It is important to note that SFA-2 segments the long speech files into utterances
corresponding to paragraphs in text, and hence it could be evaluated for E1, E2
and E3. SFA-1 segments the long speech files into chunks of 1-30 seconds long. As
discussed in Section 2.4.2, the chunks obtained from SFA-1 need not correspond to
paragraphs in text. This makes it difficult to compare the chunk boundaries with
the hand labeled boundaries of utterances in long speech files. Hence SFA-1 does
not permit its chunks for E1 and E2 evaluations. However, evaluation of SFA-1 can
be done using E3.

2.4.1 Results

Table 2.1 showsE1 andE2 evaluation results of SFA-2 on the RMS and EMMA speech
databases. E1 measures the difference between utterance boundaries obtained
automatically and the hand labeled/known utterance boundaries in the long speech
file. The mean value of this difference is less than 140 milliseconds - suggesting
that utterance boundaries obtained automatically match well with the known/hand
labeled boundaries of the utterances in the RMS and EMMA speech databases. The
values of E1 for EMMA indicate that mean and variance of difference in boundary
locations is high for naturally long speech files than RMS.
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Table 2.2: MCD scores of different voices from EMMA Φe and RMS Φr .

FA-0 SFA-1 SFA-2

Φr

MCD 5.27 5.30 5.29
# train 1019 (59 min) 1046 (59 min) 1019 (59 min)
# test 113 (7 min) 116 (7 min) 113 (7 min)

Φe

MCD 4.54 4.48 4.51
# train 89 (42 min) 479 (42 min) 89 (42 min)
# test 9 (4 min) 53 (4 min) 9 (4 min)

E2 measures the difference between phone boundaries of SFA-2 and FA-0. These
values shown in Table 2.1 indicate a reasonable agreement of SFA-2 with FA-0 on
phone boundaries.

Let V 0
r , V 1

r and V 2
r denote the TTS voices built from Φr using FA-0, SFA-1 and

SFA-2 respectively. Let V 0
e , V 1

e and V 2
e denote the TTS voices built from Φe using

FA-06, SFA-1 and SFA-2 respectively. Table 2.2 shows the MCD values for the three
voices built from EMMA and RMS. It can be observed that MCD scores of SFA-1 and
SFA-2 are similar to FA-0 of their respective voices. The evaluation results of E1,
E2 and E3 suggest that the utterances obtained from SFA-1/SFA-2 are useful in
building synthetic voices.

2.4.2 Discussion

In the processing of developing SFA-1 and SFA-2 methods, we have made several
assumptions. The following discussion explains these assumptions and their impact
on segmentation of long speech files .

• In this work, we have used speaker-independent context-independent acoustic
models for implementing SFA-1 and SFA-2 methods. The question is – whether
this set of acoustic models is the best? Did we compare the segmentation of
these acoustic models with another set of acoustic models?

Our main interest in developing SFA-1 and SFA-2 is to obtain paragraph level
boundaries in long speech files. To accomplish this task, the choice of acoustic
models may not be critical, as the utterance boundaries have silence regions.

6If the utterance boundaries are hand labeled/known, the long speech files can be segmented at
the known boundaries. This enables us to apply FA-0 on the resulting utterances.
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In case of audio books, as readers are careful in inserting appropriate pauses.
Once these utterance level boundaries are obtained, the standard Baum-Welsh
algorithm could be used to train a new set of acoustic models which are
speaker-dependent. It is known that speaker-dependent acoustic models are
better than speaker-independent acoustic models to obtain phone boundaries.
Hence, in this work, we did not perform a comparative study of different
acoustic models for obtaining phone boundaries.

• During segmentation of long speech files, if an error occur in one segment,
does it effect the alignment in subsequent segments?

In this work we assume that there is a reasonably good correspondence
between speech and text. In spite of readers being careful, we have observed
that a few syllables or words get deleted or substituted (refer to Section 3.2.1
for more detailed discussion on this topic). If such insertions or deletions
are fewer, i.e., in order of < 1%, the methods SFA-1 and SFA-2 are found
to tolerate these mistakes. However, if an entire sentence or a paragraph is
inserted / deleted, it would result in incorrect segmentation of utterances.
This error propogates to other subsequent segments too. This is a limitation
of methods SFA-1 and SFA-2.

• Typically, text contains numbers, abbreviations, punctuations etc. How the
text normalization is handled?

The proposed methods SFA-1 and SFA-2 are integrated in the framework
of Festival/FestVox. The text normalization routines available in Festival
synthesis engine are used to process the text data.

• We have discussed both SFA-1 (speech-driven) and SFA-2 (text-driven) meth-
ods for segmentation of long speech files. Which one is recommended?

While both SFA-1 and SFA-2 performs segmentation of long speech files, there
are differences in the output of these methods. SFA-2 segments the long speech
files into utterances corresponding to paragraphs in text. As discussed earlier,
a paragraph could be one or more sentences expressing a single thought or
character’s continuous words. The definition of a paragraph is not critical
here, but it is important to understand that utterances obtained from SFA-2
correspond to boundaries of grammatical units (sentences) and logical units
(thoughts, character’s turns etc.) as shown in Table 2.3. Such segmentation is
useful for modeling prosody at sentence and paragraph level, especially in text-
to-speech. In contrast, as shown in Table 2.3, SFA-1 segments the long speech
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Table 2.3: Example utterances obtained from SFA-1 and SFA-2

Utterances obtained from SFA-1
1. I do not know what your, opinion may be. Mrs Weston, said Mr Knightley,
2. of this great intimacy, between Emma and Harriet Smith,
3. but I think it a bad thing,
4. A bad thing. Do
5. you really think it a bad thing,
6. why so. I think they will neither of them, do the other any good.
Utterances obtained from SFA-2
1. “I do not know what your opinion may be, Mrs. Weston,” said Mr. Knightley, “of
this great intimacy between Emma and Harriet Smith, but I think it a bad thing.”
2. “A bad thing! Do you really think it a bad thing?–why so?”
3. “I think they will neither of them do the other any good.”

file into chunks of 1-30 seconds. These chunks need not be complete sentences,
hence many provide inaccurate representation of sentence boundaries and
the corresponding prosodic boundaries. Thus it is preferred to use SFA-2 for
text-to-speech, as it provides paragraph length utterances.

2.5 Summary

In this chapter, we have proposed modifications to the Viterbi algorithm and showed
that the proposed modifications could be employed to segment a long speech file.
Thus it alleviates the need of a large vocabulary speech recognition system (and
the corresponding algorithms) for segmenting a long speech file. More importantly,
the methods SFA-1 and SFA-2 enable the forced-alignment algorithm to be used for
low resource languages, when a large vocabulary speech recognition system is not
readily available.

In SFA-1, a large audio file is processed in 30-second chunks of speech data.
Hence, the text transcription obtained for each of these blocks from modified forced-
alignment need not be complete. For example, “The girl faced him.” and “Her
eyes shining with sudden fear.” are two utterances obtained using SFA-1. These
two utterances belong to a single sentence “The girl faced him, her eyes shining
with sudden fear”. Thus the processing of a long speech file in terms of 30-second
chunks of speech data creates artificial sentence boundaries. This could lead to
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misrepresentation of utterance boundaries as well as prosodic characteristics of an
utterance. In SFA-2, the audio file is segmented into utterances corresponding to
paragraphs in text. The audio segment obtained for each utterance as a result of
modified forced-alignment retain paragraph level information and the corresponding
prosodic characteristics. While both SFA-1 and SFA-2 could be used for segmentation
of long speech files, SFA-2 may be more suited for text-to-speech due to its property
of segmenting a long speech file into paragraph-length utterances.
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Building voices from audio books

In the previous chapter, we have proposed modifications to the Viterbi algorithm
and developed methods for segmentation of long speech files. In this chapter, we
apply these methods for segmentation of long speech files in several audio books
collected from the public domain for different speakers. We show that utterances
obtained from large speech files can be used to build synthetic voices.

3.1 Audio books in public domain

An audio book is a spoken form of a written/printed book. The spoken form of a
printed book could be abridged or unabridged. Abridged audio books have some
text deleted or added, thus provide a spoken summary or paraphrasing of a printed
book. Unabridged audio books are verbatim readings of a printed book, where there
is no mismatch between the text and speech. It is these unabridged audio books
that are of interest to us in this thesis.

Audio books are available in digital media such as CDs and are also available for
download from the Internet. Our interest is in audio books available in the public
domain of the Internet. The concept of public domain means that anyone can use
the audio books however they wish, without any restrictions. A detailed discussion
on the public domain and the associated restrictions, intellectual property rights
and copyright can be found at [Wikipedia, 2010], [LibriVox, 2010].

Portals such as librivox.org, loudlit.org and audio books.org provide audio books
in the public domain on the Internet. Of all the sites known to us, librivox.org

29
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seems to provide the largest collection of audio books. As of April 2010, Librivox
provides audio books in about 40 languages, with a majority of them in English.
The portal has around 10000 books in English, 726 books in German, 516 books
in Chinese, and 388 books in French. At Librivox, volunteers record chapters of
the books in the public domain, and make these speech files freely available to the
world. Books in the public domain are chosen as they are not covered by copyright
and can be used by anyone without restrictions. However, it should be noted that
the copyright law varies across countries and hence the copyright status of audio
books too. The English books in Librivox are mostly chosen from the Gutenberg
project (www.gutenberg.org) which has a catalog of public domain e-books (i.e.,
where the text is available in electronic form) according to U.S.A. copyright laws.
Any book published in U.S.A. before 1923 is considered as public domain in U.S.A.

The audio books are typically recorded through Audacity, a free audio editor and
recorder available for GNU/Linux, BSD, Mac OS, and Windows operating systems.
The speech files are recorded at 128 Kbps in MP3 format, and are converted into 64
Kbps MP3 and ogg vorbis format. These formats are chosen primarily due to the
available tools with Internet archive (www.archive.org) which act as the hosting
platform for Librivox. Thus the best quality that is available from audio books in
Librivox is from 128 Kbps in MP3 - which is a lossy compression format. Hence
we based on our work on the 128 Kbps MP3 files to avoid any further degradation
that can occur due to format conversion. However, it would be preferable to have
speech data stored in a lossless format.

An important issue to be considered while using the audio books from the public
domain is the quality of the text and the speech data. In the case of Librivox, most of
the text is obtained from the Gutenberg project which has an accuracy target of 99%
for its text. Hence, there are bound to be some errors (atleast 1%) in the text. Also,
the persons recording these audio books are volunteers, and it is likely that they
introduce spoken errors such as repeated text, additional text, mispronunciation
etc. Librivox claims that while there are no specific standards set for recording, the
recordings are checked by moderators. However, in our experience in using the
EMMA corpus from Librivox, we found that additional text exists at the beginning
of each chapter - where the speaker mentions that it is a Librivox recording, and
his/her name - and also at the end of chapter1. We also found deletions, i.e.,

1In this thesis, the additional text at the beginning and ending of each chapter was added
manually. Automatic detection of insertions, deletions and substitutions of text is an important issue
in processing the audio books. Such automatic detection is beyond the scope of this thesis.
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the speaker did not read a paragraph in one of the chapters2. Apart from these
aberrations, we found the text and speech data to be of good quality (see Section
3.2 for more details).

Another issue that often arises is the voice quality of the volunteers, i.e., whether
they sound good, accented, pleasant etc. As discussed earlier, Librivox welcomes all
volunteers and has no process to test a volunteer voice for pleasantness, articulation,
etc. Thus it is possible to have a variety of voice sources in these audio books. There
is also no guarantee that the entire audio book is recorded by a single speaker. In the
context of building synthetic voices, several of the these issues have to be considered
while selecting a voice and an audio book from the public domain recordings.

In spite of these issues, these audio books act as excellent candidates for building
synthetic voices due to the following reasons.

• Audio books encapsulate rich prosody including intonation contours, pitch
accents and phrasing patterns.

• A large amount of good quality speech data from a single speaker is made
available.

• Most importantly, the audio books provide an effortless and costless way of
obtaining large amounts of good quality speech data.

• These audio books may also be useful for building speech recognition systems,
and to analyze the voice characteristics of a speaker which has applications in
speaker recognition and voice conversion.

3.2 High vs poor quality audio books

It is important to note that the scope of the thesis is limited to deal with high quality
audio books. The typical characteristics of a high quality audio book are low rate
of disfluency, quiet recording environment and a normal rate of speech which are
further discussed in detail.

3.2.1 Rate of disfluency

It is well known that a spoken conversation or spontaneous speech contains dis-
fluencies in form of repetitions (“the the”), repairs (“any health cov - any health

2This was detected during a random manual check on beginning and ending of utterance
boundaries obtained from automatic segmentation of monologues.
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Table 3.1: Examples of disfluencies found in the audio book of Walden.

Written Spoken Type of Error
before we judge of him before we judges him subs., del.
“Thou dost .. worries were”. Quote.Thou dost .. worries were. End-quote. ins.

insurance”), filled pauses (“uh, um”) and false starts (“is uh did John abandon
you?”). The rate of such disfluencies could be as high as 5-10% in conversational
speech [Shriberg, 1999].

The audio books fall into the category of read speech, and read speech typically
has lesser number of disfluencies. Table 3.1 shows examples of disfluencies found in
the audio book of WALDEN. However, the disfluency rate empirically found3 in these
audio books is lower than 0.1%, i.e., a disfluency rate of 1 in 1000 words, which
is significantly lower than the disfluency rate of 5-10% found in conversational
speech.

It should be noted it is possible to have audio books with a higher rate of
disfluency. A typical scenario include a story with foreign names and places. For
example, the story, Trojan War has been translated to Telugu, and the native speaker
of Telugu had great difficulty in uttering foreign names and places in the story. Such
audio books contain many disfluencies due to the complex vocabulary of the script.
As a result, these audio books have text which differ significantly from the spoken
form due to disfluencies. We refer to such audio books as poor quality audio books,
and these books pose significant challenges to forced-alignment as well as speech
recognition algorithms.

3.2.2 Recording environment

The recording environment also plays a major role in defining the quality of an
audio book. A high quality audio book would have recordings done in a quiet
environment with a good microphone. It is assumed that the quite environment
would not carry any reverberation, noisy sounds such as door knocks, page flips,
cell phone rings etc.

Signal-to-Noise Ratio (SNR) is one of the measures typically used to indicate
the quality of an audio. The Librivox books seem to maintain a fairly good quality

3This was manually observed on two chapters of WALDEN and EMMA picked randomly.
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recordings. The SNR values computed for a sample of four audio books in Librivox
was found to be 30, 32, 32 and 18 dB. These values could be benchmarked against
SNR values for TIMIT and CMU ARCTIC datasets which were found to be 41 and
40 dB respectively. It should be noted that the Librivox recordings are done in
quiet environments, without any special echo treatment done to the recording
environment. The TIMIT and CMU ARCTIC datasets are studio quality recordings
done using a noise cancellation microphone in a specially designed chamber where
the door and the walls are specially treated for echo suppression.

3.2.3 Rate of speech

Another important factor is the rate of speech which could be defined as the number
of syllables per second. The average duration of a syllable is around 250-300
ms, and hence a rate of 3-4 syllables per second is typically considered as normal
speaking rate. A faster speaking rate often manifests as sloppy speech, where the
articulators of the speech production mechanism may not reach their target position
completely in the process of uttering more number of syllables in a second. A slower
speaking rate leads to elongation of duration of syllables, and hence may not sound
natural. The average speaking rate computed for a sample of four audio books was
found to vary from 3.5 to 4 syllables per second.

3.3 INTERSLICE

Building synthetic voices from audio books is a nontrivial issue. Audio books
have monologues which are long speech files, and their segmentation is not easily
supported by existing open source tools such as FestVox. FestVox is a suite of tools
which allows building synthetic voices in multiple languages [Black and Lenzo,
2009]. However, there is no support in FestVox for building synthetic voices using
long speech files. In order to facilitate such a voice building framework within
FestVox, we have built a set of modules to handle long speech files, and these set
of modules are grouped in a package referred to as INTERSLICE. Fig. 3.1 depicts
the features of INTERSLICE in the FestVox suite. To build a voice, the traditional
steps involves optimal selection of sentences, and recording these sentences in a
studio. Such a process is not only costly and laborious but ends up in single sentence
recordings. Contrary to the traditional method of collecting such speech data, the
audio books provide an alternative by avoiding the selection of sentences and the
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Figure 3.1: (a) Standard build process of TTS. (b) Build process of TTS using audio books and
INTERSLICE.

recording time. Given an audio book and the corresponding transcription, the
INTERSLICE tool can be used to segment it and a synthetic voice could be built
within the FestVox framework. Thus the use of audio books and the INTERSLICE
package in FestVox provide a platform for rapid building of synthetic voices in
multiple languages.

3.3.1 Supported languages and acoustic models

To segment long speech files, the INTERSLICE package supports both SFA-1 and
SFA-2 methods (see Section 2.3.1 and Section 2.3.2 for details). Both methods
require context-independent (CI) phone level HMM models, and also a mechanism
of obtaining phone sequences from the given text. The phone level HMM models and
grapheme-to-phoneme conversion are language specific resources. The INTERSLICE
package currently supports English (US phoneset) and Telugu (one of the Indian
languages). However, the framework is generic enough to extend it to other
languages by obtaining a grapheme-to-phoneme conversion and CI acoustic models.

The acoustic models that support English (US phone set) are obtained from four
hours of speech data collected from four CMU ARCTIC speakers (see Appendix ??).
The acoustic models supporting Telugu language are obtained from CMU-NK speech
database. This database consists of two hours of speech data recorded by a female
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speaker.

Pronunciation dictionary

For US English, the grapheme-to-phoneme conversion available in Festival is used
to obtain the phone sequences for a given text. Telugu is a language which has
almost one to one correspondence between what is written and what is spoken. For
example, the word “pilli” can be broken into sequence of phones “/p/ /i/ /l/ /l/ /i/”.
Hence, the grapheme-to-phoneme conversion for Telugu is almost straightforward
and is implemented using a set of rules.

3.4 Application of INTERSLICE for building voices

The process of building synthetic voices from audio books using INTERSLICE and
FestVox is as follows.

• Audio books consist of monologues which are long speech files, and the
corresponding text arranged in paragraphs. Each paragraph consists of one or
more sentences, and typically deals with a single thought or topic or quotes a
characters continuous words.

• Use INTERSLICE for segmentation of long speech files in audio books. It
should be noted that INTERSLICE supports both SFA-1 and SFA-2 methods of
segmentation (see Section 2.3 for details). SFA-2 segments the long speech
files into utterances corresponding to paragraphs in text. SFA-1 segments
the long speech file into chunks of 30 seconds. The text corresponding to
these chunks may or may not be complete sentences. Chunks which are
incomplete provide inaccurate representation of sentence boundaries and
the corresponding prosody. Thus it is preferred to use SFA-2, as it provides
utterances corresponding to paragraphs in text.

• The output of both the SFA methods is the beginning and ending boundaries
of utterances as well as phone boundaries within these utterances. The
information about the beginning and ending boundaries of utterances is used
to slice the long speech files. The information about the phone boundaries
is not used. This is due to acoustic models being used in INTERSLICE are
speaker-independent. It is known that speaker-dependent acoustic models
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are better than speaker-independent to obtain phone boundaries [Angelini
et al., 1997]. Given the utterances and the corresponding text, CLUSTERGEN
trains a set of speaker-dependent HMM models, and obtain phone and HMM
state level boundaries. This is accomplished by using flat-start initialization in
Baum-Welch training of speaker-dependent HMMs [Prahallad et al., 2006].

• Given the utterances, phone and HMM state level boundaries, the CLUSTER-
GEN engine in FestVox builds a synthetic voice. A step-by-step process of
building a CLUSTERGEN voice is described in Appendix A.

3.4.1 Voice from the audio book of EMMA

As an initial experiment, we collected the recordings of EMMA. These recordings
are done by a female speaker. The name of this speaker in Librivox forum is
Sherry, while the catalog name is Sherry Crowther. All the recordings of Sherry
obtained from the audio book of EMMA were concatenated to form a large speech
file, henceforth referred to as Φe, whose duration is 17.35 hours. We downloaded
the associated text from the Project Gutenberg, and added text at the beginning and
end of each chapter to match the introductions and closings made by the speaker.
The text was arranged4 into 2693 paragraphs.

Both SFA-1 and SFA-2 were applied on Φe, and CLUSTERGEN voices were built
[Black, 2006]. Let V 1

e , V 2
e denote the TTS voices built from Φe using SFA-1 and SFA-2

respectively. Table 3.2 shows the Mel-cepstral distortion (MCD) scores obtained
on TTS voices of V 1

e and V 2
e . MCD is an objective measure to calibrate quality of

synthetic voices, and it is empirically observed that studio quality recordings such
as CMU ARCTIC have MCD scores in the range of 4-7 [Black, 2006],[Kominek et al.,
2008]. Thus the MCD scores obtained on V 1

e /V 2
e indicate that the methods SFA-1

and SFA-2 could be applied for segmentation of large speech files such as EMMA
corpus, whose resultant is useful for building synthetic voices.

Table 3.3 shows the results of listening tests conducted on V 1
e and V 2

e . A set
of five speakers (henceforth referred to as subjects) participated in the listening
test. A set of 10 utterances were synthesized from these two voices. Each subject

4The e-text of audio books taken from the project Gutenberg has one or more line spacings
between two paragraphs. This was conveniently exploited in this thesis as paragraph markers.
However, often, due to text being archaic or style of the author to express a character’s thoughts aloud,
some paragraphs are extremely long - up to 100 sentences or more. Hence, a preprocessing was done
on large paragraphs to break them into smaller ones - restricting the size to be around 250 words.
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Table 3.2: MCD scores obtained on TTS voices of EMMA (V 1
e , V 2

e ).

MCD # utts. (train) # utts. (held-out)
V 1
e 5.09 13757 (15.57 hrs) 1528 (1.74 hrs)
V 2
e 5.04 2424 (15.67 hrs) 269 (1.67 hrs)

Table 3.3: DND listening tests on V 1
e and V 2

e

diff no-diff
V 1
e vs V 2

e 17/50 33/50

was asked to listen to an utterance synthesized by V 2
e and compare it against the

utterance of same text synthesized by V 1
e . The subject was asked whether there is

a difference or no-difference in the pair of utterances. We henceforth refer to this
listening test as DND (difference-no-difference) test. The results indicate that in 33
out of 50 utterances, the subjects did not perceive any difference between the voices
V 1
e and V 2

e . The subjects perceived a difference between V 1
e and V 2

e in 17 out of 50
utterances. A subset of these utterances was manually analyzed. It was found that
there are variations in the durations of utterances from V 1

e and V 2
e . These variations

are in the order of 300-500 milliseconds for 30-second long utterances. It should be
noted that CLUSTERGEN predicts duration of phones based on contextual features,
and this prediction is learnt based on duration of phone boundaries observed in
the training set. Given that the voices being examined here have different duration
models, it is difficult to pinpoint reasons for variations in predicted durations of
phones. Other than these minor variations in durations, we did not perceive any
difference in the spectral quality of the voices.

3.4.2 More voices from audio books of Librivox

To demonstrate the usefulness of INTERSLICE on a larger number of audio books,
we have selected three more audio books from Librivox. The details of these
audio books are shown in Table 3.4. Let Φp, Φw, Φs denote the audio books of
“Pride and Prejudice”, “Walden”, “Sense and Sensibility” read by “LibraryLady”,
“GordMackenzie” and “Kaffen” respectively. On these audio books, INTERSLICE was
used to segment large speech files using the SFA-2 method. Let Vp, Vw, Vs denote
the CLUSTERGEN voices built from Φp, Φw and Φs respectively. Table 3.5 shows
that the MCD values obtained for Vp, Vw and Vs are in the acceptable range of 5-7.
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Table 3.4: Details of the audio books used to build voices. Here forum name and catalog name
refers to the speaker who has recorded the audio book

Title Author Forum Name Catalog Name Gender # hours
Emma Jane Austen Sherry Sherry Crowther Female 17.35

Pride and Prejudice Jane Austen LibraryLady Annie Coleman Female 18
Rothenberg

Walden Henry David GordMackenzie Gord Mackenzie Male 18
Thoreau

Sense and Sensibility Jane Austen Kaffen Mark F. Smith Male 18

Table 3.5: MCD scores obtained on TTS voices for EMMA (V 2
e ), Pride and Prejudice (V 2

p ), Walden
(V 2

w) and Sense and Sensibility (V 2
s ). Here the upper script 2 indicates the use of SFA-2 method to

segment the large speech files.

Gender MCD # utts. (train) # utts. (held-out)
V 2
e F 5.04 2424 (15.67 hrs) 269 (1.67 hrs)
V 2
p F 6.02 2218 (11.99 hrs) 246 (1.41 hrs)
V 2
w M 4.96 1134 (12.84 hrs) 126 (1.46 hrs)
V 2
s M 5.12 2087 (12.17 hrs) 232 (1.30 hrs)

This experiment demonstrates that the algorithms used in INTERSLICE are directly
applicable to several audio books without any modifications.

3.4.3 Voice from a Telugu audio book

The framework of INTERSLICE can be extended to new languages fairly quickly. To
add a new language, INTERSLICE requires a set of context-independent acoustic
models and a pronunciation dictionary or letter-to-sound rules. For example, to
build a voice from a Telugu audio book, we chose acoustic models built from the
CMU-NK speech database corresponding to 2 hours of speech. The script in Telugu
has good correspondence with the sounds, and hence a set of simple letter-to-sound
rules were used to obtain phone sequence. The audio book in Telugu consisted of
multiple short stories from a popular children’s magazine Chandamama. The book
was read by a professional speaker in a studio, and the duration of this book is
around 2 hours. Let this audio book be referred to as Φl. Using INTERSLICE, SFA-2
algorithm was applied to segment the long speech file Φl. The acoustic models built
from CMU-NK voice were used in this process. A synthetic voice (Vl), was built
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using CLUSTERGEN framework, and the MCD score for this voice was found to be
5.76.

3.5 Summary

In this chapter, we described the process of building synthetic voices from audio
books taken from public domain recordings. We explained the INTERSLICE package
which has been developed specifically to deal with long speech files found in audio
books. INTERSLICE is integrated within FestVox suite of tools, and is available
for download along with FestVox. INTERSLICE provides both SFA-1 and SFA-2
methods to segment long speech files. Subsequently, tools such as CLUSTERGEN
and CLUNITS available in Festvox can be used to build a statistical parametric
voice or a unit selection voice respectively. It should be noted that INTERSLICE
assumes that the audio books are of high quality, i.e., lower rate of disfluency, a
normal speaking rate and a noiseless environment in recording the audio book. To
demonstrate the usefulness of INTERSLICE, we have built four voices from four
audio books (two female and two male) from Librivox and a Telugu voice from a
Telugu audio book.





Chapter 4

Speaker-specific phrase breaks

In previous chapters, we have shown that audio books could be exploited to build
synthetic voices. A major motivation to use audio books is to incorporate natural
prosody in synthetic voices by building better prosodic models. Prosody of speech in-
volves variation in intonation, duration, loudness and formant frequencies of speech
sounds. Prosodic units (also referred to as prosodic phrases) are characterized by
several acoustic cues including a coherent intonation contour. At the boundary
between prosodic units, it is known that the pitch resets and the duration of a rhyme
is longer [Taylor, 2009]. To incorporate such duration and intonation changes
in synthetic speech, it is important to model phrasing patterns, i.e., the location
of prosodic phrase breaks in utterances. In this chapter, we focus on building a
prosodic phrase break annotator, and study its effect on the quality of synthetic
speech.

4.1 Prosodic phrase breaks

Prosodic phrasing is a mechanism by which a speaker groups words within an
utterance. Appropriate grouping helps in better comprehension and naturalness of
an utterance [Frazier et al., 2006]. Prosodic phrase boundaries (also referred to as
prosodic phrase breaks) are manifested in the speech signal in the form of pauses
as well as relative changes in the intonation and duration of syllables. Tone and
break Indices (ToBI) model of intonation [Silverman et al., 1992], analyzes prosody
using two pitch targets, high and low. According to ToBI, prosodic phrases have
pitch accents - where pitch target is relatively high - indicating the prominence of

41



42 Chapter 4: Speaker-specific phrase breaks

certain syllables in a phrase. The pitch target at the boundary of prosodic phrases is
treated separately from a pitch accent. In ToBI model, there are five levels of breaks
found in utterances. The five levels are:

• ‘0’ - tighter connection than for a default word boundary, e.g., the medial
affricate in contractions of “did you” or a flap as in “got it”

• ‘1’ - normal word break

• ‘2’ - break marking a lower-level perceived grouping of words that does not
have an intonational boundary marker

• ‘3’ - intermediate phrase boundary, cued by some pre-boundary lengthening
and a phrase tone

• ‘4’ - intonational phrase boundary, cued by more pre-boundary lengthening
and a full boundary tone.

The break indices 3 and 4 must contain at least one pitch accent, and correspond
to prosodic phrase boundaries. Studies have also shown that acoustic cues - such
as pre-pausal lengthening of rhyme, speaking rate, breaths, boundary tones and
glottization - play a role in indicating the phrase breaks in a speech signal [Wightman
et al., 1992], [Redi and Shattuck-Hufnagel, 2001], [Kim et al., 2006].

In order to illustrate the complex nature of acoustic cues that characterize
prosodic phrase breaks, we conducted a listening experiment using a set of one
or two paragraph length utterances. This set of five utterances were part of a
story (Chapter 2 of EMMA) recorded by a female speaker in the Librivox database
[LibriVox, 2010]. The story was recorded in a story telling fashion with pauses
wherever required. The original recordings of these utterances are referred to as
set-A. From these recordings, pauses within the utterances were removed manually.
These pause-clipped utterances are referred to as set-B.

A set of 5 non-native speakers of English acted as listening subjects in this
experiment. On the first day, the subjects were asked to listen to the utterances from
set-B. They were given the text of these utterances - with punctuations removed
and all letters converted to lower case, and were asked to provide a punctuation
mark wherever they perceived a break in acoustic signal. On the second day, the
same five subjects were asked to listen to the utterances from set-A, and were asked
to mark a punctuation in text, wherever they perceived a break.

A sample utterance used in this experiment is: “ Sorrow came (75:5/5) – a
gentle sorrow (370:5/5) – but not at all in the shape of any disagreeable consciousness
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Figure 4.1: Scatter plot of scores obtained for utterances in Set-A and Set-B

(550:4/5). Miss Taylor married (640:5/5). It was Miss Taylor’s loss which first brought
grief (550:5/5). It was on the wedding-day of this beloved friend that Emma first sat
in mournful thought of any continuance (1290:5/5).... ” . Sets of three numbers
printed at different locations in this example denote -

• duration of the pause (in milliseconds) as found in the original recordings,

• number of subjects perceiving a break at this location i while listening to this
utterance from set-B, which is denoted by sBi , and

• number of subjects perceiving a break at this location while listening to this
utterance from set-A, which is denoted by sAi .

The value of the pair (sBi , s
A
i ) range from (0, 0) to (5, 5). In total there were 63

locations in all of the five utterances, where subjects perceived a break.

A scatter plot of the pair of values (sAi , s
B
i ), where 0 ≤ sAi ≤ 5, 0 ≤ sBi ≤ 5, and

i = 1..63 is shown in Fig. 4.1. The values of (sAi , sBi ) are referred to as scores in Fig.
4.1. The scatter plot demonstrates a correlation of 0.82 between the values of sBi
and sAi . Further analysis showed that -

• in 92% of the total 63 locations, at least one subject from set-B and one from
set-A agreed on perceiving a break and

• in 33.3% of the locations, all the five subjects from set-A and five from set-B
agreed on perceiving a break.
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Table 4.1: Syllable level features extracted at phrase break

Break Features Description
pause duration Duration of the pause at the word boundary
vowel duration Vowel duration in the syllable
f0 maxavg diff Diff. of max and avg f0
f0 range Diff. of max and min f0
f0 avgmin diff Diff. of avg and min f0
f0 avgutt diff Diff. of syl avg and utterance avg f0
en maxavg diff Diff. of max and avg energy
en range Diff. of max and min energy
en avgmin diff Diff. of avg and min energy
en avgutt diff Diff. of syl avg and utterance avg energy

The overall correlation of 0.82 between the values of sBi and sAi indicate that acoustic
cues other than simple pause play a major role in indicating a phrase break in the
speech signal.

This experiment shows that acoustic cues other than pauses play a role in indi-
cating prosodic phrase breaks. However, the representation and parameterization
of these complex acoustic cues is not well understood [Taylor, 2009]. Hence, many
of these complex acoustic cues are often represented by simpler features such as
average duration, F0 and energy values as shown in Table 4.1 [Ananthakrishnan
and Narayanan, 2008].

4.1.1 Syntactic vs prosodic phrase breaks

A question that often arises is whether there is any relation between prosodic phrase
breaks and the syntactic structure of an utterance. Consider the example, “John and
Mary were running very quickly”. The major syntactic constituents of this sentence
are a noun phrase (NP) and a verb phrase (VP) as shown below. The syntactic break
for this sentence is between NP and VP.

(NP (John and Mary)) (VP (were running very quickly)))

For the same sentence, below are examples indicating three different prosodic
phrase breaks. Here ‘|’ denotes a prosodic phrase break.

John and Mary were running very quickly.
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John and Mary | were running very quickly.

John and Mary were running | very quickly.

In the first example, there is no prosodic break. In the second, the prosodic break is
before the phrase “were running very quickly” and coincides with the syntactic break.
In the third, the prosodic break is before the phrase “very quickly”.

From these examples, it is easy to notice that there is some correspondence
between the prosodic phrase breaks and syntactic phrase breaks of an utterance.
While it is known that there is a relationship between syntax and prosody, but the
relationship is not well understood or formally defined. There is no general theory
which explains the correspondence between syntax and prosody [Bachenko and
Fitzpatrick, 1990], [Taylor, 2009].

In the context of TTS, it is essential to predict prosodic phrase breaks in the text.
Prosodic phrase breaks predicted from the text are used by different modules such as
F0 generation, duration and insertion of pauses. Modeling prosodic phrase patterns
involves building a prosodic phrase break annotator (PBA) and a prosodic phrase
break predictor (PBP). A PBA model annotates text/speech data with the location
of prosodic phrase breaks. Often human operators act as PBAs - the annotation is
done by listening to speech data. This could also be achieved by machine learning
techniques, which use acoustic cues to locate prosodic phrase breaks. A PBP model
predicts prosodic phrase breaks in the given text based on either a set of rules or
machine learning techniques. The output of PBA - text data annotated with prosodic
phrase breaks - is used to train a PBP model. Features related to syntactic level or
part-of-speech sequence are extracted from text, and a machine learning model is
built to predict a break or not-a-break between words.

Current techniques for modeling phrasing patterns have the following limitations
–

• A human annotator is used to annotate text with a break symbol between
words which are perceived as being phrase breaks. This process of hand anno-
tation is laborious, time consuming and is not scalable to multiple languages.

• Typically, a PBP model is trained on a standard corpus. For example, in Festival,
a default PBP model for English is trained on Boston University Radio News
corpus data and employed to predict breaks for all English voices. Thus the
same prosodic phrasing pattern is used for all voices ignoring speaker-specific
phrasing patterns.

• A PBP model assumes availability of syntactic parsers and/or part-of-speech
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taggers. The availability of such linguistic resources may be difficult for
minority or resource poor languages. Such situations need solutions which
extract a new set of features from the text. For example, these features
could be based on frequency count of words. Typically, words with very high
frequency count are function words, and an unsupervised clustering of words
can be done based on frequency counts. This leads to representation of words
as a sequence of cluster numbers similar to part-of-speech sequence.

In the scope of this thesis, the objective is to build a PBA model using machine
learning techniques which make use of acoustic cues to locate prosodic phrase
breaks. Such techniques make annotation faster and cheaper. At the same time,
the ability to model phrasing patterns in a given speech database could bring
in speaker-specific phrasing patterns. As a part of this investigation, we would
like to know whether prosodic phrase breaks are specific to a speaker, and if so,
propose a mechanism for learning speaker-specific phrase breaks. Another equally
important aspect dealt with in this thesis is to demonstrate the usefulness of these
speaker-specific phrase breaks for a TTS system.

4.2 Are prosodic phrase breaks speaker-specific?

In order to examine whether prosodic phrase breaks are specific to a speaker, we
conducted the following experiment using a short story from Emma (Volume 1,
Chapter 1), spoken by four speakers (Sibella, Sherry, Moira and Elizabeth). This
story consisted of 54 paragraphs and around 3000 words. For every word in the
story, a binary feature was derived indicating whether there was a break or not after
the word. The presence of a break was indicated by ‘1’ and the absence of a break
was indicated by ‘-1’.

Let S = [s1, . . . , sw, . . . , sD] denote the sequence of binary features derived for
the words in the story using syntactic phrase breaks. Here w = 1, . . . , D, where D is
the number of words in the story. These breaks were derived using the Stanford
Parser [Klein et al., 2003], which parses the text into syntactic constituents such as
noun phrase, verb phrase and adjectival phrase. The end of each constituent was
considered as a phrase break.

Let R = [r1, . . . , rw, . . . , rD] denote the sequence of features derived for the
words in the story using prosodic phrase breaks. These breaks were derived based
on the duration of pause after a word. A pause was considered as a prosodic phrase
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Table 4.2: Correlation between syntactic phrase breaks and prosodic phrase breaks of different
speakers.

Syntactic Elizabeth Moira Sherry Sibella
Syntactic 1 0.29 0.30 0.23 0.31
Elizabeth 1 0.66 0.61 0.72

Moira 1 0.58 0.69
Sherry 1 0.62
Sibella 1

break, if its duration was greater than 150 ms. This threshold of 150 ms was derived
based on our earlier work on phrasing models [Keri et al., 2007]. Since the story
was spoken by four different speakers, we derived the binary feature sequences
Rs, Rh, Rm and Re representing the prosodic phrase break sequences for Sibella,
Sherry, Moira and Elizabeth respectively. The correlation coefficient between two
feature sequences X and Y is calculated using Eq. (4.1).

c(X,Y ) =

D∑
w=1

(xw − x̄)(yw − ȳ)√√√√ D∑
w=1

(xw − x̄)2

√√√√ D∑
w=1

(yw − ȳ)2

, (4.1)

where X and Y are one of {S,Rs,Rh,Rm,Re}. x̄, ȳ denote the mean values of X
and Y respectively. It should be noted that c(X,Y ) = c(Y ,X).

Table 4.2 displays the correlation coefficients between the syntactic phrase breaks
and prosodic phrase breaks. It also displays the correlation coefficients between the
prosodic phrase breaks of any two speakers. From Table 4.2, we can observe that
correlation coefficients between the syntactic phrase breaks and prosodic phrase
breaks vary from 0.26 to 0.33. These lower values indicate that syntactic phrase
breaks and prosodic phrase breaks differ significantly. From Table 4.2, it could also
be observed that the correlation coefficients between the prosodic phrase breaks of
any two speakers vary between 0.6− 0.7. These values indicate that the correlation
coefficients between the prosodic phrase breaks of any two speakers is higher than
the correlation coefficients between the prosodic phrase breaks and syntactic phrase
breaks. At the same time, the correlation coefficients between the prosodic phrase
breaks of any two speakers are lesser than 1, thus suggesting that prosodic phrase
breaks are specific to a speaker.
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Table 4.3: Correlation between syntactic phrase breaks, prosodic phrase breaks and the breaks
derived from punctuation marks.

Syntactic Elizabeth Moira Sherry Sibella
Punct. 0.34 0.66 0.64 0.54 0.72

Another question that would be of interest is to study the correlation between
the prosodic phrase breaks and punctuations in text. Audio books are stories/novels
and the text of these books inherit punctuation marks such as comma, period
and exclamation from the authors. It would be interesting to know whether the
phrasing patterns of speakers correspond to punctuation marks in text. Let P =
[p1, . . . , pw, . . . , pD] denote the sequence of binary features derived for the words in
the story using punctuation marks. Here, pw takes a value of 1 or −1 depending
on whether there is a punctuation mark after/before w or not. The correlation
coefficients computed between P and each of the sequences in {S,Rs,Rh,Rm,Re}
are shown in Table 4.3.

First, the correlation coefficient between the punctuation marks and syntactic
breaks in Table 4.3 is 0.34. This suggests the punctuation marks in text need not
adhere to syntactic phrase breaks. Secondly, the prosodic phrase breaks are better
correlated to punctuation marks than syntactic phrase breaks. This could imply
that the speakers might have been influenced by the punctuation marks during the
recording of speech data. However, the correlation coefficient values are much less
than 1, and vary from speaker to speaker. This suggests that the punctuation marks
may indicate possible chunks in the text, but the speakers seem to have their own
choice of phrasing patterns. Tables 4.2-4.3 provide sufficient evidence that prosodic
phrase breaks are specific to a speaker.

4.3 Learning speaker-specific phrase breaks

To learn speaker-specific phrase breaks, we propose an unsupervised learning
algorithm. Fig. 4.2 provides a schematic diagram of the proposed algorithm
consisting of two phases. In the first phase, we hypothesize the location of phrase
breaks in the speech signal using pauses as acoustic cues. As these initial estimates
are obtained based on knowledge that pauses are good indicators of phrase breaks
(refer to Section 4.1), one could treat the hypothesized phrase break locations as
labeled data. In the second phase, features such as duration, F0 and energy are
extracted from these locations for building a machine learning model, which is
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Figure 4.2: Flow chart of the proposed algorithm for learning speaker-specific phrase breaks.

trained to classify these acoustic features as belonging to a break or not-a-break.
We then attempt to bootstrap this model by re-labeling the data.

4.3.1 Phase 1: Using pauses as acoustic cues

In phase-1, we hypothesize the location of phrase breaks based on pauses in the
speech signal. This phase is referred to as building a phrase break annotator (PBA-0),
and the steps involved in building PBA-0 are as follows –

• Obtain word level boundaries and pause regions between the words in an
utterance. This can be accomplished by force-aligning an utterance with
its corresponding text. During the process of force-alignment, an optional
silence HMM is introduced between each pair of words. If there exists a pause
between any two words then it is automatically detected using the silence
HMM model.

• Based on the duration (d) of the pause, two types of breaks (B / BB) are
identified. Here B denotes a type of phrase break, when 50 ms ≥ d ≤ 150 ms,
and BB denotes another type of phrase break when d > 150 ms.



50 Chapter 4: Speaker-specific phrase breaks

4.3.2 Phase 2: Bootstrapping

In phase-2, we build a prosodic break annotator model (PBA-1), based on phrase
breaks regions identified by PBA-0. The steps involved in building PBA-1 are as
follows –

1. Extract duration, F0 and energy features from phrase break regions identified
by PBA-0. At each phrase break, a set of 10 features related to duration, F0
and energy features is computed for the last syllable (ν). Similar features
are computed for the two neighboring (one left and right) syllables of ν. The
feature set computed for each syllable is shown in Table 4.1, and is based on
the work in [Ananthakrishnan and Narayanan, 2008].

2. Build a classification and regression tree (CART) model, where the predictee
is phrase break level (B / BB / NB) and the predictors are duration, F0
and energy features. Here NB denotes not-a-break. The features for NB are
obtained by considering the syllables in a word which is immediately previous
to a word identified as a break (B / BB).

3. Use the CART model to re-label the speech data and classify each word
boundary as belonging to one of the classes: B / BB / NB. This step will
provide a new set of training examples for B / BB / NB classes.

4. Update / retrain the CART model with the new set of training examples.

5. Repeat steps 3 and 4 for 1-2 iterations.

4.4 Evaluation of PBA models

To evaluate a PBA model, the location of predicted phrase breaks can be compared
with manually identified phrase breaks, and the accuracy of a PBA model can be
reported in terms of precision and recall.

However, such an evaluation criteria would limit the purpose of building a
PBA model for languages and speech databases which may not have such hand
labeling done. An alternate method of evaluation is to incorporate the prosodic
phrase breaks predicted by a PBA model in a text-to-speech system, and perform
subjective and objective evaluations to know whether prosodic phrasing aids in
improving the quality of synthesized speech. To perform this evaluation, statistical
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parametric synthesis (such as CLUSTERGEN [Black, 2006]) is a better platform than
unit selection synthesis. CLUSTERGEN is a statistical parametric synthesizer which
predicts duration and F0 for each phone in the input text. Spectral parameters
are generated for each phone based on its duration. Speech is synthesized by
exciting the spectral parameters with train of pulses or random noise. The mode
of excitation depends on the predicted F0 values of phones. The effect of prosodic
phrase breaks on spectral quality could be measured by using objective metrics such
as Mel-cepstral distortion (explained below).

The process to incorporate and evaluate the effectiveness of prosodic phrase
breaks in CLUSTERGEN is as follows:

• From PBA models, obtain the location of prosodic phrase breaks in the text of
all utterances, using the three levels of phrase breaks (NB/B/BB) described
previously.

• Divide this annotated text into training set (T-set) and held out test set (H-set).

• Use T-set to build a CLUSTERGEN voice (see Appendix A for details.). The
build process of CLUSTERGEN is modified to use prosodic phrase breaks as
one of the features for clustering the spectral parameters (see Appendix B for
details.).

• Synthesize utterances from H-set. An objective evaluation is done by com-
puting the spectral distortion between the original and synthesized utter-
ances. However, due to variations in the durations of original and synthe-
sized utterances, they are first aligned using dynamic programming and
Mel-cepstral distortion (MCD) is computed between the aligned frames. The
MCD measure between two Mel-cepstral vectors is defined as MCD =

(10/ ln 10) ∗
√

2 ∗
∑25

i=1 (mcti −mcei )2, where mcti and mcei denote the original
and the synthesized Mel-Cepstra respectively. A lesser MCD value indicates
a better quality of synthesis. MCD is calculated over all the Mel-cepstral
coefficients, including the zeroth coefficient.

4.4.1 Results on hand labeled data

PBA models can be evaluated by comparing the location of predicted phrase breaks
with manually identified phrase breaks. This evaluation can be done if a correspond-
ing hand-labeled corpus is available. The Boston University Radio News corpus is
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Table 4.4: Phrase breaks predicted from PBA-0 and PBA-1 are compared with the hand labeled
phrase breaks. Precision, recall, F-measure indicates the accuracy of PBA models in predicting
B/BB. True negative indicates the accuracy of PBA models in predicting NB.

Precision Recall True Neg. F-Measure MCD
PBA-0 0.91 0.91 0.96 0.91 5.89
PBA-1 0.95 0.91 0.98 0.92 5.92
Baseline - - - - 6.06

one such corpus hand labeled with phrase breaks. It consists of broadcast radio
news stories which include original broadcasts and radio laboratory simulations
recorded from seven FM radio announcers [Ostendorf et al., 1995]. The database
contains speech from three female (F1A, F2B and F3A) and four male speakers
(M1B, M2B, M3B and M4B). Most of the recordings in this corpus are manually
labeled with the orthographic transcription, phone alignments, part-of-speech tags
and phrase break levels.

Our experiments are focused on the recordings of speaker F2B which has hand
labeled phrase breaks. The F2B recordings contain 165 utterances corresponding
to 80 minutes of speech data. The annotation of phrase breaks in Boston corpus
follows ToBI style and defines five levels of breaks (refer to Sec. 4.1 for details).
For our purposes we have considered break level 3 (referred to as B), and break
level 4 (referred to as BB). Other break levels (0− 2) are considered as NB, i.e.,
not-a-break.

Phrase breaks predicted from PBA-0 and PBA-1 are compared with the hand
labeled phrase breaks. Table 4.4 shows the precision, recall and F-measure of PBA
models in predicting B and BB. The high values of F-measure for both PBA-0 and
PBA-1 indicate that pauses correlate well with B and BB type of breaks. A marginal
improvement could be observed in the performance of PBA-1 over PBA-0. The value
of true negative in Table 4.4 indicates the accuracy of PBA-0 and PBA-1 in predicting
NB. These results indicate that PBA models could be used for automatic annotation
of speaker-specific phrase breaks in a given speech database.

As discussed earlier, the evaluation of PBA models using hand labeled data is not
always feasible. An alternative is to incorporate the phrase breaks in a TTS system
and measure the objective and subjective improvements of the voice. CLUSTERGEN
voices were built by using the phrase breaks predicted by PBA-0 and PBA-1. The
predicted phrase breaks were used as one of the features for clustering the spectral
parameters. Voices were built using 71 minutes of speech data. Evaluation of these
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Table 4.5: Details of the audio books used in evaluation of PBA models including duration of the
book, duration of utterances in training set (T-set) and testing set (H-set). The units of duration is
hours.

Book Duration T-set H-set
EMMA 17.33 15.67 1.66
WALDEN 13.57 12.72 1.45
PRIDE & 13.45 11.99 1.46
PREJUDICE
IIIT-LEN 9.20 8.24 0.96

voices was carried out on 9 minutes of held-out test data. As shown in Table 4.4, the
MCD scores obtained for voices using PBA-0 and PBA-1 were found to be lesser than
the baseline voice. Here the baseline voice refers to the synthetic voice built using
default settings of CLUSTERGEN. The default settings of CLUSTERGEN employ a
statistical phrasing model built which assumes phrasing patterns to be same across
different speakers [Taylor and Black, 1998]. MCD scores of PBA models being lesser
than baseline voice suggest that use of speaker-specific prosodic phrasing improves
the quality of synthetic voices.

4.4.2 Results on audio books

TTS based evaluation of PBA-0 and PBA-1 was carried out on audio books of EMMA,
WALDEN, PRIDE AND PREJUDICE and on a Telugu audio book referred to as IIIT-LEN.
Table 4.5 provides the details including duration of the book, duration of utterances
in training set (T-set) and testing set (H-set).

As discussed in Section 4.3.1, PBA-0 and PBA-1 models were built for EMMA,
WALDEN, PRIDE AND PREJUDICE and IIIT-LEN speech databases. Prosodic phrase
breaks from PBA models, as described in Section 4.4, were incorporated to build
CLUSTERGEN voices for EMMA, WALDEN, PRIDE AND PREJUDICE and IIIT-LEN.
Performance of these voices evaluated on their respective H-sets using MCD is as
shown in Table 4.6. It can observed that the MCD scores of PBA-0 / PBA-1 performs
better than that of the baseline suggesting that the incorporation of speaker-specific
phrase breaks improves the quality of synthetic speech. Here, baseline refers to
CLUSTERGEN voices generated using default settings in CLUSTERGEN. Informal
listening experiments conducted on PBA-0 / PBA-1 showed that the prosodic phrase
breaks have improved the perception of the voice with respect to baseline.



54 Chapter 4: Speaker-specific phrase breaks

Table 4.6: Objective evaluation of synthetic voices using PBA. MCD scores indicate spectral distor-
tion of original and synthesized speech.

MCD
EMMA WALDEN PRIDE & IIIT-LEN

PREJUDICE
Baseline 5.55 5.40 6.89 7.17
PBA-0 5.43 5.12 6.71 5.73
PBA-1 5.36 5.09 6.71 5.65

Table 4.7: Subjective evaluation of IIIT-LEN voice.

Baseline PBA-1 No-preference
Baseline vs PBA-1 5 / 60 26 / 60 29 / 60

4.4.3 Subjective evaluation

In addition to the objective evaluation, we also conducted a subjective evaluation of
PBA-1. Native speakers of Telugu were asked to listen to 10 utterances synthesized
from baseline and PBA-1, and state whether they preferred a particular voice or not.
A total of 6 subjects participated in the listening test, resulting in 60 preference
ratings. The listening test results are summarized in Table 4.7. Our results show
that the TTS voice built using PBA-1 was preferred for 43% of utterances, while the
baseline voice was preferred for only 8% of utterances.

4.5 Summary

To incorporate duration and intonation changes in synthetic speech, it is important
to model phrasing patterns, i.e., the location of prosodic phrase breaks in utterances.
In the current models, the prosodic phrasing patterns are assumed to be same across
all voices. In this chapter, we showed that prosodic phrasing patterns are specific to a
speaker. We proposed an unsupervised algorithm to learn speaker-specific phrasing
patterns from a given speech database Experiments were conducted to study the
usefulness of speaker-specific phrase breaks in a TTS system. The results indicate
that speaker-specific phrase breaks aid in improving the spectral and perceived
quality of synthesized utterances.



Chapter 5

Conversion of speaker characteristics

In previous chapters, we have exploited audio books for building synthetic voices and
incorporated speaker-specific phrase breaks to improve the quality of synthesized
utterances. However, one might want to listen to synthesized utterances in a voice
of a target or a virtual speaker. This could be for several reasons including the
celebrity status of a speaker or the listener’s social/family relationship or merely a
preference for the speaker. Voice conversion is a technique of rendering an utterance
as if it was spoken by a target speaker. It enables new voices to be built quickly by
alleviating the huge efforts involved in development of new voices. In this chapter,
we focus on voice conversion techniques to render an utterance in the voice of a
target speaker.

5.1 Need for speaker conversion

Building a synthetic voice in a traditional way involves an extensive and expensive
process. The steps involved in this process are –

• Record about 8-10 hours of speech. It is preferred that the text being read has
rich prosody including varied intonation contours, phrasing and prominence.

• Use INTERSLICE to segment large speech files in the recordings.

• Build a CLUSTERGEN or a unit selection voice, and perform required tunings.
These tunings include extraction of better pitch marks, duration modeling etc.

These steps consume a lot of time and efforts and are often impractical. For example,
suppose, a mother would like to have a story-telling computer with a TTS voice –

55
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Figure 5.1: Building a new TTS voice using the conventional approach which is extensive and
expensive vs the approach using voice conversion.

sounding like her. This TTS voice can be used for rendering stories to her children,
when she is busy or away. To build such TTS voice, it is not a comfortable and
easygoing process for the mother to sit in a studio and record for 8-15 hours. Apart
from fatigue due to physical and cognitive load involved in recording long hours of
speech, practical difficulties also exist in the form of illiteracy, mistakes in recording
etc.

Rather, an easygoing process – shown in Fig. 5.2, would be to record only 5-10
minutes of speech data. It would be convenient to use an existing TTS voice, say
from a speaker S and convert the characteristics of speaker S to sound like the
mother (speaker T ). The steps involved in this process are –

• Use an existing TTS voice from speaker S.

• Record 5-10 minutes of speech from speaker T .

• Build a speaker conversion module which converts the characteristics of
speaker S to that of speaker T .

• Use the speaker conversion module (S → T ) as a postprocessing filter for the
TTS voice of S as shown in Fig. 5.2.

This process alleviates the need for long hours of recordings, and is scalable to gen-
erate new voices with short amount of speech data from new speakers. Conversion
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of speaker characteristics is often referred to as voice conversion.

5.2 Building a voice conversion system

Figure 5.2: A lay-man understanding of a voice conversion system.

A typical voice conversion (VC) system morphs the utterance of a source speaker
so that it is perceived as if spoken by a specified target speaker (see Fig. 5.2).
Research studies have shown that characteristics of a speaker’s individuality lies
in vocal tract shape [Toda et al., 2007], excitation , [Rao, 2010], prosody such
as intonation and duration [Toth and Black, 2008], and in expressive aspects
affected by attitude and emotions. A complete voice conversion system should
convert all types of speaker dependent characteristics of speech. However, due to
limited understanding in parameterization of speaker’s individuality [Kuwabara and
Sagisaka, 1995], current state-of-the-art voice conversion systems are focused only
on vocal tract shape represented by spectral features and excitation represented by
fundamental frequency F0 [Toda et al., 2007]. The research question addressed is -
“How to obtain an optimal mapping function which transforms the spectral hints
of a source speaker to that of a target speaker?”. To learn such transformation,
current voice conversion techniques rely on the existence of parallel corpus, i.e., the
same set of utterances recorded by both the source and target speakers [Toda et al.,
2007].

Given the parallel data from a source and a target speaker, the training and
conversion modules of a voice conversion system are as shown in Fig. 5.3. The
steps involved in training a voice conversion model are as follows –

• The first step is to extract spectral and excitation parameters of the source
and target speakers. In this work, the spectral parameters are represented
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(a) Training (b) Conversion

Figure 5.3: Training and testing modules in voice conversion framework.

by Mel-cepstral coefficients (MCEPs) and excitation is represented by funda-
mental frequency (F0). These representations are chosen so that they can
be synthesized using Mel Log Spectral Approximation (MLSA) filter after
transformation [Imai, 1983].

• Even though the source and target speakers have spoken the same utterance,
they vary in duration. Hence the next step involves aligning the parallel
utterances using dynamic programming. This process results in providing a
correspondence between sounds of source and target speakers.

• Given this correspondence, a Gaussian mixture model (GMM) or an artificial
neural network (ANN) is trained to capture the mapping function.

• For conversion of F0, a linear transformation is computed in log domain based
on mean F0 and its standard deviation computed from the training data of
the source and target speakers.

The steps in testing or conversion are as follows –

• Given a new utterance from the source speaker, MCEPs and F0 are extracted
from the speech signal.
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• MCEPs are transformed onto the target speaker’s acoustic space using GMM/ANN
models. F0 is transformed using a linear transformation.

• The transformed MCEPs along with F0 are used as input to an MLSA filter to
synthesize the transformed utterance. This filter generates the utterance from
the transformed MCEPs and F0 values using pulse excitation or random noise
excitation [Imai, 1983].

Each of these steps is explained in detail below.

5.2.1 Feature extraction

To extract features from a speech signal, an excitation-filter model of speech is
applied. MCEP vectors are extracted as filter parameters and fundamental frequency
(F0) estimates are derived as excitation features for every 5 ms [Imai, 1983]. The
length of an MCEP vector is 25 (i.e., 25 MCEP coefficients are extracted for every 5
ms).

5.2.2 Alignment of parallel utterances

As the durations of the parallel utterances typically differ, dynamic time warping (or
dynamic programming) is used to align MCEP vectors of the source and the target
speakers [Toda et al., 2007]. After alignment, let xt and yt denote the source and
the target feature vectors at frame t respectively.

5.2.3 Spectral mapping using GMM

In GMM-based conversion [Toda et al., 2007], the learning procedure aims to fit a
GMM model to the augmented source and target feature vectors. Formally, a GMM
allows the probability distribution of a random variable z to be modeled as the sum
of M Gaussian components, also referred to as mixtures. Its probability density
function p(zt) can be written as

p(zt) =
M∑
m=1

αm N (zt;µ
(z)
m ,Σ(z)

m ) ,
M∑
m=1

αm = 1, αm ≥ 0 (5.1)
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where zt is an augmented feature vector [xTt y
T
t ]T The notation T denotes transposi-

tion of a vector. N (zt;µ
(z)
m ,Σ(z)

m ) denotes the parameters of a Gaussian distribution
and αm denotes the prior probability with which the vector zt belongs to the mth

component. Σ(z)
m denotes the covariance matrix and µ(z)

m denotes the mean vector
of the mth component for the joint vectors. These parameters are represented as

Σ(z)
m =

[
Σ(xx)
m Σ(xy)

m

Σ(yx)
m Σ(yy)

m

]
, µ(z)

m =

[
µ

(x)
m

µ
(y)
m

]
, (5.2)

where µ(x)
m and µ(y)

m are the mean vectors of the mth component for the source
and the target feature vectors respectively. The matrices Σ(xx)

m and Σ(yy)
m are the

covariance matrices, while Σ(xy)
m and Σ(yx)

m are the cross-covariance matrices, of
the mth component for the source and the target feature vectors respectively. The
covariance matrices Σ(xx)

m , Σ(yy)
m , Σ(xy)

m and Σ(yx)
m are assumed to be diagonal in

this work. The model parameters (αm,µ
(z)
m ,Σ(z)

m ) are estimated using Expectation
Maximization (EM) algorithm.

The conversion process (also referred to as testing process) involves regression,
i.e., given an input vector, xt, we need to predict yt using GMMs, which is calculated
as shown in the equation below.

H(xt) = E[yt|xt] (5.3)

=
M∑
m=1

hm(xt)[µ
(y)
m + Σ(yx)

m (Σ(xx)
m )−1(xt − µ(x)

m )], (5.4)

where

hm(xt) =
αm N (xt;µ

(x)
m ,Σ(xx)

m )∑M
n=1 αn N (xt;µ

(x)
n ,Σ(xx)

n )
, (5.5)

is the posterior probability that a given input vector xt belongs to the mth compo-
nent.

From Eq. (5.3), we can see that the GMM transformation deals with every
feature vector independent of its previous and next frames. Thus it introduces
local patterns in converted spectral trajectory which are different than that of
the target’s natural spectral trajectory. To obtain a better conversion of spectral
trajectory, dynamic features such as delta and delta-delta MCEP coefficients are used
in the mapping function. Further, a smoothing operation referred to as maximum
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likelihood parameter generation (MLPG) is performed as a postprocessing technique.
It has been shown in [Toda et al., 2007], that dynamic features and MLPG improves
the performance of a GMM based voice conversion system. Toda et. al., made
another interesting observation on the variance (referred to as global variance) of
transformed spectral parameters. GMM models under-estimate the natural variance
of MCEPs, and thus the global variance (GV) of the transformed Mel-cepstra is
smaller than that of the target ones. To circumvent this problem, a penalty term was
introduced for the reduction of variance during mapping function. A more detailed
description of these techniques can be found in [Toda et al., 2007].

In this work we have conducted GMM based VC experiments on the voice
conversion setup built in FestVox distribution [Black and Lenzo, 2009]. This voice
conversion setup is based on the work done in [Toda et al., 2007], and supports the
conversion considering 1) MLPG based smoothing and 2) the global variance (GV)
of spectral trajectory.

5.2.4 Spectral mapping using ANN

From Eq. (5.4), it can be observed that GMM based voice conversion is a linear
regression model. Eq. (5.4) can be re-written as –

H(xt) =
M∑
m=1

hm(xt)[µ
(y)
m +Wmx

′

t], (5.6)

where Wm = Σ(yx)
m (Σ(xx)

m )−1 and x′
t = xt − µ(x)

m . Eq. (5.6) shows that GMM based
voice conversion is a weighted sum of linear regression models [Kain, 2001]. The
relation between vocal tract shapes of two speakers is typically nonlinear. Eq. (5.6)
shows that GMM based voice conversion approximates this nonlinear relation using
a set of linear regression models. Hence, it is worth exploring nonlinear models
such as artificial neural networks to approximate the mapping function [Srinivas
et al., 2010].

Artificial neural network (ANN) models consist of interconnected processing
nodes, where each node represents the model of an artificial neuron, and the
interconnection between two nodes has a weight associated with it [Yegnanarayana,
1999]. ANN models with different topologies perform different pattern recognition
tasks. For example, a feed-forward neural network can be designed to perform the
task of pattern mapping, whereas a feedback network could be designed for the task
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of pattern association. A multi-layer feed forward neural network is used in this
work to approximate the mapping function between the source and target vectors.
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Figure 5.4: An architecture of a four layered ANN with N input and output nodes and M nodes in
the hidden layers.

Figure 5.4 shows the architecture of a four layer ANN used to capture the
transformation function for mapping the acoustic features of a source speaker onto
the acoustic space of a target speaker. The ANN is trained to map the MCEPs
of a source speaker to the MCEPs of a target speaker, i.e., if G(xt) denotes the
ANN mapping of a source vector xt, then the error of mapping is given by ε =∑

t ‖yt −G(xt)‖2. G(xt) is defined as

G(xt) = g̃(w(3)g(w(2)g(w(1)xt))), (5.7)

where
g̃(ϑ) = ϑ, g(ϑ) = a tanh(b ϑ). (5.8)

Eq. (5.7) shows the nonlinear mapping function of an ANN model. Herew(1),w(2),w(3)

represents the weight matrices of first, second and third hidden layers of the ANN
model respectively. The values of the constants a and b used in tanh function are
1.7159 and 2/3 respectively (see Appendix C for details).

A generalized back propagation learning is used to adjust the weights of the
neural network so as to minimize ε, i.e., the mean squared error between the target
and the transformed output values. Selection of initial weights, architecture of ANN,
learning rate, momentum and number of iterations are some of the optimization
parameters in training an ANN (see Appendix C for details). Once the training is
complete, we get a weight matrix that represents the mapping function between the
spectral features of a pair of source and target speakers. Such a weight matrix can
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be used to transform a feature vector from the source speaker to that of the target
speaker.

5.2.5 Mapping of excitation features

Our focus is to get a better transformation of spectral features. Hence, we use the
traditional approach of F0 transformation as used in a GMM based transformation. A
logarithm Gaussian normalized transformation [Liu et al., 2007] is used to transform
the F0 of a source speaker to the F0 of a target speaker as indicated in the equation
below.

log(F t
0 conv) = µtgt +

σtgt
σsrc

(log(F t
0 src)− µsrc), (5.9)

where µsrc and σsrc are the mean and standard deviation of the fundamental
frequency in logarithm domain computed on the training data of the source speaker,
µtgt and σtgt are the mean and standard deviation of the fundamental frequency
in logarithm domain computed on the training data of the target speaker. F t

0 src is
the fundamental frequency of the source speaker at frame t in a test utterance and
F t

0 conv is the corresponding converted fundamental frequency.

5.3 Evaluation criteria

Subjective evaluation

Subjective evaluation is based on collecting human opinions as they are directly
related to human perception, which is used to judge the quality of transformed
speech. The popular tests are ABX test, MOS test and similarity test.

• ABX Test: For the ABX test, we present the listeners with a GMM transformed
utterance and an ANN transformed utterance to be compared against X, which
will always be a natural utterance of the target speaker. To ensure that
a listener does not become biased, we shuffle the position of ANN/GMM
transformed utterances i.e., A and B, with X always constant at the end. The
listeners would be asked to select either A or B, i.e., the one which they
perceive to be closer to the target utterance.

• MOS Test: Mean Opinion Score (MOS) is another subjective evaluation where
listeners evaluate the speech quality of the converted voices using a 5-point
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scale (5: excellent, 4: good, 3: fair, 2: poor, 1: bad).

• Similarity Test: In similarity test, we present the listeners with a transformed
utterance and a corresponding natural utterance of the target speaker. The
listeners would be asked to provide a score indicating how similar the two
utterances are in terms of speaker characteristics. The range of similarity test
is also from 1 to 5, where a score of 5 indicates that both the recordings are
from the same speaker and a score of 1 indicates that the two utterances are
spoken by two different speakers.

Objective evaluation

Mel Cepstral Distortion (MCD) is an objective error measure known to have cor-
relation with the subjective test results [Toda et al., 2007]. Thus MCD is used to
measure the quality of voice transformation. MCD is related to filter characteristics
and hence is an important measure to check the performance of mapping obtained
by an ANN/GMM model. Computation of MCD has already been presented in Eq.
(2.11).

5.4 Experiments and results

Database used for the experiments

Current voice conversion techniques need a parallel database [Toda et al., 2007],
where the source and the target speakers record the same set of utterances. The
experiments presented here is carried out on CMU ARCTIC database consisting of
the same set of utterances recorded by seven speakers. Each speaker has recorded
a set of 1132 phonetically balanced utterances [Kominek and Black, 2004]. The
ARCTIC database includes utterances of SLT (US Female), CLB (US Female), BDL
(US Male), RMS (US Male), JMK (Canadian Male), AWB (Scottish Male), KSP
(Indian Male). It should be noted that about 30-50 parallel utterances are needed to
build a voice conversion model [Toda et al., 2007]. Thus, for each speaker we took
around 40 utterances as training data (approximately 2 minutes) and a separate set
of 59 utterances (approximately 3 minutes) as testing data.
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Table 5.1: Objective evaluation of a GMM based VC system for various training parameters where
Set 1: SLT to BDL transformation; Set 2: BDL to SLT transformation

MCD
No. of No. of Without With With

mixtures params. MLPG MLPG MLPG
(& GV)

SLT-BDL BDL-SLT SLT-BDL BDL-SLT SLT-BDL BDL-SLT
32 6176 6.367 6.102 6.152 5.823 6.547 6.072
64 12352 6.336 6.107 6.057 5.762 6.442 6.015

128 24704 6.348 6.068 6.017 5.682 6.389 5.907

Objective evaluation of a GMM based VC system

To build a GMM based VC system, we have considered two cases: 1) Transformation
of SLT (US female) to BDL (US male) and 2) Transformation of BDL (US male) to
SLT (US female). For both the experiments, the number of training utterances is 40
(approximately 2 minutes) and the testing is done on the test set of 59 utterances
(approximately 3 minutes). The number of MCEP vectors for 40 training utterances
in SLT and BDL is 23,679 and 21,820 respectively.

Table 5.1 provides the MCD scores computed for SLT-to-BDL and BDL-to-SLT
respectively for increasing number of Gaussians. It could be observed that the MCD
scores decrease with the increase in the number of Gaussians, however, it should be
noted that the increase in the number of Gaussians also increases the number of
parameters in the GMM. With the use of diagonal covariance matrix, the number
of parameters in the GMM with 64 and 128 Gaussian components is 12,352 and
24,704 respectively. We can also observe that the GMM based conversion with
MLPG performs better than that of the GMM based system without MLPG. However,
the GMM based VC system with MLPG produced lesser MCD scores than the GMM
based VC system with MLPG and GV. While GV seemed to improve the quality
of transformed speech based on human listening tests, it is not clear from [Toda
et al., 2007] whether it also improves the score according to MCD computation.
Considering the number of parameters used in the GMM model, we have used the
GMM based VC system with 64 Gaussian components (with MLPG and without GV)
for further comparison with an ANN based VC system.
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Table 5.2: MCD obtained on the test set for different architectures of an ANN model. (No. of
iterations: 200, Learning Rate: 0.01, Momentum: 0.3) Set 1: SLT to BDL; Set 2: BDL to SLT

S.No ANN architecture No. of params. MCD
Set 1 Set 2

1 25L 75N 25L 3850 6.147 5.652
2 25L 50N 50N 25L 5125 6.048 5.504
3 25L 75N 75N 25L 9550 6.147 5.571
4 25L 75N 4L 75N 25L 4529 6.238 5.658
5 25L 75N 10L 75N 25L 5435 6.154 5.527
6 25L 75N 20L 75N 25L 6945 6.151 5.517

Objective evaluation of an ANN based VC system

To build an ANN based VC system, we have considered two cases 1) SLT-to-BDL and
2) BDL-to-SLT. For both the experiments, the number of training utterances is 40
(approximately 2 minutes) and the testing is done on the test set of 59 utterances
(approximately 3 minutes).

Table 5.2 provide MCD scores for SLT-to-BDL and BDL-to-SLT respectively for
different architectures of ANN. In this work, we have experimented with 3-layer,
4-layer and 5-layer ANNs. The architectures are provided with the number of nodes
in each layer and the activation function used for that layer. For example, an
architecture of 25L 75N 25L means that it is a 3-layer network with 25 input and
output nodes and with 75 nodes in the hidden layer. Here, L represents “linear”
activation function and N represents “tangential (tanh)” activation function. From
Table 5.2, we see that the four layered architecture 25L 50N 50N 25L (with 5125
parameters) provides better results when compared with other architectures. Hence,
for all the remaining experiments reported in this section, the four layer architecture
is used.

In order to determine the effect of number of parallel utterances used for training
the voice conversion models, we performed experiments by varying the training data
from 10 to 1073 parallel utterances. Please note that the number of test utterances
was always 59. Figure 5.5 shows the MCD scores for ANN, GMM + MLPG and
GMM (without MLPG) based VC systems computed as a function of number of
utterances used for training. From Figure 5.5, we could observe that as the number
of training utterances increase, the MCD values obtained by both GMM and ANN
models decrease.
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Figure 5.5: MCD scores for ANN, GMM+MLPG and GMM (without MLPG) based VC systems com-
puted as a function of number of utterances used for training. The results for GMM based VC
systems are obtained using 64 mixture components.

Subjective evaluation of GMM and ANN based VC systems

In this section, we provide subjective evaluations for ANN and GMM based voice
conversion systems. For these tests, we have made use of voice conversion models
built from 40 parallel utterances, as it was shown that this modest set produces
good enough transformation quality in terms of objective measure. We conducted
MOS, ABX and similarity tests to evaluate the performance of the ANN based
transformation against the GMM based transformation. It has to be noted that all
experiments with GMM use static and delta features but the experiments with ANN
use only the static features. A total of 32 subjects were asked to participate in the
four experiments listed below. Each subject was asked to listen to 10 utterances
corresponding to one of the experiments. The results are presented in Fig. 5.6.

Figure 5.6(a) provides the MOS scores of –

1) ANN,

2) GMM + MLPG and

3) GMM (without MLPG) based VC systems.

Figure 5.6(b) provides the results of ABX test of –

4) ANN vs (GMM + MLPG) for BDL to SLT,

5) ANN vs (GMM + MLPG) for SLT to BDL,
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Figure 5.6: (a) - MOS scores for 1: ANN, 2: GMM+MLPG, 3: GMM. (b) ABX results for 4: ANN vs
GMM+MLPG (M->F), 5: ANN vs GMM+MLPG (F->M), 6: ANN vs GMM (M->F), 7: ANN vs GMM
(F->M)

6) ANN vs GMM for BDL to SLT and

7) ANN vs GMM for SLT to BDL.

The MOS scores and ABX tests indicate that the ANN based VC system performs
as good as that of the GMM based VC system. The MOS scores also indicate that
the transformed output from the GMM based VC system with MLPG was perceived
to be better than that of the GMM based VC system without MLPG.

Table 5.3: Average similarity scores between transformed utterances and the natural utterances of
the target speakers.

Transformation Method Avg. Similarity Score
SLT to BDL BDL to SLT

ANN 2.93 3.02
GMM + MLPG 1.99 2.56

A similarity test is also performed between the output of the ANN/GMM based
VC system and the target speaker’s natural utterances. The results of this similarity
test are provided in Table 5.3, which indicate that the ANN based VC system seems
to perform as good or better as that of the GMM based VC system. The significance
of difference between the ANN and the GMM+MLPG based VC systems for MOS
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and similarity scores was tested using hypothesis testing based on Student t-test,
and the level of confidence indicating the difference was found to be greater than
95%.

In order to show that the ANN based transformation can be generalized over
different databases, we have provided MOS and MCD scores for voice conversion
performed for 10 different pairs of speakers as shown in Figure 5.7. While MCD
values were obtained over the test set of 59 utterances, the MOS scores were
obtained from 16 subjects, each performing the listening tests on 10 utterances.
The MCD scores in Figure 5.7 are in the acceptable range of 5-8, indicating that
ANN based VC conversion approach is applicable for different datasets.

A further analysis drawn from these results show that inter-gender voice trans-
formation (ex: male to female) has an average MCD and a MOS score of 5.79 and
3.06 respectively while the intra-gender (ex: male to male) voice transformation
has an average MCD and a MOS score of 5.86 and 3.0 respectively. Another result
drawn from the above experiments indicates that the transformation performance
between two speakers with the same accent is better than that when compared with
performance on speakers with different accents. For example, the voice transforma-
tion from SLT (US accent) to BDL (US accent) obtained an MCD value of 5.59 and a
MOS score of 3.17, while the voice transformation from BDL (US accent) to AWB
(Scottish accent) obtained an MCD value of 6.04 and a MOS score of 2.8.

5.5 Discussion

In the area of spectral mapping, several approaches have been proposed since the
first code book based spectral transformation was developed by Abe et. al. [Abe
et al., 1988]. These techniques include artificial neural networks.

Narendranath et. al. [Narendranath et al., 1995] used ANNs to transform the
formants of a source speaker to those of a target speaker. Results were shown that
the formant contour of a target speaker could be obtained using an ANN model.
A formant vocoder was used to synthesize the transformed speech. However, no
objective or subjective evaluations were provided to show how good the transformed
speech was. The use of radial basis function neural network for voice transformation
was proposed in [Watanabe et al., 2002]. The work in [Rao, 2010] also uses ANNs
for spectral and prosodic mapping, but relies on additional signal processing for
automatic extraction of syllable like regions using pitch synchronous analysis. The
method of voice conversion used in this thesis differs from these earlier approaches
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Figure 5.7: (a) MOS and (b) MCD scores for ANN based VC systems on 10 different pairs of
speakers

in the following ways –

• Earlier approaches used either a carefully prepared training data which in-
volved manual selection of vowels and syllable regions [Narendranath et al.,
1995] [Watanabe et al., 2002] or signal processing algorithms to locate syl-
lable like regions [Rao, 2010]. The proposed approach in this work needs
neither manual effort nor signal processing algorithms to locate syllable like
regions. Our approach makes use of a set of utterances provided from a source
and a target speaker and automatically extracts the relevant training data
using dynamic programming to train a voice conversion model.

• In previous works, there have been no comparative studies to evaluate how an
ANN based VC system performs in comparison with other approaches. In this
work, we have compared ANN based approach to a widely used GMM based
approach. In this comparative study, we have shown that ANN based voice
conversion performs as good as that of a GMM based conversion. Subjective
and objective measures are conducted to evaluate the usefulness of ANNs for
voice conversion. The MCD scores of ANN based voice conversion are in the
acceptable range of 5-8.

Our work on ANNs differ from GMMs in the following ways –
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• GMM based conversion is a linear transformation. The number of parameters
required for a 64-component GMM is 12,352 (see Table 5.1). In contrast,
ANN based transformation is nonlinear. The number of parameters in the four
layer architecture of the ANN model is 5,125 (see Table 5.2). A reduction of
58% in the number of parameters indicates lesser number of floating point
computations. This makes ANN more suitable for deployment in low power
hand held devices.

• GMM based VC systems depend on MLPG for smoothing the trajectories. This
smoothing is done as a postprocessing technique for the transformed utterance.
Thus, GMMs require a context of at least 500-1000 milliseconds to perform
MLPG based smoothing. In contrast, ANN based VC systems do not need any
postprocessing technique. Both the subjective and objective evaluations show
that ANN based VC transformation is better than GMM+MLPG. We believe this
is a characteristic of the nonlinear mapping function of an ANN model, which
seems to capture correlation between frames, implicitly during training. This
makes it convenient to use ANN models in building on-line voice conversion
systems (i.e., conversion on the fly without buffering any previous frames).

Finally, we should note that both ANN and GMM based VC techniques depend
on collection of parallel data – the same set of utterances recorded by both the
source and target speakers. Such collection may not always be feasible. In the next
chapter, we primarily address this issue and propose methods which avoid parallel
data for building voice conversion models.

5.6 Summary

In this chapter, we have discussed techniques for conversion of speaker characteris-
tics, so that utterances sound as if spoken by a target speaker. We have developed
an ANN based voice conversion model and evaluated it on several speakers of CMU
ARCTIC datasets. We have also demonstrated that the performance of an ANN
based voice conversion system is good as that of a GMM based conversion system.
An important limitation of techniques presented in this chapter is requirement of
parallel data for building voice conversion models.





Chapter 6

Modeling target speaker
characteristics

So far we have discussed voice conversion (VC) approaches which rely on existence
of parallel data, i.e, the source and the target speakers record the same set of
utterances. Availability of such parallel data enables deriving a relationship between
utterances of source and target speakers at a phone/frame level and build a VC
system.

Availability of parallel data is not always feasible. For example, it is difficult to
summon a celebrity or famous personality to record a parallel set of utterances. At
the same time, if the languages spoken either the source and target speakers are
different, then there is no possibility of recording a same set of utterances. However,
clustering techniques could be used to derive a relationship between utterances of
the source and target features at phone or sound level [Sundermann et al., 2003],
[Sundermann et al., 2006]. For example – using the k-means clustering algorithm,
the spectral vectors of the target speaker are segmented into M clusters. Similarly,
the spectral vectors of the source speaker are segmented into N clusters. Now, by
comparing the centroids of the source and target clusters, one can find phonetically
equivalent source and target clusters. This enables in deriving pseudo-parallel data
between the source and target speakers, and to train a voice conversion model.
Another method is to train a voice conversion model on pre-existing parallel datasets.
Speaker adaptation techniques are then used to adapt this voice conversion model to
a particular pair of source and target speakers for which no parallel data is available
[Mouchtaris et al., 2006].

While these methods avoid the need for parallel data, they still require speech

73
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data (though non-parallel) from the source speakers a priori to build voice conver-
sion models. This is a limitation to an application where an arbitrary user intends to
transform his/her speech to a pre-defined target speaker without recording anything
a priori.

6.1 Research question and challenges

Current voice conversion techniques focus on obtaining an optimal mapping function
between the source and target speakers. The central research question here is –
“How to obtain an optimal mapping function which transforms the acoustic hints
of a source speaker to that of a target speaker?”. This research question assumes
that both the source and target speakers’ data is available (either in parallel or
in pseudo-parallel form), and the unsolved part of the riddle is just the optimal
mapping function.

As discussed previously, the assumption of existence of parallel or pseudo-
parallel data is not valid for many practical applications. Hence, we posed an
alternative but relevant research question, which is – “How to capture speaker-
specific characteristics of a target speaker from the speech signal (independent of
any assumptions about a source speaker) and impose these characteristics on the
speech signal of any arbitrary source speaker to perform voice conversion?”. The
problem of capturing speaker-specific characteristics can be attempted in one of the
following ways –

• A new signal processing technique motivated by the speech production process
could be developed to extract features specific to a speaker. This solution is
hard, and needs breakthroughs in explicitly identifying the speaker-specific
information in a speech signal.

• An autoassociative neural network (AANN) model can be trained to capture a
speaker-specific distribution of feature vectors by performing an identity map-
ping of target speaker’s acoustic space [Ikbal et al., 1999], [Yegnanarayana and
Prahallad, 2002], [Joshi et al., 2008]. As shown in Fig. 6.1, the architecture
of such an AANN model consist of five layers – an input layer, expansion layer,
bottleneck layer, expansion layer and the output layer. During the process of
training the AANN model to perform an identity mapping, it essentially cap-
tures a lower dimensional subspace (due to bottleneck layer) characterizing
the target speaker. This property of bottleneck layer can be exploited for voice
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conversion. To perform voice conversion, the feature vectors of an arbitrary
source speaker can be projected onto the lower dimensional subspace using
the bottleneck layer of the target speaker’s AANN model. Given that, this
lower dimensional subspace is specific to the target speaker [Yegnanarayana
and Prahallad, 2002], the reconstruction from the subspace is expected to
bear the identity of the target speaker.
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Figure 6.1: A Five layer AANN model

• The problem of capturing speaker-specific characteristics can be viewed as
modeling a noisy-channel. Suppose, C is a canonical form of a speech signal –
a generic and speaker-independent representation of the message in speech
signal, passes through the speech production system of a target speaker to
produce a surface form S. This surface form S carries the message as well as
the identity of the speaker.

One can interpret S as the output of a noisy-channel, for the input C. Here,
the noisy-channel is the speech production system of the target speaker. The
schematic diagram of this noisy-channel model is shown in Fig. 6.2.

Figure 6.2: Noisy channel model for capturing speaker-specific characteristics.

The mathematical formulation of this noisy-channel model is –

argmax
S

p(S/C) = argmax
S

p(C/S)p(S)
p(C)

(6.1)

= argmax
S

p(C/S)p(S), (6.2)
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as p(C) is constant for all S. Here p(C/S) could be interpreted as production
model. p(S) is the prior probability of S and it could be interpreted as the
continuity constraints imposed on the production of S. It could be seen
analogous to a language model of S.

6.2 Capturing speaker-specific characteristics

In this thesis, we use noisy-channel model approach for capturing speaker-specific
characteristics of a target speaker. Here p(S/C) is directly modeled as a mapping
function between C and S using artificial neural networks. There have been similar
efforts earlier to capture speaker-specific characteristics. Gong and Haton [Gong
and Haton, 1992] proposed to capture a speaker-specific mapping function using
a nonlinear vector interpolation model. Hermansky et. al., and Misra et. al., have
provided a more rigorous experimentation and interpretation for capturing speaker-
specific mappings using artificial neural networks [Hermansky and Malayath, 1998],
[Misra et al., 2003]. Our work differ from these as follows –

• As described in Section 6.1, the problem of capturing speaker-specific charac-
teristics is formulated as modeling a noisy-channel. Such interpretation is not
provided in these earlier works. The formulation of noisy channel is explained
in Eq. (6.1). As a result of this formulation, one can model p(C/S) and p(S)
using Markov models to obtain p(S/C)1.

• Gong et. al.,, Hermansky et. al., and Misra et. al., have applied the concept of
capturing speaker-specific mappings for the task of speaker recognition. In
this work, we apply it for the task of voice conversion.

The process of capturing speaker-specific characteristics and its application to voice
conversion is explained below –

Suppose, we derive derive two different representations C and S from the speech
signal with the following properties.

• C is a lower dimensional representation of the speech signal, while S is a
higher dimensional representation of the speech signal. There may or may not
be a redundancy between C and S.

1In the scope of this thesis, we chose to model p(S/C) directly using artificial neural networks –
this is coherent with the experiments in previous chapters. The implementation of p(C/S) and p(S)
using Markov models can be a potential future work of this thesis.
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Figure 6.3: Capturing speaker-specific characteristics as a speaker-coloring function

• There exists a function Ω(.), such that an approximation S ′ of S can be
obtained from C, S ′ = Ω(C).

Suppose, C is a canonical form of speech signal - a generic and speaker-
independent form - approximately represented by first few formant frequencies and
their bandwidths, and S is a surface form represented by Mel-cepstral coefficients
(MCEPs). It can be argued that the C and S have redundant information of formant
frequencies, and - by borrowing the knowledge from speaker recognition studies
[Jin et al., 2007] - it is safe to assume that S has additional information of speaker
characteristics. If there exists a function Ω(.) such that S ′ = Ω(C), where S ′ is an
approximation of S - then Ω(C) can be considered as specific to a speaker. The func-
tion Ω(.) could be interpreted as speaker-coloring function. We treat the mapping
function Ω(.) as capturing speaker-specific characteristics. It is this property of Ω(.),
we exploit for the task of voice conversion. Fig. 6.3 depicts the concept of capturing
speaker-specific characteristics as a speaker-coloring function. It should be noted
that other representations of canonical form (C) include articulatory features and
acoustic-phonetic features. However, due to simplicity and availability of existing
tools for extracting formant features, we have chosen to experiment with formant
frequencies in this thesis.

6.3 Application to voice conversion

Given the utterances from a target speaker T , the corresponding canonical form
CT of the speaker is represented by a number of formants, their bandwidths and
delta features. One question is – how many formants to be used and whether the
extraction of formants is reliable?. After experimenting with four and six formant
frequencies, we found that the six formant frequencies are better suited for our
purposes (see Section 6.4 and Table 6.1). The formant frequencies, bandwidths,
fundamental frequency F0 and probability of voicing are extracted using the ESPS
toolkit [ESPS, 2009]. This is a widely used toolkit and provides reasonably good
estimate of formant frequencies.



78 Chapter 6: Modeling target speaker characteristics

Figure 6.4: Flowchart of training and conversion modules of a VC system capturing speaker-specific
characteristics. Notice that during training, only the target speaker’s data is used.

To alleviate the effect of speaker characteristics, the formant features undergo
a normalization technique such as vocal tract length normalization as explained
in Section 6.3.1. The surface form ST is represented by traditional MCEP features,
as it would allow us to synthesize using the MLSA synthesis technique. The MLSA
synthesis technique generates a speech waveform from the transformed MCEPs
and F0 values using pulse excitation or random noise excitation [Imai, 1983]. An
ANN model is trained to map CT to ST using backpropagation learning algorithm
to minimize the Euclidean error ||ST − S

′
T ||, where S ′

T = Ω(CT ). Once the model is
trained, it could be used to convert CR to S ′

T where CR could be from any arbitrary
speaker R. A schematic diagram of training and conversion modules is shown in
Fig. 6.4. Notice that during training, only the target speaker’s data is used.

6.3.1 Vocal tract length normalization

Vocal tract length normalization (VTLN) is a speaker normalization technique that
tries to compensate for the effect of speaker-dependent vocal tract lengths by
warping the frequency axis of the magnitude spectrum. Apart from use in speech
recognition, VTLN has also been used in voice conversion [Sundermann et al.,
2004], [Sundermann et al., 2003], [Sundermann et al., 2006].
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Figure 6.5: Integration of an error correction network with the speaker-coloring network.

Following the work in [Faria, 2003], we estimate the warp factors using pitch
information and modify both formants and bandwidths. A piece-wise linear warping
function as described in [Faria, 2003] is used in this work. The features representing
C undergo a VTLN, to normalize the speaker effect.

6.3.2 Error correction network

We introduce a concept of an error correction network which is essentially an
additional ANN network, used to map the predicted MCEPs to the target MCEPs so
that the final output obtained features represent the target speaker in a better way.
The integration of the error correction network with the speaker-coloring network
is shown in Figure 6.5. Once S ′

T is obtained, it is given as input to the second ANN
model. Let S ′′

T denote the output of this second ANN model. It is trained to reduced
the error ||S ′′

T − ST ||. Such a network acts as an error correction mechanism to
correct any errors made by the first ANN model. It is observed that while the MCD
values of S ′

T and S ′′
T do not vary much, the speech synthesized from S

′′
T was found to

be smoother than that of speech synthesized from S
′
T . To train the error correction

network, we use 2-D features i.e., feature vectors from 3 left frames, and 3 right
frames are added as context to the current frame. Thus the ANN model is trained
with 175 dimensional vector (25 dimension MCEPs * (3+1+3)). The architecture
of this error correction network is 175L 525N 525N 175L.

6.4 Experiments using parallel data

As an initial experiment, we used parallel data, where R = BDL and T = SLT. Fea-
tures representing CR were extracted from the BDL speaker and were mapped onto
the ST of SLT. This experimentation was done to obtain a benchmark performance
for the experiments which map CT to ST (as explained in Section 6.4.1).

The features representing C undergo a VTLN (as discussed in Section 6.3.1),
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Table 6.1: Results of source speaker (SLT-female) to target speaker (BDL-male) transformation
with training on 40 utterances of source formants to target MCEPs on a parallel database. Here F
represents Formants, B represents Bandwidths, ∆ and ∆∆ represents delta and delta-delta features
computed on ESPS features respectively. UVN represents unit variance normalization.

S.No Features ANN architecture MCD
1 4 F 4L 50N 12L 50N 25L 9.786
2 4 F + 4 B 8L 16N 4L 16N 25L 9.557
3 4 F + 4 B + UVN 8L 16N 4L 16N 25L 6.639
4 4 F + 4 B + ∆ + ∆∆ + UVN 24L 50N 50N 25L 6.352
5 F0 + 4 F + 4 B + UVN 9L 18N 3L 18N 25L 6.713
6 F0 + 4 F + 4 B + ∆ + ∆∆ + UVN 27L 50N 50N 25L 6.375
7 F0 + Prob. of Voicing + 4 F + 4 B + ∆ + ∆∆ + UVN 30L 50N 50N 25L 6.105
8 F0 + Prob. of voicing + 6 F + 6 B + ∆ + ∆∆ + UVN 42L 75N 75N 25L 5.992
9 (F0 + Prob. of voicing + 6 F + 6 B + ∆ + ∆∆ + UVN) + (42L 75N 75N 25L) + 5.615

(3L3R MCEP to MCEP error correction) (175L 525N 525N 175L)

to alleviate the speaker effect. However, in this experiment, the mapping is done
between BDL’s CR to SLT’s ST . The process of training such a voice conversion model
is similar to the process explained in Section 5.4. In Section 5.4, the features of BDL
speaker were represented by MCEPs, where as in this experiment, the formants and
bandwidths are used. The results obtained in this section could also be compared
with the results obtained in Section 5.4. Hence, VTLN was not performed on the
features representing CR in this experiment.

Training was done to map BDL-formants to SLT-MCEPs with 40 utterances.
Testing was done on a set of 59 utterances. Table 6.1 shows the different repre-
sentations of CR and their effect on MCD values. These different representations
include combination of different number of formants and their bandwidths, delta
and acceleration coefficients of formants and bandwidths, pitch and probability of
voicing. From the results provided in Table 6.1, we can observe that experiment 9
(which uses six formants, six bandwidths, probability of voicing, pitch along with
their delta and acceleration coefficients) employing an error correction network
provided better results in terms of MCD values. These results are comparable with
the results of voice conversion with BDL-MCEPs to SLT-MCEPs mapping as found in
Section 5.4.

6.4.1 Experiments using non-parallel data

In this experiment, we built an ANN model which maps CT features of SLT onto
ST features of SLT. Here CT extracted from SLT utterances is represented by six
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Figure 6.6: A plot of MCD scores obtained between multiple speaker pairs with SLT or BDL as the
target speaker. The models are built from a training data of 24 minutes and tested on 59 utterances
(approximately 3 min).

formants, six bandwidths, F0, probability of voicing and their delta and acceleration
coefficients as shown in feature set for experiment 9 in Table 6.1. The formants and
bandwidths representing CT undergo VTLN to normalize the speaker effects. ST is
represented by MCEPs extracted from SLT utterances. We use the concept of error
correction network to improve the smoothness of the converted voice.

Figure 6.6 provides the results for mapping CR (where R = BDL, RMS, CLB, JMK
voices) onto the acoustic space of SLT. To perform this mapping the voice conversion
model is built to map CT to ST (where T = SLT) is used. To perform VTLN, we
have used the mean pitch value of SLT. Hence all the formants of source speaker are
normalized with VTLN using mean of SLT F0 and then are given to ANN to predict
the 25 dimensional MCEPS. Similar results where the voice conversion model is
built by capturing BDL speaker-specific features are also provided in Figure 6.6.

We also performed listening tests whose results are provided in Table 6.2 for
MOS scores and similarity tests. For the listening tests, we chose 3 utterances
randomly from each of the transformation pairs. Table 6.2 provides a combined
output of all speakers transformed to the target speaker (SLT or BDL). There
were 10 listeners who participated in the evaluations tests. The MOS scores and
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Figure 6.7: A plot of MCD v/s Data size for different speaker pairs, with SLT or BDL as the target
speaker.

Table 6.2: Subjective evaluation of voice conversion models built by capturing speaker-specific
characteristics

Target Speaker MOS Similarity tests
BDL 2.926 2.715
SLT 2.731 2.47

similarity test results are averaged over 10 listeners. The results shown in Figure
6.6 and Table 6.2 indicate that voice conversion models built by capturing speaker-
specific characteristics using ANN models are useful. Figure 6.7 shows the effect
of amount of training data in building the ANN models capturing speaker-specific
characteristics. It could be observed that the MCD scores tend to decrease with the
increase in the amount of training data.

To validate the proposed method on more number of speakers, we conducted
experiments on other speakers from the ARCTIC set, such as RMS, CLB, JMK, AWB
and KSP. The training for all these experiments was conducted on 6 minutes of
speech data. However, the testing was done on the standard set of 59 utterances.
The MCD scores provided in Table 6.3 are in the acceptable range of 5-8. This
indicates that the methodology of training an ANN model to capture speaker-specific
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characteristics for voice conversion could be generalized over different datasets.
However, it should be noted that these MCD scores are higher in comparison with
that of obtained from parallel data (see Fig. 5.7 in Section 5.4). This suggests that
if parallel data is available, then it should be preferred to build a voice conversion
model using parallel data.

Table 6.3: Performance of voice conversion models built by capturing speaker-specific features are
provided with MCD scores. Entries in the first column represent source speakers and the entries in
the first row represent target speakers. All the experiments are trained on 6 minutes of speech and
tested on 59 utterances or approximately 3 minutes of speech.

XXXXXXXXXXXXSource
Target

RMS CLB AWB KSP

RMS - 6.716 6.251 6.891
CLB 7.066 - 6.297 7.166
AWB 6.847 6.517 - 6.769
KSP 7.392 7.239 6.517 -
JMK 6.617 6.616 6.224 6.878
BDL 6.260 6.137 6.558 6.820
SLT 7.430 5.791 6.354 7.278

6.5 Application to cross-lingual voice conversion

Cross-lingual voice conversion is a task where the language of the source and the
target speakers is different. In the case of a speech-to-speech translation system, a
source speaker may not know the target language. Hence, to convey information
in his/her voice in the target language, cross-lingual voice conversion assumes
importance. The availability of parallel data is difficult for cross-lingual voice
conversion. One solution is to perform a unit selection approach [Sundermann
et al., 2004], [Sundermann et al., 2003], [Sundermann et al., 2006] to find units
in the utterances of the target speaker that are close to the source speaker or use
utterances recorded by a bi-lingual speaker [Mouchtaris et al., 2006]. Our solution
to cross-lingual voice conversion is to employ the ANN model which captures
speaker-specific characteristics. In this context, we performed an experiment to
transform three female speakers (NK, PRA, LV) speaking Telugu, Hindi and Kannada
respectively into a male voice speaking English (US male - BDL). Our goal here
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Table 6.4: Subjective results of cross-lingual transformation. Utterances from NK speaking Telugu,
PRA speaking Hindi and LV speaking Kannada are transformed to sound like BDL.

Source Speaker (Lang.) Target Speaker (Lang.) MOS Similarity tests
NK (Telugu) BDL (Telugu) 2.88 2.77
PRA (Hindi) BDL (Hindi) 2.62 2.15

LV (Kannada) BDL (Kannada) 2.77 2.22

is to transform NK, PRA and LV voices to BDL voice and hence the output will be
as if BDL were speaking in Telugu, Hindi and Kannada respectively. We make use
of BDL models built in Section 6.4.1 to capture speaker-specific characteristics.
Ten utterances from NK, PRA, LV voices were transformed into BDL voice and
we performed MOS test and similarity test to evaluate the performance of this
transformation. Table 6.4 provides the MOS and similarity test results averaged
over all listeners. There were 10 native listeners of Telugu, Hindi and Kannada who
participated in the evaluations tests. The MOS scores in Table 6.4 indicate that the
transformed voice was intelligible. The similarity tests indicate that cross-lingual
transformation could be achieved using ANN models, and the output is intelligible
and possesses the characteristics of BDL voice.

6.6 Summary

In this chapter, we have shown that it is possible to build a voice conversion model
by capturing speaker-specific characteristics of a speaker. We have used an ANN
model to capture the speaker-specific characteristics. Such a model does not require
any speech data from source speakers and hence could be considered as independent
of a source speaker. We have also shown that an ANN model capturing speaker-
specific characteristics could be applied for cross-lingual voice conversion. A set
of transformed utterances corresponding to results of this work is available for
listening at http://bit.ly/vctaslp

In this chapter, we have used formant frequencies and their bandwidths to
represent the canonical form of a speech signal. However, this representation may
not be optimal. Other representations such as articulatory and acoustic-phonetic
features need to be experimented. The application of ANN models capturing speaker-
specific characteristics for cross-lingual voice conversion raises several research

http://bit.ly/vctaslp
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issues. These include transformation of source sounds unknown to the target
speaker. Studies have to be performed to compare the cross-lingual transformation
of ANN models and (bi-lingual) human subjects.





Chapter 7

Concluding words

In this thesis, we have addressed the issues in development of voices from audio
books; segmentation of monologues in audio books; modeling speaker-specific
phrase patterns and conversion of speaker-characteristics in synthesized utterances.
The major contributions of this thesis are as follows.

• INTERSLICE: To segment a long speech file, we have proposed modifications
to the Viterbi algorithm. These modifications are implemented as a package
referred to as INTERSLICE in FestVox - which is an open source tools for
building synthetic voices. INTERSLICE segments long speech files without the
need for a speech recognition system. Thus the proposed approach is also
suitable for languages (especially low resource languages) with no availability
of large vocabulary speech recognition.

• An unsupervised algorithm for learning speaker-specific phrase breaks:
In this thesis, we have proposed an unsupervised algorithm to learn speaker-
specific phrase breaks. The proposed algorithm consists of two phases. In
phase-I, a hypothesis is made about the location of phrase breaks using pauses
as acoustic cues. In phase-II, the hypothesized regions of phrase breaks
are treated as labeled data. Features based on F0, duration and energy are
extracted from these regions to build a classifier which labels each word
with the class of break or not-a-break. This phrase break classifier is further
bootstrapped with the rest of unlabeled data. By empirical evidence, we have
shown that speaker-specific phrase breaks improve the quality of synthetic
voices.

87
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• A method for modeling target speaker characteristics: In this thesis, we
have addressed the issue of personalization of synthetic voices by using voice
conversion models. The question we address is - “can we capture speaker-
specific characteristics of a target speaker from the speech signal (independent
of any assumptions about a source speaker) and super-impose these char-
acteristics on the speech signal of any arbitrary source speaker to perform
voice conversion?”. We have proposed a method to capture speaker-specific
characteristics of a target speaker using an ANN model and avoid the need for
speech data from a source speaker to train/adapt a voice conversion model.

7.1 Conclusions

• Audio books in the public domain can be used for building synthetic
voices. It is known that story speech databases have rich prosody. Prior to
this work, it was unclear whether the quality of audio books in public domain
would be suitable for building synthetic voices. As a part of this thesis, we
have observed that audio books - although in public domain, recorded and
maintained by volunteers - offer excellent candidates for building synthetic
voices. These books have a low disfluency rate, speech-to-noise ratio of around
30 dB and provide a large amount of speech data by a single speaker. We have
shown that synthetic voices built from these audio books have Mel-cepstral
distortion scores (an objective measure to evaluate the quality of synthetic
voices) in the range of 4-7 dB. This is an acceptable range, and is similar to
scores for voices built from high quality studio recordings.

• Segmentation of long speech files can be accomplished without ASR. To
build voices from audio books, segmentation of monologues - long speech
files - is an issue. Existing methods pose segmentation of long speech files
as an automatic speech recognition (ASR) problem. A long speech file is
broken into chunks, and each chunk is transcribed using an ASR with an
adaptive and restrictive language model. In spite of search space being
restricted, the transcription obtained from an ASR is not always error-free,
especially at chunk boundaries. Hence, a post-processing stage is involved by
aligning the original text with the obtained transcription. Apart from practical
difficulty in implementing this approach (in the context of a TTS system), it
strongly implies that a speech recognition system should be readily available
before building a speech synthesis system. In this thesis, we have shown
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that the segmentation of long speech files can be accomplished by suitable
modifications to the Viterbi algorithm. These modifications allow to process a
long speech file in parts, without any need for a speech recognition system.

• Prosodic phrase breaks are specific to a speaker. Prosodic phrase breaks
are essential for comprehension and naturalness of utterances. Existing meth-
ods learn phrasing patterns on a standard corpus. For example, in Festival,
a default phrasing model for English trained on the Boston University Radio
corpus is employed to predict breaks for all English voices. Thus prosodic
phrasing patterns are generalized across all voices while ignoring speaker-
specific phrasing patterns. In this thesis, through empirical evidence we have
shown that prosodic phrase breaks are specific to a speaker. This implies that
speaker-specific phrasing patterns need to be modeled in TTS systems.

• Speaker-specific phrase breaks improve the quality of synthetic voices.
In this thesis, we have shown that incorporation of speaker-specific phrase
breaks improves the quality of synthetic voices. Studies have been conducted
on multiple voices in English and Telugu. The experimental results show that
speaker-specific phrase breaks improve the spectral quality in comparison with
generic prosodic phrase breaks.

• Artificial neural network (ANNs) based voice conversion performs as
good as that of a Gaussian mixture model (GMM) based voice conver-
sion. Conversion of speaker-characteristics is one of several ways of person-
alizing a synthetic voice to listeners. Traditionally, Gaussian mixture models
are used for voice conversion. In this thesis, we have shown that an ANN
based voice conversion performs as well as or sometimes better than a GMM
based voice conversion. The use of an ANN model assumes significance as the
number of parameters in an ANN based voice conversion is lesser than that of
a GMM based voice conversion. Moreover, an ANN based voice conversion do
not require maximum likelihood parameter generation (MLPG) based smooth-
ing of trajectories. This allows an ANN model to be used in building an online
voice conversion system without buffering the input data.

• To build a voice conversion model, it is not necessary to have parallel or
pseudo-parallel data. To build a voice conversion model, current methods
require a same set of utterances recorded by the source and target speakers.
In case of non-availability of parallel data, pseudo-parallel data is derived
by looking for similar sounds in the source and target speakers’ recordings.
However, such techniques do not allow a random unseen source speaker to
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convert his/her voice to a target speaker. In this thesis, we have shown that
it is possible to capture speaker-specific characteristics of a target speaker
independent of source speakers. Such method is shown to perform mono-
lingual as well as cross-lingual voice conversion of any arbitrary speaker.

• Enabling prosody research by leveraging audio books: Finally, the tech-
niques developed in this thesis enable prosody research by leveraging a large
number of audio books available in the public domain. We believe, this is an
important milestone in prosody modeling and in building natural sounding
synthetic voices.

• Crowd sourcing: With INTERSLICE being integrated in FestVox, synthetic
voices can be built using audio books by users with little experience in building
synthetic voices. Thus the techniques developed in this thesis serve as enabling
technology for crowd sourcing of building synthetic voices.

7.2 Future work

• Modeling prosody in TTS: Audio books encapsulate rich prosody including
intonation contours, pitch accents and phrasing patterns. As a result of this
work, we have a number of audio books segmented into paragraph length
utterances. Several interesting research questions can be investigated on this
outcome.

– How to model pitch accents which make words perceptually prominent
as in, I didn’t shoot AT him, I shot PAST him?).

– How to model variants of intonation such as wh-questions (what time is
it?), unfinished statements (I wanted to ..), yes/no questions (Are they
ready to go?) and surprise (What! The plane left already!?) present
in these audio books? This would also require some amount of text
understanding to model such varied intonation. Another dimension on
this issue is - whether the modeling algorithms should be domain and
language dependent or independent?

– What is the right level of unit to capture the pitch accents and intonation
patterns? Is it at syllable, multi-syllable such as mora/foot, word or
phrase level? It is also important to investigate long range dependencies
such as sentence/paragraph coloring on F0 contours.
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– What is an appropriate representation of intonation contours? For exam-
ple, TILT is a model of intonation that represents intonation as a sequence
of continuously parameterized intonation events [Taylor, 2000]. The
basic types of intonation events are pitch accents and boundary tones,
and they are parameterized using rise/fall/connection (RFC) model. In
the RFC model, the rise and fall parts are parameterized using amplitude,
duration and tilt which expresses the overall shape of the event. Other
possible representations include curve fitting, regression and sinusoidal
modeling of intonation contours.

– How to represent and parameterize intonation contours across sentences,
and at a paragraph level? A paragraph is often defined as expression of
a single thought or character’s continuous words. Could intonation and
duration be modeled at a character level in a story?

– Another equally important aspect is to seek techniques for predicting
appropriate intonation, duration and phrasing patterns from text. What is
the right set of lexical and contextual features that is useful for predicting
intonation, duration and phrasing patterns from text?

– Evaluation of prosodic models is another challenging research topic.
What are the objective and subjective measures to compare and evaluate
two prosodic models? Traditional listening tests might be hardly useful.
Hence, innovative ways of seeking listener’s preference have to be sought.
This could include character level prosody modeling in a story, and
evaluation of a character by the listeners.

• Language-Independent Models: To build INTERSLICE, we have used speaker-
independent HMMs. To extend INTERSLICE to a new language, we need to
have a set of speaker-independent acoustic models in the new language. It
is important to note that our major interest in INTERSLICE lies in obtaining
beginning and ending of utterances in long speech files. Thus, it would be
interesting to build language-independent acoustic models and use them in
INTERSLICE. Globalphone set is a good example of language-independent
acoustic models [Schultz and Waibel, 1998].

• Detection of mispronunciation: In this thesis, we have considered only high
quality audio books, which have a low disfluency rates. However, this may not
be the case for all audio books. During the recordings, a speaker might delete
or insert at syllable, word, sentence level and thus the speech signal does not
match with the transcription. It is important to detect these mispronunciations
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using acoustic confidence measures so that the specific regions or the entire
utterances can be ignored while building voices.

• Detection of pronunciation variants: Speakers may incorporate subtle vari-
ations at the sub-word during pronunciation of content words, proper nouns
etc. and these pronunciation variants have to be detected and represented so
that they could be produced back during synthesis.

• Filtering: Often recordings may have multiple sources, thus filtering of multi-
speakers data, music and speech and nullifying the noisy or channel effects
may be needed.

• Audio books without transcripts: The techniques developed in this thesis
assume that the transcript corresponding to audio data is available for building
a synthetic voice. Given the explosion of multimedia content such as podcasts,
the availability of audio data without a transcript has increased tremendously.
Hence, techniques are needed which exploit the vast amount of audio data
without a transcript for building synthetic voices. Such techniques also play
an important role in building synthetic voices for languages without a writing
system. (According to Omniglot – www.omniglot.com, there are about 6200
languages without a writing system as apposed to 750 languages with writing
systems).

• Modeling prosody and excitation in voice conversion: Current voice con-
version techniques rely mostly on spectral transformation. Prosodic features
such as intonation and duration patterns also play an important role in charac-
terizing a speaker. Given parallel data between the source and target speakers,
prosodic transformation is attempted on similar lines of spectral transforma-
tion [Toth and Black, 2008],[Rao, 2010]. However, the issue of capturing
intonation and duration features of a speaker in the absence of parallel data is
still an open question.

Another important aspect is the excitation modeling in voice conversion.
Current techniques represent excitation using F0 and a linear transformation
is performed based on mean and variance of F0 of a target speaker. Studies in
[Kain and Macon, 2001] have shown that excitation information plays a role
in perceiving naturalness and speaker characteristics. Hence, it is important to
investigate methods for better representation and transformation of excitation.

• Better representation for speaker-specific mapping: In this thesis, we have
attempted to capture speaker-specific features by formulating it as a mapping
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from a lower dimensional space to a higher dimensional space. This approach
avoids any need for source speaker’s data a priori. The lower dimensional
features are interpreted as speaker-independent message part of the signal,
where as the higher dimensional features as speaker-dependent message part
of the speech signal. Formant frequencies and bandwidths have been used
to represent the lower dimensional features, where as traditional MCEPs are
used to represent the higher dimensional feature. However, formant features
may not be the best representation. Features such as articulatory parameters
need to be investigated for representing speaker-independent message part of
the signal.





Appendix A

Statistical Parametric Synthesis

Parametric synthesis techniques process the speech signal to derive parameters rep-
resenting the speech signal and synthesize speech using these parameters. However,
in traditional parametric synthesis methods, the parameters are derived manually
and rules are prepared manually to incorporate co-articulation and prosody. Statis-
tical parametric synthesis methods differ from the traditional parametric methods
by using machine learning techniques to learn the parameters and any associated
rules of co-articulation and prosody from the data.

One of the early works on statistical parametric synthesis is based on Hidden
Markov Models (HMMs). The basic idea is to extract Mel-cepstral (MCEP) feature
vectors from the speech signal and build a set of context dependent models at sub-
phonetic level often referred to as senones in speech recognition. During synthesis,
a sequence of sub-phonetic states are obtained for the text to be synthesized. The
distributions of these sub-phonetic states are used to derive a sequence of MCEP
vectors maximizing the likelihood. If the mean vectors of the distributions are used
then they would maximize the likelihood but produce step-wise discontinuities.
Hence delta and delta-delta cepstral are used as constraints to obtain a smooth
sequence of Mel-cepstral vectors. The approach to generate speech from Mel-
cepstrals is similar to vocoder. The Mel-cepstrals are passed through Mel Log Scale
Spectral Approximator (MLSA) and are excited with white noise or pulse train to
generate the speech signal [Zen et al., 2006].

In CLUSTERGEN [Black, 2006], decision trees are used to model the parameters.
The parameters used are MCEP, duration and F0. A decision tree is built separately
for each feature stream. The novelty of this approach lies in modeling the MCEP
parameters at each frame level. Thus given the duration of each sub-phonetic model,
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a decision tree would predict the most likely MCEP vector at each time interval of 5
ms. Since the prediction of each MCEP vector is done independent of its neighbors,
a trajectory model can also be used to predict the a sequence of MCEP vectors.

The sequence of steps involved in building a CLUSTERGEN voice is as follows.

• Label the speech database using an HMM labeler. This labeler uses Baum-
Welch algorithm to train context-independent HMM models from a flat-start.
Each phone HMM model in this labeler has three states. The labels are
generated at the state level.

• F0 and 25-dimensional MCEP vectors are extracted from the speech signal
using a frame size of 5 ms and a frame shift of 5 ms. Given the phone labels,
the F0 is interpolated through unvoiced regions. This effectively provides
non-zero F0 values for all 5 ms frames that contain voiced or unvoiced speech.

• For each 25-dimensional MCEP vector, higher level features are extracted,
including phonetic context, syllable structure, word position etc.

• Clustering of MCEP vectors is done using classification and regression tree
(CART). A separate CART is built for every HMM state in a phone. The
questions for this clustering are high level features and the predictee is an
MCEP vector. As an impurity measure, the variance of MCEPs at each node in
the cluster is minimized.

• An additional tree is built to predict durations and F0 for each HMM state.

• During synthesis time, the phone string is generated from the text. Every
phone is considered as a constituent of three HMM states. Thus for each HMM
state, duration and F0 are predicted from respective CART trees, based on the
phonetic context, syllabic structure, word position etc.

• Based on the predicted duration of each HMM state, a sequence of MCEPs is
predicted using the CART tree.

• Speech is synthesized from the predicted MCEPs and F0 using the MLSA filter
technique. This technique generates speech waveform from the predicted
MCEPs and F0 using pulse excitation or random noise excitation.



Appendix B

Modifications to phrasing module

In “festvox/<voice> phrasing.scm”, by default FestVox sets the parameter named
as “Phrase Method” to “prob models” for English voices. “prob models” is a prob-
abilistic model trained to predict a break or not-a-break after a word [Taylor and
Black, 1998]. This prediction is based on part-of-speech of the neighboring words
and the previous word. It also combines an n-gram model of break and not-a-break
using a Viterbi decoder to find an optimal phrasing for an utterance.

The use of probabilistic model does not give a control to insert breaks and not-a-
break in an utterance. Hence, we opted to use “cart tree” based phrasing method
which is also supported in FestVox. This is a rule based method and inserts a break or
not-a-break based on punctuation marks in the text. In order to use this method, we
represented speaker-specific prosodic phrase breaks as special punctuation symbols
in the text. Break symbols B was typically denoted by a comma ’,’ or a period ’.’,
while BB was denoted by a semicolon ’;’. The “cart tree” module used in this work
is as follows.

(set! cmu_us_phrase_cart_tree

’

((lisp_token_end_punc in (";"))

((BB))

((lisp_token_end_punc in ("’" "." "?" "\"" ","))

((B))

((n.name is 0)

((BB))

((NB))))))

(set! phrase_cart_tree cmu_us_phrase_cart_tree)

(Parameter.set ’Phrase_Method ’cart_tree)

The following are the additional modifications to incorporate prosodic phrase
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breaks in clustering process and duration modeling.

In “festival/clunits/all.desc”, add the following.
( R:SylStructure.parent.parent.pbreak
0
NB
BB
B
)

In “festival/clunits/mcep.desc”, add the following.
( R:mcep link.parent.R:segstate.parent.R:SylStructure.parent.parent.pbreak
0
NB
BB
B
)

In “festival/dur/etc/statedur.feats”,
add “R:segstate.parent.R:SylStructure.parent.parent.pbreak”.

In “festival/dur/etc/dur.feats”, add “R:SylStructure.parent.parent.pbreak”.



Appendix C

Artificial neural network models

To train an artificial neural network (ANN) model, backpropagation learning al-
gorithm is used in the pattern mode [Haykin, 1999] [Yegnanarayana, 1999]. By
incorporating some of the heuristics described in [Haykin, 1999] and [Hassoun,
1998], the actual algorithm used to train an ANN model used in this thesis is as
follows:

NOTATION

• The indices i, j and k refer to the different units in the network.

• The iteration (time step) is denoted by n.

• The symbol ej(n) refers to the error at the output unit j for iteration n.

• The symbol dj(n) refers to the desired output unit j for iteration n.

• The symbol yj(n) refers to the actual output unit j for iteration n.

• The symbol wjk(n) denotes the synaptic weight connecting the output of the
unit k to the input of unit j at iteration n. The correction applied to this
weight at iteration n is denoted by ∆wjk(n).

• The induced local field (i.e., weighted sum of all synaptic inputs plus bias) of
unit j at iteration n is denoted by vj(n).

• The activation function describing the input-output functional relationship of
the nonlinearity associated with unit j is denoted by ϕj(.). For linear activation
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of the unit j, ϕj(vj(n)) = vj(n), whereas, for nonlinear activation of the unit
ϕj(vj(n)) = a ∗ tanh(b ∗ vj(n)). The values of a, b are taken as 1.7159 and 2/3
respectively (pg. 181 of Haykin [1999]).

• The bias applied to unit j is denoted by bj; its effect is represented by a synapse
of weight wj0 = bj connected to a fixed input equal to +1.

• The ith element of the input vector is denoted by xi(n).

• The learning rate parameter for each unit j is denoted by ηj, where ηj =
0.04 ∗ (1/Fj). Fj denote the number of inputs (fan-in) for unit j (refer to pg.
211 of Hassoun [1998]). The scaling factor 0.04 is an empirically chosen value.

ALGORITHM

1 Initialize the weights wjk connecting the unit j with the uniformly distributed
random values taken from the set [−3/

√
(Fj),+3/

√
(Fj)] (refer to pg. 211 of

Hassoun [1998]).

2 Randomly choose a input vector x

3 Propagate the signal forward through the network

4 Compute the local gradients δ

– For an unit j at the output layer, δj = ej(n)ϕ
′
j(vj(n)), where ϕ′

j(.) denotes
the first derivate of ϕj(.). Since the activation at the output units is
typically linear δj = ej, where ej = dj − yj.

– For an unit j at the hidden layer, δj = ϕ
′
j(vj(n))

∑
k

δk(n)wkj(n)

5 Update the weights using ∆wji(n) = ηjδj(n)yi(n) + α∆wji(n− 1), where
α = 0.3 is the momentum factor.

6 Go to step 2 and repeat for the next input vector

This learning algorithm adjusts the weights of the network to minimize the mean
square error obtained for each feature vector. If the adjustments of weights is done
for all the feature vectors once, then the network is said to be trained for one epoch.
The stopping criteria for training an ANN model is dependent on number of epochs
(200-500) or on the validation error of the held-out data set.
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