
Improving Optical Character Recognition

for Endangered Languages

Shruti Rijhwani

CMU-LTI-22-016

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213

Thesis Committee:

Graham Neubig (Chair), Carnegie Mellon University

Alan Black, Carnegie Mellon University

Taylor Berg-Kirkpatrick, UC San Diego/Carnegie Mellon University

Antonios Anastasopoulos, George Mason University

Daisy Rosenblum, University of British Columbia

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Language and Information Technologies

Copyright © 2022 Shruti Rijhwani

Abstract

Much of the text data that exists in many languages is locked away in non-
digitized books and documents. This is particularly true in the case of most endan-
gered languages, where little to no machine-readable text is available, but printed
materials such as cultural texts, educational books, and notes from linguistic doc-
umentation frequently exist. Extracting text from these materials to a machine-
readable format is useful for a multitude of reasons. It can aid endangered lan-
guage preservation and accessibility efforts by archiving the texts andmaking them
searchable for language learners and speakers, as well as enable the development
of natural language processing systems for endangered languages.

Optical character recognition (OCR) is typically used to extract text from such
documents, but state-of-the-art OCR systems need large amounts of text data and
transcribed images to train highly-performant models. These resources are often
unavailable for endangered languages and because OCRmodels are not designed to
work well in low-resource scenarios, transcriptions of endangered language docu-
ments are far less accurate than higher-resourced counterparts.

In this thesis, we address the task of improving OCR in order to produce high-
quality transcriptions of documents that contain text in endangered languages. We
use the technique of OCR post-correction, where the goal is to correct errors in
existing OCR outputs to increase accuracy. We propose a suite of methods that are
tailored to learning from small amounts of data, and empirically show significantly
reduction in error rates than existing OCR systems in low-resource settings.

We first present a benchmark dataset for the task of OCR on endangered lan-
guage texts, containing transcriptions of printed documents in four critically en-
dangered languages, and extensively analyze the shortcomings of existing methods
on this dataset, finding that there is considerable room for improvement. Then,
we present two models for fixing recognition errors in OCR outputs, targeted to
data-scarce settings: (1) a neural OCR post-correction method that leverages high-
resource translations and structural biases to train a better-performing model; and
(2) a semi-supervised technique that efficiently uses unlabeled scanned images (which
are easier to obtain thanmanually annotated documents) for learning a post-correction
model by combining self-training with automatically derived lexica.

Additionally, we investigate the real-world impact our proposed models could

have on endangered language revitalization by conducting a comprehensive case
study on the Kwak’wala language. The case study includes a human-centered eval-
uation that quantitatively analyzes the utility of post-correction in reducing the
manual effort needed for language documentation tasks. Further, to make state-of-
the-art OCR technologies (including our post-correction method) more accessible
to users who may not have a technical background, we develop a web application
that abstracts away software and scripting details and allows users to easily exper-
iment with a variety of OCR tools and train models on new languages.

We make the software to use the post-correction models proposed in this thesis
publicly available, with the hope of enabling model development for new languages
and orthographies, and facilitating improvements in text recognition pipelines for
low-resource and endangered languages at a global scale.

Acknowledgments

This thesis would not have been possible without the continuous support and
encouragement I received frommymentors, collaborators, friends, and family. I am
very grateful to my advisor, GrahamNeubig, for teachingme practically everything
about the research process and helping me grow into a well-rounded researcher. I
am particularly thankful that Graham always supported my interest in building
language technologies that have real-world impact and working with downstream
users of our research (without which this thesis would look very different!). I would
also like to thank Antonios Anastasopoulos for the brainstorming sessions that
framed my research agenda for this thesis, for the continuous collaboration and
feedback on my work over nearly three years, and for being on my thesis com-
mittee. Additionally, I am fortunate to have extensively collaborated with Daisy
Rosenblum who, apart from serving on my thesis committee, taught me so much
about the Kwak’wala language and community, language documentation and re-
vitalization processes, and developing technology for indigenous and endangered
languages. I am also grateful to Alan Black for the incredibly helpful discussions on
research ideas and future directions for my thesis, and to Taylor Berg-Kirkpatrick
for mentoring me on an independent study where I first explored OCR research and
for the encouraging feedback as a thesis committee member. Further, I would like
to note my gratitude to Jaime Carbonell, my co-advisor in the early years of my
Ph.D. program – Jaime’s advice through the LORELEI project and beyond helped
shape my research interest in NLP for under-resourced languages.

I am immensely thankful to the endangered language communities for sharing
their data and documents for our research as well as their feedback on the tech-
nologies presented in this thesis. I worked closely with Michayla King and Jaymyn
LaVallee, heritage learners of the Kwak’wala language, whose tremendous efforts in
data annotation were instrumental in developing the OCR pipeline for Kwak’wala.

Beyond the research presented in this thesis, I had the opportunity to work
on a diverse set of projects during my time as a Ph.D. student – I am extremely
grateful to all my research collaborators at CMU, from whom I learned about a
broad range of research areas and picked up new technical skills. These include
Shuyan Zhou, Lindia Tjuatja, Zaid Sheikh, Adithya Pratapa, Rosaline Su, the CMU
LORELEI team, and the Print and Probability team. I am also thankful to Daniel

Preot, iuc-Pietro, Jing Wang, and Anju Kambadur, who mentored me through two
exciting and rewarding internships at Bloomberg L.P.

I am very appreciative to have been part of the NeuLab group with brilliant re-
searchers who I learned so much from. I am fortunate to take away fond memories
of group dinners, happy hours, and barbecues. My six years at CMU wouldn’t have
been nearly as enjoyable without the support of my friends – thank you to Shuyan
Zhou, Shruti Palaskar, Aakanksha Naik, Khyathi Chandu, Chirag Nagpal, Koushik
Bhavani, Aditya Vamsikrishna, Dhruv Shah, Gayatri Bhat, Dheeraj Rajagopal, Vid-
hisha Balachandran, Ramon Sanabria, Sai Krishna, Alex Wilf, Patrick Fernandes,
Cindy Wang, Chunting Zhou, Lucio Dery, Aditi Chalisgaonkar, Sunil Nayak, "Stef-
man" (and many more...) for all the dinners, hikes, road trips, and foosball matches.
I want to express immense gratitude to my “Pittsburgh family” – Siddharth Dalmia,
Rajat Kulshreshtha, Abhilasha Ravichander, Maria Ryskina, Samridhi Shree, Evan-
gelia Spiliopoulou, and Paul Michel – I never imagined I would make the closest
friends I’ve ever had at the LTI and I am very lucky to have met all of you. Thank
you so much for all the good times over the years. I also thank Stacey Young, our
wonderful program coordinator, for helping me navigate the administrative logis-
tics throughout my time at CMU.

My family has been a constant source of strength and encouragement at every
step of my Ph.D. journey – my parents and my sister have always been there for
me even though we are separated by continents. Finally, words cannot express how
grateful I am to my partner, Deepak Gopinath, whose unconditional love, support,
and confidence in my abilities make me believe I can achieve anything.

vi

Contents

1 Introduction 1

1.1 Thesis Overview . 5

2 Benchmark Dataset 7

2.1 Endangered Language Documents . 7
2.2 OCR Evaluation Dataset . 8
2.3 Evaluation Metrics . 10
2.4 Existing OCR Methods: Promises and Pitfalls . 11
2.5 Summary . 14

3 OCR Post-Correction for Endangered Language Texts 17

3.1 Problem Formulation . 18
3.2 OCR Post-Correction Model . 19
3.3 Experiments . 23
3.4 Related Work . 28
3.5 Summary . 29

4 Efficient Use of Unlabeled Documents 31

4.1 Base Model . 32
4.2 Self-Training . 33
4.3 Lexically-Aware Decoding . 35
4.4 Experiments . 40
4.5 Related Work . 47
4.6 Summary . 48

5 Case Study: Impact of OCR on Kwak’wala Language Revitalization 51

5.1 Documents in the Kwak’wala Language . 52

vii

5.2 Evaluation with a User Study . 54
5.3 Tools and Resources Created . 65
5.4 Summary . 66

6 Making OCR and Post-Correction Models More Accessible 69
6.1 Functionalities . 70
6.2 Implementation . 72
6.3 Using the Interface . 77
6.4 Future Directions for Advanced Functionality 79

7 Conclusion 81
7.1 Summary of Contributions and Impact . 81
7.2 Limitations and Future Directions . 84

Appendix A 89
A.1 Keyboard for the Boas/Hunt Orthography . 89
A.2 Kwak’wala Transcription: Post-Completion Survey 90

Bibliography 91

viii

Chapter 1

Introduction

Endangered languages are languages at risk of falling out of use because the population of
first-language speakers is small and acquisition among younger speakers is limited. UNESCO
classifies nearly 40% of the world’s 7,000 living languages as endangered (Moseley, 2010). Based
on the degree of intergenerational language transmission and other factors, these range from
vulnerable languages where most children speak the language, but are restricted to certain
domains, to critically endangered languages where the youngest speakers are grandparents
and older, and they speak the language partially and infrequently.

The loss of a language has significant consequences: language is often an essential part of a
community’s cultural identity and heritage (Krauss, 1992; Craig, 1992) and, additionally, a con-
siderable amount of knowledge is linguistically unique (i.e., it is only known to a single language
and the community speaking that language). The history of a community and the cultural, spiri-
tual, and scientific knowledge of its people is passed down through its language (Harrison, 2008;
Cámara-Leret and Bascompte, 2021) and such knowledge may disappear as languages fall out of
use (Hale et al., 1992). There are, thus, several ongoing efforts to preserve and revitalize endan-
gered languages through language learning and education programs within the communities
that speak these languages (Hinton, 2001) as well as documentation of endangered languages
through the collection of speech recordings, word lists, and other materials.

The processes involved in language documentation, preservation, and revitalization fre-
quently lead to the creation of several types of documents that contain text in endangered
languages. For instance, local publishing houses print books containing folk tales, poetry, and
other cultural texts, and language education programs often develop reference dictionaries and
textbooks (Grenoble and Whaley, 2005). Additionally, the linguistic documentation process
serves to develop a comprehensive record of the language (Himmelmann, 1998), resulting in

1

various texts such as speech transcriptions, vocabulary lists, interlinear glosses, and grammar
rules. However, even though a substantial number of such documents have been created for en-
dangered languages around the globe, the vast majority are not widely accessible because they
exist only as scanned images of printed books and handwritten notes. Beyond accessibility,
converting these texts into a machine-readable format has several other benefits. Digitization
can support language preservation efforts by archiving the texts and making them searchable
for language learners and speakers, and the texts can also provide data to enable the develop-
ment of natural language processing systems for endangered languages. These applications are
discussed in more detail later in this chapter.

Optical character recognition (OCR) methods are typically used for extracting text from
printed materials, where the characters in scanned images of the documents are recognized to
produce transcriptions of the text. Both supervised and unsupervised learning techniques have
been developed for training OCR models. In recent work, most supervised models are based
on neural networks, where convolutional neural networks (CNN) are used to encode the input
image (He et al., 2016; Shi et al., 2016; Gao et al., 2017) and Connectionist Temporal Classifica-
tion (CTC) or an RNN-based attention mechanism is used for decoding the transcription (Chen
et al., 2021; Long et al., 2021). These models generally require hundreds of thousands of tran-
scribed images for supervised learning (Du et al., 2020). On the other hand, the majority of
unsupervised OCR methods rely on large text corpora in the target language, which are used to
generate synthetic images to train a neural model (Martínek et al., 2019; Vögtlin et al., 2021) or to
build a language model that conditions the learning of character shapes to be recognized (Berg-
Kirkpatrick et al., 2013).

However, applying these methods to obtain accurate transcriptions for documents that con-
tain endangered language texts is challenging: the large number of transcribed images neces-
sary for supervised training of OCR models is unavailable for most endangered languages. Ad-
ditionally, the performance of unsupervised OCR systems is severely limited by the very small
amounts of text data that is typically available in endangered languages (Littell et al., 2018;
Rangel, 2019). Consequently, general-purpose OCR tools, such as Google Vision (Fujii, 2018)
and Tesseract (Smith, 2007), are only trained on data from higher-resourced languages and do
not provide off-the-shelf models for any endangered languages.

To overcome these challenges, this thesis presents a suite of methods designed to improve
OCR in very low-resource settings. We first present the creation of a benchmark dataset for
OCR on documents that contain text in four critically endangered languages (Ainu, Griko,
Kwak’wala, and Yakkha) and extensively analyze the shortcomings of existing models on these

2

[Image]

ÈÈÈÈ↓

[Existing OCR output]
ITä, g’il_mēsē $wilg_

laē år_ēdvēs gālay

Wä, g·îlᵋmēsē ᵋwīlg·
laē ăxᵋēdxēs g̣āʟ̣ay

ÈÈÈÈ↓

[Post-corrected]

ITä, g’il_mēsē $wilg_
laē år_ēdvēs gālay

Wä, g·îlᵋmēsē ᵋwīlg·
laē ăxᵋēdxēs g̣āʟ̣ay

Figure 1.1: OCR post-correction on a scanned document that contains text in the endangered
language Kwak’wala. The goal of post-correction is to fix the recognition errors in the output
of an existing OCR system.

documents, demonstrating that they are not robust to low-resourced languages. Then, we em-
pirically show how the quality of transcriptions from these existing OCR systems can be signifi-
cantly improved by fixing recognition errors with automatic OCR post-correction. An example
of the post-correction process is in Figure 1.1. We present two post-correction methods that
are tailored to ease learning in data-scarce settings: (1) a neural post-correction model that
uses structural biases and pretraining to reduce the reliance on manually labeled data for train-
ing; and (2) a semi-supervised learning technique that efficiently uses unlabeled raw images to
improve the post-correction performance. We also conduct a study to evaluate the impact of
our models on downstream use cases. The case study focuses on Kwak’wala, an endangered
language spoken in North America, and includes a user evaluation that quantitatively estab-
lishes the utility of improved OCR in reducing the manual effort needed to produce accurate
transcriptions of the texts. Finally, we present the development of a web application as a no-
code interface between users and the post-correction software and other OCR tools, enabling
much easier access to these technologies.

The high-quality transcriptions of endangered language documents that can be obtained
with the methods presented in this thesis have a myriad of potential applications that can aid
language documentation, education, and revitalization efforts:

• Accessibility and search: Having machine-readable transcriptions improves the acces-

3

sibility of printed documents by archiving the texts and making them searchable, which
benefits learners, speakers, and researchers of the language. As an example, having
machine-readable reference texts such as dictionaries and grammars facilitates the cre-
ation of web and mobile interfaces for searching through these texts, making them more
accessible and easier to use for language learners and educators.

• Orthography conversion: Many endangered languages have been written in differ-
ent orthographies across geographies and generations, and historical documents in these
languages may not be written in a modern orthography (Littell et al., 2018). Digitizing
the text contained in these documents enables automatic transliteration from a legacy
(or technical) orthography to a community-preferred orthography. For example, several
decades ago, an orthography developed by anthropologist Franz Boas for the Kwak’wala
language (Boas, 1900) was used to write an extensive documentation of the language and
its speakers (Boas, 1921). However, these documents exist only as scanned images and are
minimally accessible because the Boas orthography is hard to read and is radically differ-
ent from modern orthographies. Converting the Boas publications to a machine-readable
form facilitates automatic transliteration to different Kwak’wala writing systems, allow-
ing community members to access the texts in their preferred orthography.

• Development of NLP systems: Most endangered languages are under-represented in
natural language processing technologies, primarily because there is little to no data
available for training and evaluation (Joshi et al., 2020). Machine-readable documents
in endangered languages can provide text data for developing NLP systems in these lan-
guages. Apart from text in the endangered language itself, accurate OCR on documents
like dictionaries and interlinear glosses will also create several other types of data useful
for NLP (e.g., syntactic and morphological information, translations to higher-resourced
languages, and bilingual lexicons).

NLP systems for endangered languages can be used to support language documenta-
tion and revitalization. For instance, the language documentation process often involves
manual transcription and glossing of speech recordings (Rangel, 2019), and language
technologies such as automatic speech recognition and morphosyntactic analysis can
significantly reduce the time and manual effort required to produce complete transcrip-
tions (Cruz and Waring, 2019; Anastasopoulos, 2019; Anastasopoulos et al., 2020). More-
over, language education and revitalization efforts can leverage technologies such as au-
tomatic spell checking, text-to-speech, and predictive keyboards (Littell et al., 2018).

4

1.1 Thesis Overview

This thesis presents an evaluation dataset andmethods for improving optical character recogni-
tion in very low-resource scenarios focusing on the application of these methods to endangered
language texts. Additionally, the thesis analyzes the proposed technique’s practical impact on
language revitalization with a user study as well as develops a web interface for better access
to OCR technologies.1 An overview of the material presented in this thesis is below:

• Chapter 2 presents the creation of a benchmark dataset for evaluating the performance of
OCR and OCR post-correction methods on endangered languages. The dataset contains
manually transcribed pages from documents in four critically endangered languages –
Ainu, Griko, Kwak’wala, and Yakkha. Further, this chapter presents an analysis of the
performance of existingOCR systems on endangered languages, demonstrating that there
is significant room for improvement in OCR transcription accuracy on the documents in
our dataset.

• Chapter 3 presents the task of OCR post-correction, the goal of which is to improve the
outputs of an existing OCR system. Existing methods for OCR post-correction are based
on neural encoder-decoder models and rely on significant resources for training. In this
chapter, we develop a method that compounds on previous neural models for OCR post-
correction, adapting them to the under-resourced setting by introducing structural biases
into the model and by using a multi-source sequence-to-sequence framework to incorpo-
rate information from the translations (often in a high-resource language) that commonly
appear in endangered language texts. The proposed post-correction model substantially
improves recognition error rates on the documents in our evaluation dataset as compared
to existing OCR and OCR post-correction methods.

• While the post-correction model presented in Chapter 3 leads to improvement in OCR
performance over previous work on the benchmark dataset, it is reliant on manually cu-
rated post-correction data, which is relatively scarce compared to the non-annotated raw
images that need to be digitized. To efficiently utilize these unlabeled images, Chapter 4
presents a semi-supervised learning method for OCR post-correction through the use of
self-training, a technique where the model is iteratively trained on its own outputs. In ad-
dition, to enforce consistency in the predicted vocabulary, we introduce a lexically-aware
decoding method that augments the neural post-correction model with a word-by-word

1All code and data are publicly available at https://shrutirij.github.io/ocr-el/.

5

https://shrutirij.github.io/ocr-el/

dictionary constructed from the predictions on the unlabeled images, implemented using
weighted finite-state automata (WFSA) for efficient and effective decoding.

• The empirical reduction in character andword error rates obtained by the post-correction
methods proposed in Chapter 3 and Chapter 4 is useful in comparing performance on low-
resource datasets. However, our broader goal is for these methods to have an impact on
downstream tasks that are important to endangered language speakers and researchers.
In Chapter 5, we evaluate the potential impact of improved OCR on revitalization pro-
grams with a comprehensive case study on the Kwak’wala language. With a user evalua-
tion, we demonstrate a significant reduction in the time needed for manual transcription
of printed documents, a task that is frequently required in language documentation and
preservation efforts. Additionally, we convert and publicly release several hundred pages
of scanned cultural and linguistic documentation into a machine-readable format along
with their automatic transliteration into different Kwak’wala orthographies that are pre-
ferred by community members.

• Most OCR and post-correction technologies are currently available only as command line
tools or software APIs. The target audience for the methods developed in this thesis, such
as endangered language educators and researchers, may not have the technical expertise
necessary to access these technologies. In Chapter 6, we present a prototype visual inter-
face for user-friendly access to OCR models, allowing no-code training and inference for
OCR on new datasets and languages. The interface is designed as a web application and
it supports various functionalities, including inference with off-the-shelf OCR systems as
well as training and inference with our proposed post-correction models.

6

Chapter 2

Benchmark Dataset

In this chapter, we present the creation of a dataset for evaluating OCR performance on en-
dangered language documents. The dataset contains manually transcribed documents in four
critically endangered languages – Ainu, Griko, Kwak’wala, and Yakkha. We also evaluate the
performance of existing supervised and unsupervised OCRmethods on our dataset, extensively
analyzing the successes and the shortcomings of these techniques. The material presented in
this chapter has also been published in Rijhwani et al. (2020) and Rijhwani et al. (2021).

2.1 Endangered Language Documents

As briefly discussed in Chapter 1, the vast majority of documents that contain text in endan-
gered languages exist only as non-digitized forms (e.g., printed books and handwritten docu-
ments). While a large fraction of these documents is still inaccessible on the web, many of them
have been scanned and converted into images by linguists, endangered language communities,
archivists, and librarians, among other entities. The scanned images of these documents are
often publicly available through online archives.

To estimate how many such scanned documents with endangered language text exist, we
explored some of these online archives. We first looked at the Internet Archive,1 a general-
purpose archive of web content. The Internet Archive contains millions of scanned books,
most of which are labeled with the language of their content. On analyzing the language la-
bels, we found 11,674 books containing text in languages classified as “endangered” by UNESCO
(as of October 2020). Next, we looked at archives that preserve and catalog linguistic materials.

1https://archive.org/

7

https://archive.org/

We found that archives that specifically cater to Indigenous and endangered languages contain
thousands of scanned documents, the majority of which come from linguistic documentation
of these languages — the Archive of the Indigenous Languages of Latin America (AILLA)2 con-
tained ≈10,000 such documents and the Endangered Languages Archive (ELAR)3 had ≈7,000.

Translations in a High-Resource Language We also observe that documents with text
in an endangered language commonly contain translations of the text in a high-resource lan-
guage. These translations typically have a practical purpose: for example, people learning an
endangered language can use translations in a language they already read and speak to better
understand educational and cultural material. Additionally, documentary linguists often col-
lect translations while creating a record of the language (e.g., bilingual dictionaries, interlinear
glosses, translations of speech transcriptions, etc.).

While it is difficult to estimate the number of scanned documents that contain translations,
multilingual texts represent the majority in the archives we examined; AILLA includes 4,383
documents with bilingual text and 1,246 documents with trilingual text, while ELAR includes
≈5,000multilingual documents. The structure of translations in these documents is varied, from
dictionaries and interlinear glosses to multilingual books containing stories and poetry.

2.2 OCR Evaluation Dataset

We create an OCR evaluation dataset by manually transcribing the text contained in scanned
documents from four critically endangered languages4 — Ainu, Griko, Kwak’wala, and Yakkha.
These languages were chosen in an effort to create a geographically, typologically, and ortho-
graphically diverse benchmark.

The Ainu, Griko, and Yakkha documents in the dataset also contain translations of the en-
dangered language text in various higher-resourced languages. Since we are evaluating OCR
performance on the endangered language segments of the documents, we only manually tran-
scribed the text corresponding to the endangered language content. The text corresponding
to the translations is not manually transcribed. The annotated documents are described below
and example images are in Figure 2.1.

2https://ailla.utexas.org
3https://elar.soas.ac.uk/
4UNESCO defines critically endangered languages as those where the youngest speakers are grandparents

and older, and they speak the language partially and infrequently.

8

https://ailla.utexas.org
https://elar.soas.ac.uk/

(a) Ainu (left) – Japanese (right) (b) Griko (top) – Italian (bottom)

(c) Yakkha (top) –Nepali (middle) – English (bottom)

(d) Kwak’wala

Figure 2.1: Examples of scanned documents from our dataset. The endangered language text is
accompanied by translations in a high-resource language in the same document for the Ainu,
Griko, and Yakkha texts.

• Ainu is a severely endangered indigenous language from northern Japan, typically con-
sidered a language isolate. In our dataset, we use a book of Ainu epic poetry (yukara),
with the “Kutune Shirka" yukar (Kindaichi, 1931) in Ainu transcribed in Latin script.5

Each page in the book has a two-column structure — the left column has the Ainu text,
and the right has its Japanese translation that is aligned at the line-level (see Figure 2.1
(a)). The book has 338 pages in total. Given the effort involved in annotation, we tran-
scribe the Ainu text from 33 pages, totaling 816 lines.

• Griko is an endangered Greek dialect spoken in southern Italy. The language uses a
combination of the Latin alphabet and the Greek alphabet as its writing system. The

5Some transcriptions of Ainu also use the Katakana script. See Howell (1951) for a discussion on Ainu folklore.

9

document we use is a book of Griko folk tales compiled by Stomeo (1980). The book
is structured such that in each fold of two pages, the left page has Griko text, and the
right page has the corresponding translation in Italian. Of the 175 pages in the book, we
annotate the Griko text from 33 pages, resulting in 807 annotated Griko sentences.

• Yakkha is an endangered Sino-Tibetan language spoken in Nepal. It uses the Devanagari
writing system. We use scanned images of three children’s books, each of which has
a story written in Yakkha along with its translation into two languages – Nepali and
English (Schackow, 2012). We manually transcribe the Yakkha text from all three books.
In total, we have 159 annotated Yakkha sentences.

• Kwak’wala is spoken on Northern Vancouver Island, nearby small islands, and the op-
posing mainland. The language is severely endangered, with estimates of ≈150 first-
language speakers, all over the age of 70. The Kwak’wala language includes 42 consonan-
tal phonemes (twice as many as English) and a wide range of allophonic vowels. Several
writing systems exist and community preference varies between two orthographies: the
U’mista and Liq’wala systems.

However, much of the written documentation for Kwak’wala is in another orthography
that was developed by anthropologist Franz Boas. The Boas orthography (Boas, 1900)
was used in the extensive documentation of the Kwak’wala language and its speakers
produced by Boas in collaboration with native speaker George Hunt. The Boas writing
system uses Latin script characters as well as diacritics and digraphs to represent phone-
mic differences. Although the Boas orthography is not widely used today, the cultural
and linguistic materials previously written by Hunt and Boas are of tremendous value to
community-based researchers. However, they are minimally accessible since they cur-
rently exist only as non-searchable scanned images.

In consultation with members of language revitalization projects in three Kwakiutl com-
munities (Tsulquate, Fort Rupert, Quatsino), we focus on digitizing these significant cul-
tural resources. We create a datasetwith pages from the “Ethnology of the Kwakiutl” (Boas,
1921), containing 262 gold-transcribed lines and 2,255 unannotated lines.

2.3 Evaluation Metrics

We use two metrics for evaluating digitization performance: character error rate (CER) and
word error rate (WER). Both metrics are based on edit distance and are standard for evaluating

10

OCR systems (Berg-Kirkpatrick et al., 2013; Schulz and Kuhn, 2017). CER is the edit distance
between the predicted and the gold transcriptions of the document, divided by the total number
of characters in the gold transcription. WER is similar but is calculated at the word level.

2.4 Existing OCR Methods: Promises and Pitfalls

In this section, we analyze the performance of two existing OCR methods on the endangered
language documents in our evaluation dataset:

• Google Vision: As briefly alluded to Chapter 1, training a supervised OCR model from
scratch for each endangered language is challenging, given the very small number of
transcribed images we have in the dataset. Instead, we use a large-scale off-the-shelf
OCR system, the underlyingmodel of which is based on state-of-the-art supervised neural
methods, to obtain a transcription on our dataset.

The Google Vision OCR (Fujii et al., 2017; Ingle et al., 2019) is a highly-performant system
that is trained on 60 languages in 27 scripts. The supported languages are primarily
higher-resourced and do not include any of our target endangered languages. However,
the system also provides off-the-shelf script-specific OCRmodels in addition to language-
specific ones. Per-script models are more robust to unknown languages because they are
trained on data from multiple languages and can act as a general character recognizer
without relying on a single language’s model. Since many endangered languages adopt
standard scripts (often from the region’s dominant language) as their writing systems, the
per-script recognition models can potentially produce a reasonable OCR transcription for
the languages in our dataset.

• Ocular: Unsupervised OCR methods are relatively easier to train (from scratch) for en-
dangered languages because they do not require thousands of transcribed images for
learning. We analyze the performance of Ocular (Berg-Kirkpatrick et al., 2013), an un-
supervised OCR system that uses a generative model to transcribe scanned documents.
Ocular’s transcription model generates the image by learning the font used in the docu-
ment. Ocular relies on a character n-gram language model trained on the target language.
For training the language model, we use the small amount of gold-transcribed text in
our dataset. Since we are evaluating the OCR performance, we use the text in a 10-fold
cross-validation setup: we split the data into ten segments, using nine to train the Ocu-
lar language model and the remaining segment as the test set for OCR. The font model

11

% Character Error Rate % Word Error Rate

OCR System ain grk ybh kwk ain grk ybh kwk

Ocular 10.49 4.58 75.60 7.90 47.47 15.71 99.37 38.22

Google Vision 1.34 3.27 8.90 21.12 6.27 15.63 31.64 82.08

Table 2.1: First pass OCR system performance. If the language’s script is not covered by Google
Vision (as for Kwak’wala), then Ocular results in better recognition. Otherwise, Google Vision
OCR is usually significantly better.

has parameters to learn the shape of each character in the language model vocabulary.
After initialization, the font parameters are updated in an unsupervised manner with the
expectation-maximization algorithm, until convergence.

2.4.1 OCR Performance

Results are presented in Table 2.1. We note that although the Google OCR system is not trained
on our target languages, it is trained on large amounts of data in high-resource languages that
share writing systems with Ainu, Griko, and Yakkha (Latin, Greek, Devanagari scripts) and thus
can recognize characters in these scripts with reasonable accuracy. We note the particularly low
CER for the Ainu data, reflecting previous work that has evaluated the Google Vision system
to have strong performance on typed Latin script documents (Fujii et al., 2017). On the other
hand, the performance is much worse on Kwak’wala since the system has not been trained
on the Boas orthography, which is unique to the Kwak’wala language. The Boas orthography
uses several Latin script characters, which the system can recognize, but it also includes dia-
critics and digraphs unique to the writing system (a segment from the dataset is included in
Figure 2.1(d)) that are incorrectly transcribed by the OCR model.

We find that the performance on Kwak’wala is considerably better with the Ocular system
because the language model is trained on Kwak’wala text. Thus, unlike Google Vision, the
model vocabulary contains the Boas writing system’s alphabet. On the other hand, Ocular’s
performance on Ainu and Griko is worse than that of Google Vision, likely due to the small
amount of data available for training the LM. Moreover, the performance is correlated with the
word overlap between test data and the data used for training the language model, demonstrat-
ing Ocular’s reliance on a strong language model – the word overlap is 73% for Griko, 56% for

12

Kwak’wala, and 48% for Ainu. Compared to higher-resource languages, the amount of text data
available for training a robust language model is much smaller in the endangered language set-
ting (i.e., millions of characters are available for languages like English and Spanish, but only a
few thousand for most endangered languages).6

Finally, we find that Ocular does not perform well on the Yakkha dataset. This is because
the design of Ocular’s font model does not work with how the Devanagari script is represented
in Unicode. More specifically, when a vowel diacritic is applied to a consonant in the script, the
characters are combined: e.g., क ◌ा का+क ◌ा का=क ◌ा का . In Unicode, this is represented by two characters
“क ◌ा का" and “क ◌ा का”, where the dotted circle is the character combination marker in the Unicode Stan-
dard.7 However, since Ocular’s font model operates at the character-level, it tries to generate
the images of these two characters separately. Generating the diacritic “क ◌ा का” on its own is not
meaningful: the dotted circle never appears in the input image because it is supposed to be com-
bined. Thus, the font model is unable to converge as it cannot handle character combinations
when generating the image.

Even with the best-performing OCR system for each language, there remains considerable
room for improvement in both CER and WER for the endangered language documents in our
dataset, as compared to accuracy on higher-resourced languages Fujii et al. (2017).

Types of Errors

To better understand the challenges posed by the endangered language setting, we look that the
recognition errors made by the Google Vision system on the Ainu, Griko, and Yakkha datasets.
First, we look at the edit distance between the predicted and the gold transcriptions, in terms
of insertion, deletion, and replacement operations. Replacement accounts for over 84% of the
errors in the Griko and Ainu datasets, and 55% overall. This pattern is expected in the OCR
task, as the recognition model uses the image to make predictions and is more likely to confuse
a character’s shape for another than to hallucinate or erase pixels. However, we observe that
the errors in the Yakkha dataset do not follow this pattern. Instead, 87% of the errors for Yakkha
occur because of deleted characters.

Next, we manually inspect all the errors made by the OCR system. While some errors are
commonly seen in the OCR task, such as misidentified punctuation or incorrect word bound-

6Although Ocular has been used for lower-resourced languages like Nahuatl, previous work (Garrette et al.,
2015) find that augmenting small publicly available corporawith an additional private set of transcribed documents
was necessary for obtaining performance comparable to English and Spanish.

7https://www.unicode.org/versions/Unicode13.0.0/ch02.pdf

13

https://www.unicode.org/versions/Unicode13.0.0/ch02.pdf

exi i kaddinàra!

eχi i kaḍḍinàra!

_खारिनङ्गो
ङ्खाॽिनङ्गो

OCR
−−−→ exi i kaddinàra

exi i kaddinàra!

eχi i kaḍḍinàra!

_खा!िनङ् गो
"# खा$िनङ् गो

è ffacilo
è ffaćilo हाङ् चाङ् %&'(

हाङ्चाङ्चाङ्

OCR
−−−→exi i kaddinàra!

eχi i kaḍḍinàra!

_खा!िनङ् गो
"# खा$िनङ् गोFigure 2.2: Errors in Griko (top) and Yakkha (bottom) when using the Google Vision OCR. The

system frequently makes errors when scripts are mixed or when uncommon diacritics are used.

aries, 85% of the total errors occur due to specific characteristics of endangered languages that
general-purpose OCR systems (such as the Google Vision tool) do not account for. Broadly,
they can be categorized into two types, examples of which are shown in Figure 2.2:

• Mixed scripts The existing scripts that most endangered languages adopt as writing sys-
tems are often not ideal for comprehensively representing the language. For example, the
Devanagari script does not have a grapheme for the glottal stop — as a solution, printed texts
in the Yakkha language use the IPA symbol ‘P’ (Schackow, 2015). Similarly, both Greek and
Latin characters are used to write Griko. The Google Vision OCR is trained to detect scripts at
the line-level and is not equipped to handle multiple scripts within a single word. As seen in
Figure 2.2, the system does not recognize the Greek character χ in Griko and the IPA symbol
P in Yakkha. Mixed scripts cause 11% of the OCR errors.

• Uncommon characters and diacritics Endangered languages often use graphemes and
diacritics that are part of the standard script but are not commonly seen in high-resource
languages. Since these are likely rare in the OCR system’s training data, they are frequently
misidentified, accounting for 74% of the errors. In Figure 2.2, we see that the OCR system
substitutes the uncommon diacritic d. in Griko. The system also deletes the Yakkha character
ङ्, a diacriticized character that is infrequent in several other Devanagari script languages
(such as Hindi).

2.5 Summary

In this chapter, we present the creation of an evaluation dataset for the task of OCR on endan-
gered languages. The dataset contains documents in four languages – Ainu, Griko, Kwak’wala,
and Yakkha. We extensively analyze the performance of existing OCR methods on the dataset
with Google Vision, a large-scale off-the-shelf OCR tool, and Ocular, an unsupervised OCR
method. We identify the types of errors made by these models and demonstrate that they are

14

not robust to languages that use mixed orthographies and uncommon diacritics as well as lan-
guages for which training data is scarce. Our analysis highlights the need for improving text
recognition techniques to transcribe documents with higher accuracy than existing systems
even in very low-resource settings.

15

16

Chapter 3

OCR Post-Correction for Endangered
Language Texts

In the previous chapter, we presented the creation of a benchmark dataset of transcriptions for
scanned books in four critically endangered languages and conducted a systematic analysis of
how existing OCR methods are not robust to the data-scarce setting of endangered languages.

To improve performance on endangered languages, in this chapter, we focus on developing
a method for better OCR performance in extremely low-resource scenarios. More specifically,
we present a model for OCR post-correction — instead of training an OCR system from scratch,
which requires significant manual transcription or large text corpora to obtain high-quality
transcriptions, the goal of post-correction is to fix recognition errors in already existing OCR
outputs, such as those from the two systems presented in the previous chapter (i.e., Google
Vision and Ocular). An example of post-correction is in Figure 1.1.

The task of OCR post-correction is relatively well-studied and most state-of-the-art post-
correction methods use neural sequence-to-sequence models (i.e., the encoder-decoder frame-
work). These methods typically rely on considerable resources in the target language, such as
a large number of pairs of erroneous and manual corrected transcriptions for supervised learn-
ing (Schnober et al., 2016; Rigaud et al., 2019) or substantial textual data to train a language
model that conditions unsupervised post-correction (Krishna et al., 2018; Dong and Smith,
2018). While these resources are readily available for high-resource languages, these resources
are severely limited in endangered languages, preventing the direct application of existing post-
correction methods in our setting.

In this chapter, we present a post-correction method designed for under-resourced lan-
guages. Our method, compounding on previous neural models for the task, makes three im-

17

provements tailored to learning a strong model even when very minimal training data is avail-
able. First, we use a multi-source model to incorporate information from the high-resource
translations that commonly appear in endangered language books, as seen in Section 2.2. Next,
we introduce structural biases within the model to ease learning from small amounts of data.
Finally, we add pretraining to utilize the little unannotated data that exists in endangered
languages. In experiments on our evaluation dataset, we demonstrate that our proposed post-
correction method reduces character and word error rates across the four languages. We also
extensively analyze which factors within the model contribute to the improvements in perfor-
mance. The method presented in this chapter has also been published in Rijhwani et al. (2020).

3.1 Problem Formulation

In this section, we formulate the tasks of OCR and OCR post-correction and introduce notation
that will be used throughout the thesis.

Optical Character Recognition OCR systems are trained to find the best transcription cor-
responding to the text in an image. We use the two OCR systems (detailed in Section 2.4) to
produce a first pass transcription of the endangered language text in the images in our dataset.
Let the first pass transcription for a data point (e.g., a line or sentence) be a sequence of char-
acters x = [x1, . . . , xN].

OCR Post-Correction The goal of post-correction is to reduce recognition errors in the first
pass transcription, which are frequent in our setting because of the lack of OCR training data
in the target endangered languages. The correction model takes x as input and produces the
corrected transcription of the endangered language document, a sequence of characters y =

[y1, . . . , yK].
y = argmax

y′
pcorr(y′∣x)

Incorporating Translations We use information from high-resource translations of the
endangered language text. As seen in Section 2.2, these translations are commonly found in
endangered language documents. Such translations exist for all the documents in our evalua-
tion dataset. We do not have gold transcriptions for the translations in the documents. Instead,
we use the Google Vision OCR system (Section 2.4), which is trained on many high-resource

18

languages, to obtain a transcription of the scanned translation. Let this transcription be a se-
quence of characters t = [t1, . . . , tM]. In our method, we use t = [t1, . . . , tM] as additional
input to condition the post-correction model:

y = argmax
y′

pcorr(y′∣x, t)

3.2 OCR Post-Correction Model

In this section, we describe our proposed OCR post-correction model. The base architecture
of the model is a multi-source sequence-to-sequence framework (Zoph and Knight, 2016; Li-
bovický and Helcl, 2017) that uses an LSTM encoder-decoder model with attention (Bahdanau
et al., 2015). We propose improvements to training and modeling for the multi-source architec-
ture, specifically tailored to ease learning in data-scarce settings.

3.2.1 Multi-source Architecture

Our post-correction formulation takes as input the first pass OCR of the endangered language
segment x and the OCR of the translated segment t, to predict an error-free endangered lan-
guage text y. The model architecture is shown in Figure 3.1.

The model consists of two encoders — one that encodes x and one that encodes t. Each
encoder is a character-level bidirectional LSTM (Hochreiter and Schmidhuber, 1997) and trans-
forms the input sequence of characters into a sequence of hidden state vectors: h

x for the
endangered language text and h

t for the translation.
The model uses an attention mechanism during the decoding process to use information

from the encoder’s hidden states. We compute the attention weights over each of the two
encoders independently. At the decoding time step k:

e
x
k,i = v

x
tanh (Wx

1sk−1 +W
x
2h

x
i) (3.1)

α
x
k = softmax (exk)

c
x
k = [Σiα

x
k,ih

x
i]

where sk−1 is the decoder state of the previous time step and v
x, Wx

1 and W
x
2 are trainable

parameters. The encoder hidden states hx are weighted by the attention distribution α
x
k to

produce the context vector cxk . We follow a similar procedure for the second encoder to produce

19

Ainu

ocr

x1 . . .xN

encoder
h
x
1 . . .h

x
N

Japanese

ocr
t1 . . . tM

encoder
h
t
1 . . .h

t
M

attention attention
c1 . . . cK

decoder

s1 . . . sK

softmax

P (y1 . . .yK)

Figure 3.1: The proposed multi-source architecture with the encoder for an endangered lan-
guage segment (left) and an encoder for the translated segment (right). The input to the en-
coders is the first pass OCR over the scanned images of each segment. For example, the OCR
on the scanned images of some Ainu text (left) and its Japanese translation (right).

c
t
k. We concatenate the context vectors to combine attention from both sources (Zoph and
Knight, 2016):

ck = [cxk; ctk]

ck is used by the decoder LSTM to compute the next hidden state sk and subsequently, the
probability distribution for predicting the next character yk of the target sequence y:

sk = lstm (sk−1, ck,yk−1) (3.2)

P (yk) = softmax (Wsk + b) (3.3)

Training and Inference The model is trained for each language with the cross-entropy loss
(Lce) on the small amount of transcribed data we have. Beam search is used at inference time.

3.2.2 Model and Training Improvements

With the minimal annotated data we have, it is challenging for the neural network to learn a
good distribution over the target characters. We propose a set of adaptations to the base ar-

20

chitecture that improves the post-correction performance without additional annotation. The
adaptations are based on characteristics of the OCR task itself and the errors made by the up-
stream OCR tool as analyzed in Section 2.4.

Diagonal attention loss As discussed in Section 2.4, substitution errors are more frequent
in the OCR task than insertions or deletions; consequently, we expect the source and target
to have similar lengths. Moreover, post-correction is a monotonic sequence-to-sequence task,
and reordering rarely occurs (Schnober et al., 2016). Hence, we expect attention weights to be
higher at characters close to the diagonal for the endangered language encoder.

We modify the model such that all the elements in the attention vector that are not within
j steps (we use j = 3) of the current time step k are added to the training loss, thereby encour-
aging elements away from the diagonal to have lower values. The diagonal loss summed over
all time steps for a training instance, where N is the length of x, is:

Ldiag = ∑
k

(
k−j

∑
i=1

α
x
k,i +

N

∑
i=k+j

α
x
k,i)

Copy mechanism The performance of the first pass OCR systems Table 2.1 indicates that
the first pass OCR predicts a majority of the characters accurately. In this scenario, enabling
the model to directly copy characters from the first pass OCR rather than generate a character
at each time step might lead to better performance (Gu et al., 2016). We incorporate the copy
mechanism proposed in See et al. (2017). The mechanism computes a “generation probability”
at each time step k, which is used to choose between generating a character (Equation 3.3) or
copying a character from the source text by sampling from the attention distribution α

x
k .

Coverage Given the monotonicity of the post-correction task, the model should not attend to
the same character repeatedly. However, repetition is a common problem for neural encoder-
decoder models (Mi et al., 2016; Tu et al., 2016). To account for this problem, we adapt the cover-
age mechanism from See et al. (2017), which keeps track of the attention distribution over past
time steps in a coverage vector. For time step k, the coverage vector would be gk = ∑k−1

k′=0α
x
k′ .

gk is used as an extra input to the attentionmechanism, ensuring that future attention decisions
take the weights from previous time steps into account. Equation 3.1, with learnable parameter
wg, becomes:

e
x
k,i = v

x
tanh (Wx

1sk−1 +W
x
2h

x
i +wggk,i)

21

gk is also used to penalize attending to the same locations repeatedly with a coverage loss. The
coverage loss summed over all time steps k is:

Lcov = ∑
k

n

∑
i=1

min (αx
k,i, gk,i)

Therefore, with our model adaptations, the loss for a single training instance including the
cross-entropy loss, the diagonal attention loss, and the coverage loss is:

L = Lce + Ldiag + Lcov (3.4)

3.2.3 Utilizing Untranscribed Data

As discussed in Section 2.2, given the effort involved, we transcribe only a subset of the pages in
each scanned book. Nonetheless, we leverage the remaining unannotated pages for pretraining
our model. We use the upstream OCR tool to get a first pass transcription on all the unanno-
tated pages. We then create “pseudo-target” transcriptions for the endangered language text as
described below:

• Denoising rules Using a small fraction of the available annotated pages, we compute
the edit distance operations between the first pass OCR and the gold transcription. The
operations of each type (insertion, deletion, and replacement) are counted for each char-
acter and divided by the number of times that character appears in the first pass OCR.
This forms a probability of how often the operation should be applied to that specific
character.

We use these probabilities to form rules, such as p(replace d with d.)=0.4 for Griko and
p(replace ? with P)=0.7 for Yakkha. These rules are applied to remove errors from, or
“denoise”, the first pass OCR transcription.

• Sentence alignment We use Yet Another Sentence Aligner (Lamraoui and Langlais,
2013) for unsupervised alignment of the endangered language and translation on the
unannotated pages.

Given the aligned first pass OCR for the endangered language text and the translation along
with the pseudo-target text, x, t and ŷ respectively, the pretraining steps, in order, are:

• Pretraining the encoders We pretrain both the forward and backward LSTMs of each
encoder with a character-level language model objective: the endangered language en-
coder on x and the translation encoder on t.

22

• Pretraining the decoder The decoder is pretrained on the pseudo-target ŷ with a
character-level language model objective.

• Pretraining the seq-to-seqmodel Themodel is pretrainedwithx and t as the sources
and the pseudo-target ŷ as the target transcription, using the post-correction loss func-
tion L as defined in Equation 3.4.

3.3 Experiments

This section discusses our experimental setup and the post-correction performance on the four
endangered languages on our dataset.

3.3.1 Experimental Setup

Data Splits We use the benchmark dataset described in Section 2.2 for evaluating the per-
formance of our method. We perform 10-fold cross-validation for all experimental settings
because of the small size of the datasets. For each language, we divide the transcribed data into
11 segments — we use one segment for creating the denoising rules described in the previous
section and the remaining ten as the folds for cross-validation. In each cross-validation fold,
eight segments are used for training, one for validation, and one for testing.

We divide the dataset at the page-level for the Ainu, Griko, and Kwak’wala documents.
This results in 11 segments with three pages each for Ainu and Griko and 11 segments with
a single page each for Kwak’wala. For the Yakkha documents, we divide at the paragraph-
level, due to the small size of the dataset. We have 33 paragraphs across the three books in our
dataset, resulting in 11 segments that contain three paragraphs each. The multi-source results
for Yakkha reported in Table 3.1 use the English translations. Results with Nepali are similar
and are excluded for clarity.

Metrics We use two metrics for evaluating the digitization performance of all compared sys-
tems: character error rate (CER) and word error rate (WER), as described in Section 2.3.

Methods In our experiments, we compare the performance of our proposed method with the
first pass OCR and with two systems from recent work in OCR post-correction. All the post-
correction methods have two variants – the single-source model with only the endangered

23

language encoder and the multi-source model that additionally incorporates translations from
the documents using the high-resource translation encoder.

• Fp-Ocr: The first pass transcription obtained from Ocular for Kwak’wala and from the
Google Vision OCR system for Ainu, Griko, and Yakkha (see Section 2.4 for details about
the performance of each OCR system).

• Base: This system is the base sequence-to-sequence architecture described in Section 3.2.1.
The single-source variant of this model has been used in recent work on OCR post-
correction, resulting in state-of-the-art performance on high-resource languages (Hämäläi-
nen and Hengchen, 2019). Both the single-source andmulti-source variants of this system
are used for English OCR post-correction in Dong and Smith (2018).

• Copy: This system is the base architecture with a copy mechanism as described in Sec-
tion 3.2.2. The single-source variant of this model is used for OCR post-correction on
Romanized Sanskrit in Krishna et al. (2018).1

• Ours: The model with all the adaptations proposed in Section 3.2.2 and Section 3.2.3.

Implementation The post-correction models are implemented using the DyNet neural net-
work toolkit (Neubig et al., 2017), and all reported results are the average of five training runs
with different random seeds. We assume knowledge of the entire alphabet of the endangered
language for all the methods, which is straightforward to obtain for most languages. The de-
coder’s vocabulary contains all these characters, irrespective of their presence in the training
data, with corresponding randomly-initialized character embeddings.
The hyperparameters used are:

• Character embedding size = 128
• Number of LSTM layers = 1
• Hidden state size of the LSTM = 256
• Attention size = 256
• Beam size = 4
• For the diagonal loss, j = 3
• Minibatch size for training = 1
• Maximum number of epochs = 150
1Although Krishna et al. (2018) use BPE tokenization, experiments showed that character-level models result

in much better performance on our dataset, likely due to the limited data available for training the BPE model.

24

Character Error Rate

Ainu Griko Yakkha Kwak’wala
Model Multi Single Multi Single Multi Single Multi Single

Fp-Ocr – 1.34 – 3.27 – 8.90 – 7.90

Base 1.56 1.41 6.78 5.95 70.39 71.71 – 70.62

Copy 2.04 1.99 2.54 2.28 14.77 12.30 – 14.84

Ours 0.92 0.80 1.66 1.70 7.75 8.44 – 4.97

Word Error Rate

Ainu Griko Yakkha Kwak’wala
Model Multi Single Multi Single Multi Single Multi Single

Fp-Ocr – 6.27 – 15.63 – 31.64 – 38.22

Base 8.56 7.88 15.13 13.67 98.15 99.10 – 89.57

Copy 9.48 8.57 9.33 8.90 30.36 27.81 – 48.81

Ours 5.75 5.19 7.46 7.51 20.95 21.33 – 27.65

Table 3.1: Our method improves performance over all baselines (10-fold cross-validation av-
eraged over five randomly seeded runs). We present multi- and single-source variants and
highlight the best model for each language.

• Patience for early stopping = 10 epochs
• Pretraining epochs for encoder/decoder = 10
• Pretraining epochs for seq-to-seq model = 5
We use the same values of the hyperparameters for each language and all the systems. We

select the best model with early stopping on the character error rate of the validation set.

3.3.2 Main Results

Table 3.1 shows the performance of the baselines and our proposed method for each language.
Overall, our method results in an improved CER andWER over existing methods across all four
languages in the evaluation dataset.

The Base system does not improve the recognition rate over the first pass transcription,

25

0 2 4 6 8

all
-diag
-copy

-coverage
-pretr. dec
-pretr. enc
-pretr. s2s

5.19
5.49

6.56
5.6

6.86
6.7

5.65

WER

Ainu

0 2 4 6 8 10

all
-diag
-copy

-coverage
-pretr. dec
-pretr. enc
-pretr. s2s

7.46
8.06
8.66

10.19
7.87

9.47
9.43

WER

Griko

0 10 20 30 40

all
-diag
-copy

-coverage
-pretr. dec
-pretr. enc
-pretr. s2s

24.29
22.73

37.83
26.71

20.95
28.41
27.68

WER

Yakkha

0 10 20 30

all
-diag
-copy

-coverage
-pretr. dec
-pretr. enc
-pretr. s2s

28.17
28.67
27.65
28.31
29.44
29.79
29.3

WER

Kwak’wala

Figure 3.2: WER with model component ablations on the best model setting in Table 3.1. “all"
includes all the adaptations we propose. Each ablation removes a single component from the
“all" model, e.g. “-pretr. s2s" removes the seq-to-seq model pretraining.

apart from a small decrease in the Griko WER. The performance on Yakkha and Kwak’wala,
particularly, is significantly worse than Fp-Ocr: likely because the training data size is much
smaller in these languages than that of Griko and Ainu, and the model is unable to learn a
reasonable distribution. However, on adding a copy mechanism to the base model in the Copy
system, the performance is notably better than Base for Griko, Kwak’wala, and Yakkha. This
indicates that adaptations to the base model that cater to specific characteristics of the post-
correction task can alleviate some of the challenges of learning from small amounts of data.

Both the single-source and the multi-source variants of our proposed method (Ours) im-
prove over the baselines, demonstrating that the model adaptations can increase recognition
accuracy even without high-resource translations. We see that using the high-resource transla-
tions results in better post-correction performance for Griko and Yakkha, but the single-source
model achieves better accuracy for Ainu. We attribute this to two factors: the very low error
rate of the first pass transcription for Ainu and the relatively high error rate (based on manual
inspection) of the OCR on the Japanese translation. Despite being a high-resource language,
OCR is difficult due to the complexity of Japanese characters and low scan quality. The noise
resulting from Japanese OCR errors likely affects performance in the multi-source setup.

26

Errors fixed by our method Errors introduced by our method

(a) Griko (b) Yakkha (c) Griko (d) Yakkha
[Image]

exi i kaddinàra!

eχi i kaḍḍinàra!

_खारिनङ्गो
ङ्खाॽिनङ्गो

exi i kaddinàra!

eχi i kaḍḍinàra!

_खा!िनङ् गो
"# खा$िनङ् गो

è ffacilo
è ffaćilo हाङ् चाङ् %&'(

हाङ्चाङ्चाङ्

exi i kaddinàra!

eχi i kaḍḍinàra!

_खा!िनङ् गो
"# खा$िनङ् गो

è ffacilo
è ffaćilo हाङ् चाङ् %&'(

हाङ्चाङ्चाङ्

exi i kaddinàra!

eχi i kaḍḍinàra!

_खा!िनङ् गो
"# खा$िनङ् गो

è ffacilo
è ffaćilo हाङ् चाङ् %&'(

हाङ्चाङ्चाङ्
↓ ↓ ↓ ↓

[First pass OCR] exi i kaddinàraexi i kaddinàra!

eχi i kaḍḍinàra!

_खा!िनङ् गो
"# खा$िनङ् गो

è ffacilo

exi i kaddinàra!

eχi i kaḍḍinàra!

_खा!िनङ् गो
"# खा$िनङ् गो

è ffacilo
è ffaćilo हाङ् चाङ् %&'(

हाङ्चाङ्चाङ्
↓ ↓ ↓ ↓

[Post-corrected] eχi i kad. d. inàra
exi i kaddinàra!

eχi i kaḍḍinàra!

_खा!िनङ् गो
"# खा$िनङ् गो è ffaćilo

exi i kaddinàra!

eχi i kaḍḍinàra!

_खा!िनङ् गो
"# खा$िनङ् गो

è ffacilo
è ffaćilo हाङ् चाङ् %&'(

हाङ्चाङ्चाङ्

Figure 3.3: Our model fixes many mixed script and uncommon diacritics errors such as (a) and
(b). In rare cases, it “over-corrects" the first pass OCR transcription, introducing errors such as
(c) and (d).

3.3.3 Ablation Studies

Next, we study the effect of our proposed adaptations and evaluate their benefit to the perfor-
mance of each language. Figure 3.2 shows the word error rate with models that remove one
adaptation from the model with all the adaptations (“all").

For Ainu and Griko, removing any single component increases the WER, with the complete
(“all”) method performing the best. There is little variance in performance with ablations on the
Kwak’wala language dataset. Our proposed adaptations add the most benefit for Yakkha, which
has the fewest training data and relatively less accurate first pass OCR. The copy mechanism
is crucial for good performance, but removing the decoder pretraining (“pretr. dec”) leads to
the best scores among all the ablations. The denoising rules used to create the pseudo-target
data for Yakkha are likely not accurate since they are derived from only three paragraphs of
annotated data. Consequently, using it to pretrain the decoder leads to a poor language model.

3.3.4 Error Analysis

We systematically inspect all the recognition errors in the output of our post-correction model
to determine the sources of improvement with respect to the first pass OCR. We also examine
the types of errors introduced by the post-correction process.

We observe a 91% reduction in the number of errors due to mixed scripts and a 58% reduction

in the errors due to uncommon characters and diacritics (as defined in Section 2.4). Examples

27

of these are shown in Figure 3.3 (a) and (b): mixed script errors such as theχ character in Griko
and the glottal stop P in Yakkha are successfully corrected by the model. The model is also able
to correct uncommon character errors like d. in Griko and ङ् in Yakkha.

Examples of errors introduced by the model are shown in Figure 3.3 (c) and (d). Example (c)
is in Griko, where the model incorrectly adds a diacritic to a character. We attribute this to the
fact that the first pass OCR does not recognize diacritics well; hence, the model learns to add
diacritics frequently while generating the output. Example (d) is in Yakkha. The model inserts
several incorrect characters, and can likely be attributed to the lack of a good language model
due to the relatively smaller amount of training data we have in Yakkha.

3.4 Related Work

Post-correction for OCR is well-studied for high-resource languages. Early approaches in-
clude lexical methods and weighted finite-state methods (see Schulz and Kuhn (2017) for an
overview). Recent work has primarily focused on using neural sequence-to-sequence models.
Hämäläinen and Hengchen (2019) use a BiLSTM encoder-decoder with attention for historical
English post-correction. Similar to our base model, Dong and Smith (2018) uses a multi-source
model to combine the first pass OCR from duplicate documents in English. There has been
little work on lower-resourced languages. Kolak and Resnik (2005) present a probabilistic edit
distance-based post-correction model applied to Cebuano and Igbo, and Krishna et al. (2018)
show improvements on Romanized Sanksrit OCR by adding a copy mechanism to a neural
sequence-to-sequence model.

Multi-source encoder-decoder models have been used for various tasks including machine
translation (Zoph andKnight, 2016; Libovický andHelcl, 2017) andmorphological inflection (Kann
et al., 2017; Anastasopoulos and Neubig, 2019). Perhaps most relevant to our work is the multi-
source model presented by Anastasopoulos and Chiang (2018), which uses high-resource trans-
lations to improve speech transcription of lower-resourced languages.

Finally, Bustamante et al. (2020) construct corpora for four endangered languages from text-
based PDFs using rule-based heuristics. Data creation from such unstructured text files is an
important research direction, complementing our post-correction method for improving text
extraction accuracy for scanned documents.

28

3.5 Summary

In this chapter, we develop amodel for OCR post-correction that, unlike previouswork, requires
a very small amount of manually annotated data for training. The method uses character-level
LSTMs in a sequence-to-sequence architecture, with several adaptations to improve perfor-
mance in low-resource settings: a multi-source encoder to include high-resource translations
of the text, structural biases in the model, and pretraining to use unlabeled data. The proposed
method reduces the character error rate by 34.6% and the word error rate by 32.4% averaged
over the four endangered languages in our benchmark dataset. We also conduct a systematic
ablation study, demonstrating the utility of our model adaptations. Additionally, we present a
comprehensive error analysis that showed our model fixes a large majority of the errors caused
by specific characteristics of endangered languages (mixed scripts and uncommon diacritics).

29

30

Chapter 4

Efficient Use of Unlabeled Documents

In Chapter 3, we demonstrated that post-correction improves the performance of existing OCR
systems on endangered languages, where we adapt neural encoder-decoder models for post-
correction in the less-well-resourced endangered languages setting by adding translations and
structural biases to the model. However, even with such methods targeted at low-resource
learning, post-correction performance is still dependent on manually curated data, which are
minimally available for most endangered languages. On the other hand, unannotated raw im-
ages that need to be digitized are relatively less scarce; for many endangered languages, hun-
dreds of printed pages exist, with only a small subset manually transcribed. In this chapter,
we present a semi-supervised learning method for OCR post-correction that efficiently utilizes
these unannotated pages to improve performance.

The method has two key components. We first present a self-training technique for OCR
post-correction to create pseudo-training data. A baseline post-correction model is used to cor-
rect the initial OCR output on the unannotated pages, and the generated “post-corrected” text is
then used as pseudo-training data to improve the model. This process is repeated to iteratively
obtain better predictions on the unannotated pages.

While self-training is a straightforward way to use the unannotated data, incorrect predic-
tions in the pseudo-training data may introduce noise into the model (Zhu and Goldberg, 2009).
To counterbalance the influence of this noise and enforce consistency in the recognized vocab-
ulary, we propose lexically-aware decoding, an inference strategy that encourages the model
to generate predictions that contain “known” words. We use the pseudo-training data to train a
count-based language model, represented with a weighted finite-state automaton (WFSA) for
efficient and effective decoding. Our decoding method jointly uses an LSTM decoder and the
WFSA to make OCR post-correction predictions.

31

The intuition behind the joint decoding strategy is simple. As themodel iteratively improves
with self-training, the quality of the pseudo-training data is also likely to improve and contain
an increasing number of correctly predicted words, resulting in a better count-based language
model. Consequently, joint decoding reinforces the prediction of more accurate words and
mitigates the noise introduced by incorrect words in the pseudo-training data.

The semi-supervised method reduces the character and word error rates by 15%–29% over
the OCR post-correction method for endangered languages presented in Chapter 3. We find
that the combination of self-training and lexically-aware decoding is essential for achieving
consistent improvements in performance across all languages. The method presented in this
chapter has also been published in Rijhwani et al. (2021).

4.1 Base Model

Weuse theOCRpost-correction formulation as described in Section 3.1. For the semi-supervised
learning method, we require a baseline post-correction model to obtain initial predictions on
the unlabeled data.

For the baseline model, we use the technique described in the previous chapter: a sequence-
to-sequence model that uses an attention-based LSTM encoder-decoder (Bahdanau et al., 2015),
with adaptations for low-resource OCR post-correction.1

Recall that the model is trained in a supervised manner with a small number of manual
transcriptions: the training data includes pairs of first pass OCR text with its corresponding
error-free transcription. The post-correction training loss function (denoted as L; defined in
Equation 3.4) is a combination of cross-entropy loss along with the diagonal attention loss and
the coverage loss from the structural biases. Similar to many sequence generation methods,
inference with a trained model is performed using beam search.

In the following sections, we use this model as the base model for our proposed semi-
supervised learning technique for OCR post-correction. Given the minimal manually tran-
scribed data we have in endangered languages, the method aims to efficiently use the relatively
larger number of pages without gold transcriptions to improve performance. To this end, we
introduce twomethodological improvements: (1) self-training and (2) lexically-aware decoding.

1The model in Chapter 3 incorporate translations into the model with a multi-source encoder. We omit this
from the semi-supervised formulation, considering applicability to texts without available translations. However,
adding an encoder into the framework remains straightforward and can be used if translations exist.

32

4.2 Self-Training

Self-training is a semi-supervised learning method, where a trained model is used to make
predictions on unlabeled data, and the model is then retrained on its own predictions (Zhu and
Goldberg, 2009).2

Consider that we have a set of images with manually created transcriptions and a set of im-
ages without gold transcriptions. We can obtain a first-pass transcription for the text contained
in the images (both sets) with existing OCR tools.

More formally, we have a gold-transcribed dataset D = {⟨x(i)
,y

(i)⟩}di=1, where x(i) is the
first pass transcription and y

(i) is the error-free manual transcription of the ith training in-
stance.3 We also have a dataset for which only the first pass OCR is available (i.e., no manual
transcriptions), U = {x(j)}uj=1. For most cases in the endangered languages setting, the set
without gold transcriptions is much larger, that is, u ≫ d.

Since self-training requires a baseline model to get an initial set of predictions on U , we
first train the base model described in Section 3.2.1. Let the trained base model be fθ. Next, we
use the predictions on U from fθ to self-train the model. We follow the self-training strategy
recommended inHe et al. (2020), which involves two steps: “pseudo-training” and “fine-tuning”.
We describe each step of the self-training procedure in detail below:

1. Apply a trained OCR post-correction model fθ on each instance in the set U to obtain pre-
dictions using beam search inference.

For an instance x, let the prediction be fθ(x).

2. Create a pseudo-annotated datasetwith the predictions from step 1. Let this beS = {⟨x, fθ(x)⟩ ∣
x ∈ U}.

3. Pseudo-train the model fθ on sets U and S.

In this step, we first pseudo-train the encoder and the decoder components, and then pseudo-

2While this method is typically called self-training, it is also sometimes called “hard-EM” (Spitkovsky et al.,
2010). Using the traditional (soft) EM algorithm is computationally infeasible with our model because calculating
the expectation requires generating all possible sequence predictions on the unannotated pages in the dataset.
Although sampling can be used to approximate EM in this case, because we cannot use dynamic programming
with our model, we would still need to sample a large number of outputs to get robust counts for EM. Instead, we
use beam search to generate a single best output (“hard-EM”), which we then use for self-training.

3In our dataset, the source and target data instances are either at the line-level or the sentence-level (see the
description of the data in Chapter 2).

33

train the end-to-end post-correction model. The pseudo-training procedure is as follows:

a) Train the encoder with a character-level language modeling (LM) objective on U .

As discussed in Section 3.2.1, the encoder component of the model is an LSTM that operates
at the character-level. We pseudo-train this LSTMwith a language model objective on each
text sequence x ∈ U .

That is, at each timestep t, the LSTM is trained to predict the next character in the input se-
quence. Given a sequence of charactersx = [x1, . . . , xN], the training objective maximizes
∏N

t=1 P (xt ∣ x1, . . . , xt−1).

This is the standard LM objective function and has been proven helpful for pretraining
LSTMs to improve hidden representations (Dai and Le, 2015; Ramachandran et al., 2017).

b) Train the decoder LSTM with the LM objective described above, using the baseline model’s
predictions {fθ(x) ∣ x ∈ U}.

c) Train the sequence-to-sequence model on the pseudo-annotated dataset S with the post-
correction loss function L from Section 3.2.1.

4. Given the pseudo-trained model fθ, fine-tune the model on the gold-transcribed dataset D,
with the loss function L.

5. Repeat step 1 to step 4 until convergence or for the maximum iterations permitted.

As indicated above, self-training is a straightforward semi-supervised technique to leverage
documents without gold transcriptions to improve OCR post-correction performance. We note
that some self-training methods (Yarowsky, 1995; Lee et al., 2013; Zoph et al., 2020, inter alia)
replace steps 4 and 5 with a single step that trains fθ on S ∪ D. However, this led to slightly
worse performance in our preliminary experiments. We also observed that pseudo-training the
LSTMs with an LM objective (steps 3(a) and 3(b) above) is necessary for good performance and
that applying the self-training steps on fθ from the previous iteration led to better results than
re-initializing the model.4

Further, as recommended in He et al. (2020) to improve self-training for neural sequence
generation, we add a dropout layer into the base model at the encoder and decoder hidden
states during pseudo-training and fine-tuning (steps 3 and 4).

4In preliminary experiments, we also tried using S∪D in step 3(c). However, the post-correction performance
was approximately the same as using only the set S.

34

4.3 Lexically-Aware Decoding

Although self-training is a simple approach that leads to improvements in post-correction per-
formance without additional manual annotation, incorrect predictions in the pseudo-annotated
data may introduce noise into the model, potentially reinforcing the errors in the next self-
training iteration (Zhu and Goldberg, 2009). Such noise is more likely to occur in the endan-
gered languages setting, where the base model is trained on minimal data and, thus, sometimes
generates erroneous predictions.

While some self-training methods use confidence scores to remove noisy predictions (such
as Yarowsky (1995)), these are typically designed for classification tasks. Designing such heuris-
tics is challenging for OCRpost-correction because the predictions are generated at the character-
level; specific characters may be incorrect, but discarding the entire predicted sequence (i.e., the
line or sentence) is inefficient, particularly in a low-resource scenario. To mitigate these issues,
we propose lexically-aware decoding, an inference strategy based on our observations of the
challenges associated with the OCR post-correction task.

More specifically, our preliminary experiments with self-training indicated that the errors
made by the model are typically inconsistent. For a particular word, some instances may be
correctly predicted by the model. For the instances of the word that are incorrect, we observe
that they are likely to be erroneous in different ways, i.e., different subsets of characters in
the word are incorrectly predicted. This is expected since the same word can appear in varied
contexts, or the first pass OCR for the word can differ. Our empirical observations on the
pseudo-annotated dataset S showed that, since the errors are inconsistent, the correct form
of the word is more frequent than incorrect forms. Lexically-aware decoding is designed to
influence the OCR post-correction model to generate words that frequently occur in the set S,
in the expectation that these are correct word forms.

We first describe the construction of a model that accounts for word frequency in the pre-
dictions along with a character n-gram model to enable the prediction of unseen words. Then,
we present a joint decoding method that uses the frequency-based models in combination with
the LSTM decoder for improved OCR post-correction.

4.3.1 Count-Based Language Model

From the self-trainingmethod in Section 4.2, we have a pseudo-annotated datasetS = {⟨x, fθ(x)⟩ ∣
x ∈ U}, where fθ(x) is the model’s prediction for input sequence x. We train a count-based

35

(a) Original WFSA (b) Minimized WFSA for Known Words

start

unk

1

2

d / 1.6

d / 0.3

ϵ / 3.0

o

o

o

g

r

B
B

B

start 1 2

3

4
d / 0.3 o

o /
1.3

g

r

B

B: word boundary symbols

Figure 4.1: The (a) WFSA and (b) minimized WFSA we construct, for a hypothetical language
model with a two word vocabulary: P (dog) = 0.75; P (door) = 0.2; P (<unk>) = 0.05. The
transition weights are negative log probabilities. In (b), for simplicity, we show only the known
word states after determinization and minimization.

word-level unigram language model (LM) on {fθ(x) ∣ x ∈ U}. The LM is built by computing
frequency-based probabilities for each word found in the predictions. However, we have to re-
serve some probability mass to account for unknown words (words unseen in the predictions).

We use modified Kneser-Ney smoothing to derive the unknownword (“<unk>") probability.
Since we use a unigram LM, the smoothing process is similar to absolute discounting. However,
we use the discount values based on the modified Kneser-Ney method, which are derived from
word counts in the dataset, as opposed to using a fixed discount value (Chen and Goodman,
1999). We denote the probability from the smoothed LM for a known word w as pword(w) and
the unknown word probability as pword(<unk>).

A count-based unigram LM is a simple model but is suitable given our empirical obser-
vations on word-level errors (described earlier in this section) because (1) it explicitly models
word frequency, (2) it is straightforward to update as the pseudo annotated dataset improves
over self-training iterations, and (3) it can be expressed as a weighted finite-state automaton
which, as we discuss next, has several properties useful for our decoding method.

4.3.2 Weighted Finite State Automaton

A weighted finite-state automaton (WFSA) is a set of states and transitions between the states.
Each transition accepts a particular symbol as input and has a weight associated with it. The

36

symbols come from a finite alphabet Σ. A sequence of consecutive transitions is referred to as
a “path", and the label of a path is the concatenation of all symbols consumed by its constituent
transitions. TheWFSA has a start state and a set of final states. A successful path is a path from
the start state to a final state, and a sequence of symbols is “accepted" by the WFSA if there
exists a successful path that consumes this sequence (Mohri et al., 2002).

Since we are focused on decoding and only need the best scoring path for any given se-
quence (i.e., Viterbi search), we consider the weights over the tropical semiring. That is, the
weight of a path is the sum of its transition weights, and the score of a sequence of symbols is
the minimum weight of all the successful paths that accept that sequence.

Decoding with the post-correction model is at the character-level (Equation 3.3), so to lever-
age word frequency in the decoding process, we convert the count-based word-level LM de-
scribed in Section 4.3.1 to a WFSA representation that consumes and scores sequences at the
character-level.

TheWFSA is constructed to accept thewords known to the LMby consuming each character
in the word (in sequence) as input. The score of the path that accepts a known word w is the
negative log of its probability from the LM: − log pword(w). A simple example is shown in
Figure 4.1(a).

The WFSA, as described above, can only accept a single word. However, the input and
corresponding predictions of the post-correction model are sequences of words, typically lines
or sentences. To enable theWFSA to accept such sequences, we add transitions that accept a set
B of word boundary symbols (whitespace, punctuation, and end-of-sequence) from the states
at the end of the known words (e.g., states 1 and 2 in Figure 4.1(a)) back to the start state. Once
in the start state, the model can begin consuming characters from the next word.

Further, we modify the WFSA such that the start state is also the only final (accepting) state
since the predicted sequence is considered complete only when the model predicts an end-of-
sequence symbol after the last character.

Character LM for Unknown Words To enable the prediction of words unknown to the
count-based LM, we include an unknown word state in theWFSA as shown in Figure 4.1(a). We
add an ϵ-transition (a transition that consumes no input), with an associated cost− log pword(<unk>)
(i.e., the probability mass reserved for unknown words in Section 4.3.1) to enter the unknown
word state from the start state. The model remains in the unknown state until a word boundary
symbol from the set B is consumed to return to the start state.

The unknownword state is designed to accept any combination of the symbols inΣ, thereby

37

permitting the prediction of words unseen by the word-level LM. To score each character con-
sumed at the unknownword state, we use a character-leveln-gram languagemodel.5 Wedenote
the probabilities from this character n-gram LM as pchar. The probability distribution is esti-
mated with modified Kneser-Ney smoothing on character n-grams from unique word forms in
the set {fθ(x) ∣ x ∈ U}. We use unique word forms because unknown words are likely rare,
and using count-based word forms would undesirably shift the probability mass towards more
frequent words.

Thus, we are able to leverage the benefits of the word-level model on “known words" and
the character-level model to score “unknown words" to influence the post-correction model to
predict frequent known words while accounting for cases where there may be many unknown
words (such as if the language has rich morphology).

4.3.3 Efficient scoring with the WFSA

The constructed WFSA has states to score character sequences that form known words and an
unknown word state that relies on a character n-gram LM to score unknown sequences.

During inference, we independently score the next character through the known word
model and the unknown word model and then choose the best scoring path. This formulation
has two advantages: (1) separate scoring allows us to compactly represent the WFSA states for
known words and (2) instead of representing the character n-gram LM directly in the WFSA,
leading to the number of states exponentially increasing with n, we can use highly-optimized
LM toolkits such as KenLM (Heafield et al., 2013) for scoring unknown words.

KnownWord Model Consider the WFSA with only known word states. We apply standard
algorithms for determinization and minimization on these states, which leads to an efficient
and compact representation of the count-based language model (Mohri, 1996). As shown in
Figure 4.1(b), the resultant minimized WFSA has several properties useful for our decoding
method, discussed below.

Determinization ensures that each state has at most one outgoing transition that con-
sumes a given input symbol, and minimization eliminates redundant states and transitions,
reducing the time and space needed to process an input sequence.

Further, minimization includes pushing the transition weights toward the start state of the
5We use n = 6. We experimented with different values of n in early experiments but found that n = 6 gave

us the best results for all languages in our dataset.

38

WFSA as much as possible (Mohri et al., 2002). This lends itself well to our method since infer-
ence in the OCR post-correction model is performed with beam search; if the cost of a path is
established closer to the start state, unfavorable hypotheses can be pruned at an earlier timestep,
which allows us to avoid search errors more effectively within an approximate search algorithm
like beam search.

Lastly, since each state in the WFSA has at most one outgoing transition for each symbol,
the transition scores can be precomputed and stored as a matrix, allowing efficient retrieval
during decoding.

At decoding timestep t, let the previous timestep score from the known word model be
known(yt−1) and the current WFSA state be st−1. The score for predicting the next character
yt is the weight of the transition from state st−1 that consumes yt in the minimized WFSA (see
Figure 4.1(b)). Thus,

known(yt) = known(yt−1) + scorewfsa(yt ∣ st−1)

where known(y0) = 0. If yt does not continue the path of any known word, then scorewfsa(yt)
is inf .

Unknown Word Model We use the probability pchar from the character n-gram language
model to score unknown words. In general, at decoding timestep t, the unknown model score
for yt will be:

unk(yt) = unk(yt−1) − log pchar(yt ∣ yt−1, . . . , yt−n)

However, if yt−1 ∈ B (i.e., the previous word is complete) or t = 0, the WFSA is currently
in the start state. To begin an unknown word, we also need to add the weight of entering the
unknown word state to unk(yt), i.e., − log pword(<unk>).

Best Scoring Path The scores are in the tropical semiring (negative log probabilities). At
timestep t, the best score for yt from the lexical models is:

scorelex(yt) = min(known(yt), unk(yt)) (4.1)

During decoding, we keep track of both the known and unknown model scores for the
current word being generated in the hypothesis. When the word is completed (when yt ∈ B),
both the known and unknownwordmodels return to the start state of theWFSA (see Figure 4.1).
Since the two paths are in the same state and are thus indistinguishable with respect to future

39

predictions in the hypothesis, we choose the best scoring path to continue decoding. This is
known as hypothesis recombination.

The WFSA framework, thus, allows us to efficiently represent the word-level LM in a man-
ner that scores symbols at the character-level and accounts for unknown words. This enables
joint inference with the character-level LSTM decoder in the OCR post-correction model, as
discussed below.

4.3.4 Joint Decoding with the LSTM

At decoding timestep t, let plstm(yt) be the probability of generating a character yt based on the
LSTM decoder’s hidden state (Equation 3.3). We also compute scorelex(yt), which is a negative
log probability, as defined in Equation 4.1. The final probability of predicting yt is obtained
through linear interpolation between these two scores,6 weighted by a hyperparameter λ:

p(yt) = (1 − λ) ⋅ plstm(yt) + λ ⋅ plex(yt) (4.2)

where plex(yt) = exp (−scorelex(yt)).
This joint decoding strategy is applied when performing inference with beam search using

a trained OCR post-correction model. When used in combination with self-training, the predic-
tions made by the model improve as we repeat the self-training process, iteratively improving
the count-based LM and resulting in a better distribution of plex(yt).

4.4 Experiments

In this section, we present experiments with our semi-supervised post-correction method on
the four typologically diverse endangered languages in our dataset.

4.4.1 Experimental Setup

Datasets We use the OCR post-correction dataset presented in Chapter 2 which contains
transcribed documents in four endangered languages: Ainu, Griko, Kwak’wala, and Yakkha. Re-
call that because of the effort involved, we manually annotated only a small subset of the pages
in the documents. The scanned images of the remaining pages are used for semi-supervised
learning. The sizes of the annotated and unannotated sets are described below:

6We leave other interpolation techniques like log-linear interpolation as potential future work.

40

• Ainu (ain): The dataset contains 816 manually transcribed lines and 7,646 lines without
gold transcriptions.

• Griko (grk): The dataset contains 807 and 3,084 sentences with and without gold tran-
scriptions, respectively.

• Yakkha (ybh): In total, there are 159 manually transcribed sentences and no unanno-
tated lines in the dataset. Therefore, as the unannotated set, we use the first pass OCR on
the validation and test sets in a transductive learning setting (≈ 30 sentences: see below
for data splits).

• Kwak’wala (kwk): The dataset contains 262 gold-transcribed lines and 2,255 unanno-
tated lines.

Data Splits Weperform 10-fold cross-validation for all experiments, following the same splits
as those in Chapter 3. For the semi-supervised learning, we use the same set of unannotated
images across all cross-validation folds (except in the case of Yakkha, see the unannotated set
description above).

Metrics We evaluate our systems in terms of character error rate (CER) and word error rate
(WER), both standard metrics for measuring OCR and OCR post-correction performance, as
described in Section 2.3.

Methods In our experiments, we compare the performance of the following methods:

• First-Pass: This is the performance of the first pass OCR system. From our analysis in Chap-
ter 2, we choose the best performing first pass system, the details of which are in Section 2.4.
We use Ocular for Kwak’wala and Google Vision for Ainu, Griko, and Yakkha.

• Base: The OCR post-correction model for endangered language texts, presented in Chapter 3.
• Semi-Supervised: Our proposed method as described in Section 4.2 and Section 4.3.

Implementation The neural post-correction models are implemented using the DyNet neu-
ral network toolkit (Neubig et al., 2017). The WFSA is implemented using the MFST Python
wrapper on OpenFST (Francis-Landau, 2020), and we use the KenLM toolkit (Heafield et al.,
2013) to train and query the character n-gram language model. The results reported are the
average of five randomly seeded runs (i.e., five runs for each of the 10 cross-validation folds).

41

% Character Error Rate % Word Error Rate

Model ain grk ybh kwk ain grk ybh kwk

First-Pass 1.34 3.27 8.90 7.90 6.27 15.63 31.64 38.22

Base 0.80 1.70 8.44 4.97 5.19 7.51 21.33 27.65

Semi-Supervised

Self-Training 0.82 1.45 7.20 4.00 5.31 6.47 18.09 23.98

Lexical Decoding 0.81 1.51 7.56 4.28 5.18 6.60 19.13 25.09

Both 0.63 1.37 5.98 3.82 4.43 6.36 16.65 22.61

Error Reduction (Base−BothBase) 21% 19% 29% 23% 15% 15% 22% 18%

Table 4.1: Our semi-supervised approach improves performance over the baselines (10-fold
cross-validation averaged over five randomly seeded runs). “Self-Training” and “Lexical De-
coding” refer to experiments where we use these methods independently. “Both” refers to their
combination. We highlight the best model for each language.

4.4.2 Main Results

Table 4.1 shows the performance of the baselines and our proposed semi-supervised approaches
for the four languages in the dataset. For all languages, using semi-supervised learning leads
to substantial reductions in both CER and WER.

We note that we did a hyperparameter search over the number of self-training iterations
and the weight of the WFSA λ, and Table 4.1 presents the best models based on the validation
set WER. Extensive analysis of these factors is in Section 4.4.4.

First, we note that the Base post-correction method improves error rates over the first pass
for all languages. With our proposed semi-supervised learningmethod, combining self-training
with lexically-aware decoding leads to the best performance across all the languages, with error
rate reductions in the range of 15%-29%.

This is especially noticeable in Ainu, where using either self-training or lexical decoding
independently results in worse performance than the Base system, but jointly using them im-
proves the CER by 21%. For the other languages, the independent components improve over the
base model but less so than their combination. This indicates the complementary nature of the
two components: the language model used for lexically-aware decoding is improved by self-

42

Known Word Unknown Word % Character Error Rate % Word Error Rate

Model Model ain grk ybh kwk ain grk ybh kwk

CharLM (not needed) 0.64 1.43 6.22 3.85 4.50 6.44 16.78 22.90

WordLM Character uniform 0.64 1.42 6.12 3.95 4.50 6.39 16.71 23.11

Ours Character n-gram 0.63 1.37 5.98 3.82 4.43 6.36 16.65 22.61

Table 4.2: A more informed unknown word model (character n-gram) in combination with the
word-level known word model consistently performs better than the alternatives for all four
languages in our dataset.

training. In turn, it reinforces correctly predicted words to counteract the influence of incorrect
pseudo-annotated instances.

4.4.3 Comparing Language Models

Our proposed decoding method uses a count-based word-level LM in combination with a char-
acter n-gram LM to compute plex for joint decoding with the LSTM decoder (Equation 4.2). In
this section, we substitute this model with two other variants of count-based LMs to compute
plex:
• CharLM: We use a character 6-gram language model on the model predictions from self-
training {fθ(x) ∣ x ∈ U}, estimated with modified Kneser-Ney smoothing.

• WordLM: We use the word-level LM described in Section 4.3.1, but do not use a character
n-gram model for unknown words. Instead, we score unknown words with a simple uniform
probability over all characters in the vocabulary.
We tune λ on the validation set for each model independently and report results with the

best setting in Table 4.2. Using either CharLM or WordLM for lexically-aware decoding im-
proves the error rates with respect to the Basemodel. The word-level model performs better for
all languages except Kwak’wala, likely due to the large percentage of unknown words in this
language. We also see that our proposed method, which leverages a count-based word-level
LM for known words combined with a character-level LM for scoring unknown words, results
in the best performance overall.

Although not observed in our dataset, we note that some printed materials have a high
degree of spelling variation or contain texts for which word tokenization is difficult. In such

43

Lang. LM Known Unknown

Code Coverage Base Ours Base Ours

ain 0.97 0.95 0.98 0.08 0.25

grk 0.94 0.89 0.96 0.51 0.71

ybh 0.68 0.90 0.95 0.51 0.59

kwk 0.59 0.89 0.92 0.50 0.58

Average 0.80 0.91 0.95 0.40 0.53

Table 4.3: Our method improves over the base model on words that are both known and un-
known to the WFSA. We show the fraction of known test words, and the fraction of correctly
predicted known and unknown words.

0.05 0.1 0.5
0

10

20

6.52 6.36
11.79

17.73

27.06

WFSA Weight λ (log scale)

%
W
ER

Griko

0.05 0.1 0.5
0

10

20

17.03 16.65 16.78
19.75

22.71

WFSA Weight λ (log scale)

%
W
ER

Yakkha

Figure 4.2: The weight of theWFSA during joint decoding can affect word error rate (sometimes
significantly, as in Griko; top). All other hyperparameters are kept equal and correspond to the
best systems in each language.

cases, the word-level model may not be as effective, but CharLM can still be used with the pro-
posed lexically-aware decoding framework to obtain improved performance over the baseline
method.

4.4.4 Analysis

We analyze specific components of our model to understand the advantages of our proposed
approach.

Known vs. Unknown Words We first identify the source of the improvements that our
approach makes over the baseline. Table 4.3 presents the fraction of correctly predicted words,
split on whether these words are “known" to theWFSA (i.e., in the vocabulary of the word-level

44

0 1 2 3 4 5
0

2

4

6 5.19 5.31
5.88 5.62 6.05 6.07

5.18
4.65 4.73 4.81 4.43 4.5

Iterations

%
W
ER

Ainu

0 1 2 3 4 5
0

10

20

21.3
18.5 18.4 18.8 18.1 19.1

20.2
17.2 17 16.6 17.4 18.2

Iterations

%
W
ER

Yakkha

Figure 4.3: Integrating lexically-aware decoding through interpolation with a WFSA (red lines)
aids self-training in improving WER across iterations. Black dashed lines correspond to self-
training without lexical decoding.

LM) or “unknown". Intuitively, we expect that decoding with theWFSAwill improve prediction
on the known words.

Compared to the baseline, our method improves on words known to the WFSA, moving
from 91% to 95% accuracy on average. Our method also improves unknown word prediction
over the baseline from an average accuracy of 40% to 53%. In cases like Kwak’wala, where, due
to the rich morphology of the language, more than 40% of the test words are unseen, including
an unknown word model in the WFSA is particularly important.

Effect ofWFSAWeight One of the important hyperparameters of our lexically-awaremethod
is the weight that we place on the WFSA score during inference (λ in Equation 4.2). Specifi-
cally, in the case of Griko, we find that the value of this hyperparameter can significantly affect
performance. As shown in Figure 4.2, high weights of λ (i.e., more weight on the WFSA) lead
to suboptimal WER, while lower λ leads to much better performance.

This hyperparameter is less important in the other three languages, leading to smaller vari-
ations in performance. As an example, we depict the effect on Yakkha in Figure 4.2, where
increasing λ does not affect performance as much as in Griko.

Self-Training Iterations The evolution ofWER across 5 self-training iterations for Ainu and
Yakkha is shown in Figure 4.3. Particularly for Ainu, we see that combination with lexically-
aware decoding is crucial for the success of self-training. For Yakkha, self-training does improve
performance independently but is more effective when lexically-aware decoding is used (error
rates on Griko and Kwak’wala follow a similar trend).

Dataset Size We study the effect of varying the amount of gold-transcribed and unannotated
data used for training. The WER when varying the size of the Griko datasets is shown in

45

0.125 0.25 0.5 1
0

5

10
7.42 6.82 6.48 6.36

Fraction of Unannotated Data Used (log scale)

%
W
ER

(a) Varying the amount of unannotated data used for training

0.125 0.25 0.5 1
0

5

10 12.02
10.25

7.1 6.36

Fraction of Gold Data Used (log scale)

%
W
ER

(b) Varying the amount of gold data used for training

Figure 4.4: Even a small amount of unannotated data is useful for our semi-supervised method,
improving WER over Base (WER=7.51) in (a). Varying the size of gold-annotated data has a
stronger effect on post-correction performance in (b). Results are shown with Griko.

Figure 4.4 (the size of each set is varied while keeping the other set at its full size). We see that
reducing the amount of gold-transcribed data worsens WER significantly. On the other hand,
reducing the unannotated data has a smaller effect: even with a little unannotated data, our
method improves over the Base model.

Error Rate in the First Pass OCR To evaluate how the error rate in the first pass OCR
transcription affects subsequent post-correction, we measure the performance of our proposed
method when applied to first pass outputs from two OCR systems: Google Vision and Ocular
(described in Section 2.4). Figure 4.5 shows the WER on the Kwak’wala dataset. We see that,
although Google Vision has a much higher first pass error rate than Ocular, the post-correction
model improves performance over both OCR systems. We also note that the relative error
reduction is higher for the Google Vision system (68%) than for Ocular (41%), likely because the
Ocular LM is trained on the same data as the post-correction model.

Qualitative Analysis In Figure 4.6, we show examples of errors fixed as well as errors in-
troduced by our post-correction model as compared to the baseline system. In Figure 4.6 (a)
and (b), we see that although the baseline corrects some of the errors in the first pass OCR, it
also introduces errors such as extra diacritics and incorrect substitutions. Using our proposed
method leads to an error-free transcription of these images. However, in Figure 4.6 (c) and (d),

46

Google Vision Ocular

20

40

60

80
82.08

38.22

26.38
22.61

%
W
ER

First Pass
Post-Corrected

Figure 4.5: Our post-correction model significantly improves recognition accuracy over differ-
ent first pass OCR systems that have varied error rates (Google Vision and Ocular). Results are
shown with Kwak’wala.

we see that our method occasionally introduces errors in predictions. Specifically, although
the model fixes the first pass errors, it generates words that are considerably different from the
target. Such errors likely occur when the model follows an incorrect path in the WFSA during
lexically-aware decoding. Since we are using beam search, the correct path cannot be recovered
if it was pruned at an earlier timestep.

4.5 Related Work

While existing neural post-correction methods (Dong and Smith, 2018; Rigaud et al., 2019;
Hämäläinen and Hengchen, 2019), as well as the method presented in Chapter 3, do not rely on
lexical information, some earlier methods use dictionaries to improve performance. For exam-
ple, Tong and Evans (1996) and Niklas (2010) use lexicons in combination with n-gram context
to generate post-correction candidates for erroneous words. These methods are typically eval-
uated on English and assume the presence of high-coverage lexicons (Schulz and Kuhn, 2017),
making them difficult to adapt to endangered languages.

Related to our decoding method are models that incorporate lexical knowledge into neural
machine translation models. Arthur et al. (2016) propose adding a dictionary for translating
low-frequency words and Zhang et al. (2018) improve decoding by upweighting translations
that contain relevant words. Additionally, there are methods which add hard lexical constraints
by forcing predictions to contain user-specified words and phrases (Hokamp and Liu, 2017; Post

47

Errors fixed by our method Errors introduced by our method

(a) Griko (b) Kwak’wala (c) Yakkha (d) Kwak’wala
[Image]

↓ ↓ ↓ ↓

[First pass OCR] aforàdzo petàcia.gwāł tēxtslâlēda

g̣wāł tēxts!âlēda

g̣wal tŭxts!alᴇla

hëem ʟ̣ēga_les

hëkm łēg·adᴇs

hëᴇm ʟẹ̄g̣aᵋdᴇs

ङोटे_वािचलाए

ङोटे!" वािचलाए
ङोटे!" #$

gwāł tēxtslâlēda

g̣wāł tēxts!âlēda

g̣wal tŭxts!alᴇla

hëem ʟ̣ēga_les

hëkm łēg·adᴇs

hëᴇm ʟẹ̄g̣aᵋdᴇs

ङोटे_वािचलाए

ङोटे!" वािचलाए
ङोटे!" #$

gwāł tēxtslâlēda

g̣wāł tēxts!âlēda

g̣wal tŭxts!alᴇla

hëem ʟ̣ēga_les

hëkm łēg·adᴇs

hëᴇm ʟẹ̄g̣aᵋdᴇs

ङोटे_वािचलाए

ङोटे!" वािचलाए
ङोटे!" #$

↓ ↓ ↓ ↓

[Post-corrected Base] aforàd. zo petàcia.

gwāł tēxtslâlēda

g̣wāł tēxts!âlēda

g̣wal tŭxts!alᴇla

hëem ʟ̣ēga_les

hëkm łēg·adᴇs

hëᴇm ʟẹ̄g̣aᵋdᴇs

ङोटे_वािचलाए

ङोटे!" वािचलाए
ङोटे!" #$

gwāł tēxtslâlēda

g̣wāł tēxts!âlēda

g̣wal tŭxts!alᴇla

hëem ʟ̣ēga_les

hëkm łēg·adᴇs

hëᴇm ʟẹ̄g̣aᵋdᴇs

ङोटे_वािचलाए

ङोटे!" वािचलाए
ङोटे!" #$

gwāł tēxtslâlēda

g̣wāł tēxts!âlēda

g̣wal tŭxts!alᴇla

hëem ʟ̣ēga_les

hëkm łēg·adᴇs

hëᴇm ʟẹ̄g̣aᵋdᴇs

ङोटे_वािचलाए

ङोटे!" वािचलाए
ङोटे!" #$

[Post-corrected Ours] aforàdzo petàćia.

gwāł tēxtslâlēda

g̣wāł tēxts!âlēda

g̣wal tŭxts!alᴇla

hëem ʟ̣ēga_les

hëkm łēg·adᴇs

hëᴇm ʟẹ̄g̣aᵋdᴇs

ङोटे_वािचलाए

ङोटे!" वािचलाए
ङोटे!" #$

gwāł tēxtslâlēda

g̣wāł tēxts!âlēda

g̣wal tŭxts!alᴇla

hëem ʟ̣ēga_les

hëkm łēg·adᴇs

hëᴇm ʟẹ̄g̣aᵋdᴇs

ङोटे_वािचलाए

ङोटे!" वािचलाए
ङोटे!" #$

gwāł tēxtslâlēda

g̣wāł tēxts!âlēda

g̣wal tŭxts!alᴇla

hëem ʟ̣ēga_les

hëkm łēg·adᴇs

hëᴇm ʟẹ̄g̣aᵋdᴇs

ङोटे_वािचलाए

ङोटे!" वािचलाए
ङोटे!" #$

Figure 4.6: Our post-correction model fixes many of the first pass OCR errors that the base
model does not fix such as (a) and (b). In rare cases, our method introduces errors into the
transcription such as (c) and (d).

and Vilar, 2018).
Lastly, we note that our proposed approach combines information from a neural model and

a finite-state machine to leverage the advantages of both. In a similar direction, Rastogi et al.
(2016) and Lin et al. (2019) design finite state architectures with paths weighted by contextual
features from an LSTM. These methods use joint parameterizations of the models and are thus
more complex to train (particularly in the low-resource setting) than the joint decoding method
we present in this chapter.

4.6 Summary

In this chapter, we present a semi-supervised learning technique for OCR post-correction that
improves performance over our previous model without any additional manual annotation.
The semi-supervised algorithm has two essential components: (1) self-training, which uses
unlabeled data to create pseudo-training data with a baseline model, and (2) lexically-aware
decoding, which derives a lexicon automatically from the self-training data and uses word fre-
quency information in a WFSA framework to enforce consistency in the model’s predictions.
We also analyze how each of the two components affects learning, and find that they are com-
plementary, where their combination results in the best performance across all languages in
our dataset. Compared to the model described in Chapter 3, using semi-supervised learning
improves character error rates by an average of 23% and word error rates by an average of
17.5% over the languages in our dataset. Overall, our best models reduce character error rates

48

by 49% andword error rates at 44% on average over existing OCR systems fromwhich we obtain
first-pass transcriptions.

Finally, we extensively evaluate how the performance of the model is affected by dataset
characteristics, including the fraction of unknown words and the sizes of the labeled and un-
labeled sets; modeling factors such as the unknown word model architecture and the linear
interpolation weight of the WFSA in decoding; and the OCR system used for the first-pass.

49

50

Chapter 5

Case Study: Impact of OCR on
Kwak’wala Language Revitalization

In Chapter 3 and Chapter 4, we described models for post-correction that improve error rates
of OCR transcriptions, even in very low-resource settings. In this chapter, we look beyond
error rates and attempt to evaluate the impact the models proposed in this thesis could have
on linguistic research, language documentation and revitalization, and communities that speak
endangered languages. We focus on the Kwak’wala language as a case study to highlight the
potential benefits of improving OCR for endangered languages.

Kwak’wala is a member of the Wakashan language family spoken on the Northwest North
American Coast. Heritage learners and teachers of five dialects from 18 Kwakakwa’wakw Na-
tions are actively engaged in the revitalization of spoken Kwak’wala. Written documentation
of the language extends back over 120 years (Boas, 1897; Boas and Hunt, 1902; Boas, 1911;
Boas and Hunt, 1921; Boas, 1934, inter alia). The knowledge held in these texts has tremen-
dous value for community-based research, but to the extent they have been digitized, they are
still ‘trapped’ in image files that are not machine-readable and are written in a technical and
somewhat idiosyncratic orthography primarily used in archival research contexts.

As discussed in earlier chapters, the orthography used in the documentation produced by
Hunt and Boas is complex and uses many unique diacritics and digraphs (Boas, 1900) that exist-
ing OCR systems frequently recognize incorrectly. In the case study presented in this chapter,
we ‘unlock’ these resources using our OCR post-correction model for Kwak’wala, converting
hundreds of scanned images from these documents into machine-readable text, thus enabling
much easier access to community members. Additionally, we conduct a user study to evaluate
the downstream utility of our models. The study measures howmuch time a human transcriber

51

needs to spend on correcting the outputs from OCR systems to obtain an accurate transcription,
and we quantitatively analyze whether our proposed post-correction method has utility in re-
ducing the time (and thus effort) spent on manual correction. Finally, we attempt to make the
extracted texts more readable to Kwak’wala researchers, speakers, and language learners by au-
tomatically transliterating them from the legacy Hunt/Boas orthography into the more modern
U’mista writing system (Nicolson and Werle, 2009), which is currently a community-preferred
orthography. Some of the material in this chapter was also presented in Rosenblum et al. (2022).

5.1 Documents in the Kwak’wala Language

Communities that speak Kwak’wala have a long tradition of written documentation about the
language and the culture. Research, resource creation, and knowledge continuity among com-
munity members are robust activities among 18 Kwakakwa’wakw Nations, supported by active
community engagement. Language teaching and learning are a focus in many communities,
intertwined with the reclamation of both culture and territorial sovereignty.

We focus on creating machine-readable text resources from a collection of documents pro-
duced by anthropologist Franz Boas in collaboration with George Hunt, a native speaker of
Kwak’wala. Franz Boas first met George Hunt in 1887, and the long collaboration between
Hunt and Boas which followed focused primarily on documenting the Kwakakwa’wakw cul-
ture (Berman, 1994). The documentation was written in the Kwak’wala language. Over four
decades, Hunt and Boas generated an extensive collection of linguistic and cultural documenta-
tion: 14 published bilingual Kwak’wala–English texts with over 3000 pages in total, an unpub-
lished dictionary, and additional unpublished manuscripts now held in three archival reposito-
ries in Philadelphia and New York. These texts encompass a grammar of the language; word
lists; stories; recipes; procedural texts; descriptions of practices, beliefs, and customs; names of
plants and descriptions of their uses; calendars and lists of month names from various commu-
nities; descriptions of dialectal differences; maps and lists of placenames; andmore. An example
page from the published volumes we extract text from is in Figure 5.6.

For Kwakakwa’wakw communities today, these texts are rich troves containing precious
knowledge, of great interest to communitymembers, and special value to community-led projects
focused on teaching, learning, strengthening, and reclaiming their language, cultural practices,
and territorial sovereignty (Lawson, 2004). Even though they are published documents in the
public domain, layers of obstacles impede access and limit the reach of these resources: for ex-
ample, manuscripts in the Columbia University Rare Books collection have not been scanned,

52

Excerpted from Marianne Nicolson and Adam Werle 2009. An investigation of modern
Kwakw̓ala determiner systems. ms, University of Victoria. pages 32-33.

 32

Appendix A. Kwak̓wala alphabets and transliteration

A.1 Alphabets
 There are several alphabets that have been used to write Kwak̓wala. This can be
an obstacle to learning the language, and to making use of the full range of available
materials. We therefore offer this summary of spelling systems both as a key to the
spelling used here, and as a reference tool for the reader (and for ourselves!).
 We compare five systems that we refer to as the U’mista, Grubb, Liq̫̓ ala, IPA, and
Boas alphabets. After summarizing these in table form, we offer some observations on
their differences, and on our transliteration of Boas and Hunt’s materials.
 These are the forty-two consonants and six vowels of Kwakw̓ala in five
alphabets, arranged to put similar alphabets closer together, and in alphabetical order
according to the U’mista letters:1

(140) Five Kwakw̓ala alphabets

 U’mista a a ̱ b d dł dz e g gw g̱
 Grubb a e b d dl dz eh g gw g̱
 Liq̫̓ ala a ə b d λ dᶻ e g gʷ ǧ
 IPA a ə, a, ɪ, ʊ b d dl dz ɛ, e ɡʲ ɡʷ ɢ
 Boas a, ā ᴇ, ă, î, ŭ b d ʟ ̣ dz ä, ê g· gw, gᵘ g̣

 g̱w h i k˙ kw k ̓ kw̓ ḵ ḵw ḵ ̓
 g̱w h i k˙ kw k’ kw’ ḵ ḵw ḵ’
 ǧʷ h i k˙ kʷ k ̓ k̫̓ q qʷ q ̓
 ɢʷ h i, e kʲ kʷ k’ʲ k’ʷ q qʷ q’
 g̣w, g̣ᵘ h i, ī, e, ē, ë k· kw, kᵘ k·! k!w, k!ᵘ q qw, qᵘ q!

 ḵw̓ l ’l ł m ’m n ’n o p p̓ s t t ̓ tł
 ḵw’ l ’l ̓ lh m ’m̓ n ’n̓ o p p’ s t t’ tl
 q̫̓ l ’l ̓ ł m ’m̓ n ’n̓ o p p̓ s t t ̓ ƛ
 q’ʷ l ’l’ ɬ m ’m’ n ’n’ ɔ, o p p’ s t t’ tł
 q!w, q!ᵘ l ᵋl ł m ᵋm n ᵋn â, ô p p! s t t! ʟ

 tł̓ ts ts̓ u w ’w x xw x ̱ xw̱ y ’y ’
 tl’ ts ts’ u w ’w̓ x xw x ̱ xw̱ y ’y ̓ 7
 ƛ̓ c c ̓ u w ’w̓ x xʷ x ̌ x̫̌ y ’y ̓ ʔ
 t’ɬ ts t’s u, o w ’w’ xʲ xʷ χ χʷ j ’j’ ʔ
 ʟ! ts ts! u, ū, o, ō w ᵋw x· xẉ, x̣u x xw, xᵘ y ᵋy ᵋ
1 In U’mista materials, ts is alphabetized before tł, and the sounds ’l, ’m, ’n, ’w, ’y (l,̓ m̓, n̓, w̓, y̓) are not
treated as separate letters, making the total number of consonants there thirty-seven. See appendix A.2.

Excerpted from Marianne Nicolson and Adam Werle 2009. An investigation of modern
Kwakw̓ala determiner systems. ms, University of Victoria. pages 32-33.

 32

Appendix A. Kwak̓wala alphabets and transliteration

A.1 Alphabets
 There are several alphabets that have been used to write Kwak̓wala. This can be
an obstacle to learning the language, and to making use of the full range of available
materials. We therefore offer this summary of spelling systems both as a key to the
spelling used here, and as a reference tool for the reader (and for ourselves!).
 We compare five systems that we refer to as the U’mista, Grubb, Liq̫̓ ala, IPA, and
Boas alphabets. After summarizing these in table form, we offer some observations on
their differences, and on our transliteration of Boas and Hunt’s materials.
 These are the forty-two consonants and six vowels of Kwakw̓ala in five
alphabets, arranged to put similar alphabets closer together, and in alphabetical order
according to the U’mista letters:1

(140) Five Kwakw̓ala alphabets

 U’mista a a ̱ b d dł dz e g gw g̱
 Grubb a e b d dl dz eh g gw g̱
 Liq̫̓ ala a ə b d λ dᶻ e g gʷ ǧ
 IPA a ə, a, ɪ, ʊ b d dl dz ɛ, e ɡʲ ɡʷ ɢ
 Boas a, ā ᴇ, ă, î, ŭ b d ʟ ̣ dz ä, ê g· gw, gᵘ g̣

 g̱w h i k˙ kw k ̓ kw̓ ḵ ḵw ḵ ̓
 g̱w h i k˙ kw k’ kw’ ḵ ḵw ḵ’
 ǧʷ h i k˙ kʷ k ̓ k̫̓ q qʷ q ̓
 ɢʷ h i, e kʲ kʷ k’ʲ k’ʷ q qʷ q’
 g̣w, g̣ᵘ h i, ī, e, ē, ë k· kw, kᵘ k·! k!w, k!ᵘ q qw, qᵘ q!

 ḵw̓ l ’l ł m ’m n ’n o p p̓ s t t ̓ tł
 ḵw’ l ’l ̓ lh m ’m̓ n ’n̓ o p p’ s t t’ tl
 q̫̓ l ’l ̓ ł m ’m̓ n ’n̓ o p p̓ s t t ̓ ƛ
 q’ʷ l ’l’ ɬ m ’m’ n ’n’ ɔ, o p p’ s t t’ tł
 q!w, q!ᵘ l ᵋl ł m ᵋm n ᵋn â, ô p p! s t t! ʟ

 tł̓ ts ts̓ u w ’w x xw x ̱ xw̱ y ’y ’
 tl’ ts ts’ u w ’w̓ x xw x ̱ xw̱ y ’y ̓ 7
 ƛ̓ c c ̓ u w ’w̓ x xʷ x ̌ x̫̌ y ’y ̓ ʔ
 t’ɬ ts t’s u, o w ’w’ xʲ xʷ χ χʷ j ’j’ ʔ
 ʟ! ts ts! u, ū, o, ō w ᵋw x· xẉ, x̣u x xw, xᵘ y ᵋy ᵋ
1 In U’mista materials, ts is alphabetized before tł, and the sounds ’l, ’m, ’n, ’w, ’y (l,̓ m̓, n̓, w̓, y̓) are not
treated as separate letters, making the total number of consonants there thirty-seven. See appendix A.2.

Excerpted from Marianne Nicolson and Adam Werle 2009. An investigation of modern
Kwakw̓ala determiner systems. ms, University of Victoria. pages 32-33.

 32

Appendix A. Kwak̓wala alphabets and transliteration

A.1 Alphabets
 There are several alphabets that have been used to write Kwak̓wala. This can be
an obstacle to learning the language, and to making use of the full range of available
materials. We therefore offer this summary of spelling systems both as a key to the
spelling used here, and as a reference tool for the reader (and for ourselves!).
 We compare five systems that we refer to as the U’mista, Grubb, Liq̫̓ ala, IPA, and
Boas alphabets. After summarizing these in table form, we offer some observations on
their differences, and on our transliteration of Boas and Hunt’s materials.
 These are the forty-two consonants and six vowels of Kwakw̓ala in five
alphabets, arranged to put similar alphabets closer together, and in alphabetical order
according to the U’mista letters:1

(140) Five Kwakw̓ala alphabets

 U’mista a a ̱ b d dł dz e g gw g̱
 Grubb a e b d dl dz eh g gw g̱
 Liq̫̓ ala a ə b d λ dᶻ e g gʷ ǧ
 IPA a ə, a, ɪ, ʊ b d dl dz ɛ, e ɡʲ ɡʷ ɢ
 Boas a, ā ᴇ, ă, î, ŭ b d ʟ ̣ dz ä, ê g· gw, gᵘ g̣

 g̱w h i k˙ kw k ̓ kw̓ ḵ ḵw ḵ ̓
 g̱w h i k˙ kw k’ kw’ ḵ ḵw ḵ’
 ǧʷ h i k˙ kʷ k ̓ k̫̓ q qʷ q ̓
 ɢʷ h i, e kʲ kʷ k’ʲ k’ʷ q qʷ q’
 g̣w, g̣ᵘ h i, ī, e, ē, ë k· kw, kᵘ k·! k!w, k!ᵘ q qw, qᵘ q!

 ḵw̓ l ’l ł m ’m n ’n o p p̓ s t t ̓ tł
 ḵw’ l ’l ̓ lh m ’m̓ n ’n̓ o p p’ s t t’ tl
 q̫̓ l ’l ̓ ł m ’m̓ n ’n̓ o p p̓ s t t ̓ ƛ
 q’ʷ l ’l’ ɬ m ’m’ n ’n’ ɔ, o p p’ s t t’ tł
 q!w, q!ᵘ l ᵋl ł m ᵋm n ᵋn â, ô p p! s t t! ʟ

 tł̓ ts ts̓ u w ’w x xw x ̱ xw̱ y ’y ’
 tl’ ts ts’ u w ’w̓ x xw x ̱ xw̱ y ’y ̓ 7
 ƛ̓ c c ̓ u w ’w̓ x xʷ x ̌ x̫̌ y ’y ̓ ʔ
 t’ɬ ts t’s u, o w ’w’ xʲ xʷ χ χʷ j ’j’ ʔ
 ʟ! ts ts! u, ū, o, ō w ᵋw x· xẉ, x̣u x xw, xᵘ y ᵋy ᵋ
1 In U’mista materials, ts is alphabetized before tł, and the sounds ’l, ’m, ’n, ’w, ’y (l,̓ m̓, n̓, w̓, y̓) are not
treated as separate letters, making the total number of consonants there thirty-seven. See appendix A.2.

Excerpted from Marianne Nicolson and Adam Werle 2009. An investigation of modern
Kwakw̓ala determiner systems. ms, University of Victoria. pages 32-33.

 32

Appendix A. Kwak̓wala alphabets and transliteration

A.1 Alphabets
 There are several alphabets that have been used to write Kwak̓wala. This can be
an obstacle to learning the language, and to making use of the full range of available
materials. We therefore offer this summary of spelling systems both as a key to the
spelling used here, and as a reference tool for the reader (and for ourselves!).
 We compare five systems that we refer to as the U’mista, Grubb, Liq̫̓ ala, IPA, and
Boas alphabets. After summarizing these in table form, we offer some observations on
their differences, and on our transliteration of Boas and Hunt’s materials.
 These are the forty-two consonants and six vowels of Kwakw̓ala in five
alphabets, arranged to put similar alphabets closer together, and in alphabetical order
according to the U’mista letters:1

(140) Five Kwakw̓ala alphabets

 U’mista a a ̱ b d dł dz e g gw g̱
 Grubb a e b d dl dz eh g gw g̱
 Liq̫̓ ala a ə b d λ dᶻ e g gʷ ǧ
 IPA a ə, a, ɪ, ʊ b d dl dz ɛ, e ɡʲ ɡʷ ɢ
 Boas a, ā ᴇ, ă, î, ŭ b d ʟ ̣ dz ä, ê g· gw, gᵘ g̣

 g̱w h i k˙ kw k ̓ kw̓ ḵ ḵw ḵ ̓
 g̱w h i k˙ kw k’ kw’ ḵ ḵw ḵ’
 ǧʷ h i k˙ kʷ k ̓ k̫̓ q qʷ q ̓
 ɢʷ h i, e kʲ kʷ k’ʲ k’ʷ q qʷ q’
 g̣w, g̣ᵘ h i, ī, e, ē, ë k· kw, kᵘ k·! k!w, k!ᵘ q qw, qᵘ q!

 ḵw̓ l ’l ł m ’m n ’n o p p̓ s t t ̓ tł
 ḵw’ l ’l ̓ lh m ’m̓ n ’n̓ o p p’ s t t’ tl
 q̫̓ l ’l ̓ ł m ’m̓ n ’n̓ o p p̓ s t t ̓ ƛ
 q’ʷ l ’l’ ɬ m ’m’ n ’n’ ɔ, o p p’ s t t’ tł
 q!w, q!ᵘ l ᵋl ł m ᵋm n ᵋn â, ô p p! s t t! ʟ

 tł̓ ts ts̓ u w ’w x xw x ̱ xw̱ y ’y ’
 tl’ ts ts’ u w ’w̓ x xw x ̱ xw̱ y ’y ̓ 7
 ƛ̓ c c ̓ u w ’w̓ x xʷ x ̌ x̫̌ y ’y ̓ ʔ
 t’ɬ ts t’s u, o w ’w’ xʲ xʷ χ χʷ j ’j’ ʔ
 ʟ! ts ts! u, ū, o, ō w ᵋw x· xẉ, x̣u x xw, xᵘ y ᵋy ᵋ
1 In U’mista materials, ts is alphabetized before tł, and the sounds ’l, ’m, ’n, ’w, ’y (l,̓ m̓, n̓, w̓, y̓) are not
treated as separate letters, making the total number of consonants there thirty-seven. See appendix A.2.

Excerpted from Marianne Nicolson and Adam Werle 2009. An investigation of modern
Kwakw̓ala determiner systems. ms, University of Victoria. pages 32-33.

 32

Appendix A. Kwak̓wala alphabets and transliteration

A.1 Alphabets
 There are several alphabets that have been used to write Kwak̓wala. This can be
an obstacle to learning the language, and to making use of the full range of available
materials. We therefore offer this summary of spelling systems both as a key to the
spelling used here, and as a reference tool for the reader (and for ourselves!).
 We compare five systems that we refer to as the U’mista, Grubb, Liq̫̓ ala, IPA, and
Boas alphabets. After summarizing these in table form, we offer some observations on
their differences, and on our transliteration of Boas and Hunt’s materials.
 These are the forty-two consonants and six vowels of Kwakw̓ala in five
alphabets, arranged to put similar alphabets closer together, and in alphabetical order
according to the U’mista letters:1

(140) Five Kwakw̓ala alphabets

 U’mista a a ̱ b d dł dz e g gw g̱
 Grubb a e b d dl dz eh g gw g̱
 Liq̫̓ ala a ə b d λ dᶻ e g gʷ ǧ
 IPA a ə, a, ɪ, ʊ b d dl dz ɛ, e ɡʲ ɡʷ ɢ
 Boas a, ā ᴇ, ă, î, ŭ b d ʟ ̣ dz ä, ê g· gw, gᵘ g̣

 g̱w h i k˙ kw k ̓ kw̓ ḵ ḵw ḵ ̓
 g̱w h i k˙ kw k’ kw’ ḵ ḵw ḵ’
 ǧʷ h i k˙ kʷ k ̓ k̫̓ q qʷ q ̓
 ɢʷ h i, e kʲ kʷ k’ʲ k’ʷ q qʷ q’
 g̣w, g̣ᵘ h i, ī, e, ē, ë k· kw, kᵘ k·! k!w, k!ᵘ q qw, qᵘ q!

 ḵw̓ l ’l ł m ’m n ’n o p p̓ s t t ̓ tł
 ḵw’ l ’l ̓ lh m ’m̓ n ’n̓ o p p’ s t t’ tl
 q̫̓ l ’l ̓ ł m ’m̓ n ’n̓ o p p̓ s t t ̓ ƛ
 q’ʷ l ’l’ ɬ m ’m’ n ’n’ ɔ, o p p’ s t t’ tł
 q!w, q!ᵘ l ᵋl ł m ᵋm n ᵋn â, ô p p! s t t! ʟ

 tł̓ ts ts̓ u w ’w x xw x ̱ xw̱ y ’y ’
 tl’ ts ts’ u w ’w̓ x xw x ̱ xw̱ y ’y ̓ 7
 ƛ̓ c c ̓ u w ’w̓ x xʷ x ̌ x̫̌ y ’y ̓ ʔ
 t’ɬ ts t’s u, o w ’w’ xʲ xʷ χ χʷ j ’j’ ʔ
 ʟ! ts ts! u, ū, o, ō w ᵋw x· xẉ, x̣u x xw, xᵘ y ᵋy ᵋ
1 In U’mista materials, ts is alphabetized before tł, and the sounds ’l, ’m, ’n, ’w, ’y (l,̓ m̓, n̓, w̓, y̓) are not
treated as separate letters, making the total number of consonants there thirty-seven. See appendix A.2.

Excerpted from Marianne Nicolson and Adam Werle 2009. An investigation of modern
Kwakw̓ala determiner systems. ms, University of Victoria. pages 32-33.

 32

Appendix A. Kwak̓wala alphabets and transliteration

A.1 Alphabets
 There are several alphabets that have been used to write Kwak̓wala. This can be
an obstacle to learning the language, and to making use of the full range of available
materials. We therefore offer this summary of spelling systems both as a key to the
spelling used here, and as a reference tool for the reader (and for ourselves!).
 We compare five systems that we refer to as the U’mista, Grubb, Liq̫̓ ala, IPA, and
Boas alphabets. After summarizing these in table form, we offer some observations on
their differences, and on our transliteration of Boas and Hunt’s materials.
 These are the forty-two consonants and six vowels of Kwakw̓ala in five
alphabets, arranged to put similar alphabets closer together, and in alphabetical order
according to the U’mista letters:1

(140) Five Kwakw̓ala alphabets

 U’mista a a ̱ b d dł dz e g gw g̱
 Grubb a e b d dl dz eh g gw g̱
 Liq̫̓ ala a ə b d λ dᶻ e g gʷ ǧ
 IPA a ə, a, ɪ, ʊ b d dl dz ɛ, e ɡʲ ɡʷ ɢ
 Boas a, ā ᴇ, ă, î, ŭ b d ʟ ̣ dz ä, ê g· gw, gᵘ g̣

 g̱w h i k˙ kw k ̓ kw̓ ḵ ḵw ḵ ̓
 g̱w h i k˙ kw k’ kw’ ḵ ḵw ḵ’
 ǧʷ h i k˙ kʷ k ̓ k̫̓ q qʷ q ̓
 ɢʷ h i, e kʲ kʷ k’ʲ k’ʷ q qʷ q’
 g̣w, g̣ᵘ h i, ī, e, ē, ë k· kw, kᵘ k·! k!w, k!ᵘ q qw, qᵘ q!

 ḵw̓ l ’l ł m ’m n ’n o p p̓ s t t ̓ tł
 ḵw’ l ’l ̓ lh m ’m̓ n ’n̓ o p p’ s t t’ tl
 q̫̓ l ’l ̓ ł m ’m̓ n ’n̓ o p p̓ s t t ̓ ƛ
 q’ʷ l ’l’ ɬ m ’m’ n ’n’ ɔ, o p p’ s t t’ tł
 q!w, q!ᵘ l ᵋl ł m ᵋm n ᵋn â, ô p p! s t t! ʟ

 tł̓ ts ts̓ u w ’w x xw x ̱ xw̱ y ’y ’
 tl’ ts ts’ u w ’w̓ x xw x ̱ xw̱ y ’y ̓ 7
 ƛ̓ c c ̓ u w ’w̓ x xʷ x ̌ x̫̌ y ’y ̓ ʔ
 t’ɬ ts t’s u, o w ’w’ xʲ xʷ χ χʷ j ’j’ ʔ
 ʟ! ts ts! u, ū, o, ō w ᵋw x· xẉ, x̣u x xw, xᵘ y ᵋy ᵋ
1 In U’mista materials, ts is alphabetized before tł, and the sounds ’l, ’m, ’n, ’w, ’y (l,̓ m̓, n̓, w̓, y̓) are not
treated as separate letters, making the total number of consonants there thirty-seven. See appendix A.2.

Excerpted from Marianne Nicolson and Adam Werle 2009. An investigation of modern
Kwakw̓ala determiner systems. ms, University of Victoria. pages 32-33.

 32

Appendix A. Kwak̓wala alphabets and transliteration

A.1 Alphabets
 There are several alphabets that have been used to write Kwak̓wala. This can be
an obstacle to learning the language, and to making use of the full range of available
materials. We therefore offer this summary of spelling systems both as a key to the
spelling used here, and as a reference tool for the reader (and for ourselves!).
 We compare five systems that we refer to as the U’mista, Grubb, Liq̫̓ ala, IPA, and
Boas alphabets. After summarizing these in table form, we offer some observations on
their differences, and on our transliteration of Boas and Hunt’s materials.
 These are the forty-two consonants and six vowels of Kwakw̓ala in five
alphabets, arranged to put similar alphabets closer together, and in alphabetical order
according to the U’mista letters:1

(140) Five Kwakw̓ala alphabets

 U’mista a a ̱ b d dł dz e g gw g̱
 Grubb a e b d dl dz eh g gw g̱
 Liq̫̓ ala a ə b d λ dᶻ e g gʷ ǧ
 IPA a ə, a, ɪ, ʊ b d dl dz ɛ, e ɡʲ ɡʷ ɢ
 Boas a, ā ᴇ, ă, î, ŭ b d ʟ ̣ dz ä, ê g· gw, gᵘ g̣

 g̱w h i k˙ kw k ̓ kw̓ ḵ ḵw ḵ ̓
 g̱w h i k˙ kw k’ kw’ ḵ ḵw ḵ’
 ǧʷ h i k˙ kʷ k ̓ k̫̓ q qʷ q ̓
 ɢʷ h i, e kʲ kʷ k’ʲ k’ʷ q qʷ q’
 g̣w, g̣ᵘ h i, ī, e, ē, ë k· kw, kᵘ k·! k!w, k!ᵘ q qw, qᵘ q!

 ḵw̓ l ’l ł m ’m n ’n o p p̓ s t t ̓ tł
 ḵw’ l ’l ̓ lh m ’m̓ n ’n̓ o p p’ s t t’ tl
 q̫̓ l ’l ̓ ł m ’m̓ n ’n̓ o p p̓ s t t ̓ ƛ
 q’ʷ l ’l’ ɬ m ’m’ n ’n’ ɔ, o p p’ s t t’ tł
 q!w, q!ᵘ l ᵋl ł m ᵋm n ᵋn â, ô p p! s t t! ʟ

 tł̓ ts ts̓ u w ’w x xw x ̱ xw̱ y ’y ’
 tl’ ts ts’ u w ’w̓ x xw x ̱ xw̱ y ’y ̓ 7
 ƛ̓ c c ̓ u w ’w̓ x xʷ x ̌ x̫̌ y ’y ̓ ʔ
 t’ɬ ts t’s u, o w ’w’ xʲ xʷ χ χʷ j ’j’ ʔ
 ʟ! ts ts! u, ū, o, ō w ᵋw x· xẉ, x̣u x xw, xᵘ y ᵋy ᵋ
1 In U’mista materials, ts is alphabetized before tł, and the sounds ’l, ’m, ’n, ’w, ’y (l,̓ m̓, n̓, w̓, y̓) are not
treated as separate letters, making the total number of consonants there thirty-seven. See appendix A.2.

Excerpted from Marianne Nicolson and Adam Werle 2009. An investigation of modern
Kwakw̓ala determiner systems. ms, University of Victoria. pages 32-33.

 32

Appendix A. Kwak̓wala alphabets and transliteration

A.1 Alphabets
 There are several alphabets that have been used to write Kwak̓wala. This can be
an obstacle to learning the language, and to making use of the full range of available
materials. We therefore offer this summary of spelling systems both as a key to the
spelling used here, and as a reference tool for the reader (and for ourselves!).
 We compare five systems that we refer to as the U’mista, Grubb, Liq̫̓ ala, IPA, and
Boas alphabets. After summarizing these in table form, we offer some observations on
their differences, and on our transliteration of Boas and Hunt’s materials.
 These are the forty-two consonants and six vowels of Kwakw̓ala in five
alphabets, arranged to put similar alphabets closer together, and in alphabetical order
according to the U’mista letters:1

(140) Five Kwakw̓ala alphabets

 U’mista a a ̱ b d dł dz e g gw g̱
 Grubb a e b d dl dz eh g gw g̱
 Liq̫̓ ala a ə b d λ dᶻ e g gʷ ǧ
 IPA a ə, a, ɪ, ʊ b d dl dz ɛ, e ɡʲ ɡʷ ɢ
 Boas a, ā ᴇ, ă, î, ŭ b d ʟ ̣ dz ä, ê g· gw, gᵘ g̣

 g̱w h i k˙ kw k ̓ kw̓ ḵ ḵw ḵ ̓
 g̱w h i k˙ kw k’ kw’ ḵ ḵw ḵ’
 ǧʷ h i k˙ kʷ k ̓ k̫̓ q qʷ q ̓
 ɢʷ h i, e kʲ kʷ k’ʲ k’ʷ q qʷ q’
 g̣w, g̣ᵘ h i, ī, e, ē, ë k· kw, kᵘ k·! k!w, k!ᵘ q qw, qᵘ q!

 ḵw̓ l ’l ł m ’m n ’n o p p̓ s t t ̓ tł
 ḵw’ l ’l ̓ lh m ’m̓ n ’n̓ o p p’ s t t’ tl
 q̫̓ l ’l ̓ ł m ’m̓ n ’n̓ o p p̓ s t t ̓ ƛ
 q’ʷ l ’l’ ɬ m ’m’ n ’n’ ɔ, o p p’ s t t’ tł
 q!w, q!ᵘ l ᵋl ł m ᵋm n ᵋn â, ô p p! s t t! ʟ

 tł̓ ts ts̓ u w ’w x xw x ̱ xw̱ y ’y ’
 tl’ ts ts’ u w ’w̓ x xw x ̱ xw̱ y ’y ̓ 7
 ƛ̓ c c ̓ u w ’w̓ x xʷ x ̌ x̫̌ y ’y ̓ ʔ
 t’ɬ ts t’s u, o w ’w’ xʲ xʷ χ χʷ j ’j’ ʔ
 ʟ! ts ts! u, ū, o, ō w ᵋw x· xẉ, x̣u x xw, xᵘ y ᵋy ᵋ
1 In U’mista materials, ts is alphabetized before tł, and the sounds ’l, ’m, ’n, ’w, ’y (l,̓ m̓, n̓, w̓, y̓) are not
treated as separate letters, making the total number of consonants there thirty-seven. See appendix A.2.

Excerpted from Marianne Nicolson and Adam Werle 2009. An investigation of modern
Kwakw̓ala determiner systems. ms, University of Victoria. pages 32-33.

 32

Appendix A. Kwak̓wala alphabets and transliteration

A.1 Alphabets
 There are several alphabets that have been used to write Kwak̓wala. This can be
an obstacle to learning the language, and to making use of the full range of available
materials. We therefore offer this summary of spelling systems both as a key to the
spelling used here, and as a reference tool for the reader (and for ourselves!).
 We compare five systems that we refer to as the U’mista, Grubb, Liq̫̓ ala, IPA, and
Boas alphabets. After summarizing these in table form, we offer some observations on
their differences, and on our transliteration of Boas and Hunt’s materials.
 These are the forty-two consonants and six vowels of Kwakw̓ala in five
alphabets, arranged to put similar alphabets closer together, and in alphabetical order
according to the U’mista letters:1

(140) Five Kwakw̓ala alphabets

 U’mista a a ̱ b d dł dz e g gw g̱
 Grubb a e b d dl dz eh g gw g̱
 Liq̫̓ ala a ə b d λ dᶻ e g gʷ ǧ
 IPA a ə, a, ɪ, ʊ b d dl dz ɛ, e ɡʲ ɡʷ ɢ
 Boas a, ā ᴇ, ă, î, ŭ b d ʟ ̣ dz ä, ê g· gw, gᵘ g̣

 g̱w h i k˙ kw k ̓ kw̓ ḵ ḵw ḵ ̓
 g̱w h i k˙ kw k’ kw’ ḵ ḵw ḵ’
 ǧʷ h i k˙ kʷ k ̓ k̫̓ q qʷ q ̓
 ɢʷ h i, e kʲ kʷ k’ʲ k’ʷ q qʷ q’
 g̣w, g̣ᵘ h i, ī, e, ē, ë k· kw, kᵘ k·! k!w, k!ᵘ q qw, qᵘ q!

 ḵw̓ l ’l ł m ’m n ’n o p p̓ s t t ̓ tł
 ḵw’ l ’l ̓ lh m ’m̓ n ’n̓ o p p’ s t t’ tl
 q̫̓ l ’l ̓ ł m ’m̓ n ’n̓ o p p̓ s t t ̓ ƛ
 q’ʷ l ’l’ ɬ m ’m’ n ’n’ ɔ, o p p’ s t t’ tł
 q!w, q!ᵘ l ᵋl ł m ᵋm n ᵋn â, ô p p! s t t! ʟ

 tł̓ ts ts̓ u w ’w x xw x ̱ xw̱ y ’y ’
 tl’ ts ts’ u w ’w̓ x xw x ̱ xw̱ y ’y ̓ 7
 ƛ̓ c c ̓ u w ’w̓ x xʷ x ̌ x̫̌ y ’y ̓ ʔ
 t’ɬ ts t’s u, o w ’w’ xʲ xʷ χ χʷ j ’j’ ʔ
 ʟ! ts ts! u, ū, o, ō w ᵋw x· xẉ, x̣u x xw, xᵘ y ᵋy ᵋ
1 In U’mista materials, ts is alphabetized before tł, and the sounds ’l, ’m, ’n, ’w, ’y (l,̓ m̓, n̓, w̓, y̓) are not
treated as separate letters, making the total number of consonants there thirty-seven. See appendix A.2.

Excerpted from Marianne Nicolson and Adam Werle 2009. An investigation of modern
Kwakw̓ala determiner systems. ms, University of Victoria. pages 32-33.

 32

Appendix A. Kwak̓wala alphabets and transliteration

A.1 Alphabets
 There are several alphabets that have been used to write Kwak̓wala. This can be
an obstacle to learning the language, and to making use of the full range of available
materials. We therefore offer this summary of spelling systems both as a key to the
spelling used here, and as a reference tool for the reader (and for ourselves!).
 We compare five systems that we refer to as the U’mista, Grubb, Liq̫̓ ala, IPA, and
Boas alphabets. After summarizing these in table form, we offer some observations on
their differences, and on our transliteration of Boas and Hunt’s materials.
 These are the forty-two consonants and six vowels of Kwakw̓ala in five
alphabets, arranged to put similar alphabets closer together, and in alphabetical order
according to the U’mista letters:1

(140) Five Kwakw̓ala alphabets

 U’mista a a ̱ b d dł dz e g gw g̱
 Grubb a e b d dl dz eh g gw g̱
 Liq̫̓ ala a ə b d λ dᶻ e g gʷ ǧ
 IPA a ə, a, ɪ, ʊ b d dl dz ɛ, e ɡʲ ɡʷ ɢ
 Boas a, ā ᴇ, ă, î, ŭ b d ʟ ̣ dz ä, ê g· gw, gᵘ g̣

 g̱w h i k˙ kw k ̓ kw̓ ḵ ḵw ḵ ̓
 g̱w h i k˙ kw k’ kw’ ḵ ḵw ḵ’
 ǧʷ h i k˙ kʷ k ̓ k̫̓ q qʷ q ̓
 ɢʷ h i, e kʲ kʷ k’ʲ k’ʷ q qʷ q’
 g̣w, g̣ᵘ h i, ī, e, ē, ë k· kw, kᵘ k·! k!w, k!ᵘ q qw, qᵘ q!

 ḵw̓ l ’l ł m ’m n ’n o p p̓ s t t ̓ tł
 ḵw’ l ’l ̓ lh m ’m̓ n ’n̓ o p p’ s t t’ tl
 q̫̓ l ’l ̓ ł m ’m̓ n ’n̓ o p p̓ s t t ̓ ƛ
 q’ʷ l ’l’ ɬ m ’m’ n ’n’ ɔ, o p p’ s t t’ tł
 q!w, q!ᵘ l ᵋl ł m ᵋm n ᵋn â, ô p p! s t t! ʟ

 tł̓ ts ts̓ u w ’w x xw x ̱ xw̱ y ’y ’
 tl’ ts ts’ u w ’w̓ x xw x ̱ xw̱ y ’y ̓ 7
 ƛ̓ c c ̓ u w ’w̓ x xʷ x ̌ x̫̌ y ’y ̓ ʔ
 t’ɬ ts t’s u, o w ’w’ xʲ xʷ χ χʷ j ’j’ ʔ
 ʟ! ts ts! u, ū, o, ō w ᵋw x· xẉ, x̣u x xw, xᵘ y ᵋy ᵋ
1 In U’mista materials, ts is alphabetized before tł, and the sounds ’l, ’m, ’n, ’w, ’y (l,̓ m̓, n̓, w̓, y̓) are not
treated as separate letters, making the total number of consonants there thirty-seven. See appendix A.2.

Excerpted from Marianne Nicolson and Adam Werle 2009. An investigation of modern
Kwakw̓ala determiner systems. ms, University of Victoria. pages 32-33.

 32

Appendix A. Kwak̓wala alphabets and transliteration

A.1 Alphabets
 There are several alphabets that have been used to write Kwak̓wala. This can be
an obstacle to learning the language, and to making use of the full range of available
materials. We therefore offer this summary of spelling systems both as a key to the
spelling used here, and as a reference tool for the reader (and for ourselves!).
 We compare five systems that we refer to as the U’mista, Grubb, Liq̫̓ ala, IPA, and
Boas alphabets. After summarizing these in table form, we offer some observations on
their differences, and on our transliteration of Boas and Hunt’s materials.
 These are the forty-two consonants and six vowels of Kwakw̓ala in five
alphabets, arranged to put similar alphabets closer together, and in alphabetical order
according to the U’mista letters:1

(140) Five Kwakw̓ala alphabets

 U’mista a a ̱ b d dł dz e g gw g̱
 Grubb a e b d dl dz eh g gw g̱
 Liq̫̓ ala a ə b d λ dᶻ e g gʷ ǧ
 IPA a ə, a, ɪ, ʊ b d dl dz ɛ, e ɡʲ ɡʷ ɢ
 Boas a, ā ᴇ, ă, î, ŭ b d ʟ ̣ dz ä, ê g· gw, gᵘ g̣

 g̱w h i k˙ kw k ̓ kw̓ ḵ ḵw ḵ ̓
 g̱w h i k˙ kw k’ kw’ ḵ ḵw ḵ’
 ǧʷ h i k˙ kʷ k ̓ k̫̓ q qʷ q ̓
 ɢʷ h i, e kʲ kʷ k’ʲ k’ʷ q qʷ q’
 g̣w, g̣ᵘ h i, ī, e, ē, ë k· kw, kᵘ k·! k!w, k!ᵘ q qw, qᵘ q!

 ḵw̓ l ’l ł m ’m n ’n o p p̓ s t t ̓ tł
 ḵw’ l ’l ̓ lh m ’m̓ n ’n̓ o p p’ s t t’ tl
 q̫̓ l ’l ̓ ł m ’m̓ n ’n̓ o p p̓ s t t ̓ ƛ
 q’ʷ l ’l’ ɬ m ’m’ n ’n’ ɔ, o p p’ s t t’ tł
 q!w, q!ᵘ l ᵋl ł m ᵋm n ᵋn â, ô p p! s t t! ʟ

 tł̓ ts ts̓ u w ’w x xw x ̱ xw̱ y ’y ’
 tl’ ts ts’ u w ’w̓ x xw x ̱ xw̱ y ’y ̓ 7
 ƛ̓ c c ̓ u w ’w̓ x xʷ x ̌ x̫̌ y ’y ̓ ʔ
 t’ɬ ts t’s u, o w ’w’ xʲ xʷ χ χʷ j ’j’ ʔ
 ʟ! ts ts! u, ū, o, ō w ᵋw x· xẉ, x̣u x xw, xᵘ y ᵋy ᵋ
1 In U’mista materials, ts is alphabetized before tł, and the sounds ’l, ’m, ’n, ’w, ’y (l,̓ m̓, n̓, w̓, y̓) are not
treated as separate letters, making the total number of consonants there thirty-seven. See appendix A.2.

Excerpted from Marianne Nicolson and Adam Werle 2009. An investigation of modern
Kwakw̓ala determiner systems. ms, University of Victoria. pages 32-33.

 32

Appendix A. Kwak̓wala alphabets and transliteration

A.1 Alphabets
 There are several alphabets that have been used to write Kwak̓wala. This can be
an obstacle to learning the language, and to making use of the full range of available
materials. We therefore offer this summary of spelling systems both as a key to the
spelling used here, and as a reference tool for the reader (and for ourselves!).
 We compare five systems that we refer to as the U’mista, Grubb, Liq̫̓ ala, IPA, and
Boas alphabets. After summarizing these in table form, we offer some observations on
their differences, and on our transliteration of Boas and Hunt’s materials.
 These are the forty-two consonants and six vowels of Kwakw̓ala in five
alphabets, arranged to put similar alphabets closer together, and in alphabetical order
according to the U’mista letters:1

(140) Five Kwakw̓ala alphabets

 U’mista a a ̱ b d dł dz e g gw g̱
 Grubb a e b d dl dz eh g gw g̱
 Liq̫̓ ala a ə b d λ dᶻ e g gʷ ǧ
 IPA a ə, a, ɪ, ʊ b d dl dz ɛ, e ɡʲ ɡʷ ɢ
 Boas a, ā ᴇ, ă, î, ŭ b d ʟ ̣ dz ä, ê g· gw, gᵘ g̣

 g̱w h i k˙ kw k ̓ kw̓ ḵ ḵw ḵ ̓
 g̱w h i k˙ kw k’ kw’ ḵ ḵw ḵ’
 ǧʷ h i k˙ kʷ k ̓ k̫̓ q qʷ q ̓
 ɢʷ h i, e kʲ kʷ k’ʲ k’ʷ q qʷ q’
 g̣w, g̣ᵘ h i, ī, e, ē, ë k· kw, kᵘ k·! k!w, k!ᵘ q qw, qᵘ q!

 ḵw̓ l ’l ł m ’m n ’n o p p̓ s t t ̓ tł
 ḵw’ l ’l ̓ lh m ’m̓ n ’n̓ o p p’ s t t’ tl
 q̫̓ l ’l ̓ ł m ’m̓ n ’n̓ o p p̓ s t t ̓ ƛ
 q’ʷ l ’l’ ɬ m ’m’ n ’n’ ɔ, o p p’ s t t’ tł
 q!w, q!ᵘ l ᵋl ł m ᵋm n ᵋn â, ô p p! s t t! ʟ

 tł̓ ts ts̓ u w ’w x xw x ̱ xw̱ y ’y ’
 tl’ ts ts’ u w ’w̓ x xw x ̱ xw̱ y ’y ̓ 7
 ƛ̓ c c ̓ u w ’w̓ x xʷ x ̌ x̫̌ y ’y ̓ ʔ
 t’ɬ ts t’s u, o w ’w’ xʲ xʷ χ χʷ j ’j’ ʔ
 ʟ! ts ts! u, ū, o, ō w ᵋw x· xẉ, x̣u x xw, xᵘ y ᵋy ᵋ
1 In U’mista materials, ts is alphabetized before tł, and the sounds ’l, ’m, ’n, ’w, ’y (l,̓ m̓, n̓, w̓, y̓) are not
treated as separate letters, making the total number of consonants there thirty-seven. See appendix A.2.

Excerpted from Marianne Nicolson and Adam Werle 2009. An investigation of modern
Kwakw̓ala determiner systems. ms, University of Victoria. pages 32-33.

 32

Appendix A. Kwak̓wala alphabets and transliteration

A.1 Alphabets
 There are several alphabets that have been used to write Kwak̓wala. This can be
an obstacle to learning the language, and to making use of the full range of available
materials. We therefore offer this summary of spelling systems both as a key to the
spelling used here, and as a reference tool for the reader (and for ourselves!).
 We compare five systems that we refer to as the U’mista, Grubb, Liq̫̓ ala, IPA, and
Boas alphabets. After summarizing these in table form, we offer some observations on
their differences, and on our transliteration of Boas and Hunt’s materials.
 These are the forty-two consonants and six vowels of Kwakw̓ala in five
alphabets, arranged to put similar alphabets closer together, and in alphabetical order
according to the U’mista letters:1

(140) Five Kwakw̓ala alphabets

 U’mista a a ̱ b d dł dz e g gw g̱
 Grubb a e b d dl dz eh g gw g̱
 Liq̫̓ ala a ə b d λ dᶻ e g gʷ ǧ
 IPA a ə, a, ɪ, ʊ b d dl dz ɛ, e ɡʲ ɡʷ ɢ
 Boas a, ā ᴇ, ă, î, ŭ b d ʟ ̣ dz ä, ê g· gw, gᵘ g̣

 g̱w h i k˙ kw k ̓ kw̓ ḵ ḵw ḵ ̓
 g̱w h i k˙ kw k’ kw’ ḵ ḵw ḵ’
 ǧʷ h i k˙ kʷ k ̓ k̫̓ q qʷ q ̓
 ɢʷ h i, e kʲ kʷ k’ʲ k’ʷ q qʷ q’
 g̣w, g̣ᵘ h i, ī, e, ē, ë k· kw, kᵘ k·! k!w, k!ᵘ q qw, qᵘ q!

 ḵw̓ l ’l ł m ’m n ’n o p p̓ s t t ̓ tł
 ḵw’ l ’l ̓ lh m ’m̓ n ’n̓ o p p’ s t t’ tl
 q̫̓ l ’l ̓ ł m ’m̓ n ’n̓ o p p̓ s t t ̓ ƛ
 q’ʷ l ’l’ ɬ m ’m’ n ’n’ ɔ, o p p’ s t t’ tł
 q!w, q!ᵘ l ᵋl ł m ᵋm n ᵋn â, ô p p! s t t! ʟ

 tł̓ ts ts̓ u w ’w x xw x ̱ xw̱ y ’y ’
 tl’ ts ts’ u w ’w̓ x xw x ̱ xw̱ y ’y ̓ 7
 ƛ̓ c c ̓ u w ’w̓ x xʷ x ̌ x̫̌ y ’y ̓ ʔ
 t’ɬ ts t’s u, o w ’w’ xʲ xʷ χ χʷ j ’j’ ʔ
 ʟ! ts ts! u, ū, o, ō w ᵋw x· xẉ, x̣u x xw, xᵘ y ᵋy ᵋ
1 In U’mista materials, ts is alphabetized before tł, and the sounds ’l, ’m, ’n, ’w, ’y (l,̓ m̓, n̓, w̓, y̓) are not
treated as separate letters, making the total number of consonants there thirty-seven. See appendix A.2.

Excerpted from Marianne Nicolson and Adam Werle 2009. An investigation of modern
Kwakw̓ala determiner systems. ms, University of Victoria. pages 32-33.

 32

Appendix A. Kwak̓wala alphabets and transliteration

A.1 Alphabets
 There are several alphabets that have been used to write Kwak̓wala. This can be
an obstacle to learning the language, and to making use of the full range of available
materials. We therefore offer this summary of spelling systems both as a key to the
spelling used here, and as a reference tool for the reader (and for ourselves!).
 We compare five systems that we refer to as the U’mista, Grubb, Liq̫̓ ala, IPA, and
Boas alphabets. After summarizing these in table form, we offer some observations on
their differences, and on our transliteration of Boas and Hunt’s materials.
 These are the forty-two consonants and six vowels of Kwakw̓ala in five
alphabets, arranged to put similar alphabets closer together, and in alphabetical order
according to the U’mista letters:1

(140) Five Kwakw̓ala alphabets

 U’mista a a ̱ b d dł dz e g gw g̱
 Grubb a e b d dl dz eh g gw g̱
 Liq̫̓ ala a ə b d λ dᶻ e g gʷ ǧ
 IPA a ə, a, ɪ, ʊ b d dl dz ɛ, e ɡʲ ɡʷ ɢ
 Boas a, ā ᴇ, ă, î, ŭ b d ʟ ̣ dz ä, ê g· gw, gᵘ g̣

 g̱w h i k˙ kw k ̓ kw̓ ḵ ḵw ḵ ̓
 g̱w h i k˙ kw k’ kw’ ḵ ḵw ḵ’
 ǧʷ h i k˙ kʷ k ̓ k̫̓ q qʷ q ̓
 ɢʷ h i, e kʲ kʷ k’ʲ k’ʷ q qʷ q’
 g̣w, g̣ᵘ h i, ī, e, ē, ë k· kw, kᵘ k·! k!w, k!ᵘ q qw, qᵘ q!

 ḵw̓ l ’l ł m ’m n ’n o p p̓ s t t ̓ tł
 ḵw’ l ’l ̓ lh m ’m̓ n ’n̓ o p p’ s t t’ tl
 q̫̓ l ’l ̓ ł m ’m̓ n ’n̓ o p p̓ s t t ̓ ƛ
 q’ʷ l ’l’ ɬ m ’m’ n ’n’ ɔ, o p p’ s t t’ tł
 q!w, q!ᵘ l ᵋl ł m ᵋm n ᵋn â, ô p p! s t t! ʟ

 tł̓ ts ts̓ u w ’w x xw x ̱ xw̱ y ’y ’
 tl’ ts ts’ u w ’w̓ x xw x ̱ xw̱ y ’y ̓ 7
 ƛ̓ c c ̓ u w ’w̓ x xʷ x ̌ x̫̌ y ’y ̓ ʔ
 t’ɬ ts t’s u, o w ’w’ xʲ xʷ χ χʷ j ’j’ ʔ
 ʟ! ts ts! u, ū, o, ō w ᵋw x· xẉ, x̣u x xw, xᵘ y ᵋy ᵋ
1 In U’mista materials, ts is alphabetized before tł, and the sounds ’l, ’m, ’n, ’w, ’y (l,̓ m̓, n̓, w̓, y̓) are not
treated as separate letters, making the total number of consonants there thirty-seven. See appendix A.2.

Excerpted from Marianne Nicolson and Adam Werle 2009. An investigation of modern
Kwakw̓ala determiner systems. ms, University of Victoria. pages 32-33.

 32

Appendix A. Kwak̓wala alphabets and transliteration

A.1 Alphabets
 There are several alphabets that have been used to write Kwak̓wala. This can be
an obstacle to learning the language, and to making use of the full range of available
materials. We therefore offer this summary of spelling systems both as a key to the
spelling used here, and as a reference tool for the reader (and for ourselves!).
 We compare five systems that we refer to as the U’mista, Grubb, Liq̫̓ ala, IPA, and
Boas alphabets. After summarizing these in table form, we offer some observations on
their differences, and on our transliteration of Boas and Hunt’s materials.
 These are the forty-two consonants and six vowels of Kwakw̓ala in five
alphabets, arranged to put similar alphabets closer together, and in alphabetical order
according to the U’mista letters:1

(140) Five Kwakw̓ala alphabets

 U’mista a a ̱ b d dł dz e g gw g̱
 Grubb a e b d dl dz eh g gw g̱
 Liq̫̓ ala a ə b d λ dᶻ e g gʷ ǧ
 IPA a ə, a, ɪ, ʊ b d dl dz ɛ, e ɡʲ ɡʷ ɢ
 Boas a, ā ᴇ, ă, î, ŭ b d ʟ ̣ dz ä, ê g· gw, gᵘ g̣

 g̱w h i k˙ kw k ̓ kw̓ ḵ ḵw ḵ ̓
 g̱w h i k˙ kw k’ kw’ ḵ ḵw ḵ’
 ǧʷ h i k˙ kʷ k ̓ k̫̓ q qʷ q ̓
 ɢʷ h i, e kʲ kʷ k’ʲ k’ʷ q qʷ q’
 g̣w, g̣ᵘ h i, ī, e, ē, ë k· kw, kᵘ k·! k!w, k!ᵘ q qw, qᵘ q!

 ḵw̓ l ’l ł m ’m n ’n o p p̓ s t t ̓ tł
 ḵw’ l ’l ̓ lh m ’m̓ n ’n̓ o p p’ s t t’ tl
 q̫̓ l ’l ̓ ł m ’m̓ n ’n̓ o p p̓ s t t ̓ ƛ
 q’ʷ l ’l’ ɬ m ’m’ n ’n’ ɔ, o p p’ s t t’ tł
 q!w, q!ᵘ l ᵋl ł m ᵋm n ᵋn â, ô p p! s t t! ʟ

 tł̓ ts ts̓ u w ’w x xw x ̱ xw̱ y ’y ’
 tl’ ts ts’ u w ’w̓ x xw x ̱ xw̱ y ’y ̓ 7
 ƛ̓ c c ̓ u w ’w̓ x xʷ x ̌ x̫̌ y ’y ̓ ʔ
 t’ɬ ts t’s u, o w ’w’ xʲ xʷ χ χʷ j ’j’ ʔ
 ʟ! ts ts! u, ū, o, ō w ᵋw x· xẉ, x̣u x xw, xᵘ y ᵋy ᵋ
1 In U’mista materials, ts is alphabetized before tł, and the sounds ’l, ’m, ’n, ’w, ’y (l,̓ m̓, n̓, w̓, y̓) are not
treated as separate letters, making the total number of consonants there thirty-seven. See appendix A.2.

Excerpted from Marianne Nicolson and Adam Werle 2009. An investigation of modern
Kwakw̓ala determiner systems. ms, University of Victoria. pages 32-33.

 32

Appendix A. Kwak̓wala alphabets and transliteration

A.1 Alphabets
 There are several alphabets that have been used to write Kwak̓wala. This can be
an obstacle to learning the language, and to making use of the full range of available
materials. We therefore offer this summary of spelling systems both as a key to the
spelling used here, and as a reference tool for the reader (and for ourselves!).
 We compare five systems that we refer to as the U’mista, Grubb, Liq̫̓ ala, IPA, and
Boas alphabets. After summarizing these in table form, we offer some observations on
their differences, and on our transliteration of Boas and Hunt’s materials.
 These are the forty-two consonants and six vowels of Kwakw̓ala in five
alphabets, arranged to put similar alphabets closer together, and in alphabetical order
according to the U’mista letters:1

(140) Five Kwakw̓ala alphabets

 U’mista a a ̱ b d dł dz e g gw g̱
 Grubb a e b d dl dz eh g gw g̱
 Liq̫̓ ala a ə b d λ dᶻ e g gʷ ǧ
 IPA a ə, a, ɪ, ʊ b d dl dz ɛ, e ɡʲ ɡʷ ɢ
 Boas a, ā ᴇ, ă, î, ŭ b d ʟ ̣ dz ä, ê g· gw, gᵘ g̣

 g̱w h i k˙ kw k ̓ kw̓ ḵ ḵw ḵ ̓
 g̱w h i k˙ kw k’ kw’ ḵ ḵw ḵ’
 ǧʷ h i k˙ kʷ k ̓ k̫̓ q qʷ q ̓
 ɢʷ h i, e kʲ kʷ k’ʲ k’ʷ q qʷ q’
 g̣w, g̣ᵘ h i, ī, e, ē, ë k· kw, kᵘ k·! k!w, k!ᵘ q qw, qᵘ q!

 ḵw̓ l ’l ł m ’m n ’n o p p̓ s t t ̓ tł
 ḵw’ l ’l ̓ lh m ’m̓ n ’n̓ o p p’ s t t’ tl
 q̫̓ l ’l ̓ ł m ’m̓ n ’n̓ o p p̓ s t t ̓ ƛ
 q’ʷ l ’l’ ɬ m ’m’ n ’n’ ɔ, o p p’ s t t’ tł
 q!w, q!ᵘ l ᵋl ł m ᵋm n ᵋn â, ô p p! s t t! ʟ

 tł̓ ts ts̓ u w ’w x xw x ̱ xw̱ y ’y ’
 tl’ ts ts’ u w ’w̓ x xw x ̱ xw̱ y ’y ̓ 7
 ƛ̓ c c ̓ u w ’w̓ x xʷ x ̌ x̫̌ y ’y ̓ ʔ
 t’ɬ ts t’s u, o w ’w’ xʲ xʷ χ χʷ j ’j’ ʔ
 ʟ! ts ts! u, ū, o, ō w ᵋw x· xẉ, x̣u x xw, xᵘ y ᵋy ᵋ
1 In U’mista materials, ts is alphabetized before tł, and the sounds ’l, ’m, ’n, ’w, ’y (l,̓ m̓, n̓, w̓, y̓) are not
treated as separate letters, making the total number of consonants there thirty-seven. See appendix A.2.

Excerpted from Marianne Nicolson and Adam Werle 2009. An investigation of modern
Kwakw̓ala determiner systems. ms, University of Victoria. pages 32-33.

 32

Appendix A. Kwak̓wala alphabets and transliteration

A.1 Alphabets
 There are several alphabets that have been used to write Kwak̓wala. This can be
an obstacle to learning the language, and to making use of the full range of available
materials. We therefore offer this summary of spelling systems both as a key to the
spelling used here, and as a reference tool for the reader (and for ourselves!).
 We compare five systems that we refer to as the U’mista, Grubb, Liq̫̓ ala, IPA, and
Boas alphabets. After summarizing these in table form, we offer some observations on
their differences, and on our transliteration of Boas and Hunt’s materials.
 These are the forty-two consonants and six vowels of Kwakw̓ala in five
alphabets, arranged to put similar alphabets closer together, and in alphabetical order
according to the U’mista letters:1

(140) Five Kwakw̓ala alphabets

 U’mista a a ̱ b d dł dz e g gw g̱
 Grubb a e b d dl dz eh g gw g̱
 Liq̫̓ ala a ə b d λ dᶻ e g gʷ ǧ
 IPA a ə, a, ɪ, ʊ b d dl dz ɛ, e ɡʲ ɡʷ ɢ
 Boas a, ā ᴇ, ă, î, ŭ b d ʟ ̣ dz ä, ê g· gw, gᵘ g̣

 g̱w h i k˙ kw k ̓ kw̓ ḵ ḵw ḵ ̓
 g̱w h i k˙ kw k’ kw’ ḵ ḵw ḵ’
 ǧʷ h i k˙ kʷ k ̓ k̫̓ q qʷ q ̓
 ɢʷ h i, e kʲ kʷ k’ʲ k’ʷ q qʷ q’
 g̣w, g̣ᵘ h i, ī, e, ē, ë k· kw, kᵘ k·! k!w, k!ᵘ q qw, qᵘ q!

 ḵw̓ l ’l ł m ’m n ’n o p p̓ s t t ̓ tł
 ḵw’ l ’l ̓ lh m ’m̓ n ’n̓ o p p’ s t t’ tl
 q̫̓ l ’l ̓ ł m ’m̓ n ’n̓ o p p̓ s t t ̓ ƛ
 q’ʷ l ’l’ ɬ m ’m’ n ’n’ ɔ, o p p’ s t t’ tł
 q!w, q!ᵘ l ᵋl ł m ᵋm n ᵋn â, ô p p! s t t! ʟ

 tł̓ ts ts̓ u w ’w x xw x ̱ xw̱ y ’y ’
 tl’ ts ts’ u w ’w̓ x xw x ̱ xw̱ y ’y ̓ 7
 ƛ̓ c c ̓ u w ’w̓ x xʷ x ̌ x̫̌ y ’y ̓ ʔ
 t’ɬ ts t’s u, o w ’w’ xʲ xʷ χ χʷ j ’j’ ʔ
 ʟ! ts ts! u, ū, o, ō w ᵋw x· xẉ, x̣u x xw, xᵘ y ᵋy ᵋ
1 In U’mista materials, ts is alphabetized before tł, and the sounds ’l, ’m, ’n, ’w, ’y (l,̓ m̓, n̓, w̓, y̓) are not
treated as separate letters, making the total number of consonants there thirty-seven. See appendix A.2.

Excerpted from Marianne Nicolson and Adam Werle 2009. An investigation of modern
Kwakw̓ala determiner systems. ms, University of Victoria. pages 32-33.

 32

Appendix A. Kwak̓wala alphabets and transliteration

A.1 Alphabets
 There are several alphabets that have been used to write Kwak̓wala. This can be
an obstacle to learning the language, and to making use of the full range of available
materials. We therefore offer this summary of spelling systems both as a key to the
spelling used here, and as a reference tool for the reader (and for ourselves!).
 We compare five systems that we refer to as the U’mista, Grubb, Liq̫̓ ala, IPA, and
Boas alphabets. After summarizing these in table form, we offer some observations on
their differences, and on our transliteration of Boas and Hunt’s materials.
 These are the forty-two consonants and six vowels of Kwakw̓ala in five
alphabets, arranged to put similar alphabets closer together, and in alphabetical order
according to the U’mista letters:1

(140) Five Kwakw̓ala alphabets

 U’mista a a ̱ b d dł dz e g gw g̱
 Grubb a e b d dl dz eh g gw g̱
 Liq̫̓ ala a ə b d λ dᶻ e g gʷ ǧ
 IPA a ə, a, ɪ, ʊ b d dl dz ɛ, e ɡʲ ɡʷ ɢ
 Boas a, ā ᴇ, ă, î, ŭ b d ʟ ̣ dz ä, ê g· gw, gᵘ g̣

 g̱w h i k˙ kw k ̓ kw̓ ḵ ḵw ḵ ̓
 g̱w h i k˙ kw k’ kw’ ḵ ḵw ḵ’
 ǧʷ h i k˙ kʷ k ̓ k̫̓ q qʷ q ̓
 ɢʷ h i, e kʲ kʷ k’ʲ k’ʷ q qʷ q’
 g̣w, g̣ᵘ h i, ī, e, ē, ë k· kw, kᵘ k·! k!w, k!ᵘ q qw, qᵘ q!

 ḵw̓ l ’l ł m ’m n ’n o p p̓ s t t ̓ tł
 ḵw’ l ’l ̓ lh m ’m̓ n ’n̓ o p p’ s t t’ tl
 q̫̓ l ’l ̓ ł m ’m̓ n ’n̓ o p p̓ s t t ̓ ƛ
 q’ʷ l ’l’ ɬ m ’m’ n ’n’ ɔ, o p p’ s t t’ tł
 q!w, q!ᵘ l ᵋl ł m ᵋm n ᵋn â, ô p p! s t t! ʟ

 tł̓ ts ts̓ u w ’w x xw x ̱ xw̱ y ’y ’
 tl’ ts ts’ u w ’w̓ x xw x ̱ xw̱ y ’y ̓ 7
 ƛ̓ c c ̓ u w ’w̓ x xʷ x ̌ x̫̌ y ’y ̓ ʔ
 t’ɬ ts t’s u, o w ’w’ xʲ xʷ χ χʷ j ’j’ ʔ
 ʟ! ts ts! u, ū, o, ō w ᵋw x· xẉ, x̣u x xw, xᵘ y ᵋy ᵋ
1 In U’mista materials, ts is alphabetized before tł, and the sounds ’l, ’m, ’n, ’w, ’y (l,̓ m̓, n̓, w̓, y̓) are not
treated as separate letters, making the total number of consonants there thirty-seven. See appendix A.2.

Excerpted from Marianne Nicolson and Adam Werle 2009. An investigation of modern
Kwakw̓ala determiner systems. ms, University of Victoria. pages 32-33.

 32

Appendix A. Kwak̓wala alphabets and transliteration

A.1 Alphabets
 There are several alphabets that have been used to write Kwak̓wala. This can be
an obstacle to learning the language, and to making use of the full range of available
materials. We therefore offer this summary of spelling systems both as a key to the
spelling used here, and as a reference tool for the reader (and for ourselves!).
 We compare five systems that we refer to as the U’mista, Grubb, Liq̫̓ ala, IPA, and
Boas alphabets. After summarizing these in table form, we offer some observations on
their differences, and on our transliteration of Boas and Hunt’s materials.
 These are the forty-two consonants and six vowels of Kwakw̓ala in five
alphabets, arranged to put similar alphabets closer together, and in alphabetical order
according to the U’mista letters:1

(140) Five Kwakw̓ala alphabets

 U’mista a a ̱ b d dł dz e g gw g̱
 Grubb a e b d dl dz eh g gw g̱
 Liq̫̓ ala a ə b d λ dᶻ e g gʷ ǧ
 IPA a ə, a, ɪ, ʊ b d dl dz ɛ, e ɡʲ ɡʷ ɢ
 Boas a, ā ᴇ, ă, î, ŭ b d ʟ ̣ dz ä, ê g· gw, gᵘ g̣

 g̱w h i k˙ kw k ̓ kw̓ ḵ ḵw ḵ ̓
 g̱w h i k˙ kw k’ kw’ ḵ ḵw ḵ’
 ǧʷ h i k˙ kʷ k ̓ k̫̓ q qʷ q ̓
 ɢʷ h i, e kʲ kʷ k’ʲ k’ʷ q qʷ q’
 g̣w, g̣ᵘ h i, ī, e, ē, ë k· kw, kᵘ k·! k!w, k!ᵘ q qw, qᵘ q!

 ḵw̓ l ’l ł m ’m n ’n o p p̓ s t t ̓ tł
 ḵw’ l ’l ̓ lh m ’m̓ n ’n̓ o p p’ s t t’ tl
 q̫̓ l ’l ̓ ł m ’m̓ n ’n̓ o p p̓ s t t ̓ ƛ
 q’ʷ l ’l’ ɬ m ’m’ n ’n’ ɔ, o p p’ s t t’ tł
 q!w, q!ᵘ l ᵋl ł m ᵋm n ᵋn â, ô p p! s t t! ʟ

 tł̓ ts ts̓ u w ’w x xw x ̱ xw̱ y ’y ’
 tl’ ts ts’ u w ’w̓ x xw x ̱ xw̱ y ’y ̓ 7
 ƛ̓ c c ̓ u w ’w̓ x xʷ x ̌ x̫̌ y ’y ̓ ʔ
 t’ɬ ts t’s u, o w ’w’ xʲ xʷ χ χʷ j ’j’ ʔ
 ʟ! ts ts! u, ū, o, ō w ᵋw x· xẉ, x̣u x xw, xᵘ y ᵋy ᵋ
1 In U’mista materials, ts is alphabetized before tł, and the sounds ’l, ’m, ’n, ’w, ’y (l,̓ m̓, n̓, w̓, y̓) are not
treated as separate letters, making the total number of consonants there thirty-seven. See appendix A.2.

Excerpted from Marianne Nicolson and Adam Werle 2009. An investigation of modern
Kwakw̓ala determiner systems. ms, University of Victoria. pages 32-33.

 32

Appendix A. Kwak̓wala alphabets and transliteration

A.1 Alphabets
 There are several alphabets that have been used to write Kwak̓wala. This can be
an obstacle to learning the language, and to making use of the full range of available
materials. We therefore offer this summary of spelling systems both as a key to the
spelling used here, and as a reference tool for the reader (and for ourselves!).
 We compare five systems that we refer to as the U’mista, Grubb, Liq̫̓ ala, IPA, and
Boas alphabets. After summarizing these in table form, we offer some observations on
their differences, and on our transliteration of Boas and Hunt’s materials.
 These are the forty-two consonants and six vowels of Kwakw̓ala in five
alphabets, arranged to put similar alphabets closer together, and in alphabetical order
according to the U’mista letters:1

(140) Five Kwakw̓ala alphabets

 U’mista a a ̱ b d dł dz e g gw g̱
 Grubb a e b d dl dz eh g gw g̱
 Liq̫̓ ala a ə b d λ dᶻ e g gʷ ǧ
 IPA a ə, a, ɪ, ʊ b d dl dz ɛ, e ɡʲ ɡʷ ɢ
 Boas a, ā ᴇ, ă, î, ŭ b d ʟ ̣ dz ä, ê g· gw, gᵘ g̣

 g̱w h i k˙ kw k ̓ kw̓ ḵ ḵw ḵ ̓
 g̱w h i k˙ kw k’ kw’ ḵ ḵw ḵ’
 ǧʷ h i k˙ kʷ k ̓ k̫̓ q qʷ q ̓
 ɢʷ h i, e kʲ kʷ k’ʲ k’ʷ q qʷ q’
 g̣w, g̣ᵘ h i, ī, e, ē, ë k· kw, kᵘ k·! k!w, k!ᵘ q qw, qᵘ q!

 ḵw̓ l ’l ł m ’m n ’n o p p̓ s t t ̓ tł
 ḵw’ l ’l ̓ lh m ’m̓ n ’n̓ o p p’ s t t’ tl
 q̫̓ l ’l ̓ ł m ’m̓ n ’n̓ o p p̓ s t t ̓ ƛ
 q’ʷ l ’l’ ɬ m ’m’ n ’n’ ɔ, o p p’ s t t’ tł
 q!w, q!ᵘ l ᵋl ł m ᵋm n ᵋn â, ô p p! s t t! ʟ

 tł̓ ts ts̓ u w ’w x xw x ̱ xw̱ y ’y ’
 tl’ ts ts’ u w ’w̓ x xw x ̱ xw̱ y ’y ̓ 7
 ƛ̓ c c ̓ u w ’w̓ x xʷ x ̌ x̫̌ y ’y ̓ ʔ
 t’ɬ ts t’s u, o w ’w’ xʲ xʷ χ χʷ j ’j’ ʔ
 ʟ! ts ts! u, ū, o, ō w ᵋw x· xẉ, x̣u x xw, xᵘ y ᵋy ᵋ
1 In U’mista materials, ts is alphabetized before tł, and the sounds ’l, ’m, ’n, ’w, ’y (l,̓ m̓, n̓, w̓, y̓) are not
treated as separate letters, making the total number of consonants there thirty-seven. See appendix A.2.

Excerpted from Marianne Nicolson and Adam Werle 2009. An investigation of modern
Kwakw̓ala determiner systems. ms, University of Victoria. pages 32-33.

 32

Appendix A. Kwak̓wala alphabets and transliteration

A.1 Alphabets
 There are several alphabets that have been used to write Kwak̓wala. This can be
an obstacle to learning the language, and to making use of the full range of available
materials. We therefore offer this summary of spelling systems both as a key to the
spelling used here, and as a reference tool for the reader (and for ourselves!).
 We compare five systems that we refer to as the U’mista, Grubb, Liq̫̓ ala, IPA, and
Boas alphabets. After summarizing these in table form, we offer some observations on
their differences, and on our transliteration of Boas and Hunt’s materials.
 These are the forty-two consonants and six vowels of Kwakw̓ala in five
alphabets, arranged to put similar alphabets closer together, and in alphabetical order
according to the U’mista letters:1

(140) Five Kwakw̓ala alphabets

 U’mista a a ̱ b d dł dz e g gw g̱
 Grubb a e b d dl dz eh g gw g̱
 Liq̫̓ ala a ə b d λ dᶻ e g gʷ ǧ
 IPA a ə, a, ɪ, ʊ b d dl dz ɛ, e ɡʲ ɡʷ ɢ
 Boas a, ā ᴇ, ă, î, ŭ b d ʟ ̣ dz ä, ê g· gw, gᵘ g̣

 g̱w h i k˙ kw k ̓ kw̓ ḵ ḵw ḵ ̓
 g̱w h i k˙ kw k’ kw’ ḵ ḵw ḵ’
 ǧʷ h i k˙ kʷ k ̓ k̫̓ q qʷ q ̓
 ɢʷ h i, e kʲ kʷ k’ʲ k’ʷ q qʷ q’
 g̣w, g̣ᵘ h i, ī, e, ē, ë k· kw, kᵘ k·! k!w, k!ᵘ q qw, qᵘ q!

 ḵw̓ l ’l ł m ’m n ’n o p p̓ s t t ̓ tł
 ḵw’ l ’l ̓ lh m ’m̓ n ’n̓ o p p’ s t t’ tl
 q̫̓ l ’l ̓ ł m ’m̓ n ’n̓ o p p̓ s t t ̓ ƛ
 q’ʷ l ’l’ ɬ m ’m’ n ’n’ ɔ, o p p’ s t t’ tł
 q!w, q!ᵘ l ᵋl ł m ᵋm n ᵋn â, ô p p! s t t! ʟ

 tł̓ ts ts̓ u w ’w x xw x ̱ xw̱ y ’y ’
 tl’ ts ts’ u w ’w̓ x xw x ̱ xw̱ y ’y ̓ 7
 ƛ̓ c c ̓ u w ’w̓ x xʷ x ̌ x̫̌ y ’y ̓ ʔ
 t’ɬ ts t’s u, o w ’w’ xʲ xʷ χ χʷ j ’j’ ʔ
 ʟ! ts ts! u, ū, o, ō w ᵋw x· xẉ, x̣u x xw, xᵘ y ᵋy ᵋ
1 In U’mista materials, ts is alphabetized before tł, and the sounds ’l, ’m, ’n, ’w, ’y (l,̓ m̓, n̓, w̓, y̓) are not
treated as separate letters, making the total number of consonants there thirty-seven. See appendix A.2.

Excerpted from Marianne Nicolson and Adam Werle 2009. An investigation of modern
Kwakw̓ala determiner systems. ms, University of Victoria. pages 32-33.

 32

Appendix A. Kwak̓wala alphabets and transliteration

A.1 Alphabets
 There are several alphabets that have been used to write Kwak̓wala. This can be
an obstacle to learning the language, and to making use of the full range of available
materials. We therefore offer this summary of spelling systems both as a key to the
spelling used here, and as a reference tool for the reader (and for ourselves!).
 We compare five systems that we refer to as the U’mista, Grubb, Liq̫̓ ala, IPA, and
Boas alphabets. After summarizing these in table form, we offer some observations on
their differences, and on our transliteration of Boas and Hunt’s materials.
 These are the forty-two consonants and six vowels of Kwakw̓ala in five
alphabets, arranged to put similar alphabets closer together, and in alphabetical order
according to the U’mista letters:1

(140) Five Kwakw̓ala alphabets

 U’mista a a ̱ b d dł dz e g gw g̱
 Grubb a e b d dl dz eh g gw g̱
 Liq̫̓ ala a ə b d λ dᶻ e g gʷ ǧ
 IPA a ə, a, ɪ, ʊ b d dl dz ɛ, e ɡʲ ɡʷ ɢ
 Boas a, ā ᴇ, ă, î, ŭ b d ʟ ̣ dz ä, ê g· gw, gᵘ g̣

 g̱w h i k˙ kw k ̓ kw̓ ḵ ḵw ḵ ̓
 g̱w h i k˙ kw k’ kw’ ḵ ḵw ḵ’
 ǧʷ h i k˙ kʷ k ̓ k̫̓ q qʷ q ̓
 ɢʷ h i, e kʲ kʷ k’ʲ k’ʷ q qʷ q’
 g̣w, g̣ᵘ h i, ī, e, ē, ë k· kw, kᵘ k·! k!w, k!ᵘ q qw, qᵘ q!

 ḵw̓ l ’l ł m ’m n ’n o p p̓ s t t ̓ tł
 ḵw’ l ’l ̓ lh m ’m̓ n ’n̓ o p p’ s t t’ tl
 q̫̓ l ’l ̓ ł m ’m̓ n ’n̓ o p p̓ s t t ̓ ƛ
 q’ʷ l ’l’ ɬ m ’m’ n ’n’ ɔ, o p p’ s t t’ tł
 q!w, q!ᵘ l ᵋl ł m ᵋm n ᵋn â, ô p p! s t t! ʟ

 tł̓ ts ts̓ u w ’w x xw x ̱ xw̱ y ’y ’
 tl’ ts ts’ u w ’w̓ x xw x ̱ xw̱ y ’y ̓ 7
 ƛ̓ c c ̓ u w ’w̓ x xʷ x ̌ x̫̌ y ’y ̓ ʔ
 t’ɬ ts t’s u, o w ’w’ xʲ xʷ χ χʷ j ’j’ ʔ
 ʟ! ts ts! u, ū, o, ō w ᵋw x· xẉ, x̣u x xw, xᵘ y ᵋy ᵋ
1 In U’mista materials, ts is alphabetized before tł, and the sounds ’l, ’m, ’n, ’w, ’y (l,̓ m̓, n̓, w̓, y̓) are not
treated as separate letters, making the total number of consonants there thirty-seven. See appendix A.2.

Excerpted from Marianne Nicolson and Adam Werle 2009. An investigation of modern
Kwakw̓ala determiner systems. ms, University of Victoria. pages 32-33.

 32

Appendix A. Kwak̓wala alphabets and transliteration

A.1 Alphabets
 There are several alphabets that have been used to write Kwak̓wala. This can be
an obstacle to learning the language, and to making use of the full range of available
materials. We therefore offer this summary of spelling systems both as a key to the
spelling used here, and as a reference tool for the reader (and for ourselves!).
 We compare five systems that we refer to as the U’mista, Grubb, Liq̫̓ ala, IPA, and
Boas alphabets. After summarizing these in table form, we offer some observations on
their differences, and on our transliteration of Boas and Hunt’s materials.
 These are the forty-two consonants and six vowels of Kwakw̓ala in five
alphabets, arranged to put similar alphabets closer together, and in alphabetical order
according to the U’mista letters:1

(140) Five Kwakw̓ala alphabets

 U’mista a a ̱ b d dł dz e g gw g̱
 Grubb a e b d dl dz eh g gw g̱
 Liq̫̓ ala a ə b d λ dᶻ e g gʷ ǧ
 IPA a ə, a, ɪ, ʊ b d dl dz ɛ, e ɡʲ ɡʷ ɢ
 Boas a, ā ᴇ, ă, î, ŭ b d ʟ ̣ dz ä, ê g· gw, gᵘ g̣

 g̱w h i k˙ kw k ̓ kw̓ ḵ ḵw ḵ ̓
 g̱w h i k˙ kw k’ kw’ ḵ ḵw ḵ’
 ǧʷ h i k˙ kʷ k ̓ k̫̓ q qʷ q ̓
 ɢʷ h i, e kʲ kʷ k’ʲ k’ʷ q qʷ q’
 g̣w, g̣ᵘ h i, ī, e, ē, ë k· kw, kᵘ k·! k!w, k!ᵘ q qw, qᵘ q!

 ḵw̓ l ’l ł m ’m n ’n o p p̓ s t t ̓ tł
 ḵw’ l ’l ̓ lh m ’m̓ n ’n̓ o p p’ s t t’ tl
 q̫̓ l ’l ̓ ł m ’m̓ n ’n̓ o p p̓ s t t ̓ ƛ
 q’ʷ l ’l’ ɬ m ’m’ n ’n’ ɔ, o p p’ s t t’ tł
 q!w, q!ᵘ l ᵋl ł m ᵋm n ᵋn â, ô p p! s t t! ʟ

 tł̓ ts ts̓ u w ’w x xw x ̱ xw̱ y ’y ’
 tl’ ts ts’ u w ’w̓ x xw x ̱ xw̱ y ’y ̓ 7
 ƛ̓ c c ̓ u w ’w̓ x xʷ x ̌ x̫̌ y ’y ̓ ʔ
 t’ɬ ts t’s u, o w ’w’ xʲ xʷ χ χʷ j ’j’ ʔ
 ʟ! ts ts! u, ū, o, ō w ᵋw x· xẉ, x̣u x xw, xᵘ y ᵋy ᵋ
1 In U’mista materials, ts is alphabetized before tł, and the sounds ’l, ’m, ’n, ’w, ’y (l,̓ m̓, n̓, w̓, y̓) are not
treated as separate letters, making the total number of consonants there thirty-seven. See appendix A.2.

Excerpted from Marianne Nicolson and Adam Werle 2009. An investigation of modern
Kwakw̓ala determiner systems. ms, University of Victoria. pages 32-33.

 32

Appendix A. Kwak̓wala alphabets and transliteration

A.1 Alphabets
 There are several alphabets that have been used to write Kwak̓wala. This can be
an obstacle to learning the language, and to making use of the full range of available
materials. We therefore offer this summary of spelling systems both as a key to the
spelling used here, and as a reference tool for the reader (and for ourselves!).
 We compare five systems that we refer to as the U’mista, Grubb, Liq̫̓ ala, IPA, and
Boas alphabets. After summarizing these in table form, we offer some observations on
their differences, and on our transliteration of Boas and Hunt’s materials.
 These are the forty-two consonants and six vowels of Kwakw̓ala in five
alphabets, arranged to put similar alphabets closer together, and in alphabetical order
according to the U’mista letters:1

(140) Five Kwakw̓ala alphabets

 U’mista a a ̱ b d dł dz e g gw g̱
 Grubb a e b d dl dz eh g gw g̱
 Liq̫̓ ala a ə b d λ dᶻ e g gʷ ǧ
 IPA a ə, a, ɪ, ʊ b d dl dz ɛ, e ɡʲ ɡʷ ɢ
 Boas a, ā ᴇ, ă, î, ŭ b d ʟ ̣ dz ä, ê g· gw, gᵘ g̣

 g̱w h i k˙ kw k ̓ kw̓ ḵ ḵw ḵ ̓
 g̱w h i k˙ kw k’ kw’ ḵ ḵw ḵ’
 ǧʷ h i k˙ kʷ k ̓ k̫̓ q qʷ q ̓
 ɢʷ h i, e kʲ kʷ k’ʲ k’ʷ q qʷ q’
 g̣w, g̣ᵘ h i, ī, e, ē, ë k· kw, kᵘ k·! k!w, k!ᵘ q qw, qᵘ q!

 ḵw̓ l ’l ł m ’m n ’n o p p̓ s t t ̓ tł
 ḵw’ l ’l ̓ lh m ’m̓ n ’n̓ o p p’ s t t’ tl
 q̫̓ l ’l ̓ ł m ’m̓ n ’n̓ o p p̓ s t t ̓ ƛ
 q’ʷ l ’l’ ɬ m ’m’ n ’n’ ɔ, o p p’ s t t’ tł
 q!w, q!ᵘ l ᵋl ł m ᵋm n ᵋn â, ô p p! s t t! ʟ

 tł̓ ts ts̓ u w ’w x xw x ̱ xw̱ y ’y ’
 tl’ ts ts’ u w ’w̓ x xw x ̱ xw̱ y ’y ̓ 7
 ƛ̓ c c ̓ u w ’w̓ x xʷ x ̌ x̫̌ y ’y ̓ ʔ
 t’ɬ ts t’s u, o w ’w’ xʲ xʷ χ χʷ j ’j’ ʔ
 ʟ! ts ts! u, ū, o, ō w ᵋw x· xẉ, x̣u x xw, xᵘ y ᵋy ᵋ
1 In U’mista materials, ts is alphabetized before tł, and the sounds ’l, ’m, ’n, ’w, ’y (l,̓ m̓, n̓, w̓, y̓) are not
treated as separate letters, making the total number of consonants there thirty-seven. See appendix A.2.

Figure 5.1: Transliteration of alphabet sequences between the U’mista and Boas orthographies
for Kwak’wala along with their representation in the international phonetic alphabet (IPA). The
U’mista system is modern and one of the currently preferred orthographies in the community.
However, large collections of cultural and linguistic documentation are written in the older
Boas orthography which, as the figure shows, is more complex with the use of unique diacritics
and digraphs. Figure adapted from Nicolson and Werle (2009).

and can only be consulted by scheduling a visit to the archive. Scanned images of the published
volumes are accessible online in PDF format through the Smithsonian,1 and such digital scans
allow remote access by those who are not able to travel to Philadelphia or New York. How-
ever, because the text in images is not machine-readable, it is not searchable and researchers
potentially need to look at tens or hundreds of images to locate relevant information.

Developing reliable OCR to extract these texts into a machine-readable format can serve
the community in many ways. Their contents can be strategically tagged, selected, indexed,
rearranged, reformatted, excerpted, and adapted according to various needs and preferences.
Additionally, the writing system used by Boas and Hunt is radically different from the orthogra-
phies the community currently prefers. Figure 5.1 shows the transliteration between U’mista,
a community-preferred orthography, and the more complex Hunt/Boas writing system. Many
researchers draw on the Hunt/Boas materials in their work and integrate this knowledge into
their community-based language and culture work, but developing comfort with the writing
system and the texts requires a significant investment of time and energy, and sharing infor-

1https://library.si.edu/digital-library/book/annualreportofbu351smit

53

https://library.si.edu/digital-library/book/annualreportofbu351smit

mation and knowledge from these materials with others often requires retyping excerpts into
a different writing system in order to make content legible to a broader audience. Convert-
ing the images to machine-readable text opens the door to automatic transliteration from one
orthography to another, enabling wider access to the valuable information contained in these
documents. Beyond search and transliteration, extracting the text with OCR will also enable
dataset creation for the Kwak’wala language and lay the groundwork for other NLP applications
that the community is interested in developing, including a language model and an automatic
speech-to-text transcription system.

Focusing on improving OCR for the Hunt/Boas publications thus offers significant utility
and impact for community language revitalization efforts in a multitude of ways: by improving
accessibility to these culturally important documents through search and transliteration as well
as by increasing the amount of Kwak’wala language data available for downstream NLP tasks.

Improving OCR for the Hunt/Boas Orthography We use our proposed post-correction
model to improve OCR performance beyond existing systems. As presented in Chapter 4, the
best performing model for Kwak’wala uses the semi-supervised learning technique that com-
bines self-training and lexically-aware decoding. Compared with the first-pass OCR system
(Ocular), post-correction reduces character error rate by 52% and word error rate by 41% on
Kwak’wala documents that are written in the Hunt/Boas orthography (see Table 4.1 for de-
tailed results). We apply the trained model on two full volumes of the Hunt/Boas publications,
converting over 1,500 pages to machine-readable text. A full description of the resources we
create and publicly release is in Section 5.3.

Although the character and word error rate metrics are useful for understanding OCR per-
formance, our goal is to provide transcriptions that are accurate and useful to Kwak’wala com-
munitymembers and researchers. In the following section, we take a human-centered approach
in evaluating our OCR pipeline to understand whether the automatically produced transcrip-
tions are beneficial to downstream users that access the information in these documents.

5.2 Evaluation with a User Study

Traditionally, accurate transcriptions of scanned documents like the Hunt/Boas publications
would be produced by a human annotator, who would look at the scanned image of each doc-
ument and type out the text present in it – a process that is time-consuming and requires
significant manual effort. To evaluate the utility of the outputs from our models, we analyze

54

whether using OCR and OCR post-correction before the manual transcription process is effec-
tive in reducing the time spent by a human annotator in producing an accurate transcription.
We conduct a user study where we compare the time spent by transcribers on producing an ac-
curate transcription in various settings with and without the use of an OCR system. We attempt
to answer two primary questions:

1. Is it faster for a human transcriber to correct the errors in an OCR output as compared to
typing out the text from scratch?

2. Does adding the post-correctionmodel affect transcription speed beyond existing off-the-
shelf OCR tools?

We design controlled experiments to measure human transcription speed on a subset of
images from the Hunt/Boas texts and evaluate how transcription time is affected in various
settings to understand whether there is utility in introducing OCR into the process. Addition-
ally, we obtain subjective feedback on how having OCR outputs affected the transcription task
through a survey sent to participating transcribers after tasks were completed.

5.2.1 Participants

We employed nine participants for the user study, all of whom had some transcription experi-
ence. Of the nine, two participants had familiarity with the Kwak’wala language as well as the
Hunt/Boas texts and the orthography – one is a heritage Kwak’wala language learner and the
other is an academic linguist working with Kwak’wala language materials.

We also employed seven participants that had no experience or familiarity with Kwak’wala.
Three of these participants are graduate students at a university in the United States and four
participants were employed through Upwork,2 a marketplace for freelance professionals. We
selected them based on prior transcription experience, knowledge about data annotation for
machine learning, and linguistic training as well as a high job success rate on the Upwork
platform.3 Including participants with varying degrees of prior knowledge of the Kwak’wala
language also allowed us to evaluate whether this is a factor that affects transcription speed
and the overall experience with the user study tasks.

2https://www.upwork.com/
3Full IRB approval was obtained for the user study, all participants signed a consent form before working on

the transcription tasks, and all data collected was anonymized.

55

https://www.upwork.com/

Figure 5.2: Practice task for transcribers to become familiar with the Boas keyboard. We in-
cluded eight practice tasks in the Label Studio interface to cover all special character combina-
tions in the Boas orthography multiple times. Users could repeat tasks as many times as they
wanted to before moving on to the main transcription task.

5.2.2 Transcription Interface and Keyboard

We use Label Studio,4 an open-source data annotation interface for setting up transcription
tasks for the user study. We customized the interface for the transcription task and additionally
modified it to record information necessary for our analysis of transcription speed, including
timestamps for when transcribers operate on each task.

Many characters and diacritics in the Hunt/Boas orthography are not present on a stan-
dard computer keyboard. To increase transcription efficiency, we used Keyman Developer5 (an
open-source toolkit) to create a keyboard for representing the characters in the orthography.
The keyboard maps standard US English keyboard keystrokes to characters in the Hunt/Boas
orthography. A detailed description of the keyboard layout and usage is in Section A.1. All
participants were required to use this virtual keyboard to ensure consistency in terms of typing
efficiency across all transcribers.

To train participants before the user study experiments, we designed a keyboard practice
task, which presents a few sentences of text in the Hunt/Boas orthography that the transcriber
has to type using the keyboard. The practice texts were selected such that all the different
diacritic and digraph keystroke combinations were covered multiple times. The practice tasks
were also added to the Label Studio web interface – a screenshot of the interface for the practice
task is shown in Figure 5.2. Participants were able to repeat the practice tasks as many times
as needed to gain familiarity with the keyboard. Additionally, we added keystroke mapping

4https://labelstud.io
5https://keyman.com/developer/

56

https://labelstud.io
https://keyman.com/developer/

Figure 5.3: Transcription task interface, designed in Label Studio. The interface displays the
image of a page and a text box to enter the transcription into. It also has zoom and pan tools for
the image, allowing users to zoom in on characters that might be hard to identify. The figure
depicts a cropped image for clarity. When an OCR system or our post-correction method is
used before the manual transcription task, the text box on the right is pre-filled with the output
transcription from the model and the user’s task is to correct any remaining errors.

information to the interface for all tasks (transcription and practice tasks) for users to quickly
reference.

5.2.3 Transcription Task Settings

The primary objective for the participants was to produce an accurate transcription of the image
presented to them in each task. In the Label Studio interface, as seen in Figure 5.3, the image is
displayed alongside a text box for the user to enter the transcription. To evaluate whether using
OCR is useful in reducing transcription speed, we have three different setups for the tasks:

• Baseline: This setup does not include the use of any OCR system. The transcriber must
type out the text seen in the image from scratch – they are presented with the image and
an empty text box in the interface (see Figure 5.3). This setup represents our baseline for
measuring transcription speed.

• Off-the-shelf OCR: In this setup, we use an off-the-shelf OCR tool (Ocular) on the image
for each task prior to the manual annotation. The transcriber is presented with the image
and a text box containing the OCR output – that is, the text box on the right in Figure 5.3

57

A B C D
B C D A
C D A B
D A B C

A B C D
B A D C
C D B A
D C A B

Figure 5.4: Two examples of 4x4 Latin Squares. Each symbol appears only once in each row
and each column. The number of symbols is the same as the number of rows and columns in
the square. Figure adapted from Dean and Voss (1999).

will be pre-filled with the OCR output. The task here involves looking at the text present
in the image (which is the target text) and editing the OCR output in the text box to
correct all the errors and produce an accurate transcription.

• Post-correction: This is similar to the previous setup, but we use a pipeline that includes
applying our OCR post-correction method on the output from the off-the-shelf tool. The
transcriber is presented with the image alongside a text box containing the post-corrected
transcription, and the task is to correct any remaining errors.

5.2.4 Experiment Design

Whilemeasuring transcription speed for a single page is relatively straightforward, determining
whether there is a statistically significant difference in speed between the three different setups
described above requires consideration of several factors. For example, a single transcriber
cannot be assigned the same page multiple times with different setups as they would become
familiar with the page’s content, potentially leading to incorrect estimation of speed differences.
Additionally, some participants may be faster at transcription in general and some pages in the
document may be more challenging than others – these factors need to be accounted for when
measuring transcription time across the task setups.

In statistics, such factors are known as sources of variability (or nuisance factors). We design
the transcription tasks to control the variability introduced by these factors using the Latin
Square Design (Dean and Voss, 1999) to assign tasks to each transcriber. The Latin Square
has the same number of rows and columns (square-shaped), with a specific symbol appearing
exactly once in each row and exactly once in each column; Figure 5.4 shows two examples of a
Latin Square design that has 4 rows and 4 columns. This design allows control of two sources
of variability – one along the rows and one along the columns.

58

page1 page2 page3
user1 ocr base post
user2 post ocr base
user3 base post ocr

page4 page5 page6
ocr post base
base ocr post
post base ocr

page7 page8 page9
post ocr base
base post ocr
ocr base post

Figure 5.5: Task setup assignments for a group of three users using the Latin Square design.
We use 3x3 Latin Squares because we have three task setups: Baseline (base), off-the-shelf OCR
(ocr), and post-correction (post). We need three squares for each group of users because we
have nine pages for transcription. All users transcribe the same set of pages, but with the Latin
Square framework, they have different task setups for each page which helps control sources
of variability. Note that all user identifiers and page identifiers are randomized before applying
the Latin Square design.

Since we have three task setups, we choose a 3x3 Latin Square – each setup appears only
once in each row and column. The two sources of variability we control are (1) the user doing
the transcription and (2) the page being transcribed. We randomly divide the nine participants
into three groups of three users each (to fit the 3x3 square) and choose a fixed set of nine pages
from the documents that all participants will transcribe in their tasks. For each group of three
users, we form three squares (since we have nine pages). The task setups – i.e., baseline, off-
the-shelf OCR, post-correction – are randomly assigned within the Latin Square constraints.
Adding randomization for all factors (user, page, task setup) is aimed at spreading out the effect
of undetectable or unsuspected characteristics. An example of task setup assignments for one
group of three users for the nine pages is in Figure 5.5.6

Therefore, each user has nine transcription tasks with the task setups evenly distributed so
all users are sufficiently timed on each setup. The user does not transcribe the same page more
than once, but all users transcribe the same set of nine pages (with varied task setups). The
Latin Square Design, thus, introduces randomness across the factors to reduce variance and
improve the generalization of the statistical analysis.

Dataset selection We selected nine pages from the Hunt/Boas volumes for the user study
experiments, which were randomly chosen from a larger subset of 50 pages that community-

6We follow https://online.stat.psu.edu/stat503/lesson/4/4.4 and randomize Latin
Squares separately for each group of users and each set of pages, so the task setup assignments may not look
identical across groups.

59

https://online.stat.psu.edu/stat503/lesson/4/4.4

based researchers deemed representative of the volumes and important to transcribe.

5.2.5 Evaluation Procedure

The nine transcription tasks were designed to take approximately 7 hours to complete. The
participants accessed the Label Studio interface remotely through any web browser and first
completed the keyboard practice tasks described above. Then, the participants began the tran-
scription tasks and the interface recorded all timestamps for when transcriptions were edited
and submitted. After the participants completed all tasks, we collected the timestamp infor-
mation and computed how long it took to complete each task – with nine users transcribing
nine pages each, we have 81 measurements of transcription speed to be used for quantitatively
evaluating the utility of the OCR systems. We also calculated the character error rate (CER) of
each transcription with respect to the transcription for the same page by our most experienced
participant (a Kwak’wala heritage language learner who is very familiar with the orthography
and had transcribed parts of the Hunt/Boas volumes prior to the user study), and discarded time
measurements for transcriptions with CER > 1%. Across all 81 transcriptions, only one had an
error rate higher than this threshold, and thus, the quantitative analysis below is conducted
with 80 time measurements.

We also obtained qualitative feedback through a short survey that the participants filled out
after completing the transcriptions. The survey asked several questions about the experience
with the user study, including if the transcribers found specific tasks more difficult than others,
whether they preferred typing from scratch or correcting OCR outputs (andwhich they thought
was faster) as well as general feedback on the task and interface.

5.2.6 Quantitative Analysis

To quantify the effect of introducing OCR into the transcription process, we analyze the mea-
surements of transcription speed that were collected from the user study tasks. As stated pre-
viously, we cannot use the time values directly to make a generalized conclusion because tran-
scription time is not independent of the sources of variability. Instead, we use the statistical
technique of Linear Mixed Effects (LME) modeling (Bates, 2007) to describe the relationship be-
tween the response variable (the transcription time) and the factors that contribute to variance.
The term “mixed effects” refers to a combination of random effects and fixed effects. We have
two random effects:

1. transcriber identity, which can take values from user1 to user9;

60

Task Setup Transcription Time (minutes) p-value

Baseline (no OCR) 61.65 3.04e-07 *
With OCR –33.44 4.80e-08 *

Table 5.1: Per-page transcription time estimates from the linear mixed model comparing the
baseline, which does not use any OCR, with the task setups that use some form of OCR (either
off-the-shelf or post-correction). The time estimate for producing an accurate transcription of
a page is reduced by 33.44 minutes when OCR technologies are used beforehand. The p-value
is < 0.05 for the estimates, indicating statistical significance.

2. page number, which can take values from page1 to page9.
We also have two fixed effects:

1. transcriber group, which can either be yes or no indicating prior familiarity with the
Kwak’wala language or not;

2. task setup, which can be one of the three setups described above – baseline, off-the-shelf
OCR, or post-correction.

The LME estimation models the transcription time as a function of the above random and
fixed effects. Using the estimations, our primary analysis attempts to identify whether the task
setup affects transcription time in a statistically significant manner. We additionally look at
whether the transcriber group (i.e., prior knowledge of Kwak’wala) plays a role in how fast the
user completes tasks.

Does having some formofOCRhelp reduce transcription time? In Table 5.1, we present
transcription time estimates from the LMEmodel comparing two settings: (1) the baseline setup
which does not use any OCR and the user types the transcription from scratch, and (2) hav-
ing some form of OCR before the transcription process which the user can correct to produce
error-free text (either the off-the-shelf setup or the post-correction setup). As is evident from
the results, having some form of OCR greatly improves transcription speed, reducing the time
estimate by over 50% and consequently, reducing the manual effort needed to produce an ac-
curate machine-readable version of the documents.

Does post-correction help reduce transcription time beyond using an off-the-shelf
OCR tool? From the previous results, it is evident that using OCR is beneficial in reducing

61

Task Setup Transcription Time (minutes) p-value

Off-the-shelf 31.67 2.55e-05 *
Post-correction –6.69 0.0121 *

Table 5.2: Per-page transcription time estimates from the linear mixed model comparing task
setups using an off-the-shelf OCR system (Ocular) with using our proposed post-correction
method. The time estimate is reduced by 6.69 minutes for a page when we use post-correction,
indicating the utility of our method to downstream users over existing OCR systems. The p-
value is < 0.05 for the estimates, indicating statistical significance.

Transcriber Group Transcription Time (minutes) p-value

Not familiar with Kwak’wala 43.60 8.12e-05 *
Familiar with Kwak’wala –17.86 0.228

Table 5.3: Per-page transcription time estimates from the linear mixed model comparing tran-
scribers that had prior familiarity with Kwak’wala with those that did not. The time estimate is
reduced by 17.86 minutes for a page when the user is familiar with Kwak’wala, indicating that
target knowledge language might be useful to have in image transcription tasks. The p-value
is > 0.05 for the estimate, which indicates that it is not statistically significant, likely because
we only had two users that were familiar with the language.

manual transcription time. We also evaluate whether using the post-correction model is useful
or just using an off-the-shelf tool like Ocular is sufficiently useful for transcribers. The LME
model estimates for this comparison are in Table 5.2. We see that using our post-correction
method in the transcription pipeline reduces manual correction time by 21%, indicating its sig-
nificant utility to the downstream task of manually correcting the text.

Does prior familiarity with Kwak’wala and the Boas script affect transcription time?
Beyond our primary analysis of the effect of using OCR, we also try to evaluate the extent
to which the user’s knowledge of the Kwak’wala language affects the speed of transcription.
Table 5.3 demonstrates this comparison with results across all three task setups. The estimates
show that this factor does play a role with the LME model estimate with a 40% reduction in
transcription time for the group familiar with Kwak’wala. However, the p-value of this estimate
is > 0.05, indicating that the result is not statistically significant – this is likely because only two

62

transcribers in the user study had prior knowledge of the language and more data is needed to
draw a statistically significant conclusion.

5.2.7 Subjective Feedback

After participants completed the transcription tasks, we asked them to fill out a short survey
to describe their experience with the task. Note that, to avoid any bias, the participants were
not told which OCR setup (off-the-shelf or post-correction) was used for each task. Therefore,
the survey focused on understanding whether users observed any differences between typing
from scratch or correcting transcriptions, but the questions did not distinguish between the two
OCR-based setups. The full list of questions contained in the survey is in Section A.2.

We asked which of the setups led to faster completion of the tasks, and 100% of the partic-
ipants perceived that correcting an OCR output was faster than typing the transcription from
scratch. Some participants also provided feedback:

“Correcting is faster, as you only need to check for correctness and there is much less

typing involved which requires most of the time”

(user7, from Upwork, not familiar with Kwak’wala)

“Correcting felt far more efficient!”

(user2, linguistic researcher, familiar with Kwak’wala)

However, even though it was slower, two out of the nine participants preferred typing out
the text without the aid of an OCR output:

“I preferred typing the text from scratch, as searching for any editable text is a bit

difficult. You need more effort for editing than writing.”

(user8, from Upwork, not familiar with Kwak’wala)

However, the remaining seven transcribers provided strong feedback that correcting OCR
outputs was the preferable task setup, for a variety of reasons:

“I vastly preferred correcting OCR outputs. It was so much faster, and also required

less of an investment of attention.”

(user2, linguistic researcher, familiar with Kwak’wala)

“I preferred correcting text - it’s much faster. I can spend more mental energy making

sure the characters are correct rather than wasting time on transcribing trivially-easy

letters.”

(user5, computer science student, not familiar with Kwak’wala)

63

“I prefer correcting text because typing from scratch is somehow tricky to follow line

by line.”

(user9, from Upwork, not familiar with Kwak’wala)

Overall, transcribers participating in the user study identified a reduction in time spent
when the OCR outputs were utilized and the majority preferred the task setup not only because
of the speed improvement but also because the OCR outputs allowed them to zoom in and fix
specific errors rather than spending time on the entire image.

Additionally, we asked participants if any tasks seemed to be easier or more difficult than
others. While several described correction as easier than typing from scratch, some transcribers
focused on interesting language-specific and document-specific challenges:

“Correcting the predictions was easier.”

(user3, heritage language learner, familiar with Kwak’wala)

“A few alphabets were difficult to annotate from the images. For example, it was

difficult to differentiate between l and ł.”

(user6, from Upwork, not familiar with Kwak’wala)

“image text was with small fonts.”

(user4, computer science student, not familar with Kwak’wala)

“the hardest thing for me was identifying a particular character (ł) that is very faint

in the original PDF. It is often difficult to tell if a character is ł or l. Because I have

some knowledge of the language, I relied on that background knowledge at times, but

this slowed down the correction process.”

(user2, linguistic researcher, familiar with Kwak’wala)

In giving feedback about the keyboard practice tasks, all participants indicated that the
practice task helped them learn the Hunt/Boas orthography and the keystrokemappings. More-
over, 100% of the participants stated that as they completed more tasks, they became faster at
transcription. One participant (user7, from Upwork, not familiar with Kwak’wala) stated “After

transcribing a few pages, I became faster at typing with the keyboard and noticing the different

accents and letters.” While the ordering of the tasks was not taken into account in our LME
model because of the small amount of data in the current user study, we hope to understand
the effect of task order on transcription time in future, larger-scale research.

64

5.3 Tools and Resources Created

• OCR pipeline for the Boas orthography: By using existing OCR tools such as Oc-
ular (Berg-Kirkpatrick et al., 2013) and our post-correction model, we created an OCR
pipeline for digitizing Kwak’wala text in the Hunt/Boas orthography with low transcrip-
tion error rates, even when minimal amounts of training data are available.

• Machine-readable text resources for Kwak’wala: With our OCR pipeline, we have
currently extracted Kwak’wala text from 1,500 pages from two volumes of Boas and Hunt
(1921) that were previously only accessible as scanned images. The volumes also contain
English text (each page has Kwak’wala text and its corresponding translation in English –
see Figure 5.6 for an example), which we extracted using the Google Vision OCR, known
to have strong performance on English documents (Fujii et al., 2017).

Additionally, we automatically transliterate all the extracted Kwak’wala text, converting
it from the Boas orthography to the modern, community-preferred U’mista orthography.
We use convertextract7 for this process, a tool that maps the Boas character se-
quences to their U’mista equivalent. While the transliteration is not perfect, because the
outputs from our model are not completely error-free, Kwak’wala researchers and learn-
ers subjectively indicated that the transliterated text we generated is readable to a large
extent.

We release all 1,500 pages as a resource for Kwak’wala, with each page consisting of (1)
machine-readable Kwak’wala text in the original Boas orthography; (2) machine-readable
English translation of the Kwak’wala; (3) Kwak’wala text in the page transliterated to the
U’mista orthography. With this release, researchers, language learners, and teachers in
the Kwak’wala community can search through the extensive cultural information con-
tained in the Hunt/Boas publications in both Kwak’wala and English. Additionally, the
texts can be read by a much larger audience with the transliteration into a community-
preferred orthography.

• Virtual keyboard: Although initially created to increase efficiency in the user study
transcription task, the keyboard we developed for the Hunt/Boas orthography has proven
valuable beyond the boundaries of this narrow use case. The keyboard package is now
employed bymultiple user groups beyond this project, including community-based teach-
ers and learners of Kwak’wala and Bak’wamk’ala; community and academic researchers

7https://github.com/roedoejet/convertextract

65

https://github.com/roedoejet/convertextract

working with materials created by Boas and Hunt; and archivists and managers of repos-
itories where these materials are held, including at the American Philosophical Society’s
Library.8

5.4 Summary

In previous chapters, we proposed post-correction models to improve OCR transcriptions on
endangered language texts and saw a considerable reduction in error rates. In this chapter, we
evaluate the utility of the models in a user-centric manner. We conduct a case study on the
Kwak’wala language and focus on digitizing documents that use the complex Boas orthogra-
phy. With a user study, we show the downstream utility of our proposed models in significantly
reducing the time needed for manual transcription tasks. We also extract text from two pub-
lished volumes of Kwak’wala linguistic and cultural documentation, making these important
resources much more accessible to the community. While we focus on a single language in this
case study, our results demonstrate the immense potential impact that improved OCR technolo-
gies can have on endangered language documentation and revitalization efforts.

8https://www.amphilsoc.org/library/CNAIR

66

https://www.amphilsoc.org/library/CNAIR

Figure 5.6: A page from the Hunt/Boas publications documenting the community’s method
for picking viburnum berries. As seen, the documents have bilingual text in English (top) and
Kwak’wala (bottom), which are approximately aligned at the page-level. We convert both the
English and the Kwak’wala text from 1,500 pages into a machine-readable format, enabling
search and retrieval of information in both languages.

67

68

Chapter 6

Making OCR and Post-Correction
Models More Accessible

In previous chapters, we build OCR post-correction models to improve OCR accuracy in very
low-resource settings as well as evaluate the utility of the models with an extensive case study
on Kwak’wala, an endangered language spoken in North America. We demonstrate that having
technology that produces highly accurate OCR transcriptions can be very beneficial to commu-
nities that speak endangered languages, particularly for language education, documentation,
and revitalization efforts.

Many OCR and post-correction technologies, including the models we develop in previous
chapters, are publicly available as open-source software, and are typically accessible through
the command line (e.g., Python packages) or code modules that query APIs. Even popular
tools like Google Vision OCR and Tesseract require familiarity with programming, installing
dependencies, and the command line to apply available off-the-shelf models. Moreover, training
a new model (e.g., with our post-correction software that is currently available only as Python
modules) typically involves several steps and requires substantial technical expertise.

While researchers and practitioners with the necessary technical proficiency and program-
ming skill can use these systems for training and inference, much of the target audience for the
models and OCR pipelines developed in this thesis is outside technical fields. If our software
is only available as command line scripts and code modules, it limits accessibility to linguists,
language learners, teachers, archivists, and community-based researchers who could greatly
benefit from improved OCR for endangered languages, but may not be familiar with program-
ming tools and packages.

In this chapter, to enable easier access to OCR and post-correction systems, we build a

69

web interface that allows the use of these tools without the need for writing or understanding
any code. The interface is designed to make it straightforward to apply these technologies on
documents that contain endangered language text, with functionality that enables:

• Inference with off-the-shelf OCR, such as Google Vision and Tesseract, with which users
can obtain transcriptions for scanned images – either as a single step or as a first-pass for
subsequent post-correction.

• Training and inference with the post-correction models proposed in Chapter 3 and Chap-
ter 4, for users to improve existing OCR transcriptions.

Web interfaces exist for some off-the-shelf tools, like the EasyOCR demo1 and Google Vision
demo.2 However, these are limited in their functionality in that they only allow inference on
a single image at a time and they only support one OCR system. The interface we present
in this chapter is, to the best of our knowledge, the first to support no-code inference with
several state-of-the-art OCR and post-correction methods as well as no-code training for post-
correction models. The interface, thus, allows users to compare and contrast results across
systems and decide which work best for their target documents, orthographies, and languages.

In the sections that follow, we describe the interface (which is implemented as a web ap-
plication), details of the various functionalities that it supports as well as workflows of how a
potential user might interact with the application based on the requirements for their specific
use case as workflows might vary depending on the target document or language. We also re-
lease the interface as a public web application that can be accessed by anyone with an internet
connection, in the hope of enabling use of these technologies by a much larger set of people.

6.1 Functionalities

Prediction with off-the-shelf OCR The interface supports inference with existing off-the-
shelf OCR tools that are typically available only through a command line interface or a code
package. This functionality takes scanned documents, either in image formats or a PDF, and
returns the prediction from the selected OCR system on each image or page in the PDF.

No-code access to these existing tools is useful for practitioners because several of these
systems support a large number of languages (typically 80–100) and many scripts. This makes
them applicable to a broad range of documents because the target language is not directly

1https://www.jaided.ai/easyocr/
2https://cloud.google.com/vision/docs/drag-and-drop

70

https://www.jaided.ai/easyocr/
https://cloud.google.com/vision/docs/drag-and-drop

supported, the OCR might still be reasonably accurate if the script is known to the model. The
interface, in its current form, only enables prediction on input documents with these off-the-
shelf models and does not allow training or fine-tuning (which some packages like Tesseract
include functionality for).

To illustrate the utility of this functionality, consider the status quo, where if a user had a
large number of images that they wanted to apply the Google Vision OCR on, they would have
to either write code to use the API, which requires technical proficiency or upload images one at
a time to the online demo,3 which is time-consuming for large documents. With our interface,
the user can simply upload all target images together and get the OCR predictions in a single
step. Additionally, the user would be able to experiment with different off-the-shelf systems
within the same interface to see which one works best for their documents (e.g., comparing
predictions from Google Vision with those from Tesseract).

Training OCR post-correction models The interface also supports the training of post-
correction models based on the methods presented earlier in this thesis. The user can train
either a supervisedmodel discussed in Chapter 3 or a semi-supervisedmodel discussed in Chap-
ter 4 for their target language or orthography, with any existing first-pass OCR they might al-
ready have. This functionality requires first-pass OCR and corresponding manually transcribed
text for supervised training, along with first-pass OCR from any available unlabeled pages for
pretraining and semi-supervised learning, and returns a trained post-correction model. Tech-
nical aspects of the training, such as preprocessing, data splits, and hyperparameter tuning, are
handled in the backend of the interface and users only need to focus on providing a minimal
amount of training data.

Before building this interface, training post-correction models with our proposed method
involved downloading software modules built in Python, installing dependencies, as well as
understanding and modifying the scripts to run the modules. With the interface, the user does
not need these technical skills and can train new models directly through the web application.
Teachers, speakers, and researchers of endangered languages can thus easily train a model to
improve OCR performance beyond off-the-shelf tools as our proposed methods improve accu-
racy even in very low-resource settings.

Prediction with trained post-correction models With this functionality, trained models
can be used for making predictions on new data – the input here would be the first-pass OCR

3https://cloud.google.com/vision/docs/drag-and-drop

71

https://cloud.google.com/vision/docs/drag-and-drop

for the set of pages that need to be transcribed and the output would be the post-corrected
text. Having this inference functionality in the interface makes it easier for users to apply
trained post-correction models to large collections of documents and improve the accuracy
of text transcriptions (and consequently bettering readability and downstream usability of the
documents) without the need for programming or technical proficiency.

Workflows TheOCR interface can be used in several differentways depending on the specifics
of the target use case because the functionalities operate independently. The workflow which
leverages all the functionalities of the interface starts with the user uploading the input scanned
document(s) to the web application and obtaining the first-pass OCR transcription for each page
from an off-the-shelf system. Next, the user uploads training data for the OCR post-correction
model, which consists of the first-pass OCR and parallel manual transcriptions. The user can
also upload first-pass text for pages that are not manually transcribed (unlabeled data), and
these can be used for semi-supervised learning. This process results in a trained model as out-
put. Finally, the trained model can be used for inference, where the user uploads first-pass OCR
for all the pages and documents that need to be corrected.

However, the user may not need to use all the available features of the interface. For ex-
ample, a possible workflow for documents on which off-the-shelf models have high accuracy
likely does not need to include the post-correction training and inference steps (e.g., using the
Google Vision system typically results in very low error rates for printed Latin script text). The
user may also want to try out the various off-the-shelf models supported in the interface to
determine the best one for the target data. Similarly, if the user already has OCR transcriptions
for the documents that are not very accurate (as many libraries and archives often do) and
wants to improve them with post-correction, getting a first-pass OCR from the interface is no
longer necessary. The independence of the components makes the interface adaptable to dif-
ferent workflows and use cases, and allows the user to easily experiment with various settings
and OCR pipelines.

6.2 Implementation

The interface is implemented as a simple web application, making it straightforward to access
by anyone with an internet connection. Like most web applications, the implementation in-
cludes frontend and backend components. The user interacts with the frontend through a web
browser, and the backend executes commands received from the frontend based on what func-

72

Figure 6.1: The interface frontend for inference with off-the-shelf OCR systems. The user can
choose the OCR system as well as upload images or PDF files to transcribe. When inference is
complete, the user can download the outputs as text files. Note the tabbed interface that allows
users to experiment with off-the-shelf tools and our post-correction models independently.

tionalities the user chooses to use. This abstracts the technical details of the OCR models away
from the end user and ensures the user only needs to focus on components specific to their
target data (e.g., uploading images and exporting OCR outputs).

6.2.1 Frontend

We develop a frontend for the web application which is the public-facing web page that users
view and interact with. The frontend is simply a graphical interface for users to communicate
with the backend and execute their desired workflow, by uploading and downloading data as
well as selecting training and inference functions with various models. The frontend is written
in Javascript using the React-Bootstrap framework,4 which contains implementations of several

4https://react-bootstrap.github.io

73

https://react-bootstrap.github.io

useful UI components in its library. The axios package5 is used for communication of data and
instructions between the frontend and backend. The frontend is designed to reflect the flexibil-
ity of the workflow, where the off-the-shelf OCR tools and the post-correction functionalities
can be used independently, all within the same interface.

Off-the-shelf OCR A screenshot of the frontend for the inference functionality with an off-
the-shelf OCR system is shown in Figure 6.1. As seen, the interface is simple – first, the user
selects the OCR system they want to use (the figure shows “Google Vision” selected). Next, the
user selects the files they need digitized (multiple files can be selected in a single upload and
PDFs, as well as image formats such as PNG and JPG, are permitted) and clicks the “Upload”
button that sends the information to the backend. The backend server then executes commands
to preprocess the data, if necessary, and apply the selected OCRmodel on the input data. Finally,
the outputs from the system are returned to the frontend and the user is also able to export all
the transcriptions in text files, one per page, to their local computer storage by clicking the
“Download OCR Outputs” button. Additionally, the outputs are displayed on the web page
in an easy-to-read format that aligns each image with its corresponding transcription using a
vertical stack of expandable headers (one for each input file), as seen in Figure 6.2. This enables
easy viewing of the outputs within the interface and users can inspect them without having to
download any files to local storage.

OCRPost-correction The frontend for training and inferencewith the post-correctionmodel
is similar, as seen in Figure 6.3. If the user wants to train a model, they upload manually an-
notated data in text files (“Training Data”) and, optionally, unlabeled data for semi-supervised
learning (“Unlabeled Data”) and click the “Train new model” button to initiate training in the
backend. The user also provides an email address, at which a notification will be sent when
training is complete and the trained model file can be downloaded. For the inference function-
ality, the user selects the trained model to be used (“Model File”) as well as the first-pass OCR
files to be corrected, both of which are uploaded to the backend when the user clicks the “Ap-
ply model” button. Similar to the training functionality, an email notification is sent to the user
after prediction on all input files is complete.

5https://www.npmjs.com/package/axios

74

https://www.npmjs.com/package/axios

Figure 6.2: The interface frontend displays outputs from off-the-shelf OCR systems in a vertical
stack of expandable web containers. Each container has one of the input images and its corre-
sponding transcription, and users can interact with them to expand and collapse outputs.

75

Figure 6.3: The post-correction tab in the interface is the frontend for training and prediction
with the post-correction methods we propose in this thesis. It allows users to upload files for
training a new model as well as for making predictions to correct first-pass OCR files with an
already trained model. The user’s email address is used to send notification when training and
inference jobs are complete.

76

6.2.2 Backend

We use an existing backend framework, the CMU Linguistic Annotation Backend (CMULAB),6

for hosting code and scripts for the OCR technologies as well as executing the functions sup-
ported by our interface. CMULAB is implemented in Django,7 a server-side web framework
written in Python.

6.3 Using the Interface

The interface is designed to be easy to use without any technical or programming proficiency.
In this section, we detail how the interface can be used to train OCR post-correction models on
new datasets and languages with a pipeline covering all functionalities that are supported in
the interface.

A user of the interface likely has a scanned document or set of documents that text needs
to be extracted from. The first step in building a post-correction model involves obtaining a
first-pass OCR on these documents. The interface’s functionality that supports off-the-shelf
OCR models can be used to get a first-pass transcription, following these steps:

• The user needs to ensure the input documents are in a format accepted by the interface:
either in PDF or image format.

• Optionally, the user can preprocess the scanned images before applying an off-the-shelf
OCR tool. Layout analysis of the documents, such as cropping or slicing the image as
well as image enhancement techniques like binarization and improving contrast, can po-
tentially lead to better OCR outputs. For documents that contain translations, cropping
is often useful in getting separate first-pass transcriptions for each languages. The inter-
face does not support preprocessing – the user can use visual layout analysis tools such
as LAREX8 for semi-automatic processing of the target documents.

• The scanned images are then to be uploaded in the interface, where the off-the-shelf OCR
system selected by the user is applied to get transcriptions (see Figure 6.1).

The interface enables downloading the OCR outputs in text files. Once these are obtained,
the next step is constructing a dataset to train the OCR post-correction model, since our pro-
posed methods require manually annotated pages for training. Since the model is designed for

6https://github.com/neulab/cmulab
7https://www.djangoproject.com/
8https://github.com/OCR4all/LAREX

77

https://github.com/neulab/cmulab
https://www.djangoproject.com/
https://github.com/OCR4all/LAREX

a low-resource setting, a small number of manually annotated pages (≈10 pages) is typically
sufficient to train a model, although more annotations will likely lead to a better-performing
model. The steps for creating the dataset are:

• The user selects the subset of pages in the documents that will be manually corrected.
The remaining uncorrected pages will be used for semi-supervised learning (as described
in Chapter 4).

• The selected pages are thenmanually transcribed – thus, the “labeled” training dataset has
the first-pass OCR (the source) and the corresponding manually corrected transcription of
the document (the target). The model training typically works best if these correspond-
ing texts are aligned at the sentence-level or at the line-level. If the document contains
translations and the user would like to use the multi-source setup described in Chapter 3,
the first-pass of the translated text also needs to be aligned in the dataset. These texts
form the “Training Data” input for training the post-correction model, seen in Figure 6.3.

• For the uncorrected pages, the first-pass OCR for both the target language text and the
translated text (if a multi-source model is needed) forms the “Unlabeled Data” input seen
in Figure 6.3. These pages are used for pretraining and semi-supervised learning of the
model. Using unlabeled data is optional, but highly recommended – as seen in Chap-
ter 3 and Chapter 4, pretraining and semi-supervised learning techniques improve per-
formance significantly in low-resource settings.

• The input datasets are then uploaded on the interface, along with the user’s email address
for notification when the training operation is complete. Log files generated by the back-
end training process inform the user about character and word error rates of the trained
model on an evaluation set randomly selected from the labeled data.

With a trained post-correction model, the user is able to apply it to improve OCR perfor-
mance on new documents. In order to do this, the first step involves obtaining a first-pass OCR
and processing the transcriptions into sentence-level or line-level text files as described above.
For a multi-source model, the first-pass of the translated text aligned with the target language
text needs to be included in the input data. As seen in Figure 6.3, the first-pass is then uploaded
to the interface, along with the trained model, and the backend launches a script to perform
prediction on the inputs. A link to the corrected transcriptions is emailed to the user after
prediction on all the input files is complete.

78

6.4 Future Directions for Advanced Functionality

In this chapter, we develop a web application for users to access the functionalities of state-
of-the-art OCR and post-correction models without needing to write or understand any code.
Particularly for communities and researchers of endangered languages, obtaining machine-
readable transcriptions of historical documentation and language learning material can support
revitalization and preservation efforts as well as help build downstream language technologies.
The interface we present here can have a far-reaching impact by reducing the time, effort, and
technical knowledge needed to apply existing OCR models and systems to new languages and
writing systems.

While the web application described in previous sections is a research prototype, the in-
terface is designed to be extendable to include new features and functionalities that would be
useful to end users. In future development, we envision that the interface will incorporate ad-
vanced functions that account for challenging text recognition scenarios as well as improved
user-friendliness. This could include features such as:

• better data and project management, where users have a personalized interface and stor-
age for their data andmodels, which will make access more user-friendly than the current
paradigm of uploading files from local storage at each step;

• automatically leveraging publicly available data sources, where the application identifies
and uses any text data already available on the web in the target language or closely-
related languages to trainOCRpost-correctionmodels. Much priorwork in post-correction
uses existing machine-readable text with randomly generated noise to build synthetic
training data for post-correction (Dong and Smith, 2018; Hakala et al., 2019). Addition-
ally, Tjuatja et al. (2021) demonstrate some success in using target language data from
the web and transfer learning from high-resource languages to improve post-correction
models. Text data could be obtained from large multilingual corpus collections like Pan-
Lex, OPUS, and Wikipedia as well as linguistic archives. This functionality could be par-
ticularly useful for our target audience, as obtaining even a small number of manually
transcribed images for low-resourced and endangered languages is often difficult;

• an annotation interface for active learning, for users to get initial outputs from a baseline
OCR or post-correction system, manually correct some outputs (which could be selected
using active learning), and re-train the post-correction model with the newly annotated
data to improve performance, all within a single web interface;

79

• document and image analysis tools that allow users to crop images, apply image process-
ing that can improve OCR performance like binarization and increasing contrast, and add
bounding boxes to segment the image properly as OCR systems often return transcrip-
tions in incorrect reading order when used on documents with complex layouts.

80

Chapter 7

Conclusion

State-of-the-art optical character recognition systems are highly performant and produce very
accurate transcriptions in a large number of languages. Training such strong OCR models,
however, requires substantial resources such as transcribed images and machine-readable text.
Existing techniques are typically not designed to work well in low-resource scenarios, and
this precludes building models for high-quality text extraction in languages that do not have
sufficient training datasets.

In this thesis, we address the task of improving OCR transcriptions in very low-resource
settings. We specifically focus on improving models for endangered languages, because there
are thousands of printed books and documents that contain text in endangered languages, but
most of these only exist as scanned images. Converting these documents to machine-readable
text has a variety of benefits for language documentation and revitalization, including improv-
ing accessibility of the documents, enabling search within the documents, and providing text
data for building NLP systems in endangered languages. The work presented in this thesis is,
to the best of our knowledge, the first to introduce and address this task, with several research
contributions that have had practical impact.

7.1 Summary of Contributions and Impact

Benchmark Dataset

This thesis presents the creation of a benchmark dataset for the task of OCR on endangered
language documents in Chapter 2 containing manual transcriptions for printed books in a set
of typologically-, orthographically-, and geographically-diverse endangered languages – Ainu,

81

Griko, Kwak’wala, and Yakkha. We demonstrate that the performance of existing OCR sys-
tems is considerably lower on these languages than the high-resource languages prior research
in OCR has focused on. With an in-depth analysis of outputs, we conclude that the disparity
in performance occurs because of the lack of resources as well as some characteristics of en-
dangered language writing systems like mixed scripts and uncommon diacritics. These results
highlight the necessity for improving OCR technologies for endangered languages.

Methods for Low-Resource OCR Post-Correction

To improve the quality of OCR transcriptions, we useOCRpost-correction: a text-based sequence-
to-sequence technique that fixes errors in existing OCR outputs. Chapter 3 presents a super-
vised character-level model that includes a multi-source encoder and structural biases to enable
better learning in low-resource settings. We show that with a very small amount of training
data (a few hundred lines), themodel obtains a relative reduction of 34.6% and 32.4% in character
and word error rates respectively over existing OCR systems.

In Chapter 4, we improve the post-correction model using semi-supervised learning. The
technique includes self-training themodel bymaking predictions on raw images and using them
as pseudo-training data for the model. We also propose “lexically-aware decoding” that creates
a word list from the self-training predictions and uses frequency-based information to enforce
word-level consistency in the model’s outputs. This is done by combining probabilities from
the LSTM decoder and a count-based language model represented with a WFSA. The addition
of these components to the model results in a 23% average reduction in character error rate and
a 17.5% average reduction in word error rate over the supervised method.

Our work on developing low-resource methods for OCR post-correction lends research in-
sights beyond this specific task. First, we see that using additional sources of information,
like translations, and adding biases to the model based on the structure of the task are ways to
improve learning in very low-resource settings – these ideas can potentially be applied to devel-
oping models for other tasks as well, given that the resources needed for most state-of-the-art
NLP systems are not available in endangered languages. Additionally, we find that designing
techniques to use unlabeled data efficiently, such as our proposed lexically-aware decoding
method, can improve performance without requiring any manual annotation. Finally, we see
that our empirical evaluation indicates there is utility in combining neural methods with n-
gram-based models. Techniques that combine different types of models could have an impact
on other applications where there is not enough data to train a strong neural model.

82

User-Centric Evaluation

In Chapter 5, we address evaluation of OCR technologies for endangered languages with a
user-centric approach. Specifically, we note that language documentation efforts often include
manual transcription of scanned images, andwe evaluatewhether our proposed post-correction
techniques can assist transcribers and reduce the amount of time spent on the task. In a case
study on the Kwak’wala language, we see that using any form of OCR reduces the estimated
time for transcription by over 33 minutes per page. Further, using the post-correction models
developed in this thesis, the time estimate is reduced by nearly 7 minutes per page over off-the-
shelf OCR tools. These results indicate the importance and downstream potential benefits of de-
veloping better OCR pipelines for endangered languages in supporting language revitalization
and preservation programs by reducing the manual effort needed to produce machine-readable
documents.

Tools and Resources

With themethods developed in this thesis, we have createdmultiple tools and resources that are
released for public use, in the hope of furthering research and development for low-resource
OCR and post-correction as well as enabling large-scale digitization of documents in many
diverse endangered languages.

• Dataset for the task We are the first to introduce the task of OCR on endangered
language documents, illustrating the challenges involved in using current state-of-the-
art methods and public releasing a benchmark evaluation dataset for further research
and improvement in performance on the task.

• Post-correction software We release Pythonmodules to train post-correctionmodels
on new languages and datasets with the methods presented in this thesis. The software is
released as a public repository onGitHub.1 Beyond the languages in our dataset (i.e., Ainu,
Griko, Kwak’wala, Yakkha), the software has been applied to many more low-resource
and endangered languages by researchers around the globe: including Aghem; Babanki;
Bhutia; Kom; Igbo; Oku; Piaroa; Pintupi-Luritja (Disbray et al., 2022); Quechua (at the
New Languages for NLP Workshop);2 Sanksrit; and Tibetan.

• Kwak’wala language resources We release multiple resources for the Kwak’wala

1https://github.com/shrutirij/ocr-post-correction
2https://newnlp.princeton.edu/

83

https://github.com/shrutirij/ocr-post-correction
https://newnlp.princeton.edu/

language as part of the case study in Chapter 5. These include (1) an OCR pipeline to
produce high-quality transcriptions for Kwak’wala documents that use the Boas orthog-
raphy; (2) extracted text for hundreds of pages from the Boas/Hunt publications that
community-based researchers are currently using for a variety of purposes, including
creating teaching curricula and retrieving cultural information; and (3) a keyboard for
the Boas orthography that is being used by community members and archivists, includ-
ing those at the American Philosophical Society’s Library.3

• Web application for using OCR technologies In Chapter 6 we present the devel-
opment of a web interface for users to easily use state-of-the-art OCR tools, including
off-the-shelf systems and our proposed post-correction method. The interface is the first
of its kind in that allows users to experiment with different OCR systems without any
technical knowledge or coding proficiency, making them accessible to a much broader
audience and, hopefully, allowing easy training of models and building OCR pipelines
for more languages at scale.

7.2 Limitations and Future Directions

While the contributions in this thesis take a step toward improving OCR for endangered lan-
guages and using OCR technologies to make an impact in endangered language communities,
there are multiple research directions as extensions of our work that can further advance the
state-of-the-art in low-resource text recognition and have a broad practical impact on linguistic
documentation, language revitalization programs, and NLP applications.

Larger Benchmark Datasets for Evaluation

The dataset we present in this thesis contains documents from four endangered languages.
Future work could consider further development of this benchmark to a larger set of languages
that covers diverse geographies and orthographies as well as different document layouts such as
dictionaries and handwritten documents. Documents for expanding the dataset can be sourced
from publicly available sources like the Internet Archive,4 AILLA,5 and ELAR6 – all of which
contain thousands of documents with endangered language text. An expanded benchmark

3https://www.amphilsoc.org/library/CNAIR
4http://archive.org/
5https://ailla.utexas.org/
6https://www.elararchive.org/

84

https://www.amphilsoc.org/library/CNAIR
http://archive.org/
https://ailla.utexas.org/
https://www.elararchive.org/

dataset would make it possible for researchers to do OCR and post-correction model evaluation
that tests generalizability on a broad range of endangered languages and document types.

Reducing Reliance on Manual Transcription

The post-correction methods we develop use a small amount of manually transcribed data for
training. While the required data size is orders of magnitude smaller than what is needed
to train existing OCR models, it is challenging to obtain any manual transcription for some
endangered languages. Reducing the reliance of the model on these manual transcriptions is
an important future direction that will make expansion to new languages much easier.

The development of an active learning technique for OCR post-correction could be one
way to reduce the amount of manual transcription needed for training. Starting with a model
trained on very little data, active learning would select specific sentences or examples that are
most useful for the model to learn from and only obtain manual annotation for those. These
can then be added to the training set to update the model. This is a process that can be repeated
iteratively, and the model can incrementally learn to correct its mistakes. The manual annota-
tion will also likely be faster here because the transcriber can correct outputs from the previous
model as opposed to transcribing from scratch.

Another avenue for improvement without manual transcription is effectively utilizing avail-
able linguistic resources. The majority of endangered languages have existing language docu-
mentation, which often includes materials like word lists, grammar, and morphological infor-
mation (Boerger and Stutzman, 2018; Bird, 2020). An extension of our proposed lexically-aware
decoding method could build a WFSA with word lists from the target language and use it as in
Chapter 4 for joint decoding with the neural post-correction model, encouraging the model to
generate words from the manually-crafted lists. Additionally, there is prior work on creating
synthetic training data for OCR post-correction, by adding random noise to machine-readable
text in the target language (Dong and Smith, 2018; Hakala et al., 2019). While large amounts
of text data are usually not available for endangered languages, word lists could be used as a
starting point for generating data with these methods to reduce the amount of manually an-
notated pages needed for training a strong model. The research challenges here include the
lack of enough text to generate diverse enough synthetic data and the fact that the data will
only contain single words, but we want the post-correction model to operate on full lines or
sentences of text.

Other linguistic resources, such as morphological analyzers, could also be used to improve

85

OCR post-correction performance. For morphologically-rich languages like Kwak’wala, it is
challenging to automatically or manually create a high-coverage lexicon for the lexically-aware
decoding method. While the character-level unknown word model used in Chapter 4 does
help improve prediction of unknown words, it is sub-optimal as several of the unknown words
may be inflections of words already seen by the model. An extension of our proposed method
could use “morphologically-aware decoding”, with generation of post-corrected text that is con-
strained by a hand-crafted morphological analyzer (Silfverberg and Rueter, 2015; Matthews
et al., 2018), if these resources exist in the target language. If hand-crafted analyzers are un-
available, morphological information can be incorporated by generating inflections of words in
the unlabeled dataset for lexically-aware decoding.7

Reducing the reliance of the post-correction method on manually annotated data will make
it easier for users to build models for new languages and datasets by lowering the amount of
time and effort required to create a labeled dataset (as described in Section 6.3).

Advanced Functionality in the Web Interface

Wepresent a prototype of aweb interface for usingOCR technologies in Chapter 6 but recognize
that there are several useful functionalities that the application does not currently support. Fu-
ture work could focus on further development of the application to serve users with all features
required for an end-to-end OCR pipeline. Some of these are described in detail in Section 6.4,
and include personalized data and project management for each user; automatic collection of
publicly available data for the target language and related languages to improve training of the
model; allowing users to manually transcribe images within the interface (we previously used
Label Studio for transcription, as discussed in Chapter 5), which could also enable active learn-
ing and iterative training techniques; and document analysis tools like cropping and setting
bounding boxes, which could be implemented by integrating an open-source layout analysis
system like LAREX8 into the interface. Preprocessing scanned images is often necessary to im-
prove OCR performance, and incorporating these tools into the interface would streamline the
training process and improve overall user experience with our proposed web application.

7Recent work for low-resource languages has shown that a very small number of manually tagged words is
required for reasonable performance on morphological inflection generation (Anastasopoulos and Neubig, 2019).

8https://github.com/OCR4all/LAREX

86

https://github.com/OCR4all/LAREX

Text Data for Downstream NLP Tasks

Extracting high-quality transcriptions from documents in a large number of endangered lan-
guages has the potential to greatly improve the representation of these languages in NLP tech-
nologies because the lack of machine-readable text has left these languages behind in state-of-
the-art NLP models (Joshi et al., 2020). Text data can be used for self-supervised learning of lan-
guage models, building predictive keyboards and spell-checking tools, and annotating training
and evaluation sets for downstream NLP tasks. Communities that speak endangered languages
are often invested in using language technologies to support education and revitalization pro-
grams, indicating the immense potential benefits of including these languages in modern NLP
systems: for example, Kwak’wala language researchers intend to use the text extracted from
the Hunt/Boas publications and other documents to train automatic speech recognition sys-
tems and reduce the effort needed to manually transcribe recorded Kwak’wala speech. Future
research directions could include developing training strategies to best use OCR-extracted texts
in improving NLP systems as well as understanding how effective the utilization of these texts
is in overcoming the challenges of low-resource learning and whether this varies for different
NLP tasks. It would also be useful to understand how tuning and evaluation of the OCR pipeline
affects downstream tasks – for instance, a model tuned to optimize word error rate, as opposed
to character error rate, might be preferred for search applications.

87

88

Appendix A

A.1 Keyboard for the Boas/Hunt Orthography

For the user study described in Section 5.2, we designed a keyboard for the Boas/Hunt orthog-
raphy in order to make transcription more efficient.

The keyboard is developed using open-source software Keyman1 and it maps characters in
the Boas orthography to the user’s computer keyboard. Keyman also provides an on-screen
keyboard to see the mapped layout. The keyboard has been publicly released as a Keyman
package.2 We briefly describe the layout and usage of the keyboard below:

• Standard English keyboard alphabet and numbers remain in the same position (A-Z, a-z,
0-9) because the Boas orthography uses several Latin script characters.

• The special characters, diacritics, and digraphs of the Boas orthography have been as-
signed to various punctuation keys according to their frequency of use, estimated with a
small sample of manually transcribed text (10 pages from Boas and Hunt (1921)).

• All accents are typed after the base character. Examples are shown below:

⋆ ä is typed a then square bracket]

⋆ k· is typed k then slash /

⋆ ō is typed o then single quote ’

⋆ â is typed a then shift + comma ,

⋆ ă is typed a then shift + period .

⋆ g. is typed g then shift + square bracket]

⋆ q´ is typed q then option (alt key) + 1
1https://keyman.com/developer/
2The keyboard package is available here: https://bit.ly/3Owysib.

89

https://keyman.com/developer/
https://bit.ly/3Owysib

• Other special characters are:

⋆ ď is assigned to semicolon ;

⋆ ł is assigned to square bracket [

⋆ Ł is assigned to shift + square bracket [

⋆ E is assigned to option (alt key) + e

⋆ u is assigned to option (alt key) + u

⋆ Ï is assigned to option (alt key) + l

• All changed punctuation keys can type their original value by holding down the Alt or
Option key. For example, to get the original value of the square bracket [, type Alt + [

(Windows) or Option + [(Mac).

A.2 Kwak’wala Transcription: Post-Completion Survey

In Section 5.2, we describe a user study to evaluate the utility of OCR and post-correction
models on reducing the time and effort needed for manual transcription. After participants
completed transcriptions tasks, we also asked them to fill out a survey to get subjective feedback
on their experience with the tasks. Discussion and analysis of the answers from the survey is
in Section 5.2.7. We provide a complete list of the questions asked in the survey here:

1. Were there specific tasks you found easier or more difficult to annotate?

2. Did you prefer typing the text from scratch or correcting predictions from amodel? Why?

3. If you are a Kwak’wala language learner, did the annotation help your language learning?
How?

4. Did the practice task help you become familiar with the keyboard?

5. After annotating a few pages, do you feel like you became faster at annotation?

6. Which do you feel is faster: typing from scratch or correcting predictions?

7. Any other feedback or thoughts on the task?

90

Bibliography

Antonios Anastasopoulos. Computational tools for endangered language documentation. Uni-
versity of Notre Dame, 2019. 1

Antonios Anastasopoulos and David Chiang. Leveraging translations for speech transcription
in low-resource settings. In Proc. INTERSPEECH, 2018. 3.4

Antonios Anastasopoulos and Graham Neubig. Pushing the limits of low-resource morpholog-
ical inflection. In Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-

guage Processing and the 9th International Joint Conference on Natural Language Processing

(EMNLP-IJCNLP), pages 984–996, Hong Kong, China, November 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/D19-1091. URL https://www.aclweb.org/
anthology/D19-1091. 3.4, 7

Antonios Anastasopoulos, Christopher Cox, Graham Neubig, and Hilaria Cruz. Endangered
languages meet modern nlp. In Proceedings of the 28th International Conference on Computa-

tional Linguistics: Tutorial Abstracts, pages 39–45, 2020. 1

Philip Arthur, Graham Neubig, and Satoshi Nakamura. Incorporating discrete translation
lexicons into neural machine translation. In Proceedings of the 2016 Conference on Em-

pirical Methods in Natural Language Processing, pages 1557–1567, Austin, Texas, Novem-
ber 2016. Association for Computational Linguistics. doi: 10.18653/v1/D16-1162. URL
https://www.aclweb.org/anthology/D16-1162. 4.5

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In 3rd International Conference on Learning Representations,

ICLR 2015, 2015. 3.2, 4.1

Douglas Bates. Linear mixed model implementation in lme4. Manuscript, University of Wiscon-

sin, 15, 2007. 5.2.6

Taylor Berg-Kirkpatrick, Greg Durrett, and Dan Klein. Unsupervised transcription of historical

91

https://www.aclweb.org/anthology/D19-1091
https://www.aclweb.org/anthology/D19-1091
https://www.aclweb.org/anthology/D16-1162

documents. In Proceedings of the 51st Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 207–217, Sofia, Bulgaria, August 2013. Associa-
tion for Computational Linguistics. URLhttps://www.aclweb.org/anthology/
P13-1021. 1, 2.3, 2.4, 5.3

Judith Berman. George hunt and the kwak’wala texts. Anthropological Linguistics, 36(4):483–
514, 1994. 5.1

Steven Bird. Decolonising speech and language technology. In Proceedings of the

28th International Conference on Computational Linguistics, pages 3504–3519, Barcelona,
Spain (Online), December 2020. International Committee on Computational Linguistics.
doi: 10.18653/v1/2020.coling-main.313. URL https://aclanthology.org/2020.
coling-main.313. 7.2

Franz Boas. The Social Organization and the Secret Societies of the Kwakiutl Indians: Smithsonian

Institution. United States National Museum. By Franz Boas.With 51 Plates. Washington: G.P.O.,
1897. 5

Franz Boas. Sketch of the kwakiutl language. American Anthropologist, 2(4):708–721, 1900. 1,
2.2, 5

Franz Boas. “Kwakiutl.” Pp. 423–557 in Handbook of American Indian Languages, vol. 40.1, Bureau

of American Ethnology Bulletin, edited by Franz Boas. Washington: G.P.O., 1911. 5

Franz Boas. Ethnology of the Kwakiutl. Number v. 35, pt. 2 in Annual report. 1921. URLhttps:
//books.google.com/books?id=rO88AQAAIAAJ. 1, 2.2

Franz Boas. Geographical Names of the Kwakiutl Indians. New York: Columbia University Press,
1934. 5

Franz Boas and George Hunt. Kwakiutl Texts. Leiden, New York: E.J. Brill; G.E. Stechert & Co.,
1902. 5

Franz Boas and George Hunt. Ethnology of the Kwakiutl: Based on Data Collected by George

Hunt. Washington: G.P.O., 1921. 5, 5.3, A.1

Brenda H Boerger and Verna Stutzman. Single-event rapid word collection workshops: Effi-
cient, effective, empowering. 2018. 7.2

Gina Bustamante, Arturo Oncevay, and Roberto Zariquiey. No data to crawl? monolingual
corpus creation from PDF files of truly low-resource languages in Peru. In Proceedings of The

12th Language Resources and Evaluation Conference, pages 2914–2923, Marseille, France, May

92

https://www.aclweb.org/anthology/P13-1021
https://www.aclweb.org/anthology/P13-1021
https://aclanthology.org/2020.coling-main.313
https://aclanthology.org/2020.coling-main.313
https://books.google.com/books?id=rO88AQAAIAAJ
https://books.google.com/books?id=rO88AQAAIAAJ

2020. European Language Resources Association. ISBN 979-10-95546-34-4. URL https:
//www.aclweb.org/anthology/2020.lrec-1.356. 3.4

Rodrigo Cámara-Leret and Jordi Bascompte. Language extinction triggers the loss of unique
medicinal knowledge. Proceedings of the National Academy of Sciences, 118(24), 2021. 1

Stanley F Chen and Joshua Goodman. An empirical study of smoothing techniques for language
modeling. Computer Speech & Language, 13(4):359–394, 1999. 4.3.1

Xiaoxue Chen, Lianwen Jin, Yuanzhi Zhu, Canjie Luo, and Tianwei Wang. Text recognition in
the wild: A survey. ACM Computing Surveys (CSUR), 54(2):1–35, 2021. 1

Colette Craig. A constitutional response to language endangerment: The case of nicaragua.
Language (Baltimore), 68(1):17–24, 1992. 1

Hilaria Cruz and Joseph Waring. Deploying technology to save endangered languages. arXiv
preprint arXiv:1908.08971, 2019. 1

Andrew M. Dai and Quoc V. Le. Semi-supervised sequence learning. In Proceedings of the 28th

International Conference on Neural Information Processing Systems - Volume 2, NIPS’15, page
3079–3087, Cambridge, MA, USA, 2015. MIT Press. a)

Angela Dean and Daniel Voss. Design and analysis of experiments. Springer, 1999. 5.4, 5.2.4

Samantha Disbray, Ben Foley, Shruti Rijhwani, and Meladel Mistica. Reading it right: A case
study in pintupi-luritja. In Digital Approaches to Multilingual Text Analysis, February 2022.
7.1

Rui Dong and David Smith. Multi-input attention for unsupervised OCR correction. In Pro-

ceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), pages 2363–2372, Melbourne, Australia, July 2018. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P18-1220. URL https://www.aclweb.org/
anthology/P18-1220. 3, 3.3.1, 3.4, 4.5, 6.4, 7.2

Yuning Du, Chenxia Li, Ruoyu Guo, Xiaoting Yin, Weiwei Liu, Jun Zhou, Yifan Bai, Zilin Yu,
Yehua Yang, Qingqing Dang, et al. Pp-ocr: A practical ultra lightweight ocr system. arXiv
preprint arXiv:2009.09941, 2020. 1

Matthew Francis-Landau. Mfst: A python openfst wrapper with support for custom semirings
and jupyter notebooks, 2020. 4.4.1

Yasuhisa Fujii. Optical character recognition research at google. In 2018 IEEE 7th Global Con-

ference on Consumer Electronics (GCCE), pages 265–266. IEEE, 2018. 1

93

https://www.aclweb.org/anthology/2020.lrec-1.356
https://www.aclweb.org/anthology/2020.lrec-1.356
https://www.aclweb.org/anthology/P18-1220
https://www.aclweb.org/anthology/P18-1220

Yasuhisa Fujii, Karel Driesen, Jonathan Baccash, Ash Hurst, and Ashok C Popat. Sequence-to-
label script identification for multilingual ocr. In 2017 14th IAPR International Conference on

Document Analysis and Recognition (ICDAR), volume 1, pages 161–168. IEEE, 2017. 2.4, 2.4.1,
5.3

Yunze Gao, Yingying Chen, Jinqiao Wang, and Hanqing Lu. Reading scene text with attention
convolutional sequence modeling. arXiv e-prints, pages arXiv–1709, 2017. 1

Dan Garrette, Hannah Alpert-Abrams, Taylor Berg-Kirkpatrick, and Dan Klein. Unsuper-
vised code-switching for multilingual historical document transcription. In Proceedings

of the 2015 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, pages 1036–1041, Denver, Colorado, May–June
2015. Association for Computational Linguistics. doi: 10.3115/v1/N15-1109. URL https:
//aclanthology.org/N15-1109. 6

Lenore A Grenoble and Lindsay J Whaley. Saving languages: An introduction to language revi-

talization. Cambridge University Press, 2005. 1

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K. Li. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), pages 1631–1640, Berlin, Germany,
August 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1154. URL
https://www.aclweb.org/anthology/P16-1154. 3.2.2

Kai Hakala, Aleksi Vesanto, NikoMiekka, Tapio Salakoski, and Filip Ginter. Leveraging text rep-
etitions and denoising autoencoders in ocr post-correction. arXiv preprint arXiv:1906.10907,
2019. 6.4, 7.2

Ken Hale, Michael Krauss, Lucille J Watahomigie, Akira Y Yamamoto, Colette Craig, LaV-
erne Masayesva Jeanne, and Nora C England. Endangered languages. language, 68(1):1–42,
1992. 1

Mika Hämäläinen and Simon Hengchen. From the paft to the fiiture: a fully automatic NMT
and word embeddings method for OCR post-correction. In Proceedings of the International

Conference on Recent Advances in Natural Language Processing (RANLP 2019), pages 431–436,
Varna, Bulgaria, September 2019. INCOMA Ltd. doi: 10.26615/978-954-452-056-4_051. URL
https://www.aclweb.org/anthology/R19-1051. 3.3.1, 3.4, 4.5

K David Harrison. When languages die: The extinction of the world’s languages and the erosion

of human knowledge. Oxford University Press, 2008. 1

94

https://aclanthology.org/N15-1109
https://aclanthology.org/N15-1109
https://www.aclweb.org/anthology/P16-1154
https://www.aclweb.org/anthology/R19-1051

JunxianHe, Jiatao Gu, Jiajun Shen, andMarc’Aurelio Ranzato. Revisiting self-training for neural
sequence generation. 8th International Conference on Learning Representations, ICLR 2020,

Addis Ababa, Ethiopia, April 26-30, 2020, Conference Track Proceedings, 2020. 4.2, 4.2

Pan He, Weilin Huang, Yu Qiao, Chen Change Loy, and Xiaoou Tang. Reading scene text in
deep convolutional sequences. In Thirtieth AAAI conference on artificial intelligence, 2016. 1

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H. Clark, and Philipp Koehn. Scalable mod-
ified Kneser-Ney language model estimation. In Proceedings of the 51st Annual Meeting

of the Association for Computational Linguistics (Volume 2: Short Papers), pages 690–696,
Sofia, Bulgaria, August 2013. Association for Computational Linguistics. URL https:

//www.aclweb.org/anthology/P13-2121. 4.3.3, 4.4.1

Nikolaus P Himmelmann. Documentary and descriptive linguistics. 1998. 1

Leanne Hinton. Language revitalization: An overview. The green book of language revitalization
in practice, pages 3–18, 2001. 1

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997. 3.2.1

Chris Hokamp and Qun Liu. Lexically constrained decoding for sequence generation us-
ing grid beam search. In Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), pages 1535–1546, Vancouver, Canada,
July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1141. URL
https://www.aclweb.org/anthology/P17-1141. 4.5

Richard W Howell. The classification and description of ainu folklore. The Journal of American

Folklore, 64(254):361–369, 1951. 5

R Reeve Ingle, Yasuhisa Fujii, Thomas Deselaers, Jonathan Baccash, and Ashok C Popat. A
scalable handwritten text recognition system. arXiv preprint arXiv:1904.09150, 2019. 2.4

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika Bali, and Monojit Choudhury. The state
and fate of linguistic diversity and inclusion in the NLP world. In Proceedings of the 58th

Annual Meeting of the Association for Computational Linguistics, pages 6282–6293, Online,
July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.560.
URL https://www.aclweb.org/anthology/2020.acl-main.560. 1, 7.2

Katharina Kann, Ryan Cotterell, and Hinrich Schütze. Neural multi-source morphological re-
inflection. In Proceedings of the 15th Conference of the European Chapter of the Association

95

https://www.aclweb.org/anthology/P13-2121
https://www.aclweb.org/anthology/P13-2121
https://www.aclweb.org/anthology/P17-1141
https://www.aclweb.org/anthology/2020.acl-main.560

for Computational Linguistics: Volume 1, Long Papers, pages 514–524, Valencia, Spain, April
2017. Association for Computational Linguistics. URL https://www.aclweb.org/
anthology/E17-1049. 3.4

Kyōsuke Kindaichi. Ainu Jojishi Yūkara no Kenkyū [Research on Ainu Epic Yukar]. Tōkyō: Tōkyō
Bunko, 1931. 2.2

Okan Kolak and Philip Resnik. OCR post-processing for low density languages. In Proceed-

ings of Human Language Technology Conference and Conference on Empirical Methods in Nat-

ural Language Processing, pages 867–874, Vancouver, British Columbia, Canada, October
2005. Association for Computational Linguistics. URL https://www.aclweb.org/
anthology/H05-1109. 3.4

Michael Krauss. The world’s languages in crisis. Language (Baltimore), 68(1):4–10, 1992. 1

Amrith Krishna, Bodhisattwa P. Majumder, Rajesh Bhat, and Pawan Goyal. Upcycle your OCR:
Reusing OCRs for post-OCR text correction in Romanised Sanskrit. In Proceedings of the 22nd
Conference on Computational Natural Language Learning, pages 345–355, Brussels, Belgium,
October 2018. Association for Computational Linguistics. doi: 10.18653/v1/K18-1034. URL
https://www.aclweb.org/anthology/K18-1034. 3, 3.3.1, 1, 3.4

Fethi Lamraoui and Philippe Langlais. Yet another fast, robust and open source sentence aligner.
time to reconsider sentence alignment? In XIV Machine Translation Summit, Nice, France,
Sept. 2013. 3.2.3

Kimberley L. Lawson. Precious fragments: First Nations materials in archives, libraries and muse-

ums. PhD thesis, University of British Columbia, 2004. URLhttps://open.library.
ubc.ca/collections/ubctheses/831/items/1.0091657. 5.1

Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method
for deep neural networks. In Workshop on challenges in representation learning, ICML, 2013.
4.2

Jindřich Libovický and Jindřich Helcl. Attention strategies for multi-source sequence-to-
sequence learning. In Proceedings of the 55th Annual Meeting of the Association for Com-

putational Linguistics (Volume 2: Short Papers), pages 196–202, Vancouver, Canada, July
2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-2031. URL https:
//www.aclweb.org/anthology/P17-2031. 3.2, 3.4

Chu-Cheng Lin, Hao Zhu, Matthew R. Gormley, and Jason Eisner. Neural finite-state trans-
ducers: Beyond rational relations. In Proceedings of the 2019 Conference of the North Amer-

96

https://www.aclweb.org/anthology/E17-1049
https://www.aclweb.org/anthology/E17-1049
https://www.aclweb.org/anthology/H05-1109
https://www.aclweb.org/anthology/H05-1109
https://www.aclweb.org/anthology/K18-1034
https://open.library.ubc.ca/collections/ubctheses/831/items/1.0091657
https://open.library.ubc.ca/collections/ubctheses/831/items/1.0091657
https://www.aclweb.org/anthology/P17-2031
https://www.aclweb.org/anthology/P17-2031

ican Chapter of the Association for Computational Linguistics: Human Language Technolo-

gies, Volume 1 (Long and Short Papers), pages 272–283, Minneapolis, Minnesota, June 2019.
Association for Computational Linguistics. doi: 10.18653/v1/N19-1024. URL https:

//www.aclweb.org/anthology/N19-1024. 4.5

Patrick Littell, Anna Kazantseva, Roland Kuhn, Aidan Pine, Antti Arppe, Christopher Cox, and
Marie-Odile Junker. Indigenous language technologies in canada: Assessment, challenges,
and successes. In Proceedings of the 27th International Conference on Computational Linguis-

tics, pages 2620–2632, 2018. 1, 1

Shangbang Long, Xin He, and Cong Yao. Scene text detection and recognition: The deep learn-
ing era. International Journal of Computer Vision, 129(1):161–184, 2021. 1

Jiří Martínek, Ladislav Lenc, and Pavel Král. Training strategies for ocr systems for historical
documents. In IFIP International Conference on Artificial Intelligence Applications and Innova-

tions, pages 362–373. Springer, 2019. 1

Austin Matthews, Graham Neubig, and Chris Dyer. Using morphological knowledge in open-
vocabulary neural language models. In Proceedings of the 2018 Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics: Human Language Technologies,

Volume 1 (Long Papers), pages 1435–1445, 2018. 7.2

Haitao Mi, Baskaran Sankaran, Zhiguo Wang, and Abe Ittycheriah. Coverage embedding
models for neural machine translation. In Proceedings of the 2016 Conference on Empiri-

cal Methods in Natural Language Processing, pages 955–960, Austin, Texas, November 2016.
Association for Computational Linguistics. doi: 10.18653/v1/D16-1096. URL https:

//www.aclweb.org/anthology/D16-1096. 3.2.2

Mehryar Mohri. On some applications of finite-state automata theory to natural language
processing. Nat. Lang. Eng., 2(1):61–80, March 1996. ISSN 1351-3249. doi: 10.1017/
S135132499600126X. URL https://doi.org/10.1017/S135132499600126X.
4.3.3

Mehryar Mohri, Fernando Pereira, and Michael Riley. Weighted finite-state transducers in
speech recognition. Computer Speech & Language, 16(1):69–88, 2002. 4.3.2, 4.3.3

Christopher Moseley. Atlas of the world’s languages in danger, 2010. URL http://www.
unesco.org/culture/en/endangeredlanguages/atlas. 1

GrahamNeubig, Chris Dyer, Yoav Goldberg, AustinMatthews, Waleed Ammar, Antonios Anas-
tasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn, Kevin Duh,

97

https://www.aclweb.org/anthology/N19-1024
https://www.aclweb.org/anthology/N19-1024
https://www.aclweb.org/anthology/D16-1096
https://www.aclweb.org/anthology/D16-1096
https://doi.org/10.1017/S135132499600126X
http://www.unesco.org/culture/en/endangeredlanguages/atlas
http://www.unesco.org/culture/en/endangeredlanguages/atlas

Manaal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong, Adhiguna Kun-
coro, Gaurav Kumar, Chaitanya Malaviya, Paul Michel, Yusuke Oda, Matthew Richardson,
Naomi Saphra, Swabha Swayamdipta, and Pengcheng Yin. Dynet: The dynamic neural net-
work toolkit. arXiv preprint arXiv:1701.03980, 2017. 3.3.1, 4.4.1

Marianne Nicolson and Adam Werle. An investigation of modern kwak’wala determiner sys-
tems. Victoria, BC: University of Victoria ms, 2009. 5, 5.1

Kai Niklas. Unsupervised post-correction of ocr errors. Master’s thesis. Leibniz Universität

Hannover, 2010. 4.5

Matt Post and David Vilar. Fast lexically constrained decoding with dynamic beam allocation
for neural machine translation. In Proceedings of the 2018 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol-

ume 1 (Long Papers), pages 1314–1324, New Orleans, Louisiana, June 2018. Association for
Computational Linguistics. doi: 10.18653/v1/N18-1119. URL https://www.aclweb.
org/anthology/N18-1119. 4.5

Prajit Ramachandran, Peter Liu, and Quoc Le. Unsupervised pretraining for sequence to se-
quence learning. In Proceedings of the 2017 Conference on Empirical Methods in Natural Lan-

guage Processing, pages 383–391, Copenhagen, Denmark, September 2017. Association for
Computational Linguistics. doi: 10.18653/v1/D17-1039. URL https://www.aclweb.
org/anthology/D17-1039. a)

Jhonnatan Rangel. Challenges for language technologies in critically endangered languages. In
UNESCO International Conference Language Technologies for All (LT4All), 2019. 1, 1

Pushpendre Rastogi, Ryan Cotterell, and Jason Eisner. Weighting finite-state transductions with
neural context. In Proceedings of the 2016 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, pages 623–633, San
Diego, California, June 2016. Association for Computational Linguistics. doi: 10.18653/v1/
N16-1076. URL https://www.aclweb.org/anthology/N16-1076. 4.5

C. Rigaud, A. Doucet, M. Coustaty, and J. Moreux. ICDAR 2019 competition on post-OCR text
correction. In 2019 International Conference on Document Analysis and Recognition (ICDAR),
pages 1588–1593, 2019. 3, 4.5

Shruti Rijhwani, Antonios Anastasopoulos, and Graham Neubig. OCR Post Correction for En-
dangered Language Texts. In Proceedings of the 2020 Conference on Empirical Methods in

Natural Language Processing (EMNLP), November 2020. 2, 3

98

https://www.aclweb.org/anthology/N18-1119
https://www.aclweb.org/anthology/N18-1119
https://www.aclweb.org/anthology/D17-1039
https://www.aclweb.org/anthology/D17-1039
https://www.aclweb.org/anthology/N16-1076

Shruti Rijhwani, Daisy Rosenblum, Antonios Anastasopoulos, and Graham Neubig. Lexically-
Aware Semi-Supervised OCR Post-Correction. Transactions of the Association for Computa-

tional Linguistics, 2021. 2, 4

Daisy Rosenblum, Shruti Rijhwani, Michayla King, Antonios Anastasopoulos, and Graham
Neubig. Developing optical character recognition for kwak’wala. In Proceedings of the Work-

shop on Computational Methods for Endangered Languages (ComputEL): Special Session, 2022.
5

Diana Schackow. Documentation and grammatical description of yakkha, nepal. https:

//elar.soas.ac.uk/Collection/MPI186180, 2012. Accessed: 2020-02-02. 2.2

Diana Schackow. A grammar of Yakkha. Language Science Press, 2015. 2.4.1

Carsten Schnober, Steffen Eger, Erik-LânDoDinh, and Iryna Gurevych. Still not there? compar-
ing traditional sequence-to-sequence models to encoder-decoder neural networks on mono-
tone string translation tasks. In Proceedings of COLING 2016, the 26th International Conference

on Computational Linguistics: Technical Papers, pages 1703–1714, Osaka, Japan, December
2016. The COLING 2016 Organizing Committee. URL https://www.aclweb.org/
anthology/C16-1160. 3, 3.2.2

Sarah Schulz and Jonas Kuhn. Multi-modular domain-tailored OCR post-correction. In Pro-

ceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages
2716–2726, Copenhagen, Denmark, September 2017. Association for Computational Linguis-
tics. doi: 10.18653/v1/D17-1288. URL https://www.aclweb.org/anthology/
D17-1288. 2.3, 3.4, 4.5

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with
pointer-generator networks. In Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), pages 1073–1083, Vancouver, Canada, July
2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1099. URL https:
//www.aclweb.org/anthology/P17-1099. 3.2.2, 3.2.2

Baoguang Shi, Xiang Bai, and Cong Yao. An end-to-end trainable neural network for image-
based sequence recognition and its application to scene text recognition. IEEE transactions

on pattern analysis and machine intelligence, 39(11):2298–2304, 2016. 1

Miikka Silfverberg and Jack Rueter. Can morphological analyzers improve the quality of optical
character recognition? In Septentrio Conference Series, pages 45–56, 2015. 7.2

Ray Smith. An overview of the tesseract ocr engine. In Ninth international conference on docu-

99

https://elar.soas.ac.uk/Collection/MPI186180
https://elar.soas.ac.uk/Collection/MPI186180
https://www.aclweb.org/anthology/C16-1160
https://www.aclweb.org/anthology/C16-1160
https://www.aclweb.org/anthology/D17-1288
https://www.aclweb.org/anthology/D17-1288
https://www.aclweb.org/anthology/P17-1099
https://www.aclweb.org/anthology/P17-1099

ment analysis and recognition (ICDAR 2007), volume 2, pages 629–633. IEEE, 2007. 1

Valentin I. Spitkovsky, Hiyan Alshawi, Daniel Jurafsky, and Christopher D. Manning. Viterbi
training improves unsupervised dependency parsing. In Proceedings of the Fourteenth Con-

ference on Computational Natural Language Learning, pages 9–17, Uppsala, Sweden, July
2010. Association for Computational Linguistics. URL https://www.aclweb.org/
anthology/W10-2902. 2

Paolo Stomeo. Racconti greci inediti di Sternatía. La nuova Ellade, s.I., 1980. 2.2

Lindia Tjuatja, Shruti Rijhwani, and Graham Neubig. Explorations in transfer learning for ocr
post-correction. In Fifth Widening Natural Language Processing Workshop (WiNLP), Novem-
ber 2021. 6.4

Xiang Tong and David A. Evans. A statistical approach to automatic OCR error correction in
context. In Fourth Workshop on Very Large Corpora, 1996. URL https://www.aclweb.
org/anthology/W96-0108. 4.5

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu, and Hang Li. Modeling coverage for
neural machine translation. In Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), pages 76–85, Berlin, Germany, August
2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1008. URL https:
//www.aclweb.org/anthology/P16-1008. 3.2.2

Lars Vögtlin, Manuel Drazyk, Vinaychandran Pondenkandath, Michele Alberti, and Rolf Ingold.
Generating synthetic handwritten historical documents with ocr constrained gans. arXiv

preprint arXiv:2103.08236, 2021. 1

David Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In
33rd Annual Meeting of the Association for Computational Linguistics, pages 189–196, Cam-
bridge, Massachusetts, USA, June 1995. Association for Computational Linguistics. doi: 10.
3115/981658.981684. URL https://www.aclweb.org/anthology/P95-1026.
4.2, 4.3

Jingyi Zhang, Masao Utiyama, Eiichro Sumita, GrahamNeubig, and Satoshi Nakamura. Guiding
neural machine translation with retrieved translation pieces. In Proceedings of the 2018 Con-

ference of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long Papers), pages 1325–1335, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1120. URL
https://www.aclweb.org/anthology/N18-1120. 4.5

100

https://www.aclweb.org/anthology/W10-2902
https://www.aclweb.org/anthology/W10-2902
https://www.aclweb.org/anthology/W96-0108
https://www.aclweb.org/anthology/W96-0108
https://www.aclweb.org/anthology/P16-1008
https://www.aclweb.org/anthology/P16-1008
https://www.aclweb.org/anthology/P95-1026
https://www.aclweb.org/anthology/N18-1120

Xiaojin Zhu and Andrew B Goldberg. Introduction to semi-supervised learning. Synthesis

lectures on artificial intelligence and machine learning, 3(1):1–130, 2009. 4, 4.2, 4.3

Barret Zoph and Kevin Knight. Multi-source neural translation. In Proceedings of the 2016

Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, pages 30–34, San Diego, California, June 2016. Association for
Computational Linguistics. doi: 10.18653/v1/N16-1004. URL https://www.aclweb.
org/anthology/N16-1004. 3.2, 3.2.1, 3.4

Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanxiao Liu, Ekin Dogus Cubuk, and Quoc
Le. Rethinking pre-training and self-training. Advances in Neural Information Processing

Systems, 33, 2020. 4.2

101

https://www.aclweb.org/anthology/N16-1004
https://www.aclweb.org/anthology/N16-1004

	1 Introduction
	1.1 Thesis Overview

	2 Benchmark Dataset
	2.1 Endangered Language Documents
	2.2 OCR Evaluation Dataset
	2.3 Evaluation Metrics
	2.4 Existing OCR Methods: Promises and Pitfalls
	2.5 Summary

	3 OCR Post-Correction for Endangered Language Texts
	3.1 Problem Formulation
	3.2 OCR Post-Correction Model
	3.3 Experiments
	3.4 Related Work
	3.5 Summary

	4 Efficient Use of Unlabeled Documents
	4.1 Base Model
	4.2 Self-Training
	4.3 Lexically-Aware Decoding
	4.4 Experiments
	4.5 Related Work
	4.6 Summary

	5 Case Study: Impact of OCR on Kwak'wala Language Revitalization
	5.1 Documents in the Kwak'wala Language
	5.2 Evaluation with a User Study
	5.3 Tools and Resources Created
	5.4 Summary

	6 Making OCR and Post-Correction Models More Accessible
	6.1 Functionalities
	6.2 Implementation
	6.3 Using the Interface
	6.4 Future Directions for Advanced Functionality

	7 Conclusion
	7.1 Summary of Contributions and Impact
	7.2 Limitations and Future Directions

	Appendix A
	A.1 Keyboard for the Boas/Hunt Orthography
	A.2 Kwak'wala Transcription: Post-Completion Survey

	Bibliography

