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Abstract 
 
 
 
Conventional search engines like Google provide access to Web information that can be acquired easily by 

crawling hyperlinks. However, a large amount of information cannot be copied arbitrarily by conventional 

search engines. This type of hidden information, which is very valuable, can only be accessed via an 

alternative search model other than the centralized retrieval model used by conventional search engines.  

Federated search provides access to the hidden information by providing a single interface that connects to 

multiple source-specific search engines. There are three main research problems in federated search. First, 

information about the contents of each individual information source must be acquired (resource 

representation). Second, given a query, a set of sources must be selected to do the search (resource selection). 

Third, the results retrieved from selected sources may be merged into a single list before it is presented to the 

end user (results merging).                                                                                                                                                                                                                   

This dissertation addresses these main research problems within federated search. New algorithms are 

proposed for effectively and efficiently estimating information source sizes, estimating distributions of 

relevant documents across information sources for a given query, and merging document rankings returned 

by selected sources. Furthermore, a unified utility maximization framework is proposed to combine the range 

of individual solutions together to construct effective systems for different federated search applications. The 

framework can incorporate information such as search engine retrieval effectiveness, which is an important 

issue for real world federated search applications. Empirical studies in a wide range of research environments 

and a real world prototype system under different operating conditions demonstrate the effectiveness of the 

new algorithms. 

This new research, supported by a more theoretical foundation, better empirical results, and more realistic 

simulation of real world applications, substantially improves the state-of-the-art of federated search. It serves 

as a bridge for moving federated search from an interesting research topic to a practical tool for real world 

applications. 
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Chapter 1: Introduction 
 

This chapter motivates the research problems of federated search. It first describes hidden Web contents, in 

which a large amount of valuable information resides but cannot be searched by conventional search engines. 

It then proposes federated search as the search solution for this type of hidden information. Furthermore, 

several federated search applications are presented to address different types of information needs. This 

chapter also briefly introduces the goal and the contribution of this dissertation. 

 

1.1 Hidden Web contents 

 

A large amount of information has been accumulated on the Web. It was estimated that the Web has grown 

to contain about 74 million sites [Netcraft, 2005]1. The explosive growth of the Web demands effective 

search solutions to find relevant information for Web users. Conventional search engines like Google or 

MSN have provided effective search solutions for some type of information on the Web by coping Web 

pages into a single centralized database, indexing the contents, and making them searchable. This type of 

information that can be copied by conventional search engines is called “visible Web” contents. 

However, a large chunk of the Web is not accessible by conventional search engines. Many information 

sources contain information that cannot be copied into a centralized database. This type of information is 

called “hidden Web” contents (also called “invisible” or “deep” Web contents).  

Hidden Web contents cover a wide range of topics. Some specific examples are: the database of the US 

Patent and Trademark Office2 (USPTO), which contains full text of millions of approved or pending patents; 

the National Science Foundation’s award database3, which provides descriptions for funded scientific 

research projects; and the U.S. Government Printing Office4 (GPO) portal, which connects to a large number 

of government agency databases. The contents of hidden Web are in English as well as many other languages 

                                                        
1 http://news.netcraft.com/archives/2005/12/index.html 
2 http://www.uspto.gov/patft/index.html 
3 http://www.nsf.gov/awardsearch/ 
4 http://www.gpoaccess.gov/databases.html 
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(e.g., the German Patent and Trademark Office5 provides the search functionality of patents in several 

European languages). Furthermore, the contents of hidden Web are also in very diverse formats. Many 

hidden information sources contain documents in unstructured natural language (i.e., text) while many other 

hidden information sources provide information in semi-structured or structured formats. The National 

Institutes of Health’s GeneBank6 contains DNA sequence information for genes in thousands of species and 

Array Express in European Bioinformatics Institutes7 is a public repository that provides a large amount of 

biological experimental data such as the microarray data.  

The exact size of hidden Web contents is still unknown. However, previous studies have consistently reported 

that the size of hidden Web is larger (if not much larger) than that of visible Web (2-50 times larger in 

[Sherman, 2001]; 500 times larger [Bergman, 2001]). Moreover, the growth rate of the hidden Web contents 

is similar or faster than that of the visible Web contents [Bergman, 2001]. 

The information sources that contain hidden Web contents are called “hidden information sources”. There 

exist different types of hidden information sources: i) many hidden information sources only allow the access 

of their contents via the source-specific search interfaces due to intellectual property protection; ii) some 

information sources allow their contents to be copied by conventional search engines, but the information is 

updated very frequently and it is difficult for conventional search engines to crawl the updated information 

immediately; and iii) the access of the contents within some hidden information sources is subject to fee or 

subscription. A previous study [Bergman, 2001] has shown that the third type of information sources that 

require fee or subscription accounts for only about three percent of the whole hidden Web.  

Hidden Web information sources have to maintain source-specific search engines, which is associated with a 

large amount of human efforts. This often implies that the sources are not tiny, hence they are more likely to 

be created and maintained by professionals. Therefore, one might conclude that the contents within these 

information sources are often very valuable. 

In addition to the Web, hidden information also exists among distributed information sources within large 

international organizations or medium-sized organizations, where different parties may control the sources or 

different sources serve different needs. It is generally difficult to afford the large amount of communication 

and maintenance costs to use a big centralized database within these types of environments. 

                                                        
5 http://depatisnet.dpma.de/DepatisNet 
6 http://www.ncbi.nih.gov/Genbank/ 
7 http://www.ebi.ac.uk/arrayexpress/ 
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There are multiple types of hidden information, such as unstructured text data with text search engines and 

semi-structured or structured data with structured search engines. The focus of this dissertation is the hidden 

information that can be accessed through text search engines.  

 

1.2 Federated search  

 

For visible Web contents, the solutions of conventional search engines are very effective. They use the 

centralized retrieval model (i.e., ad-hoc retrieval) to copy the crawlable information into a single centralized 

database, index the contents and rank the documents in the database for user queries. This method works well 

when information sources expose their contents for Web crawlers. However, this is not true for hidden Web 

contents, where the information can only be accessed via source-specific search engines. 

One key distinction between the centralized retrieval model and the federated search is that the searching 

process in federated search is conducted by the search engines of individual information sources, which 

reflects the distributed location and control of information among hidden information sources. The 

mechanism of federated search is more complex than the centralized retrieval model. It is commonly viewed 

as consisting of five subproblems, described as follows: 

Resource discovery: A resource discovery algorithm [Cope, Craswell and Hawking, 2003] automatically 

identifies information sources that contain information hidden from conventional search engines. 

Wrapper Induction: Wrapper induction [Gazen and Minton, 2005; He et al., 2006] provides a standard API 

of querying the search interfaces and extracting data from the returned result pages from each available 

hidden source.  

The above two subproblems are important for federated search applications. However, they are not the focus 

of this dissertation. The research in this dissertation extensively studies the three main subproblems below. 

Resource representation: It is very important to learn the subject areas as well as other key statistics of 

hidden information sources. There are different types of resource representations: content descriptions of 

hidden information sources by the words and their occurrences [Gravano et al., 1994; Callan, Lu & Croft, 

1995; Voorhees et al., 1995; Viles & French, 1995; Ipeirotis & Gravano, 2004], information source size 

estimates (i.e., the number of documents) [Liu et al., 2001], search engine retrieval effectiveness profiles [Si 
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& Callan, 2005a], search engine response time [Hosanagar, 2005], and so on. Acquiring accurate resource 

representations effectively and efficiently is very important for different federated search applications.  

Resource selection: Given an information need as a text query, it is generally impractical to search all 

available information sources due to the high communication and computational costs. Resource selection 

algorithms choose a small set of information sources that are most appropriate for a user query [Gravano et 

al., 1994; Voorhees et al., 1995; Callan, Lu & Croft, 1995; Viles & French, 1995; Fuhr, 1996; Fuhr, 1999; 

Craswell, Hawking & Thistlewaite, 1999; French et al., 1999; Callan, 2000; Ipeirotis & Gravano, 2002; Si & 

Callan, 2003a; Nottelmann & Fuhr, 2003b; Si & Callan, 2004b]. 

Results merging: The user query can be forwarded to search the selected information sources. It is generally 

undesirable to present many individual ranked lists (e.g., more than 5) from selected information sources 

separately. A natural solution is to merge the ranked lists into a single list before presenting it to the end user 

[Voorhees et al., 1995; Kirsch, 1997; Craswell, Hawking & Thistlewaite, 1999; Si & Callan, 2002a; Si & 

Callan, 2003b]. 

A diagram of a federated search system that contains the components described above is shown in Figure 1.1. 

There are various solutions for the three main subproblems of federated search as resource representation, 

resource selection and results merging, depending upon the degree of cooperation that can be assumed 

among the hidden information sources. In the environment of local networks within small companies, the 

information sources may choose the same type of retrieval algorithm and cooperate closely to provide their 

 
 

Figure 1.1: The main components of a federated search system. 
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corpus statistics. This type of cooperative environments enables simplified and more effective solutions for 

federated search subproblems such as resource description and results merging [Callan, 2000; Gravano et al., 

1997; Si et al., 2002b]. On the other hand, in wide area networks within large organizations or on the Web, it 

may not be known which type of retrieval algorithm an information source uses, and it is unlikely that 

different sources will cooperate except in the most rudimentary manner. Even if they are willing to cooperate 

in these environments it is often difficult to detect whether the information sources provide correct 

information. These characteristics of uncooperative environments demand more sophisticated federated 

search solutions. 

Most prior research focused on cooperative environments that assume different types of cooperation from 

information sources [Voorhees et al., 1995; Viles & French, 1995; Callan, 2000; Gravano et al., 1997; Kirsch, 

1997]. A recent trend is to study the more complex situation of uncooperative environments for wide area 

networks or the Web [Si & Callan, 2002a; Ipeirotis & Gravano, 2002; Si & Callan, 2003a; Si & Callan, 

2003b; Bergholz & Chidlovskii, 2004], which is the focus of this dissertation. 

 

1.3 Applications of federated search 

 

For visible Web contents, a previous study [Baeze-Yates & Ribeiro-Neto, 1999] has shown that users may 

prefer different search applications when they have different types of information needs. This is also true for 

federated search since there exist various federated search applications to satisfy different types of 

information needs, which may require different federated search applications. 

The CompletePlanet portal8 provides structure guided browsing of thousands of hidden information sources. 

It enables users to explore a wide range of hidden information sources that they are interested in. This 

browsing model works well when users have broad information needs. However, when users’ information 

needs can be easily expressed as text queries and when users want to directly find relevant information, other 

choices such as the information source recommendation application or the federated document retrieval 

application are more appropriate. 

Information source recommendation (e.g., the CompletePlanet portal and the IncyWincy invisible Web 

                                                        
8www.completeplanet.com  
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search engine9) goes a step further than the browsing approach by recommending most relevant information 

sources to information needs expressed as text queries. This type of application is very useful if users want to 

browse the selected information sources by themselves instead of asking the system to retrieve relevant 

documents automatically. It is also a more appropriate choice when user interaction is required to choose 

from multiple search configurations for specific information sources. An information source recommendation 

system is composed of two components, namely resource representation and resource selection. 

A more complex federated search solution is federated document retrieval. It selects relevant information 

sources for user queries, as does the information source recommendation system. Furthermore, user queries 

are forwarded to search the selected information sources and finally the returned individual ranked lists are 

merged into a single list to present to the users. Therefore, federated document retrieval provides a more 

complete search solution by combining all the three components of federated search: resource representation, 

resource selection and results merging. It is a more complicated solution than information source 

recommendation. Systems like Metalib10 have been developed within cooperative environments, but very 

little has been pursued for uncooperative environments. 

 

1.4 The goal and contribution of this dissertation 

 

Federated search has been a popular research topic for more than a decade and there has been considerable 

prior research. Most of the prior work is concentrated on the cooperative environments and relatively little 

can be applied in uncooperative environments. The research in this dissertation proposes new algorithms to 

address the three main subproblems of federated search in uncooperative environments. 

Most past federated search research dealt with individual subproblems separately, but the field starts to 

realize that good solutions of different components optimize different criteria (e.g., high recall for 

information source recommendation; high precision for federated document retrieval). The inconsistency 

limits the effectiveness of good integrated solutions for federated search applications. Based on this 

observation, this dissertation proposes a unified probabilistic framework to integrate effective solutions for 

different subproblems together. 

                                                        
9 http://www.incywincy.com/ 
10 http://dali.cdlib.org:8080/metasearch/nsdl/search.cgi 
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This section first describes new research in the three subproblems respectively and then discusses the unified 

framework.  

For resource representation, previous research mainly focused on how to learn and describe the topics 

covered by each available hidden information source. This was accomplished by acquiring corpus statistics 

of information sources such as the vocabulary or term frequencies [Callan & Connell, 2001; Gravano et al., 

1997]. Many of prior work only estimated the relative frequencies of different terms in the vocabulary, which 

is effective when all information sources are of similar sizes. However, within federated search environments 

that contain information sources of skewed source sizes, the absolute term frequencies per source or inverse 

document frequencies of different terms across available sources are very important for applications such as 

information source recommendation and federated document retrieval. To acquire this type of information, it 

is necessary to estimate the size of each information source (i.e., the number of documents). 

It is easy to obtain information source size estimates in cooperative environments. But information source 

size estimation in uncooperative environments is a major unsolved problem until now. Previous research [Liu 

et al., 2001] required a huge amount of communication costs to estimate information source sizes especially 

for large information sources. In this dissertation, a more efficient Sample-Resample algorithm is proposed to 

utilize sampled documents from query-based sampling and estimate the information source size [Si & Callan, 

2003a]. 

Besides content topics and information source sizes, there are other important properties of information 

sources, such as search engine retrieval effectiveness (i.e., the ability to retrieve relevant documents from 

individual sources for user queries) or information authority, which are very important for real world 

federated search applications. This dissertation proposes a new method to address the problem of estimating 

search engine retrieval effectiveness. The acquired information can be used to select information sources that 

are effective in returning the relevant documents that they contain.  

For resource selection, most prior research represented each information source as a virtual big document 

[Yuwono & Lee, 1997; Callan, 2000; Craswell, 2000; French et al., 1999; Xu & Croft, 1999; Si et al., 2002b]. 

The similarities between user queries and big documents were calculated by using slight variations of 

well-known document retrieval algorithms to make the resource selection decision. We call this method as 

the “big document” approach. It works well when available information sources are of the similar sizes. 

However, the “big document” approach does not distinguish individual documents within available 

information sources so it often has a strong bias against either small hidden information sources or large 
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information sources [Craswell, 2000; Si & Callan, 2003a; Si & Callan, 2003c] (more detailed information 

can be found in Chapter 4).  

This dissertation describes a new resource selection algorithm that models information sources as document 

repositories instead of big documents. It explicitly estimates the distribution of relevant documents across 

available information sources for the information source recommendation application. It makes full use of 

the information source size estimates and the content descriptions acquired from the resource representation 

component [Si & Callan, 2003a]. This approach is not only more theoretically solid but also provides 

accurate empirical results within different types of federated search environments. 

Results merging is the final step for a federated document retrieval system. It merges the individual ranked 

lists from selected information sources into a single final ranked list. This is a difficult task especially in 

uncooperative environments as different hidden information sources may use different retrieval algorithms or 

have different corpus statistics. Previous results merging methods either require cooperation from available 

sources [Viles and French, 1995; Xu and Callan, 1998; Kirsch, 1997], or approximate comparable scores 

with heuristic methods [Voorhees, 1995; Callan, Lu & Croft, 1995]. However, these methods either require 

cooperation that is not valid in uncooperative environments or are not very effective. 

This dissertation proposes a Semi-Supervised Learning (SSL) results merging algorithm. This method uses 

sampled documents to create source-independent scores for a few representative documents from each 

information source. These documents serve as training data to build linear models that transform 

source-specific scores to corresponding source-independent scores. The linear models are applied on all the 

returned documents to calculate the comparable source-independent scores, and thus the final result list can 

be obtained with these source-independent scores. When there is not enough training data in the sampled 

documents, a variant of the SSL algorithm downloads a minimum number of documents on the fly to create 

additional training data [Si & Callan, 2002a; Si & Callan, 2003b]. The SSL algorithm has been shown to 

generate rather accurate final document rankings with a small cost. 

It was common in prior research to view the three main subproblems of federated search in isolation from 

each other. The relationship between the subproblems has not been well studied, which is a serious problem 

to build integrated solutions for different federated search applications. For example, the resource selection 

algorithms for the information source recommendation application are generally designed and evaluated by 

how well they select information sources that contain as many relevant documents as possible (i.e., 

high-recall goal). However, prior research pointed out that a good resource selection algorithm for an 

information source recommendation system may not work well for a federated document retrieval system 
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with the high-precision goal (i.e., more relevant documents at the top of final ranked list) [Craswell, 2000; Si 

& Callan, 2003a]. 

A central goal of the proposed research is the development of a formal federated search framework that 

integrates the solutions of different subproblems into an integrated framework. This approach allows a 

system to explicitly model and compensate for the inconsistencies between different goals. Specifically, 

when used for information source recommendation, the framework is optimized to maximize the utility as 

high recall, and when used for federated document retrieval, it is optimized for high precision. This unified 

utility maximization framework provides a more theoretical and unified foundation of federated search. 

Thorough empirical studies have shown that this unified framework produces more accurate results for both 

the information source recommendation application and the federated document retrieval application.   

The shift to modeling federated solutions within a single unified framework also supports a broader set of 

evidence than just relevance, e.g., search engine retrieval effectiveness, information authority and reading 

difficulty. These factors can be very important for real world applications. For example, if the search engine 

of a selected information source is of very low quality, it may return very few relevant documents. In this 

dissertation, a resource selection algorithm is proposed to incorporate the factor of search engine retrieval 

effectiveness. The new algorithm selects information sources that not only contain many relevant documents 

but also are effective to return them. 

Two main contributions distinguish this dissertation work from previous research. One key contribution of 

this dissertation shows the successful utilization of a centralized sample database (CSDB) containing the 

documents sampled from all available information sources [Callan, Connell & Du, 1999; Callan, 2000]. Most 

previous research [Craswell, 2000; Si et al., 2002b] discarded the sampled documents after building the 

resource descriptions. The research in this dissertation realizes that the centralized sample database is a 

valuable sample of the universe of documents available in a federated search environment. Its power exists in 

providing a uniform environment to compare representative documents from different information sources. 

This dissertation shows that the centralized sample database can be utilized in many problems of federated 

search and proves its success with empirical studies. Specifically: i) the probabilities of relevance of all the 

documents among hidden information sources are inferred from the probabilities of relevance of the sampled 

documents in the centralized sample database; ii) sampled documents from a small set of queries can be 

ranked by both the source-specific retrieval algorithm for a particular information source and an effective 

centralized retrieval algorithm; the consistency among the two ranked lists is utilized to measure the search 

engine retrieval effectiveness; and iii) the documents in the centralized sample database serve as training data 
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to build query-specific and source-specific linear models to transform source-dependent scores into 

source-independent scores for results merging 

Another key contribution of this dissertation is to turn away from the “big document” resource selection 

approach. The “big document” resource selection algorithms were the previous state-of-the-art methods. This 

dissertation analyzes and presents empirical results to show the deficiencies of the “big document” approach. 

Our new approach recognizes that it is necessary to model available information sources as document 

repositories and to estimate the probabilities of relevance of all the documents across sources for accurate 

resource selection decision. Some methods have been proposed in this dissertation to estimate the 

probabilities of relevance of the documents and then make appropriate resource selection decisions.   

The research of federated search has attracted great attention for a long time. This dissertation advances the 

state-of-the-art in the main subproblems of federated search separately and also makes an important step 

forward to propose a unified framework to integrate the individual effective solutions together. The new 

framework is theoretically solid and is open to be extended for specific consideration of real operational 

applications. Detailed empirical studies and analysis in this dissertation have shown that the new solutions 

are very effective. In order to reflect the diversity of real world applications, the new federated algorithms 

have been evaluated within a range of research and real-world federated search environments that include a 

set of monolingual environments, a multilingual environment, environments with effective search engines 

and environments with both effective and ineffective search engines. All the contributions indicate that the 

new research in this dissertation is ready to be utilized in real world environments. 

 

1.5 Outline 

 

The dissertation is organized as follows. Chapter 2 describes our choices of federated search environments 

for evaluating different federated search algorithms, including how to create multiple federated search 

testbeds with newswire data, Web data and multilingual documents. Chapters 3 to 6 study research problems 

of individual components within federated search applications. Specifically, Chapter 3 discusses the research 

problem of resource representation. It introduces several important types of resource representations and also 

proposes new algorithms for estimating information source sizes. Chapter 4 focuses on the research problem 

of resource selection. It reviews several previous state-of-the-art algorithms, analyzes the deficiency and 

proposes new resource selection algorithms that explicitly estimate the distribution of relevant documents for 
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optimizing the high-recall goal. Chapter 5 studies the research problem of results merging. It analyzes the 

disadvantage of previous results merging algorithms and proposes new results merging algorithms based on 

estimating regression models for mapping source-specific document scores to comparable document scores. 

Chapter 6 further investigates how to merge document ranked lists in multiple languages. 

A unified utility framework is proposed in Chapter 7 to integrate and adjust effective solutions of main 

components of federated search in a single framework and optimize various goals of different federated 

search applications. This is shown to be a better choice than simply combining effective solutions together. 

The unified framework enables the modeling ability of considering a wide range of evidence other than 

relevance. Chapter 8 shows how to extend the unified utility model to incorporate search engine retrieval 

effectiveness, which is a very important issue for real world federated search applications. 

Finally, Chapter 9 concludes the dissertation by summarizing the contribution and pointing out several future 

research directions. 
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Chapter 2: Modeling Federated Search Problems 
 

 

This chapter describes our choices of federated search environments for evaluating different federated search 

algorithms. A real world federated search application is first introduced and the possibilities and limitations 

of evaluation with this application are discussed. Next, a range of research environments is presented to 

simulate various operational federated search environments. The research environments include newswire 

data, Web data, and multilingual data. The experimental methodology of modeling multiple types of search 

engines of various qualities is also addressed. Finally, this chapter briefly introduces experimental metrics for 

evaluating different federated search applications. 

 

2.1 The FedStats portal: federated search in the real world 

 

The best candidates to evaluate federated search algorithms are real world applications. The FedStats Web 

site11 is an information portal that provides “one stop” search of statistical information published by many 

federal agencies so that citizens, businesses, and government employees can find useful information without 

separately visiting Web sites of individual agencies. The existing solution copies and indexes the contents of 

more than one hundred information sources into a single centralized database. However, the centralized 

index becomes outdated because the efforts of crawling and updating all the contents very frequently are not 

affordable (e.g., FedStats crawls each site about every three months). Thus, a federated search solution was 

requested and this was the main focus of the FedLemur project [Avrahami et al., 2006].  

The initial FedLemur system provides federated search solution for 20 agency sites. The list of the Web sites 

is shown in Figure 2.1. 20 wrappers were manually created to connect to individual Web sites for submitting 

user queries and fetching retrieved results. From a technical perspective, building wrappers and adding new 

sites is easy for the 100 agency sites connected by the FedStats portal. In the long run, automatic construction 

                                                        
11 http://search.fedstats.gov 
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of wrappers (i.e., wrapper induction) [Gazen and Minton, 2005][He et al., 2006] is a more viable solution, 

but that is outside the scope of this dissertation.  

27 test queries shown in Table 2.1 were utilized in the evaluation. These queries were selected from the 

query logs of FedStats Web portal by members of the FedStats team. The selection criterion was based on 

topic breadth and frequency in query logs. For each test query, a resource selection algorithm (CORI, 

described in Chapter 4) was applied to select 3 or 5 most relevant resources. The selected information 

sources were searched and 35 or 50 documents were returned from each source. The varying number of 

sources and retrieved documents was not an ideal experimental methodology, but it reflects evaluation in an 

operational environment; the government employees doing relevance assessments were busy and only had 

• Bureau of Economic Analysis (BEA):  http://www.bea.doc.gov/ 
• Bureau of Justice Statistics (BJS):  http://www.ojp.usdoj.gov/bjs/ 
• Bureau of Labor Statistics (BLS):  http://www.bls.gov/search/search.asp 
• Bureau of Transportation Statistics (BTS):  http://www.bts.gov/ 
• Energy Information Administration (EIA):  http://www.eia.doe.gov/ 
• Environmental Protection Agency (EPA): http://www.epa.gov/epahome/search.html 
• USDA’s Economic Research Service (ERS):  http://www.ers.usda.gov/ 
• Federal Reserve Board (FRB):  http://search.federalreserve.gov/ 
• Housing and Urban Development (HUD):  http://www.huduser.org/ 
• Internal Revenue Service (IRS):  http://search.irs.gov/web/advanced-search.htm 
• International Trade Administration (ITA):  http://www.ita.doc.gov/td/industry/otea/ 
• USDA’s National Agricultural Statistics Service (NASS):  http://www.usda.gov/nass/ 
• National Center for Education Statistics (NCES):  http://nces.ed.gov/ 
• National Center for Health Statistics (NCHS):  http://www.cdc.gov/nchs/search/search.htm 
• National Institute of Child Health and Development (NICHD): 

http://www.nichd.nih.gov/search.cfm 
• NSF Science Resources Statistics (NSF):  http://www.nsf.gov/sbe/srs/search.htm 
• Social Security Administration Office of Policy (SSA):  http://www.ssa.gov/policy/ 
• U.S. Census Bureau:  http://www.census.gov/main/www/srchtool.html 
• Childstats:  http://www.childstats.gov/sitesearch.asp  

Figure 2.1: 20 agency Web sites that are connected by the FedLemur system. 

Table 2.1: 27 queries with relevance judgments used for evaluating results merging algorithms in the FedLemur system. 

abortion 
bankruptcy 
bmi 
car accidents 
consumer price index 
consumer spending 
cost of living 
crime rates 
domestic violence 
 

federal grants  
gross domestic product 
hate crimes 
health insurance 
homeless 
immigration 
largest employers 
life expectancy 
literacy 
 

obesity 
religion 
suicide 
teen pregnancy 
tourism 
tqm total quality management strategies 
unemployment rate 
welfare 
women and employment 
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time to judge a short list of 105 documents (i.e., 35 documents each from 3 sources). Returned documents 

from various information sources were sorted randomly and judged by members of the CMU and FedStats 

teams. 

In this dissertation, the focus is to evaluate the accuracy of different results merging algorithms with the 

FedLemur system by utilizing the set of queries and human relevance judgments described above. This was 

easy to do in an efficient way. It would also be possible to evaluate resource selection algorithms with the 

FedLemur system, but this would require crawling all the sites completely and pooling the documents for 

human relevance judgments, which is not explored in this dissertation. 

The FedLemur system represents federated search solutions for information sources within a large 

organization. A similar example is the West system12 which connects to thousands of legal, financial and 

news information sources [Conrad, 2002]. The FedLemur system and the West system share similar 

characteristics, such as: i) the information is scatted over different information sources due to either the 

maintenance and policy issues or technique difficulties; ii) the information sources are often created and 

maintained by different providers and the overlap among their contents tends to be low; iii) the information 

sources contain a relatively large number of documents, for example, most information sources within the 

FedLemur system contain from 2,000 to more than one 100,000 documents; iv) the contents of the 

information sources are often carefully written and edited by professionals, so the quality is high; and v) the 

information sources often focused on several specified topics (e.g., agency reports within the FedStats system 

or legal, financial and news documents within the West system). These similarities between the FedLemur 

and the West systems are common characteristics of federated search solutions in large organizations or large 

companies as well as of federated search systems for domain-specific hidden Web. 

 

2.2 Simulating real world applications with TREC Data 

 

Evaluation with real world applications is the most desired way to test federated search algorithms. However, 

it is hard to conduct large scale user studies or to obtain full control of the systems. An alternative method is 

to simulate the operational environments of federated search systems by utilizing existing large text 

collections with thorough relevance judgments.  

                                                        
12 http://www.westlaw.com 
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Thorough evaluation of federated search algorithms requires a sufficient number of information sources, 

enough queries, and relevance judgments. It is often expensive to meet all these requirements in the user 

studies of real world applications. In contrast, existing large text collections such as the TREC data provide 

the opportunity to simulate real world federated search environments.  

TREC (Text REtrieval Conference) 13 [Harman, 1995] is conducted by the National Institute of Standards 

and Technology (NIST). The goal of this conference is to encourage research in information retrieval for text 

applications by providing large test collections including large corpora with sufficient queries and relevance 

judgments [Harman, 1995]. The creation of TREC data provided a good opportunity of conducting federated 

search experiments to simulate the environments with large numbers of rather diverse information sources, 

distributed geographically and maintained by many parties. For example, the database merging track of the 

TREC-4 conference was one of the earliest explorations of federated search [Harman, 1995].  

2.2.1 Simulation with TREC news/government data 

TREC news/government data covers topics in several areas. The documents in the corpora are written by 

professionals. These characteristics are similar to those of the FedLemur system or the West system. 

Therefore, this type of data provides a good opportunity to simulate the federated search environments of 

large organizations or domain-specific hidden Web.  

A common strategy to create federated search testbeds in previous research was to partition TREC 

news/government corpora by source, date, and/or topic into many smaller information sources with 

reasonable sizes and homogeneous contents [Lu et al., 1996; Xu & Callan, 1998; French et al., 1999; 

Hawking & Thistlewaite, 1999; Callan, 2000; Si & Callan, 2002a; Ipeirotis & Gravano, 2004]. This approach 

has several advantages: i) news/government documents are representative of the contents provided by 

professionally-written information sources; ii) testbeds are composed of many information sources, each 

containing thousands of documents on average, which is more realistic than testbeds of only several 

information sources [Fox et al., 1992; Yuwono & Lee, 1997] or testbeds of small information sources 

[Craswell, 2000]; and iii) a large body of previous research has reported experiment results on the testbeds of 

TREC news/government collections [Xu & Callan, 1998; French et al., 1999; Hawking & Thistlewaite, 1999; 

Callan, 2000; Si & Callan, 2002a], which provided baselines for evaluating the effectiveness of the new 

algorithms. These characteristics make the TREC news/government data a good candidate to simulate the 

federated search environments of large organizations or domain specific hidden Web.  

                                                        
13 http://trec.nist.gov 
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Specifically, two commonly-used testbeds organized by different criteria are chosen in this dissertation, as 

described below. 

(i) Organized by source and date (Trec123_100Col): 100 information sources were created from 

TREC CDs 1,2,3. They were named by source and publication date. Documents were assigned 

to information sources based on source and publication date. 100 short queries extracted from 

the title fields of TREC topics 51-150 were associated with this testbed [French et al., 1999; 

Callan, 2000; Si & Callan, 2002a]. 

(ii) Organized by topic (Trec4_kmeans): 100 information sources were created from TREC 4 

data. A k-means clustering algorithm was used to automatically cluster the documents by topic, 

and then each information source was associated with one cluster. The contents of the 

information sources are homogenous and the word distributions are skewed. 50 longer queries 

were created from the description fields of the TREC topics 201-250 [Xu & Croft, 1999; Si & 

Callan, 2002a]. 

Summary statistics for these two testbeds are shown in Table 2.2 and the characteristics of their 

corresponding queries are shown in Table 2.3. 

There are several other choices to construct testbeds from the TREC news/government data [Lu et al., 1996; 

Xu & Callan, 1998; French et al., 1999; Hawking & Thistlewaite, 1999; Callan, 2000; Si & Callan, 2002a; 

Ipeirotis & Gravano, 2004]. For example, Fox et al. [Fox et al., 1992] used 5 collections from TREC CD 1 

and French et al. [French et al., 1998] partitioned TREC CDs 1,2,3 with finer granularity into 236 

collections. Compared with those choices, Trec123_100Col is more widely used [French et al., 1999; Callan, 

Table 2.2: Testbed statistics of Trec123_100Col and Trec4_kmeans testbeds. 

Number of Docs Megabytes (MB) 
Name 

Number of 

Sources 

Query 

Count 

Size 

(GB) Min Avg Max Min Avg Max 

Trec123_100Col 100 100 3.2 752 10782 39713 28.1 32 41.8 
Trec4_kmeans 100 50 2.0 301 5675 82727 3.9 20 248.6 

 
Table 2.3: Query set statistics for Trec123_100Col and Trec4_kmeans testbeds. 

Name TREC 
Topic Set 

TREC 
Topic Field 

Average Length 
(Words) 

Trec123_100Col 51-150 Title 3.1 
Trec4_kmeans 201-250 Description 7.2 
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2000; Si & Callan, 2002a; Nottelmann & Fuhr, 2003b] and there are many baseline results available for this 

testbed. Trec4_kmeans is organized by topic, which provides another direction to simulate various federated 

search environments.  

Our experience with the FedLemur project suggested that it is important to evaluate federated search 

algorithms in environments containing many “small” information sources and a few “very large” sources. 

However, it can be seen from Table 2.2 that the Trec123_100Col testbed has a relatively uniform information 

source size distribution and the Trec4_kmeans testbed has modest skewed source size distribution. 

Furthermore, another interesting direction is to vary the distribution of relevant documents among 

information sources and study the effectiveness of different algorithms with this configuration. Following 

these ideas, five more testbeds were created based on the Trec123_100Col testbed. Each of them contains 

many “small” information sources and two large information sources that are about an order of magnitude 

larger than other sources [Si & Callan, 2003a]. 

Trec123_2ldb_60Col (“representative”): The resources in the Trec123_100Col testbed were sorted 

alphabetically. Every fifth source, starting with the first, was merged into one large source called LDB1. 

Every fifth source from, starting with the second, was merged into another large source called LDB2. The 

other 60 sources were left unchanged. This testbed simulates environments with bimodal source size 

distributions where large sources have about the same densities of relevant documents as the small ones (the 

two large sources still have more relevant documents due to their large sizes). 

Trec123_AP_WSJ_60Col (“relevant”): The 24 Associated Press information sources in the 

Trec123_100Col testbed were combined into a large APall information source, while sixteen Wall Street 

Journal collections were collected into a large WSJall source. The other 60 small sources were unchanged. 

This testbed simulates environments of bimodal source size distributions where large sources have higher 

densities of relevant documents than small ones. 

Trec123_FR_DOE_81Col (“nonrelevant”): The 13 Federal Register information sources in the 

Trec123_100Col testbed were collapsed into a large FRall information source, while the 6 Department of 

Energy information sources were merged into a large DOEall information source. The remaining 81 

Table 2.4: Statistics for the large databases. 

Database LDB1 LDB2 APall WSJall FRall DOEall 

Number of documents (x 1,000): 231.3 199.7 242.9 173.3 45.8 226.1 
Size (MB): 665 667 764 533 492 194 
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information sources were unchanged. This testbed simulates environments of bimodal source size 

distributions where large sources have lower densities of relevant documents than small ones. 

Trec123_10Col: The representative, relevant and nonrelevant testbeds contain many small sources and two 

very large sources. For some federated search applications (e.g., information source size estimation), it is 

important to test their performance in a federated search environment with many large information sources. 

The Trec123_10Col testbed was created to accomplish this goal. This testbed contains 10 large information 

sources. Particularly, the information sources in the Trec123_100Col testbed were sorted alphabetically. 

Every tenth source, starting from the first one, was merged into the first new source. Every tenth source, 

starting from the second one, was combined into the second new source, and so on [Si & Callan, 2003a]. 

Trec123_2Col: This testbed was built by merging the 100 sources in Trec123_100Col into two very large 

information sources in a round robin way. It is utilized to evaluate information source estimation algorithms 

with very large information sources. 

2.2.2 Simulation with TREC Web data 

TREC news/government data can be utilized to simulate the federated search environments of large 

organizations or domain specific hidden Web. However, it is not appropriate to simulate the federated search 

environments such as the open domain hidden Web. Some specific reasons are: i) the federated search 

environments of open domain hidden Web generally have more diverse contents or more genres; and ii) the 

federated search environments of open domain hidden Web tend to have a larger number of hidden 

information sources. 

Web data is a better choice to simulate the open domain hidden Web environments. There exist large 

collections of TREC Web data acquired by Web crawlers. The TREC Web data provides us a good 

opportunity to simulate the federated search environments with a large number of information sources such 

as the open domain hidden Web. The scales of the federated search systems for open domain hidden Web 

can be much larger than the scales of federated search systems in large organizations or companies. 

Furthermore, it can be imagined that the contents of information sources in open domain hidden Web 

environments are also very diverse and contain more genres. This characteristics serve as a guidance to build 

testbeds that simulate federated search environments of open domain hidden Web.  

The TREC Web collection WT10g [Craswell, 2000; Lu & Callan, 2003] contains about 10 gigabytes of 

documents crawled from 11,485 Web sites. Each Web site can be considered equivalent to an information 

provider, which makes this testbed a good candidate to simulate large-scale federated search applications. 
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However, one weaknesses of this testbed is that many information sources contain very small number of 

documents (about two thirds sources contain fewer than 1,000 documents). This characteristic is different 

from those observed from the FedLemur project [Avrahami et al., 2006], where most information sources 

contain reasonable amount of documents (i.e., more than 1,000) with valuable topic-oriented contents 

(government agency reports).  

In this dissertation, the TREC WT10g collection was divided into many information sources by considering 

each Web server to be a distinct information source. However, small information sources that contain very 

few documents were filtered out. Specifically, 934 sources were obtained by dividing WT10g data into 

11,485 collections and selecting those that contain more than 300 documents. More detailed information is 

shown in Table 2.5. TREC Web queries 451-550 were used on this testbed. The summary statistics of these 

queries can be found in Table 2.6. Those short queries reflect the fact that 85% of the queries posted at Web 

search engines have 3 or fewer query terms [Jansen et al., 2000]. 

In order to provide thorough experimental results for information source size estimation algorithms, several 

testbeds were created from TREC Web data as follows: 

WT10g_10%, WT10g_30%, WT10g_50%, WT10g_70%, WT10g_90% and WT10g_100%: The 

WT10g_10%, WT10g_30%, WT10g_50%, WT10g_70% and WT10g_90% testbeds were created by 

randomly selecting 10%, 30%, 50%, 70% or 90% of all the documents within the WT10g testbed 

respectively. The WT10g_100% testbed was created by collapsing all the documents into a single 

information source. 

GOV_10%, GOV_30%, GOV_50%, GOV_70%, GOV_90% and GOV_100%: The .GOV test collection 

was created in 2002 by crawling more Web sites within the domain of .gov. It contains 1.25 million 

Table 2.5: Statistics for WT10g testbed. 

Number of Docs Megabytes (MB) 
Name 

Number of 

Sources 

Query 

Count 

Size 

(GB) Min Avg Max Min Avg Max 

WT10g 934 100 7.8 300 1169 26505 0.3 8.4 161 
 

Table 2.6: Query set statistics for WT10g testbed. 

Name TREC 
Topic Set 

TREC 
Topic Field 

Average Length 
(Words) 

WT10g 451-550 Title 2.6 
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documents and has a size of 18.1 GB. These testbeds were created from the .GOV test collection by either 

randomly selecting some amount of documents or choosing all the documents.  

 

2.3 Simulating multilingual environments with CLEF data 

 

The TREC text collections introduced in this dissertation contain documents in a single language (English). 

However, in real world hidden Web environments, many information sources are composed of documents in 

other languages. For example, the German Patent and Trademark Office Web site contains a large number of 

patents in several European languages; those patents can only be accessed by posing queries in different 

languages. The task of accessing hidden information sources in multiple languages requires us to develop a 

multilingual federated search solution. This section discusses how to build a federated search environment 

with multilingual information sources.  

The Cross-Language Evaluation Forum (CLEF)14 is co-sponsored by the European Commission and several 

American and European companies. The goal of this forum is to develop an infrastructure for the testing, 

tuning and evaluation of information retrieval systems operating on European languages mainly in 

cross-language contexts, and to create test-suites of reusable data that can be employed by system developers 

for benchmarking purposes. A large number of multilingual documents, queries and human relevance 

judgments have been accumulated in different evaluation tasks of the CLEF campaign. Particularly, eight 

                                                        
14 http://www.clef-campaign.org/ 

Table 2.7: Statistics for CLEF 2005 Multi-8 testbed. 

Language Dutch English Finnish French German Italian Spanish Swedish 
Number of documents: 190,604 169,477 55,344 129,806 294,809 157,558 454,045 142,819 
Size (MB): 551 599 139 335 388 369 1,132 369 

 
Table 2.8: Query set statistics for CLEF 2005 Multi-8 testbed. 

Name CLEF 
Set 

CLEF Topic 
Field 

Average Length 
(Words) 

Multi-8 (Train) 141-160 Title+Desc 12.0 
Multi-8 (Test) 161-200 Title+Desc 11.7 
Multi-8 (All) 141-200 Title+Desc 11.8 
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information sources were built for eight different languages. The statistics of the eight multilingual sources 

can be seen in Table 2.7. CLEF 2005 provided relevance judgments of 20 training queries for tuning 

different algorithms [Nunzio et al., 2005]. All algorithms were formally evaluated on another set of 40 test 

queries. The summary statistics of these queries are shown in Table 2.8. 

This CLEF data provides a good opportunity to simulate multilingual federated search environments. As the 

CLEF queries are intentionally written to retrieve documents in most languages, the CLEF data is not a good 

choice for evaluating resource selection tasks. Therefore, a testbed is created from CLEF data for evaluating 

results merging algorithms within a multilingual federated search environment. However, it is more 

appropriate for results merging experiments. The choice of creating one database per language is appropriate 

because results merging is typically conducted over a small set of result lists. 

 

2.4 Simulating multiple types of search engines 

 

There exist multiple types of search engines in uncooperative federated search environments. Three different 

types of effective retrieval algorithms are used in our experiments: INQUERY [Turtle 1990; Callan, Croft & 

Harding, 1992], a statistical language model algorithm [Lafferty & Zhai, 2001; Ogilvie & Callan, 2001b], 

and a vector-space algorithm similar to SMART [Buckley et al., 1995]. These three algorithms are generally 

considered effective and are widely used in ad-hoc retrieval systems.  

The INQUERY algorithm [Turtle 1990; Callan, Croft & Harding, 1992; Broglio et al., 1995] adapts an Okapi 

term frequency normalization formula [Robertson & Walker, 1994] in a Bayesian inference network model 

to rank the documents. Formally, the belief of the jth document according to the term q is expressed as 

follows: 

 

j

tf
T=

tf+0.5+1.5 doclen /avg_doclen∗  (2.1) 

 d +0.5
log

df
I=

log( d +1.0)

� �
� �� �
� �

 

 

(2.2) 
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where:    tf   is the number of occurrence of q in this document; 

  df   is the number of documents that contain q; 

 |d|  is the number of documents in the corpus; 

 doclenj  is the number of words in this document; 

            avg_doclen  is the average document length in the corpus; and 

            b  is the default belief, usually set to 0.4. 

The belief P (Q | dj) is calculated by combining evidence as P(q | dj) from different query terms. This can be 

achieved by applying different probabilistic operators. The INQUERY operators cover a wide range of 

Boolean, proximity and synonym operators. More detailed information can be found in             

[Turtle, 1990; Broglio et al., 1995; Callan, 2000]. In this dissertation, the belief P (Q | dj) is calculated by 

averaging the evidence of individual query words. This score can vary in the range of [0.4 , 1.0], but typically 

falls within [0.4 , 0.7]. 

The basic idea of the statistical language model retrieval algorithm [Lafferty & Zhai, 2001; Ogilvie & Callan, 

2001b] is to treat each document as a multinomial distribution of the words in the vocabulary. It ranks 

documents by how likely they can generate a particular query. Formally, the generation probabilities of 

documents for query Q are calculated as: 

The Jelinek-Mercer smoothing is used to generate the document language model. It is a linear combination of 

the maximum likelihood document model (i.e., P (q | dj)) and a global collection language model                

(i.e., P (q | G)), which are calculated based on the relatively frequencies of term q in the jth document and in 

the global corpus respectively. The global corpus is created by combining all the documents together. The 

coefficient �  controls the influence of each model and is set to 0.5 in our experiments. P (Q | dj) is usually a 

very small positive number and the logarithm of this value gives us a final document score, which is often in 

the range of [-60 , -30]. 

The vector-space retrieval algorithm in this dissertation uses the SMART “lnc.ltc” weighting scheme    

[Buckley et al., 1995]. The logarithmic version of term frequency and the cosine normalization is used by 

jp( q|d )=b+(1-b) T I∗ ∗  (2.3) 

j j
q Q

P(Q|d )= (�P(q|d )+(1-�)P(q|G))
∈
∏  (2.4) 
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both query and document representations. The query representation utilizes logarithmic idf weight and the 

document representation does not. The similarity between the query representation and the document 

representation is calculated as: 

where qtf stands for the term frequency of a specific query term. The document scores of this retrieval 

algorithm fall into the range of [0.0 , 1.0]. 

All the above three retrieval algorithms are effective and can be used for simulating effective search engines. 

However, inaccurate search engines are also common in real world environments. For example, the 

well-known PubMed15 system uses an unranked Boolean retrieval algorithm. Ineffective government search 

engines have also been observed that return unranked or randomly ranked results, or return many documents 

that do not exist, as in the case of broken links. 

In order to simulate the behavior of ineffective search engines in real world applications, three types of 

ineffective retrieval algorithms are introduced in this work: an INQUERY retrieval algorithm with added 

random noise to the original retrieval scores, where the random noise ranges from 0 to 0.3 (the original 

scores range from 0.4 to 1); an extended Boolean retrieval algorithm, which adds up the term frequencies of 

query terms without considering the idf factor; and a unigram language model with bad linear smoothing 

parameter � , which is set to be 0.99 to bias towards the collection language model.   

All these retrieval algorithms are implemented with the Lemur toolkit16 [Ogilvie & Callan, 2001b], and they 

are usually assigned to the information sources in a round-robin manner. 

 

2.5 Federated search experimental metrics 

 

                                                        
15 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi 
16 http://www.lemurproject.org 
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This dissertation studies several federated search applications. The solutions of these applications are 

evaluated with a variety of experimental metrics, which mainly follow the procedures established by 

previous research [Liu et al., 2001; French et al., 1999; Callan, 2000]. 

An information source recommendation system suggests relevant information sources for users and then 

users will visit the selected sources and browse the contents manually. Users often prefer information sources 

that contain as many relevant documents as possible. Therefore, the resource selection algorithms of an 

information source recommendation system are measured by the goal as high recall that is analogous to the 

recall metric for ad-hoc retrieval. Specifically, the information source ranking of a specific resource selection 

algorithm is compared with that of a desired source ranking, which ranks information sources by the amount 

of relevant documents that they contain for a user query. The smaller the difference between the ranking of 

the specific algorithm and the desired ranking is, the more effective is the algorithm [French et al., 1999; 

Callan, 2000]. 

For federated document retrieval, the system automatically searches the selected information sources and 

merges the returned ranked lists from different sources into a single ranked list before presenting it to the end 

users. Most users only concentrate on the documents at the top of the final ranked lists. Therefore, users often 

evaluate the effectiveness of a federated document retrieval system by the precision at the top of the final 

ranked list [Xu & Croft, 1999; Callan, 2000]. This is formally denoted as the high-precision goal in this 

work. 

 

2.6 Summary  

 

It is important to design representative federated search environments to evaluate different federated search 

algorithms. This chapter describes our choices of federated search environments and briefly introduces some 

experimental methodology. 

The chapter first introduces a real world federated search application, the FedStats portal, which connects to 

20 government agencies with uncooperative search engines. This real world application is mainly utilized to 

evaluate results merging algorithms within the federated search environment. A set of 27 real world queries 

was selected and human relevance judgments were obtained for the evaluation. 

As there are many constraints for doing experiments with real world federated search applications, a set of 
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federated search testbeds was created within research environments to conduct thorough evaluation. 

Particularly, we use a set of testbeds from the TREC news/government data to simulate domain-specific 

federated search environments and use another set of testbeds from the TREC Web data to simulate 

open-domain Web-like federated search environments. These testbeds are associated with different 

characteristics (e.g., source size distribution, relevant document distribution and writing quality).  

This chapter also introduces a set of multilingual federated search environments. These testbeds are 

important to evaluate federated search algorithms when available information sources contain documents in 

different languages. Particularly, a set of language-specific information sources was created from CLEF data 

to simulate multilingual federated search environments. 

Finally, several experimental metrics are introduced in this chapter for evaluating different federated search 

applications. It is pointed out that information source recommendation is evaluated by the number of relevant 

documents contained in selected sources (i.e., high recall), while federated document retrieval is evaluated by 

the number of relevant documents ranked at the top of the final ranked lists (i.e., high precision).
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Chapter 3: Adding Size to Resource Representations 
 

 

Acquiring accurate resource descriptions of available information sources is the first step for every federated 

search system. There are two problems that need to be addressed for acquiring accurate and comprehensive 

resource descriptions in an efficient way: i) what types of resource descriptions are required in order to 

accomplish the federated search tasks; and ii) for each type of resource description, how can it be obtained 

efficiently. Previous research on resource description was mainly focused on representing each information 

source by a description of its words and the word frequencies. There exist good solutions for discovering 

word histogram representations from previous research. This chapter introduces information source sizes as 

another type of resource description. Specifically, this chapter motivates why information size estimation is 

important for federated search applications and discusses related prior research. Furthermore, a new 

algorithm is proposed to calculate the source size estimates more efficiently and empirical studies have been 

conducted to show its effectiveness and efficiency. 

 

3.1 Previous research on resource representation 

 

This section shows the previous research on resource representation from two aspects: resource description 

constructed by words and their occurrences and the size estimates of information sources.  

3.1.1 Representation of Contents 

Most prior research represented each information source by a description like term frequencies of the words 

that occur in the information source, and the word frequencies [Gravano, 1994; Gravano & García-Molina, 

1995; Callan, Lu & Croft, 1995] or other statistics derived from the word frequencies such as the term 

weights [Gravano & García-Molina, 1995]. The description is possible to be extended for other indicative 

text features such as phrases or proper names. This type of resource description catches the content topics 

within each information source.  

The most desirable scenario to acquire this type of resource description is when every information source 
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shares its corpus statistics in a cooperative manner. The Stanford Protocol Proposal for Internet Retrieval and 

Search (i.e., STARTS) [Gravano et al., 1997] is a complete protocol of federated search in cooperative 

environments. It covers many topics from resource description acquisition to results merging. The source 

metadata acquisition part of the STARTS protocol obtains the information about information sources’ 

contents and other features. More specifically, each information source is required to provide both the 

content summary containing information such as vocabulary and word frequencies and also other metadata 

indicating the properties of the information source such as stopwords, document score range and the type of 

retrieval algorithm. 

However, cooperative protocols do not work in uncooperative federated search environments such as large 

organizations or the Web. In these environments, it is generally difficult to assume that the information 

sources can cooperate to provide resource representations that are compatible with each other. Furthermore, 

even if the information sources are willing to share their information, it is not easy to judge whether the 

information they provide is accurate or not. 

An alternative method, which works in uncooperative environments, is the query-based sampling approach. 

This solution generates and submits single word queries to each information source and downloads some 

documents in the returned document ranked lists to learn the resource content descriptions [Callan, Connell 

& Du, 1999; Callan & Connell, 2001]. Specifically, an initial sampling query is selected randomly from a list 

of English words. Subsequent sampling queries were selected randomly from the resource description being 

learned for the information source (i.e., a term seen in a document retrieved earlier from that source). The only 

assumption made by the query-based sampling method [Callan & Connell, 2001] is that all the information 

sources run queries and return documents. It does not require information sources to provide content 

information or use a particular type of search engine cooperatively. 

Experiments have shown that under a variety of conditions the query-based sampling method can acquire 

rather accurate content description for each hidden information source by using about 80 queries to download 

a relatively small number of documents (i.e., 300 documents) [Callan, 2000; Callan & Connell, 2001; 

Craswell et al., 2000]. More specifically, after obtaining 250 sampled documents, about 80 percent of the 

term occurrences in an information source can be covered by the words in the sampled data [Callan, 2000]. 

The Spearman rank correlation coefficient [Press et al., 1992] has also been utilized to measure the 

similarities between two rankings of the sampled df values and the actual df values. It is shown to be about 

0.7 after acquiring 250 sampled documents on several testbeds, which has a maximum value of 1.0. Some 

variants of the query-based sampling techniques are the focused probing method [Ipeirotis & Gravano, 
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2002], which utilizes query probes pre-derived from rule-based classifiers of a hierarchy of topics, and the 

probe queries method [Craswell et al., 2000], which uses multi-term queries chosen from query log. 

3.1.2 Representation of source size 

Information source size is another important property of a hidden information source. It is easy to acquire 

source sizes within cooperative federated search environments. However, this is a much more difficult 

problem within uncooperative environments. Source size estimates are very important for federated search 

subproblems such as resource selection and results merging. For example, resource selection algorithms need 

source size estimates to adjust (normalize) the information source selection scores for accommodating the 

widely varying information source size distributions [Si & Callan, 2003b]. However, this was rarely used 

within prior research due to the difficulty of acquiring good size estimates efficiently. Information source 

size can be defined in many different ways such as the size of the vocabulary, the number of word 

occurrences and the number of documents. In this work, we define information source size to be the number 

of documents. Other related statistics such as the number of words can be estimated from the number of 

documents and other statistics obtained from the sampled documents. 

Liu and Yu [Liu et al., 2001] proposed a basic Capture-Recapture algorithm to estimate the information 

source size statistics. This method follows previous work in the statistics community of estimating wild 

animals population size. Specifically, the algorithm assumes that two independent documents id lists can be 

obtained from a particular information source (e.g., by running two different queries). Let N denote the actual 

information source size, A be the event that a document id is included (captured) in the first sample, which 

contains altogether n1 document ids, B be the event that a document id is in the second sample, whose size is 

n2, and m2 is the number of document ids that are in both samples. The probabilities of events A and B can be 

calculated as follows: 

The conditional probability that a document id appears in the second sample given it is observed in the first 

sample is: 

The two samples are assumed to be independent as follows: 

1 2n n
P(A)= P(B)=

N N
 (3.1) 

2

1

m
P(B|A) =

n  

(3.2) 
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Then the size estimate �N  for this information source can be obtained as: 

Liu and Yu reported that the basic Capture-Recapture method can acquire rather accurate information source 

size estimates (i.e., the error rate is about 5% for the size estimate of an information source with 300,000 

documents) [Liu et al., 2001]. However, their method was not efficient. The basic Capture-Recapture method 

used a large number of sampled queries (i.e., about 1,000 queries) which required a large set of document ids 

for each query (i.e., each query retrieved 1,000 document ids) to estimate the size of an information source 

with 300,000 documents. The empirical studies in Section 3.4 show that the accuracy of the  

Capture-Recapture method degrades substantially when fewer queries are used or when only smaller ranked 

lists are available.  

 

3.2 Centralized sample database 

 

Many federated search systems only utilize the sampled documents to obtain resource descriptions and then 

discard the sampled documents. However, the sampled documents are valuable for other purposes. The 

sampled documents from all available information sources can be combined into a single searchable database 

called the centralized sample database. The centralized sample database is very important for federated 

search applications. In federated search environments, it is not possible or practical to copy all the searchable 

information into a single centralized database (i.e., centralized complete database) as conventional search 

engines do. The centralized sample database is a surrogate that can be used to simulate the behavior of the 

centralized complete database, as shown in Figure 3.1. 

Ogilvie and Callan’s work [Ogilvie & Callan, 2001a] was the first research to utilize a centralized sample 

database. Although their attempt at using a centralized sample database for query expansion was not 

successful, the centralized sample database may be an important resource for many other problems. 

Many research problems in federated search can be generalized as learning transformations from source 

scores/ranks to scores/ranks in a centralized environment. The centralized sample database can be used to 

simulate the behavior of the centralized complete database and thus opens the door to a class of 

P(B|A) = P(B)  (3.3) 

�
�2 2 1 2

1 2

n m n n
= N=

n mN
�
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transformations. There are multiple types of transformations such as score to score, score to rank, rank to 

score and rank to rank. The research in this dissertation utilizes different types of transformations for 

different applications. Two examples are briefly described below. 

The major research problem of results merging is to make the ranked lists returned from selected information 

sources comparable and merge them into a single list. The centralized sample database provides an 

environment in which comparable scores can be calculated for documents from different information 

sources. The regression based results merging algorithm in Chapter 5 uses a small set of documents that have 

both source-specific document scores and source-independent document scores from the centralized sample 

database as training data for learning how to transform source-specific scores to source-independent scores. 

The learned models can be applied to all the returned documents from selected sources to merge the 

documents into a singe list. Furthermore, when search engines of selected sources do not return document 

scores (e.g., in FedLemur system), a model is proposed to transform document ranks in source-specific 

ranked lists to source-independent scores. More detailed information can be found in Section 5.3.5. 

Another type of transformation is used in Chapter 8 to model search engine retrieval effectiveness. This 

method utilizes the sampled document ranked lists for a set of training queries to build models of search 

engine retrieval effectiveness. The method obtains higher accuracy when the assumption is true: the rank 

patterns of the ranked lists of the training queries are representative of those of the test queries. Specifically, 

for a source-specific ranked list of a training query, the documents in the list are downloaded and a new 

 
Figure 3.1: The importance of centralized sample database to simulate the characteristics of centralized 

complete database in a federated search environment. 
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ranked list is created by an effective centralized retrieval algorithm using the centralized sample corpus 

statistics. A rank transform mapping can be learned between these two lists. The learned rank mappings for a 

set of ranked lists can be collected to build the search engine effectiveness profile for the particular search 

engine. Intuitively, if the source-specific search engine always generates ranked lists consistent with those 

from the centralized retrieval algorithm, the search engine is effective, otherwise it is not.  

Besides using the centralized sample database to build different transformation models, the resource selection 

algorithm described in Chapter 7 utilizes the centralized sample database in another way. This method runs a 

user’s query on the centralized sample database to produce a ranked list that is a sample of the ranked lists 

that would be created if all sources were searched. This sampled document ranking can be scaled up, using 

information about the size of each available source, to obtain an accurate estimate of how all of the 

documents (mostly unseen) would be ranked if the (non-existent) centralized complete database was 

searched. Finally, this estimated ranked list can be used to identify which sources can contribute most of the 

top-ranked documents. 

In sum, the centralized sample database serves as an important surrogate to simulate the behavior of the 

(unseen) centralized complete database. It enables a set of new techniques for different federated search 

applications, which are shown in more detail in the rest of this dissertation. 

 

3.3 New information source size estimation methods 

 

The basic Capture-Recapture algorithm was shown to obtain accurate information source size estimates in 

previous research. However, it is based on an important assumption that a long ranked list (i.e., 1,000 

document ids per query) can be acquired by one interaction with each information source. This is often not 

true in real world applications. When only short ranked lists are available by a single interaction, the basic 

Capture-Recapture algorithm has excessive communication costs to obtain a long ranked list by sending 

multiple requests. 

Our goal is to develop an effective and much more efficient source size estimation method. In this section, 

several variants of the Capture-Recapture algorithm are developed to utilize different accessing methods of 

document ranked lists when the methods are supported. Furthermore, a new source size estimation algorithm 

based on a different estimation strategy is introduced.  
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3.3.1 Variants of the Capture-Recapture method 

The effectiveness of the Capture-Recapture algorithm can be strongly influenced by what types of methods 

are provided by the information sources for accessing their document ranked lists. Generally, long document 

ranked lists cannot be obtained by a single interaction with information sources in real world applications. In 

contrast, much shorter ranked lists (e.g., 10 or 20 documents) are often available. Assuming 20 document ids 

can be returned in a single result page with one interaction (information sources may return more or fewer 

document ids; 20 is used for simplicity), the Capture-Recapture algorithm is allowed to choose document ids 

from a pool of 20 document ids acquired by a single interaction with an information source. If the ranked 

lists must be obtained sequentially, the Capture-Recapture algorithm can only access the top 20 document ids 

for each query with one interaction. On the other hand, some information sources provide the service of 

directly accessing the ranked list at any specified section. As the documents that appear at the top of a ranked 

list may have a bias to be ranked highly for many queries, selecting the documents in a wide range of ranked 

lists makes it possible for the Capture-Recapture algorithm to acquire more random document ids. These two 

variants of the Capture-Recapture algorithms are called the “Top” approach and the “Direct” approach 

respectively. 

The basic Capture-Recapture algorithm [Liu et al., 2001] only randomly chooses a single document id from a 

returned result page, while it is possible to utilize all the 20 document ids in the result page and the 

corresponding variant of the Capture-Recapture algorithm is denoted as the “All” approach in this 

dissertation. 

3.3.2 Sample-Resample method 

The Sample-Resample method [Si & Callan, 2003a] uses a different strategy to estimate information source 

sizes than the Capture-Recapture algorithm. There are several assumptions made by this new information 

source size estimation algorithm. First, it assumes that the resource representations are created by the 

query-based sampling algorithm. Then the document frequency information of terms within the sampled 

documents can be obtained from resource representation. The second assumption of the Sample-Resample 

method is that each information source provides the information of how many documents in this information 

source match a single word query (i.e., the document frequency of a term in the complete information 

source). This type of statistic is often returned together with the retrieved document ranked lists by 

information sources even in uncooperative environments. For example, both Google and MSN indicate the 

approximate number of documents matching a single word query.  
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The new method acquires the information source size estimates with a sample and resample process. The 

basic procedure of this algorithm can be described as:  

- The query-based sampling method is used to build the resource description and the centralized sample 

database (i.e., the sample process); and 

- A single term is randomly selected from the resource description of a specific information source and the 

term is sent to search the information source as a single word query (i.e., the resample process). 

Assume Nsamp documents from this information source have been sampled and collected in the centralized 

sample database. Let dfq_samp be the number of sampled documents from this source that contain the query 

term. N denotes the (unknown) information source size and dfq denotes the actual document frequency of the 

query word in the complete information source. Let A denote the event that a sampled document from the 

source contains this query term and B denote the event that an arbitrary document in the complete 

information source is observed to contain this term in the resample step. The probabilities of these two events 

can be calculated as follows: 

If the sampled documents acquired by query-based sampling can be assumed to be a good representation of 

the complete information source, the above two events should have equal probabilities or formally as             

P (A) = P (B). Therefore, the size of this information source can be estimated as: 

In order to reduce the estimation variance, multiple resample queries can be utilized in the Sample-Resample 

algorithm and the final estimate can be calculated by averaging the individual information source size 

estimates. For example, if altogether K resample queries are submitted, the final information source size 

estimate is calculated as follows: 

It can be imaged that the variance of the size estimates drops with more and more resample queries. This is 

studied more carefully with the experiments in Section 3.4.2. 
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3.4 Evaluation methodology and experimental results 

 

Very little prior research has addressed the evaluation methodology of information source size estimation 

algorithms. This section first discusses how to define evaluation metrics for fair comparison of source size 

estimation algorithms by considering their costs. Furthermore, a set of experiments is conducted to study the 

effectiveness and efficiency of both the Capture-Recapture algorithm and the Sample-Resample algorithm.  

3.4.1 Evaluation methodology 

Information source size estimation algorithms are associated with different types of costs. To provide 

accurate evaluations of these algorithms, the accuracies of the algorithms should be compared when they are 

associated with the same amount of costs. In this work, the costs of different information source size 

estimation algorithms are measured by the number of interactions that they make with a particular hidden 

information source. As both the action of acquiring a page of ranked document ids and the action of 

downloading a document need a single interaction with an information source, these two actions are 

associated with the same cost. 

Both the Capture-Recapture algorithm and the Sample-Resample algorithm submit queries to a hidden 

information source to collect some information. The Capture-Recapture algorithm sends out a query and 

extracts document ids from the returned document ranked lists. If it is assumed that 20 document ids can be 

returned in a single result page, the Capture-Recapture algorithm is allowed to choose the document ids from 

a pool of 20 document ids by a single interaction with a particular information source. The Sample-Resample 

algorithm requires submitting several queries to the hidden information source in the resample step to collect 

document frequencies in the complete information source.  

There are two evaluation scenarios to compare the Capture-Recapture algorithm and the Sample-Resample 

algorithm. In the first scenario, information source size estimation is combined with other components of a 

federated search system. Both the Capture-Recapture algorithm and the Sample-Resample algorithm can take 

advantage of the information acquired by the query-based sampling method. Therefore, the 

Capture-Recapture algorithm can use the document ids in the result pages of sampled queries and the 

Sample-Resample algorithm can access the downloaded documents to calculate the sampled document 

frequency statistics. More specifically, let us assume that the query-based sampling method obtains the 

resource description for each information source by submitting 80 queries and downloading 300 documents. 

The Sample-Resample algorithm can take advantage of the 300 downloaded documents (i.e., 80 queries are 
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implicitly used for acquiring these documents) while the Capture-Recapture algorithm can only utilize the 80 

pages of ranked document ids from the sample queries. The Sample-Resample method needs to send several 

extra queries in the resample process. The number of the resample queries is set to 5 in the experiments of 

this chapter. Therefore, the Capture-Recapture algorithm of this evaluation scenario is only allowed to utilize 

85 pages of ranked document ids as shown in Figure 3.2. Note that it is possible to utilize some of the 

sampling queries from query-based sampling as the resample queries. However, this approach may produce 

overestimated document frequencies on the sampled documents and thus is not utilized in this work. 

In the second scenario, information source size estimation is independent from other federated search 

components, and the information from query-based sampling cannot be accessed for free and the costs such 

as downloading documents must be included in the evaluation. Therefore, the cost of the Sample-Resample 

algorithm is increased and thus the Capture-Recapture algorithm within scenario 2 is allowed to obtain more 

pages of ranked document ids as shown in Figure 3.2. There is a bias towards the Capture-Recapture 

algorithm for the second evaluation scenario where it is allowed to send 385 queries to obtain pages of 

ranked document ids instead of only 85 queries in the first scenario.  

Scenario 1 may be a better representation of operational environments. However, in order to conduct a 

component-level study and to evaluate the effectiveness of the new proposed Sample-Resample algorithm in 

a stricter manner, the second evaluation scenario is chosen in this work. This choice does not really affect the 

Sample-Resample method. It gives Capture-Recapture a best-case scenario for the comparison. If the 

Capture-Recapture cannot win here, it definitely does not win with scenario 1. 

In summary, the Capture-Recapture method is allowed to send 385 queries to a hidden information source, 

 
 
 

          
 
 
 
 
 
 

 
 
 
 

Figure 3.2: The data utilized by the Capture-Recapture algorithm and the Sample-Resample algorithm. 
(the shadow part of the data may be obtained from query-based sampling.) 
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where the document ids acquired by the first half of the queries are used as the first sample and the document 

ids acquired by the second half of the queries are collected in the second sample. Different variants of the 

Capture-Recapture algorithm utilize different methods of accessing ranked lists. By the same amount of 

interactions with the information source, the Sample-Resample method uses 80 queries to download 300 

documents from the information source in the sample process and submits 5 additional queries in the 

resample process. 

The absolute error ratio (AER) measure is used to evaluate the accuracies of information source size 

estimation algorithms, which is consistent with prior work [Liu et al., 2001]. Formally, let Ndbi denote the 

actual information source size of the ith information source and � idbN denote the corresponding estimate. Then, 

the AER is calculated as follows: 

The mean absolute error ratio (MAER), which is the average value of multiple AER values, is used for 

evaluation when a set of information source size estimates is evaluated.  

The first set of experiments was conducted to compare the effectiveness of the Capture-Recapture algorithm 

and the Sample-Resample algorithm. Four testbeds were used, namely the Trec123_100Col testbed, the 

Trec123_10Col testbed, the WT10g_10% testbed and the GOV_10% testbed (more detailed information can 

be found in Chapter 2). These four testbeds contain information sources of small sizes (i.e., about 10,000 

documents on average) and moderately large information sources (i.e., about 100,000 documents on average) 

respectively. Each information source within the Trec123_100Col and Trec123_10Col testbeds is composed 

of documents with homogeneous document statistics (i.e., on Trec123_100Col) or moderately heterogeneous 

document statistics (i.e., on Trec123_10Col). In contrast, the WT10g_10% and GOV_10% testbeds are 

created from Web data and they are composed of documents with more heterogeneous statistics. 

The second set of experiments was conducted to evaluate the Sample-Resample algorithm with larger 

testbeds such as the Trec123_2Col testbed (i.e., about 500,000 documents per source) and the WT10g_100% 

and GOV_100% testbeds (i.e., about 1,200,000 documents per source). The information sources in the 

second set of experiments contain documents with heterogeneous statistics. A variant of the 

Sample-Resample algorithm, which utilizes multiple word queries in the sample process, is proposed to 

further improve the accuracy of information source size estimation. The behavior of the algorithm is studied 
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with an extensive set of experiments by varying the information source sizes and the number of resample 

queries. 

When not stated explicitly, the error rates of different algorithms are obtained by averaging the results from 5 

different trials.  

3.4.2 Experiment results 

The experiment results of all the variants of the Capture-Recapture algorithm and the Sample-Resample 

algorithm are shown in Table 3.1. It can be seen that the extension proposed in Section 3.3.1 for the 

Capture-Recapture algorithm by using the method of randomly accessing document ranked lists (i.e., 

“Direct”) has substantially improved the accuracy of the Capture-Recapture algorithm. The improvement can 

be attributed to the reason that the method of randomly accessing the document ranked lists makes the two 

document id samples more independent. 

The Sample-Resample algorithm was more accurate than both the variants of the Capture-Recapture 

algorithm except for the DirectAll method on the Trec123_100Col testbed. Its advantage over the 

Capture-Recapture algorithm was larger on the Trec123_10Col, WT10g_10% and GOV_10% testbeds, 

which have larger information sources. The Capture-Recapture algorithm was only comparable with the 

Sample-Resample algorithm for small information sources with the support of random access of the ranked 

lists, which is a very strong assumption and may not be provided by many information sources. Therefore, 

we tend to draw the conclusion that the Sample-Resample algorithm is more robust than the 

Capture-Recapture algorithm especially for relatively large information sources. We do not argue that the 

Sample-Resample algorithm is better than the Capture-Recapture algorithm in all cases. In the environments 

where the information sources do not provide document frequency information, where the information 

Table 3.1: Experiment results of the information source size estimation methods on 4 small or moderately large 
testbeds with mean absolute error ratio (MAER) metric.  

Mean Absolute Error (MAER) 

Testbed Size Per Source 
(Average) Capture-Recapture  

TopAll 
Capture-Recapture 

DirectAll Sample-Resample 

Trec123_100Col 10,782 0.377 0.182 0.232 

Trec123_10Col 107,820 0.849 0.404 0.299 

WT10g_10% 121,537 0.915 0.697 0.556 

GOV_10% 124,775 0.893 0.603 0.483 
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sources can provide a large amount of document ids (i.e., larger than 20) within a result page in their ranked 

lists, or where the random access of ranked list can be guaranteed, some variants of Capture-Recapture 

algorithm may have their advantages.  

Careful analysis reveals that both the Capture-Recapture algorithm and the Sample-Resample algorithm tend 

to underestimate the information source sizes. This can be explained by the assumptions made by these two 

approaches. The Capture-Recapture algorithm assumes that the two samples of document ids are 

independent. This is not perfect as some documents that have more words and more diverse contents are 

more likely to be retrieved for different queries and thus are more likely to appear in both the first sample and 

the second sample. Also, the early sampled documents may be more likely to be retrieved again. On the other 

hand, the Sample-Resample algorithm assumes that the set of sampled documents is a good representation of 

the complete information source. However, the complete information source contains many documents that 

seldom appear at the top of ranked lists for one-term queries within query-based sampling. These documents 

are composed of a large proportion of unseen words. The proportion of documents that contain a particular 

resample query is usually overestimated based on the sampled documents. Thus, a larger denominator in 

Equation 3.6 produces an underestimated source size estimate. 

The first set of experiments was conducted to show the effectiveness of the Sample-Resample algorithm for 

small or moderately large information sources. For information sources that contain more documents with 

diverse document statistics, it is more crucial to obtain unbiased sample documents in query-based sampling 

for accurate source size estimates. In order to investigate the effect of biased sampled documents on 

information source size estimation, a second set of experiments was conducted to study the behavior of the 

Sample-Resample algorithm on the Trec123_2Col testbed, the WT10g_100% testbed and the GOV_100% 

testbed, which contain information sources that have about 500,000 to 1,200,000 documents. Particularly, 

two variants of the Sample-Resample algorithm were designed to utilize sampled documents acquired by 

different sampling methods. 

One variant of the Sample-Resample estimation algorithm acquires sampled documents by perfectly random 

sampling during query-based sampling (called Sample-Resample method with random sampling). Although 

the perfectly random sampling approach is not supported by most information sources in real world 

applications, the Sample-Resample method with random sampling serves as an optimal baseline algorithm to 

compare with other variants of the Sample-Resample method with biased sampling approaches. 

The original Sample-Resample method acquires sampled documents by sending one-word queries. A natural 

extension of this sampling approach is to use multi-word sampling queries during query-based sampling, 
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which has been studied for building resource content descriptions [Craswell, 2000]. Specifically, a set of 

words (i.e., 10 in this work) are randomly generated in an independent way and they are combined together 

as a multi-word query. Multi-word queries are associated with more diverse topics than single-word queries 

and thus increase the possibilities of producing a more random set of sampled documents. This sampling 

approach promises to generate sampled documents with less sampling bias. It is called the Sample-Resample 

method with multi-word sampling in this work. Note that the multi-word sampling approach may not work 

for information sources with exact match retrieval algorithms. For example, a search engine with a Boolean 

retrieval algorithm may always treat a multi-word query with the Boolean operator “AND” and may return 

no documents if the query words never occur together in the documents of the information source. (However, 

the method works with Boolean “OR” operator.) This is not a problem for the experiments in this 

dissertation, which utilize best match retrieval algorithms as described in Chapter 2. Similar to the 

experimental setting of the first set of experiments, different variants of the Sample-Resample method were 

allowed to sample 300 documents and send 5 resample queries in the second set of experiments.  

The experiment results of the three variants of Sample-Resample method, namely the original 

Sample-Resample method, the Sample-Resample method with multi-word sampling, and the 

Sample-Resample method with random sampling are shown in Table 3.2. It can be seen that the accuracy of 

the original Sample-Resample method was worse on the Trec123_2Col testbed than on the Trec123_100Col 

and Trec123_10Col testbeds. Analysis indicates that as there are a much larger number of documents with 

heterogeneous characteristics in each of the two very large information sources on the Trec123_2Col testbed, 

so the top ranked documents in the ranked lists of sampling queries are associated more sampling bias. For 

example, the documents from the Department of Energy collections are substantially shorter (i.e., about 120 

terms on average) than documents from other collections (e.g., on average, documents for Associated Press 

contain about 460 terms). DOE documents seldom appear at the top of the ranked lists of sampling queries. 

This sampling bias causes the original Sample-Resample method to ignore the existence of many rarely seen 

Table 3.2: Experiment results of the information source size estimation methods on 3 large testbeds using the 
mean absolute error ratio (MAER) metric.  

Mean Absolute Error 

Testbed Size Per Source 
(Average) Sample-Resample Sample-Resample 

(Multi-Word Sampling) 
Sample-Resample 

(Random Sampling) 

Trec123_2Col 539,100 0.492 0.170 0.046 

WT10g_100% 1,215,370 0.543 0.181 0.037 

GOV_100% 1,247,753 0.589 0.090 0.049 
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documents. On the other hand, the accuracies on the WT10g_100% and GOV_100% testbed did not change 

much from those on the WT10g_10% and GOV_10% testbed (Table 3.1) as all of them contain documents 

with heterogeneous statistics. 

It can be seen from Table 3.2 that the Sample-Resample method with the multi-word sampling approach 

generated reasonably good estimates on all the three testbeds. This suggests that the multi-word sampling 

approach (when it is supported by information sources) does help to reduce the sampling bias caused by 

one-word sampling approach. 

The last column of Table 3.2 shows the accuracy of the Sample-Resample method with perfectly random 

sampling. It can be seen that the method can acquire very accurate source size estimate. This exactly points 

out that the key factor to improve the estimation accuracy of Sample-Resample method is to generate 

representative sample documents with small sampling bias.  

The behavior of the Sample-Resample method with multi-word sampling approach is studied by further 

varying the information source sizes and the number of resample queries. Particularly, a range of information 

sources were created by selecting 10%-100% documents from WT10g and GOV testbeds. These testbeds 

contain about 120,000 documents to about 1,200,000 documents. The Sample-Resample method with the 

multi-word sampling approach was applied on these testbeds and the results are shown in Table 3.3. It can be 

seen from the results that the mean absolute error rates are always under 20% for all configurations. The 

absolute error increases as the source sizes grow. However, the growth in error rate is slower when sizes 

grow from 50% to 100% than from 10% to 50% on both the WT10g and GOV testbeds.   

Table 3.3: Experiment results of the Sample-Resample method with Multi-Word Sampling approach on testbeds of 
varying the source sizes. The metric is mean absolute error ratio (MAER).  

Testbed WT10g_10% WT10g_30% WT10g_50% WT10g_70% WT10g_90% WT10g_100% 

Number of 
Documents 121,537 364,611 607,605 850,759 1,093833 1,215,370 

MAER 0.094 0.105 0.153 0.158 0.186 0.181 

 

Testbed GOV_10% GOV_30% GOV_50% GOV_70% GOV_90% GOV_100% 

Number of 
Documents 124,775 374,326 623,877 873,427 1,122978 1,247,753 

MAER 0.068 0.072 0.089 0.088 0.079 0.090 
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Another set of experiments was conducted by varying the number of resample queries used by the 

Sample-Resample method. The previous empirical studies of the Sample-Resample method in this chapter 

were conducted by sending 5 resample queries to available sources. It is helpful to explore the impact of the 

number of resample queries. Specifically, the Sample-Resample method with multi-word sampling approach 

was applied on the three testbeds TREC123_2Col, WT10g_100%, and GOV_100% by using 1, 5, 10, 20, 50 

and 100 resample queries. The results are shown in Tables 3.4 and 3.5 respectively. These results were 

obtained by averaging 15 trials. It can be seen from the results that the mean absolute error rates of using a 

few resample queries (i.e., 1 or 5) are similar to those of using many more resample queries (i.e., 50 or 100). 

However, the standard deviation of the error rates drops substantially as more resample queries are used. 

Especially, the decrease of the standard deviation is apparent by using five resample queries than by using 

only one resample query. The decrease of the standard deviation is much slower when more resample queries 

are used (i.e., more than 10). This supports our previous approach of using 5 resample queries. 

Table 3.4: Experiment results of the Sample-Resample method with Multi-Word Sampling approach on the 
Trec123_Col2 testbed by varying number of resample queries (1-100). The metric is mean absolute error ratio 

(MAER). The standard deviation (STD) of MAER is also provided. 

Number of 
Resample Queries 1 5 10 20 50 100 

MAER 0.186 0.166 0.142 0.150 0.135 0.153 

      STD 0.134 0.099 0.117 0.0967 0.085 0.079 

 
Table 3.5: Experiment results of the Sample-Resample method with Multi-Word Sampling approach on the 

WT10g_100% testbed by varying number of resample queries (1-100). The metric is mean absolute error ratio 
(MAER). The standard deviation (STD) of MAER is also provided. 

Number of 
Resample Queries 1 5 10 20 50 100 

MAER 0.179 0.150 0.178 0.201 0.165 0.172 

      STD 0.141 0.111 0.110 0.112 0.087 0.091 
 

Table 3.5: Experiment results of the Sample-Resample method with Multi-Word Sampling approach on the 
GOV_100% testbed by varying number of resample queries (1-100). The metric is mean absolute error ratio (MAER). 

The standard deviation (STD) of MAER is also provided. 
 

Number of 
Resample Queries 1 5 10 20 50 100 

MAER 0.119 0.096 0.107 0.090 0.077 0.079 

      STD 0.103 0.066 0.097 0.083 0.088 0.065 
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3.5 Summary 

 

Previous research has provided good solutions for discovering word histograms from available sources. 

Recently, the field starts to recognize the importance of information source sizes as another type of resource 

representation for supporting more accurate resource selection decision, which demands an effective and 

efficient source size estimation algorithm. 

The prior Capture-Recapture method is shown in this chapter to be inefficient for acquiring accurate source 

size estimates. On the other hand, a new Sample-Resample method is proposed. This method works with 

query-based sampling method and views the sampled documents as a small set of representative documents 

from complete information sources. It analyzes document frequency statistics from both the sampled 

documents and the complete information sources to estimate information source sizes. The Sample-Resample 

method is shown to generate more accurate size estimates than the Capture-Recapture method. Furthermore, 

different variants of the Sample-Resample method have been proposed. When multi-word sampling is 

supported by available information sources, the Sample-Resample method can acquire source size error rates 

as low as 10%-20% on a range of testbeds with several hundred thousand documents to about 1 million 

documents. 

There are several directions to investigate the behavior of the Sample-Resample method in the future. For 

example, the accuracy of the Sample-Resample method has been evaluated with information sources that 

contain up to about 1 million documents, which is an upper bound for the federated search environments 

evaluated in this dissertation. However, it is helpful to test the Sample-Resample method with even larger 

sources for real world federated search applications. Another possibility is to propose a new variant of the 

Sample-Resample method without the requirement of obtaining the document frequency information from 

complete information sources. This ability is important as information sources in real world applications may 

not provide this functionality or may provide statistics with errors. 

Another interesting issue is that the experiments in this chapter provide more information about bias in 

query-based sampling, which was also observed in previous research [Craswell, 2000]. The experiments 

demonstrate the effect of the bias on source size estimation algorithms. The multi-word sampling approach 

provides a method of addressing the sampling bias, but there may be better solutions, which remains an 

interesting future research topic.  

This chapter also points out the importance of a centralized sample database as a surrogate for understanding 

and simulating the behavior of centralized complete database, which does not exist in federated search 
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environments. The centralized sample database is very important for resource selection and results merging 

as described in Chapters 4-8. 

For most experiments in this dissertation, a fixed number of documents (e.g., 300) are sampled from each 

information source. Prior research has indicated that this is adequate in many federated search environments. 

However, an adaptive query-based sampling approach combined with the Sample-Resample size estimation 

method might improve the accuracy of resource selection especially for large information sources. For 

example, an adaptive sampling approach could sample a small percentage (e.g., 1%) documents from each 

available source. It is an open question whether adaptive sampling would further improve the accuracy of the 

resource selection and results merging methods described in Chapters 4-8. 

Furthermore, the research in this dissertation builds the centralized sample database only once without update. 

However, in real world applications, the contents of hidden information sources may update or change 

frequently. Previous research in [Ipeirotis, Ntoulas & Gravano, 2005] provided a good method to model the 

content changes. One future research topic is to study the strategy of updating the centralized sample 

database for better performance of federated search applications such as resource selection and results 

merging. 
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Chapter 4: Resource Selection 
 

 

After resource descriptions are acquired, the next task of an information source recommendation system or a 

federated document retrieval system is to select a small set of information sources to search. This chapter 

first introduces previous research on resource selection and particularly discusses the deficiency of the “big 

document” resource selection approach. To address the problem, several extensions are proposed to 

incorporate information source size estimates with two well-known resource selection algorithms: CORI and 

KL divergence. Furthermore, a Relevant Document Distribution Estimation (ReDDE) resource selection 

algorithm is introduced, which explicitly optimizes the high-recall goal of information source 

recommendation application. Experiment results are shown to evaluate the accuracies of these resource 

selection algorithms. 

 

4.1 Previous research on resource selection 

 

There is a large body of prior research on resource selection, which includes bGlOSS/gGlOSS/vGlOSS 

[Gravano et al., 1994; Gravano et al., 1999], query clustering/RDD [Voorhees et al., 1995], 

decision-theoretic framework (DTF) [Fuhr, 1999; Nottelmann & Fuhr, 2003b], lightweight probes [Hawking 

& Thistlewaite, 1999], CVV [Yuwono & Lee, 1997], CORI [Callan, Lu & Croft, 1995; Callan, 2000], 

KL-divergence algorithm [Xu & Croft, 1999], and a hierarchical database sampling and selection algorithm 

[Ipeirotis & Gravano, 2002; Ipeirotis & Gravano, 2004]. 

The algorithms of query clustering/RDD, DTF and lightweight probes utilize different types of training data. 

The query clustering/RDD methods and the DTF method require human relevance judgments while the 

lightweight probes method obtains necessary statistics in an unsupervised manner. In contrast, most other 

methods do not require training data and only utilize the information obtained from resource descriptions. 

The CVV, CORI and KL-divergence algorithms follow the strategy of the “big document” approach by 

treating information sources as big documents and ranking information sources by their similarity scores with 

user queries. On the other hand, the bGlOSS/gGlOSS/vGlOSS algorithms turn away from the “big 



 
      
                                    
                                                                                 

45 

document” approach by considering goodness/utilities of individual documents. Finally, the hierarchical 

database sampling and selection algorithm builds information source hierarchy and utilizes other base 

resource selection algorithms (e.g., CORI or KL-divergence) to rank the information sources. Below we 

provide more detailed information about these algorithms. 

The query clustering/RDD [Voorhees et al., 1995] resource selection algorithms rely on a query log that is 

composed of a set of training queries and relevance judgments. These algorithms use methods like the k 

nearest neighbor algorithm [Yang, 1999; Duda, Hart & Stork, 2000] to detect similar training queries to a 

particular user query, and then rank the information sources by the distribution of the relevant documents for 

these training queries. They may work well when there are enough similar training queries with complete 

relevance judgment data. However, the main problems with these methods are: i) the required human effort 

of generating relevance judgment data grows linearly with the number of information sources; and ii) when 

individual information sources update their contents, it is necessary to generate new training data. 

The DTF method [Fuhr, 1999; Nottelmann & Fuhr, 2003b] yields a source selection decision that minimizes 

a function of overall costs (e.g., retrieval accuracy, query processing cost and communication cost) for the 

federated document retrieval application. The DTF method is based on a solid decision framework. However, 

it assumes that all information sources use the same type of retrieval algorithm, which is usually not true in 

uncooperative environments. The DTF method requires training data of human relevance judgments for the 

results retrieved from each available information source, which is an excessive amount of human effort if 

there are many information sources. More detailed analysis of this algorithm can be found in Chapter 7. 

The lightweight probes method [Hawking & Thistlewaite, 1999] broadcasts two-word subsets of user queries 

to all available information sources to obtain query term statistics. These term statistics are used to rank the 

information sources. This method requires very little amount of prior knowledge about each information 

source and calculates the information source ranking in an online manner. Therefore, it is better in 

recognizing content change of information sources. However, it is often associated significant 

communication costs for sending the query probes, which is more serious in a large federated search system 

with many information sources. Furthermore, the lightweight probes method assumes a common 

representation and some cooperation from available sources, which may not be available in uncooperative 

environments. 

Many resource selection algorithms share the property of treating information sources as big documents and 

calculating similarities between these “big documents” and user queries to make the selection decision. 

These big document resource selection algorithms include the CVV [Yuwono & Lee, 1997] algorithm, the 
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CORI [Callan, Lu & Croft, 1995] algorithm and the Kullback-Leibler (KL) divergence algorithm [Xu & 

Croft, 1999] etc. They choose different representations of the “big documents” and calculate different types 

of similarity scores. However, these methods do not explicitly consider whether individual documents within 

an information source are relevant or similar to the query. This causes trouble for optimizing the high-recall 

goal of information source recommendation application, where the actual goodness of each information 

source is measured by the amount of relevant documents it contains. For example, in “big document” 

methods the source selection scores are based on the number of matching words in the information sources. 

These methods cannot distinguish whether there are many matches in a single long document or few matches 

in each of many short documents, because the boundaries among documents are not preserved. 

The Cue Validity Variance (CVV) resource selection algorithm [Yuwono & Lee, 1997] assigns different 

weights (CVV) to the words. The words that better discriminate information sources are assigned higher 

weights than the words that distribute more evenly across the information sources. With these term weights, 

the CVV algorithm ranks available information sources by the sum of the weighted document frequencies of 

query words. However, as large information sources often have large document frequency values for query 

words, it has been indicated in previous research [Craswell, 2000] that the CVV resource selection algorithm 

tends to favor large information sources and thus information source size normalization needs to be 

introduced for improving the selection accuracy.  

Another two “big document” resource selection methods are CORI and KL-divergence algorithms. More 

detailed information about these two algorithms is provided here as they are used as the baseline algorithms 

in this chapter. 

The CORI resource selection algorithm [Callan, Lu & Croft, 1995; Callan, 2000] utilizes a Bayesian 

inference network model with an adapted Okapi term frequency normalization formula [Robertson & 

Walker, 1994] to rank available information sources. CORI is related to the INQUERY ad-hoc retrieval 

algorithm. Formally, the belief of the ith information source associated with the word q, ip(q|db ) , is 

calculated as: 

 

i

df
T=

df+50+150*cw /avg_cw
 (4.1) 

DB +0.5
log

cf
I=

log( DB +1.0)

� �
� �
� � 

(4.2) 
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where:  df    is the number of documents in the ith information source that contain q; 

       cf       is the number of information sources that contain q; 

|DB|  is the number of information sources to be ranked; 

cwi   is the number of words in the ith information source; 

       avg_cw  is the average cw of the information sources to be ranked; and 

       b   is the default belief, usually set to 0.4. 

The CORI algorithm ranks information sources by the belief P (Q | dbi), which denotes the probability that 

query Q is satisfied with the observation of the ith information source. The most common way to calculate the 

belief P (Q | dbi) is to use the average value of the beliefs of all query words; a set of more complex query 

operators are also available for handling structured queries [Callan, 2000].  

The Kullback-Leibler (KL) divergence resource selection algorithm was proposed by Xu and Croft [Xu & 

Croft, 1999]. In this method, the content descriptions of all information sources are treated as single big 

documents and are modeled using multinomial distributions. Similarly, user queries are also modeled as 

multinomial distributions. The Kullback-Leibler divergence between the distributions of a user query and 

available information sources is used to rank the information sources. Formally, the KL divergence between 

the query Q and the ith information source is computed as: 

P (q | dbi) is the probability of query term q in the unigram language model (multinomial distribution) of the 

content description of the ith information source. P (q | Q) and P (q | G) are the probabilities of the query term 

q in the query language model and a global language model respectively, which are calculated based on the 

relatively frequencies of term q in user query and the global corpus. The global language model can be 

obtained by combining resource descriptions of all information sources together and building a single 

language model. Linear interpolation constant �  smoothes the information source language model with the 

global language model, which is set to a numerical value between 0 and 1 (e.g., 0.5). 

The CORI and KL-divergence resource selection algorithms have been shown in previous studies to be more 

robust and effective than several alternatives in different experiment environments [French et al., 1999; 

ip(q|db )=b+(1-b)*T*I  (4.3) 
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Craswell et al., 2000; Xu & Croft, 1999]. They are computationally efficient and can be easily applied in 

uncooperative environments with query-based sampling method. However, they belong to the big document 

resource selection approach and do not normalize the sizes of hidden information sources well. Section 4.4 

shows experiments that both the CORI and KL-divergence algorithms have a strong bias against large 

information sources and thus miss a large amount of relevant documents. 

Gravano and García-Molina proposed the bGlOSS resource selection algorithm [Gravano et al., 1994] and 

the gGlOSS/vGlOSS algorithms in [Gravano & García-Molina, 1995; Gravano et al., 1999]. These methods 

turn away from “big document” approach by considering the goodness of individual documents. This is 

similar to our new approach and thus these methods are discussed in more detail below. 

The bGlOSS algorithm is based on a Boolean retrieval algorithm. It assumes that the distributions of 

different query terms are independent and estimates the number of documents containing query terms to rank 

the information sources. The vGlOSS algorithm is a more sophisticated model based on the vector space 

model. It represents a document in the vector space of m distinct words as <w1,…,wm> where wk is the weight 

(e.g., the idf value) assigned to the kth word in the document. Similarly, a user query is represented in the 

same space as <q1,…,qm> where qk is typically a function of the number of occurrences that the kth word 

appears in the query. Using these representations, the vGlOSS method calculates the similarity value sim(Q , 

d) between a query Q and a document d as follows: 

which is a dot product between two vectors of words in documents and words in the query. The vGlOSS 

method calculates the goodness of the information source with respect to the query as: 

where l is a threshold. The process is repeated for all information sources and finally they are ranked by the 

corresponding goodness scores. When the contents of all the documents in the hidden information sources 

are accessible, the goodness values represented in Equation 4.6 can be exactly calculated. Therefore, the 

values as Ideal(l) of available information sources can be obtained. But in most federated search 

environments, the resource selection algorithms can only observe limited information about the documents in 

the information sources. In this case, the vGlOSS algorithm tries to approximate the Ideal(l) function by two 

functions Max(l) and Sum(l) [Gravano & García-Molina, 1995; Gravano et al., 1999]. These two functions 

calculate the estimated goodness for an information source based on a high correlation scenario and a disjoint 

m

k k
k=1

sim(Q,d)= q w∗�  (4.5) 
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scenario of the query word co-occurrences. vGlOSS needs two vectors containing information about the 

document frequency and the sum of weights of each word from a particular information source to calculate 

Max(l) and Sum(l). Information sources can provide these statistics in cooperative environments. Otherwise, 

sampling queries can be sent to learn the information in uncooperative environments. 

The vGlOSS method considers individual documents to judge whether they are relevant or not and thus turns 

away from the “big document” approach. This provides a better opportunity to model the utility of each 

information source as the amount of relevant documents that it contains. However, two important issues limit 

its power. First, the two approximations as Max(l) and Sum(l) make too strong assumptions about query 

word distributions within information sources. Max(l) assumes query words always occur together in the 

documents while Sum(l) assumes that query words do not occur together. Second, the word weight wk in 

Equation 4.5 is source-specific and thus the same document may be judged as relevant in one information 

source and as irrelevant in another information source due to different corpus statistics. As the utility of a 

particular information source is measured by the number of relevant documents it contains, the information 

source-specific weighting scheme may not be appropriate. These two issues can be used to explain why the 

vGlOSS algorithm is less accurate than algorithms such as CORI or KL-divergence in several empirically 

studies [French et al., 1999; Craswell, 2000]. 

The hierarchical database sampling and selection algorithm [Ipeirotis & Gravano, 2002] derives information 

source descriptions by using focused query probes (i.e., query on specific topics) and builds hierarchical 

structure for hidden information sources. A more recent shrinkage-based selection algorithm [Ipeirotis & 

Gravano, 2004] utilizes a similar strategy with refined resource representation. These methods provide a 

better way to smooth the word distributions in the resource representations of information sources. However, 

as the resource selection in the above two algorithms is still conducted with base resource selection 

algorithms such as CORI and bGlOSS, these resource selection algorithms still suffer from the weakness of 

the base algorithms.  

 

4.2 Incorporating size estimates into resource selection algorithms 

 

The goal of the resource selection algorithms in an information source recommendation system is to select a 

small number of information sources with the largest number of relevant documents. Therefore, to estimate 

the number of relevant documents contained in available sources, the sizes of available information sources 

play an important role in designing effective resource selection algorithms. However, very little research has 
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been conducted to study the effect of information source sizes on resource selection. One reason is the 

difficulty to acquire information source size estimates effectively and efficiently in uncooperative 

environments. Chapter 3 presents the Sample-Resample method as a promising solution, which provides an 

opportunity to better adjust or normalize resource selection algorithms with respect to the information source 

sizes. 

The information source size scale factor is associated with each information source and defined as the ratio 

of its estimated size and the number of sampled documents from this source as follows: 

where i

^

dbN  denotes the source size estimate for a particular ith information source and Ndbi_samp denotes the 

number of sampled documents from this information source. 

Previous research has shown that the CORI and KL-divergence algorithms are more robust and effective than 

several other alternatives in different federated search environments [French et al., 1999; Craswell et al., 

2000; Xu & Croft, 1999]. They were chosen as the baseline algorithms in this work and new variants of these 

two algorithms that adjust for information source sizes are proposed in this section. 

The information source selection scores for the CORI selection algorithm are calculated as Equations 4.1, 4.2 

and 4.3. Callan pointed out that the CORI formula of Equation 4.1 is a variation of the Roberson’s term 

frequency (tf) [Robertson & Walker, 1994] weight, in which the term frequency is replaced by document 

frequencies in the sampled documents and the constants are scaled by a factor of 100 to accommodate the 

large document frequency values [Callan, Lu & Croft, 1995; Callan, 2000]. Equation 4.1 can be generalized 

and reformulated as follows: 

where df is the document frequency, df_base and df_factor are two constants, cwi and avg_cw represent the 

number of words in the ith information source and the average number of words across available information 

sources respectively. In uncooperative environments, CORI is combined with the query-based sampling 

method and the above statistics are calculated on the sampled data. df is the document frequency in the 

sampled documents; cwi and avg_cw are calculated based on the sampled documents and the df_base and 

df_factor constants are set to 50 and 150 by default. This configuration has been shown to be effective on 
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several testbeds with rather uniform source size distributions like Trec123_100Col [Callan, 2000], where the 

average information source size is about 10,000 and 300 hundreds documents are sampled from each source. 

Our basic idea of incorporating the information source size factor into the CORI resource selection algorithm 

is to simulate the behavior as if the complete resource descriptions are available (i.e., the statistics in 

Equations 4.1, 4.2 and 4.3 are calculated from all the documents across available information sources). To 

accomplish that, at least three issues should be addressed in Equation 4.8 [Si & Callan, 2004a]. 

First, the document frequency represented by df in Equation 4.8 is the document frequency of a specific term 

q in the sampled documents. To estimate the actual document frequency in the information source, the 

sampled document frequency should be scaled as follows: 

Note that a similar approach is also used to estimate actual document frequency in [Ipeirotis & Gravano, 

2002; Ipeirotis & Gravano, 2004]. 

Second, the cwi in Equation 4.8 denotes the number of words contained in the sampled documents from the 

ith information source, while avg_cw represents the average number of words in sampled documents across 

all the information sources. To incorporate the information source size factor, these two values should also be 

scaled as: 

where |DB| represents the number of information sources. 

The last issue to be addressed is the two constants as df_base and df_factor. It was indicated in      

[Callan, 2000] that large df_base and df_factor values should be used to accommodate large values of the 

document frequencies. However, how to most effectively set the values of df_base and df_factor is still not 

clear. The values of 0.5 and 1.5 are chosen for ad-hoc document retrieval in the Okapi formula [Robertson & 

Walker, 1994]. The values of 50 and 150 have been shown to work for the CORI resource selection 

algorithm with both complete resource descriptions and sampled resource descriptions (i.e., 300 sampled 

documents for each information source) [Callan, 2000]. We do not try to solve the optimal settings of 

idbdf '= df SF∗  (4.9) 

ii i dbcw '= cw SF∗  (4.10) 

ii db
i

1
avg_cw'= cw SF

|DB|
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df_base and df_factor in this work. However, the effects of larger values of df_base and df_factor are 

investigated. More specifically, these two values are scaled as follows: 

 

Finally, all these updated formulae are plugged into Equation 4.8 to calculate a new T value that considers 

the information source size factor. Furthermore, the information source beliefs P (Q | dbi) are calculated and 

the information sources can be ranked accordingly. 

Two variants of the CORI algorithm are proposed based on the above extensions. CORI/Ext1 algorithm uses 

the updated document frequency in Equation 4.9 and the updated number of words in information sources in 

Equations 4.10 and 4.11. The second extension, which is called CORI/Ext2, takes advantage of all the 

updated document frequency, the updated number of words and the two new df_base and df_factor constants 

in Equations 4.10 to 4.13. The difference between the CORI/Ext1 and CORI/Ext2 algorithms is the choice of 

relatively small values of df_base and df_factor (i.e., CORI/Ext1) and the choice of relatively large values 

(i.e., CORI/Ext2). The comparison between the CORI/Ext1 and CORI/Ext2 algorithms helps us investigate 

the effectiveness of these parameter settings. 

The KL-divergence resource selection algorithm was proposed by Xu and Croft [Xu & Croft, 1999]. It views 

the resource content representations of available information sources and user queries as probability 

distributions and calculates the KL-divergence distance between these probability distributions to rank the 

information sources. The KL-divergence resource selection algorithm can be extended and given an 

interpretation in the language-modeling framework [Si & Callan, 2004a]. In this framework, all the sampled 

documents from a specific information source are collapsed into a single large document and a unigram 

language model (i.e., multinomial distribution) is calculated for each of the large documents. More 

specifically, the information sources are sorted by the probabilities of  P (dbi  | Q), which are the generation 

probabilities of predicting different information sources based on the observation of query Q. By the 

Bayesian rule, the probabilities of P (dbi | Q) can be further calculated as follows: 

idbdf_base'= 50 SF∗  (4.12) 

idbdf_factor'= 150*SF  (4.13) 

i i
i

P(Q|db ) P(db )
P(db |Q) =

P(Q)
∗

 (4.14) 
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where P (Q | dbi) denotes the likelihood of generating query Q from the ith information source; P (dbi) is the 

prior probability, which represents our preference of this specific information source before observing the 

query; and P (Q) is the generation probability of the query and acts as the normalization factor. Since P (Q) is 

not related with the information source ranking, it is ignored in the calculation and Equation 4.14 can be 

simplified as: 

 
Following the Naïve-Bayes principle of assuming query terms are independent with each other, the value of  

P (Q | dbi) is calculated as: 

P (q | dbi) is the probability of generating a specific term q by the content description of the ith information 

source. P (q | G) is the probability of generating this term by a global unigram language model, which is 

obtained by collapsing resource descriptions of all the information sources together and building a single 

unigram language model. The linear interpolation constant �  is introduced to smooth the source-specific 

language model with the global language model and is usually adjusted in the range of 0 to 1 (It is set to 0.5 

in this work). 

To calculate the probabilities of P (dbi | Q) in Equation 4.15, it is necessary to estimate the information source 

prior probabilities of P (dbi). If a simple uniform distribution is used to set the prior probabilities, the values 

of P (dbi | Q) will be totally determined by the query likelihood P (Q | dbi). In this case, it is not difficult to 

show that the extended language model resource selection algorithm and the original KL-divergence 

algorithm in Equation 4.4 are actually equivalent by simply taking the logarithm of Equation 4.15 and 

noticing that the term of 
q Q

P(q|Q)log(q|Q)
∈
� in Equation 4.4 is a source-independent constant. 

Our strategy to incorporate the information source size factor into this extended language model resource 

selection algorithm is to assign the information source prior probabilities according to the information source 

sizes. This is a natural idea as large information sources should be more favorable than small information 

sources when we are ignorant of the information need. This can be explained by the following example. In a 

federated search environment which contains two information sources A and B, the source A contains 10 

documents and the source B contains 5 documents. Without knowing the information need, all the documents 

i i iP(db |Q) P(Q|db ) P(db )∝ ∗  (4.15) 

i i
q Q

P(Q|db ) = (�P(q|db )+(1-�)P(q|G))
∈
∏  (4.16) 
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are treated equally. Therefore, the source A can be expected to have two times more useful information than 

the source B. Formally, the prior distribution is calculated as: 

Finally, Equations 4.16 and 4.17 are plugged into the language model resource selection framework in 

Equation 4.15, and the information sources can be ranked according to the conditional probabilities of           

P ( dbi | Q) as follows: 

The new extended language model resource selection algorithm is denoted as the LM/Ext resource selection 

algorithm in this work. 

The above extensions of the CORI and KL-divergence resource selection algorithms use different methods to 

incorporate the information source size factor, which promises to improve the original big document 

approach. However, these extensions still do not directly address the high-recall goal of information source 

recommendation application for maximizing the number of relevant documents contained in selected 

information sources. For example, the normalization approach of the extended CORI algorithm utilizes the 

source size factor to estimate the actual corpus statistics like document frequencies. However, each 

information source is still treated as a single large document and the source size statistics are not directly 

used to estimate the number of relevant documents. 

The extended language model resource selection algorithm goes a step beyond the extended CORI algorithm. 

The likelihood probability P (Q | dbi) in Equation 4.15 can be seen as the average value of the query 

generation probabilities of all the documents in the ith information source, and the source prior probability    

P (dbi) is introduced to reflect the effect of the information source sizes. If P (Q | dbi) is indicative of whether 

on average a single document in the ith information source is relevant or not, the value P (dbi | Q) that 

incorporates source size estimate as prior can be related with the number of relevant documents that this 

information source contains. 

Although the extended language model resource selection algorithm goes a step further than the extended 

CORI algorithm to approximate the high-recall goal of the information source recommendation application, 

it still does not explicitly deal with individual documents, which may be a serious problem. That can be 

�

�

i

i

db
i
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i

N
P(db ) =

N�
 (4.17) 
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explained by the following example. An information source A contains one very long relevant document and 

another nine irrelevant documents, while another source B contains nine short relevant documents and 

another one long irrelevant document. The information source A and the information source B may have the 

same unigram language models such that P (Q | dbA) is equal to P (Q | dbB). Furthermore, as these two 

information sources contain the same number of documents, P (dbA) is also equivalent to P (dbB) and 

therefore P (dbA | Q) is equal to P (dbB | Q). The above derivation suggests that the two information sources 

are equally valuable to us. However, this is not consistent with our expectation as selecting source B gives us 

nine relevant documents while selecting source A only returns one.  

The above discussion indicates that a more effective resource selection algorithm should explicitly consider 

the individual documents in each information source. In other words, the probability of relevance for each 

document in the information sources should be estimated one by one in order to achieve more accurate 

resource selection results.  

 

4.3 Relevant document distribution estimation (ReDDE) resource selection algorithm 

 

The relevant document distribution estimation (ReDDE) resource selection algorithm [Si & Callan, 2003a] 

was proposed to turn away from the “big document” resource selection approach. It was pointed out that the 

goal of an information source recommendation system is to select a fixed number of information sources 

with the largest number of relevant documents. The ReDDE algorithm accomplishes this goal by explicitly 

estimating the distribution of relevant documents across all the information sources and ranking the 

information sources according to the distribution. 

Formally, the number of documents relevant to a query Q in the ith information source dbi is estimated as 

follows:  

where Ndbi denotes the number of documents in the ith information source and the probability P (d | dbi) is the 

generation probability of a particular document d in this information source. If all the documents in this 

information source can be downloaded and considered in Equation 4.19, this probability as P (d | dbi) will be 

1/ Ndbi and it can be cancelled with Ndbi. This indicates that we want to sum up the probabilities of relevance 

for all individual documents. However, in uncooperative federated search environments, it is only possible to 

i
i

i db
d db

Rel_Q(i) = P(rel|d) P(d|db ) N
∈

∗ ∗�  (4.19) 
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access the sampled documents, and the actual information source size Ndbi is replaced by its corresponding 

estimate � idbN . As long as the sampled documents are representative, Equation 4.19 can be approximated as:  

where dbi_samp denotes the set of sampled documents from the ith information source. The idea behind this 

equation is that when one sampled document from the information source is relevant to a query, we believe 

that there are about SFdbi similar documents in the complete information source, which are also relevant to 

the query. 

The only item left to be estimated in Equation 4.20 is P (rel | d), which denotes the probability of relevance of 

an arbitrary sampled document. How to calculate this probability is a fundamental problem of information 

retrieval research. Many retrieval algorithms such as the Bayesian belief network [Turtle, 1990] and the 

language model [Ponte & Croft, 1998; Zhai & Lafferty, 2003] have been proposed to address this problem. 

This problem is not solved in the general case here. Instead, the probability of relevance is approximated in a 

simple way as described below. 

To approximate the probability of relevance, we take advantage of available information from resource 

descriptions. Particularly, the query-based sampling method generates the content descriptions, which is used 

for estimating information source sizes. Furthermore, the sampled documents are combined to build the 

centralized sample database (CSDB), which plays an important role for approximating the probabilities of 

relevance for all the documents. 

The procedure of estimating the probabilities of relevance is associated with a complete version of the 

centralized sample database, which is called the centralized complete database (CCDB). The centralized 

complete database is the union of all the individual documents in available information sources. Of course, 

the centralized complete database does not exist; otherwise, a more effective ad-hoc retrieval method can be 

directly applied on the complete database instead of using the federated search solution. However, the 

centralized sample database is a representative subset of the centralized complete database and the statistics 

of the centralized complete database can be estimated by the statistics of the centralized sample database. An 

example in this section shows how to simulate the retrieval ranked list from the centralized complete 

database by the ranked list from the centralized sample database. 

The probability of relevance is modeled as a step function with respect to the retrieval result from the 

centralized complete database. More specifically, an effective retrieval algorithm is applied on the 

i
i

db
d db _samp

Rel_Q(i) P(rel|d) SF
∈

≈ ∗�  (4.20) 
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centralized complete database. The documents that rank at the top of the centralized complete database have 

the probabilities of relevance as positive constants, while the probabilities of relevance of all the other 

documents are zero. This idea can be formalized as:  

where RankCCDB (Q , d) indicates the rank of document d in the retrieval results from the centralized 

complete database with respect to query Q. Ratio is a percentage threshold, which separates relevant 

documents from irrelevant documents. This formula is also visualized in Figure 4.1. Treating the curve of 

probability of relevance as a step function is a rough approximation. However, this is a common approach in 

information retrieval research especially when only very limited information is available. For example, the 

pseudo relevance query expansion method uses the top documents in the initial retrieval as relevant 

documents to extract expanded query terms [Xu & Croft, 1996]. Note that most prior pseudo relevance 

feedback research used a rank based threshold while a ratio based threshold is used here to accommodate the 

large variation of the information source sizes. 

The retrieval results from the centralized complete database are not directly accessible, but they can be 

approximated by the retrieval results from the centralized sample database. More specifically, the user query 

is sent to search the centralized sample database by an effective ad-hoc retrieval algorithm, which is 

INQUERY [Turtle, 1999; Callan, Croft & Broglio, 1995] in this work. The obtained ranked list from the 

centralized sample database is used to construct the ranked list from the centralized complete database. 

Formally, the rank of a document in the centralized complete database is calculated by: 

 

�
idbQ CCDB

i
C if Rank (Q,d)<ratio* N

P(rel|d) =
0 otherwise

	
�
�
��

�
 

(4.21) 
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Figure 4.1: The curve of probability of relevance as a step function. 
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where RankCSDB (Q , d) denotes the rank of a document in the centralized sample database, and db (d j) 

indicates which information source the document dj is from. The approximation procedure of the ranked list 

from the centralized complete database by the ranked list from centralized sample database is shown in     

Figure 4.2. 

Given Equations 4.21 and 4.22, the number of relevant documents in each information source can be 

estimated by Equation 4.20. However, note that there still exists a query dependent constant CQ introduced 

by Equation 4.21, which makes the calculation of the exact number of relevant documents intractable. 

Therefore, the number of relevant documents across available information sources is further normalized to 

compute the distribution of the relevant documents as follows:  

Both the numerator and the denominator in Equation 4.23 contain the query specific constant CQ, which is 

cancelled during the calculation. Therefore, Equation 4.23 provides us the computable distribution of 

relevant documents. It serves as the criterion to rank the information sources. Based on this criterion, the 

information sources with the largest number of relevant documents are selected as they contain larger 

fractions of relevant documents estimated by Equation 4.23. This indicates that the ReDDE algorithm 

explicitly meets the high-recall goal of the information source recommendation application, which is to select 

information sources that contain the largest number of relevant documents.  

 

4.4 Evaluation methodology and experimental results 

i

Rel_Q(i)
Dist_Rel_Q(i) =

Rel_Q(i)�
 (4.23) 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2: The approximation of the ranked list on centralized complete database (CCDB) by the ranked list 
on centralized sample database (CSDB). 
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This section first discusses experimental methodology to evaluate resource selection algorithms. 

Furthermore, a series of experiment results conducted on testbeds with different characteristics is shown to 

compare the effectiveness of the basic version of CORI algorithm, the basic version of the KL divergence 

algorithm, the extended CORI algorithms, the extended language model resource selection algorithm and the 

ReDDE algorithm.  

4.4.1 Evaluation methodology 

The desired goal of resource selection algorithms of an information source recommendation system is to 

select a small number of information sources with the largest proportion of relevant documents. They are 

typically compared with a desired information source ranking called Relevance-Based Ranking, where the 

information sources are ranked by the actual number of relevant documents they contain. Let E and B be the 

ranking provided by the resource selection algorithm being evaluated and the oracle relevance-based ranking 

respectively, and Bi and Ei denote the number of relevant documents in the ith ranked information source of B 

and E respectively. The recall metric Rk for comparison is defined as follows: 

This comparison metric measures the percentage difference of the relevant documents included by the 

ranking generated by the algorithm in evaluation and the ranking by the relevance-based ranking algorithm, 

which is always between 0 and 1. Therefore, at a fixed k, a larger value of Rk indicates a better information 

source ranking result. 

The experiments were conducted on four testbeds with six resource selection algorithms. The four testbeds 

cover a wide range of federated search environments: relatively uniform information source size and content 

distributions (i.e., Trec123_100Col), moderately skewed information source size and moderately skewed 

content distributions (i.e., Trec4_kmeans), bimodal information source size distribution where a large 

proportion of relevant documents are in the large information sources (i.e., Relevant) and bimodal 

information source size distribution where a small proportion of relevant documents are in the large 

information sources (i.e., Nonrelevant). Detailed information of these testbeds can be found in Chapter 2. 

The six resource selection algorithms are the basic CORI algorithm, the CORI/Ext1 algorithm (Section 4.2), 

the CORI/Ext2 algorithm (Section 4.2), the basic KL-divergence algorithm, the extended language model 

k
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resource selection algorithm (LM/Ext) (Section 4.2) and the ReDDE algorithm (Section 4.3). 

All the resource selection algorithms in the experiments used query-based sampling method to acquire 

resource representations. Specifically, about 80 queries were sent to search each information source and 300 

documents were downloaded for each source. The information source size estimates were obtained by the 

original Sample-Resample method as described in Chapter 3. 

4.4.2 Experiment results 

In the first set of experiments, all resource selection algorithms used information source size estimates 

acquired by the Sample-Resample method (the estimation error rate ranges from 15% to 30%). The 

experiment results are shown in Figure 4.3. The basic versions of the CORI and KL-divergence algorithms, 

Figure 4.3: Resource selection experiments on four testbeds (with database size estimates). 
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which do not consider information source size factor, did reasonably well on the testbeds of Trec123_100Col 

with relatively uniform information source size distribution and Trec4_kmeans with moderately skewed 

source size distribution. However, their accuracies on the relevant and nonrelevant testbeds with more 

skewed information source size distributions were not very satisfactory. This indicates that the information 

source size factor plays a very important role in resource selection, and it should be incorporated into robust 

resource selection algorithms designed to work in a wide range of federated search environments. 

The two extensions of the CORI algorithm showed inconsistent behavior on these four testbeds. They were 

better than the basic CORI algorithm on the relevant testbed, about the same as CORI on the 

Trec123_100Col and nonrelevant testbeds, but even worse on the Trec4_kmeans testbed. This does not mean 

other more sophisticated modifications of the basic CORI algorithm can not work well in the environments 

with skewed information source size distributions, it only indicates that our two extensions of the CORI/Ext1 

and CORI/Ext2 are not consistently successful. 

In contrast to the extensions of the CORI algorithm, the extended language modeling resource selection 

algorithm was at least as effective as the basic KL-divergence algorithm and all the variants of CORI 

algorithms on the Trec123_100Col testbed, or was even better on the Trec4_kmeans, relevant and irrelevant 

testbeds. The advantage of the extended language modeling resource selection algorithm can be attributed to 

the better approximation of the number of relevant documents among available information sources than the 

simple normalization method of the extended CORI algorithms, which still follow the “big document” 

approach (Section 4.2). 

Furthermore, the ReDDE resource selection algorithm explicitly estimates the probability of relevance of 

each individual document, and thus approximates the distribution of relevant documents. It was about as 

accurate as the extended language model resource selection algorithm on all the four testbeds and was more 

robust than all other methods. This advantage suggests that our discussion of the deficiency of “big 

document” resource selection algorithms is correct. However, no strong evidence shows that ReDDE 

algorithm had a large advantage over the extended language model resource selection algorithm on these four 

testbeds. The disadvantage of the extended language model resource selection algorithm is discussed in 

Section 4.2 and an example is proposed to demonstrate this weakness in a particular type of federated search 

environments.  

In order to study the effects of imperfect source size estimates on resource selection, the second set of 

experiments was designed to use actual values of the information source sizes instead of the estimates within 

resource selection algorithms. The experiment results are shown in Figure 4.4, where the four algorithms, 
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which consider information source size factor, were evaluated. It can be seen from Figure 4.4 that the 

ReDDE and the extended language model resource selection algorithms were more robust than the two 

extensions of the CORI algorithm, which is consistent with the results of the first set of experiments using 

estimated database sizes. Another observation from Figure 4.3 and Figure 4.4 is that all the four resource 

selection algorithms using the estimated information source sizes were almost as accurate as algorithms using 

actual information source sizes. This suggests that although the Sample-Resample algorithm gives imperfect 

information size estimates (on average, the estimation error rate ranges from 15% to 30% for the four 

testbeds), the effects of the inaccurate source size estimates are much less noticeable in the resource selection 

experiments. This result can be explained by the fact that although some documents are not counted by the 

Sample-Resample algorithm, they may contain very little valuable information and are not relevant to most 

 
 

Figure 4.4: Resource selection experiments on four testbeds (with actual database sizes) 
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user queries so that they do not have much impact on the accuracies of the resource selection algorithms. 

 

4.5 Summary 

 

A large body of resource selection algorithms has been proposed in previous research. Most of them are tied 

with the “big document” approach. The “big document” approach treats available information sources as 

single big documents and calculates similarity between the single big documents and user queries to rank 

available sources. However, the “big document” approach does not consider how many individual documents 

are relevant or not and thus cannot optimize for the high-recall goal for resource selection algorithms for 

information source recommendation. Particularly, empirical studies in prior research and in this chapter 

demonstrate the deficiency of the “big document” approach within federated environments of skewed 

information source sizes. 

Several new variants of two well-known “big document” resource selection methods (CORI and 

KL-divergence) are proposed in this chapter to incorporate source sizes into resource selection decision. 

However, detailed theoretical analysis or empirical results suggest that the extensions are not capable of 

optimizing the resource selection results for the high-recall goal.  

Based on this observation, a new resource selection algorithm called relevant document distribution 

estimation (i.e., ReDDE) is proposed in this chapter to turn away from the “big document” approach. It views 

information sources as document repositories instead of single big documents. The ReDDE algorithm 

directly optimizes the high-recall goal by estimating the distribution of relevant documents across available 

information sources and ranking the sources accordingly. Particularly, it views the centralized sample 

database as a set of representative documents of complete information sources. The ReDDE algorithm 

estimates the retrieval results from a centralized complete database by the retrieval results from the 

centralized sample database and then infers the distribution of all relevant documents across available 

sources. An extensive set of experimental results within different federated search environments 

demonstrates the advantage of the ReDDE algorithm over several prior state-of-the-art “big document” 

resource selection algorithms.  

The ReDDE resource selection algorithm models the curve of probability of relevance as a step function with 

respect to the retrieval result from the centralized complete database. This is a rough approximation. It is 

empirically effective and works without any training data. A refined method is to estimate the curve of 
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probability of relevance with a small set of training queries. This method can generate more robust resource 

selection decision. This refined method is introduced and studied within the unified utility maximization 

framework in Chapter 7. 

The success of the ReDDE algorithm (also other resource selection algorithms) depends on the quality of the 

sampled documents. An interesting direction in future research is to study the reliability of the ReDDE 

resource selection algorithm with various amounts of sampled documents. It is also helpful to study the 

variance of the resource selection accuracy of the ReDDE algorithm as well as other algorithms by using 

multiple sets of sampled documents.
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Chapter 5: Results Merging 
 

 

Federated document retrieval systems automatically search selected information sources and retrieve ranked 

lists of documents from these information sources. There are several choices to organize these returned 

results. One approach is to display these results side by side in the same page or in different result pages. 

This method makes sense when there are a limited number of selected information sources (e.g., less than 3) 

and the results from these selected information sources contain different types of contents (e.g., one 

biological source may return a table of gene co-expression data and another source may return a patent 

document). However, when a larger number of information sources (e.g., more than 5) are selected and most 

information sources return the same type of contents (i.e., text documents), it might be distracting to display 

the results separately and users often prefer a single merged ranked list. In the latter case, a results merging 

component is required in a federated document retrieval system. 

The results merging task is difficult because document scores returned by different sources cannot be 

compared directly. There are at least two reasons that different sources produce incomparable ranked lists: i) 

different information sources may use different retrieval algorithms so that the ranges of document scores in 

the ranked lists may be totally different; and ii) even when two information sources use the same type of 

retrieval algorithms, the corpus statistics (e.g., vocabulary size, inverse document frequency, etc.) used to 

calculate document scores are often quite different in different sources.  

This chapter first introduces previous research on results merging and discusses the advantages and 

disadvantages of these methods. It then proposes a semi-supervised learning approach, which utilizes part of 

the documents acquired by query-based sampling as training data and learns source-specific and 

query-specific models to transform all the source-specific scores into comparable document scores. An 

extensive set of empirical studies in both research environments and a real world application is conducted to 

show the effectiveness of the new results merging approach. 

 

5.1 Prior research on results merging 
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Results merging has received limited attention in prior research, partially because of the misunderstanding 

that it is similar to the meta search problem. However, the results merging subproblem of federated document 

retrieval is different from meta search [Lee, 1997; Aslam & Montague, 2001; Manmatha, Rath & Feng, 

2001]. In meta search, multiple retrieval algorithms are applied to a single centralized database or to sources 

with overlapping contents. Meta search algorithms depend on the fact that there are multiple scores for a 

single document. In contrast, in the results merging task of federated search, the contents of the information 

sources are usually independent and we cannot expect many documents to appear in two or more ranked lists. 

Note that some people use “metasearching” as having the same meaning as federated search, but this is not 

the case discussed in the dissertation. 

One simple solution in cooperative environments is to make every information source use the same type of 

retrieval algorithm and the same corpus statistics [Viles & French, 1995; Xu and Callan, 1998; Xu & Croft, 

1999], for example, by imposing a common set of corpus statistics among all sources. An alternative 

approach is for each information source to return its term frequency information for each retrieved document 

and each query term so that the search client can compute a consistent set of document scores using global 

corpus statistics [Kirsch, 1997]. These methods are quite accurate, but all of them require significant 

cooperation from information sources such as using the same type of retrieval algorithm or providing term 

frequency information upon request, which is not a valid assumption in uncooperative environments.  

Another simple solution is the round robin method [Voorhees et al., 1995], which can be easily applied in 

uncooperative environments. It only utilizes the document rank information in individual ranked lists and the 

source rank information from resource selection algorithms. Specifically, it chooses the first document 

returned by the first selected information source as the first document in the merged list and the first 

document from the second selected information source as the second one, and so on. Round robin is a 

common choice when source-specific document scores are completely incompatible. However, the 

disadvantage is that less relevant sources contribute as many documents to the merged ranked lists as more 

relevant sources. The weighted round robin is an improved method, which allows information sources to 

contribute documents in proportion to their expected values. These methods are simple and easy to apply in 

uncooperative environments but are not very effective [Savoy & Rasolofo, 2000]. 

The CORI results merging formula [Callan, Lu & Croft, 1995; Callan, 2000] follows the idea that both the 

documents from information sources with high selection scores and the high-scoring documents from 

information sources with lower selection scores should be favored. It uses a simple heuristic formula to 

normalize source-specific document scores. The formula is a linear combination of the information source 
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selection scores and the document scores from individual ranked lists. First, associated with the CORI 

resource selection algorithm, the information source selection scores are normalized as: 

Equation 5.1 normalizes information source selection score of the ith information source to the range of       

[0, 1]. The raw score S (dbi) of the ith information source is the information source belief  P (Q | dbi ) in the 

CORI resource selection algorithm (described in Chapter 4). S (dbmin) and S (dbmax) are calculated by setting 

the T component in Equation 4.3 (i.e., in Section 4.1) to 0 and 1 respectively. In a similar manner, the 

source-specific document scores are normalized as: 

S’(dij ) is the normalized document score for the jth document from the ith information source. In cooperative 

environments, the maximum document score S (di_max) and the minimum score S (di_min) are provided by the 

ith information source, otherwise they are simply set to the maximum and minimum document scores 

returned by the information sources in uncooperative environments. 

Finally, the source-independent comparable scores are calculated as: 

The CORI results merging formula has been shown to be effective in previous research [Callan, Lu & Croft, 

1995; Callan, 2000]. It can be easily applied in uncooperative environments and in this dissertation it is used 

as a baseline algorithm to compare with new proposed methods. 

Logistic transformation models have been used for results merging in previous research [Le Calv & Savoy, 

2000; Savoy, 2002]. This method utilizes human-judged training data to build source-specific 

query-independent logistic models for different information sources to transform source-specific scores into 

source-independent scores. The source-specific model provides a more theoretically solid solution than the 

round robin methods and the CORI formula. It has been shown to be effective in previous research [Le Calv 

& Savoy, 2000; Savoy, 2002; Savoy, 2003]. However, it uses human-judged relevance information to build 

separate models for the information sources, so the corresponding human efforts may not be affordable when 

there are a large number of information sources. Another potential weakness of this approach is that a single 

query-independent transformation model is applied for each information source but the score characteristics 
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change from query to query. This indicates that query-specific and language-specific transformation models 

should be more favorable. 

The brief review of existing results merging algorithms tells us that all these algorithms try to simulate 

document ranked lists as if all the documents were stored in a single, global database. However, they are not 

satisfactory solutions in uncooperative environments as: i) most accurate algorithms require information 

sources to calculate consistent document scores or recalculate document scores in the central search client by 

making assumptions which are not practical in uncooperative environments; ii) the CORI and the round robin 

methods, which only utilize information from individual ranked lists and resource selection results, are 

simple and efficient but not very accurate; and iii) the previous work of utilizing score transformation models 

is associated with large cost of human relevance judgment and is not very effective either since the models 

are query-independent.  

 

5.2 Semi-supervised learning results merging approach 

 

The goal of the Semi-Supervised Learning (SSL) results merging algorithm [Si & Callan, 2002a; Si & 

Callan, 2003b] is to effectively and efficiently produce a single ranked list of documents that approximates 

the ranked list in the centralized environment. This method utilizes centralized sample database as an extra 

source of information. Specifically, a user query is sent to search the documents in the centralized sample 

database with an effective centralized retrieval algorithm to acquire source-independent scores. The set of 

sampled documents that exists in both centralized sample database and source-specific ranked lists has both 

source-independent scores and source-specific scores. These documents serve as the training data to calculate 

source-specific models that transform all source-specific document scores into the scores similar to what the 

centralized sample database would have produced for those documents. The transformation models are 

applied on all returned documents and these documents are merged into a single ranked list according to the 

calculated source-independent scores.  

The semi-supervised learning algorithm does not require human relevant judgment as training data. It uses 

the automatically calculated centralized document scores as surrogates to build transformation models. This 

is much more efficient than using human relevance judgments as training data when there are many 

information sources. The algorithm is called semi-supervised learning because no human supervision is 

required and the training data is generated automatically. Note this is different from the concept of the 
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semi-supervised learning [Zhu, 2005] in the machine learning community, where a learning algorithm 

utilizes both labeled and unlabeled training data. 

SSL algorithm makes two assumptions: i) some documents retrieved from the selected information sources 

also exist in the centralized sample database; and ii) given both the source-independent scores and the 

source-specific document scores of these overlap documents, a linear function can be learned to transform 

the source-specific scores into the corresponding source-independent scores. 

The first assumption indicates the availability of training data. It may be questionable, but one fact enhances 

the possibility that enough overlap documents can be found: an information source is selected only if the 

language model derived from its sampled documents matches the query, thus some of these documents are 

likely to be retrieved from this information source. Experiments are presented below to study this problem. 

Furthermore, when there are not enough overlap documents, a variant of the SSL algorithm is proposed to 

download some retrieved documents on the fly to create extra training data. 

We do not argue that it is the best choice to use linear functions as the transformation models in the second 

assumption. Other more sophisticated transformation models may be more accurate in some cases. The linear 

transformation model is chosen here because: i) the linear transformation model can be computed very 

efficiently and it only requires a very small amount of training data (i.e., as few as two overlap documents), 

which is very practical when efficiency is of high priority; and ii) the CORI results merging algorithm 

described in Equation 5.3 can be represented as a linear model, which suggests the effectiveness of using a 

linear function. 

With enough overlap documents that have both source-specific document scores and source-independent 

scores, the linear model that most accurately transforms the source-specific document scores to the 

source-independent scores can be estimated. Formally, the linear transformation model is calculated as 

follows: 

where (xj , yj) is the source-specific score and source-independent score of the jth overlap document 

respectively. (a , b)* denotes the parameters of the desired linear model. This model can be used to transform 

source-specific scores of other returned documents into the corresponding source-independent scores.  

( )
* 2

j j
a,b j

(a , b) = argmin (a x +b y )∗ ∗�  (5.4) 
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It is most likely that the information sources in uncooperative environments such as large organizations or 

the Web are searched by multiple types of search engines (the multiple engine-types case). Different retrieval 

algorithms may generate source-specific scores with quite different score ranges, and it is not likely that a 

single linear model can transform all these scores into source-independent scores. Therefore, multiple linear 

transformation models should be learned for the multiple engine-types case. As our focus is uncooperative 

federated search environments, we present research for multiple engine-types case in this work.  

After selected information sources return source-specific ranked lists, the first step is to identify the overlap 

documents for each information source that appear in both the centralized sample database and the 

corresponding ranked list. Formally, for each overlap document dij that comes from the ith information 

source, the source-independent score is denoted as Sc(dij) and the normalized source-specific score is denoted 

as Si(dij). Given the overlap documents and their scores, the goal is to estimate a linear model for this 

information source that transforms all its source-specific document scores into the source-independent scores 

as Sc(dij) = ai* Si(dij) + bi. The regression problem over all the training data from the ith information source 

can be formulated in the matrix representation as follows: 

where ai and bi are the two parameters of the linear model for the ith database. Call these matrices X 

(source-specific scores and constants), W (the model parameters of the linear transformation model) and Y 

(the set of source-independent document scores). Simple mathematic manipulation shows that the solution 

can be expressed as follows: 

This solution is acquired by minimizing the squared error criterion described in Equation 5.4.  

The same procedure can be repeated for all selected information sources to build source-specific linear 

models to transform the source-specific document scores into the corresponding source-independent scores. 

Finally, the merged ranked list is constructed by sorting all returned documents by the corresponding 

source-independent scores. 

[ ]
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The above algorithm transforms source-specific document scores to centralized comparable document scores. 

However, in real world applications, information sources may return source-specific ranked lists without 

document scores. It is straightforward to convert document ranks to pseudo document scores and apply the 

above algorithm. More detailed information can be found in the empirical study of the FedLemur system in 

(Section 5.3.5). 

The main procedure of building the linear models is described as above. Some adjustments are also utilized 

to make the models more robust. Theoretically, as few as two data points are needed to train a linear model. 

However, more training data usually generates more accurate models, so we require that at least three overlap 

documents should exist to calculate a linear model. When an information source does not have enough 

training data, it is called an “unfavorable” information source. One possible way to treat the unfavorable 

information sources is to simply ignore the returned results from them, as it is believed that a “favorable” 

information source, which contains a lot of relevant documents, tends to have more relevant documents in the 

centralized sample database and thus have more overlap documents as the training data. However, when 

there are too many information sources without enough training data, it may suggest that the SSL approach is 

not a good choice for this query, and the algorithm backs off to the CORI merging formula, which does not 

require any training data at all. The back off threshold is set empirically as 40%. For example, when there are 

more than 4 information sources out of totally 10 selected information sources containing less than 3 overlap 

documents, the algorithm backs off to the CORI merging formula. 

On the other hand, when more than enough training data is available for an information source, the algorithm 

can be selective to choose the important ones for accuracy and efficiency. As the high-precision metric 

indicates that it is more important to be accurate at the top of a ranked list, at most top 10 overlap documents 

from each selected information source are selected as the training data. 

 
 

Figure 5.1: Adjust the bias problem of linear regression model. The solid line is the original model 
and the dash line is the new model. 
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Another adjustment is to correct the bias problem of anomalous linear models. INQUERY [Turtle, 1990; 

Callan, Croft & Broglio, 1995] is used as the centralized retrieval algorithm in this work to produce 

source-independent document scores, and thus it is impossible to produce a source-independent document 

score larger than 1. A learned linear transformation model is anomalous when the model generates 

source-independent document scores great than 1. A document with a score larger than 1 is not a serious 

problem by itself, but this indicates that the model may be too highly biased and the documents from this 

information source may have been given excessive advantages.  

This bias problem is addressed by replacing the original linear model with another one that intersects the 

point of (1 , 1) and is closest to the original linear model (as shown in Figure 5.1). Formally, let y = ax + b be 

the original model and y = a’x + b’ be the new model. The new linear model is obtained by solving the 

following problem: 

Simple mathematical manipulation shows the following update formula for the new model: 

These small adjustments have been shown to slightly improve the results merging accuracy in empirical 

studies. Furthermore, this adjustment can be generalized to other cases when different centralized retrieval 

algorithms (which may produce different maximum retrieval scores) than INQUERY are utilized.  

 

5.3 Evaluation methodology and experimental results 

 

An extensive set of experiments was conducted to study the effectiveness of the semi-supervising learning 

results merging algorithm under a variety of conditions. Specifically, this section first describes experimental 

methodology for results merging algorithms. Next, the sufficiency problem of overlap documents is studied 

for the case when long ranked lists can be acquired from the selected information sources, followed by the 

experiment results to compare the CORI results merging formula and the SSL algorithm. The scenario when 

1 2
0

a', b'
(a', b') = argmin [(a'-a)*x+(b'-b)] dx

s.t. a'+b'=1

�
 (5.7) 

3-a-3b
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only short ranked lists are available from selected information sources is also addressed and a variant of the 

SSL algorithm is proposed to download a minimum number of documents as additional training data. 

Experiments are conducted to study the effectiveness of the new SSL algorithm. Finally, empirical studies 

with the FedLemur project are presented to show the behavior of the CORI results merging formula and the 

SSL algorithm in this real world application. 

5.3.1 Evaluation methodology 

The experiments in this chapter were conducted on two testbeds in research environments and also with the 

FedLemur project. This section first introduces the experimental methodology within the research 

environments.  

Two research testbeds were used in the experiments, namely the Trec123_100Col testbed and the 

Trec4_kmeans testbed. Trec123_100Col is organized by source and publication date. The contents of the 

information sources are relatively heterogeneous. Trec4_kmeans is organized by topic, where the information 

sources are relatively homogenous and the word distribution is more skewed than the Trec123_100Col 

testbed. 

The two testbeds provide different advantages and disadvantages to different components of a federated 

search system. As the contents of information sources are more homogenous and relatively different from 

each other, the Trec4_kmeans testbed is generally considered to be easier for resource selection than the 

Trec123_100Col testbed where the contents are much more heterogeneous. In contrast, the Trec123_100Col 

testbed is believed to be easier for results merging than the Trec4_kmeans testbed, as the documents ranked 

at the nth positions by different information sources on the Trec123_100Col testbed are more comparable 

than the corresponding set of documents on the Trec4_kmeans testbed. The difficulty of results merging for a 

similar testbed with skewed word distribution has been reported in previous research [Larkey, Connell & 

Callan, 2000]. 

Three effective retrieval algorithms introduced in Chapter 2 as INQUERY [Callan, Croft & Broglio, 1995], 

language model [Lafferty & Zhai, 2001] and vector-space algorithms were chosen in the experiments. All 

these three algorithm were implemented with the Lemur toolkit [Ogilvie & Callan, 2001b], and they were 

assigned to the information sources in a round-robin manner (more details in Section 2.3). 

In our experiments, the content resource descriptions were created by query-based sampling. About 80 

single-word queries were sent to each information source to download 300 hundred documents, and the top 4 

(or fewer when there were not enough) documents from each ranked list were acquired. The sampled 
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documents were collected to form the centralized sample database, which contained 30,000 documents (100 

information sources time 300 documents per information source). The INQUERY retrieval algorithm was 

used as the search algorithm for the centralized sample database. 

The CORI resource selection algorithm was used to rank the information sources for the experiments in this 

chapter. It was chosen for two reasons: i) CORI resource selection algorithm has been commonly used in 

many federated document retrieval applications; and ii) information source selection scores from the CORI 

resource selection algorithm are required by the CORI results merging formula, which serves as the baseline 

in the experiments. Document retrieval experiments with other more effective resource selection algorithms 

are discussed in Chapter 6. 

5.3.2 Experimental results: Overlap documents 

A sufficient amount of training data is crucial to the SSL results merging algorithm. Many factors such as the 

information source sizes, the number of sampled documents from the information sources, the lengths of the 

returned ranked lists and the query characteristics determine the number of overlap documents. Generally, it 

can be expected that the number of overlap documents will be larger when more documents are acquired 

during query-based sampling; the number may also be larger when queries are longer, when there are a 

limited number of documents in a particular information source, or when more documents are returned from 

each selected source. 

A set of experiments was conducted to investigate the number of overlap documents in the case where a 

small proportion of documents are sampled (300 out of 10,000 on average for Trec123_100Col, 300 out of 

5,600 on average for Trec4_kmeans) and long returned ranked lists are provided (up to 1,000 documents per 

selected information source). Requiring long returned ranked lists from information sources that only provide 

short ranked lists by single requests may cause substantial communication costs. Based on this observation, a 

variant of the SSL algorithm is introduced in Section 5.3.4 to work in the case of short ranked lists (e.g., 50 

documents). As the accuracy of the SSL algorithm in the case of long ranked lists can serve as the baseline to 

compare its variant in the short ranked list case, the behavior of the SSL algorithm with long ranked lists is 

first studied. 

Specifically, the experiments were conducted on two testbeds of Trec123_100Col and Trec4_kmeans. Both 

of them contain 100 information sources, and three retrieval algorithms of INQUERY, language model and 

vector space model were assigned to the information sources in a round-robin manner. Resource descriptions 

were built by query-based sampling to acquire 300 sampled documents from each information source. The 
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CORI resource selection algorithm was used to select 10 most relevant information sources, and result lists 

of up to 1,000 document ids with their source-specific scores were returned by the selected information 

sources. 

Very few queries (3 out of 50) on the Trec123_100Col testbed and no query (0 out of 50) on the 

Trec4_kmeans testbed were short of overlap documents (i.e., more than 4 among the 10 selected information 

sources had less than 3 overlap documents). For more detailed information, Figures 5.2 and 5.3 show the 

histograms of the number of overlap documents for the queries on the Trec123_100Col testbed and the 

Trec4_kmeans testbed respectively. 

The experiment results indicate that our assumption of sufficient number of overlap documents is satisfied 

for the environments where a small amount of documents are sampled and long ranked result lists can be 

returned. Particularly, the queries on the Trec4_kmeans testbed tend to have more overlap documents than 

 
Figure 5.2: The histogram of overlap documents for 50 “title” queries on Trec123_100Col testbed. 

 

 
Figure 5.3: The histogram of overlap documents for 50 “description” queries on Trec4_kmeans testbed. 
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the queries on the Trec123_100Col testbed, which is consistent with our expectation that the higher coverage 

of the sampled documents (i.e., on average, the information sources on the Trec4_kmeans testbed are smaller 

than the information sources on the Trec123_100Col testbed while all of them contribute 300 sampled 

documents), the longer the queries (i.e., the description queries on the Trec4_kmeans testbed are longer than 

the title queries on the Trec123_100Col testbed), the more number of overlap documents can be acquired. 

5.3.3 Experimental results: Comparison with CORI results merging formula 

This section presents experimental results to compare the accuracy of the CORI results merging formula and 

the SSL results merging algorithm for the multiple engine-types case on the two testbeds of Trec123_100Col 

and Trec4_kmeans. Three retrieval algorithms of INQUERY, language model or vector space models were 

assigned to the information sources in a round-robin manner. To investigate the effectiveness of results 

merging algorithm in a wide range of experimental configurations, the number of information sources 

selected to search for each query was varied by 3, 5 or 10. Each selected source provided long returned 

ranked lists (up to 1,000 documents per selected information source) 

Detailed experiments results are shown in Tables 5.1 to 5.3. Several interesting issues can be observed from 

these experiment results. First, the SSL result merging algorithm was more accurate than the CORI merging 

formula in all configurations on these two testbeds. Particularly, the advantage of the SSL algorithm against 

the CORI formula was much more notable on the Trec4_kmeans testbed than on the Trec123_100Col 

testbed. It is known that the Trec4_kmeans testbed has more skewed word distribution than the 

Trec123_100Col testbed so that the information source statistics on the Trec4_kmeans testbed are more 

diverse than those on the Trec123_100Col testbed. This causes a serious problem for the CORI merging 

formula, which was also pointed out in previous research [Larkey, Connel & Callan, 2000]. The SSL 

algorithm addresses this problem by building different models for different selected information sources. 

This strategy helps to correct the skewed word distribution and the experiment results reflected this 

advantage of the SSL algorithm. 

Second, on the Trec123_100Col testbed, both the SSL algorithm and the CORI formula tended to be more 

effective as more information sources were searched. In contrast, on the Trec4_kmeans testbed, although the 

accuracy of the SSL algorithm has been improved by selecting more information sources, the accuracy of the 

CORI algorithm deteriorated slightly. We attribute this to the fact that the contents of the information sources 

on the Trec4_kmeans testbed are much more homogenous than that on the Trec123_100Col testbed. 

Therefore, the relevant documents for a query are distributed in fewer information sources on the 

Trec4_kmeans testbed than on the Trec123_100Col testbed. Relatively more irrelevant documents from 
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“bad” information sources were introduced by selecting more information sources on the Trec4_kmeans 

testbed. The CORI result merging formula suffered from those irrelevant documents while the SSL algorithm 

was still able to gain advantage by distinguishing irrelevant documents in the information sources of lower 

quality when more sources were selected. 

Third, the advantage of the SSL algorithm over the CORI merging formula was generally larger at the top  

of the ranked list (i.e., 5 or 10) than at bottom (i.e., 15, 20 or 30). This is exactly more favorable according to 

the high-precision goal and is also more consistent with our strategy in the SSL algorithm to put more weight 

Table 5.1: Precision at different document ranks using the CORI and semi-supervised learning approaches to 
merge retrieval results from INQUERY, language model and vector space search engines. 3 sources were 

selected to search for each query. Results are averaged over 50 queries. 

Trec123_100Col Testbed Trec4_kmeans Testbed Document 

Rank CORI Merge SSL Merge CORI Merge SSL Merge 
5 0.3240 0.3680 (+13.6%) 0.2440 0.3440 (+41.0%) 
10 0.3260 0.3420 (+4.9%) 0.2320 0.2840 (+22.4%) 
15 0.3147 0.3253 (+3.4%) 0.1987 0.2520 (+26.8%) 
20 0.2930 0.3090 (+5.5%) 0.1820 0.2260 (+24.2%) 
30 0.2627 0.2747 (+4.6%) 0.1573 0.1993 (+26.7%) 

 

Table 5.2: Precision at different document ranks using the CORI and semi-supervised learning approaches to 
merge retrieval results from INQUERY, language model and vector space search engines. 5 sources were 

selected to search for each query. Results are averaged over 50 queries. 

Trec123_100Col Testbed Trec4_kmeans Testbed Document 

Rank CORI Merge SSL Merge CORI Merge SSL Merge 
5 0.3520 0.4040 (+14.8%) 0.2360 0.3720 (+57.6%) 
10 0.3360 0.3700 (+10.1%) 0.1980 0.3160 (+59.6%) 
15 0.3333 0.3627 (+8.8%) 0.1893 0.2853 (+50.7%) 
20 0.3210 0.3470 (+8.1%) 0.1710 0.2520 (+47.4%) 
30 0.3067 0.3233 (+5.4%) 0.1480 0.2133 (+44.1%) 

 
Table 5.3: Precision at different document ranks using the CORI and semi-supervised learning approaches to 
merge retrieval results from INQUERY, language model and vector space search engines. 10 sources were 

selected to search for each query. Results are averaged over 50 queries. 

Trec123_100Col Testbed Trec4_kmeans Testbed Document 

Rank CORI Merge SSL Merge CORI Merge SSL Merge 
5 0.3520 0.4320 (+22.7%) 0.2360 0.3640 (+54.3%) 
10 0.3500 0.4080 (+16.6%) 0.1860 0.3220 (+73.1%) 
15 0.3453 0.4013 (+16.2%) 0.1733 0.2933 (+69.2%) 
20 0.3390 0.3820 (+12.7%) 0.1630 0.2720 (+66.8%) 
30 0.3287 0.3627 (+10.3%) 0.1460 0.2400 (+66.4%) 
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on the top returned documents (e.g., select top 10 overlap documents as training data for each information 

source). 

The power of the SSL algorithm lies in the ability to build query-specific and source-specific transformation 

models and dynamically adjust parameters in the models. Another set of experiments was conducted to more 

carefully demonstrate the effectiveness of the SSL algorithm against the CORI results merging formula. 

The CORI results merging formula in Equation 5.3 can be rewritten in another way as a linear function of the 

information source-specific document scores:  

where k measures the importance of information source selection score, and it is set to 0.4 by default in the 

CORI results merging formula. The linear function only has the slope as (1 + k*S(di)’)/(1 + k) and has no 

intercept. Therefore, Equation 5.9 can be seen as a special case of the linear transformation model in the SSL 

algorithm. 

One set of experiments was conducted to study the accuracy of the CORI merging formula by setting k to 

multiple values (when k is set to infinity, the CORI formula becomes Sc (dij) = S (dij)
’ � S (di )

’  ).  

The results are shown in Figures 5.4 and 5.5. It can be seen from Figure 5.4 that the adjustment of parameter 

k did not make much difference to the effectiveness of the CORI merging algorithm on the Trec123_100Col 

testbed. On the Trec4_kmeans testbed, the CORI merge formula with an infinity value of k had a slight 

advantage over other values as shown in Figure 5.5, which can be explained by the fact that a much larger 

proportion of relevant documents are in the top few selected information sources on the Trec4_kmeans 

testbed than that on the Trec123_100Col testbed. Therefore, there was no particular choice of k that could 

improve the accuracy consistently in the experiments. Although the parameter k in the CORI merging 

formula was tuned in the experiments, essentially linear models with only one parameter of slope were 

applied to all of the selected information sources, and thus the linear transformation models across the 

information sources were associated with each other by the value k and the information source selection 

scores. In contrast, the SSL algorithm does allow each selected information source to choose its own 

query-specific and source-specific linear transformation model to achieve better accuracy. The experimental 

results in Figures 5.4 and 5.5 indicate that the SSL algorithm is more effective than all the variants of the 

CORI merging formula. Therefore, the experiments confirm that the power of the SSL algorithm derives 

from its ability to adjust the linear transformation models for different queries and information sources.  

ij i
C ij

S'(d )(1+k S'(db ))
S (d ) =

1+k
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5.3.4 Experimental results: The effect of returned ranked list length 

Experiments in Section 5.3.1 have shown that the SSL algorithm is very likely to have enough overlap 

documents when the information sources provide long ranked document lists. Let us assume that an 

information source provides a ranked list of 1,000 document ids and their scores by a single interaction with 

the central search client. If the corresponding communication cost can be estimated by 80 bytes per 

document (i.e., 60 bytes for document id and 20 bytes for document score) for each of the 1,000 documents, 

the total communication cost of this ranked list is about 80,000 bytes and in general the communication costs 

are not excessive. 

 
Figure 5.4: How varying the k parameter in the CORI result merging formula affects precision on the 

Trec123_100Col testbed. 
 

 
Figure 5.5: How varying the k parameter in the CORI result merging formula affects precision on the 

Trec4_kmeans testbed. 
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However, in real world uncooperative environments of federated document retrieval systems, information 

sources may only provide short ranked list (e.g., top 10 or 20) for the initial search requests and additional 

interactions are required to obtain the results further down the list. If an information source returns a page of 

ranked list containing 20 document ids, it requires a total number of 50 interactions to obtain a ranked list of 

1,000 documents. This is exactly our argument against the Capture-Recapture information source size 

estimation algorithm in Chapter 2, and we view it as excessive communication costs. Therefore, it is more 

desirable to rely on short ranked lists. However, one consequence of using short ranked lists is that the SSL 

algorithm is likely to have much fewer overlap documents for training data. 

A set of experiments was conducted to study how many information sources are short of overlap documents 

for training data with various lengths of ranked document lists. The results are shown in Table 5.4. It can be 

seen from Table 5.4 that most information sources have enough overlap documents with long ranked lists 

(i.e., 500 or 1,000) on both these two testbeds, which is consistent with the experiments in Section 5.3.2. 

However, with short ranked lists (i.e., 50 or 100), the percentage of information sources without enough 

overlap documents grows dramatically. This problem is more serious when ranked lists of 50 or 100 

Table 5.5: The average number of downloaded documents to meet the requirement of at least 3 overlap 
documents per selected information sources on the Trec123-100Col and the Trec4-kmeans testbeds.                

10 information sources were selected per query. Results are averaged over 50 queries. 

Trec123-100Col Trec4-kmeans testbed 
Result List Length Download Docs 

Per Source 
Total Download 

Docs (10 Sources) 
Download Docs 

Per Source 
Total Download 

Docs (10 Sources) 
50 1.0 10.2 0.3 3.3 

100 0.4 4.4 0.1 1.1 
 

Table 5.4: The percentage of selected information sources that are short of overlap documents for various 
lengths of ranked lists on the Trec123-100Col and the Trec4-kmeans testbeds. 10 information sources 

were selected per query. Results are averaged over 50 queries. 

Percentage of Selected Information Sources with 

Fewer than 3 Overlap Documents 
Results List 

Length 
Trec123-100Col Trec4-kmeans 

50 54.2% 17.4% 
100 27.8% 5.6% 
200 10.4% 2.6% 
500 6.0% 0.0% 

1000 5.2% 0.0% 
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documents are returned on the Trec123_100Col testbed, which contains more heterogeneous information 

sources.  

An alternative approach is to download a minimum amount of returned document on the fly and intentionally 

create more overlap documents as the training data for information sources that do not have enough overlap 

documents. If the communication costs are measured by the number of interactions with information sources, 

this method may substantially reduce the cost without degrading the accuracy. 

Specifically, when a selected information source does not provide enough overlap documents (i.e., fewer 

than 3), the rest of required overlap documents are downloaded on the fly and their centralized document 

scores are calculated with the corpus statistics of the centralized sample database to create the training data. 

Documents ranked at 1st, 10th and 20th in the result lists are the candidates for downloading. These ranks are 

chosen as they cover a relatively wide range of the top ranked documents in the ranked lists, which are most 

important to meet the high-precision goal of federated document retrieval systems.  

More experiments were conducted to study the amount of downloaded documents with short ranked lists of 

50 or 100 documents. The summary statistics are shown in Table 5.5. In all these experiments, 10 

information sources were selected to search. It can be seen that only 0.3-1.0 documents were required to 

download per information source on average when information sources returned ranked lists of 50 documents 

and only 0.1-0.4 documents were downloaded when information sources returned ranked lists of 100 

documents. In both configurations, the number of interactions with a selected information source for 

downloading and acquiring a minimum number of overlap documents was much fewer than that for 

obtaining long ranked lists with 500 or 1,000 documents. 

The above set of experiments demonstrates that it is efficient to download a minimum amount of overlap 

documents. Another set of experiments was conducted to show the effectiveness. The experiment results in 

Tables 5.6-5.8 show the accuracies of several methods of obtaining enough overlap documents for the SSL 

results merging algorithm. These methods either require long ranked lists (i.e., 1,000 documents), which is 

associated with a large amount of communication costs when only a small piece of ranked list can be 

provided by a single interaction, or download the minimum number of documents to create enough overlap 

documents with much shorter ranked lists (i.e., 50 or 100 documents). It can be seen that the effectiveness of 

these methods were about the same on the Trec123-100Col testbed. The method with long ranked lists had a 

small advantage over the minimum downloading method with ranked lists of 50 documents when 5 or 10 

sources were selected on the Trec4-kmeans testbed where relatively more overlap documents could be 

obtained by the long ranked lists. Another possible reason is that the Trec4-Kmeans testbed contains 
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homogenous information sources and thus relevant documents are contained in a relatively small set of 

sources. Therefore, the choice of selecting more information sources (e.g., 5 or 10) introduces more 

irrelevant documents into the final document lists. All these factors require more training data to build more 

accurate models that can be used to distinguish those irrelevant documents. Still, the minimum downloading 

methods were much more effective than the CORI merging formula. 

Table 5.6: Precision at different document ranks for three methods of obtaining enough overlap documents for the 
SSL results merging algorithm. Three types of search engines were used. 3 sources were selected to search for each 

query. Results are averaged over 50 queries. 

Trec123-100Col Trec4-Kmeans Document 

Rank List of     
1,000 
Docs 

List of 50 Docs  
+ Downloads 

List of 100 Docs  
+ Downloads 

List of      
1,000 Docs 

List of 50 Docs  
+ Downloads 

List of 100 Docs    
+ Downloads 

5 0.3680 0.3640 (-1.1%) 0.3800 (+3.3%) 0.3440 0.3440 (0.0%) 0.3440 (0.0%) 
10 0.3420 0.3360 (-1.8%) 0.3440 (+0.6%) 0.2840 0.2940 (+3.5%) 0.2980 (+4.9%) 
15 0.3253 0.3253 (0.0%) 0.3320 (+2.1%) 0.2520 0.2547 (+1.1%) 0.2520 (0.0%) 
20 0.3090 0.3140 (+1.6%) 0.3060 (-1.0%) 0.2260 0.2220 (-1.8%) 0.2270 (+0.4%) 
30 0.2747 0.2780 (+1.2%) 0.2733 (-0.5%) 0.1993 0.1913 (-4.0%) 0.2000 (+0.4%) 

 

Table 5.7: Precision at different document ranks for three methods of obtaining enough overlap documents for the 
SSL results merging algorithm. Three types of search engines were used. 5 sources were selected to search for each 

query. Results are averaged over 50 queries. 

Trec123-100Col Trec4-Kmeans Document 

Rank List of     
1,000 
Docs 

List of 50 Docs  
+ Downloads 

List of 100 Docs  
+ Downloads 

List of      
1,000 Docs 

List of 50 Docs  
+ Downloads 

List of 100 Docs    
+ Downloads 

5 0.4040 0.4000 (-1.0%) 0.4120 (+2.0%) 0.3720 0.3440 (-7.5%) 0.3640 (-2.2%) 
10 0.3700 0.3800 (+2.7%) 0.3920 (+6.0%) 0.3160 0.3040 (-3.8%) 0.3240 (+2.5%) 
15 0.3627 0.3560 (-1.9%) 0.3653 (+0.7%) 0.2853 0.2560 (-10.2%) 0.2760 (-3.3%) 
20 0.3470 0.3430 (-1.2%) 0.3470 (0.0%) 0.2520 0.2260 (-10.3%) 0.2440 (-3.2%) 
30 0.3233 0.3240 (+0.2%) 0.3213 (-0.6%) 0.2133 0.1940 (-9.1%) 0.2073 (-2.8%) 

 
Table 5.8: Precision at different document ranks for three methods of obtaining enough overlap documents for the 

SSL results merging algorithm. Three types of search engines were used. 10 sources were selected to search for each 
query. Results are averaged over 50 queries. 

Trec123-100Col Trec4-Kmeans Document 

Rank List of     
1,000 
Docs 

List of 50 Docs  
+ Downloads 

List of 100 Docs  
+ Downloads 

List of      
1,000 
Docs 

List of 50 Docs  
+ Downloads 

List of 100 Docs    
+ Downloads 

5 0.4320 0.4440 (+2.8%) 0.4360 (+0.9%) 0.3640 0.3320 (-8.8%)  0.3560 (-2.2%) 
10 0.4080 0.4300 (+5.4%) 0.4280 (+4.9%) 0.3220 0.3000 (-6.8%) 0.3420 (+6.2%) 
15 0.4013 0.4187 (+4.3%) 0.4133 (+3.0%) 0.2933 0.2600 (-11.3%) 0.2960 (+0.9%) 
20 0.3820 0.3980 (+4.2%) 0.3900 (+2.1%) 0.2720 0.2420 (-11.0%) 0.2650 (-2.6%) 
30 0.3627 0.3653 (+0.7%) 0.3707 (+2.2%) 0.2400 0.2113 (-11.9%) 0.2380 (-0.8%) 
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In our current setting, the centralized sample database does not change over time, but in an operational 

environment the centralized sample database may evolve over time. For example, the documents downloaded 

by the minimum downloading method can be accumulated in the centralized sample database as extra data 

for future queries. It can be imagined that when more and more downloaded documents have been 

accumulated in the centralized sample database, more training data is available for results merging and the 

requirement of downloading new documents can be reduced, especially for queries on popular topics. 

Furthermore, more training data may enable a gradual transition from simple transformation models to more 

complex ones. Therefore, the long-term learning of accumulated downloaded documents with the minimum 

downloading method of SSL algorithm gives us an opportunity to increase results merging accuracy and 

reduce communication costs for future queries. 

To summarize, generally the accuracy of the minimum downloading method of the SSL algorithm is 

comparable to that of the SSL algorithm with long ranked lists. Since the minimum downloading method is 

more efficient, this method is more practical in environments where only short result lists are provided. 

Furthermore, it provides an opportunity to improve results merging accuracy and reduce communication 

costs in the long run by accumulating the downloaded documents as extra training data.  

5.3.5 Evaluation methodology and experimental results with the FedLemur system 

The goal of the FedLemur project was to build a prototype federated search system that connects to 20 

government Web sites based on the Lemur toolkit. More detailed information about the Web sites can be 

seen in Section 2.1. 

The minimum downloading method of acquiring enough overlap documents was not utilized in the 

FedLemur project. This was mainly an engineering problem due to the resource constraints imposed by the 

FedStats portal to search the selected information sources sequentially. Therefore, downloading documents 

on the fly could be very slow.  

In order to acquire enough training data for user queries without using the minimum downloading method, 

the system used a variant of the query-based sampling method with a heuristic stopping criterion to acquire 

resource descriptions with more sampled documents than previous choices. Specifically, the system 

continued to sample documents from an information source until an upper limit is met (e.g., 2000 

documents) or there were no new documents for a consecutive set of queries (e.g., 30 queries). 

When the FedLemur system was developed, CORI was the only resource selection algorithm in the Lemur 

toolkit. Therefore, it was chosen in the FedLemur system. As the CORI resource selection algorithm is 
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compatible with both the CORI results merging formula and the semi-supervised learning algorithm, this 

provided a good opportunity to compare the accuracies of these two results merging algorithms in a real 

world setting. 

The SSL results merging algorithm has been shown to be very effective in research environments when 

information sources return document scores with their ranked lists. However, most information sources 

within the FedLemur system return only document ranks. The system generated pseudo scores for top ranked 

documents from these sites. Specifically, the top document was assigned a score of 0.6, and the scores 

descended by even increments down to 0.4. This range was chosen because it is compatible with the CORI 

result merging formula. A pseudo score is not necessarily an accurate representation of a document’s quality, 

but they are unavoidable when information sources do not return real document scores. 

A set of experiments was conducted to study the effectiveness of the SSL algorithm and the CORI results 

formula with pseudo document scores. Specifically, 27 queries were used in the experiments. Top 3 or 5 

information sources were selected for each query and each information source returned 35 or 50 documents. 

Members of the CMU and FedStats teams were invited to give the relevance judgments. More detailed 

information about the queries and the relevance judgment can be found in Section 2.1. 

The experiment results in Figure 5.6 show the accuracies of a variety of the CORI results merging formula 

and the SSL results merging algorithm. The CORI merging formula was varied by setting different values of 

the parameter k in Equation 5.9. The SSL algorithm in this experiment utilized a centralized sample database 

that sampled up to 2000 documents from each information source. It can be seen from Figure 5.6 that the 

 
 

Figure 5.6: Accuracies of the SSL results merging algorithm and the CORI result merging formula by 
varying the K parameter in the FedLemur system. 

 



 
      
                                    
                                                                                 

85 

SSL result merging algorithm is better than the CORI result merging formula in all configurations. This is 

consistent with our observation in the research environments (i.e., experiment results in Section 5.3.3).  

Another set of experiment was conducted to evaluate the effect of various sample database sizes. Specifically, 

the centralized sample database was created with a query-based sampling process that sampled up to 300, 

500, 1000, 1500 and 2000 documents from each information source. Sampling fewer documents does not 

hurt the CORI resource selection algorithm, but it causes the back off of the SSL algorithm to the less 

effective CORI results merging formula, which reduces overall accuracy. Table 5.9 shows the number of 

queries that were unable to use SSL results merging algorithm when the sampling size limit varied. It can be 

seen that when query-based sampling could acquire 1000 documents from each information source, the SSL 

algorithm only needed to back off to the CORI results merging formula for about 10 percent (i.e., 3 out of 27) 

of all the queries. 

The accuracy of the SSL results merging algorithm with centralized sample databases of various sizes is 

shown in Figure 5.7. It can be seen that when query-based sampling was allowed to acquire at most 1000 

sampled documents, the overall accuracy improved substantially over the cases when fewer sampled 

Table 5.9: Number of queries that are unable to use SSL results merging algorithm at various sample sizes. 

Sample Size Limit 300 500 1000 1500 2000 

Queries back off to 
CORI merge 

20 10 3 0 0 

 

 
 

Figure 5.7: Accuracy of the SSL results merging algorithm by varying the sample size of query-based 
sampling in the FedLemur system. 
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documents were allowed. However, the cost/benefit ratio seems to peak around 1500 document limit while 

more sampled documents gave only marginal improvement of the accuracy. 

 

5.4 Summary 

 

The final step for a federated document retrieval system is results merging, which makes the document 

scores in different ranked lists comparable and merges them into a single list. This is a difficult task in 

uncooperative federated search environments as different information sources may use different retrieval 

algorithms and they use different corpus statistics to calculate document scores. Previous methods either 

directly calculate centralized comparable scores for all returned documents from selected information 

sources, which is associated with large communication or computation costs, or try to mimic the behavior of 

comparable document scores with heuristic methods, which is often not effective. 

Based on this observation, this chapter proposes a Semi-Supervised Learning (SSL) results merging approach, 

which tries to approximate centralized comparable scores more effectively and efficiently. Following the 

theme of utilizing the centralized sample database in this dissertation (more comprehensive discussion can be 

found in Section 3.2), the SSL algorithm shows a successful example of using information within the 

centralized sample database to guide results merging. Specifically, the SSL algorithm models results merging 

as a task of transforming different sets of sources-specific document scores or pseudo document scores 

generated from rank information into a single set of source-independent comparable scores. It first applies a 

centralized retrieval algorithm on the centralized sample database to calculate comparable document scores for 

sampled documents. During results merging, it recognizes a set of overlap documents in both centralized 

sample database and individual ranked lists that have both centralized comparable scores and source-specific 

scores. This set of documents serves as training data to train query-specific and source-specific linear models 

that can be used to map source-specific document scores to comparable scores. Finally, the learned models are 

applied to all returned documents to estimate comparable document scores and the returned documents can be 

merged into a single final list. 

This chapter addresses an important issue for the SSL result-merging algorithm to work in operational 

environments: the demand of obtaining enough training data from ranked lists may depend on receiving 

result list information about a large number of documents (e.g., 1,000) from each selected source. This 

chapter proposes an alternative method that works with short ranked lists by downloading a small number of 
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documents on the fly from selected information sources. This method provides considerable freedom in how 

to trade off ranked list length and the number of documents downloaded on the fly. 

Empirical studies in a wide range of federated search environments either within research environments or with 

the real world FedLemur prototype system have been conducted to demonstrate the effectiveness of the SSL 

algorithm. The SSL algorithm is shown to be consistently more accurate than several variants of the CORI 

results merging formula. Furthermore, the variant of the SSL algorithm that downloads a minimum number of 

documents on the fly is also studied to show its effectiveness and efficiency of obtaining enough training data 

with a small amount of communication costs. 

Note that the SSL algorithm still uses a heuristic parameter for the back-off threshold (i.e., 40%) and the 

heuristic approach for adjusting a bias problem of the linear regression model (i.e., Figure 5.1). One topic for 

future research is to design an equally effective solution without these heuristics. 
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Chapter 6: Results Merging for Multilingual Ranked Lists 
 

 

Most prior federated search algorithms work in environments where all documents are in the same language. 

However, in real world federated search environments, it is common that different information sources may 

contain documents in different languages. Multilingual federated search finds relevant documents in multiple 

languages for a query in one language (i.e., English in this dissertation). This chapter is focused on a key task 

of multilingual federated search: extending the monolingual results merging solutions from the previous 

chapter to merge multilingual ranked lists. 

Our approach for results merging for multilingual federated search adopts a similar approach as the 

semi-supervised learning results merging algorithm proposed in Chapter 5 for monolingual federated search 

environments. Recall that the SSL algorithm requires an effective centralized monolingual retrieval 

algorithm to provide source-independent document scores on a centralized sample database. Similarly, it is 

important to design an effective multilingual centralized retrieval algorithm that provides source-independent 

document scores for comparing the documents in multilingual ranked lists. This algorithm is not the focus of 

this chapter. However, an effective multilingual centralized retrieval algorithm is briefly introduced in this 

chapter because it is crucial for obtaining an accurate results merging algorithm.  

The multilingual results merging task is our primary interest. It is viewed in this chapter as results merging 

within uncooperative multilingual federated search environments. Particularly, with retrieved multilingual 

ranked lists, the comparable document scores for a small number of documents are calculated by the 

proposed multilingual centralized retrieval algorithm in this chapter. These documents have both centralized 

comparable scores and source-specific scores and they serve as the training data to estimate query-specific 

and language-specific transformation models. Then the learned transformation models are applied to estimate 

comparable scores for all retrieved documents and thus the documents can be sorted into a final ranked list.  

The Cross-Language Evaluation Forum (CLEF) provides a good opportunity to develop and test both the 

multilingual centralized retrieval algorithm and the results merging algorithm for multilingual federated 

search. Particularly, the systems developed by the algorithms proposed in this chapter were evaluated in two 

multilingual retrieval tasks at CLEF 2005: Multi-8 two-years-on retrieval and Multi-8 results merging. The 

first task is a multilingual centralized retrieval task and the second task is a results merging task in 

multilingual federated search environments. An extensive set of experiments demonstrates the advantage of 



 
      
                                    
                                                                                 

89 

the new methods against several alternatives. 

The next section briefly describes our multilingual centralized retrieval algorithm. Section 6.2 proposes new 

results merging algorithms for multilingual federated search task. Section 6.3 explains the experimental 

methodology and presents the experimental results. 

 

6.1 Multilingual centralized retrieval  

 

Multilingual centralized retrieval is not the goal of this dissertation. However, an effective multilingual 

centralized retrieval solution is very important to obtain high merging accuracy of multilingual results 

merging algorithms. This section briefly presents our multilingual centralized retrieval algorithm. It utilizes 

different retrieval methods with different translation methods or different retrieval configurations.  

Most previous retrieval methods [Kamps et al., 2003; Savoy, 2003] first generate accurate language-specific 

results by merging results from different types of retrieval and translation methods (meta search) and then 

merge the language-specific results together (results merging). However, it is not easy to merge these 

language-specific results because the ranges and distributions of the document scores within the 

language-specific lists can be very diverse as different retrieval methods are tuned to generate accurate 

language-specific results separately.  

An alternative approach generates results across languages by the same retrieval algorithm with the same 

 
Figure 6.1: The approach of multilingual centralized retrieval method combines all results from a specific 

method into a multilingual result, and then combines the results from all methods into a final list. 
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configuration and then merges all the disjoint ranked lists from the particular method into a simple 

multilingual ranked list (results merging) [Chen & Gey, 2003]. Similarly, many simple multilingual results 

can be obtained by applying different retrieval algorithms. These ranked lists contain the same set of 

documents but have different rankings. Finally, those simple multilingual ranked lists can be merged into a 

more accurate multilingual ranked list (meta search). Figure 6.1 shows a more detailed representation of this 

multilingual centralized retrieval method. This approach has been shown to be more effective than the 

approach described in the previous paragraph [Chen & Gey, 2003], and it is utilized in this dissertation. 

Section 6.1.1 briefly discusses one translation tool. Section 6.1.2 presents two multilingual retrieval 

algorithms based on query translation and document translation respectively, then Section 6.1.3 proposes 

several methods to combine the results from multiple multilingual retrieval algorithms. 

6.1.1. Translation matrices by learning from parallel corpus 

Translation tools have been widely used by multilingual retrieval algorithms to cross the language barriers. 

The translation process in this work is mainly accomplished in a word-by-word manner by using translation 

matrices generated by parallel corpus as the European Parliament proceedings17, which contains aligned 

sentences in multiple languages. Furthermore, the GIZA++ [Och & Hermann, 2000] tool is utilized to 

construct the translation matrices from English words to the words of the other languages or from words in 

other languages to English words. A probability value is assigned to each translation pair, indicating how 

probable the translation is.   

6.1.2. Multilingual retrieval via query translation or document translation 

One straightforward multilingual retrieval method is to translate the queries into different languages, search 

using translated queries to acquire language-specific results, and merge these results into a single 

multilingual ranked list.  

Specifically, each English query word is translated into the top three candidates in the translation matrices of 

other languages. All three translated words are associated with normalized weights (i.e., the sum of the 

weights is 1) proportional to the weights in translation matrices. As the vocabulary of the parallel corpus is 

limited, we also utilize word-by-word translation results from the online machine translation software 

Systran18 as a complement. A weight of 0.2 is assigned to the translation by Systran and a weight of 0.8 is 

                                                        
17 http://people.csail.mit.edu/koehn/publications/europarl 
18 http://www.systransoft.com/index.html 
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assigned to the translation with parallel corpora. The translated queries are used to search the index built for 

each language. Each query term weight is its weight in the translation representation. The Okapi retrieval 

algorithm is applied to do the retrieval. Okapi is chosen here as it has been widely used for multilingual 

retrieval [Lam-Adesina & Jones, 2003; Kamps et al., 2003]. However, we also believe other popular 

algorithms like INQUERY should work. As the same retrieval algorithm is applied on the corpus of different 

languages with original/translated queries of the same lengths (3 translations per query term), the raw scores 

in the ranked lists are somewhat comparable. Therefore, these ranked lists are merged together by their 

language-specific scores into a final ranked list. This retrieval method is formally denoted as Qry_nofb as 

shown in Table 6.1. 

Another multilingual retrieval algorithm based on query translation, which utilizes query expansion by 

pseudo relevance feedback, is also applied by adding 10 most common query terms within top 10 ranked 

documents of the initial retrieval result for each language and then doing the search and merging again. This 

retrieval method is denoted as Qry_fb. 

An alternative multilingual retrieval method is to translate all documents in other languages into English and 

apply the original English queries. The retrieval method based on document translation may have an 

advantage compared to the retrieval method based on query translation as the translation of long documents 

may be more accurate to represent the semantic meaning than the translation of short queries. For example, 

previous research [Chen & Gey, 2003] has shown an example that although one English query term is not 

correctly translated into the corresponding Spanish word by query translation, this Spanish word may still be 

correctly translated into the English query term by document translation. Translation matrices built from 

parallel corpus are utilized for translating documents. For each word in a language other than English, its top 

three English translations are considered. Five word slots are allocated to the three candidates with weight 

proportion to their normalized translation probabilities. Then all of the translated documents as well as the 

original English documents are collected into a single monolingual database and indexed. Furthermore, the 

original English queries are used to search the monolingual database with the Okapi retrieval algorithm 

Table 6.1: Several retrieval methods used for multilingual centralized retrieval. 
 

Methods Translation 
Method 

Pseudo 
Relevance-Feedback 

Qry_nofb Query N 
Qry_fb Query Y 

Doc_nofb Document N 
Doc_fb Document Y 
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without using pseudo relevance feedback. This method is formally denoted as Doc_nofb as shown in Table 

6.1. 

Similarly, another variant of the Okapi retrieval algorithm using document translation is applied with query 

expansion by pseudo relevance feedback (i.e., 10 additional query terms from top 10 ranked documents). 

This method is represented as Doc_fb. 

In summary, two types of multilingual retrieval methods based on query expansion (i.e., with or without 

query expansion) and two types of multilingual retrieval methods based on document expansion (i.e., with or 

without query expansion) are utilized in this chapter. These retrieval methods have been summarized in 

Table 6.1. 

6.1.3. Combining multilingual ranked lists 

One simple combination algorithm is proposed to favor documents returned by more retrieval methods as 

well as high ranking documents returned by single types of retrieval methods. Let Srm(dk_j) denote the raw 

document score for the jth document retrieved from the mth multilingual ranked list for the kth query, 

Srm(dk_max) and Srm(dk_min) represent the maximum and minimum document scores in this ranked list 

respectively. The normalized score of the jth document is calculated as: 

rm k_j rm k_min
m k_j

rm k_max rm k_min

(S (d )-S (d ))
S (d )=

(S (d )-S (d ))
 (6.1) 

where Sm(dk_j) is the normalized document score. Then the normalized document scores among all ranked 

lists are summed up for each individual document and all the documents can be ranked accordingly. This 

method is called the equal weight combination method in this work, which can be seen as a variant of the 

well-known CombSum [Lee, 1997] algorithm for meta search.  

The equal weight combination method treats the votes from multiple retrieval methods with equal weight. 

One more sophisticated idea is to learn the weights indicating the effectiveness of each retrieval method. 

Formally, for M ranked lists to combine, the final combined document scores for a specific document d is 

calculated as: 

m

M
r

final m m
m=1

1
S (d)= w S (d)

M�
 (6.2) 

where Sfinal(d) is the final combined document score and Sm(d) (which is zero if the document is not in the 

mth ranked list) represents the normalized score for this document from the mth ranked list.  



 
      
                                    
                                                                                 

93 

1 Mw={w ,...,w }
���

and 1 Mr={r ,...,r }
�

are the model parameters, where the pair of (wm , rm) represents the weight of 

the vote and the exponential normalization factor for the mth ranked list respectively.  

Our criterion of estimating desired model parameters is to maximize the ranking accuracy. In this work, the 

ranking accuracy is represented formally as the mean average precision (MAP) criterion, which is used by 

the multilingual retrieval task of CLEF as well as many other evaluation tasks*. Let us assume that there are 

K training queries, then the value of MAP is calculated as follows: 

+
k

+
k

k j D

1 rank (j)
K j∈
��  (6.3) 

where 
+

kD is the set of the ranks of relevant documents in the final ranked list for the kth training query, and 

+
krank (j)  is the corresponding rank only among relevant documents. To avoid the overfitting problem of 

model parameter estimation, two regularization items are introduced for w
���

and r
�

 respectively. Together 

with the ranking accuracy criterion in Equation 6.3, the training problem is represented as follows: 

+
k

+ 2 2M M
* k m m

w,r k m=1 m=1j D

1 rank (j) (w -1) (r -1)
(w, r) = argmax (log - - )

K j 2*a 2*b∈

� �
� �� �
� �
�� � ���� �

��� �
 (6.4) 

where *(w, r)
��� �

 is the estimated model parameters and (a , b) are two regularization factors that are 

empirically set to 4 in this work. As this problem is not a convex optimization problem and there exist 

multiple local maximal values, a common solution is used in this work to search with multiple initial points. 

Finally, the model with desired parameters can be applied on test queries for combining ranked lists of 

different retrieval systems. This method is called the learning combination method in this work. The detailed 

experimental methodology (e.g., use of training data) is shown in Section 6.3. 

This section presents several multilingual centralized retrieval algorithms. They are not the focus of this 

chapter but an effective multilingual retrieval solution is very important to compare document scores in 

multilingual ranked lists for accurate results merging algorithms. This section presents multilingual 

centralized retrieval algorithms to first combine all results from a particular retrieval algorithm into a 

multilingual ranked list, and then combine the results from all retrieval methods into a final multilingual list.  

 

 

                                                        
* Note that this is different from the statistical concept of maximum a posterior, although the two concepts 

have the same acronym representation. 
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6.2 Results merging for multilingual federated search 

 

Merging ranked lists in multiple languages is an important task for multilingual federated search. This is the 

primary focus of this chapter. In this section, the results merging algorithms are proposed to work in 

uncooperative multilingual federated search environments. The documents within the information sources 

can only be accessed through their source-specific searching services while different sources may use 

different retrieval algorithms. It is assumed in this section that each source is monolingual in a different 

language. The methods can be extended to multiple sources per language with no significant changes. 

Previous research [Savoy, 2002; Savoy, 2003] proposed the solution of learning transformation models from 

the relevance judgments of queries in the past to map language-specific document scores into the 

probabilities of relevance and thus the retrieved documents across different languages can be ranked by their 

estimated probabilities of relevance. However, the same model is applied for different queries within a single 

language, which may be problematic as the document scores across different queries can be quite different. 

An alternative approach [Martinez-Santiago et al., 2002; Rogati & Yang, 2003] is to translate and index all 

returned documents across different languages for each query and apply a centralized retrieval algorithm to 

compute comparable document scores. Although this method is accurate, it is often associated with a large 

amount of computation costs and communication costs in federated search environments.  

This section proposes a new approach to learn query-specific and language-specific models of transforming 

language-specific document scores into comparable document scores. In particular, a small set of returned 

documents from each language is downloaded, translated and indexed at retrieval time to compute 

comparable document scores, and then the query-specific and language-specific models are trained by both 

comparable document scores and language-specific document scores for these small sets of documents. The 

models are applied to the ranked lists of all languages to obtain comparable document scores and finally of 

all the returned documents are merged into a single list using their comparable scores. This approach is a 

variant of the semi-supervised learning results merging method proposed in Chapter 5. It uses automatically 

computed document scores (by a multilingual centralized retrieval method from Section 6.1) as the 

surrogates of relevance judgment data. 

This section is organized as follows: Section 6.2.1 describes the approach of learning query-independent and 

language-specific transformation merging models and proposes an extended method of learning the model by 

maximizing the mean average precision criterion; and Section 6.2.2 proposes the new approach of learning 

query-specific and language-specific result merging algorithm. 
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6.2.1 Learning query-independent and language-specific merging models with training data 

To make the retrieved results from different ranked lists comparable, one natural idea is to map all of the 

document scores into the probabilities of relevance and rank the documents accordingly. A logistic 

transformation model has been utilized in previous studies to achieve this goal [Savoy, 2002; Savoy, 2003]. 

This method has been shown to be more effective than several other alternatives such as the round robin 

results merging method and the raw score results merging method [Savoy, 2002; Savoy, 2003]. Let us assume 

that there are altogether I ranked lists from different languages to merge, each of them provides J documents 

for each query and there are altogether K training queries with human relevance judgments. Particularly, dk_ij 

represents the jth document within the ranked list in the ith language of training query k. The pair (rk_ij, Si(dk_j)) 

represents the rank of this document and the document score (normalized by Equation 6.1) respectively. Then 

the probability of relevance of this document can be estimated using the logistic transformation model as: 

k_ij
i k_ij i i k_j i

1
P(rel|d )=

1+exp(a r +b S (d )+c )
 (6.5) 

where ai ,bi and ci are the parameters of the language-specific model that transforms all document scores from 

the ith language into the corresponding probabilities of relevance. Note that the same model is applied for all 

documents retrieved for different queries, which indicates that the model is query-independent. The optimal 

model parameter values are acquired generally by maximizing the log-likelihood (MLE) of training data 

[Savoy, 2002] as follows: 

*
k_ij k_ij

k,i,j

P (rel|d )log(P(rel|d ))�  (6.6) 

where P*(rel|dk_ij) is the empirical probability value of a particular document. This is derived from human 

relevance judgment data of training queries, which is 1 when the document is relevant and 0 otherwise. In 

contrast to the optimization problem in Equation 6.4, this objective function is convex, which guarantees the 

existence of a single global optimal solution. 

This method treats each relevant document equally. However, this may not be a desired criterion in real 

world applications. For example, query A has two relevant documents and query B has one hundred relevant 

documents. A relevant document for query A is generally more important to users than a relevant document 

for query B. Therefore, if all the queries are of equal importance to us, a more reasonable criterion for 

information retrieval evaluation is to treat all the queries equally instead of the individual relevant documents. 

The mean average precision (MAP) criterion described in Equation 6.3 reflects this criterion. Another 

important reason to use MAP is that the two multilingual retrieval tasks of CLEF use MAP as the metric for 
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the competition. Using MAP enables us to directly optimize the performance of the algorithms in this chapter 

for the CLEF evaluation. Generally speaking, the model can be optimized for many different metrics. 

Based on the above observation of prior research, this dissertation proposes a natural extension of training 

the logistic transformation model by the MAP criterion. Different sets of model parameters              

{ai ,bi and ci, 1<=i<=I} generate different sets of relevant documents for all K training queries as 

+
k{D ,1 k K}<= <=  and thus achieve different MAP values. The training goal is to find a set of model 

parameters that generates the highest MAP value. However, this problem is not a convex optimization 

problem and there exist multiple local maximal values. In this work, a common solution is utilized to search 

with multiple initial points. This new algorithm of training logistic model for maximum mean average 

precision is called logistic model with the MAP goal, while the previous algorithm [Savoy, 2002; Savoy, 

2003] trained for maximum likelihood is called logistic model with the MLE goal. 

6.2.2. Learning query-specific and language-specific merging models  

Savoy’s query-independent and language-specific logistic transform model (Section 6.2.1) applies the same 

model on the results of different queries for each language. This is problematic when the ranked lists of 

different queries have similar score distributions but different distributions of probabilities of relevance. This 

suggests that a query-specific model should be studied to improve the results merging accuracy. 

One query-specific solution is to download and translate all returned documents from different languages at 

the retrieval time and compute comparable document scores to merge them together [Martinez-Santiago et al., 

2002; Rogati & Yang, 2003]. This results merging method downloads (also indexes and translates) all 

returned documents; it is called the complete downloading method.  

Our implementation of the complete downloading method downloads all returned documents at the retrieval 

time and applies a variant of the multilingual centralized retrieval method proposed in Section 6.1 to compute 

comparable document scores. Particularly, after downloading the documents, queries are translated into 

different languages and the Okapi retrieval algorithm is applied to obtain language-specific document scores. 

The returned documents are merged by the raw scores into a multilingual ranked list. Then all downloaded 

documents are translated into English and indexed by the method described in Section 6.1. The original 

English queries are applied to the translated documents by the Okapi retrieval algorithm to obtain document 

scores based on the document translation method, and then all downloaded documents are merged by the raw 

scores into another multilingual ranked list. Finally, these two multilingual ranked lists are combined by the 

method introduced in Section 6.1 into a final ranked list. 
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The complete downloading method is effective. However, this method is associated with the large amount of 

communication costs of downloading the documents and computation costs of translating and indexing many 

documents. 

In this section, a more efficient results merging algorithm is proposed to work in the multilingual federated 

search environments. This approach is a variant of the semi-supervised learning results merging method 

proposed in Chapter 5. It only downloads and calculates comparable document scores for a small set of 

returned documents and trains query-specific and language-specific models, which transform 

language-specific document scores to comparable scores for all returned documents. 

Particularly, only top ranked documents in the ranked list of each information source are selected for 

downloading and calculating comparable document scores. Let us assume that the top L documents in the 

ranked list of each information source are downloaded. Let the pair (Sc(dk’_l) , Si(dk’_l)) denote the normalized 

comparable document score and the normalized language-specific score for the lth downloaded document of 

the ith information source for the query k’. Let the pair (ak’_i, bk’_i) denote the parameters of the corresponding 

query-specific and language-specific model. These parameters are learned by solving the following 

optimization problem to minimize the mean squared error between exact normalized comparable scores and 

the estimated comparable scores as: 

( )
k'_l NLL

* * 2
k'_i k'_i c k'_l

(a,b) d D D i k'_l

1
a ,b = argmin (S (d )- )

1+exp(a*S (d )+b)∈ ∪
�  (6.7) 

where DL is the set of L downloaded documents from the source. DNL is a pseudo set of L documents that 

have no document representations but have pseudo normalized comparable scores of zero and pseudo 

normalized language-specific scores of zero. This set of pseudo documents is introduced in order to make 

sure that the learned model ranks documents in the correct way (i.e., documents with large language-specific 

scores are assigned with large comparable document scores and thus rank higher in the final ranked list).  

Finally, logistic transformation models are learned for all information sources in a similar way. These models 

are applied to all returned documents from all sources and thus the returned documents can be ranked 

according to their estimated comparable scores. Note that only language-specific document scores are used in 

the logistic model in Equation 6.7 while document ranks in language-specific ranked lists are not considered. 

This choice is different from previous research (Equation 6.5), and is used here to avoid the overfitting 

problem for the limited amount of training data (i.e., the training data of the query-specific model in Equation 

6.7 is less than that of the query-independent model in Equation 6.5). Exact comparable document scores are 

available for all of the downloaded documents. One method to take advantage of the evidence is to combine 
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them with the estimated comparable scores. In this work, they are combined together with equal weights (i.e., 

0.5). This approach has been found to generate slightly better empirical results. 

The query-specific and language-specific results merging algorithm proposed in this section is different from 

the methods proposed in Chapter 5 in several perspectives. First, a logistic model instead of a linear model is 

utilized here to estimate comparable document scores. Logistic models have been commonly used in 

previous work [Savoy, 2002; Savoy, 2003] for merging multilingual documents and they are combined with 

the semi-supervised learning method in this chapter to further improve the state-of-the-art and to compare 

with previous research. 

Second, the results merging algorithms in Chapter 5 heavily utilize overlap documents that exist in both 

centralized sample database and individual ranked lists for creating training data. The results merging 

algorithms in Chapter 5 are more probable to obtain more overlap documents in centralized sample database 

due to resource selection procedure. As an information source is selected only if the language model derived 

from its sampled documents matches the query, some of these sampled documents are likely to be retrieved 

from this information source and it is more probable to find more overlap documents from centralized sample 

database. However, the results merging algorithms in this section were developed for the CLEF results 

merging task, which searches all available sources without resource selection. Therefore, the help from 

overlap documents is substantially less and the algorithm in this chapter downloads some documents to 

create training data. 

 

6.3 Evaluation methodology and experimental results 

 

This section first describes the experimental methodology of the two CLEF tasks: the multilingual 

centralized retrieval task and the multilingual results merging task. Next, it presents experimental results to 

demonstrate the power of the algorithms proposed in this chapter.  

6.3.1 Experimental methodology 

The Cross-Language Evaluation Forum (CLEF) provides a good opportunity to evaluate both centralized 

multilingual retrieval algorithms and results merging algorithms for multilingual federated search. We 

participated in two tasks of CLEF 2005: Multi-8 two-years-on multilingual retrieval and Multi-8 results 

merging.  
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The first task of Multi-8 two-years-on is a multilingual retrieval task, which is to search documents in eight 

languages with queries in a single language (i.e. English) in a centralized environment where we have full 

access to all the documents. 20 training queries with relevance judgments are provided to tune the behavior 

of multilingual retrieval algorithms and the algorithms are evaluated on 40 test queries. More detailed 

information about the eight information sources and the queries can be found in Chapter 2.  

The second task of Multi-8 results merging task is to merge ranked lists of eight different languages into a 

single final list. This is viewed in this chapter as a results merging task within uncooperative multilingual 

federated search environments. There are eight information sources that contain documents in eight different 

languages. The documents can be only accessed through source-specific search engines (assigned by the 

results merging task of CLEF 2005). In the offline phase, query-based sampling is used to acquire 3,000 

sampled documents from each information source. A relatively large number of sampled documents are 

acquired from each source to generate more accurate language-specific corpus statistics for the multilingual 

centralized retrieval algorithm. This is different from the case in monolingual environments where all the 

sampled documents from multiple sources in a single language can be collapsed together for generating 

corpus statistics. For each user query, eight ranked lists are generated by the search engines of these 

information sources (one per language). The Multi-8 results merging task uses the same set of documents and 

queries (i.e., training and test) as the Multi-8 two-years-on task. 

Some basic text preprocessing techniques have been utilized to process multilingual documents in both of the 

two tasks are: 

- Stopword lists: The INQUERY [Turtle 1990; Callan, Croft & Harding, 1992] stopword list was used for 

English documents. Stopword lists of Finnish, French, German, Italian, Spanish and Swedish were 

acquired from19, while the snowball stopword20 list was used for Dutch; 

- Stemming: Porter stemmer was used for English words. Dutch stemming algorithm was acquired from20 

and the stemming algorithms from21 were used for the other six languages; 

- Decompounding: Dutch, Finnish, German and Swedish are compound rich languages. The same set of 

decompounding procedures as described in previous research [Kamps, et al., 2003] was utilized. 

                                                        
19 http://www.unine.ch/info/clef/ 
20 http://www.snowball.tartarus.org/ 
21 http://people.csail.mit.edu/koehn/publications/europarl 
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6.3.2 Experimental results: Multilingual centralized retrieval 

Multilingual centralized retrieval is not the focus of this chapter. However, the proposed federated 

multilingual results merging algorithms need an effective multilingual centralized retrieval algorithm to 

generate training data automatically. Therefore, the accuracy of the proposed multilingual centralized 

retrieval algorithm is briefly presented here. 

The proposed multilingual centralized retrieval algorithm in this dissertation combines the results from a 

specific retrieval method into a multilingual result list, and then combines all the multilingual results from 

different methods into a single list. It is helpful to first investigate the accuracy of individual multilingual 

ranked lists from different retrieval methods. Table 6.2 shows the accuracies of five multilingual retrieval 

algorithms on training queries (first 20 queries), test queries (next 40 queries) and the overall accuracies. It 

can be seen that these methods produced results of similar accuracies, while the retrieval method based on 

document translation that does not use query expansion has a small advantage. The merged multilingual 

results from the UniNE system [Savoy, 2003] (i.e., eight ranked lists of different languages merged together 

by logistic transformation models trained by maximizing the MAP criterion) are also shown in Table 6.2 as it 

is utilized in this work. It can be seen that the accuracy of the UniNE system was very close to the other four 

algorithms.  

Table 6.2: Mean average precision of multilingual 
retrieval methods. Qry means by query translation. 
Doc means by document translation, nofb means 
no pseudo relevance feedback, fb means pseudo 
relevant back. UniNE is the results from the 
UniNE system [Savoy, 2003] 
 

Methods Train Test All 

Qry_fb 0.317 0.353 0.341 
Doc_nofb 0.346 0.360 0.356 
Qry_nofb 0.312 0.335 0.327 

Doc_fb 0.327 0.332 0.330 
UniNe 0.322 0.330 0.327 

 

Table 6.3: Mean average precision of merged 
multilingual lists of different methods. M_X 
means to combine X results in the order of:         
1) query translation with feedback; 2) document 
translation without feedback; 3) query translation 
without query expansion; 4) document translation 
with query expansion; and 5) UniNE system. (For 
example, M2 means Qry_fb plus Doc_nofb).     
W1: means combine with equal weight, Trn means 
combine with trained weights. 
 

Methods Train Test All 

M2_W1 0.384 0.431 0.416 

M2_Trn 0.389 0.434 0.419 

M3_W1 0.373 0.423 0.406 

M3_Trn 0.383 0.431 0.415 

M4_W1 0.382 0.432 0.415 

M4_Trn 0.389 0.434 0.419 

M5_W1 0.401 0.446 0.431 

M5_Trn 0.421 0.449 0.440 
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The key idea of the multilingual centralized retrieval algorithm in this chapter is to improve the accuracy of 

multilingual retrieval result by combining results of several multilingual retrieval methods. Two combination 

methods described in Section 6.1 as the equal weight combination method and the learning combination 

method were applied. They were used to combine the results of the five retrieval algorithms described above. 

The combination results are shown in Table 6.3. It can be seen that the combination methods improved the 

accuracy of individual multilingual retrieval results shown in Table 6.2. Careful analysis shows that although 

the training combination method was consistently better than the equal weight combination method for the 

same set of configurations (i.e., the same number of ranked lists to combine), its advantage was very small. 

One possible explanation is that the accuracies of the five retrieval algorithms (i.e., shown in Table 6.2) were 

very close and adjusting the voting weights could not make much difference. 

6.3.3 Experimental results: Results merging for multilingual federated search 

This section presents experimental results of multilingual results merging algorithms in federated search 

environments. Two sets of language-specific ranked lists (i.e., lists of eight languages) from the UniNE 

system [Savoy, 2003] and the HummingBird system22 were provided for each query from the results 

merging task of CLEF 2005. The results merging algorithms were required to merge each set of ranked lists 

into a single list and were evaluated by the accuracies of the final merged lists. 

The language-specific retrieval accuracies of ranked lists of UniNE and HummingBird systems are shown in 

Table 6.4 and Table 6.5 respectively. It can be seen from Table 6.4 that the UniNE system generates accurate 

language-specific ranked lists for all languages expect for Finnish. In contrast, the accuracies of the ranked 

lists generated by HummingBird system shown in Table 6.5 are much lower than those of the UniNE system. 

These two sets of ranked lists are good candidates to evaluate result merging algorithms with both accurate 

language-specific ranked lists and inaccurate language-specific ranked lists. 

                                                        
22 http://www.hummingbird.com/products/searchserver/ 

Table 6.4: Language-specific retrieval accuracy in mean average precision of results from UniNE system. 

Language Dutch English Finnish French German Italian Spanish Swedish 

All (MAP) 0.431 0.536 0.192 0.491 0.513 0.486 0.483 0.435 
 

Table 6.5: Language-specific retrieval accuracy in mean average precision of results from HummingBird system 

Language Dutch English Finnish French German Italian Spanish Swedish 
All (MAP) 0.236 0.514 0.163 0.350 0.263 0.325 0.298 0.269 
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The first two sets of experiments were conducted to evaluate two query-independent and language-specific 

results merging algorithms by optimizing the maximum likelihood criterion (MLE) and the mean average 

precision (MAP) criterion respectively. Their accuracies on the ranked lists of the UniNE system and the 

HummingBird system are shown in Table 6.6 and Table 6.7. It can be seen that the accuracies of the merged 

results of the UniNE system was much higher than those of the HummingBird system. This is consistent with 

our expectation as the language-specific ranked lists of the UniNE system are more accurate than those of the 

HummingBird system. Furthermore, it can be seen from both Tables 6.6 and 6.7 that the learning algorithm 

optimized for the mean average precision criterion was always more accurate than that optimized for the 

maximum likelihood criterion (~10%). This demonstrates the power of the method to directly optimize for 

mean average precision by treating different queries equally versus the method of optimizing for maximum 

likelihood.  

Our key idea of improving the merging accuracy is to introduce query-specific and language-specific results 

merging algorithms. Two types of algorithms were evaluated in this work. The first method (i.e., complete 

downloading method) downloaded all documents from ranked lists of different languages and calculated 

comparable document scores (C_X). The second method only downloaded a small set of top ranked 

documents and calculated their comparable document scores to build logistic transformation models. Then 

these models estimated comparable document scores for all retrieved documents and the estimated scores 

were combined with exact comparable scores wherever they were available (Top_X_C05). Note that both of 

these two algorithms do not require human relevance judgments for training data. Therefore, the results on 

the training query set and the results on the test query set were obtained independently and it is not necessary 

that the results on training queries are better than the results on test queries. 

Table 6.6: Mean average precision of merged 
multilingual lists of different methods on 
UniNE result lists. TrainLog_MLE means 
trained logistic transformation model by 
maximizing MLE. TrainLog_MAP means 
trained logistic transformation model by 
maximizing MAP. 

Methods Train Test All 
TrainLog_MLE 0.301 0.301 0.301 
TrainLog_MAP 0.322 0.330 0.327 

 

Table 6.7: Mean average precision of merged 
multilingual lists of different methods on 
HummingBird result lists. TrainLog_MLE 
means trained logistic transformation model 
by maximizing MLE. TrainLog_MAP means 
trained logistic transformation model by 
maximizing MAP. 

Methods Train Test All 
TrainLog_MLE 0.186 0.171 0.176 
TrainLog_MAP 0.210 0.192 0.198 
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Table 6.8: Mean average precision of merged 
multilingual lists of different methods on UniNE 
result lists. Top_x indicates x top documents are 
downloaded to generate logistic transformation 
model, C05 indicates both scores from logistic 
transformation model and centralized document 
scores are utilized when they are available and 
they are combined with a linear weight as 0.5. 
Top_[1,10,20] indicates to download top 1, 10 
and 20 documents. C_X means top X documents 
from each list are merged by their centralized doc 
scores. 
 

Methods Train Test All 

Top_150_C05 0.360 0.412 0.395 

Top_30_C05 0.357 0.399 0.385 

Top_15_C05 0.346 0.402 0.383 

Top_10_C05 0.330 0.393 0.372 

Top_5_C05 0.296 0.372 0.347 

Top_[1,10,20]_C05 0.298 0.352 0.334 

C_1000 0.356 0.382 0.373 

C_500 0.356 0.384 0.374 

C_150 0.352 0.391 0.378 
 

Table 6.9: Mean average precision of merged 
multilingual lists of different methods on 
HummingBird result lists. Top_x indicates x top 
documents are downloaded to generate logistic 
transformation model, C05 indicates both scores 
from logistic transformation model and centralized 
document scores are utilized when they are 
available and they are combined with a linear 
weight as 0.5. Top_[1,10,20] indicates to download 
top 1, 10 and 20 documents. C_X means top X 
documents from each list are merged by their 
centralized doc scores. 
 

Methods Train Test All 

Top_150_C05 0.278 0.297 0.291 

Top_30_C05 0.260 0.268 0.265 

Top_15_C05 0.235 0.253 0.247 

Top_10_C05 0.222 0.248 0.239 

Top_5_C05 0.210 0.234 0.226 

Top_[1,10,20]_C05 0.199 0.212 0.208 

C_1000 0.324 0.343 0.337 

C_500 0.315 0.333 0.326 

C_150 0.290 0.302 0.298 
 

The experimental results of different variants of these two algorithms are shown in Tables 6.8 and 6.9. It can 

be seen that both the two query-specific and language-specific results merging algorithms substantially 

outperformed the query-independent and language-specific algorithms (i.e., results shown in Tables 6.6 and 

6.7). The accuracies of the two query-specific and language-specific methods were close on the UniNE 

system. It is interesting that the Top_150_C05 method outperformed all C_X runs on the UniNE system. One 

possible explanation is that the estimated document scores can be seen as the combination results from not 

only the two retrieval methods based on query translation and document translation but also the retrieval 

method of the UniNE system. Therefore, the combined results that are related with three retrieval systems 

may be better than those of the exact comparable scores from two retrieval systems. It is encouraging to see 

that with very limited amount of downloaded documents, the Top_10_C05 method still had a more than 10 

percent advantage over the query-independent algorithms. Note that Top_[1, 10, 20]_C05 follows the same 

strategy of choosing documents to download as described in Chapter 5. On both the two testbeds,    

Top_[1, 10, 20]_C05 is at least as effective as the query-independent and language-specific algorithms (i.e., 

results in Tables 6.6 and 6.7). One interesting issue is that the results merging task of multilingual federated 

search tends to require more training data than the task of monolingual federated search. This may be 

explained by the hypothesis that multilingual ranked lists tend to be more heterogeneous than monolingual 
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ranked lists. However, more research should be conducted to provide more information. 

It can be seen from Table 6.9 that the advantage of the query-specific and language-specific algorithms over 

the query-independent and language-specific algorithms was even larger for the results on the HummingBird 

system than those on the UniNE system. This demonstrates the power of the query-specific and 

language-specific merging algorithms for ineffective bilingual ranked lists. It is interesting to note that the 

Top_X_C05 runs were not as effective as the C_X runs on the HummingBird System. This may be because 

the bilingual ranked lists of the HummingBird system are not as accurate as those of the UniNE systems. 

Therefore, the influence of the HummingBird bilingual ranked lists on the estimated comparable scores is not 

as helpful as that from the UniNE system. 

 

6.4 Summary 

 

In real world federated search applications, many information sources may contain documents in multiple 

languages. This use scenario demands a multilingual federated search solution. Particularly, this chapter 

focuses on the results merging problem in uncooperative multilingual federated search environments, which 

makes multiple ranked lists in different languages comparable and merges them into a single multilingual 

ranked list.  

To obtain comparable document scores for documents in different languages, it is important to design an 

effective multilingual centralized retrieval algorithm. This is not our focus in this chapter. However, an 

effective multilingual centralized retrieval algorithm is briefly introduced in this chapter, which utilizes 

multiple retrieval methods and multiple translation techniques.   

With multilingual centralized retrieval algorithms, some previously proposed multilingual results merging 

algorithms download, translate and index all returned documents at retrieval time and apply multilingual 

centralized retrieval algorithms to compute comparable scores for all returned documents and merge them 

together. This approach is associated with large communication and computation costs. An alternative 

approach utilizes the relevance judgments of past queries to build query-independent and language-specific 

models for estimating the probabilities of relevance for returned documents. However, this approach is not as 

effective. 

This chapter proposes an effective and efficient approach to learn query-specific and language-specific 

models for transforming language-specific document scores into comparable document scores. This is an 
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extension of the semi-supervised learning results merging method proposed in Chapter 5 for monolingual 

federated search environments. Particularly, this method downloads a small number of documents at retrieval 

time and utilizes the proposed multilingual centralized retrieval method to calculate their comparable 

document scores. These documents serve as training data to learn query-specific and language-specific 

models, which transform the language-specific document scores for all returned documents into centralized 

comparable scores. Finally, the returned documents can be merged into a single list according to their 

centralized scores. 

A large set of experiments has been conducted to show the effectiveness of proposed algorithms. In order to 

generate more accurate results for the evaluation, more sophisticated logistic transformation models are 

utilized in the algorithms with relatively more training data than the algorithms developed in Chapter 5. An 

extensive set of experiments has demonstrated the greater effectiveness and efficiency of the new results 

merging algorithm over several other alternatives. 
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Chapter 7: Unified Utility Maximization Framework 
 

 

It is common to view the three main subproblems of federated search, namely resource description, resource 

selection and results merging, in isolation from each other. Effective solutions of these three subproblems are 

proposed and discussed separately from Chapter 3 through Chapter 6. However, individual solutions for the 

subproblems optimize different criteria (e.g., high recall for resource selection, high precision for federated 

document retrieval). These subproblems are correlated with each other in federated search applications; 

exploring the relationship between these subproblems is as important as proposing separate effective 

solutions. A unified probabilistic framework is proposed in this chapter for the federated search task in 

uncooperative environments. The new model integrates and adjusts individual solutions of different 

subproblems to achieve effective results for different applications. Specifically, when used for an information 

source recommendation system, the model targets the high-recall goal (select a small number of information 

sources with as many relevant documents as possible); when used for federated document retrieval, the 

model is optimized for the high-precision goal (high precision at the top of final merged lists). The new 

research proposed in previous chapters for individual subproblems of federated search task is integrated into 

the unified framework. Empirical studies demonstrate the power of this new framework for different 

federated search applications. 

The utility maximization method developed in this chapter can be seen as an extension of the ReDDE 

resource selection algorithm proposed in Chapter 4. The new resource selection algorithm utilizes a 

transformation model, which is obtained with a small amount of training data, to estimate the probabilities of 

relevance for available documents. This generates more robust results than the step function approximation 

by the ReDDE algorithm.   

 

7.1 High recall of information source recommendation vs. high precision of document 

retrieval 
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Information source recommendation and federated document retrieval are two important types of federated 

search applications, and there has been considerable prior research.  

An information source recommendation system is composed of two components: resource representation and 

resource selection. It recommends the most relevant information sources for users’ information needs. This 

system is very useful when the users want to browse and search the selected information sources manually 

for broader content instead of asking the system to retrieve relevant documents automatically. Most current 

resource selection algorithms are evaluated for the high-recall goal, which is to recommend a small number 

of information sources that contain as many relevant documents as possible.  

A federated document retrieval system searches selected information sources automatically and merges 

returned ranked lists into a single ranked list. Therefore, all the three subproblems of federated search need to 

be addressed in this application. In operational federated document retrieval application, users rarely browse 

far down the final ranked list, so the precision at top ranked documents is the most important evaluation 

metric. Therefore, federated document retrieval application is often evaluated with the high-precision goal.  

Most previous algorithms simply combine effective resource selection algorithms and results merging 

algorithms together in order to achieve accurate results for federated document retrieval. However, this 

simple approach suffers from the important fact that resource selection algorithm optimized for the 

high-recall goal of the information source recommendation application is not necessarily optimal for the 

high-precision goal of the federated document retrieval application. This type of inconsistency has also been 

observed in previous research [Craswell, 2000]. 

Some prior research like the decision-theoretic framework (DTF) [Fuhr, 1999; Nottelmann & Fuhr, 2003b] 

has recognized the high-precision goal for federated document retrieval. This method yields an information 

source selection solution that minimizes a cost function of overall costs (e.g., retrieval accuracy, query 

processing cost and communication cost) for federated document retrieval application. When it is focused on 

retrieval accuracy, the DTF model estimates the probabilities of relevance for the documents among 

available information sources, and then it generates a resource selection decision for the high-precision goal. 

However, its empirical results have been shown to be at most as good as those of the CORI resource 

selection algorithm [Nottelmann & Fuhr, 2003b]. 

Three issues limit the power of the DTF algorithm: i) the DTF model was proposed for federated document 

retrieval application and does not address the high-recall goal of information source recommendation 

application explicitly; ii) the DTF model assumes that the same type of retrieval algorithm is used by all of 
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the information sources, which is not valid in uncooperative environments; and iii) the DTF model builds a 

separate model for each information source to estimate the probabilities of relevance. This requires human 

relevance judgments for the results retrieved from each information source, which can be expensive if there 

are many information sources. 

Based on this observation, a unified utility maximization framework is proposed in this chapter to integrate 

the high-recall goal and the high-precision goal in a single probabilistic model. It works in uncooperative 

environments and is much more efficient than the DTF model. 

 

7.2 Unified utility maximization framework 

 

A unified utility maximization framework is proposed in this section to address the inconsistency problem of 

different goals for different federated search applications. This framework integrates the two applications of 

information source recommendation and federated document retrieval together by assigning them different 

utility maximization goals. 

First, a logistic transformation model is learned off line with a small amount of training queries that have 

human relevance judgments to map the centralized document scores from the centralized sample database to 

the corresponding probabilities of relevance. More detailed information about this step is described in 

Section 7.2.1.1 

Second, in resource selection, for each user query (i.e., test query), the probabilities of relevance of all of the 

(mostly unseen) documents among available information sources can be inferred from the estimated 

probabilities of relevance of the sampled documents in the centralized sample database. This method is 

further explained in Section 7.2.1.2. 

Third, based on these probabilities, the information sources are ranked by solving different utility 

maximization problems according to either the high-recall goal or the high-precision goal for different 

applications. More detailed information can be found in 7.2.2. Note that the probabilities of relevance are 

used here instead of document scores on centralized sample database. One reason is that probabilities of 

relevance more precisely represent the utilities of available sources if they are measured by the number of 

relevant documents contained among available sources (or at the top of ranked lists). 

Furthermore, for federated document retrieval, the SSL (Semi-Supervised Learning) results merging 
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algorithm is utilized to rank the returned documents by their estimated centralized document scores (thus also 

by the probabilities of relevance as we assume the mapping function between the centralized document 

scores and the probabilities of relevance is monotonically increasing). 

When the unified utility maximization framework is optimized for the high-recall goal for information source 

recommendation, it follows an approach similar to the ReDDE resource selection algorithm proposed in 

Chapter 4. Both of the two algorithms turn away from the “big document” resource selection approach by 

explicitly estimating the probabilities of relevance for all documents across available information sources to 

calculate the expected number of relevant documents. One key point that distinguishes these two methods 

lies in the different methods to estimate the probability of relevance for each document. Specifically, ReDDE 

uses a heuristic method and treats the curve of probabilities of relevance as a step function, where only 

documents’ ranks in the centralized complete database are considered; while the new algorithm takes 

advantage of some training data and builds a query-independent logistic model to transform the centralized 

document scores to their corresponding probabilities of relevance. The improvement enables the new 

algorithm to generate more robust resource selection decisions than the ReDDE algorithm. 

In this section, we first discuss how to estimate the probabilities of relevance for all the documents, and then 

show how to apply the framework for the information source recommendation application and the federated 

document retrieval application respectively. 

7.2.1 Estimate probabilities of relevance for all documents 

For both the information source recommendation application and the federated document retrieval 

application, a desired resource selection algorithm needs to estimate the probabilities of relevance for all 

documents across all available information sources. This is a hard problem in an uncooperative environment 

as query-based sampling only allows a federated search system to observe a very limited proportion of the 

contents of the information sources. Note that the goal of the ReDDE algorithm proposed in Chapter 4 was to 

estimate the distribution of relevant documents among available sources. The target in this section is a more 

precise goal. 

To accomplish this goal, our solution addresses the following problems: i) in resource representation, a 

logistic model is estimated to map source-independent centralized document scores to the probabilities of 

relevance; and ii) in resource selection, the source-independent centralized document scores for all 

documents are estimated from the centralized scores for sampled documents, and then the corresponding 
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probabilities of relevance are estimated by the learned logistic model. These two problems are discussed in 

Sections 7.2.1.1 and 7.2.1.2 respectively. 

7.2.1.1 Resource representation: Estimating probabilities of relevance from centralized document scores 

There are several transformation methods that can map centralized retrieval document scores to the 

corresponding probabilities of relevance, for example linear transformation, logistic transformation of raw 

centralized scores, and logistic transformation of normalized centralized scores. Prior research [Nottelmann 

& Fuhr, 2003a; Nottelmann & Fuhr, 2003b] has measured the error of these methods and has shown the 

logistic transformation model using normalized centralized scores to be more effective than other 

alternatives. The approach of using a transformation model in this section is similar to the approach for 

results merging in Chapters 5 and 6. However, the goal of the method in this section is to estimate probability 

of relevance while the goal of the methods in Chapters 5 and 6 is to estimate comparable document scores. 

A centralized logistic transformation model is used in this work to map the normalized centralized retrieval 

score of a document to its corresponding probability of relevance. Formally, the logistic transformation 

model is expressed as follows: 

where 
_

cS (d)  denotes the normalized centralized document score (i.e., source-independent score) for a 

particular document d (i.e., document scores divided by the maximum centralized document score for each 

query). ac and bc are the two parameters of the logistic model. These two parameters are estimated by 

maximizing the probabilities of relevance of training queries. 

More specifically, during training a small set of queries (e.g., 50) is utilized to search on the centralized 

sample database by the INQUERY retrieval algorithm [Callan, Croft & Broglio, 1995]. The CORI resource 

selection algorithm is used to rank available information sources and 10 selected information sources are 

searched for each query (the choice of INQUERY and CORI is not unique, other effective retrieval methods 

like the language model retrieval algorithm and other resource selection algorithms like ReDDE are also 

good candidates here). The individual ranked lists for each query are merged into a single list by the SSL 

results merging algorithm. Then, the top 50 documents in the final ranked list are downloaded and the 

corresponding centralized scores are calculated by the INQUERY algorithm with the corpus statistics of the 

centralized sample database. The centralized scores of the downloaded documents are further normalized by 

( )
_

c c c
_

c c c

exp(a +b S (d))
R(d) = P rel|d =

1+exp(a +b S (d))
 (7.1) 
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dividing the maximum centralized score for each query, as this approach has been suggested to improve 

estimation accuracy in previous research [Nottelmann & Fuhr, 2003a]. The normalized document scores are 

used as inputs for training transformation model, while human relevance judgments for these documents are 

obtained as outputs. Finally, the logistic transformation model is built by the maximum likelihood estimation 

criterion.   

Only a single centralized logistic transformation model is built on centralized sample database. The 

centralized sample database serves as a bridge to connect the centralized transformation model and all of the 

information sources to estimate the probabilities of relevance of all documents across the information 

sources. The human efforts required to train the single centralized logistic model do not scale with the 

number of information sources. This marks a big distinction between the unified utility maximization model 

and the prior research that required building separate models for different information sources such as the 

RDD [Voorhees et al., 1995] or the DTF [Fuhr, 1999; Nottelmann & Fuhr, 2003b] methods. This advantage 

suggests that the unified utility maximization method can be trained much more efficiently and thus is much 

easier to apply in large federated search environments with many information sources. 

Note that this method uses one model for all queries. This solution works with a limited amount of training 

queries. It does not need to be retrained when a few new information sources are added. However, when 

there exist a large amount of new sources, the centralized sample database may be rebuilt and the logistic 

model can be re-estimated to reflect the content change. 

7.2.1.2 Resource selection: Estimating probabilities of relevance from centralized document scores for 

all documents  

In resource selection, the probabilities of relevance for all of the documents in available information sources 

are estimated based on centralized retrieval document scores by using the centralized logistic transformation 

model described in Section 7.2.1.1. Therefore, it is necessary to estimate the centralized document scores for 

all of the (mostly unseen) documents. These scores are inferred from the centralized retrieval scores of the 

sampled documents in the centralized sample database and also the information source size estimates. 

Particularly, a mapping is described in this section to transform the rank of a document in the centralized 

environment to the corresponding centralized document scores. This follows a main theme of this 

dissertation to utilize the centralized sample database as described in Section 3.2. 

The concept of information source size factor was introduced in Chapter 4. It is associated with a particular 

ith information source and is defined as the ratio of the estimated information source size and the number of 
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sampled documents from this information source. Formally: 

where i

^

dbN  denotes the information source size estimate for the ith information source and Ndbi_samp denotes 

the number of sampled documents from this information source. The intuition behind the information source 

size factor is that: for a particular information source with an information source size factor of 50, if a 

sampled document from this information source has a centralized document score of 0.8, it can be roughly 

estimated that there are another 49 similar unseen documents (i.e., not sampled) in the information source, 

which have centralized document scores of about 0.8, as long as we assume the sampled documents are 

representative. 

Instead of the simple histogram non-parametric estimator for centralized document scores, we can choose a 

finer linear interpolation estimator. Formally, all of the sampled documents from the particular ith 

information source are first ranked by their centralized document scores to get the sampled centralized 

document score list as {Sc(dsi1), Sc(dsi2), Sc(dsi3),…..}. Suppose that we can calculate the centralized 

document scores for all of the documents from this information source and obtain the complete centralized 

document score list, then the top document in the sampled list would rank at the position of SFdbi/2 in the 

complete list, the second document in the sampled list would rank at the position of SFdbi3/2, and so on. 

Therefore, the data points of sampled documents in the complete centralized document score curve are: 

{(SFdbi/2, Sc(dsi1)), (SFdbi3/2, Sc(dsi2)), (SFdbi5/2, Sc(dsi3)),…}. Piecewise linear interpolation is applied to 

estimate the centralized document curve, as illustrated in Figure 7.1. Finally, the whole complete centralized 

document score list  
i

^ ^

dbc ijS (d ) , j [1, N ]∈  can be extracted from the curve accordingly.  

It can be seen from Figure 7.1 that more sampled data points produce more accurate complete centralized 

i

i

i

^

d b
db

db _ sam p

N
S F =

N  
(7.2) 

 
Figure 7.1: The complete centralized document score curve constructed by linear interpolation for a 

particular information source with scale factor of 50. 
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document score curves. In contrast, with very sparse sampled data points, the estimation may be inaccurate 

especially for the top ranked documents (e.g., [1, SFdbi/2]), which are more important to users as they are 

more likely to be relevant. This problem is more serious for information sources with large source scale 

factors. Based on this observation, an alternative approach is proposed to adjust the estimated centralized 

document scores of top ranked documents for information sources with large information source scale factors 

(i.e., empirically set to be larger than 100 in this chapter). Specifically, a logistic transformation model is 

learned for each information source with a large information source scale factor to estimate the centralized 

document score of the top 1 document by using the centralized document scores of the top two sampled 

documents from this information source as: 

where 
^

c i1S (d ) is the estimated centralized document score of the top 1 document in the ith information source. 

ai0, ai1and ai2 are the three parameters of the corresponding logistic model. For each of the information source 

with a large information source scale factor, the top retrieved documents for all training queries are 

downloaded and their centralized document scores are calculated. Together with the centralized document 

scores of the top two sampled documents for these queries, the three parameters of the logistic model can be 

estimated. Note that this logistic model can be trained in an automatic way without utilizing any human 

relevance judgment. Therefore, it is a reasonable choice to build a separate model for each large information 

source. 

After a logistic transformation model has been built for an information source to estimate the centralized 

score of the top document, an exponential function is fitted for the top part ([1, SFdbi/2]) of the complete 

centralized document score curve as follow:  

^
i0 i1 c i1 i2 c i2

c i1
i0 i1 c i1 i2 c i2

exp(� +� S (ds )+� S (ds ))
S (d ) =

1+exp(� +� S (ds )+� S (ds ))
 (7.3) 

i

^

c ij i0 i1 dbS (d ) = exp(� +� j) j [1,SF /2]∗ ∈
 (7.4) 

^

i0 c i1 i1� = log( S (d )) -�  (7.5) 

i

^

c i1 c i1
i1

db

(log(S (ds )-log(S (d ))
� =

(SF /2-1)
 

(7.6) 
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Figure 7.2: The adjusted centralized document score curve for a large information source with scale factor of 150. 

 
The two parameters i0� and i1�  are fitted to make the exponential function pass through the two points of 

^

c i1(1, S (d ) )  and (SFdbi/2, Sc(dsi1)). The exponential function is only used to adjust the top part of the 

centralized document score curve and the lower part is still fitted with the linear interpolation approach. This 

adjustment is shown in Figure 7.2. 

From the adjusted centralized document score curves, the complete centralized document score lists can be 

estimated. Then with the logistic model described in Section 7.2.1.1, the most probable complete lists of 

probabilities of relevance for all the documents across available information sources can be derived from the 

estimated centralized document scores as: { }1 2

^ ^ ^ ^
*

db db1j 2j� = ( R(d ),j [1, N ]), ( R(d ) ,j [1, N ]),...∈ ∈  (
^

ijR(d )  

denotes the estimated probability of relevance for the top ith document by the centralized retrieval algorithm 

from the jth information source). This information is very important for the unified utility maximization 

model. 

7.2.2 Unified utility maximization model 

Information source recommendation systems rank and select available information sources for user queries, 

while federated document retrieval systems not only need to rank information sources but also need to decide 

how many documents to retrieve from each selected information source. The resource selection action of the 

information source recommendation application can be generalized as a special case of the resource selection 

action of the federated document retrieval application, which implicitly recommends all of the documents in 

the selected information sources. Formally, let di denote the number of documents to select from a particular 

ith information source and the vector of 1 2d ={d ,d ,.....}
��

 denote the selection decision for all of the available 

information sources.  

The resource selection decision is made based on the complete lists of probabilities of relevance for all 

available information sources, which are derived in Section 7.2.1. Those lists are inferred from all the 
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available information, namely sR
���

that stands for the resource descriptions acquired by query-based sample 

and information source size estimates obtained by the Sample-Resample method, and 
cS
���

that stands for the 

centralized document scores of the documents in the centralized sample database. The random vector �  

denotes an arbitrary set of the complete lists of probabilities of relevance and s cP(�|R ,S )
��� ���

 denotes the 

corresponding generation probability. Furthermore, a utility function U(�,d)
�

is defined as the benefit that 

can be gained by making the selection action d
�

 when the true complete lists of probabilities of relevance 

are � . Finally, the desired selection action derived from the Bayesian framework to maximize the utility is 

as follows: 

However, it is not easy to derive an accurate expression for s cP(�|R ,S )
��� ���

; even when one exists, the 

computation costs are generally not acceptable as there are infinite choices of � . A common approach to 

simplify the computation in the Bayesian framework is to calculate the utility function *U(� ,d)
�

at the most 

probable parameter values instead of calculating the whole expectation. This section has shown how to 

derive the most probable parameter *� . Then Equation 7.7 can be simplified as: 

This equation serves as the basic model from which the desired resource selection decisions can be derived 

for both the information source recommendation application and the federated document retrieval 

application. 

7.2.2.1 Desired resource selection decision for information source recommendation application 

The high-recall goal of the information source recommendation application is to select a small number of 

information sources (e.g., Nsdb information sources) that contain as many relevant documents as possible. 

This criterion can be formalized as follows: 

where I(dbi) is a binary indication function, which is 1 when a particular ith information source is selected and 

*

s c
d

�
d = argmax U(�,d) P(�|R ,S ) d���

� � ��� ���

 (7.7) 

* *

d
d = argmax U(� , d)

�

� �
 (7.8) 

^
dbiN ^

*
i ij

i j=1

U(� ,d) = I(db ) R(d )� �
�

 (7.9) 
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0 otherwise. Plugging this utility function into the basic model in Equation 7.8 and associating it with the 

constraint of the number of selected information sources, the following utility maximization problem can be 

obtained: 

As the contribution of the available information sources is not coupled with each other (the number of 

relevant documents that an information source contains is not affected by another information source), the 

solution of the above utility maximization problem is simple. The expected number of relevant documents in 

each information source can be calculated as follows: 

where 
^

ijR(d )  denotes the estimated probability of relevance for the top jth document by the centralized 

retrieval algorithm from the ith information source, section 7.2.1.2 has shown how to derive this value. The 

information sources are sorted by the expected number of relevant documents they contain and the top Nsdb 

information sources can be selected to obtain the high-recall results. This method is called the UUM/HR 

algorithm (Unified Utility Maximization for High-Recall). 

7.2.2.2 Desired resource selection decision for federated document retrieval application 

The above section discusses how to use the complete lists of probabilities of relevance to achieve the 

high-recall goal for information source recommendation application. However, for a federated document 

retrieval application, the situation is more complex and we need to address two additional problems: i) 

documents with high probability of relevance may not be returned by the search engines of individual 

information sources; and ii) when they are returned, they may not be ranked highly in the final merged result 

list. First, it is assumed in this chapter that all the individual search engines are effective (the assumption of 

effective search engines is revisited and relaxed in Chapter 8). Second, the SSL (Semi-Supervised Learning) 

results merging algorithm is applied to automatically transform source-specific scores to the centralized 

document scores and rank all of the returned documents accordingly. We assume that the SSL algorithm can 

obtain the centralized document scores with high accuracy, so the final result list created by the SSL 

algorithm is actually sorted by the centralized document scores (thus the probabilities of relevance). Based on 

^
dbiN ^*

i ij
d i j=1

i sdb
i

Subject to

d = argmax I(db ) R(d )

: I(db ) = N

� �

�

�

�

 (7.10) 

^
dbiN ^

ij
j=1

R el_Q (i) = R (d )�  (7.11) 
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these assumptions, the complete lists of probabilities of relevance can also be utilized for the federated 

document retrieval application. 

The accuracy of a federated document retrieval system is measured by the high-precision criterion as the 

Precision at the top of the final merged document list. Thus, the utility function for federated document 

retrieval should reflect this high-precision goal as follows: 

Note that the key difference between this utility function and the utility function for the information source 

recommendation application in Equation 7.9 is that for the information source recommendation application, 

the probabilities of relevance of all the documents in an information source are summed together, while here 

a much smaller proportion of the documents are considered.  

Combining the basic model in Equation 7.8 and the above utility function, the general resource selection 

utility maximization problem of a federated document retrieval application can be obtained as follows: 

In the most general case, a simple deterministic method can solve the above utility maximization problem 

when it is not associated with any constraint. The simple method first ranks all the documents 

{ }1 2

^ ^

db db1j 2j(d , j [1, N ]), (d , j [1, N ]),...∈ ∈  into a unified ranked list by their estimated probabilities of 

relevance as ^

ijR(d )	 

� 
� �

. Then, this method simply runs down the unified ranked list to select the top ranked 

documents. This method is very efficient.  

In practice, different constraints are associated with the resource selection problems for different federated 

document retrieval applications. For example, there is communication cost, time delay or monetary cost to 

search each additional information source. Therefore, many federated document retrieval systems only select 

a few of the information sources available. One simple configuration, which is consistent with the settings of 

most prior federated document retrieval research, is to select a maximum number (e.g., Nsdb) of information 

sources and retrieve a maximum number (e.g., Nrdoc) of documents from each selected information source. 

This can be formalized as follows: 

id ^
*

i ij
i j=1

U(� ,d) = I(db ) R(d )� �
�

 (7.12) 

id ^*

i ij
d i j=1

d = argmax I(db ) R(d )� ��

�
 (7.13) 
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This problem can be easily solved by a variant of the deterministic algorithm. The algorithm first estimates 

the number of relevant documents at the top of each information source’s complete list of probabilities of 

relevance:  

The Nsdb information sources with the highest Rel_Q(i)  values are selected. As this resource selection 

algorithm described in Equation 7.14 focuses on the high-precision goal and it retrieves fixed lengths of 

document ranked lists from the selected information sources, it is called the UUM/HP-FL algorithm. 

For the toy example of the resource selection problem described in Table 7.1, which wants to retrieve 2 

documents from 2 of the 4 available sources, this algorithm will select 2 documents from both Source 1 and 

Source 3, and the obtained total utility is 1.35.  

Another simple algorithm using the unified ranked list simply runs down the unified ranked list to select top 

ranked documents and skip the documents that do not satisfy the constraints (i.e., the number of sources to 

search and the number of document to retrieve from each source). This method works fast but may not obtain 

a guaranteed optimal solution in contrast with the utility maximization problem in Equation 7.13 where there 

are no constraints. For example, for the resource selection problem in Table 7.1 to retrieve 2 documents from 

2 sources, the simple algorithm using unified ranked list obtains the total utility as 1.3 by selecting Source 1 

and Source 2. 

In the above resource selection problem, a fixed number of documents are retrieved from each selected 

information source. Information sources of high quality may be able to contribute more relevant documents 

than information sources of low quality. Based on this observation, a more complex configuration is 

proposed for the federated document retrieval application to vary the number of retrieved documents from 

selected information sources. Specifically, the selected information sources are allowed to return ranked 

document lists of different lengths. The lengths of the ranked lists are required to be multiples of a baseline 

number as 10. This requirement simulates the behavior of commercial search engines on the Web, which 

provide retrieval results in a page-by-page manner or that allow the length of a results list to be specified in 

id ^*

i ij
d i j=1

i sdb
i

i rdoc i

Subject to

d = argmax I(db ) R(d )

: I(db ) = N

d = N , if I(db ) 0≠

� �

�

�

�

 

 

(7.14) 

 

rdocN ^
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j=1

R el_Q(i) = R (d )�  (7.15) 
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10-document increments (e.g., Google). For further simplification, each selected information source is 

allowed to return at most 100 documents. This utility maximization problem can be formalized as follows: 

i ^d*

i ij
j=1d i

i sdb
i

i Total_rdoc
i

i

Subject to

d = argmax I(d ) R(d )

: I(d ) = N

d = N

d = 10 k, k [0, 1, 2, .., 10]

�

∗ ∈

�

�

�

�

�

 (7.16) 

where NTotal_rdoc denotes the total number of documents to be retrieved. 

There is no simple solution for this utility maximization problem, as there was for the UUM/HR or 

UUM/HP-FL algorithms. For example, one simplified configuration of the problem is to retrieve a total 4 of 

documents from 2 sources among the 4 available sources, as described in Table 7.1. These constraints allow 

each selected source to return 1, 2 or 3 documents. The two simple algorithms proposed for UUM/HP-FL 

obtain the total utilities of 1.35 and 1.3 respectively. However, a better choice obtains a total utility of 1.4 by 

retrieving 1 document from Source 1 and 3 documents from Source 4. Therefore, although simple algorithms 

can generate reasonably good solutions in many cases, their performance is not optimal. 

A dynamic programming solution is proposed to solve this utility maximization problem. The basic steps of 

the dynamic programming method are described in Figure 7.3. This resource selection algorithm is called the 

UUM/HP-VL algorithm (Unified Utility Maximization for High-Precision with Variable Length ranked 

lists). 

The utility maximization methods in Equations 7.14 and 7.16 solve the resource selection problems of 

federated document retrieval applications in two different configurations. After the resource selection 

decision is made, the user queries are sent to search these selected information sources and the returned 

ranked lists are merged into a single list by the SSL algorithm. The SSL algorithm ranks the returned 

Table 7.1: A toy example of a resource selection problem that selects 2 sources out of 4 available sources.  
 

Estimated Probabilities of Relevance  

Source 1 Source 2 Source 3 Source 4 

Rank 1 0.5 0.4 0.35 0.3 
Rank 2 0.2 0.2 0.3 0.3 
Rank 3 0.05 0.05 0.05 0.3 
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documents by their estimated probabilities of relevance, which is consistent with our assumption described in 

the beginning of this section. 

 

7.3 Evaluation methodology and experimental results 

 

In contrast to many previous algorithms, a small number of training queries with human relevance judgments 

is required by the unified utility maximization framework to train its model. This section first explains the 

Input:   Complete lists of probabilities of relevance for all the |DB| information sources. 
Output:  Optimal selection solution for the optimization problem in Equation 7.16. 

 i)  Create the data structure of a three-dimensional array:  
         Sel (1..|DB|, 1..NTotal_rdoc/10, 1..Nsdb) 

Each Sel (x, y, z) is associated with a selection decision xyzd
�

, which represents the best selection 
decision in the condition: only information sources from number 1 to number x are considered for 
selection; totally y*10 documents will be retrieved; only z information sources are actually chosen 
out of the x source candidates. Sel (x, y, z) is the corresponding utility value generated by choosing 
the best selection.  

ii)  Initialize Sel (1, NTotal_rdoc/10, 1..Nsdb) with only the complete list of probabilities of relevance for the 
1st information source. 

iii)  Iterate the current database candidate i from 2 to |DB| 
     For each entry Sel (i, y, z): 
      Find k* such that: 

      
^

*
ij

k j 10*k

k = argmax (Sel(i-1,y-k,z-1)+ R(d ) )

subject to:1 k min(y,10)
≤

≤ ≤

�  

   
*

^
*

ij
j 10*k

If (Sel(i-1,y-k ,z-1)+ R(d ) ) > Sel(i-1,y,z)
≤
�  

We should retrieve 10�k* documents from the ith information source, then update the     
previous values of Sel (i-1, y, z) and set iyzd

�
 accordingly. 

   
*

^
*

ij
j 10*k

If (Sel(i-1,y-k ,z-1)+ R(d ) ) Sel(i-1,y,z)
≤

≤�  

We should not select this information source and the previous best solution Sel (i-1, y, z) 
should be kept. Set iyzd

�
 accordingly. 

iv) The best selection solution is given by 
Toral_rdoc/10 sdb|DB|N Nd

�
 and the corresponding utility value is        

Sel (|DB|, NTotal_rdoc/10, Nsdb).     

Figure 7.3: The dynamic programming optimization procedure for Equation 7.16. 
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experimental methodology, and then shows the empirical results of the information source recommendation 

application and the federated document retrieval application respectively.  

7.3.1 Experimental methodology 

The unified utility maximization framework needs a small amount of queries with relevance judgments as the 

training data. The Trec123_100Col testbed was chosen in the experiments as there are 100 TREC queries on 

this testbed, where 50 queries served as the training data and another 50 served as the test data. Furthermore, 

the three testbeds of representative, relevant and nonrelevant, which are built based on the Trec123_100Col 

testbed (more detail in Chapter 2), were also used. All the four testbeds provide a wide range of corpus 

characteristics for conducting thorough evaluation.  

100 queries were created from the title fields of TREC topics 51-150. 50 queries from topics 101-150 served 

as the training queries and another 50 queries from topics 51-100 were used as the test queries. This 

arrangement was made as a lot of prior research [Callan, 2000; Si and Callan, 2003b; Nottelmann & Fuhr, 

2003b] has been evaluated on TREC topics 51-100 and it makes easier to compare the experimental results  

in this section to prior research as well as other results reported in this dissertation (e.g., Chapters 4 and 5). 

Uncooperative federated search environments often contain multiple types of search engines. In order to 

simulate this characteristic, three types of search engines as INQUERY, language modeling and the vector 

space model introduced in Chapter 2 were implemented in the Lemur toolkit and assigned to the information 

sources in a round-robin manner. 

Query-based sampling was used to acquire the resource descriptions and build the centralized sample 

database. About 80 queries were sent to each information source to download 300 documents. The 

Sample-Resample method was used to obtain the information source size estimates. 

7.3.2 Experimental results for information source recommendation application 

An information source recommendation system suggests relevant information sources to users. It is typically 

evaluated using the recall metric Rn, which compares a particular algorithm with the relevance-based ranking 

strategy (more detail is in Chapter 4). 

The experiments in this section compare three resource selection algorithms for information source 

recommendation application, namely CORI, ReDDE (Chapter 4) and UUM/HR, on the four testbeds. The 

experiment results are shown in Figure 7.4. 
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It can be seen from this figure that the UUM/HR resource selection algorithm and the ReDDE algorithm 

were more effective (on the representative, relevant and nonrelevant testbeds) or as accurate as (on 

Trec123_100Col testbed) the CORI resource selection algorithm. The advantages of the UUM/HR algorithm 

and the ReDDE algorithm are more notable on the representative and relevant testbeds, where large 

information sources contain a large proportion of relevant documents and the CORI algorithm suffered 

substantially from the “big document” assumption without considering the information source size factors. 

This indicates that the power of the UUM/HR algorithm and the ReDDE algorithm comes from introducing 

information source size factors and explicitly estimating the probabilities of relevance for all documents 

across available information sources to optimize the high-recall goal. 

Another observation can be drawn from Figure 7.4 is that the UUM/HR resource selection algorithm was 

more accurate than the ReDDE algorithm on the representative testbed and the relevant testbed, and it was 

 

Figure 7.4: Resource selection experiments on four testbeds.  
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about as effective as the ReDDE algorithm on the Trec123_100Col testbed and the nonrelevant testbed. This 

suggests that the UUM/HR algorithm is more robust than the ReDDE algorithm, due to introducing the 

centralized logistic model to estimate the probabilities of relevance and taking advantage of the training data. 

However, careful analysis shows that when only a few information sources were selected on the 

Trec123_100Col testbed or on the nonrelevant testbed, the ReDDE algorithm had a small advantage over the 

UUM/HR algorithm. Two reasons can be used to explain this minor puzzle: i) the ReDDE algorithm was 

tuned on the Trec123_100Col testbed (set the optimal threshold value); and ii) although the difference is 

small, this may indicate that our centralized logistic model of estimating probabilities of relevance is not 

effective enough. More training data or a more sophisticated model may help to solve this minor puzzle.  

7.3.3 Experimental results for the federated document retrieval application 

For federated document retrieval, user queries are sent to search the selected information sources and the 

individual ranked lists are merged into a single list by the minimum downloading variant of the SSL 

algorithm as described in Chapter 5. This type of SSL results merging algorithm downloads a small number 

of returned documents on the fly to create enough training data.  

Experiments have been conducted to compare the effectiveness of five algorithms, namely the CORI, 

ReDDE, UUM/HR, UUM/HP-FL and UUM/HP-VL algorithms. The Trec123_100Col and representative 

testbeds were selected as they represent two extreme cases: the CORI resource selection algorithm is about as 

effective as the ReDDE algorithm and the UUM/HR algorithm for the high-recall goal on the 

Trec123_100Col testbed and is much worse than the ReDDE and HMM/HR algorithms on the representative 

testbed. Three configurations were conducted on both the two testbeds to select 3, 5 or 10 information 

sources. The four algorithms of CORI, ReDDE, UUM/HR and UUM/HP-FL retrieved a fix number of 50 

documents from each selected information source, while the UUM/HP-VL algorithm was allowed to adjust 

the number from 10 to 100 and a multiple of 10. 

The experiment results on the Trec123_100Col testbed and the representative testbed are shown in Tables 

7.2-7.4 and Tables 7.5-7.7 respectively. 

It can be observed from both sets of experiments that the difference between the accuracies of the algorithms 

was reduced when more information sources were selected. This is consistent with our expectation that the 

overlap in the selected information sources among different algorithms is much larger in the case of selecting 

many information sources than in the case of selecting a small number of information sources. 

More specifically, on the Trec123_100Col testbed, the document retrieval accuracy with the CORI selection 



 
      
                                    
                                                                                 

124 

algorithm was about the same or a little bit better than that with the ReDDE selection algorithm, while the 

UUM/HR algorithm had a small advantage over both of them. Note that Chapter 4 suggests that the ReDDE 

algorithm should produce better resource selection results for information source recommendation. However, 

here the goal is federated document retrieval instead of source recommendation. The experiments results 

have shown that ReDDE algorithm does not have advantage over CORI algorithm. 

The main difference between the UUM/HR algorithm and the ReDDE algorithm is that ReDDE uses a 

heuristic method to assume the curve of the probabilities of relevance as a step function, while UUM/HR 

takes advantage of training data and builds a finer logistic model to transform the centralized document 

scores to the corresponding probabilities of relevance. This difference makes the UUM/HR better than the 

ReDDE algorithm in some extent at distinguishing the documents with high probabilities of relevance from 

Table 7.2: Precision on the Trec123_100Col testbed when 3 sources were selected. (CORI is the baseline.) 

Precision at 

Doc Rank 
CORI ReDDE UMM/HR UMM/HP-FL UMM/HP-VL 

5 docs 0.3640 0.3480 (-4.4%) 0.3960 (+8.8%)  0.4680 (+28.6%) 0.4640 (+27.5%) 
10 docs 0.3360 0.3200 (-4.8%) 0.3520 (+4.8%)  0.4240 (+26.2%) 0.4220 (+25.6%) 
15 docs 0.3253 0.3187 (-2.0%) 0.3347 (+2.9%)  0.3973 (+22.2%) 0.3920 (+20.5%) 
20 docs 0.3140 0.2980 (-5.1%) 0.3270 (+4.1%) 0.3720 (+18.5%) 0.3700 (+17.8%) 
30 docs 0.2780 0.2660 (-4.3%) 0.2973 (+6.9%) 0.3413 (+22.8%) 0.3400 (+22.3%) 

 

Table 7.3: Precision on the Trec123_100Col testbed when 5 sources were selected. (CORI is the baseline.) 

Precision at 

Doc Rank 
CORI ReDDE UMM/HR UMM/HP-FL UMM/HP-VL 

5 docs 0.4000 0.3920 (-2.0%) 0.4280 (+7.0%)  0.4680 (+17.0%) 0.4600 (+15.0%) 
10 docs 0.3800 0.3760 (-1.1%) 0.3800 (0.0%)  0.4180 (+10.0%) 0.4320 (+13.7%) 
15 docs 0.3560 0.3560 (0.0%) 0.3720 (+4.5%)  0.3920 (+10.1%) 0.4080 (+14.6%) 
20 docs 0.3430 0.3390 (-1.2%) 0.3550 (+3.5%) 0.3710 (+8.2%) 0.3830 (+11.7%) 
30 docs 0.3240 0.3140 (-3.1%) 0.3313 (+2.3%) 0.3500 (+8.0%) 0.3487 (+7.6%) 

 

Table 7.4: Precision on the Trec123_100Col testbed when 10 sources were selected. (CORI is the baseline.) 

Precision at 

Doc Rank 
CORI ReDDE UMM/HR UMM/HP-FL UMM/HP-VL 

5 docs 0.4400 0.4400 (0.0%) 0.4800 (+9.1%)  0.4680 (+6.4%) 0.4800 (+9.1%) 
10 docs 0.4300 0.4080 (-5.1%) 0.4400 (+2.3%)  0.4520 (+5.1%) 0.4540 (+5.6%) 
15 docs 0.4187 0.3840 (-8.3%) 0.4187 (+0.0%)  0.4320 (+3.2%) 0.4333 (+3.5%) 
20 docs 0.3980 0.3750 (-5.8%) 0.3980 (+0.0%) 0.4040 (+1.5%) 0.4120 (+3.5%) 
30 docs 0.3653 0.3513 (-3.8%) 0.3720 (+1.8%) 0.3820 (+4.8%) 0.3793 (+3.8%) 
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documents with low probabilities of relevance. Therefore, the UUM/HR tends to be more robust and more 

accurate than the ReDDE algorithm. However, the advantage of the UUM/HR was small since it does not 

explicitly optimize the selection action according to the high-precision goal as what the UUM/HP-FL and 

UUM/HP-VL algorithms are designed to do. It can be noted from Tables 7.2-7.4 that the UUM/HP-FL and 

UUM/HP-VL algorithms were much more effective than the other algorithms when a small number of 

information sources were selected (i.e., 3 or 5) and still had a small advantage with a large number of 

selected information sources (i.e., 10). This suggests that the power of these two algorithms comes from the 

explicit optimization of the high-precision goal of the federated document retrieval application. 

Table 7.5: Precision on the representative testbed when 3 sources were selected. (CORI is the baseline.) 

Precision at 

Doc Rank 
CORI ReDDE UMM/HR UMM/HP-FL UMM/HP-VL 

5 docs 0.3720 0.4080 (+9.7%) 0.4640 (+24.7%) 0.4600 (+23.7%) 0.5000 (+34.4%) 
10 docs 0.3400 0.4060 (+19.4%) 0.4600 (+35.3%) 0.4540 (+33.5%) 0.4640 (+36.5%) 
15 docs 0.3120 0.3880 (+24.4%) 0.4320 (+38.5%) 0.4240 (+35.9%) 0.4413 (+41.4%) 
20 docs 0.3000 0.3750 (+25.0%) 0.4080 (+36.0%) 0.4040 (+34.7%) 0.4240 (+41.3%) 
30 docs 0.2533 0.3440 (+35.8%) 0.3847 (+51.9%) 0.3747 (+47.9%) 0.3887 (+53.5%) 

 

Table 7.6: Precision on the representative testbed when 5 sources were selected. (CORI is the baseline.) 

Precision at 

Doc Rank 
CORI ReDDE UMM/HR UMM/HP-FL UMM/HP-VL 

5 docs 0.3960 0.4080 (+3.0%) 0.4560 (+15.2%) 0.4280 (+8.1%) 0.4520 (+14.1%) 
10 docs 0.3880 0.4060 (+4.6%) 0.4280 (+10.3%) 0.4460 (+15.0%) 0.4560 (+17.5%) 
15 docs 0.3533 0.3987 (+12.9%) 0.4227 (+19.6%) 0.4440 (+25.7%) 0.4453 (+26.0%) 
20 docs 0.3330 0.3960 (+18.9%) 0.4140 (+24.3%) 0.4290 (+28.8%) 0.4350 (+30.6%) 
30 docs 0.2967 0.3740 (+26.1%) 0.4013 (+35.3%) 0.3987 (+34.4%) 0.4060 (+36.8%) 

 

Table 7.7: Precision on the representative testbed when 10 sources were selected. (CORI is the baseline.) 

Precision at 

Doc Rank 
CORI ReDDE UMM/HR UMM/HP-FL UMM/HP-VL 

5 docs 0.3920 0.3720 (-5.1%) 0.4480 (+14.3%) 0.4360 (+11.2%) 0.4520 (+15.3%) 
10 docs 0.3860 0.3840 (-0.5%) 0.4520 (+17.1%) 0.4440 (+15.0%) 0.4560 (+18.1%) 
15 docs 0.3813 0.3680 (-3.5%) 0.4373 (+14.7%) 0.4387 (+15.1%) 0.4453 (+16.8%) 
20 docs 0.3710 0.3710 (+0.0%) 0.4250 (+14.5%) 0.4300 (+15.8%) 0.4370 (+17.7%) 
30 docs 0.3513 0.3640 (+3.6%) 0.4140 (+17.9%) 0.4247 (+20.9%) 0.4227 (+20.3%) 
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On the representative testbed, the CORI algorithm was not as effective as the other algorithms especially 

when a small number of information sources (i.e., 3 and 5) were selected. This can be explained by the fact 

that CORI does not consider information source size factor and thus the two large information sources with 

more relevant documents were not ranked highly in its information source ranking. The document retrieval 

results with the ReDDE algorithm were more accurate (when 3 or 5 information sources were selected) or at 

least as good as (when 10 information sources were selected) than those with the CORI algorithm, but were 

consistently worse than the results with the UUM/HR algorithm. It can be noticed from Tables 7.5-7.7 that 

all three variants of the UUM algorithms (UUM/HR, UUM/HP-FL and UUM/HP-VL) were about equally 

effective. Carefully analysis shows that the overlap of the selected information sources among these three 

algorithms was much larger on the representative testbed than that on the Trec123_100Col testbed as all of 

the three algorithms tended to select the two large information sources with a lot of relevant documents on 

the representative testbed. Therefore, the document retrieval results produced by the three UUM algorithms 

were roughly the same.  

To summarize, the strategy of explicitly optimizing the high-precision goal is very important to obtain 

accurate results for the federated document retrieval application. The algorithms designed according to this 

criterion have been shown to be very effective in different environments.  

 

7.4 Summary 

 

Most prior research in federated search treated the three main subproblems, namely resource description, 

resource selection and results merging, in isolation from each other, and built systems for different federated 

search applications by simply combining individually effective solutions. However, these individual 

solutions optimize different criteria (e.g., high recall for resource selection, high precision for federated 

document retrieval). It is not a good choice to simply combine them together. For example, a resource 

selection algorithm optimized for high recall may not work well for a federated document retrieval 

application. 

Based on this observation, a unified utility maximization framework is proposed in this chapter for federated 

search tasks in uncooperative environments. This model adjusts and integrates the individual solutions of 

different subproblems to obtain effective results for different federated search applications. Specifically, the 

model is optimized for the high-recall goal for an information source recommendation application and it 
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focuses on the high-precision goal for a federated document retrieval task. When the framework is optimized 

for information source recommendation, it can be seen as an extension of the ReDDE resource selection 

algorithm proposed in Chapter 4. However, a refined transformation model is utilized here to estimate 

probabilities of relevance of all available documents instead of the rough step function approximation of the 

ReDDE algorithm. 

In order to accomplish its goal, the unified utility maximization framework estimates the probabilities of 

relevance for all documents (mostly unseen) across available information sources. It first uses a small amount 

of training data in resource representation to build a query-independent logistic model on centralized sample 

database to transform source-independent centralized document scores to probabilities of relevance. 

Furthermore, in resource selection, the unified utility maximization framework calculates the centralized 

documents scores for all sampled documents within the centralized sample database. It then estimates the 

centralized document scores for all documents across the available sources and finally obtains the estimated 

probability of relevance for each document. 

With the estimated probabilities of relevance, the unified utility maximization model formulates the resource 

selection decision in frameworks with different goals for different federated search applications. Solutions 

have been derived to obtain desired resource selection decisions for different applications.  

An extensive set of experiments with different federated search environments has been conducted to show 

the advantage of this unified utility maximization framework. Particularly, for information source 

recommendation, the new model has been shown to obtain more robust resource selection results for the 

high-recall goal than the CORI and ReDDE algorithm. For federated document retrieval, the unified utility 

maximization model optimized for the high-precision goal outperformed several resource selection methods 

optimized for the high-recall goal. All of these results explicitly demonstrate the power of the unified utility 

maximization as an integrated solution for different federated search applications. 

The utility maximization framework can be extended in several directions. First, this chapter studies two 

goals of high recall (i.e., Equation 7.9) and high precision (i.e., Equation 7.12) in two resource selection 

algorithms. It is natural to combine the two goals linearly into a single objective function (e.g., Equation 7.9 

plus lambda times Equation 7.12) within one framework. The additional parameter of lambda is introduced 

to balance the preference for these two criteria. Second, the utility maximization method still needs a small 

amount of human relevance judgments as training data. This requirement might be relaxed by utilizing 

implicit user feedback as relevance judgments for returned documents. These documents can be downloaded 

and their centralized document scores can be obtained for training the logistic model for estimating 
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probabilities of relevance. 

One big advantage of the unified utility maximization framework is that it considers a set of evidence besides 

relevance. Multiple factors can be naturally incorporated into the unified framework for maximizing utilities 

for different federated search applications. One particular example is to consider search engine retrieval 

effectiveness. This is the main topic of Chapter 8. 
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Chapter 8: Modeling Search Engine Retrieval Effectiveness 
 

 

Chapter 7 proposes a unified utility maximization framework to integrate effective solutions of the main 

subproblems of federated search into a single framework and optimize various goals of different federated 

search applications. The new framework provides a theoretically solid view of federated search algorithms 

and is open for many extensions. However, it makes an assumption, like most previous research, that all the 

search engines of available information sources are effective to return their relevant documents. When such 

an assumption is not valid, it further claims that the semi-supervised learning results merging algorithm can 

be used to detect and remove irrelevant documents returned by ineffective search engines so that those 

irrelevant documents do not hurt the final ranked list. However, the problem is that the failure to consider the 

retrieval effectiveness of search engines has already damaged the overall accuracy in the resource selection 

phase. In contrast, a better resource selection method can provide more accurate results by choosing 

information sources that can return more relevant documents. 

This chapter proposes a federated search technique that extends the utility maximization framework to model 

the retrieval effectiveness of search engines in a federated search environment. The new algorithm ranks 

available information sources by estimating the number of relevant documents they can return, instead of the 

amount of relevant documents they contain. 

Empirical studies were conducted on several testbeds with different characteristics to show the advantage of 

the new research over prior research that did not consider retrieval effectiveness of search engines. The 

results show that the new algorithm provides more accurate results than the previous state-of-the-art 

algorithms when some search engines are not effective, and is at least as effective as prior solutions when all 

the search engines are effective.  

The next section provides the motivation of the research work in this chapter. Section 8.2 briefly discusses 

related prior research. Section 8.3 describes our new approach to model search engine effectiveness with a 

variant of the unified utility maximization framework as the returned utility maximization framework. 

Section 8.4 explains our experimental methodology and presents the experimental results. 
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8.1 Motivation of modeling search engine effectiveness 

 

A practical problem for federated search solutions in uncooperative environments is that the search engines 

of some information sources may not be effective at returning their relevant documents. The search engines 

may use ineffective retrieval methods like the Boolean retrieval algorithm [Baeza-Yates & Ribeiro-Neto, 

1999]. They may choose effective retrieval algorithms but have had trouble tuning the algorithms on various 

corpora to obtain good parameters for the retrieval algorithms (e.g., the smoothing parameter in the language 

model retrieval algorithms [Zhai & Lafferty, 2001]). Even when the search engines use effective retrieval 

algorithms with good parameters at the early stages of system development, the effects of those parameters 

may degrade as the systems evolve by adding documents with diverse characteristics. 

Hidden information sources with ineffective search engines are very common in real world federated search 

applications. The well-known PubMed search engine uses exact match Boolean retrieval algorithm and 

orders documents by when they were added to the database instead of by relevance. Our experience with the 

FedStats portal shows examples of information sources with search engines that return unranked or randomly 

ranked results, or return many documents that do not exist, as in the case of broken links [Avrahami et al., 

2006]. 

Simply ignoring the search engine effectiveness factor can cause a serious problem as the selected resources 

may not return as many relevant documents as expected because of the ineffectiveness of their search 

engines. 

 

8.2 Returned utility maximization method 

 

A new algorithm is proposed in this section to incorporate the factor of retrieval effectiveness of search 

engines into the unified utility maximization framework for the federated document retrieval application. Our 

new algorithm ranks information sources by the criterion as the number of relevant documents they return 

instead of the criterion as the number of relevant documents they contain. The new framework is called 

returned utility maximization framework. It supports both the evidence of relevance and search engine 

retrieval effectiveness. Specifically, it measures the effectiveness of search engines by: i) sending a small 

number of training queries to retrieve documents from available resources; and ii) investigating the 

consistency between the ranked lists of individual search engines and the lists generated by an effective 
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centralized retrieval algorithm on the same set of returned documents. The accuracy of how each search 

engine ranks its documents can be learned from these steps. Then, in the resource selection phrase, 

information sources are ranked by considering both the factor of how many relevant documents each source 

may contain and the factor of how effectively each search engine has ranked its returned documents in the 

past. This is accomplished by formalizing the resource selection procedure as a problem to maximize the 

amount of relevant documents to be returned. 

This section first presents our method to measure the retrieval effectiveness of search engines; and then 

shows the framework of the returned utility maximization method for resource selection.  

8.2.1 Measuring the retrieval effectiveness of search engines 

It is a difficult problem to measure the retrieval effectiveness of search engines in uncooperative federated 

search environments as very limited information can be directly obtained from available information sources. 

One possibility is to estimate the parameters of ranking functions when these functions can be assumed to 

have special forms [Liu et al., 2001]. But this assumption is rarely true in real world applications and it is not 

discussed here. The unified utility maximization in Chapter 7 utilizes a small amount of hand-labeled training 

data to learn a model for estimating probabilities of relevance. However, that model only addresses the 

problem of how many documents are relevant within an information source instead of whether the 

information source can return those relevant documents. 

In this work, a new method is proposed to measure the retrieval effectiveness of search engines in 

uncooperative environments. It utilizes an effective centralized retrieval algorithm that works on the 

centralized sample database, which provides a standard for measuring the effectiveness of search engines. 

The basic idea of this method is to investigate how consistent the ranked lists returned from individual search 

engines are with the lists generated by the centralized retrieval algorithm on the same set of documents. The 

intuition is that if a search engine tends to generate consistent ranked lists with those of a centralized retrieval 

algorithm, this search engine is likely to be effective. Otherwise, it may not be effective. This strategy 

follows the trend in this dissertation for utilizing the centralized sample database for different federated 

search applications. 

An alternative approach for measuring the retrieval effectiveness of search engines is to evaluate their 

returned results with human relevance judgments. However, this requires relevance judgment data to evaluate 

the results from each search engine, which has excessive cost when there are many information sources in the 

federated search environment. On the other hand, our method uses the results of an effective centralized 
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retrieval algorithm with corpus statistics from centralized sample database as a surrogate for the human 

relevant judgment data to evaluate the results from each search engine. This is much more efficient as the 

results by the centralized retrieval algorithm can be generated automatically without requiring human efforts. 

Similar ideas of applying a centralized retrieval algorithm with corpus statistics from centralized sample 

database have been successfully utilized for other federated search subproblems in Chapter 4 for resource 

selection [Si & Callan, 2004b] and Chapter 5 for results merging [Si & Callan, 2003b].  

Specifically, the retrieval effectiveness profiles of search engines are built during the resource representation 

phase. Again, the centralized sample database is first constructed by all sampled documents from 

query-based sampling. A small set of training queries (e.g., 50 queries) is sent to search all available 

information sources23. For this set of training queries, no human relevant judgments are required and the 

results automatically generated from centralized retrieval algorithms are used instead. There are many 

possible choices for selecting the training queries. Our approach is to utilize the TREC queries to simulate 

real world user queries, which cover multiple topics. For each ranked list from one information source, some 

representative documents (e.g., every fifth document in the top 250 documents) are downloaded. The purpose 

of downloading only representative documents (e.g., one sample document for the block size of 5) is to 

reduce the communication cost. Furthermore, a centralized retrieval algorithm (i.e., INQUERY) is applied on 

these documents with the corpus statistics from the centralized sample database. Then two ranked lists as the 

source-specific ranked list and the ranked list by the centralized retrieval algorithm can be acquired for each 

training query for each search engine. A mapping function can be learned based on the two ranked lists, 

which transforms the document rank in the source-specific ranked list to the document rank in the list 

generated by the centralized retrieval algorithm as follows: 

where ij� is the ranked list transformation of the jth training query for the ith information source, ddb_i(r1) 

represents the r1
th document in the source-specific ranked list from the ith information source and dc(r2) 

represents the r2
th document in the ranked list generated by centralized the retrieval algorithm. Equation 8.1 

indicates that the r1
th document in the ranked list of the jth training query from the ith resource is mapped to 

the r2
th document in the corresponding ranked list generated by the centralized retrieval algorithm. If the 

single document representing a block of nearby documents in the source-specific ranked list is mapped to a 

                                                        
23 It is possible to use different sets of queries for different sources. However, the same set of queries is utilized 

here to reduce the variance caused by the different characteristics of different sets of queries. 

ij db_i 1 c 2� : d (r ) d (r )→  (8.1) 
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particular position in the list by the centralized retrieval algorithm, all the documents in this block are 

mapped to similar ranks around the image of the representative document. 

The retrieval effectiveness profile for a search engine is built by collecting the learned transformations for all 

training queries. Formally, for the search engine of the ith resource, the profile is ij{� ,1 j J}≤ ≤ , where there 

are altogether J transformations learned for the search engine. The profile can be represented as an array with 

J rows of permutations that indicate the rank transformations. All the profiles for available search engines 

represent the knowledge of how effectively each search engine has ranked its returned documents for the 

training queries. Note that all the profiles contain J transformations as all of them are built on the same set of 

training queries. More training queries may generate more accurate search engine retrieval effectiveness 

profiles or may enable topic-specific effectiveness profiles. These are interesting topics for future research. 

This section describes the approach to model search engine effectiveness by learning the rank to rank 

transforms between source-specific ranked lists and the ranked lists by an effective centralized retrieval 

algorithm. This may be a more appropriate approach than learning score to rank or score to score transforms 

as the documents returned from different queries generally have different types of score distributions and it is 

hard to compare the distributions across multiple queries.  

8.2.2 Returned utility maximization method 

A federated document retrieval system automatically searches selected information sources and merges 

returned ranked lists into a final list to present to the end user. Users’ information needs are maximally 

satisfied when there are as many relevant documents in the final ranked lists as possible. Therefore, the 

utility for a federated document retrieval system should be the number of relevant documents returned from 

selected information sources. Formally, let di denote the number of documents to be retrieved from the ith 

information source and 1 2d={d ,d ,.....}
�

 as the resource selection decision for all information sources. The 

returned utility of a particular resource selection decision is calculated as: 

where I(dbi) is an indicator function, which is 1 when the ith source is selected and 0 otherwise. 
^

i dbR (d (r)) is 

the probability of relevance of the top rth document in the source-specific ranked list returned from the 

information source. This formula is related to Equation 7.12 for unified utility maximization framework. The 

key difference is that the new framework explicitly estimates utilities that can be returned from 

d ^

i i db
i k=1

i
I(db ) R (d (r))� �  (8.2) 
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source-specific ranked lists via 
^

i dbR (d (r)) , while the unified utility maximization framework considers 

utilities that are contained in available sources.  

In order to calculate the returned utility represented by Equation 8.2, the probabilities of relevance for 

documents at the top of source-specific ranked lists should be provided, which are not known. On the other 

hand, Section 7.2.1 describes a method to estimate the probabilities of relevance for documents in the ranked 

list (i.e., 
^

dbi C i{R (d (k)) , k [1, N ]}∈ ), which is generated by the centralized retrieval algorithm with corpus 

statistics from the centralized sample database. Therefore, there is a gap between the source-specific ranked 

lists and the ranked list generated by centralized retrieval algorithm. 

To bridge the gap, we utilize the retrieval effectiveness profile built for each search engine, which is 

described in Section 8.2.1. The top ranked documents within source-specific ranked lists can be mapped to 

their corresponding ranks by the centralized retrieval algorithm. Specifically, for a user query, for a 

document that ranks at the rth position in source-specific ranked list, its rank by the centralized retrieval 

algorithm can be seen as a weighted average of the ranks by the centralized retrieval algorithm of documents 

in all training queries, which also rank at the rth position in source-specific ranked lists. We assume that all 

training queries have equal weights (i.e. 1/J). This process can be conducted for all returned documents in 

available information sources, and thus the returned utility can be estimated as: 

Furthermore, only a small number (i.e., Nsdb) of information sources should be selected to retrieve a fixed 

number (i.e., Nrdoc) of documents. Finally, the resource selection problem for maximizing returned utility can 

be represented as: 

As the calculation of the returned utilities from available information sources is not coupled with each other, 

the solution of the above returned utility maximization problem is simple. The expected returned utility from 

each information source can be calculated as follows: 

dJ

i i ij db_i
i j=1 r=1

i1
I(db ) R (� ( d (r) )

J� � �  (8.3) 

dJ
*

i i ij db_i
d i j=1 r=1

i sdb
i

i rdoc i

i1
d = argmax I(db ) R (� (d (r))

J

subject to: I(db )=N

d =N ,if d 0≠

� � �

�

�

���

 (8.4) 
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The resource selection decision is made by selecting a few information sources that contribute the largest 

amount of returned utilities. The selected information sources are searched and finally the returned results are 

merged into a single ranked list by the semi-supervised learning algorithm. 

An alternative method to consider search engine effectiveness is to calculate the correlation coefficient (e.g., 

Spearman Rank Correlation Coefficient [Press et al., 1992]) between source-specific ranked lists and the 

ranked lists produced by an effective centralized retrieval algorithm. The correlation can be used as a weight 

factor in the utility maximization resource selection framework (e.g., combined linearly with a weight in the 

objective function in Equation 7.14). If the combination weight can be set appropriately, a resource selection 

decision can be obtained to reach a good trade-off between the evidence of relevance and the evidence of 

search engine effectiveness. This approach is not adopted in this dissertation because we integrate the search 

engine effectiveness directly to estimate the number of relevant documents that can be returned by Equation 

8.4.  

 
 
8.3 Evaluation methodology and experimental results 

 

This section presents experimental results to demonstrate the advantage of the returned utility maximization 

framework. It first introduces the evaluation methodology by creating federated search environments with 

search engines of different qualities. Furthermore, an extensive set of experiments is conducted to compare 

the returned utility maximization framework with several other alternatives.  

8.3.1 Evaluation methodology 

Three testbeds were used in this chapter, namely the Trec123_100Col testbed, the representative testbed and 

the WT10g testbed. Detailed information about these testbeds can be found in Chapter 2. Trec123_100Col 

and representative testbeds contain news/government data. On these two testbeds, 50 TREC title queries 

(101-150) were used as training queries and another 50 queries (51-100) were used as test queries. The 

arrangement was made to be consistent with the results reported in much prior research [Callan, 2000; Si & 

Callan, 2003b; Nottelmann & Fuhr, 2003b; Si & Callan, 2004b] and the experiments in Chapter 5 and 

Chapter 6. WT10g contains Web data. TREC Web queries 451-550 were used on the WT10g testbed. The 

dJ^

i i ij db_i
j=1 r=1

i1
RU = R (� (d (r))

J� �  (8.5) 
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first set of fifty queries and the second set of fifty queries were used as training and test data alternatively. 

Six types of search engines were used in the experiments to reflect the characteristics of uncooperative 

environments: three types of effective search engines and three types of ineffective retrieval algorithms were 

used. The three effective retrieval algorithms are INQUERY [Turtle 1990; Callan, Croft & Harding, 1992], 

language model with linear smoothing (the smooth parameter is set to be 0.5) [Lafferty & Zhai, 2001; 

Ogilvie & Callan, 2001] and a TFIDF retrieval algorithm with the “lnc.ltc” weighting [Buckley et al., 1995]. 

The three ineffective retrieval algorithms are: an extended Boolean retrieval algorithm, which adds up the 

term frequencies of matched query terms without considering the idf factor; a language model method with 

bad linear smoothing parameter, which is set to be 0.99 (bias towards the corpus language model); and an 

INQUERY retrieval algorithm with random noise added to the original retrieval scores, where the random 

noise ranges from 0 to 0.3 (the original scores range from 0.4 to 1). More detailed information about the 

retrieval algorithms is in Chapter 2. 

Two sets of federated search experiments were conducted on the Trec123_100Col and the WT10g testbeds to 

show the effectiveness of the six retrieval algorithms. All the search engines were assigned a single type of 

retrieval algorithm. The UUM algorithm was used to select 5 sources and 20 sources on the Trec123_100Col 

and WT10g testbeds respectively. The results are shown in Tables 8.1 and 8.2. It can be seen that the three 

 Table 8.1: Precision of six search engines on the Trec123_100Col testbed when 5 sources were selected.  

Precision at 
Doc Rank 

INQUERY LM SMART 
INQUERY 

RAND 
LM Bad 

Parameter 
Extended 
Boolean 

5 docs 0.4460 0.4920 0.4400 0.3200 0.3000 0.2600 
10 docs 0.4340 0.4520 0.4080 0.2900 0.2720 0.2440 
15 docs 0.4053 0.4040 0.3733 0.2680 0.2560 0.2320 
20 docs 0.3750 0.3800 0.3590 0.2480 0.2540 0.2170 
30 docs 0.3400 0.3527 0.3333 0.2240 0.2373 0.1920 

 

Table 8.2: Precision of six search engines on the WT10g testbed when 20 sources were selected.  

Precision at 
Doc Rank 

INQUERY LM SMART 
INQUERY 

RAND 
LM Bad 

Parameter 
Extended 
Boolean 

5 docs 0.2247 0.2144 0.1918 0.1299 0.1155 0.1196 
10 docs 0.1938 0.1814 0.1825 0.1206 0.1247 0.1093 
15 docs 0.1718 0.1684 0.1636 0.1031 0.1134 0.0942 
20 docs 0.1536 0.1572 0.1546 0.0918 0.1036 0.0871 
30 docs 0.1271 0.1278 0.1316 0.0746 0.0849 0.0780 
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effective retrieval algorithms acquire much more accurate results than the three ineffective algorithms. The 

extended Boolean retrieval algorithm seems to be even less effective than the other two ineffective 

algorithms. 

8.3.2 Retrieval results with ineffective search engines 

The experiments in this section answer the question: How does the new returned utility maximization (RUM) 

method work in the federated search environments where exist different proportions of ineffective search 

engines? Experiments were conducted to compare the RUM method with the CORI and unified utility 

Table 8.3: Precision on the Trec123_100Col testbed when 3 or 5 sources were selected. All search engines were 

assigned effective retrieval algorithms.   

3 Sources Selected 5 Sources Selected Document 

Rank UUM CORI RUM UUM CORI RUM 
5 0.4640 0.3640 (-21.6%) 0.4720 (+8.8%) 0.4720 0.4000 (-5.3%) 0.4720 (+8.8%) 

10 0.4240 0.3340 (-21.2%) 0.4160 (+4.8%) 0.4260 0.3800 (-10.8%) 0.4300(+4.8%) 
15 0.3933 0.3253 (-17.3%) 0.3947 (+2.9%) 0.3960 0.3560 (-10.1%) 0.4120 (+2.9%) 
20 0.3730 0.3120 (-16.4%) 0.3690 (+4.1%) 0.3740 0.3430 (-8.3%) 0.3890 (+4.1%) 
30 0.3413 0.2780 (-18.6%) 0.3367 (+6.9%) 0.3520 0.3227 (-8.3%) 0.3647 (+6.9%) 

 

Table 8.4: Precision on the representative testbed when 3 or 5 sources were selected. All search engines were assigned 

effective retrieval algorithms.   

3 Sources Selected 5 Sources Selected Document 

Rank UUM CORI RUM UUM CORI RUM 
5 0.4560 0.3720 (-18.4%) 0.4600 (+1.0%) 0.4280 0.3960 (-7.0%) 0.4400 (+2.8%) 

10 0.4540 0.3400 (-25.1%) 0.4640 (+2.2%) 0.4460 0.3900 (-12.6%) 0.4520 (+1.3%) 
15 0.4240 0.3140 (-25.9%) 0.4493 (+6.0%) 0.4440 0.3533 (-20.4%) 0.4440 (+0.0%) 
20 0.4050 0.3020 (-25.4%) 0.4260 (+5.2%) 0.4310 0.3340 (-22.5%) 0.4280 (-0.7%) 
30 0.3747 0.2533 (-32.5%) 0.3900 (+4.1%) 0.3993 0.2967 (-25.7%) 0.3973 (-0.5%) 

 

Table 8.5: Precision on the WT10g testbed when 10 or 20 sources were selected. All search engines were assigned 

effective retrieval algorithms.   

10 Sources Selected 20 Sources Selected Document 

Rank UUM CORI RUM UUM CORI RUM 
5 0.2082 0.1583 (-24.0%) 0.2289 (+9.9%) 0.2000 0.1812 (-9.0%) 0.2201 (+10.1%) 

10 0.1763 0.1323 (-25.0%) 0.1814 (+2.9%) 0.1763 0.1427 (-19.1%) 0.1901 (+7.8%) 
15 0.1464 0.1132(-22.7%) 0.1560 (+6.6%) 0.1546 0.1264 (-18.2%) 0.1601 (+4.3%) 
20 0.1314 0.1021 (-22.3%) 0.1397 (+6.3%) 0.1428 0.1104 (-22.7%) 0.1475 (+3.3%) 
30 0.1107 0.0833 (-24.8%) 0.1137 (+2.7%) 0.1223 0.0913 (-25.4%) 0.1286 (+5.2%) 
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maximization (UUM) methods that do not consider retrieval effectiveness of search engines. 

The first set of experiments was conducted when all available information sources on the three testbeds use 

three types of effective retrieval algorithms (i.e., INQUERY, LM and SMART). The three types of search 

engines were assigned to the information sources on different testbeds in a round-robin manner. The 

experimental setting is similar as that in prior research [Si & Callan, 2004b]. The results are shown in Tables 

8.3-8.5. It can be seen that the CORI algorithm was not as effective as the UUM algorithm, which is 

consistent with previous research [Si & Callan, 2004b]. This demonstrates the fact that when the search 

engines of information sources are effective to return their relevant documents, the UUM resource selection 

algorithm has an advantage over the CORI algorithm. The results in Tables 8.3-8.5 also show that the RUM 

algorithm is at least as good as the UUM algorithm in all of the configurations of the experiments. This 

indicates the effectiveness of the RUM method when all of the search engines in federated search 

environments are of high quality. 

As many information sources in real world federated search applications use ineffective engines, more 

experiments were conducted to simulate federated search environments where some search engines are of 

low qualities. In the second set of experiments, one third of the information sources on the three testbeds of 

Trec123_100Col, representative and WT10g were assigned ineffective search engines in a round-robin 

manner. Specifically, one large information source of the representative testbed was assigned the extended 

Boolean retrieval algorithm, while the other large source was assigned the SMART search engine (more 

detail is in Chapter 2). The results on these three testbeds are shown in Tables 8.6, 8.7 and 8.8 respectively.  

The experimental results indicate that the RUM method outperformed the UUM method in all configurations, 

which is consistent with our expectation that RUM explicitly models search engine retrieval effectiveness 

and thus can select information sources that return more relevant documents. Particularly, it can be seen from 

Table 8.6 that the RUM method acquired a substantial improvement over the UUM method on the 

Trec123_100Col testbed. For the representative testbed, the results in Table 8.7 show that the RUM method 

was better than the UUM method. However, the advantage of the RUM method on the representative testbed 

was smaller than that on the Trec123_100Col testbed when relatively more information sources (i.e., 5) were 

selected. Detailed analysis indicates that as the two large information sources on the representative testbed 

contain more relevant documents than small sources, the RUM method favors the two large sources more 

than the other small sources, which is similar to the behavior of the UUM method. Therefore, when relatively 

more information sources (e.g., 5) were selected, the overlap in the sources selected by RUM and UUM was 

getting larger and thus these two methods tend to generate similar results.  
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The results on the WT10g testbed are shown in Table 8.8. Again, the RUM method generates more accurate 

results than the UUM method. More careful observation by comparing Tables 8.6 and 8.8 indicates that on 

average the advantage of the RUM method over UUM is lower on the WT10g testbed than that on the 

Trec123_100Col testbed. This can be explained by the different characteristics of the two testbeds. WT10g 

contains many more small information sources (e.g., 625 out of 934 resources contain less than 1,000 

documents) than Trec123_100Col (e.g., 3 out of 100 resources contain less than 1,000 documents). Small 

sources tend to return shorter ranked lists than large sources. This makes the method of measuring search 

engine retrieval effectiveness by investigating rank consistency less effective.  

Table 8.6: Precision on the Trec123_100Col testbed when 3 or 5 sources were selected. One third of the search 

engines were assigned ineffective retrieval algorithms.   

3 Sources Selected 5 Sources Selected Document 

Rank UUM CORI RUM UUM CORI RUM 
5 0.3640 0.3200 (-12.1%) 0.4160 (+14.3%) 0.3800 0.3400 (-10.5%) 0.4400 (+15.8%) 

10 0.3260 0.3000 (-8.0%) 0.3840 (+17.8%) 0.3400 0.3200 (-5.9%) 0.3860 (+13.5%)  
15 0.3133 0.2760 (-11.9%) 0.3587 (+14.5%) 0.3173 0.3067 (-3.3%)  0.3680 (+16.0%)  
20 0.2960 0.2630 (-11.2%) 0.3380 (+14.2%) 0.3050 0.2990 (-2.0%) 0.3520 (+15.4%) 
30 0.2727 0.2327 (-14.7%) 0.2993 (+9.8%) 0.2840 0.2733 (-3.8%) 0.3240 (+14.1%) 

 

Table 8.7: Precision on the representative testbed when 3 or 5 sources were selected. One third of the search engines 

were assigned ineffective retrieval algorithms.   

3 Sources Selected 5 Sources Selected Document 

Rank UUM CORI RUM UUM CORI RUM 
5 0.3840 0.3440 (-10.4%) 0.4320 (+12.5%) 0.3880 0.3400 (-2.4%) 0.4280 (+10.3%) 

10 0.3260 0.2940 (-9.8%) 0.3760 (+15.3%) 0.3580 0.3280 (-8.4%) 0.3880 (+8.4%) 
15 0.3027 0.2787 (-7.9%) 0.3333 (+10.1%) 0.3373 0.3240 (-3.9%) 0.3600 (+6.7%) 
20 0.2800 0.2620 (-6.4%) 0.3150 (+12.5%) 0.3150 0.3030 (-3.8%) 0.3280 (+4.3%) 
30 0.2413 0.2253 (-6.6%) 0.2693 (+11.6%) 0.2867 0.2827 (-1.4%) 0.2867 (+0.0%) 

 

Table 8.8: Precision on the WT10g testbed when 10 or 20 sources were selected. One third of the search engines were 

assigned ineffective retrieval algorithms.   

10 Sources Selected 20 Sources Selected Document 

Rank UUM CORI RUM UUM CORI RUM 
5 0.1691 0.1381 (-18.3%) 0.2000 (+18.3%) 0.1753 0.1649 (-5.9%) 0.1918 (+9.3%) 

10 0.1443 0.1082 (-25.0%) 0.1567 (+8.6%) 0.1598 0.1371 (-14.2%) 0.1784 (+11.6%) 
15 0.1203 0.0955 (-20.6%) 0.1278 (+6.2%) 0.1402 0.1127 (-19.6%)  0.1505 (+7.4%) 
20 0.1093 0.0861 (-21.2%) 0.1129 (+3.3%) 0.1211 0.0974 (-19.6%) 0.1320 (+9.0%) 
30 0.0907 0.0698 (-23.4%) 0.0983 (+8.4%) 0.1041 0.0804 (-22.8%) 0.1117 (+7.2%) 
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Specifically, the RUM method ranks information sources by their estimated returned utilities as described in 

Equation 8.5. To calculate the returned utility of a top ranked document in each information source, the 

estimated centralized ranks are first obtained from the rank patterns of training queries; then the utility of this 

document is calculated by averaging the probabilities of relevance of documents with the estimated 

centralized ranks. Small size sources return short ranked lists and the rank transformations often map top 

ranked documents in the sources to high centralized ranks. Therefore, the rank transformation may be less 

effective in estimating the retrieval effectiveness of search engines for small sources. However, in real world 

Table 8.9: Precision on the Trec123_100Col testbed when 3 or 5 sources were selected. Two thirds of the search 

engines were assigned ineffective retrieval algorithms.   

3 Sources Selected 5 Sources Selected Document 

Rank UUM CORI RUM UUM CORI RUM 
5 0.3240 0.2920 (-9.9%) 0.3880 (+19.8%) 0.3400 0.3120 (-8.2%) 0.4240 (+24.7%) 

10 0.2840 0.2760 (-2.8%) 0.3480 (+22.5%) 0.3040 0.3120 (-2.6%) 0.3740 (+23.0%) 
15 0.2600 0.2520 (-3.1%) 0.3293 (+26.7%) 0.2893 0.2880 (-0.5%) 0.3413 (+18.0%) 
20 0.2470 0.2290 (-7.3%) 0.3130 (+26.7%) 0.2680 0.2680 (+0.0%) 0.3170 (+18.2%) 
30 0.2160 0.2040 (-5.6%) 0.2687 (+24.4%) 0.2413 0.2467 (+2.2%) 0.2780 (+15.2%) 

 

Table 8.10: Precision on the representative testbed when 3 or 5 sources were selected. Two thirds of the search 

engines were assigned ineffective retrieval algorithms.   

3 Sources Selected 5 Sources Selected Document 

Rank UUM CORI RUM UUM CORI RUM 
5 0.3320 0.3160 (-4.8%) 0.3880 (+16.9%) 0.3720 0.3240 (-2.9%) 0.4160 (+11.8%) 

10 0.2840 0.2880 (-1.4%) 0.3440 (+21.1%) 0.3360 0.3040 (-9.5%) 0.3680 (+9.5%) 
15 0.2520 0.2427 (-3.7%) 0.3240 (+28.6%) 0.3053 0.2867 (-6.1%) 0.3360 (+10.0%) 
20 0.2330 0.2230 (-4.3%) 0.3020 (+29.6%) 0.2690 0.2600 (-3.4%) 0.3100 (+15.2%) 
30 0.2007 0.1900 (-5.3%) 0.2527 (+26.3%) 0.2320 0.2300 (-0.9%) 0.2727 (+17.5%) 

 

Table 8.11: Precision on the WT10g testbed when 10 or 20 sources were selected. Two thirds of the search engines 

were assigned ineffective retrieval algorithms.   

10 Sources Selected 20 Sources Selected Document 

Rank UUM CORI RUM UUM CORI RUM 
5 0.1443 0.1175 (-18.6%) 0.1649 (+14.3%) 0.1464 0.1320 (-9.8%) 0.1629 (+11.3%) 

10 0.1289 0.1041 (-19.2%) 0.1464 (+13.6%) 0.1216 0.1082(-11.0%) 0.1361 (+11.9%) 
15 0.1038 0.0893 (-14.0%) 0.1162 (+11.9%) 0.1107 0.1003 (-9.4%) 0.1223 (+10.5%) 
20 0.0897 0.0799(-10.9%) 0.1026 (+14.9%) 0.0990 0.0871(-12.0%) 0.1129 (+14.0%) 
30 0.0753 0.0643 (-14.6%) 0.0835 (+10.9%) 0.0883 0.0739(-16.3%) 0.0959 (+8.6%) 
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applications, most information sources contain reasonably large amount of documents (e.g., several 

thousands), as observed in the FedLemur project. These federated search environments are more like the 

Trec123_100Col testbed in this aspect and the RUM method can be expected to be effective. It is also 

possible to design a variant of the returned utility maximization model that associates different weights with 

the documents at the top of the ranked lists. This approach may better distinguish the retrieval effectiveness 

of search engines for small sources and is an interesting future research topic. 

In the third set of experiments, two thirds of the search engines were assigned ineffective retrieval algorithms. 

The results are shown in Tables 8.9-8.11. It can be observed that the RUM method outperformed the UUM 

method substantially on all the three testbeds. The advantage of the RUM method over the UUM method is 

larger than that when none or one third search engines were ineffective, which is consistent with our 

expectation that the power of the RUM method of detecting ineffective search engines is more substantial in 

federated search environments with more ineffective search engines. 

8.3.3 Which search engines are selected? 

The experiments in Sections 8.3.2 demonstrate the advantage of the RUM method in the federated search 

environments where there exist different amounts of ineffective search engines. To provide more insight of 

the behavior of the RUM method, a set of experiments was conducted to investigate the percentage of 

selected information sources with different retrieval algorithms.  

The experiments were conducted on the Trec123_100Col and the WT10g testbeds, where one third of the 

search engines were assigned ineffective retrieval algorithms and 5 or 20 information sources were selected 

respectively. The results are shown in Tables 8.12 and 8.13. The effective search engines were assigned to 

twice as many information sources as ineffective search engines. The UUM resource selection method does 

not consider search engines effectiveness. Therefore, the UUM algorithm selected effective search engines 

roughly twice as frequent as ineffective search engines (not exactly due to data variance). In contrast, the 

RUM method really favored effective search engines and disfavored ineffective search engines, which is 

consistent with our expectation. The resource selection choice made by the RUM method considers both 

relevance information and search engine retrieval effectiveness, so some ineffective search engines are still 

selected on both the Trec123_100Col and the WT10g testbeds because they contain more relevant 

information. Note that the difference between RUM and UUM method is smaller on the WT10g testbed than 

that on the TREC123_100Col testbed, which is consistent with the discussion in Section 8.3.2. 
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8.4 Summary 

 

One important issue for real world federated search applications in uncooperative environments is that some 

information sources may be associated with ineffective search engines and are not effective at returning their 

relevant documents. Our experience with the FedStats portal suggests that many U.S. government 

information sources on the Web use ineffective search engines that return unranked or randomly ranked 

results, or return many documents that do not exist, as in the case of broken links. 

Most previous resource selection algorithms do not consider the effectiveness of search engines. This may 

cause a serious problem. If a selected information source has a bad search engine, this information source 

may not return as many relevant documents as expected by the resource selection algorithm, so the overall 

quality of the final ranked list is degraded. 

A new algorithm is proposed in this chapter to extend the unified utility maximization framework for 

considering the retrieval effectiveness of search engines in uncooperative federated search environments. The 

new algorithm sorts information sources by estimating how many relevant documents they return instead of 

how many relevant documents they contain. The new framework is called the returned utility maximization 

Table 8.12: The percentage of selected resources using different retrieval algorithms on Trec123_100Col testbed. 5 
sources were selected. One third of the search engines were assigned ineffective retrieval algorithms. Therefore, 

INQUERY, LM and SMART have been assigned to about 22% sources respectively, while INQUERY_RAND, LM 
with Bad Parameters and Extended Boolean have been assigned to about 11% sources respectively. 

Algorithms INQUERY LM SMART INQUERY 
RAND 

LM Bad 
Parameter 

Extended 
Boolean 

UUM 17.6% 24.9% 23.3% 10.2% 10.2% 13.9% 
RUM 24.9% 35.9% 26.1% 5.7% 4.9% 2.4% 

 

Table 8.13: The Percentage of selected resources using different retrieval algorithms on WT10g testbed. 20 sources 
were selected. One third of the search engines were assigned ineffective retrieval algorithms. Therefore, INQUERY, 

LM and SMART have been assigned to about 22% sources respectively, while INQUERY_RAND, LM with Bad 
Parameters and Extended Boolean have been assigned to about 11% sources respectively. 

Algorithms INQUERY LM SMART INQUERY 
RAND 

LM Bad 
Parameter 

Extended  
Boolean 

UUM 19.4% 23.9% 21.1% 13.8% 11.7% 10.3% 
RUM 22.5% 27.6% 23.0% 10.5% 9.0% 7.5% 
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framework. It measures the effectiveness of a particular search engine by investigating the consistency 

between the ranked lists of the search engine and the corresponding lists generated by an effective centralized 

retrieval algorithm on the same sets of documents. The retrieval effectiveness profiles of available search 

engines can be built by this approach. During the resource selection phase, the returned utility maximization 

framework incorporates the effectiveness profiles with the evidence of relevance to select information 

sources that can return the largest amount of relevant documents. 

Empirical studies have been conducted on a range of testbeds with different characteristics to show the 

advantage of the new research. Particularly, the results suggest that returned utility maximization method 

provides more accurate results than prior methods that do not consider the factor of search engine 

effectiveness when some search engines are not effective. More detailed analysis shows that the power of the 

return utility maximization method comes from selecting more effective search engines and avoiding 

ineffective search engines. 

This chapter presents a specific example to show the power and flexibility of the unified utility maximization 

framework for considering other search engine characteristics, such as retrieval effectiveness. Besides this 

specific example, the unified framework opens a door for considering a set of non relevance-based evidence 

such as search engine delay or information authority. 

In the current framework of the returned utility maximization, all training queries are associated with equal 

weights. A possibly better approach is to assign training queries with various weights according to their 

similarities with a user text query. This method offers the possibility of distinguishing 

query-specific/topic-specific retrieval effectiveness of individual search engines. It is an interesting future 

research topic. 

Furthermore, the returned utility maximization framework in this chapter uses a single centralized retrieval 

algorithm to measure the effectiveness of source-specific search engines. However, this may introduce 

implicit bias towards retrieval algorithms that share similar behavior as the centralized retrieval algorithm 

(e.g., favor short documents). It is an interesting topic in future research to use a set of effective centralized 

retrieval algorithms to reduce the possible bias. 
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Chapter 9: Conclusion and Future Work 
 

 

Conventional search engines like Google or MSN have provided effective search solutions for some 

information on the Web that can be easily acquired by crawling Web links. These conventional search 

engines copy Web pages into a single centralized database, index the contents, and make them searchable. 

However, a large amount of valuable information cannot be copied into a single centralized database due to 

reasons such as intellectual property protection and frequent information update. The information is hidden 

behind source-specific search interfaces. There are multiple types of hidden information such as unstructured 

data behind text search interfaces and semi-structured or structured data behind more complicated search 

interfaces. The information sources that contain this type of hidden information exist on the Web as well as 

in enterprise search environments, and they are often created and maintained by domain experts. 

Federated search has been proposed as the search solution for the valuable hidden information. It provides a 

unified search interface that connects the source-specific search engines of available information sources that 

contain hidden information. This dissertation focuses on the research problems of federated search 

applications for text data behind simple text search engines within uncooperative environments where only 

most rudimentary cooperation can be assumed from available information sources.  

This chapter concludes the dissertation by summarizing the contributions and then proposes several 

directions for future research. Specifically, it first summarizes a range of new algorithms proposed for 

different main research problems of federated search. Section 9.2 summaries the general contributions of the 

dissertation that advance the state-of-the-art of federated search. Finally, several possible future topics are 

discussed to extend the research in this dissertation. 

 
 
9.1 Summarization of dissertation results 

 

There are three main research problems in federated search. First, the contents as well as many other 

properties of each information source should be acquired (resource representation). Second, given a user 
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query, a decision should be made about which sources to search (resource selection). Third, the results 

returned from all selected sources may be integrated into a single final list (results merging). This dissertation 

proposes a full range of algorithms for all three main research problems. Furthermore, a unified utility 

maximization framework is proposed to integrate and adjust the individual solutions into a single framework 

for different federated search applications. 

Information source size (i.e., number of documents) is an important type of resource representation for 

different federated search applications like resource selection. However, most previous federated search 

algorithms did not consider source sizes because it was difficult to obtain reasonably good source size 

estimates efficiently. This dissertation proposes a Sample-Resample algorithm to effectively and efficiently 

acquire source size estimates. It views the sampled documents in the centralized sample database as a set of 

representative documents of those in the complete information sources. The Sample-Resample method 

analyzes the statistics of the document frequencies of a set of resample queries in both the centralized sample 

database and the complete information sources to acquire the source size estimates. Different variants of the 

Sample-Resample method have been proposed to utilize different types of support from individual search 

engines. This new method has been shown to be more effective and efficient than the alternative 

Capture-Recapture method for different sets of information sources. It is not perfect and there is room for 

improvement in future research, but it is good enough to support rather accurate resource selection. 

There has been considerable prior research for resource selection. Most of the previous algorithms were tied 

with the “big document” approach. The “Big document” approach treats information sources as single 

documents and does not explicitly consider individual documents. The deficiency of this approach is 

carefully discussed in the dissertation. Some prior methods tried to turn away from the “big document” 

approach. However, they generally make impractical assumptions that limit their effectiveness and 

efficiency. The relevant document distribution estimation (ReDDE) resource selection algorithm is proposed 

in this work. It views information sources as document repositories instead of single big documents and it 

explicitly estimates the distributions of relevant documents across available sources to optimize for the 

high-recall goal of the information source recommendation application. The ReDDE algorithm makes full 

use of the information source size estimates and the content descriptions from the resource representation 

component [Si & Callan, 2003a]. It is not only more theoretically solid but also provides more accurate 

empirical results than several other alternatives within different types of federated search environments. 

For a federated document retrieval system, the final step is results merging, where the individual ranked lists 

from selected information sources are merged into a single final ranked list. It is a difficult task especially in 
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uncooperative environments as the diverse retrieval algorithms and the heterogeneous corpus statistics make 

it difficult to compare the document scores in the source-specific ranked lists. Some previous results merging 

methods download all returned documents and recompute comparable document scores at the search client. 

They are effective but are associated with a large amount of communication and computation costs. Other 

previous methods tried to approximate comparable document scores heuristically and they are not very 

effective. The regression based method (i.e., semi-supervised learning) is proposed in this work to estimate 

centralized document scores. This method first identifies a set of representative documents that contain both 

source-specific document scores and centralized document scores. These documents serve as the training 

data to estimate query-specific and source-specific linear models for transforming source-specific document 

scores to centralized comparable document scores. The models are applied on all returned documents to 

acquire comparable document scores and to create the final ranked list. An extensive set of experiments was 

conducted under different operating conditions to show the effectiveness of the new regression based results 

merging algorithm. 

Past federated search research mainly dealt with individual components separately. The field has started to 

realize that effective solutions of individual components may optimize different criteria (e.g., high recall for 

information source recommendation, high precision for federated document retrieval). It is a better choice to 

integrate and adjust different components for different federated search applications. Based on this 

observation, this dissertation proposes a unified probabilistic framework to integrate effective solutions of 

different components together. 

This approach first learns a single logistic model with a small number of training queries to map centralized 

document scores on the centralized sample database to the corresponding probabilities of relevance. For a 

user query, the centralized document scores of sampled documents are calculated and their probabilities of 

relevance are obtained through the logistic model to further estimate the probabilities of relevance for all 

available documents. With this information, the unified utility framework formulates the resource selection 

problem as an optimization problem. It allows a system to explicitly model and compensate for the 

inconsistencies between different goals of different federated search applications. For information source 

recommendation, the goal of the framework is to optimize the utility as high recall, and for federated 

document retrieval, the goal is to optimize for high precision.  

Furthermore, a specific variant of the unified utility maximization framework, the returned utility 

maximization framework, is proposed to incorporate the factor of search engine retrieval effectiveness into 

resource selection. It investigates the consistency between two sets of ranked lists as the source-specific 
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ranked lists and the corresponding ranked lists by an effective centralized retrieval algorithm for constructing 

the search engine effectiveness profiles. All of the estimated relevance information and retrieval 

effectiveness information can be formulated in a returned unified optimization framework to select 

information sources that can return many relevant documents. 

An extensive set of empirical studies has been conducted to show the effectiveness of different variants of 

the unified utility maximization framework. The methods not only provide more effective resource selection 

results for information source recommendation but also enable more accurate document ranked lists for 

federated document retrieval. Furthermore, it has been shown that the returned utility maximization method 

outperforms several other alternatives when some information sources in the federated search environments 

are associated with ineffective search engines. 

 

9.2 Significance of the dissertation results 

 

Besides the specific algorithms, at least three major contributions in this dissertation advance the field of 

federated search. The new research turns away from the previous state-of-the-art “big document” approach. It 

successfully utilizes the centralized sample database for many federated search applications. Furthermore, it 

proposes a utility maximization model that provides more theoretically solid foundation for federated search 

and opens a door for many new applications. 

Most previous federated search algorithms were associated with the “big document” approach. This 

dissertation provides a different approach that turns away from tweaking parameters in “big document” 

algorithms to view information sources as document repositories and build accurate models of the contents 

and other important characteristics of information sources. The “big document” resource selection methods 

were the previous state-of-the-art algorithms and they work well in federated search environments with 

uniform source size distributions. This dissertation points out the deficiency of the “big document” approach 

for treating available sources as single big documents and not considering individual documents. On the 

other hand, our strategy is to model available information sources as document repositories and simulate the 

environment of a centralized complete database as if all available documents were in a single centralized 

database. 

Specifically, a centralized sample database (CSDB) is created by collecting all the sampled documents from 

query-based sampling into a single centralized database. It is highly utilized in this dissertation to simulate 
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the centralized complete database for effective and efficient pseudo-centralized solutions. This strategy opens 

a door for many new opportunities. In resource selection, the centralized document scores of all available 

documents (mostly unseen) are estimated from the scores of documents in the centralized sample database to 

infer the distribution of relevant documents. In results merging, the documents in the centralized sample 

database serve as training data to build query-specific and source-specific models for estimating 

source-independent document scores from source-specific scores. The search engine retrieval effectiveness is 

also measured by comparing source-specific results with the results by an effective centralized retrieval 

algorithm on the centralized sample database. 

The centralized sample database is systematically used by the unified utility maximization framework to 

provide an integrated view of federated search applications. This framework builds solutions for different 

federated search applications with different goals (i.e., high-recall goal for information source 

recommendation, high-precision for federated document retrieval). It utilizes the sampled documents within 

centralized sample database to estimate the probabilities of relevance for all available documents. 

Furthermore, the shift to modeling federated solutions within a single unified framework also opens a door 

for considering a broader set of evidence than just relevance, e.g., search engine retrieval effectiveness, 

search delay and information authority. Particularly, this dissertation shows an extension of the unified utility 

maximization framework to incorporate search engine effectiveness into resource selection algorithms for 

choosing information sources that can return the largest amount of relevant documents. The ability of 

modeling multiple types of evidence within the unified framework is very important for federated search 

applications in a wide range of real world environments. 

In summary, the new research is supported by a more theoretically solid foundation, more empirically 

effective results and a better modeling ability for real world applications. It is promising to turn federated 

search from a cool research topic to a much more practical tool.  

 

9.3 Future research topics 

 

Federated search has a broad set of applications. This section describes several directions to extend the 

research in this dissertation.  

The federated search algorithms in this dissertation mainly use the static information acquired by 

query-based sampling in the offline phase. On the other hand, a large amount of valuable information may be 
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accumulated by the results from past queries and it has not been fully utilized. The new research in this work 

enables several possibilities for using this type of information. One specific application is to update the 

centralized sample database on the fly. The centralized sample database has been used extensively for many 

tasks such as resource selection and result merging. In our research, the centralized sample database did not 

change over time, but in an operational environment the centralized sample database can change by adding 

more documents whenever it is necessary to download documents for generating additional training data. 

This approach provides more training data for the semi-supervised results merging algorithm or enables the 

use of more sophisticated models for approximating source-independent document scores. It can also track 

the changing query patterns. However, it is not clear yet whether it is helpful for resource selection to add 

downloaded documents from past queries as this method may introduce content bias into the centralized 

sample database. This is an interesting problem to be explored in future research. 

An alternative method to utilize results from past queries for resource selection is to model the content topics 

of available information sources without inserting downloaded documents into the centralized sample 

database. Basically, from the merged results of a particular past query, the information sources that have 

more documents ranked at the top of the final list tend to be more related with the query. This can be 

formally modeled by either supervised or unsupervised methods. Query clusters can be constructed from past 

queries for representing more general content topics. With this information, the unified utility maximization 

framework can be extended to estimate the utility of an information source not only with the relevance 

information estimated from centralized sample database but also with the information acquired from past 

queries. This can be modeled as a mixture model where one model estimates the relevance with information 

from centralized sample database and the other model estimates the relevance with information from past 

queries. It can be seen as an integration of the unified utility maximization method, which considers static 

information from resource representations, and the query clustering/RDD methods [Voorhees et al., 1995], 

which consider results from past queries. 

Federated search is one solution for searching distributed information. A federated search system still has a 

centralized agent that does resource selection decision and merges individual ranked lists. A more 

decentralized solution is the (hybrid) peer to peer full text information retrieval architecture, which includes 

multiple directory nodes that provide regionally centralized directory services to the network for improving 

the routing of user queries. Leaf nodes are connected to the directory nodes and they can provide their own 

information as well as post queries. Many algorithms proposed in this dissertation such as the resource 

selection and results merging algorithms can be extended for peer to peer information retrieval applications. 

For example, the unified utility maximization framework can be extended for the resource ranking problem 
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in peer to peer retrieval. Most current resource ranking algorithms only consider relevance information. 

However, many other factors like search delay due to the unbalanced workload strongly affect the search 

quality. The unified utility maximization method can be applied on each peer to provide the desired resource 

ranking with a good trade-off between selecting the most relevant information sources and keeping a good 

load balance. 

The current research of federated search focuses on text based information. However, there are multiple 

types of information distributed in many information sources. For example, biological science research is 

now often conducted by teams of biologists analyzing data sets that are too large to publish in journals and 

sometimes collected independently by other scientists. Biologists often create and maintain their own 

information sources for sharing biological experimental data, biomedical image data, etc. It is generally 

difficult for biologists to realize the existence of many relevant biological information sources. 

A realistic next step is to design an information source recommendation system that can recommend different 

types of biological information sources. The “big document” approach can only handle text data, which is not 

sufficient for this task. The new research in this dissertation turns away from the “big document” approach, 

which enables consideration of a broader set of evidence. The unified utility maximization model works in 

the framework of estimating probabilities of relevance. It is a promising method that could be utilized to 

transform different types of representations (e.g., text data, structured data) into the same representation (e.g., 

probability of relevance). Particularly, it can be used to combine evidence such as relevance and information 

authority. A new biological text retrieval system could be incorporated into the model for bridging the 

vocabulary mismatch between different biologists, which is a serious problem for biological literature [Hersh 

& Bhupatiraju, 2003]. Web link information could be utilized to generate authority information. All of the 

information could be considered in an extended utility maximization model for recommending the desired 

biological information sources.
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