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Abstract
Representing knowledge is a foundational aspect of Natural Language Understanding, ranging
from meticulously designed notational vocabularies to high-dimensional automatically-created nu-
merical distributions. Good representations must have high coverage with respect to the meanings
inherent in a task and an unambiguous interpretable structure that is machine-readable. Once the
representation is defined, constructing instances of such representations for given examples (either
manually or automatically) faces two main sub-problems: (1) extracting the information conveyed
by a word or sentence and (2) structuring the extracted information appropriately and filtering out
what is unimportant, based on context.

Recent advances focus on representation learning by deep neural networks, where numerical
distributions representing words or sentences are learned using a machine learning model by pro-
cessing huge volumes of data. However, these representations do not have an internal schematic
representation and are hence not interpretable by humans. This leads to a currently central question
in AI of whether these high-performing models are able to reason over events and their implica-
tions in the real world, or whether they simply memorize all the training examples and perform a
small amount of generalization.

In this thesis, we address the problem of representing and reasoning about events and their
implications in the physical world. We propose methods to create more explainable representations
of knowledge that retain only the parts of the encoded information that are relevant to a task at
hand. Our approach results in models that learn underlying reasoning mechanisms and apply
them to unseen situations (i.e., generalization). We study representations at different levels of
semantics (lexical/conceptual, sentence, and discourse); representations for words, sentences, and
event chains. Our methods address the following questions:

1. Can we separate different aspects of meaning in our representations and identify the aspects
relevant for a task at hand, either via a fixed structure or through learning?

2. How do task formulation and representation structure affect performance in limited-data
scenarios?

3. May infusing representations with human knowledge replace the need for huge volumes of
training data? We study how definitions, ontologies or task explanations can be combined
with a machine learning model.

4. Can a model trained only on language learn physical event implications and reasoning mech-
anisms that generalize across domains?

The answers to these questions enable us to create multi-faceted representations of entities that
guide a deep neural network to learn reasoning mechanisms and avoid shortcut learning, which is
a major impediment in limited-data or domain-transfer scenarios.
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Chapter 1

Introduction

Designing algorithms that extract human knowledge from natural languages like English and trans-
form it into a structured, machine readable representation is a fundamental subject for Natural
Language Processing. This is a particularly hard problem, as human languages are highly complex
and semantics are multi-faceted. The meaning of an utterance (word, sentence or phrase) is not
one-dimensional, but can instead be separated into distinct facets. Depending on the task or con-
text, we might be interested in a different aspect of a term’s or sentence’s meaning that contains
the most relevant information.

Although humans have developed extraordinary skills on extracting and reasoning about the
meaning of utterances, automatic approaches are still struggling to achieve this level of intelli-
gence. The first step to achieve this is to design robust and generalizable structures that represent
the meaning of a concept and can be used for reasoning tasks. Ontology-based methods consti-
tute one of the oldest approaches to organize and represent knowledge, and are still widely used
in NLP tasks. They can be in the form of lexical resources like WordNet [Miller, 1995] and
FrameNet [Baker et al., 1998a] or domain-dependent ontologies carefully designed for particular
problems/domains. Ontologies are particularly useful since they contain accurate and semantically
interpretable information that can be easily accessed and filtered by humans according to the task
of interest. However, this information is typically constructed manually, which is a very time-
consuming and difficult process. This results in representations that are not easily extensible, so
they cannot be modified or fine-tuned in the presence of new information.

Recent advances focus on learning representations by training a language model on extremely
large corpora. This is a more data-driven approach than the meticulous construction of an ontology,
since constructing distributed representations is fully automated and can be fine-tuned for any
new task. Most recent representations that take context into account to encode the most relevant
meaning of concepts are context-aware embeddings based on models like BERT [Devlin et al.,
2019] or GPT-3 [Brown et al., 2020], which have been shown to achieve significant improvements
in various downstream NLP tasks. However, a major problem with these representations is that
they are not interpretable by humans, since they are a byproduct of deep transformer networks.
Thus, we currently have no way to understand how information is encoded and whether semantics
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are also somehow encoded in the representation. This impedes us from choosing which part of
the representation is relevant to a specific task, forcing us instead to rely solely on the availability
of huge amounts of data for fine-tuning. The resulting representations are based on models with
billions of parameters, which leads us to the following critical question; can such representations
capture generalizable reasoning patterns about complex tasks, such as event implications, or can
they only solve problems based on previously extracted surface correlation patterns? For example,
given the sentence The glass fell on the floor, how do we learn a representation that can answer
where is the glass or if it is broken? What if the glass was a pen instead? Such tasks, which are
simple implications of events, despite being trivial for humans, are almost impossible to solve by
current NLP methods. This is partly due to the way the models learn representations of words or
sentences, where meaning is defined solely based on explicitly stated context (i.e., other words in
the sentence). As a result, other facets of semantics, such as the implications of an event to the
entities, are frequently ignored, unless explicitly stated in the context.

In this thesis, we explore how to design multi-faceted representations of semantics that capture
and reason over implications of events in the real-world. To this end, we propose methods to learn
more explainable representations that separate different aspects of meaning based on specific tasks.
These representations have higher generalization power and show better performance, particularly
in scenarios when only limited or no in-domain data is available.

We design representations for various levels of semantic units: entities, sentences and events.
We propose a set of projects for each sub-area of semantics, all of which aim to construct more
explainable representations, where meaning is split into independent dimensions, and show how
we can practically use these representations to improve performance in NLP tasks. The thesis
initially studies entity representations, which have fixed facets and structure, and incrementally
explores representations of event relations, which are significantly more complex as they depend
on the participating entities.

Chapter Overview
Chapter 3: Lexical Representations This chapter discusses Definition Frames, a multi-part
representation matrix in which each facet (each row) corresponds to a particular relation, and
the content of each facet is the embedding of the terms related to the represented word. The
relations are based on the Qualia structure proposed in Boguraev and Pustejovsky [1990], which
represent the modes of explanation of the given entity. Their values are automatically extracted
from WordNet [Miller, 1995] definitions using a domain-adaptation approach.

As shown in Spiliopoulou et al. [2020b], a word representation that separates meaning into
different facets is both interpretable and achieves better performance in limited-data scenarios.
By disentangling the Qualia structure relations, Definition Frames can capture different types of
similarity (relatedness and similarity) and achieve improved performance on word similarity tasks.
Finally, we demonstrate the explainability of Definition Frames via a human study showing that
they provide valid insights on how terms are related.
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Chapter 4: Sentence Representations This chapter focuses on learning sentence representa-
tions so only information that is relevant to a specific topic or context is encoded. Given the
context (task and topic), the goal of this work is to disentangle the meaning of a sentence and filter
information irrelevant to that context. This is particularly important in a covariate shift scenario,
where there are systematic differences between training and test data due to an underlying cause.
In such scenarios the model deals with shortcut learning; it learns simple associations that explain
the training data, but do not generalize in the test set.

Our work on this area focuses on a real-time application of classifying tweets with respect to
their importance for crisis response. This is a covariate shift scenario, since we have no labeled
data for an ongoing crisis when our training set consists of tweets from previous similar in-nature
catastrophes (e.g., earthquake). As we can imagine, each tweet contains information about its
importance in the context of the type of the disaster (e.g., earthquake) or of the specific disaster
(e.g., Nepal 2015 earthquake). Given that there is data for only a handful of these crisis events,
each event serves as the underlying cause of a distribution shift across the data.

As shown in Spiliopoulou et al. [2020a], our approach teaches the model to disassociate tweet
importance from the specific crisis event, which is the underlying cause of the covariate shift. By
disentangling the aspect of meaning that is useful for our task, the model learn representations
in the context of the event type and achieves better performance in the test set. Since the main
task is to classify the importance of the information contained in a tweet (criticality), we use an
adversarial classifier that intends to learn which specific event the tweet refers to, hence remove
the event specific bias through a reversal gradient. Our experiments represent a real-life crisis
management scenario, where the model is evaluated on a new incoming event through a leave-one-
out experimental setup, and show substantial improvement over baseline classification methods.

Chapter 5: Event Representations Events are complex semantic units due to their temporal
dimension and their ability to modify the world state and its entity characteristics. Furthermore,
an event may consist of other sub-events (eating is a sub-event of dining in a restaurant) or cause
other events (turning off the light implies that I cannot see). In the NLP community, events are
represented by a subset of fixed thematic relations (i.e., agent, patient, etc.), an approach that
splits the semantics of an event to distinct, independent dimensions. As shown in Spiliopoulou
et al. [2017], we can use such predefined, fixed structures to extract information from text, by
combining rich semantic knowledge with deep learning methods.

Chapter 5 discusses events and their representation schemes, as well as their interactions with
other events. While event detection within the NLP community focuses on event representations
on sentence level, our interest is to study complex, large-scale events that are described across
multiple documents. Such events do not necessarily correspond to a particular snippet of text and,
instead, consist of several smaller sub-events that are mentioned in text.

The goal of this chapter is to model such events in terms of their sub-events: events of smaller
duration that might influence the outcome of the large event. In day-to-day scenarios, we see
several such large-scale events (e.g., financial crises, elections, covid-19), where the severity and
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outcome of the event is actually driven by the smaller sub-events that occur during the same period.
However, due to the complexity of such large-scale events and their apparent dependence on their
sub-events, we cannot represent them using a fixed schematic representation.

As shown in Spiliopoulou et al. [2021], we can represent large-scale events using a dynamic
series of their sub-events. In this work, we develop a framework to extract influential sub-events
that occur during a large-scale event disaster event and could potentially impact the evolution of
the crisis (e.g., power outage, road blocks, etc.), based on natural language input. Our framework
processes information acquired both in the sentence-level (sub-events per tweet) and across tweets
in the context of the large-scale event, via the use of a dynamic graph neural network.

Chapter 6: Event Implications on Entities In Chapters 3–5 we addressed representations
of entities, sentences, and events, using the assumption that their semantics are multi-faceted.
Entities are the least complex semantic unit, since they can be defined based on a set of physical
attributes and ontological relations. Events are more complex, since their semantics depend on
both ontological relations (such as inheritance from higher-level events, like move ! run) and
their participants, which are typically entities.

Chapter 6 studies the impact of an event on the real world: specifically, how an event modifies
the state of the entities impacted by the event. Given an event, humans are able to infer a great
amount of information about how it affects other entities and events without this being explicitly
stated. Although inferring such commonsense information is a trivial reasoning task for humans,
it is particularly hard for neural models or any other algorithmic methods. This chapter aims to
focus on a part of a core AI problem known as the Frame Problem. First introduced by McCarthy
and Hayes [1981], the Frame Problem was formulated as the problem of updating all the beliefs
about the state of the real world that were modified as the result of actions.

Although the Frame Problem is extremely hard, this chapter focuses on only one particular
aspect: how an event’s participant entities are modified by the event occurrence. Although this
studies only the direct implications of the event on an entity’s state, it still requires a deep un-
derstanding of the semantics of the single event. In comparison, more complex relations, such as
causality of events, require further reasoning and understanding of how multiple events interact.
For example, consider the event I broke my phone. A direct implication in an entity’s state would
be that the phone’s composition changed, which only requires knowledge about the semantics of
the event break and how it influences the entity. However, the event I need a new phone is a result
of the first event and must be deduced via reasoning over the space of several possible events.

As part of this thesis, we study event implications as entity change-of-state with respect to
physical attributes. Unlike Definition Frames, where the essential, definitional, facets of an entity
are represented via its relation to other entities, here the different aspects of meaning are driven by
the attributes of the entity. The reason behind this difference is the goal of the representations and
task: given some textual description of an event, we want to model the properties of the entity that
could change, instead of the fundamental properties that do not change.

In this work, we show that, by facetizing the meaning of an entity via its attributes, both the
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in-domain performance and the generalization abilities of our models significantly improve. We
achieve this by verbalizing the different aspects of meaning in the form of attributes and feeding it
as input to a large Language Model (LLM) via prompting. The attributes work as a bottleneck that
retains only the information from the sentence that is relevant to them, guiding the model towards
learning reasoning patterns for the task.

Thesis Summary
The underlying theory of this work is that semantics are multi-faceted and it is possible, with
appropriate care, to disentagle and represent separately the major facets and use them individually
as needed. In this thesis we show how meaning decomposition via proper task formulation results
to better model performance and generalization abilities. This is possible even for representation
notations that are opaque to humans, like large language models, where the separation functions
as a bottleneck for the models to connect relevant information and learn reasoning patterns.

Supporting Publications
In order to support this thesis, we use our findings of previous and current research for each chap-
ter. More specifically, the following papers support each chapter:

Chapter 3 Spiliopoulou, Evangelia, Artidoro Pagnoni, and Eduard Hovy. "Definition Frames:
Using Definitions for Hybrid Concept Representations." In Proceedings of the 28th International
Conference on Computational Linguistics, pp. 3060-3068. 2020.

Chapter 4 Spiliopoulou, Evangelia, Salvador Medina Maza, Eduard Hovy, and Alexander G.
Hauptmann. "Event-Related Bias Removal for Real-time Disaster Events." In Findings of the
Association for Computational Linguistics: EMNLP 2020, pp. 3858-3868. 2020.

Chapter 5 Spiliopoulou, Evangelia, Eduard Hovy, and Teruko Mitamura. "Event detection using
frame-semantic parser." In Proceedings of the Events and Stories in the News Workshop, pp. 15-
20. 2017.

Spiliopoulou, Evangelia, Tanay Kumar Saha, Joel Tetreault, and Alejandro Jaimes. "A Novel
Framework for Detecting Important Subevents from Crisis Events via Dynamic Semantic Graphs."
In Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021), pp. 249-
259. 2021.

Chapter 6 Spiliopoulou, Evangelia, Artidoro Pagnoni, Yonatan Bisk, and Eduard Hovy. EvEntS
ReaLM: Event Reasoning of Entity States via Language Models. Under-review.
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Chapter 2

Background & Related Work

This chapter briefly discusses prior work in NLP problems related to the thesis. This serves as
the background to understand the contributions of each chapter to specific NLP problems and how
they differ from previous approaches.

We follow a structure that facilitates the introduction of the main thesis chapters; work is cate-
gorized based on the representation type (i.e., lexical, sentence or event) or application area. The
purpose of this chapter is to inform the reader and facilitate their understanding of our work, pro-
viding context of the thesis and current NLU challenges.

2.1 Lexical Representations
This section discusses prior work on lexical representations, with a particular focus on entities.
The goal is to provide the background necessary to motivate Chapter 3 and settle the foundations
for the entire thesis.

2.1.1 Lexicons & Ontologies
One of the earliest ways to organize and represent knowledge is via ontologies and hand-crafted
lexicons. Ontologies aim to categorize concepts based on their meaning in a hierarchical tree-
structure. Carefully built by experts, they contain semantically meaningful information in the form
of relations between concepts. Throughout this thesis, we refer to several widely used ontolo-
gies, such as WordNet [Miller, 1995] and ConceptNet [Speer and Havasi, 2012], which contain
concepts, their definitions and essential relations to other concepts.

Ontologies can represent detailed semantic relations of concepts and are still used as knowl-
edge representations in several NLU tasks. Since they are meticulously designed by experts, they
contain precise information and are easy to interpret by humans. However, designing or adding
new nodes to an ontology requires manual effort from domain experts, which means that they are
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not scalable and easy to extend. This is a significant barrier when we want to represent words and
extract semantic relations in a new domain.

2.1.2 Distributional Semantics
Recent work on lexical representations focuses on distributional semantics, where each word is
represented by a large numerical vector of fixed dimension, learnt by a machine learning model.
These vectors called embeddings and the overall goal is to minimize the distance between vectors
that correspond to semantically similar words.

Early approaches in distributional semantics aimed on building a language model based on a
large corpus of text. Firstly introduced by Baroni and Lenci [2010] as the Distributional Memory
framework, such models are used to generate a vector for each word, based on all the context this
word was previously seen. The vector for each word is unique and it does not change after the
language model is trained. Other prominent work on this area includes GloVe [Pennington et al.,
2014], word2vec [Mikolov et al., 2013a], and fastText [Bojanowski et al., 2017].

A common assumption among these approaches is that a word can be represented by a unique
vector. However, the meaning of a word frequently depends on context and, thus, a fixed represen-
tation might not be sufficient to represent the semantics. This was the main motivation behind new
methods that learn contextualized embeddings. Such methods produce embeddings as a function
of the entire sentence (i.e., context), which means that they produce different embeddings for the
same word, if it occurs in a different sentence. Most work in this area uses masking to learn a
language model. ELMo produces embeddings based on the internal states of a BiLSTM model
[Peters et al., 2018], while BERT [Devlin et al., 2018] and GPT [Radford et al., 2018] use trans-
former models. These approaches are shown to generalize well and outperform previous models
in a large variety of NLP tasks.

Despite their exceptional performance, these models have a few shortcomings. Firstly, training
them requires a large number of resources; specifically compute power and data. Many of these
models rely on fine-tuning, which means that even pre-trained models need a large amount of data
of the same domain and task in order to achieve significantly better performance than previous
representations.

The second short-coming of distributed representations is their lack of interpretability. Unlike
lexicons and ontologies, word embeddings are not interpretable by humans, since it is hard to
understand the semantics behind a vector. Despite research efforts to interpret word embeddings
[Mikolov et al., 2013b], there is no clear evidence of how their semantic relation. Recent work
on interpretability focuses more on the effect that each word representation on the final model
decision or how changes in context are reflected in the representations [Ethayarajh, 2019].

2.1.3 Representations from Definitions
Dictionary definitions constitute an excellent source of human knowledge, as they contain essential
relations to identify the meaning of a concept. Despite written in natural language, definitions
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follow a very specific structure. Most definitions of a concept contain the type to which it belongs
(Genus) and the properties that differentiate it from other concepts of the same class (Differentia).
This distinction of definitions and their importance in scientific knowledge dates as far as Aristotle
[Barnes, 1994] and sets the foundations of modern logic [Granger, 1984, Parry and Hacker, 1991].

In addition to their structure, definitions contain generic information that is sufficient to uniquely
identify a concept that represents a universal term, whereas most natural language text (i.e., news
articles, books, online forums) typically contain information about specific instances (i.e., indi-
vidual) of a concept that portray only one aspect of meaning, based on context. These interesting
properties of definitions motivate a series of work that uses them as sources to extract knowledge.

Earlier work in computer science literature uses definitions to extract the type of a concept
(Genus) and the relations distinguishing it from other members of the same type (Differentia) via
syntax and string matching heuristics [Binot and Jensen, 1993, Calzolari, 1984, Chodorow et al.,
1985]. Recent approaches directly encoded definitions to distributed representations. Tissier et al.
[2017] obtained embeddings via a skip-gram model trained on definitions, while Bosc and Vincent
[2018] used an auto-encoder. Other work includes definition generation [Noraset et al., 2017],
binary classification of sentences on whether they are definitional [Anke and Schockaert, 2018],
reverse dictionary look-up [Hill et al., 2016, Zock and Bilac, 2004], and extraction of hypernymy
relations from definitions using syntactic patterns [Boella and Di Caro, 2013].

Another related line of work focuses on structuring and extracting relations that define a con-
cept, without explicitly using definitions. Prior research on lexical semantics has established a
set of relations that is ideally sufficient to define a concept. Part of this work includes the Qualia
structure [Boguraev and Pustejovsky, 1990] and the generative lexicon theory [Pustejovsky, 1991],
which set the theoretical foundation for Chapter 3. The theory behind this approach is that a set of
relations contain information about different aspects of meaning about a concept, creating a repre-
sentation based on multiple, fixed facets. Other approaches include fine-grained definition-based
frames like Semagrams [Moerdijk et al., 2008].

2.2 Semantics in a Sentence
In this section we discuss different approaches on capturing and representing the semantics of
a sentence. In this area, there is a large amount of work that focuses on sentence meaning and
representations, which are applied to numerous NLU applications. However, for the scope of
this thesis, we narrow our literature review on the two problems that we subsequently discuss
throughout the thesis; bias removal from sentence embeddings and event detection.

2.2.1 Learning Unbiased Representations
In this section we discuss sentence representations and recent techniques on detecting and remov-
ing biases, in an effort to obtain more generalizable models that transfer across domains. Bias
removal is a problem parallel to multi-faceted sentence representations, as we care only about a
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specific aspect of the representation, based on the context that the representation is learnt (i.e., the
bias). Although most recent work on bias removal assumes that the biases are known and take a
binary value, this is not always true. Biases can be complex and latent, based on the data used to
learn the representation. In Chapter 4 we discuss such an application of event-specific biases and
how we can obtain more generalizable representations by removing the bias.

Most recent work on bias removal [Elazar and Goldberg, 2018] focuses on using adversarial
learning to remove demographic bias from representations. Examples include adversarial genera-
tive networks that create fair representations [Madras et al., 2018], metrics to quantify unintended
biases [Borkan et al., 2019] and applications that show substantial improvements on traditional
NLP tasks like NLI [Lu et al., 2018], Coreference Resolution [Belinkov et al., 2019] and text clas-
sification [Zhang et al., 2018] by using unbiased representations. Our approach is inspired by the
work of Elazar and Goldberg [2018] on bias removal through an adversarial attack. The authors
use an adversarial setting to remove demographic information from text and construct cleaner rep-
resentations. In our case, the adversarial classifier attempts to predict the event to which the tweet
belongs. Another difference with our work is the imbalanced data used for training the classifier
of the main task. Other related work includes domain adaptation based on a gradient-reversal layer
[Ganin et al., 2016], text classification based on adversarial multi-task learning [Liu et al., 2017],
and multi-adversarial domain adaptation across multi-modal data [Pei et al., 2018].

2.2.2 Events in a Sentence
The second area of work that we discuss involves events and how they can be represented. Events
are a complex semantic unit that is analyzed in several chapters of this thesis. Chapter 5 dis-
cusses different ways to represent events; via their thematic roles and via their sub-events. In this
subsection we discuss prior work on event detection from sentences; a well-studied field of NLP.

Although events may span across more than one sentences, event detection in text-level helps
us formalize what an event is. The first part of Chapter 5 discusses into greater detail the task of
event detection, while the second part of the same chapter uses techniques and representations of
event detection to build a model that extracts sub-events in a large-scale event. Finally, Chapter 6
studies implications of events; thus, a deep understanding of events and prior work is necessary.

Early approaches on event detection were based on extracting features that map the potential
event triggers to an ontology. Such approaches are still widely used and efficient when there are
limited in-domain training data. The ontology used might be simple (i.e., a list of words in tree-
structure) or more complex, designed to represent the semantics of events. Related work follows
the frame semantics theory, and includes prominent examples like FrameNet [Baker et al., 1998a],
VerbNet [Schuler, 2005] and Abstract Meaning Representations [Banarescu et al., 2013].

Research in event detection can be divided into two categories; domain-specific and open-
domain. Domain-specific means that we are interested only on a subset of events that are related
to a specific domain, which are given based on a pre-specified ontology. Most recent work on
this area uses BERT models combined with other techniques. Tong et al. [2020] uses BERT and
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a knowledge distillation techniques with external sources, while Cao et al. [2020] focuses on in-
cremental learning. Other techniques used include adversarial learning [Wang et al., 2019], graph
neural networks [Nguyen and Grishman, 2018] and data generation based on BERT [Yang et al.,
2019]. Prior to contextualized embeddings, Chen et al. [2015] proposed a dynamic multi-pooling
convolutional neural network (DMCNN), which automatically induces lexical-level and sentence-
level features from text, achieving state-of-the-art results. Nguyen and Grishman [2015]’s work
focuses on CNNs using word embeddings in order to achieve a more generalizable event detec-
tion system. Other approaches include Ghaeini et al. [2016]’s FBRNN, which is a modification of
RNNs using word and branch embeddings, and Liu et al. [2016]’s ANN & Random ANN, which
exploits the direct relationship between the FrameNet and the ACE Ontology in order to construct
an out-domain ANN model. Peng et al. [2016] showed that it is feasible to achieve state-of-the-art
results with minimal supervision. In their approach, they use only a few examples and the SRL of
a candidate event in order to construct a structured vector representation, which maps the event to
an ontology.

Open-domain event detection or, in other words, open information extraction, is the problem
of extracting events from a sentence in any domain. All sentences contain some events and we are
called to extract information about all these events. Recent work on open information extraction
includes Open IE [Stanovsky et al., 2018b], which uses a deep BiLSTM sequence prediction model
and systems that combine BERT embeddings with other neural models, such as a BiLSTM decoder
[Kolluru et al., 2020].

2.3 Crisis NLP & Information in Social Media
In this section we discuss work in Crisis NLP and relevant modeling techniques, which provide the
necessary background for Chapters 4 and 5. Related modeling techniques focus on two main direc-
tions: (1) information extraction or classification in the tweet / sentence level, and (2) information
aggregation across documents or social media posts.

2.3.1 Information Extraction & Classification in Tweets
Given the large volume of noisy data from social media, most tasks focus on sentence classification
problems, where the goal is to filter only the most important posts that might be helpful for first
responders. As discussed by Imran et al. [2015], Tapia et al. [2011b], there are several types
of sentence classification for disaster response, such as determining if a message is related to a
specific crisis event [Caragea et al., 2016, Kruspe, 2019, Nguyen et al., 2016, Neubig et al., 2011],
if it is actionable [Leavitt and Robinson, 2017, Munro, 2011] or critical [Mccreadie et al., 2019,
Spiliopoulou et al., 2020a]. Other work classifies tweets with respect to the type of information
they contain, a problem that is formulated as a multi-class tweet classification (typically five major
information types) [Miyazaki et al., 2019, Burel et al., 2017, Nguyen et al., 2017, Imran et al.,
2016b, Padhee et al., 2020].
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Related work outside of Crisis NLP can also be used to extract information from tweets, in
the form of events. Chen et al. [2018] use an encoder-decoder framework to extract sub-events
from each tweet, while Rudra et al. [2018] use noun-verb pairs to represent sub-events, where each
pair is ranked based on their overlap score in tweets. Some approaches outside the crisis domain
that focus on extracting textual sub-events from tweets or documents, in a sequence classification
setup [Bekoulis et al., 2019]. Other related work includes Open IE methods (open information
extraction), which extract tuples of expressions from text that represent the events of the sentence.
Such work includes Open IE by AllenNLP [Stanovsky et al., 2018a], which uses a deep BiLSTM
sequence prediction model and systems that combine BERT embeddings with other neural models,
such as a BiLSTM encoder [Kolluru et al., 2020].

2.3.2 Aggregating Information Across Documents or Tweets
Processing information without the context of a crisis event is a bottleneck for big data crisis
analytics, as discussed by Qadir et al. [2016]. Although most work in Crisis NLP focuses in
tweet-level information and classification, most emergencies require to process information across
documents or social media posts. Towards that goal, recent work aims at extracting sub-events that
are important in the context of the larger crisis event. The notion of sub-events varies within this
area; a sub-event could correspond to an entire cluster of words / tweets or to a textual span from
a single tweet. Earlier work in sub-event extraction forms clusters of tweets during a crisis event
based on a set of shallow features, such as tf-idf and metadata Abhik and Toshniwal [2013], Pohl
et al. [2012]. Other approaches use topic clustering to form sets of words (topics) that represent
sub-events Srijith et al. [2017], Xing et al. [2016]. Most recent work forms clusters based on
verb-noun pairs from individual tweets Jiang et al. [2019], which are then ranked based on an
ontology grounding score Arachie et al. [2020]. In all these methods each cluster is considered to
correspond to a different sub-event. However, the elements within each cluster are not necessarily
related via temporal or other relations, which raises questions with respect to the interpretability of
the cluster/sub-event.

In a different direction, other methods use a group of temporally ordered messages to detect
large-scale events. For example, Sakaki et al. [2010] use statistical and keyword features in a
spatio-temporal model to detect crisis events based on Twitter streams. More recently, Meladi-
anos et al. [2015, 2018] use a graph representation of tweets to extract important sub-events by
detecting weight changes, a problem formulated as a summarization task. Early approaches that
use text from social media to represent context for social events rely on linear classifiers using
topic-related features Wang et al. [2012], graph features Keneshloo et al. [2014] or combination
of heterogeneous data sources Korkmaz et al. [2015] and dynamic query expansion models with a
static vocabulary Zhao et al. [2015] or fused with logistic regression Ramakrishnan et al. [2014].
Ning et al. [2018], Zhao et al. [2015] use multi-task models with shared parameters across differ-
ent locations and events to model spatio-temporal correlations. Most recent work that inspired our
approach uses dynamic graphs to represent information from social media, which model temporal
constraints from precursor events Deng et al. [2020, 2019], Ning et al. [2018]. A common theme
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of this work, as further discussed by Ning et al. [2019] underlines the importance of explainability,
since it is helpful for experts to analyze which factors led to the development of a large-scale event
and potential ways to prevent or mitigate it.

2.4 Commonsense Reasoning in Events
Work in commonsense reasoning about events follows two directions: (1) predict event implica-
tions as entity changes, and (2) use commonsense knowledge about events and their implications
as necessary intermediate steps in reasoning. Furthermore, work that studies event implications
as entity change-of-state is distinguished into two broad categories based on the type of events
studied: physical or social events.

2.4.1 Modeling Social Interactions
Research that directly studies event implications mostly explores causality between social events
and emotional states, based on social norm expectations [Rashkin et al., 2018, Sap et al., 2019b,
Forbes et al., 2020, Emelin et al., 2020, Hwang et al., 2020]. Jiang et al. [2021] study specific
linguistic phenomena such as contradiction and negation, while Sap et al. [2019a] study the role of
social biases and predicting implications of social events. Although this line of research highlights
the difficulty of predicting cause-effect relations, social scenarios are typically ambiguous and
require knowledge of event chains. For example, in order to answer whether X gives a gift to Y
implies that X hugs Y, we must be aware of the relation between X and Y, their personalities, and
the social context. On the other hand, event implications as physical changes of state of entities
are, mostly, objective and depend on simple relations that a model could know a priori (e.g., the
material of a mug), allowing us to isolate and study the reasoning abilities of a model.

2.4.2 Physical Event Implications
Closer to the subject of this thesis, is the prediction of physical implications of events. This prob-
lem often takes the form of entity changes in procedural text, such as in cooking recipes [Bosselut
et al., 2017] or WikiHow articles [Tandon et al., 2020]. However, most datasets primarily focus on
changes in location compared to other attributes, such as ProPara [Mishra et al., 2018] and bAbI
[Weston et al., 2015]. Modeling approaches in both areas of commonsense explore the generation
of explanations in a multi-task setting [Dalvi et al., 2019], the use of external knowledge graph
[Tandon et al., 2018], and automatic knowledge base construction to keep a representation of the
state of the world and generate novel knowledge [Bosselut et al., 2019, Henaff et al., 2016, Hwang
et al., 2020].
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2.4.3 Reasoning about Event Chains
While the work discussed earlier focuses on single events implications, open-ended commonsense
reasoning tasks may involve multiple events and their causal relations. Reasoning about event
chains and causality is one of the most difficult problems, which requires a deep understanding of
event-to-event dependencies.

This category typically includes question answering tasks that assume knowledge of common-
sense relations and their implications given a sentence and/or knowledge base as context. This
line of work includes short questions, such as OpenBookQA [Mihaylov et al., 2018b], Common-
SenseQA [Talmor et al., 2019], SWAG [Zellers et al., 2018] and COPA [Roemmele et al., 2011],
or questions based on a provided document [Huang et al., 2019] or knowledge base [Clark et al.,
2018b].
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Chapter 3

Definition Frames: Entity Representations
from Definitions

3.1 Introduction
Ontologies have been widely used in lexical semantics to organize and represent knowledge. Care-
fully built by experts, they contain semantically meaningful information in the form of relations
between concepts. However, being manually constructed, they struggle to assimilate new informa-
tion.

Compared to ontologies, distributed representations are fully automated and can be fine-tuned
for new tasks. Despite their exceptional performance, most distributional methods do not have
an explicit semantic interpretation. The resulting representations encode a tremendous amount
of information, but afford no way to interpret what this information is and how it relates to the
concept. Thus, one cannot choose which type of information is useful for a specific task, unless
one has a lot of data and resources to fine-tune. Although a few approaches have tried to bridge
the gap between semantics and distributed representations [Faruqui et al., 2015, Mrkšić et al.,
2017], (1) they only encode information from ontologies, which are not extensible, and (2) the
final representations are still not semantically meaningful.

Motivated by these problems, we introduce a novel hybrid representation called Definition
Frames (DF), which encodes semantic information extracted from definitions. Definition Frames
are matrix representations, where each row corresponds to a particular relation based on the Qualia
structure proposed in Boguraev and Pustejovsky [1990]. For example, given the word sun, the
Qualia structure relations would be:

Formal (hypernymy): star
Constitutive (meronymy): solar system
Telic (used for): light, heat
Provinence / Agentive (created via): solar nebula
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Figure 3.1: Architecture diagram.

Definition Frames are lexical representations of entities and their goal is to improve perfor-
mance and interpretability by disentagling different aspects of meaning. Towards this end, we use
information found in definitions to "split" the meaning with respect to a certain set of independent
dimensions, corresponding to relations. The set of the relations used is based on the Qualia struc-
ture and they are extracted automatically from the definitions via a domain-adaptation approach.
Coming back to our example, if the given definition is The Sun is a star in our solar system that
transmits heat and light, the set of our extracted relations would include the Formal, Constitutive
and Telic dimensions, but not the Provinence, since that we are not given any relevant information.
To the best of our knowledge, Definition Frames is the first hybrid representation, combining an
explicit structure through semantically meaningful rows, while still being decomposed into distri-
butional vectors.

3.2 Approach
Our framework consists of two parts: the Relation Retriever and the Definition Frame (DF) En-
coder. The WordNet definition for any given term is used by the Relation Retriever model to
extract the Qualia structure relations. The set of extracted terms pertaining to these relations form
the Definition Frame. The DF Encoder encodes this output to a distributed matrix representation,
which can be used in downstream NLP tasks.
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Qualia Structure The Qualia structure (formal, constitutive, telic, and origin) is defined as the
complete modes of explanation associated with an entity [Boguraev and Pustejovsky, 1990, Puste-
jovsky, 1991]. These relations are inspired by Moravcsik [1975]’s interpretation of the aitia of
Aristotle, which can be used to define a concept. In fact, several Relation Extraction tasks [Hen-
drickx et al., 2009, Gábor et al., 2018] contain relations similar to Qualia describing the type (isA),
structure (partOf, hasA) and material (madeOf ), function (usedFor), or provenance (createdBy) of
a concept.

Qualia Relation # Wikipedia Def. # WordNet Def. WordNet Overlap
Formal IsA 235 146 59% (87/146)
Constitutive / PartOf 82 57 2% (1/57)
Structure HasA 39 33 6% (2/33)

MadeOf 27 19 5% (1/19)
Telic /
Function UsedFor 59 54 0% (0/54)
Origin /
Provenance CreatedBy 26 17 0% (0/17)

Table 3.1: Annotated Relations for 300 Wikipedia and 150 WordNet definitions. WordNet Overlap
indicates the number of relations expressed in the definition that were present in the WordNet
ontology.

To automatically extract the Qualia structure of a term, we use dictionary definitions, as they
uniquely describe a term. We confirm the prevalence of those relations in definitions by annotating
300 Wikipedia and 150 WordNet definitions, chosen at random from nominal terms in WordNet
(Table 3.1). We empirically find that WordNet definitions express more relations than the hy-
pernymy (isA) and meronymy (madeOf, partOf, hasA) relations directly encoded in the WordNet
ontology (usedFor and createdBy relations are not part of WordNet ontology). Furthermore, as
shown in Table 3.1, we observe that meronymy relations are more prevalent in WordNet defini-
tions compared to the ontology.

Training Data Because there are no definitions annotated with Qualia structure and Relation
Extraction datasets [Hendrickx et al., 2009, Gábor et al., 2018] are very domain specific without
encoding general knowledge, we deploy a domain adaptation technique. We use ConceptNet to
pre-train the Relation Retriever model (Section 3.2) and then fine-tune it on and apply it to WordNet
definitions. We fine-tune on a set of 150 manual annotations, since WordNet definitions tend to
have more complex sentences than the ones in ConceptNet.

ConceptNet [Speer and Havasi, 2012] is a general purpose ontology that contains relations
between pairs of concepts, accompanied by a small source-sentence. Figure 3.1 shows that the
Concept-query Sun is linked to two sentences (Sun is a star and Sun is in our solar system) from
ConceptNet with the corresponding relations isA and partOf. The training data for the Relation
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Retriever is composed of all ConceptNet source-sentences that contain one of the Qualia structure
relations.

Extracting Definition Frames The Relation Retriever uses the WordNet definition of a term to
extract words that are related to that term via a Qualia-type relation. The set of extracted relations
with their corresponding related words form the Definition Frame (DF). More specifically, we
define a Definition Frame for a term t as Ft = {r1 : S1, r2 : S2,.., rk : Sk}, where ri 2 { isA,
usedFor, partOf, hasA, madeOf, createdBy } and Si is the set of words related to t via the relation
ri. For example, to extract the DF for moon (Figure 3.1), we use the WordNet definition of moon
as input. The Relation Retriever extracts the terms that are related to moon via a Qualia-structure
relation (i.e. satellite, astronomical body and solar system). These terms with their corresponding
relations constitute the Definition Frame Fmoon. More examples of Definition Frames are shown
in Table 3.2.

The Relation Retriever uses a BiLSTM model to extract the relations from each sentence. The
task is formulated as a sequence tagging problem where we identify both the relation type and the
related entities, and optimizes the cross-entropy loss. For model selection, we perform experiments
with strong baseline architectures for RE tasks (BiLSTM, BERT-BiLSTM, BiLSTM-CNN). In
Table 3.3 we show the performance of the pre-trained Relation Retriever model on ConceptNet
test data, which is evaluated on a held-out test set. We observe that the performance is very high,
which is our main motivation to fine-tune on the Qualia annotations of WordNet definitions.

The Definition Frame is encoded via the DF Encoder into a matrix where each row wi cor-
responds to one of the Qualia relations. The DF Encoder uses an embedding space (Basis) to
construct each row vector wi. Note that Basis can be any distributional embedding model. Given
a DF Ft, we define wi as the average of word embeddings from the set of related terms Si through
relation ri:

wi =
1

|Si|
X

s2Si

Basis(s)

where Basis(s) is the embedding for word s. We include an additional row for the Basis vector
of the term itself. This encoding of DF maintains a semantically meaningful structure as each row
always corresponds to the same relation. If no terms are extracted for a relation, we use the zero
vector of appropriate size. An example of the encoded DFmoon is shown in Figure 3.1, where each
dimension corresponds to a unique relation like isA and partOf.

3.3 Experiments
Word-Similarity Task We perform experiments on benchmark word-similarity datasets pro-
vided by Faruqui and Dyer [2014]: SimLex999 [Hill et al., 2015], MC30 [Miller and Charles,
1991], RG65 [Rubenstein and Goodenough, 1965], WS353 [Finkelstein et al., 2002] and MEN
[Bruni et al., 2012]. Following Agirre et al. [2009], we split them into word-similarity (WS-Sim,
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Word 1 Definition Frame, word 1 Word 2 Definition Frame word 2 Relatedness
shore IsA: land, edge sea IsA: body 0.86

PartOf: body, water PartOf: ocean, salt, water
CreatedBy: land

wool IsA: fabric fabric IsA: artifact 0.86
MadeOf: hair, sheep MadeOf: weaving

HasA: fibers
CreatedBy: felting, knitting

restaurant IsA: building, people dinner IsA: main, meal 0.86
UsedFor: eat PartOf: day, evening, midday

day IsA: time dusk IsA: time 0.76
UsedFor: earth, make, PartOf: day, following, sunset

complete, rotation
dress IsA: one-piece, garment bride IsA: woman 0.76

UsedFor: woman CreatedBy: married
HasA: skirt, bodice

feather IsA: light, horny, hawk IsA: diurnal, bird 0.82
waterproof, structure HasA: short, rounded,

PartOf: external, covering wings
orange IsA: round, yellow, fruit IsA: ripened, 0.82

orange, fruit reproductive, body
PartOf: citrus, trees PartOf: seed, plant

harbour IsA: sheltered, port, ships boat IsA: small, vessel 0.76
UsedFor: discharge, cargo UsedFor: travel, water

Table 3.2: Extracted Definition Frames (before encoding) for pairs with high Relatedness score
(MEN dataset). The Relatedness score, is the ground truth score, as noted in the original dataset.
We observe that the two terms share characteristics of their Definition Frame, like being part of
each other’s frame or having common related terms.

Model Pr Re F1
BiLSTM 97.6 97.7 97.6

BERT BiLSTM 95.1 95.0 95.1
Stacked-BiLSTM 97.6 97.6 97.6

BiLSTM-CNN 97.4 97.6 97.4

Table 3.3: Relation Retriever on ConceptNet data (held-out test set).

SimLex999, MC30, RG65) and word-relatedness (WS-Rel, MEN) datasets, as they evaluate dif-
ferent semantic affinities. We only consider nominal terms that exist in WordNet and report Spear-
man’s correlation ⇢. We perform experiments with three types of embeddings used as Basis:
GloVe [Pennington et al., 2014], dict2vec trained on Wikipedia [Tissier et al., 2017], and retrofit
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embeddings [Faruqui et al., 2015] based on GloVe. Since the task comprises of pairs of words
without any context, we do not compare against context-based representations.

Ablation Study We perform an ablation study by varying the set of relations used in DF. In
this study, both Basis and DF are encoded with dict2vec, as it achieves the best performance
(Table 3.4). The goal of this study is to measure how each extracted relation affects the perfor-
mance of DF in word similarity tasks. The results in Figure 3.2 show that, for similarity tasks,
pruning relations sometimes improves performance over both the original DF (with all relations)
and the Basis embeddings. However, we observe that DFs consistently have worse performance
than Basis in relatedness tasks, particularly in the MEN dataset. As we further discuss in detail in
Section 3.3, although DFs capture relatedness, this is not reflected when using the cosine similar-
ity metric directly, since it cannot compare information across different dimensions. For example,
consider the pair (car, wheel). If we compare row-vectors of DFwheel and DFcar for each relation
separately, the representations are very different. Each Qualia structure relation defining car and
wheel is different for the two terms. However, the Structure dimension of DFcar would contain the
information that wheel is part (meronym) of car, thus it should be compared to the Basis dimen-
sion of DFwheel.

0 10 20 30 40 50 60 70 80

WS-SIM

MC-30 

SimLex

RG65

MEN

WS-REL

Similarity	 (all)

Relatedness	(all)

Ablation,	Detailed	Datasets

All-Structure All-Type All-Function All-Provenance All Basis

Figure 3.2: Ablation study for merged datasets.
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Results To account for the cross-dimension problem described in the previous section, we design
a slightly modified version of the previous experiments. We apply a linear transformation with
the weights varying according to which type of word similarity (relatedness or similarity) we are
measuring.

Datasets GloVe Dict2vec Retrofit
Basis Basis⇤ DF DF⇤ Basis Basis⇤ DF DF⇤ Basis Basis⇤ DF DF⇤

Similarity CV 0.39 0.50 0.35 0.53 0.53 0.52 0.45 0.56 0.44 0.59 0.35 0.56
Relatedness CV 0.68 0.77 0.38 0.80 0.71 0.76 0.61 0.79 0.67 0.78 0.51 0.80
MEN-test 0.70 0.79 0.56 0.81 0.73 0.74 0.62 0.79 0.71 0.79 0.53 0.80

Table 3.4: Spearman’s correlation for embeddings before and after the linear transform. All cross-
validation (10-fold) experiments have p-value p < 0.01.

This allows us to: (1) give more weight to more important relations and (2) compare the repre-
sentations across different Qualia structure relations.

Using a linear transformation allows us to recover the initial DF representation from its trans-
formed counterpart, which is important in order to maintain the semantic interpretability of DF (i.e.
which words are related to t and how). Thus, given DFt for a term t, we get DF

⇤
t = W ⇥DFt+ b,

which we use in our experiments. The parameters W , b are learnt separately for similarity and
relatedness tasks, since different relations and cross-relation comparisons have varying importance
for the two tasks. The training objective for the linear transformation is the minimization of the
mean squared error between the cosine similarity of the transformed representations and the nor-
malized ground truth similarity score. For fair comparison, we also apply a linear transformation
to the baseline Basis by learning parameters Wbasis, bbasis as described above for DF . For our
experiments on similarity and relatedness datasets we use 10-Fold cross-validation and report the
average performance, while on MEN we use the provided split into training and test data (it is the
only dataset with a train/test split).

Our results show that Definition Frames achieve the best performance, compared to any of
the baselines. In Table 3.4 we compare the performance of the Basis embeddings before and
after the linear transformation (Basis and Basis

⇤), with the Definition Frames (DF and DF
⇤).

DF
⇤ benefits much more of the dimension weighting and achieves better results compared to

Basis
⇤, particularly with GloVe embeddings. Furthermore, we observe that Relatedness datasets

(including MEN) gain the greatest advantage from the linear weighting. This lines up with our
previous hypothesis, since the relatedness task requires more cross-relation comparisons (DFcar

vs DFwheel).

Qualitative Analysis One of the distinguishing features of DFs is that they are semantically
interpretable. Beyond determining whether two terms are related, we find that DFs can be used
to infer how they are related. We perform a qualitative analysis on 100 randomly selected terms
from the MEN dataset that have high relatedness score (higher than 35 out of 50). The goal of this
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study is to assess whether we can use the explicit structure of DFs to predict the type of the relation
between two terms.

We conduct a Mechanical Turk study, where we present (1) the pair of related words, (2) their
corresponding definitions and (3) a Qualia structure relation, in the form of question. We phrase
the annotation task as a binary question such as “Is an aquarium created by a fish?”. We include
all possible Qualia structure relations for each of the 100 pairs of related words. We ask three
annotators to annotate each sample (1200 questions, each annotated three times, for a total of 3600
annotations).

To identify the most probable relation between two terms t1 and t2 using the encoded DF, we
conduct a set of row-to-row comparisons. We measure the cosine similarity of each row of DFt1

with Basis(t2) and vice-versa DFt2 with Basis(t1). The relation corresponding to the row with
highest cosine similarity is taken to be the most probable relation. We test if the relation predicted
by the DFs is correct according to humans. By taking the majority vote of the annotations, we
find that 77% of the extracted relations are considered valid by the workers. Furthermore, 54%
of the relations were considered accurate by all three annotators and the inter annotator percent
agreement is 60% over the 1200 relations. In Table 3.5, we show the accuracy per relation of the
Definition Frames extracted relations, when all three MTurk participants agree.

Qualia Relation Agreement %
Formal IsA 0.43

Constitutive / PartOf, 0.79
Structure HasA,

MadeOf
Telic /

Function UsedFor 0.50
Origin /

Provenance CreatedBy 0.25

Table 3.5: Accuracy per relation.

3.4 Conclusion & Future Work
In this chapter we present a hybrid representation of entities whose dimensions, grounded in lex-
ical semantics, can also be employed to form a structured distributed representation. Our goal is
to create Definition Frames that disentangle the different aspects of meaning of a word into inde-
pendent, interpretable dimensions. In Definition Frames we use a set of dimensions corresponding
to the Qualia structure relations, which are shown to be sufficient to represent the meaning of con-
crete entities. One could, however, use any other relations if they are sufficiently clearly defined.
This is necessary since Qualia structure is not able to represent words that denote abstract ideas
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(e.g., democracy) or eventualities (events, states, processes), since it offers no fixed dimensions
that capture the main aspects of their meaning.

As we show in this chapter, Definition Frames capture different types of semantic overlap (both
relatedness and similarity) and improve performance on word similarity tasks. We further exam-
ined how each dimension affects the performance due to data biases, which drove our approach
of using a linear re-weighting of each relation. Finally, we demonstrated the explainability of
Definition Frames via a human study showing that they provide valid insights on how terms are
related.

There are several directions where future work could achieve further improvements via the use
of Definition Frames. Firstly, in our experiments we only used static embeddings as the basis.
However, given that Definition Frames work with any distributed representation, contextual word
embeddings may be a better basis, since they are able to express more information. A second
direction is to modify Definition Frames so they can disambiguate between different senses of the
same word. In the current version of Definition Frames, we are given a single definition of the
word that we want to represent. However, we could access all possible definitions of the word
senses by using WordNet synsets. Then, instead of creating a matrix representation, one can create
a tensor similar to Definition Frames where the third axis corresponds to the different senses of the
word.

As shown by Scarlini et al. [2022], we can learn definitions of concepts from both visual and
language input. Although their work involves only definition generation, it establishes that it is
possible to learn about physical objects only from images. Given that images contain information
about attributes complementary to language, an interesting future work direction is to use visual
input to enhance Definition Frames with such information.

29



30



Chapter 4

Sentence Representations: Balancing
Distribution Shifts in Data

4.1 Introduction
Sentence representations are an integral part of many NLP applications, as they encode the in-
formation contained in a sentence. Initial approaches on sentence representations used various
combinations of lexical representations, such as the average embedding of the words in a sen-
tence. However, such methods ignore syntax and typically lose a lot of important information.
Instead, recent work focuses on learning an encoding of the entire sentence to represent meaning
via unsupervised (i.e., contextualized embeddings) or supervised methods.

Similar to the lexical representations studied in Chapter 3, the meaning of a sentence has several
aspects and, based on a specific context and task, we might be interested only on a certain part of
it. The aspect of meaning that is most relevant to the data or task is what typically is encoded in a
sentence representation. However, the fact that representations heavily depend on the training data
and task means that they might not generalize well in out-of-domain scenarios, since a different
aspect of meaning might be needed. While this might not be an issue when we have sufficient data
to fine-tune the representations and learn to extract that different aspect of meaning, in many cases
only limited or no in-domain data is available.

In this chapter, we discuss how to encode only information relevant to a task, when there is
a covariate shift across our data. By covariate shift we mean a systematic difference between
training and test data from an underlying cause. Our approach to this problem is to recognize the
cause of the shift and teach our representations to remove information relevant to that cause. We
apply our method on a sentence classification task in Crisis NLP, where we must classify tweets
from a disaster event with respect to their importance. This is a real-time setting, where we have
labeled data from previous events but no data for the ongoing disaster event, leading to a systematic
difference across the data caused by the event each tweet refers to. Since the label of each tweet
also correlates with local features from particular events (i.e., location, named entities), a model is
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prone to short-cut learning, where it learns these local features that do not generalize across events.

4.2 Background
Effective management of crisis situations like natural disasters (e.g., earthquakes, floods) or at-
tacks (e.g., bombings, shootings) is an extremely sensitive and complex phenomenon that requires
efficient coordination of people from multiple disciplines along with proper allocation of time and
resources [Tapia et al., 2011a, Maitland et al., 2009]. Given that we live in the era of information
and social media, filtering important nuggets of information from real-time data and using them
into decision-making constitutes a crucial research direction [Tapia et al., 2011b].

Critical information from social media is found only in small amounts. Hence it is difficult
to extract and analyze the data stream, since it is impossible to manually process the amount of
information shared in social media in real-time. Therefore, it is important to detect data that
contains useful information for decision-making and automatically extract it [Sutton et al., 2008,
Palen et al., 2010]. Even though sentence classification is a well-studied NLP problem, common
approaches do not bring the expected results [Reuter et al., 2018].

The main reason why common approaches fail is the lack of in-domain data [Mccreadie et al.,
2019, Hiltz et al., 2014]. Most emerging crisis are unexpected and data analysis must be done
real-time, within a small time-frame [Plotnick et al., 2015]. Even if we might have high quality
annotated data from previous similar crisis situations, we will not have data from the emerging
event that we want to classify. For example, let us assume an earthquake in Seattle happens right
now. Although we may have annotated data from a previous earthquake in Los Angeles, most of
the parameters would be entirely different (e.g., location names, damages, times, etc) since the
cities and populations differ. Furthermore, because some of those parameters might indeed play
an important role in the classification of a tweet from the specific event (e.g., the epicenter of the
Seattle earthquake), a traditional model would learn them as important features. This creates a
model that learns shortcuts and does not generalize on future events, since we cannot fine-tune
properly on-the-fly. On the other hand, some other features are actually important in the general
setting (e.g., severity of the earthquake, casualties). The problem we tackle in this work is how to
construct a model that learns generalizable representations, instead of relying on the local features
seen in training data.

We explore a technique that helps a neural model to distinguish and discard information that is
related only to specific events, resulting in a more generalizable model with improved performance
on unseen events without any fine-tuning. Since the main task is to classify the importance of
the information contained in a tweet (criticality), we use an adversarial classifier that intends to
learn which specific event the tweet refers to, hence remove the event specific bias through a
reversal gradient. Our experiments represent a real-life crisis management scenario, where the
model is evaluated on a new incoming event through a leave-one-out experimental setup, and show
substantial improvement over baseline classification methods.
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4.3 Approach

Figure 4.1: Crisis NLP Dataset Distribution. Outer circle: Color defines each of the event cate-
gories. Inner circle: The shade of colors describe the different events within a category.

In this work we use data from the TREC 2018 Incident Streams challenge [tre], which contains
labels on criticality and information types [Mccreadie et al., 2019]. They define criticality as a
score to identify posts that need to be shown to an officer immediately as an alert. The raw data
and information about the specific event each tweet belongs to is extracted from the Crisis NLP
[Imran et al., 2016a] dataset, which contains tweets in English from disaster events that occurred
during 2012-2018. The crisis events in our dataset can be split into five main groups: earthquakes,
floods, typhoons, wildfires and attacks. In Figure 4.1, we show that the data mainly consists of
multiple earthquake, flood, and typhoon events, only two wildfire events, and five diverse attacks
originated by humans.

4.3.1 Data Description
In our experiments we use a labeled subset of the data formed by 18,283 tweets which are labeled
into four categories according to their level of importance for the authorities: low, medium, high,
and critical. The distribution of the labels is highly skewed towards the low and medium labels as
shown in Figure 4.2a. These types of tweets do not provide important information for decision-
making during a disaster event. Since we are aiming to sieve the actionable tweets, we grouped
together the low and medium labels as non-critical, and the high and critical as critical. The new
distribution of the data after relabeling is shown in Figure 4.2b. As we see in the examples shown in
Table 4.1, the latter have actionable information for the authorities, first responders, and population
on distress.
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Label Event Tweet

non-critical 2014 Philippines Typhoon Good morning! keep safe everyone!

critical 2013 Colorado Floods
RT: Seek higher ground immediately
wall of water coming down Boulder Canyon
move away from Boulder Creek

non-critical 2013 Boston Bombings
I am honestly sick who could be so
disgusting to do this to someone we will get
answers and find you #prayforboston

critical 2015 Nepal Earthquake RT: News at epicenter of Nepal tragedy
local church mission offers help!

Table 4.1: Examples of critical and non-critical Tweets

4.3.2 Data Pre-processing
Our target dataset comes from Twitter. Therefore, we performed a series of pre-processing steps
for data-cleaning. First, we removed links, hashtags and mentions, since most of them are event
specific. We also removed non-English words to reduce the noise. Next, we removed all non-
English characters and emojis. Finally, we observed that many times white spaces were omitted
between words, which resulted in multiple words being clustered as a single token. To solve
that, we stripped the text from punctuation marks and, subsequently, used a heuristic for word
segmentation, where we split the token into the least number of possible English words via greedy
search.

(a) Original labels (b) New labels

Figure 4.2: Dataset label distribution. (a) Label distribution of original dataset, (b) Distribution of
the labels after grouping {low, medium} as non-critical and {high, critical} as critical

4.3.3 Models
Our experimental setup consists of a dataset D composed of tweets t1, ..., tn and two sets of la-
bels; ye1 , ..., yen representing the event that the tweet belongs to, and yr1 , ..., yrn representing the
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Figure 4.3: Evaluated Model Architectures. The adversarial model was compared against the
baseline and multitask models to show the removal of event specific information.

importance of the tweet, where yri 2 {non-critical, critical}. For this task we want to find the
optimal classifier f for predicting labels yri . In this work we compared three models to measure if
an adversarial training contributes to the detection of critical tweets on unseen events.

Our main hypothesis states that an adversarially trained model removes event-specific infor-
mation, while focusing on features that determine how important the tweet is. For our experiments
we compare the adversarially trained model against a binary classifier and a multi-task model.
The comparison between the multitask and the adversarial models helps us evaluate whether the
explicit removal of event-specific information benefits the relevance classifier or if using a model
that jointly learns both tasks suffices.

Baseline Model

In our baseline model setup, a tweet ti is a sequence of word embeddings w1, ..., wmi which are
encoded through an LSTM Graves et al. [2013] encoder h. Then the generated embedding h(ti)
is fed to a binary classifier cr that learns to predict if the tweet is critical or non-critical. The
architecture of this model is shown in Figure 4.3.

The training loss L used across all the models and experiments is cross-entropy. The optimiza-
tion of the baseline model is described in Equation 4.1.

argmin
h,cr

L(cr(h(ti)), yri) (4.1)
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Multi-task Model

The multitask learning setup described by Caruana [1997] aims to improve the performance of
a model by learning multiple tasks at the same time. Since the dataset is divided per disaster
event, we take advantage of this information given by the structure of the dataset, and define
event detection as the second learning task along with the criticality classification. Hence, the
multitask model adds an event classifier ce on the encoding of the incoming tweet h(ti) which
trains simultaneously with the classifier cr, as seen in Figure 4.3.

The optimization procedure for this model is described in Equation 4.2.

argmin
h,cr,ce

L(cr(h(ti)), yri) + L(ce(h(ti)), yei) (4.2)

Adversarial Model

The adversarial model used in this work follows the adversarial training setup proposed by Good-
fellow et al. [2014], Ganin et al. [2016], and Xie et al. [2017]. In essence, the adversarial model
is similar to the multitask model except for the addition of a gradient-reversal layer g� [Ganin
et al., 2016] between the encoder h and the event classifier ce. The gradient-reversal layer during
a forward step works as the identity function I, but during the back-propagation step the gradient
from ce is reversed and scaled by a value �. In our work, we intend to achieve domain adaptation
from previous events to a new incoming event by minimizing the information related to previously
seen events provided by ce, while maximizing the information gain obtained from classifier cr, as
described in Equation 4.3.

argmin
h,cr,ce

L(cr(h(ti)), yri) + L(ce(g�(h(ti))), yei) (4.3)

4.4 Experiments
For our experiments we used two of the main popular word embeddings to represent the tokens of
the tweets in the target dataset: GloVe [Pennington et al., 2014] embeddings, and BERT [Devlin
et al., 2019] embeddings.

We used the 100-dimensional GloVe embeddings pre-trained on Wikipedia and Gigaword,
which were made publicly available by the authors31. For extracting BERT embeddings we used
the Python package bert-embeddings42 as we built the networks for our experiments in PyTorch.
This package offers a pre-trained 768-dimensional hidden state transformer model with 12-layers
and 12-headed attention. In our experiments, the BERT model was frozen with no fine-tuning
during training.
13 https://nlp.stanford.edu/projects/glove/
24 https://github.com/imgarylai/bert-embedding
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Event Type Embedding Model Macro
F1

Non-Critical
F1

Critical
F1

Earthquakes

GloVe
Baseline 0.6432 0.9082 0.3782
Multitask 0.5890 0.8960 0.2819
Adversarial 0.6602 0.9170 0.4034

BERT
Baseline 0.6138 0.9062 0.3213
Multitask 0.5844 0.8863 0.2826
Adversarial 0.6154 0.8888 0.3420

Floods

GloVe
Baseline 0.6010 0.8674 0.3346
Multitask 0.6130 0.8679 0.3581
Adversarial 0.6326 0.8454 0.4198

BERT
Baseline 0.6145 0.8834 0.3455
Mulitask 0.6062 0.8793 0.3331
Adversarial 0.6403 0.8642 0.4164

Typhoons

GloVe
Baseline 0.5714 0.8965 0.2462
Multitask 0.5832 0.8961 0.2702
Adversarial 0.5887 0.8916 0.2858

BERT
Baseline 0.6249 0.9189 0.3310
Mulitask 0.6291 0.9091 0.3491
Adversarial 0.6302 0.9086 0.3517

Attacks

GloVe
Baseline 0.6049 0.9047 0.3052
Multitask 0.5994 0.8917 0.3071
Adversarial 0.6056 0.8975 0.3137

BERT
Baseline 0.5744 0.8840 0.2649
Multitask 0.6165 0.9009 0.3322
Adversarial 0.5492 0.8511 0.2472

Table 4.2: Event based zero-shot test results. The best model per disaster type is highlighted with
the color assigned to the disaster type. The best model per embedding type is highlighted in bold.

Through all of our experiments the tweet encoder h is an LSTM with two layers. Each of the
LSTMs have a hidden dimension of 100, which results in a tweet embedding of size 200. Both
classifiers cr and ce are linear layers with output size 2 and the number of events per experiment,
respectively. During our initial experimentation, we set the gradient-reversal layer scaling value
lambda to different values within the range [0.1 � 10]. The most stable result throughout the
experiments was obtained with � = 1.

The models were trained using the Adam optimizer [Kingma and Ba, 2014], with an initial
learning rate 0.01, batch size 16 and trained for 40 epochs. We employed dynamic batching by
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padding each batch to the sequence length of the longest sample in the batch.
To test the performance of the model at every epoch we calculated the micro F1 on the criti-

cal class from cr and considered as the best model the one which showed the highest critical-F1
score, since for disasters it is important to recall as many critical tweets with the highest possible
precision.

4.4.1 Model Evaluation
Since we intend to evaluate the models for a real-life scenario, we use data from each disaster
type separately (e.g., model trained and tested only on flood events), to perform an analysis in a
disaster-based zero-shot learning scenario simulating an incoming unseen event. To achieve this,
the training data consists of all the events of the same disaster type except one, as it is used for
testing the model. We generated n splits for each event type, where n is the amount of events per
event type. We evaluated the three models on each split obtaining the macro-F1 and the micro-F1
scores from the cr predictions. Finally, we calculated the mean of these metrics, which we can see
in Table 4.2. The best models for each event type are highlighted in the representative color of the
event, as shown in Figure 4.1.

Since we follow a leave-one-out testing procedure, we could not include the wildfires event
type since this category only has two instances. This makes it impossible to train the multitask and
adversarial models on this type of event.

Our experiments show an improvement of the F1 score for all disaster events that use adversar-
ial training except for the attacks group, where the improvement is not consistent with the rest of
the events. The earthquake and flood events show a significantly better performance of the adver-
sarial model when compared to both the baseline and the multitask model. For the typhoon events
the multitask model improves slightly over the baseline, but the adversarial model is the best for
both embedding types, while BERT has better results than GloVe by a large margin.

Most similar to our setting, Nguyen et al. [2016] performs an experiment in an online training
scenario using the Nepal 2015 Earthquake as test set, while more than 10,000 tweets from the
dataset are used for pre-training the model. Their work reports an AUC of 0.73 at the beginning of
the event, which would be comparable to our zero-shot learning scenario. To compare our model
to their work, we used the data split where the Nepal earthquake was left out for testing the model.
On this data split, the adversarial model using BERT embeddings obtains an AUC of 0.62 for the
critical class while training with only 815 tweets from all the other earthquake events.

4.4.2 Event Types Data Mix
In Figure 4.1, we observe that the attack events group consists of diverse types of events such as
shootings, bombings, and explosions. Even though all of those events contain violence-related
incidents, the adversarial model with BERT embeddings has lower performance than the baseline
and the multitask learning model, as shown in the results in Table 4.2. Our hypothesis is that the
adversarial model fails to remove the event-specific biases in the Attack group, because of the
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Model Macro F1 Non-Critical F1 Critical F1

Baseline - GloVe 0.5376 0.7602 0.3150
MultiTask - GloVe 0.5331 0.7529 0.3133
Adversarial - GloVe 0.5157 0.7428 0.2885

Baseline - BERT 0.5593 0.7602 0.3584
MultiTask - BERT 0.5625 0.7558 0.3692
Adversarial - BERT 0.5539 0.7500 0.3578

Table 4.3: Mixed flood and typhoon test results

mixture of different event types. A potential solution to this problem would be to include more
events to facilitate the disentanglement of the Attacks group.

To test this hypothesis, we created a synthetic event type where we mix flood and typhoon
events, since both are disasters that would result in flooded cities and towns. We repeated the same
experimental procedure by leaving out one event for testing and obtained the mean scores across
all splits, as reported in Table 4.3. The results from this experiment verify our hypothesis that the
adversarial training of the classifier is sensitive to the entanglement of events in the training data.
This supports our claim on why we have low performance on attacks and highlights the importance
of not mixing different event types when training under an adversarial setup.

4.5 Qualitative Analysis
We took a deeper look into our experimental results by comparing which patterns are learnt by the
adversarial model but not the baseline. For this analysis, we focused on flood and earthquake event
types, as they show the greatest difference in F1 score between the baseline and the adversarial
model.

4.5.1 Critical Detection Comparison
For the first part of the qualitative analysis, we examined tweets where the baseline and the ad-
versarial models disagree upon. We looked at both critical and non-critical tweets in order to find
common patterns where the models fail. In Table 4.4 we show some examples of tweets where the
baseline model failed, but were correctly classified by the adversarial model. The examples used
come from the Philippines flood (performance shown in Table 4.5).

A consistent pattern observed for the critical tweets is that they mostly contain information
about a need for emergent help or a situation currently happening. Furthermore, we see a strong
sentiment of despair, where we may assume that the users are directly affected by the event. On
the other hand, if we look at the non-critical tweets that were incorrectly classified as critical by the
baseline, they mostly contain location information and named entities. These examples validate
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True Label Tweet Text

Critical rt flood in the ust hospital is now on the 2nd floor
no food for the patients & staff pls help ...

Critical rt please help rt rt those who are in u erm the flood is now goi ...

Critical ust hospital and u erm in need of immediate help u sts
morgue is flooded ue rms nursery is near being flooded please please

Critical philippine flood fatalities hit 23

Non-Critical metro manila flood updates nlex is now north luzon express river
pls rt and spread

Non-Critical ndr rmc nearly 50 of metro manila submerged in floodwater
due to heavy monsoon rains

Non-Critical rt lets all pray for those who lost their homes and now living in
cold and starving ...

Non-Critical rt pal passengers to/from manila who are unable to take
their flights due to floods may rebook their tickets with rebooking c ...

Table 4.4: Examples captured by the adversarial model (true-positives), but not the baseline (false-
negatives).

that our approach learns representations focusing on the aspect of meaning relevant to the task, by
removing information related to specific events.

Model Macro F1 Non-Critical F1 Critical F1

Baseline - BERT 0.5844 0.8413 0.3274
MultiTask - BERT 0.5875 0.8766 0.2985
Adversarial - BERT 0.6535 0.8832 0.4238

Table 4.5: Test results on 2012 Philippines Flood

4.5.2 Model Comparison via Saliency Maps
For the second part of our analysis, we use saliency maps to visualize the relevance of each word
in a tweet for the models. We selected tweets that contain named entities (e.g., locations, names)
or information that is generally important to classify a tweet, such as casualties. For this part,
we only used GloVe embeddings, since BERT is context-based and each embedding may encode
information from the rest of the tweet.

In order to construct the saliency map, we use back-propagation to estimate the first-order
derivatives from each word, as a measure of their contribution to the model’s decision. This strat-
egy was adopted from the vision community [Erhan et al., 2009, Simonyan et al., 2013], and
recently adapted in NLP research [Li et al., 2016].
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Figure 4.4: Saliency map visualization of tweets with strong event-bias.

In Figure 4.4 we visualize the saliency map of each word embedding for the baseline and
adversarial models. The higher the absolute value of the first-order derivative (dark blue and white),
the more important role it plays into the classifier’s decision. We observe that, for the first and
second sentences, the baseline puts more weight on the location, which is a strong event-bias since
it includes information only for a particular event and not a disaster type (e.g., floods). On the other
hand, the adversarial model focuses more on important sub-events, like mandatory evacuations and
broken pipeline, which we desire to capture in a zero-shot scenario, and is generally ignored by the
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baseline model. We further observe a similar trend for the third sentence, where the baseline gives
mostly uniform weight with a small focus on president updates death, while the adversarial model
focuses more on generally informative text that describes casualties.

Through this analysis we observe that the two compared models encode different information
even for identical sentences, as the baseline model is biased towards event-specific features and
words, while the adversarial towards words that relate with an event-type or any disaster event.
This shows that sentence meaning changes and depends on the data and task, since context drives
which aspect of meaning we want to retain.

4.6 Conclusion
In this chapter we discuss the different aspects of meaning of a sentence and the dependency of the
information we want to retain on context. We show how this manifests in a real-time application
where there is unavoidable covariate shift across training and test data due to an underlying cause.
In our scenario, the cause of this shift is the disaster event that each instance refers to, which leads
to sentence representations focused on the specific event. Although such representations are not
wrong, they do not generalize in the context of our task.

To address this problem, we propose an approach where we can use our knowledge about the
task to drive sentence representations and improve performance by balancing the distribution shifts
across training and test data. In our approach, we compare an adversarially trained model against a
baseline classifier and a multitask learning model. The main task for all the models was to predict if
a tweet is critical or non-critical over four types of disaster events: earthquakes, floods, typhoons,
and mass attacks in public spaces. We presented a thorough analysis on how a simple classification
model trained on crisis event data can be improved through adversarial training. Our results show
how the addition of an adversarial network removes the bias from specific events, allowing the
network to put more attention in disaster related information rather than specificities of a particular
event.
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Chapter 5

Representing Events via their Sub-events

5.1 Introduction
The purpose of Chapter 5 is to study event representations and the relations of an event to the
participant entities and its sub-events. Although the chapter does not directly investigate novel
event representations, it provides knowledge and techniques essential to understand the problem
of event implications, functioning as a precursor to Chapter 6 and motivating future work towards
this direction.

Most methods in NLP rely on the concept of frame semantics to represent and detect events in
text. Semantic frames describe a schema to represent events based on their relations with entities
from the same sentence, which is particularly important in order to decompose and analyze event
implications. However, events are complex semantic units that are related not only to entities, but
also to other events. For example, two events might be linked via a causal or temporal relation
or also a sub-event relation. Such relations are essential for reasoning tasks and are extremely
common in problems where we need to combine information across sentences and documents
(e.g., event scripts).

Chapter 5 focuses on representations of large-scale, complex events via their sub-events. To
obtain a deep understanding of the semantics behind an event, one has to take into account not only
its relations to entities, but also how it interacts with other events. Such is the property of events to
function as components of more complex events, called sub-events. Many events consist of smaller
sub-events that describe a different aspect of their semantics. For example, the event restaurant
dining consists of the sub-events eating and paying the bill. In such scenarios, the larger event and
its sub-events depend on each other; the sub-event would not exist without the larger event and the
larger event would not be the same if we alter any of its sub-events. Although not all sub-events
have a causal connection to the larger event or goal, some of them are essential for the completion
of the goal. This need for understanding sub-events and their relations to a larger event / goal is
particularly prominent in reasoning tasks based on procedural text. To answer complex reasoning
questions in such tasks, a model has to extract reasoning patterns by understanding event semantics
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and learning event dependencies.
Towards this end, we propose a framework that combines information across a group of textual

sources related to a given large-scale event and extracts its important sub-events. Our framework
is evaluated in crisis NLP scenarios, where we extract sub-events from a large volume of tweets
related to a given large-scale disaster.

5.2 Events in a Sentence

5.2.1 Background
Event Detection Event Detection in NLP is defined as a sequence labeling problem, where we
have to identify the snippets of text that correspond to an event mention and, sometimes, also
classify the extracted event to a predefined event type. An event mention consists of the event
trigger, a word or phrase that denotes an action, and the event arguments, a list of participant
entities that are related to the event nugget via a specific relation. Given a sentence s, the goal is to
identify all words or phrases that correspond to some event trigger and classify each trigger to an
event type. Typically most NLP methods study event detection in the setting of a single sentence,
where all information about the event mention can be found in the same sentence. That means that
we can only extract events explicitly stated in text, without combining information across sentences
or documents. As we study in this chapter, this simplified assumption is often not true, as events
are complex units that depend on their participants and other events.

Frame Semantics Frame semantics is a linguistic theory developed by Fillmore and Baker
[2001], relating lexical semantics to encyclopedic knowledge. The basic idea is that one can-
not understand the meaning of a single word without knowledge of all the concepts that are related
to that word. This knowledge takes the form of a semantic frame; a structure of relations linked
to the word that we want to represent. For example, consider the word run. According to frame
semantics, in order to fully understand the meaning of this word, one must know about the situa-
tion of Motion, which involves an agent, time, source and destination. Thus, a word activates, or
evokes, a frame of semantic knowledge relating to the specific concept to which it refers.

Frame semantics assume the existence of an underlying ontology, where words belong to con-
cept classes, based on hypernymy and synonymy relations. Based on this ontology, each concept
class corresponds to a specific semantic frame, which is activated every time a word belonging to
the same concept class is found in text. For example, consider the sentence John runs to school,
where we want to represent the word run. This event trigger belongs to the higher-level concept of
Motion and, thus, inherits the semantic frame from that concept. If this semantic frame includes
the following relations fmotion = { agent, source, destination, time}, then we are trying to fill-in the
arguments for each of these relations, if possible.

45



5.2.2 Event Detection Using a Frame Semantics Parser
Similarly to frame semantics, events also consist of a set of predefined relations for which we
want to fill their slots based on information provided in text. Although some relations are common
across all events (e.g., time), others depend on the semantics of the event trigger (e.g., source
and destination). Despite their similarities, event detection and frame semantics are not exactly
equivalent; frame semantics provide the theory of representations for any type of semantic units
(i.e., events, entities and relations) following an approach close to the lexical aspect of language.
Thus, in order to take advantage of frame semantics tools for event detection tasks, one needs to
somehow ground the problem of event detection on the frame semantics theory.

As shown by Spiliopoulou et al. [2017], a frame-semantic parser can become a useful tool
for event detection if used in combination with a filtering method. Their approach is to manually
construct a mapping from the domain-specific ontology used in an event detection task to FrameNet
[Baker et al., 1998a], a taxonomy of semantic frames. Then, they use this mapping to filter the
output of Semafor [Das et al., 2014], a semantic-frame parser system that is grounded to FrameNet.
Finally, by using a simple random forest classifier, they rank and further filter the initial low-
precision, high-recall output of Semafor.

Their proposed methodology results in a system that, despite its simplicity, has competitive
performance to other state-of-the-art models of its time. Unlike previous approaches that focus
solely on elaborate deep learning techniques, this work shows that it is feasible to achieve good
results by leveraging richer semantic representations of events and combining them with machine
learning methods.

5.3 Events Across Documents
Social media are widely used for informing humanitarian aid efforts in crisis events [Nazer et al.,
2017, Reuter et al., 2017]. During a large-scale crisis event, there is a large set of smaller events in
duration and impact that are essential components of the larger event, the sub-events. Detecting im-
portant sub-events that occur during a crisis (e.g., road blocks, people trapped) can aid authorities
to prevent and respond to urgent situations (e.g., rescue efforts) [Nazer et al., 2017]. However, this
requires connecting information from multiple posts as they contain repetitive or complementary
information which needs to be aggregated (e.g., the number of trapped people and their location)
for disaster response.

Several approaches in crisis NLP aggregate information across multiple tweets in the form of
clusters, where each cluster is considered a sub-event [Abhik and Toshniwal, 2013, Pohl et al.,
2012, Arachie et al., 2020]. However, these methods have several shortcomings. First, the output
clusters may not refer to a single sub-event, but to a list of sub-events that share similar infor-
mation types. For example, consider the tweets 25 people killed in Everest base-camp and 200
people killed in Gorkha. They contain the same information type (i.e., number of people killed),
but clearly refer to two different sub-events. This results in large, non-interpretable clusters that
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lack cohesion [Jiang et al., 2019]. Second, most work ignores or uses heuristics to model the
temporal dependencies of sub-events, without explicitly modeling time-sensitive information that
gets updated, such as the number of injured people. Third, tweet content is represented by shal-
low semantics, such as bag-of-words or verb-noun pairs. Such representations miss information
that distinguishes between different sub-events of the same information type and are inadequate
to model semantic dependencies across sub-events. To provide an example, consider the Nepal
earthquake in April 2015. In Table 6.7, we show tweets referring to a deadly avalanche in moun-
tain Everest which was triggered by the earthquake. We may extract 100 climbers were trapped
in camp 1 and 2 from one tweet and the route to camp 1 and camp 2 was completely destroyed
from another. Although these two tweets refer to different sub-events, they are related and an event
extraction framework would benefit from modeling their dependencies.

Representing events in text is a complex problem. Most work on event detection relies on the
semantic frame theory [Fillmore, 2008], as explained in Section 5.2. In this work, we use the
same notion of event representations. Thus, we can distinguish different sub-events even if they
have the same predicate and/or partially share entities, as in the example discussed earlier.

1. #NepalQuake avalanche kills 8 at Nepal’s
Everest base-camp
2. Obliterated Everest basecamp where at least
10 people were buried alive by avalanche after
Nepal earthquake
3. Route to camp1 completely destroyed by
avalanche.#NepalQuake
4. Avalanche sweeps Everest base-camp, killing
17: An avalanche triggered by Nepal’s
massive earthquake. . .
5. #Everest avalanche more than 100 climbers
stuck in camp1 awaiting rescue.! #NepalQuake

Table 5.1: Example tweets from April 2015 Nepal Earthquake crisis event.

Recent work on social event understanding proposed a method to model event dependencies.
They construct a sequence of graphs representing all the documents [Deng et al., 2019]. They
preserve temporal dependencies of events by using a Dynamic Graph Convolutional Network
(DGCN); a model that learns an expressive graph representation of nodes not only from their
connections in a certain time-step, but also from the dynamic context of the previous time-step. In
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our framework we exploit the expressive power of a DGCN to aggregate tweet content and model
large-scale crisis events, by learning graph edge weights. These weights let us identify important
nodes and relations; a critical step for sub-event extraction [Meladianos et al., 2018].

We propose SD2SG, (Sub-event Detection via Dynamic Semantic Graphs): a novel framework
to extract important sub-events from a temporally-ordered group of tweets related to a crisis event.
Our approach combines information across tweets into a set of temporally-ordered graphs, which
are used to extract sub-events. Since we have limited data, we impose structural (entities can be
connected only via a predicate) and semantic constraints (predicates are defined via the FrameNet
ontology) in each graph. Thanks to these constraints, our model learns valid relations instead of
coincidental co-occurrences of words via the use of a DGCN model.

5.4 SD2SG : a Framework to Extract Sub-events

Time
Tweets

Input: 
Tweets 
from crisis 
event

t-1 t

DGCN (or GCN)

Learns edge 
weights

Output: 
Extracted 
sub-events

t-1 t

Pattern 
matching on 
sub-graphs

Construct 
Initial Graph

Extract        
Sub-events

Represents 
tweet content

Predicate: nucleus
Arguments: 
semantically connected 
to trigger / nucleus

~Predicate: rescue 
Arguments: hundred, climbers, need, avalanche 
~Predicate: evacuate 
Arguments: helicopter, IndianArmy, Everest, 
camp1

Figure 5.1: Framework architecture diagram.

In this section, we discuss our approach on extracting sub-events from a stream of temporally-
ordered tweets related to a crisis event. Our framework consists of the following steps, as shown
in Figure 5.1: (i) construct the initial dynamic semantic graph, (ii) learn the graph’s weights via
a graph neural network, and (iii) extract sub-events from the learned graph via random walks that
satisfy our semantic constraints. The pseudocode of our framework’s steps is in algorithm 1.
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Algorithm 1: Steps of SD2SG
Input : C = A set of crisis events,

tweet1, . . . , tweetn in a temporal order,
n = total number of tweets in a crisis event
t = number of time-steps,
k = number of sub-events,
pre-trained embeddings

Output: Extracted sub-events for each time-step t: S1, S2, . . . , St from each crisis event.
1. for each crisis event, Ci 2 C do

for tweets 2 {relevant, irrelevant} do
Divide tweet1, tweet2, . . . , tweetn into groups of equal size, D = D1, D2, ..., Dt;
for each Di 2 D do

Construct semantic graph Gi;

2. Run learning framework, DGCN on the output from Step 1 and extract indicator function I
based on DGCN’s parameters to extract graph weights;

3. for each crisis event, Ci 2 C do
// Only run on graph constructed from relevant tweets

for each Gi 2 G do
a) Extract sub-graph G

0
i based on I;

b) Sample sub-events from random graph walks in G
0
i;

c) Collect sub-events that meet semantic constraints (event structure);
d) Rank extracted sub-events with tf-idf score. Choose top k;

5.4.1 Constructing Initial Dynamic Semantic Graphs
Given a large-scale crisis event, our first step is to represent the content of the related tweets in a
graph structure by merging information across all the messages, which we call initial graph. An
initial graph represents the tweets for a given time-step; it can be used dynamically in a sequence
of initial graphs (i.e., one graph per time-step) or as a single graph (i.e., one time-step).

There are multiple ways to build the initial graph representation of tweets. In SD2SG, we use
a sequence of initial semantic graphs, where each graph is based on semantic relations from text.
Given a set of tweets from a specific time-step, the initial semantic graph is a bipartite graph that
connects predicates with their arguments, as they appear together in text. A group of tweets can be
represented by a single initial graph, where the same predicate may be connected to different ar-
guments from different sentences. An example of an initial semantic graph is shown in Figure 5.2,
which is constructed based on tweets 3, 4 and 5 in Table 6.7.

Formally, given a tweet ti, we use a dependency parser to extract the part-of-speech tags from
tweets. Based on these tags we form two groups: (1) verbs and nominalized verbs (i.e., nouns that
are derived from verbs, like explosion) Vi = {v1, v2, ...}, by matching the tokens to the Lexical
Units provided in FrameNet [Baker et al., 1998b] and (2) nouns (excluding nominalized verbs)
Ni = {n1, n2, ..}. The output graph has as nodes [iNi [ Vi for all tweets ti. We form weighted
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Figure 5.2: Initial semantic graph, based on subset of Nepal 2015 earthquake tweets (tweets 3,4,5)

edges only across the two groups (verbs V and nouns N ), which are initialized based on the PMI
of each pair [Church and Hanks, 1990]. More specifically, for each tweet ti, we have (vi, nj)8i, j
but no (ni, nj) edges. This ensures that we link the sentence’s predicate with its arguments, while
avoiding to link arguments that appear together under different relations/predicates. As shown in
Figure 5.2, this results in a graph that combines information across tweets in a more explainable
way compared to previous approaches [Deng et al., 2019], while maintaining semantic relations
from text.

5.4.2 Learning Edge Weights via a DGCN
The initial semantic graphs mainly capture information mentioned in sentence level, without taking
context into account (i.e., information based on neighboring relations). This results in large graphs
with noisy relations, where it is hard to extract important information. In order to get a smaller, less
noisy graph, we formulate our problem as a classification task using dynamic graph convolutional
networks (DGCNs) where the goal is to learn edge weights, a mechanism introduced by Deng
et al. [2019] to detect social events for news articles. With this setup the model learns which
neighbourhoods or sets of nodes in the graph are important and correspond to sub-events that
occur during a crisis.

A DGCN model consists of a sequence of GCNs that are linked together by feeding information
from the previous time-step to detect important factors in the context of social event understanding.
Each initial graph is fed into a different GCN layer by time. For each GCN layer except the first
one, the input features are processed by a temporal encoded module, involving the output of the
last GCN layer and the current word embeddings, to capture temporal features. Finally, there is a
masked nonlinear transformation layer to unify the final output vector from the final GCN layer.
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The loss is calculated between the model output and ground truth label, which, in our case, is
whether a group of tweets is related to a crisis event or not.

Formally, given a sequence of initial semantic graphs, we form their normalized adjacent matri-
ces A1, A2, ..At for each time-step t. We are also given a matrix of initial node features H0, which
in our case corresponds to the pre-trained word embeddings of the vocabulary. At each time-step,
the convolutional layer of the DGCN is computed by: Ht+1 = g(AtH̄tW

(t)+b
(t)), where W (t)

, b
(t)

are model parameters and g is a non-linear activation function. Note that H̄t does not correspond
to the GCN output, but instead to the temporal encoding embeddings, calculated from the last TE
layer. The temporal encoding is defined based on the following equations, where Wp,We, bp, be

are the parameters learned by the model:

H
(t)
p = HtW

(t)
p + b

(t)
p (5.1)

H
(t)
e = H0W

(t)
e + b

(t)
e (5.2)

H̄t = tanh(|H(t)
p ||H(t)

e |) (5.3)

In order to classify the group of tweets as related or not to a crisis event, we set the output
feature dimension of the last layer as 1. Due to dynamic graph encoding, the output feature vector
of the last GCN layer is a combined representation of all graph nodes, which is different for each
large-crisis event (i.e., different graph nodes). To guarantee the consistency of the model across
instances, the DGCN uses a masked nonlinear transformation layer to map the final output vector
to the prediction of the task. Finally, for each node i in the graph, we use the scalar value hi,t from
the last GCN layer and wi,m from the masked nonlinear transformation layer to define an indicator
function Ii = hi,t ⇥wi,m. This indicator function is used to select important nodes and their edges
from the graph.

5.4.3 Extracting Sub-events
Given the sequence of learned graphs, the last part of our framework aims at extracting signifi-
cantly smaller sub-graphs that represent sub-events (i.e. a typical sub-event contains 3-6 terms,
while a graph might have 100-200 nodes). Although we use bipartite graphs to represent tweets,
during learning, we treat them as homogeneous with zero edge-weight because of the nature of
GCN/DGCN models (they operate on homogeneous graphs, where all nodes are treated equally).
In order to generate valid sub-event candidates, we use a pattern matching method based on itera-
tions of random walks on each graph [Bressan et al., 2018, Saha and Hasan, 2015]. The patterns
used correspond to the typical structure of an event, where the predicate (usually a verb) is linked
to a set of arguments (entities/nouns). Similarly to the semantic constraints in each initial semantic
graph, we generate sub-events of star-like patterns of variable size (3–6 nodes), where the center
node is an event predicate, as defined by the FrameNet lexicon. The size of these patterns is de-
termined based on the maximum number of arguments in event detection tasks. More specifically,
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we looked at the annotation instructions of the ACE 2005 event detection dataset [LDC, 2005],
according to which each event type has at most 6 arguments.

After extracting the candidate sub-events, we use a ranking method to remove duplicate or
redundant information. To do that, we employ a tf-idf scoring scheme, where each sub-event is
treated as a single document; the score of each sub-event equals to the average tf-idf score of its
words. While other ranking or filtering methods can be applied, tf-idf is most appropriate as it
retrieves important information (tf) and avoids similar, almost duplicate sub-events (idf).

5.5 Training & Evaluation of SD2SG
Crisis Event Dataset. To train the model described in algorithm 1, we use a subset of the com-
bined dataset described in Alam et al. [2020], which consists of Twitter data from 59 crisis events,
including natural and man-made disasters. The tweets in this dataset were all manually annotated
by Alam et al. [2020] as either being related or unrelated to their corresponding crisis event. The
statistics of the dataset are shown in Table 5.2.

Crisis Event Type # Crisis # Related # Unrelated
Events Tweets Tweets

Hurricane/Typhoon 13 22,154 13,219
Crash/Explosion 11 7,689 9,718
Flood 11 12,366 9,747
Earthquake 10 12,164 6,911
Terrorist Attack 3 5,956 4,205
Tornado 3 6,242 5,034
Wildfire 3 2,842 348
MERS 1 1,113 69
Ebola 1 1,420 210
Volcano 1 104 191
Haze 1 476 136
Landslide 1 364 2,800

Total 59 73,070 52,588

Table 5.2: Dataset Statistics; number of tweets refers to tweets related to the large-scale crisis
event.

Training Details. We execute Step 1 of algorithm 1 on these 59 crisis events. For the models
based on dynamic graphs (SD2SG and Simple Dynamic Graph) we use time-step t = 3.
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We randomly split the dataset in Table 5.2 into train, development, and test sets, where an
event belongs to only one of these sets. Related and unrelated sub-events are positive and negative
examples, respectively. This set-up was used to train the DGCN model (Step 2 of algorithm 1).
Out of 59 crisis events, we use 33, 10 and 16 as training, dev and test sets. For word embeddings
we used 100d GloVE [Pennington et al., 2014] pre-trained on Twitter, and the DGCN was trained
using the Adam optimizer with learning rate 5e-4, weight decay 5e-4, and dropout rate 0.2.

Once the DGCN is trained, we execute Step 3 in algorithm 1 and extract sub-graphs of interest
for our evaluation. We evaluate our extracted sub-events with respect to two factors: (i) validity
and (ii) importance in the context of a large-scale crisis event.

5.5.1 Baselines
To verify our assumption that information aggregation is important for our task, we chose baselines
consisting of various methods that either aggregate information across tweets or not. We use Open
IE as the baseline that does not aggregate information, while the remaining baselines are ablations
of our proposed model. Our ablations study lets us verify the impact of every component of the
proposed model. Unfortunately, since no prior work in crisis NLP extracts sub-events in the form
of semantic relations, we cannot compare with these methods. Here is a brief overview of each
baseline:

Simple Dynamic-Graph: uses a complete graph (i.e., edges across all pairs of nodes) without
any constraints. The weight of each edge is based on the PMI of the two nodes. This model was
proposed by Deng et al. [2019] to model social events.

Static Sem-Graph: (1 time step) constructs only one graph for all the tweets, without taking
into account their temporal dimensions. The initial graph is constructed in a similar manner as the
proposed model, but the weights are learned via a static GCN model.

Init Sem-Graph: uses the sequence of initial semantic graphs as-is (no learning of graph weights).

Open IE: uses the output of an Open IE system for each individual tweet to directly produce
sub-event candidates. For this baseline, we use the OpenIE system developed by Stanovsky et al.
[2018a]. Each sub-event is formed by using Open IE’s predicate as the sub-event predicate and
the head nouns of each argument phrase as the sub-event arguments. Since the output is already a
set of sub-events instead of a graph, we directly rank them based on tf-idf features, similarly to the
last step of the proposed model.
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5.5.2 Validity of Sub-events
We perform a human evaluation of our extracted sub-events based on crowdsourced annotations
via Amazon Mechanical Turk.

Data: We collect a total of 13,000 sub-events (details in Table 5.3) by selecting the top 100 sub-
events for each baseline per time-step from 16 large-scale crisis events (after removing events with
few instances). At this step we allow the sub-events to contain almost duplicates; sub-events that
have a partial match with respect to their arguments. This helps us to evaluate each extracted sub-
event and avoid inaccurate merging.

Large Scale Extracted
Crisis Events Sub-events

2014 India-Pakistan floods 1467
2012 Colorado wildfires 693
2013 Alberta floods 680
2013 Balochistan earthquakes 715
2013 Dhaka garment factory collapse 800
2013 Los Angeles International Airport shooting 687
2013 South Wales bushfires 683
2017 Puebla earthquake 710
2015 Nepal earthquake 939
2019 Covid pandemic 818
Cyclone Oswald 850
2013 Spuyten Duyvil derailment 771
Hurricane Harvey 688
MERS epidemic 894
2014 Typhoon Hagupit 690
West Texas Fertilizer Company explosion 915

Total 13,000

Table 5.3: Large-scale crisis events and their number of extracted sub-events.

Annotation Guidelines: First, we want to assess whether the extracted sub-events are valid. We
showed every candidate sub-event si = (t, a1, a2, ..) (where t is the predicate and a1, a2, .. are the
event arguments) to three MTurk annotators and asked them the following questions:
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1. Does the predicate represent a crisis incident (e.g., outage, collapse, injury) during a major
crisis event? Possible answers: yes or no.

2. How many of the argument words describe a crisis scenario with or without the predicate?
Possible answers: all, some, or none.

We estimate the inter-annotator agreement of these judgments via Fleiss’ Kappa; the predicate
accuracy has k = 0.5, while sub-event accuracy k = 0.37. Based on our analysis of the anno-
tations, we conclude that the major challenge for human annotators is to determine whether the
argument words could potentially describe a crisis sub-event. This problem stems from the fact
that some sub-events without any useful information may still be part of some crisis scenario. To
address this challenge, we conducted a second evaluation by domain-experts (subsection 5.5.3),
which aims to evaluate each sub-event also based on its importance, filtering out such insignificant
sub-events.

Metric & Evaluation Summary: In Table 5.4 we show the results of our human evaluation. To
estimate the accuracy of the sub-events overall (predicate and event arguments) for each baseline,
we merged the answers of three categories; Yes and All, Yes and Some, and No and All. Sub-
events belonging to these three categories are all considered valid, while the sub-events belonging
to any of the other three categories invalid.

We decided this merging for two reasons. First, some sub-events might have predicates that
are not clearly related to a crisis, but in combination with proper arguments the entire structure
is a valid, meaningful sub-event in a crisis scenario. For example, the sub-event (predicate: fly,
arguments: rescuers, climbers, Everest) is a valid sub-event for the Nepal 2015 earthquake given
that rescuers flew to save climbers in Everest. However, if we look strictly at the annotation guide-
lines, this sub-event will belong to the category No and All, given that fly is not a crisis predicate.
Second, some sub-events may be partially valid; the event predicate and some (but not all) of the
arguments are valid. Such instances belonging to the Yes and Some class still contain meaningful
information for the crisis event and could be used to inform decisions. Given that the ultimate goal
of our tool is to be used as an initial filter mechanism that retains potentially useful information
for humanitarian aid, we decided to count instances with minor argument inconsistencies as valid
sub-events.

Our results show that SD2SG outperforms all baselines. This highlights that all the com-
ponents of the model (the initial semantic graph, the temporal aspect and the learned weights)
contribute to a better model overall. However, we observe that the initial semantic graph is the
second best performing model, with only 3% difference. From that, we conclude that the semantic
and structural constraints are a crucial component to extract valid sub-events.
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Crisis Predicate �! Yes No

Event Arguments �! All Some None All Some None

Models # Sub-event Validity Score Predicate
Accuracy

Sub-event
Accuracy

Open IE 0.30% 0.50% 2.70% 1.00% 9.20% 86.30% 4.50% 1.80%
init sem-graph
(no learning) 7.70% 14.60% 13.00% 7.00% 18.80% 42.00% 39.20% 29.30%

Simple dynamic 8.00% 10.00% 11.30% 7.00% 13.10% 56.80% 30.00% 18.70%
static sem-graph 5.99% 8.90% 9.85% 1.60% 17.50% 56.10% 26.20% 16.49%

SD2SG
(proposed) 9.70% 15.30% 13.70% 7.10% 17.70% 36.50% 45.40% 32.10%

Table 5.4: Percentage of valid sub-events. Sub-event Accuracy represents instances that fall under
the Yes and All/Some and No and All categories.

5.5.3 Importance of Sub-events
Determining the importance of a sub-event is a complex task that requires expert annotators, as
they need to consider the context of the crisis event. Even though a sub-event may be valid with
respect to its structure, we still need to validate if it is important in the context of the large-scale
crisis event.

Data: We used the sub-events from the top performing baselines that were previously classified
to belong to one of the following categories (sub-event accuracy); Yes and All, Yes and Some and
No and All. Out of a total of 1,756 valid sub-events, we randomly select a subset of 300 (⇠ 80
sub-events per baseline).

Annotation Guidelines: To evaluate the importance of the sub-events, we conducted another
human evaluation, where we asked two expert annotators the following question, for each sub-
event:

1. Go to the provided Wikipedia link. Is the proposed sub-event important for this crisis event?
Suppose the proposed sub-event did not happen, would the consequences of the major crisis
or the humanitarian aid response be different? Possible answers: yes or no.

We estimate the inter-annotator agreement by Cohen’s Kappa, which was k = 0.48.

Metric & Evaluation Summary: To evaluate sub-event importance we estimate the percentage
of all extracted sub-events that are important, per model (important sub-event accuracy). The goal
of this metric is to reflect how good each system is in extracting important sub-events.

To estimate the important sub-event accuracy we use the results obtained from both human
evaluations. The first evaluation tells us how many valid sub-events each system extracts, while
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Models Important Sub-event
Accuracy

init sem-graph
(no learning) 19%

simple dynamic 15%
static

sem-graph 14%
SD2SG 25%

Table 5.5: Percentage of important sub-events. The second column is an estimate of the important
sub-events that each model extracts.

the second how many of these valid sub-events are important, per system. Each annotated sub-
event was considered important if any of the two annotators labeled it as such. Thus, the important
sub-event accuracy per system is estimated by:

valid_sub
extracted_sub

important_sub⇤

valid_sub⇤
= Accuracy1

important_sub⇤

valid_sub⇤
(5.4)

where Accuracy1 is the sub-event accuracy for a given model (subsection 5.5.2, while valid_sub⇤
and important_sub⇤ correspond to the number of valid and important sub-events respectively in
the annotated sample (i.e., valid_sub⇤ = 300).

The results of this evaluation are shown in Table 5.5. We observe that our proposed model
performs substantially better than the baselines (6% higher than the second-best). Although the
accuracy of all systems is relatively low, this is due to the low percentage of valid events, since a
sub-event must be valid in order to be important.

5.5.4 Discussion
In the previous section we show that despite SD2SG performed significantly better than our base-
lines, our numbers are overall low; 45.5% of our extracted sub-events are valid and only 25%
important. In this section we identify and discuss a set of reasons why sub-event extraction of
tweets is a challenging problem and how we can improve.

The first step of our analysis is to compare our extracted sub-events to an existing resource man-
ually curated by experts in crisis NLP. We used the EMTerms (Emergency Management Terms)
ontology [Temnikova et al., 2015]; a resource of 7,000 manually annotated terms that are used in
Twitter to describe crisis events, classified into 23 information-specific categories. Based on this
lexicon and our extracted sub-events, we estimate the percentage of predicates and arguments that
exist in the EM terms by a partial string matching (many EMTerms are phrases of 2-3 words). In
Table 5.6 we show the results of this grounding. We observe that, overall, a large percentage of the
predicates can be grounded in the ontology, while the argument overlap is significantly lower. This
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Models Predicate Argument
Overlap Overlap

init sem-graph
(no learning) 85.10% 65.90%

PMI dynamic 92.85% 58.20%
static
sem-graph 88.75% 67.60%
SD2SG (proposed) 90.40% 68.00%

Table 5.6: Overlap of extracted sub-events with terms from the EM ontology.

can be explained by our semantic constraints on the predicates of the extracted sub-events (must
exist in FrameNet), while the event arguments had no such constraints. However, given the results
of our human evaluation in the previous section, we conclude that, even though a word might be a
crisis related keyword, a sub-event formed by such keywords is not necessarily valid. This is due
to the fact that sub-events aim to represent relations between several terms, thus grounding to an
ontology is not a sufficient metric of the quality of the extracted sub-events.

Crisis Event Predicate Arguments

1. Alberta floods evacuation flooding, zone, Canada
2. Puebla earthquake follow rescuer, victims
3. Typhoon Hagupit keep safety, flee
4. Puebla earthquake school kill, child, dead
5. MERS cough healthcare, surveillance
6. Duyvil fatality derailment,helicopter,
derailment major, abc, amtrak
7. MERS emergency infection, Fukuda

discover
8. Dhaka garment rescue survivors, number,
factory collapse labor,factory

Table 5.7: Example output from SD2SG

In Table 5.7, we show a few real-output examples that highlight the complexity of sub-events.
These sub-events belong to any of the three accepted categories of valid sub-events (Yes and All/-
Some or No and All). Although they were all considered valid by human annotators, we observe
a few major challenges. Although some predicates are not crisis words, they could still form a
valid crisis sub-event with the appropriate arguments. Such an example is the predicate follow in
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sub-event 2, where rescuers followed the victims is a valid sub-event during a crisis. However,
for some other instances, the predicate might be an entity in the particular context and, thus, not
a valid sub-event. Such an example is the sub-event 4, where although the sentence children were
killed dead at school seems like a valid sub-event, the model has incorrectly identified school as
the predicate. Several of the annotation inconsistencies in the first part of our evaluation were due
to similar instances, something that highlights the importance of domain expert annotations.

5.6 Future Work
A major problem in our framework is that we don’t know how the arguments are related to the
predicate. Although semantic frames consist of specific relations (e.g., agent, patient, location), our
framework provides only a list of the related entities without their relations. An open challenge
is to use thematic roles both for tweet representation and for the extracted sub-events, as this
will result in more meaningful sub-events that would be easier to evaluate. Given that SD2SGis
modularized, it can be modified to represent thematic roles by using heterogeneous graph neural
networks (HGNNs) instead of DGCNs. HGNNs are a type of network that consists of multiple
types of edges or nodes. However, extracting thematic roles from text (first step of SD2SG) would
still be a particularly hard task due to the nature of social media text, which does not always
conform to proper syntax and grammar.

A second challenge is the removal of duplicates and merging of information. As we see in Ta-
ble 5.3, for each event we extract hundreds of sub-events (100 sub-events per baseline). However,
this set contains several almost duplicates: sub-events that share a predicate and some of their ar-
guments. Determining whether two sub-event mentions that are similar actually refer to the same
sub-event or their argument differences are substantial to consider them as different sub-events is
an open challenge that needs a solid understanding of both the crisis context and the event seman-
tics. Although our filtering and ranking methods at the end of SD2SGaim to partially address this,
we conclude that this is a challenging problem and an interesting direction for future work.

5.7 Conclusion
In this chapter we discussed two types of event representations: semantic frames and sub-events.
A semantic frame separates the event meaning into a structure of several dimensions (i.e., the
semantic roles), each of them describing a different aspect of meaning for the event. This is a
parallel to multi-faceted representations that we studied in earlier chapters but, unlike previous
representations for entities and sentences, the multi-faceted representation of an event is reflected
in language. In other words, frame semantics provide a framework to represent what is already
stated in text.

We further show that the meaning of an event can be decomposed to a list of smaller sub-events.
Each sub-event represents a different aspect of meaning of the larger event, forming together a
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detailed explanation by breaking down the semantics of the event. Such an event representation is
complementary to semantic frames, which instead focus on a schematic, high-level description of
the event semantics.

Towards that direction, we propose an approach to extract important sub-events for a larger
event by combining information across different messages, which can be applied in Crisis NLP.
As our second part of our evaluation shows, the extracted sub-events are a critical piece in the
representation of the larger crisis event, as their existence influences the outcome of the larger
event and other sub-events.

Decomposing an event or goal into smaller components is frequently used to provide deeper
explanations of the semantics of the event or goal. Such a decomposition of the meaning is promi-
nent in tasks such as script learning and event schema induction [Li et al., 2020, Wang et al.,
2022], where the focus is to understand and predict missing events during a narrative or event
graph leading to the completion of a given goal. Despite recent progress, there are several open-
ended questions that future work should try to address, like how to decide the level of abstraction
of a sub-event or how to quantify sub-event importance to the larger event / goal. Most previous
work deals with a given list of sub-events that assumes answers to these questions. Although such
questions feel natural to humans, they are extremely difficult for NLP systems as we have shown
in this chapter.
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Chapter 6

Event Implications & Entity’s State
Changes

6.1 Introduction
In Chapters 3–5 we studied representations for entities, sentences and events, using the assump-
tion that their semantics are multi-faceted. Given a particular task and context, only some aspect
of meaning is relevant to the task and generalizes across data distribution shifts. We showed that
by decomposing meaning into smaller units according to the task, we obtain semantically rich rep-
resentations that achieve performance and interpretability improvements in limited-data scenarios.
Via the use of multi-faceted representations, machine learning models are able to: (1) identify
which information is relevant, and (2) learn reasoning patterns by connecting the correct pieces of
information.

While previous chapters focus on the design of meaning decomposition schemes to retain the
aspect of meaning relevant to the task in question, Chapter 6 addresses the deeper challenge of
learning how to combine pieces of relevant information together to solve reasoning problems. In
order to do this, a machine learning model needs to learn patterns that connect information and
generalize across different scenarios, imitating the underlying reasoning rules required to solve
a reasoning challenge. Unlike early work that relied on meticulous handcrafted reasoning rules,
heuristics and formal logic, such as the Logic Theorist system [Shaw et al., 1958] and the General
Problem Solver [Newell et al., 1959], the patterns in a machine learning model are automatically
learned from few examples. This poses the challenges of enhancing the generalization abilities of
a machine learning model and guiding it towards the underlying reasoning rules, while avoiding
the intense manual effort of creating and/or annotating precise reasoning rules.

Similarly to the problems described in Chapters 3–5, the main challenge in reasoning tasks is
that they often occur in limited-data scenarios. By the term limited-data scenarios, we refer to
situations where the training data is not sufficiently large to represent all possible configurations of
the problem and, thus, inducing the correct decision rule is a significant challenge. Since reasoning
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problems require to connect multiple pieces of information, some of which may be ’commonsense
knowledge’ and hence outside the domain and given context, a machine learning model using only
surface level features such as lexical semantics and syntax may need to see all possible combina-
tions of the available information to learn the underlying reasoning rules.

Our approach to address this problem is based on two basic principles: decomposition of mean-
ing into facets and diversification of the facets. First, as we showed throughout this thesis, decom-
posing meaning into facets guide a machine learning model to learn which aspect of meaning is
relevant and connect it to the task. However, in the case of reasoning problems, our "task" is not the
downstream task that the model is evaluated on, but instead learning and applying the underlying
reasoning rules. Thus, a model also needs guidance to learn patterns of connecting the facets of
multiple entities to events. These patterns are necessary in order to generalize to unseen configura-
tions, which is a crucial step in reasoning. This leads us to the second principle, where instead of
using a fixed facetization scheme of each entity as seen in Definition Frames of Chapter 3, a model
is trained on different meaning decompositions of an entity for the same context. As we show in
this chapter, our mechanism helps to learn reasoning patterns that generalize to new, unseen facets
and, thus, results in a model with better generalization abilities. These two principles form together
the main theory of this thesis, as described below.

Thesis Theory: By decomposing entity meaning into facets, the model learns to identify and
focus on the aspects of meaning relevant to the underlying reasoning mechanism of the question.
Furthermore, by varying the facets across instances, the model learns patterns that imitate the
reasoning mechanisms involved for each event. This leads to good generalization for unseen at-
tributes, which is a crucial step towards reasoning.

6.2 Forms of Reasoning in NLU
While most tasks in Natural Language Understanding involve some degree of reasoning, recent
work has identified a certain class of problems as more challenging than others, referring to them
as commonsense reasoning tasks. The main difference that distinguishes them from other NLU
tasks is that they require information that is not stated in the context. Identifying the commonsense
knowledge necessary for a reasoning task is extremely challenging for a machine learning model,
as it requires an understanding of the underlying reasoning mechanism that connects different
pieces of information (both stated and unstated) together. On the other hand, since non-reasoning
problems rely on simpler reasoning mechanisms, a machine learning model is able to solve them
by using only lexical and syntactic information. Thus, while for non-reasoning tasks a model
learns to link each context word to the prediction, for commonsense reasoning it needs to learn the
underlying reasoning mechanisms that link relevant information to the prediction and use them to
identify which is the relevant information, both in-context and unstated.

The difficulty of the underlying reasoning mechanism may vary even within the class of rea-
soning problems. For example, it is easier to model the effect of a single event compared to a series
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of events or when multiple entities are involved. While automated methods become increasingly
more successful in solving reasoning tasks, a remaining challenge is how to measure and evaluate
their reasoning abilities. The reasoning abilities of most models are evaluated indirectly, based on
the number of correct predictions in a given task, without verifying the way the reached to this con-
clusion. The direct evaluation of reasoning is an extremely difficult problem for two reasons: first,
it requires a manual annotation of the reasoning mechanisms and fixed criteria on how to compare
mechanisms, and, second, most high-performing machine learning models are not interpretable.

These difficulties lead research in NLU to design increasingly challenging tasks under the
assumption that they contain fewer dataset biases and, thus, the model should develop some degree
of reasoning in order to reach a valid conclusion [Zellers et al., 2018, Mihaylov et al., 2018a, Clark
et al., 2018a, Tandon et al., 2020]. Such challenging tasks often involve the use of information
that is not explicitly stated or connecting information across different sentences and documents
in order to make a prediction (multi-hop reasoning). However, even for these challenging tasks a
model may still learn to directly connect the prediction to certain aspects of the input instead of
developing an internal reasoning mechanism, falling into the trap of short-cut learning. To ensure
that this is avoided, many datasets include an out-of-domain or “challenging” portion in their test
set, where the model is evaluated with respect to its generalization abilities. Out-of-domain data
typically require reasoning rules similar to the training data, but vary certain aspects of the data
such as using unseen entities, events or topic. The underlying research assumption is that, in order
to make correct predictions in the out-of-domain data, the model learns some research patterns that
generalize across different contexts, and, thus, go beyond a surface correlation of the entities and
the prediction.

6.3 The Problem of Event Implications
Modeling the effect of actions on entities (event implications) is a fundamental problem in AI
spanning computer vision, cognitive science and natural language understanding. Most commonly
referred to as the Frame Problem [McCarthy and Hayes, 1981], early solutions relied on a set
of handcrafted rules and logical statements to model event implications. However, such methods
require substantial manual effort and fail to generalize. More recently, modeling event implications
has reemerged under the guise of common sense reasoning within NLP [Sap et al., 2019b, Bisk
et al., 2020b, Talmor et al., 2019] and action anticipation in Computer Vision [Damen et al., 2018,
Bakhtin et al., 2019].

Predicting event implications is a particularly difficult problem due to the complex nature of
language and implicit knowledge required to answer such questions. For example, if we are given
the sentence the mug fell on the floor and we want to determine whether the mug is whole and func-
tional, we need to know of several facts such as the material of the mug, the fragility of ceramics,
the hardness of the floor, etc. and also how to combine these facts together to reason whether the
mug will break or not. Furthermore, while for some events we need all this information to predict
the potential changes in entities, for other events such as I broke the mug, these changes are intrin-
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Context: 
The robot holds a laptop.
The robot forcefully throws the 
laptop.

Context: 
Pick up the yogurt, bananas, and sorbet. 
Place the ingredients in a blender. 
Blend the mixture until it's smooth in 
texture.

PiGLET Open PI

What attributes changed: 
Laptop is broken, picked-up and 
its location is different. 

What attributes changed: 
1. The cleanness, weight, volume and 

fullness of the blender changed.
2. The texture and appearance of the 

mixture changed.

● 14 attributes
● AI2 Thor Simulator
● 5k/2k/2k train/dev/test

● 51 in-domain attributes
● 40 out-of-domain attributes
● WikiHow articles
● 11k/1k/2k train/dev/test

Entities: blender, mixtureEntity: Laptop

Figure 6.1: We use the PiGLET and OpenPI datasets to probe if LLMs contain the necessary
grounded and world knowledge to reason about event implications.

sic (i.e., they are always true). None of this knowledge is explicitly stated, instead being classified
as common sense knowledge, and is traditionally acquired from observations or interactions with
objects and the environment.

Core to this line of work is the assumption that events can be learned via language, without
depending on other forms of perception. While physical interactions may be intuitively necessary
[Bisk et al., 2020a], the limitations of language-only models are not apparent in existing reasoning
datasets. To explore the utility of other modalities and interaction, Zellers et al. [2021] train a
language model to predict physical changes in a virtual environment. According to their findings,
such a model can substantially benefit from physical interactions compared to its language-only
equivalent. However, as we show in this chapter, the purported limitations of the language-only
models are not always well-founded and, instead, may be the result of an incorrect use of the
baseline model. More specifically, we show that the language-only baselines in PiGLET use an
encoding of the input that is inappropriate for a LLM. In their approach, the input is given in
the form of a dictionary of (attribute, value) pairs, instead of natural language text. However,
LLMs are trained as language generators by learning to predict a group of masked words (Masked
Language Modeling) in a text, or continue a given text by producing a new sequence of words. In
both cases, LLMs are trained to generate and, thus, expect a natural language text that maintains
syntactic coherence. This implies that PiGLET has an unfair comparison of the language-only
baselines, which, as we show in our results, achieve significantly better performance. Thus, we
conclude that key to the success (or failure) of proving the importance of physical interactions are
(1) How we use the language models to ensure a fair model comparison, and (2) The difficulty of
the task domain and dataset.
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We find that the difficulty of the task and dataset often indicates whether reasoning is required.
Others have also noted that despite the tremendous gains in NLU made possible by Large Language
models (LLM), they still stumble when reasoning is required [Brown et al., 2020]. Although LLM
may not have inherent reasoning abilities, in this work we aim to investigate whether they are able
to indirectly learn patters that imitate the underlying reasoning rules. To do this, we are present
with two new challenges: (1) Can we evaluate reasoning via the generalization abilities of a model,
and (2) Can a model learn reasoning patters more effectively if we share which information may
be relevant to these patterns?

The nascent field of “prompting" [Liu et al., 2021, Wei et al., 2021, Ouyang et al., 2022]
hints at a possible approach for humans to indirectly share information about reasoning patterns
with models. Most recent work uses prompting mainly as a template to reformulate a new task,
differentiate across tasks in multi-task learning or provide examples in few-shot learning scenarios.
As we discuss in this chapter, prompting can also be used to share information about the relevant
aspects of meaning and guide a model to extract reasoning patters by varying the information
conveyed in each prompt. However, the best structure and the amount of information to convey via
a prompt for a given task still remain as an open question.

In this chapter we discuss the problem of event implications as entity change-of-state with
respect to physical attributes and identify the major challenges for LLMs. Our work tackles two
major issues: (1) are language-only models able to predict physical event implications, and (2)
can the meaning decomposition of an entity into facets function as an intermediate step for the
extraction of reasoning patterns. As we discussed in Chapter 5, event semantics are challenging
to represent, since events can form complex relations such as causality, temporal relations or sub-
event relations. Furthermore, due to their dependence on multiple entities in the form of event
arguments, event semantics and, consequently, event implications may significantly differ even
across events with the same predicate. For example, if we consider the events I dropped the glass
on the hardwood floor and I dropped the fork on the hardwood floor, the event implications will be
different (the glass could break, unlike the fork).

Due to the complex nature of events, language models struggle to determine which information
is relevant to the task and to extract reasoning patterns that generalize to unseen instances. To
address this challenge, we use prompting as a means to share information about the desired facets
of the entity and guide the model to focus on the aspect of meaning relevant to the event and
context.

While Chapter 3 discussed multi-faceted entity representations in the form of Definition Frames,
such a decomposition is not unique. Instead, meaning can be split to small units and aggregated, as
it is fit by the information needs of the task. Definition Frames provide a meaning decomposition
for concepts, which refers to relations that generalize across different contexts. This is the reason
why we used definitions to extract the Qualia relations, as they describe fundamental properties
that are always true. On the other hand, the problem of event implications requires a meaning
decomposition for specific instances of an entity. Attributes that could change, such as the location
of an object, determine the outcome of a physical event and, thus, they are a potentially relevant
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aspect of meaning we want to retain. Furthermore, different event types and context may rely on
different facets, showing that there is no unique meaning decomposition scheme. An open ques-
tion is whether meaning decomposition helps language models to learn event implications and, if
so, how to choose the facets in order to ensure generalizability.

Our work aims to answer the first question by leveraging prompting; a modern technique used
to share information with language models. Unlike a fixed structure of meaning decomposition,
prompting is a more versatile technique that allows us to communicate with a model via natural
language. This implies that we are able to: (1) change the decomposition scheme as we see fit
according to the task, and (2) reuse the same model in different domains, without the need of
further fine-tuning.

To answer the second question, we use a simple yet effective meaning decomposition that helps
us explore how the choice of facets affects in-domain and out-of-domain performance. Given
that our task provides a list of fixed attributes that can change due to an event, these attributes
can be used as facets of the entities involved. By verbalizing a list of attributes to a model, we
provide a meaning decomposition scheme which pushes the model to retain the aspect of meaning
that corresponds to the queried attributes. Our attribute verbalization is an effective mechanism
to communicate with a LLM via natural language text, which aligns with the LLM objective of
generating words that, in combination to the input, are a syntactically coherent text. Finally, due
to versatility of prompting, we can query different subsets of attributes across instances and study
the effects on learning. As we show via our experiments, a model substantially benefits both with
respect to performance and generalization by varying the attributes queried per instance (k-attribute
prompt). This proves our assumption that attributes function as a bottle-neck to retain the aspect
of meaning relevant to the underlying reasoning mechanisms and, thus, help the models to learn
these mechanisms.

6.4 Task Formulation and Dataset Overview
The problem of predicting event implications can be formulated in several ways, with varying
levels of difficulty. For example, Tandon et al. [2020] generate triplets of entity, attribute, post-
state given some context, while Zellers et al. [2021] are given the entity, attribute, pre-state to only
predict the post-state of the entity.

Our experiments imitate a realistic setting in naturally occurring language with a minimal set of
assumptions. The context used in our setting is a small paragraph followed by a sentence describing
an action, for which we want to predict the event implications on the participant entities. Our task is
formulated similar to Zellers et al. [2021], where we are given an entity of interest and a predefined
list of attributes, for which we need to determine whether a change-of-state occurred with respect
to the list of attributes. However, unlike Zellers et al. [2021], our setup does not use the pre-state of
the entity (the value of the attributes before the action), since this information cannot be extracted
from text without the aid of in-domain human annotations.

As we see in Figure 6.1, in the OpenPI example we are given a paragraph, a list of entities
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(blender, mixture) and a fixed list of 51 attributes. Based on the action-sentence Blend the mixture
until it’s smooth in texture, we need to predict a binary value for each attribute denoting whether
it changed or not for each of the given entities. Such a question can be quite challenging, since it
requires to track entities and their states based on context in order to predict how they change due
to the new action.

6.4.1 PiGLET
The PiGLET dataset [Zellers et al., 2021] consists of encodings of the pre-state and post-state of
entities, as a result of an action. Each instance is accompanied by the context, a natural language
description of the pre-state of the entities, followed by a description of the action. PiGLET is a
small dataset that contains only 5k examples in the training set, while the development and test
set have 2k examples each. Furthermore, PiGLET studies entity change-of-state with respect to
only 14 attributes: temperature, is_cooked, is_dirty, sliceable, is_sliced, mass, is_open, is_filled,
is_picked_up, is_toggled, distance, is_broken, breakability and size.

PiGLET is a semi-artificial dataset, where the entity, pre-state, post-state, action tuple was
generated by exploring the virtual environment AI2 Thor [Kolve et al., 2017]. In addition to this
encoding of context as a dictionary, the authors of PiGLET asked human annotators to construct
natural language sentences describing the pre-state and action for every instance. These sentences
were annotated by Amazon Mechanical Turkers, who were given the entity, pre-state, post-state,
action tuple that was generated by the virtual environment. This results in simpler concise state-
ments compared to the ambiguous language that humans naturally use to communicate. While
the models studied by previous work used the tuple generated by the virtual environment as their
input, our approach and baselines use only the natural language descriptions. The reason is that
we supposed that this is a more appropriate way to communicate with a LLM: a hypothesis proven
correct via our experiments.

The domain of the dataset is constrained by the set of possible interactions and entities in AI2
Thor, which corresponds to only 8 distinct events and 120 distinct entities. Due to the fact that each
event cannot be applied to all entities present in the environment, PiGLET has a relatively small
number of possible configurations. As we prove through our experiments, LLMs can achieve very
good performance in PiGLET, invalidating previous claims that a model with physical interaction
abilities is required and that, instead, PiGLET is not a challenging enough dataset to prove such
claims.

6.4.2 OpenPI
Open PI [Tandon et al., 2020] also studies the change-of-state of entities with respect to physical
attributes. However, unlike PiGLET, Open PI is based on articles from WikiHow, containing
realistic natural language descriptions of physical changes. The context in this dataset is the entire
WikiHow article preceding the action sentence from the article.
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Open PI is a substantially larger dataset, containing an initial set of 51 pre-defined attributes
from WordNet [Fellbaum, 2010]. This list of attributes was augmented by human annotators,
resulting in two sets of attributes for each instance: in-domain (initial 51 attributes) and out-of-
domain (introduced by Amazon Mechanical Turkers). The purpose of the out-of-domain attributes
was to show that a manually curated list of attributes may not be sufficient in a real set-up to
describe all possible event implications and additional attributes would be needed, highlighting the
challenging aspects of the problem of physical event implications. However, this also leads us to
the core of the Frame Problem, according to which we want to predict changes without having
to model all the attributes that do not change. This means that we must introduce constraints on
which attributes we want to predict changes for, since the list of all possible attributes may be
infinitely large.

Semantic Type In-domain Attributes Out-of-domain Attributes

Spatial
location, volume, shape, size,
orientation, length, distance,
organization

angle, direction, area, height,
width, pose, posture, spacial
relation

Material
texture, electric conductivity,
thickness, hardness, strength,
pressure

tenseness, tension, tightness,
softness, material, flexibility,
thermal conductivity, density,
granularity

Entity-Specific
cleanness, wetness, fullness,
ownership, openness, cost,
composition, coverage, focus

contents, wholeness, capacity,
hydration, consumption,
documentation, emotional state,
pain, usage

Behavioral knowledge, speed, motion,
stability, complexity, skill

activity, balance, consistency,
safety, familiarity, exposure,
viability, resistance

Quantifier amount intensity, quantity, magnitude

Temporal availability age, life, existence, time

Sensory Perception visibility
color, taste, temperature, smell,
sound, appearance, weight,
brightness

Table 6.1: Semantic types of attributes, both in-domain and out-of-domain.

In-domain attributes: The in-domain attributes were chosen by the authors of Open PI, based
on a list of attributes relevant to physical interactions present in WordNet. Given their expertise
on the subject, this is a meticulous list of attributes that contains only a few synonyms. This pre-
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defined list was given to all human annotators, so all attributes in the list were considered for every
instance while being annotated. This means that we rarely have false negatives in the annotations;
attributes that changed but the annotators failed to note this.

Out-of-domain attributes: The out-of-domain attributes were introduced by the human annota-
tors as attributes that were not present in the pre-defined in-domain list. The annotators were asked
to come up with such attributes themselves for each instance, which means that across different
annotators we may find different attributes, even though all of them are correct. This results in
many synonymous attributes, such as angle and direction, and false negatives in the annotations.
For example, for instance1, annotator1 identifies that attribute width changed, and for instance2,
annotator2 identifies that height changed. However, width may also change for instance2, but the
annotator failed to consider this attribute. As we show in our error analysis (Section 6.9), such false
negatives in the annotations are common due to the large number of possible attribute changes.

Although the total number of attributes (in-domain and out-of-domain) reaches ⇠800 unique
attributes, the initial 51 attributes cover more than 80% of instances. Furthermore, the vast majority
of the newly introduced attributes appear only once and many of them contain typos or abbrevia-
tions. For these reasons, we filtered the attributes provided by the human annotators and construct
a curated, less noisy list of out-of-domain attributes. Our filtering removes attributes that occur
less than three times and words that correspond to the entity or event of the sentence instead of an
attribute. This list, to which we will refer during our experiments as the out-of-domain attributes,
consists of 49 attributes, which are shown in Table 6.1. In our experiments, all models are trained
on the in-domain attributes.

As we see in Table 6.1, we divide both in-domain and out-of-domain attributes according to
their semantic type. Via the resulting ontology, we gain useful insides about the type of attributes
and study the performance per semantic cluster (subsection 6.8.4). We observe that although there
is a large semantic overlap of the in-domain and out-of-domain attributes, almost 50% of the out-
of-domain attributes could not be matched to a synonym. These attributes consist the most difficult
out-of-domain group, showing the greatest challenges for our models.

6.5 Methodology
Next, we introduce our prompting techniques, which vary with respect to per-instance information
content. Each technique is tested with different LLMs and fine-tuning methods. The goal of each
prompting mechanism is to show how model performance and generalization vary based on the
information conveyed in our queries. Our study focuses on four prompting methods depicted in
Figure 6.2: zero-prompt, single-attribute, multi-attribute, and a variant of the latter, the k-attribute
prompt.

Our approach builds on literature demonstrating benefits in using prompting to distinguish
different tasks when a model is trained in a multi-task setting [Raffel et al., 2020, Wei et al.,
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2021]. In our study, however, we explore how to use prompts as a medium to convey the task-
specific information that a model must know in order to solve the task, similar to how one would
ask a human. To the best of our knowledge, we are the first ones to demonstrate advantages and
disadvantages of different ways to codify intermediate steps required for reasoning via prompting
and use them to study LLMs’ understanding of event implications.

Query:  “”
Target: n-dim binary vector, n = #attributes

Query each attribute in candidate list
Query1: Is the location of the mug different?                 
Target: The location of the mug is different.

Query2: Is the temperature of the mug different?
Target: The temperature of the mug is unchanged.

Query: Consider the attributes: location, temperature, shape .... 
Target: The location, composition and shape of the mug 
changed.

Zero-prompt

Single-attr. 
prompt 

Multi-attr. 
prompt: 

all-attribute 
Split attributes to subsets
Query1: Consider the attributes: location, shape.       
Target: The location and shape of the mug changed. 

Query2: Consider the attributes: temperature, composition.
Target: The composition of the mug changed.

Context: The robot throws the mug to the ground. What happens next to the mug?

Multi-attr. 
prompt: 

k-attribute 

Figure 6.2: Prompting techniques used in our models. The k-attribute prompt has better learn-
ing abilities by: (1) verbalizing the decomposition facets (attributes), and (2) diversifying the
facet decomposition across instances.

6.5.1 Large Language Models
We explore three transformer-based language models: an autoregressive, an autoencoder, and a
seq-to-seq model. We include models with different architectures to investigate the effect of our
prompting strategies across model families. Our goal is to use each model in combination with
prompts that enhance their individual strengths, based on their pretraining schemes.

RoBERTa [Liu et al., 2019]: is an autoencoder model widely used in classification tasks. RoBERTa
is a very robust and efficient model that achieves good performance in a large variety of tasks. This
makes it a good candidate to study new tasks and evaluate new methodologies.

T5 [Raffel et al., 2019]: is a seq-to-seq model that has shown excellent performance in multi-
tasking by using the task name as a prompt. Although T5 is pre-trained as a generator model, it
can be used both for text classification and generation. Its excellent performance in multi-tasking
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shows that T5 is able to use prompt information to identify the task, from a list of predefined tasks
(shown in pre-training). Since we also convey task-specific information via our attribute verbal-
ization, T5 is an appropriate model to evaluate our methodology.

GPT-3 [Brown et al., 2020]: is an autoregressive model and is primarily used in zero and few-shot
settings due to its substantially larger size. GPT-3 is used in language generation and classification,
and has shown excellent performance in few-shot settings when queried with appropriate prompts.
Due to its large size and pre-training data, GPT-3 may have already seen many of the common-
sense knowledge required to solve reasoning tasks and developed good generalization abilities, as
its high-performance in few-shot scenarios hints.

These backbone models are used with one of the three prompting techniques, as described in the
following paragraphs and shown in Figure 6.2.

6.5.2 Multi-label Classifier: Zero-prompt
Our baseline model is a multi-label classifier with no explicit information about the nature of the
task or the attributes themselves. The model takes the context and the prompt Now what happens
next to the [entity]? as inputs, and predicts a binary vector, where entries correspond to changes
in specific attributes. We test this mechanism with RoBERTa, as it performs well in classification
tasks.

With this model we test the traditional “finetuning assumption” that, given enough data, the
model can learn the correspondence between attributes and dimensions in the output vector and
correctly predict their changes. This model serves as a baseline of how a LLM performs when
fine-tuned to a specific task. Crucially, it does not have the ability to generalize to new attributes
as the output vector is of fixed size.

6.5.3 LM as Classifier: Single-attribute Prompt
Our second prompting technique provides information about individual attributes. Via this tech-
nique we evaluate whether a model benefits from the verbalization of each attribute, as a means to
retain useful information from the context. Unlike the zero-prompt model, this model can be used
out-of-domain, with unseen attributes.

In this setup, we query the model about each individual attribute separately, for every context-
entity pair, as shown in Figure 6.2. This mechanism was tested with all three models: RoBERTa
(fine-tuned and zero-shot), T5 (fine-tuned) and GPT-3 (few-shot).

By querying each attribute individually, the model is able to focus only on information related
to that specific attribute. This can both benefit and hurt performance, as we show in subsec-
tion 6.5.4. On one hand, the model pays more attention to the sentence semantics related to the
queried attribute. By using the attribute as a bottleneck, the model learns which aspect of mean-
ing is important in that instance. This is particularly beneficial in limited-data scenarios where
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generalization is necessary. On the other hand, by querying only a single attribute per instance,
the model does not learn correlations across attributes. This weakness becomes more apparent in
scenarios with many correlated attributes.

6.5.4 LM as Generator: Multi-attribute Prompt
Our final prompting technique focuses on retrieving information about a set of attributes, by query-
ing multiple attributes together. This technique combines strengths of the zero-prompt and the
single-attribute prompt models, as it is able to both verbalize the attributes and capture correla-
tions across them. Unlike other mechanisms, this method allows us to control the information
content per instance, by varying the set of queried attributes. As we show in subsection 6.5.4
and subsection 6.8.2, varying the attribute queries across training instances is crucial to achieve
generalization.

For this technique, the prompt lists the attributes that the model should consider. This list
is dataset specific and can vary between training and testing (i.e., out-of-domain) or even across
training instances. The model is trained to generate the attributes that changed, as shown in Fig-
ure 6.2. This technique works with text generation models and was tested on both T5 (fine-tuned)
and GPT-3 (few-shot).

The first version of this model, the all-attribute prompt, queries all attributes that could change
in the same instance. However, the risk with this approach is that, because the prompt is fixed, the
model learns to pay little attention to the specific attributes that appear in it. We therefore propose
a variant of this method, the k-attribute prompt, aiming to achieve high performance in both in-
domain and out-of-domain scenarios. The objective is to learn about attribute dependencies but
also force the model to pay attention to the specific attributes being prompted. To achieve this,
we prompt the model with k random attributes and train it to predict changes only among these k

attributes. More specifically, for each training example, we partition the 51 attributes into q random
groups where q is a random integer between 1 and 5. k refers to the number of attributes in each
partition. This method ensures that the model is queried with k random attributes and that all 51
attributes are always queried for each example.

6.6 PiGLET

6.6.1 Baselines
In this part we briefly describe the previous models evaluated on PiGLET dataset and how they
relate to our proposed models and baselines. One of the main claims of Zellers et al. [2021] is the
necessity of physical interactions, by showing that a physical interaction model performs substan-
tially better than models that rely solely on language. However, via our experiments we invalidate
their claim by showing that the same language-only models achieve comparable performance to
the physical interaction model, if used with suitable input.
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Physical Interaction model: This model is our strongest baseline and it was proposed by the
authors of PiGLET as the state-of-the-art model. According to their findings, this model achieves
81.1% hard accuracy, substantially improving upon all language-only baselines. This model con-
sists of two components: (1) a physical interaction model trained in the virtual environment AI2
Thor, and (2) a language model based on GPT-2 Radford et al. [2019]. Similarly to their language-
only baselines, this model has access to the pre-state of each entity and the action.

Input to T5-base, by Zellers 
Pre-state, entity 1:  
(objectname: laptop, parentreceptacles: none, containedobjects: none, distance: 6 to 8 ft, 
mass: .5 to 1lb, size: medium, temp: roomtemp, breakable: true, cookable: false, dirtyable: 
true, broken: false, cooked: false, dirty: false, filledwithliquid: false, open: false, pickedup: 
true, sliced: false, toggled: false, usedup: false, moveable: true, openable: false, 
pickupable: true, receptacle: true, sliceable: false, materials: metal) 

Pre-state, entity 2: 
(objectname: robot, parentreceptacles: none, containedobjects: none, distance: 2 to 3ft, 
mass: .1 to .2lb, size: large, temp: cold, breakable: true, cookable: false, dirtyable: false, 
broken: false, cooked: false, dirty: false, filledwithliquid: false, open: false, pickedup: false, 
sliced: false, toggled: false, usedup: false, moveable: false, openable: false, pickupable: 
false, receptacle: false, sliceable: true, toggleable: false, materials: metal) 

Action: 
(action: throwobject10) 

1

Figure 6.3: The input format for the language-only baseline model that was used by Zellers et al.
[2021]. The same core model (T5-base) used with suitable input performs significantly better.

Language-only models: In our experiments we use three models based only on natural language
(no physical interaction component): an n-gram Logistic Regression, a RoBERTa zero-prompt
model and a T5 all-attribute prompt model. Via these experiments we aim to show that: (1) a
physical interaction model is not needed to achieve good performance in PiGLET, and (2) the
performance of an LLM may significantly vary based on how we use it. The input in all our
experiments with language-only models takes the following form: a sentence describing the pre-
state, followed by the action and a specific prompt based on the evaluated model. This input has
the form of a naturally occurring text, similar to what a large language model is pre-trained on.
For example, for the instance in Figure 6.1, the input would be [prompt] The robot holds a laptop.
The robot forcefully throws the laptop. Which attributes changed for the laptop?, where [prompt]
corresponds to the verbalization of the names of all possible attributes for the T5 all-attribute
prompt model and to the empty string for the Logistic Regression and the zero-prompt models.

74



This input formulation is very different from the one used by Zellers et al. [2021] for the
language-only baselines. In their approach, the input is a dictionary encoding of the entity pre-
state and action, instead of a natural language description, as we see in Figure 6.3. As we show via
our experiments, this difference is essential, as it leads to incorrect results about the abilities of the
evaluated models. Namely, Zellers et al. [2021] use a T5-base model with this input and achieve
only 53.9% in hard accuracy, compared to 81.1% of the Physical Interaction model. However,
when we use the same model (T5-base) with appropriately formatted input, it achieves very similar
results to the Physical Interaction model.

All attributes Per-attribute F1
Model Pr Re F1 Dist Size Mass Temp isBroken

Physical Interaction, (PiGLET) 97.4 91.6 94.4 93.6 79.2 98.3 99.6 92.8

n-gram LogReg (baseline) 87.8 88.0 87.9 78.8 74.7 97.8 94.0 79.4
RoBERTa-base, zero-prompt 95.2 92.6 93.9 90.6 82.7 100.0 95.3 94.7
T5-base, all-attribute prompt 93.0 95.4 94.1 91.7 83.5 100.0 95.8 90.3

Table 6.2: Micro-Precision, Recall and F1 scores across all 14 attributes in PiGLET. Per-attribute
F1 scores for challenging attributes, as in Zellers et al. [2021]. Language-only models perform
competitively with PiGLET.

6.6.2 Evaluation
As shown in Table 6.2, all models perform relatively well on the PiGLET dataset. The extremely
small margin in performance between Physical Interaction and the proposed models (RoBERTa
zero-prompt and T5 all-attribute) indicates that language models can learn about physical attributes
even without the need of physical interactions with the environment. However, we highlight that
this conclusion holds for datasets similar to PiGLET and the importance of physical interactions
remains an open question that must be tested in more realistic and challenging datasets.

Despite the high performance of our proposed models, previously reported baselines on PiGLET
show significantly lower performance than the Physical Interaction model. Notably, their baseline
using T5-base achieves only 53.9% in hard accuracy, compared to 81.1% of the Physical Interac-
tion model [Zellers et al., 2021]. Unfortunately we cannot directly compare these results to our
proposed models due to their choice of metric (hard accuracy) and different problem formulation,
where the input and output is the encoding of the pre-state and post-state of the entity. Despite
the use of different metrics, we observe a minimal performance difference between language-only
models and PiGLET. This highlights the importance of using proper prompting techniques and
task formulation to take full advantage of LLMs, otherwise we risk of misrepresented results and
invalid conclusions due to unfair comparison of the baselines.

Our final observation is that there is a larger gap between the n-gram LogReg model and the
rest of the models. This shows that, although language is very useful to predict physical event
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implications, pre-trained language models still have a significant advantage due to the information
they have previously seen. This raises the question of how can we better exploit the relations that
pre-trained language models already know, which we explore via the next set of experiments.
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Figure 6.4: F1 score per attribute for Physical Interaction and T5 all-attribute prompt models, in
PiGLET. The high performance of both models highlights the limitations of PiGLET and the
need of more challenging datasets to evaluate the effect of physical interactions and compare
them to language-only models.

In Figure 6.4 we also show the per-attribute performance in PiGLET for the two best-performing
models: the Physical Interaction and the T5 all-attribute prompt models. We observe that overall
for the vast majority of attributes the performance of both models is extremely high (F1 >90). Only
for the attribute breakability the T5 all-attribute prompt model has relatively low performance (F1
= 60) compared to the Physical Interaction model (F1 = 80). Our hypothesis of why this occurs is
that the Physical Interaction model has access to the values of all the attributes before the action
(pre-state), while the T5 all-attribute prompt model only sees a short sentence description of what
happened before. Thus, attributes like breakability are ambiguous without the pre-state informa-
tion: an object may be considered breakable after it is broken (i.e., can break further) or not since
it cannot be broken again.

6.7 OpenPI
Due to our finding that PiGLET is not a challenging dataset and all the LLM-based models perform
extremely well, we use Open PI as the main dataset to compare the proposed prompting techniques.
With the exception of the GPT-3 models, all models have relatively similar sizes, ranging from
123M (RoBERTa-base) to 354M (RoBERTa-large) parameters.
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In-domain Out-domain
Training Model Pr Re F1 Pr Re F1
Zero-shot RoBERTa-large, single-attribute prompt 3.1 63.3 5.9 2.4 68.8 4.6

Few-shot GPT-3-Babbage, single-attribute prompt 3.7 82.4 7.1 - - -
GPT-3-DaVinci, all-attribute prompt 37.6 24.5 29.7 28.3 12.9 17.7

Fine-tuned

GPT-2 (baseline in Open PI) 49.8 11.8 19.1 - - -
RoBERTa-large, zero prompt 65.1 40.1 49.6 - - -
RoBERTa-base, single-attribute prompt 40.3 55.1 46.6 21.3 26.2 23.5
T5-base, single-attribute prompt 34.6 53.3 42.0 15.9 21.5 18.2
T5-base, all-attribute prompt 47.5 56.0 51.4 25.0 1.2 2.2
T5-base, k-attribute prompt 52.8 50.0 51.4 16.8 22.7 19.3

Table 6.3: Micro-Precision, Recall and F1 scores for Open PI. In-domain attributes refers to the
51 originally curated attributes, while out-domain to the 41 attributes introduced by human an-
notators.The k-attribute prompt combines best in-domain performance with generalization
abilities. Verifies our hypothesis about: (1) decomposition of meaning into facets, and (2)
diversification of the decomposition across instances.

Few-shot: The GPT-3-based models were the only models used via few-shot learning, due to
lack of resources for fine-tuning models of their size. For each instance in the test set, we pick 10
examples from the training set to be included in the prompt - there are marginal improvements be-
yond four [Min et al., 2022]. Performance in complex tasks like QA is sensitive to prompt selection
[Liu et al., 2022]. Following previous work, we pick the relevant examples based on semantic sim-
ilarity [Reimers and Gurevych, 2019]. In the single-attribute prompt setting, we include examples
querying the same attribute, and balance both positives and negatives.

In-domain vs out-domain: All our models are trained on the initial 51 attributes (subsection 6.4.2).
For in-domain experiments, the models are tested on the same set of attributes, while for out-of-
domain on the new attributes introduced by human annotators, as explained in Section 6.4.2. After
removal of rare attributes that occur in less than 3 instances, the out-of-domain set consists of 49
unique attributes.

GPT-2 baseline: This model is the strongest baseline proposed by Tandon et al. [2020] along
the Open PI dataset. It is based on a GPT-2 model trained to generate sentences describing entity
change-of-states. Each instance has as input a WikiHow article, followed by the prompt What
happens next?. The model generates sentences that follow a specific format, The [attribute] of the
[entity] was [pre-state] before and [post-state] after, where the fields between the square brackets
are used to evaluate the predictions. Given that our models are evaluated on their ability to predict
entity change-of-state with respect to an attribute, we post-process their output by removing gen-
erations where the entity is wrong or the attribute is not part of the given attribute list, so we have
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a fair comparison of the models.

6.7.1 In-domain Evaluation
As shown in Table 6.3, our models (F1 = 51.4) perform significantly better than the GPT-2 baseline
(F1 = 19.1) provided by the Open PI authors [Tandon et al., 2020]. This highlights one of the core
challenges of the Frame Problem, to predict event implications without having to model everything
that does not change. Thus, a modeling approach of generating all attributes that change without
any constraints is extremely difficult, as it has to consider also everything that does not change.
Instead, by verbalizing and querying specific attributes from a given list, we help the model to
narrow the domain of possible changes and then learn to generalize to unseen attributes, when
queried about them.

Our second observation from Table 6.3 is that the best performing models in-domain are the all-
attribute prompt and the k-attribute prompt, followed by the zero-prompt model. This shows that
the verbalization of attributes has a positive impact in performance, given that both multi-attribute
models beat the zero-prompt baseline. This difference is even more striking while studying the
per-attribute performance, as shown in Figure 6.5. We observe that when attributes are sorted with
respect to their frequency, RoBERTa zero-prompt completely ignores the lowest 50%, predicting
always that there is no change for these attributes. This is an extremely undesirable behavior, as
the model only focuses on learning frequent attributes to attain a good performance, jeopardizing
its robustness to different domains. On the other hand, the T5 multi-attribute prompt model has
decent performance for several less frequent attributes.

Based on Figure 6.5 and Figure 6.6, we observe that the RoBERTa zero-prompt model has
higher performance than the T5 multi-attribute prompt for only five attributes: location, cleanness,
temperature, size and power. Three out of these attributes belong to the most frequent attributes
(more than 1000 instances). Furthermore, for each of these attributes the absolute difference in F1
for the two models is actually very small. However, due to the frequency of these attributes this
difference counts much more for the overall micro-F1, which was reported in Table 6.3.

Another observation based on Figure 6.5 is that both models have F1 = 0 for certain attributes.
Although this is more prominent for the RoBERTa zero-prompt model (24/41 attributes), the T5
multi-attribute prompt model also fails to learn some attributes (9/41 attributes). Furthermore,
we notice that 8/9 of the attributes where the T5 multi-attribute prompt fails belong to the lowest-
frequency class of attributes (attributes with less than 100 instances). This highlights that, although
the T5 multi-attribute prompt model is substantially better than RoBERTa zero-prompt on learning
rare attributes, some attributes are inherently more difficult than others and, thus, require more
data to learn them. To explore the question of how performance relates to the semantics of an
attribute, in subsection 6.8.4 we provide a detailed analysis of attribute performance according to
their semantic type.

Our final observation from Table 6.3 is that both the T5 single-attribute prompt and the RoBERTa
single-attribute prompt models have lower performance compared to the T5 multi-attribute prompt
models. This observation shows that just verbalizing the attributes as part of the prompt is not

78



0 10 20 30 40 50 60 70 80

AMOUNT

COMPLEXITY
APPEARANCE

DISTANCE
COST

FOCUS

STABILITY
COVERAGE

OPENNESS
SKILL

HARDNESS

STRENGTH
THICKNESS

BRIGHTNESS

SOUND
SMELL

ELECTRIC CONDUCTIVITY
LENGTH

TASTE

PRESSURE
SPEED

STEP

AVAILABILITY
OWNERSHIP

MOTION
ORGANIZATION

POWER

SIZE
COLOR

ORIENTATION
KNOWLEDGE

TEXTURE

SHAPE
COMPOSITION

VOLUME

FULLNESS
WEIGHT

TEMPERATURE
WETNESS

CLEANNESS

LOCATION

F1 Score

T5, multi-attr RoBERTa, zero-prompt

Figure 6.5: F1 score per attribute for RoBERTa zero-prompt and T5 multi-attribute prompt models
in Open PI. The attributes are sorted according to their frequency (decreasing). RoBERTa zero-
prompt completely ignores all attributes with less than 150 instances.
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sufficient and, instead, we need to consider how we diversify our queried attributes per instance.
The diversification of the facet decomposition, which takes the form of attributes in our task, has
to consider two dimensions: (1) modeling facet dependencies within a single query, and (2) query-
ing different facets per instance. The first dimension is particularly important when our facets
(attributes) are not independent and there is not sufficient data to learn their dependencies, which
explains the lower performance of the single-attribute models. As we discuss in subsection 6.7.2,
the second dimension is essential for the generalization properties of a model.

6.7.2 Out-of-domain Evaluation
As we observe in the Table 6.3, despite the poor out-of-domain performance of the T5-base all-
attribute prompt model (F1 = 2.2), the other two variants of the same prompting technique have
performance competitive to the best model. Namely, the T5 k-attribute prompt model reaches
F1 = 19.3, while the GPT-3 all-attribute has F1 = 17.7. This confirms our hypothesis that fine-
tuning a model with a fixed query hurts its generalization properties, as it does not learn to pay
attention to the queried attributes. Instead, as discussed in Section 6.1, the diversification of the
facet decomposition across instances guides the model to learn how to extract a different aspect of
meaning of the entity, based on the queried attributes. This is an essential step for learning, since
the facets function as a bottle-neck to retain the meaning that is relevant to the underlying reasoning
mechanism. For example, given a sentence s where we want to predict the change-of-state of the
entity e, we may create two instances for s, e with different sets of queried attributes, q1 and q2. If
a model is trained on both instances, it will learn a different aspect of meaning for each instance,
despite having the same context.

Although the GPT-3-DaVinci all-attribute prompt model does not use the diversification of
facets, we observe that its generalization abilities are not negatively affected. This is due to few-
shot learning, where the model is forced to learn to generalize based on very few examples. How-
ever, this performance may also be attributed due to the choice of language model, as GPT-3-
DaVinci is considered the best version of GPT-3 models to predict complex intent and causality,
with a total of 175B parameters. For comparison, T5-base and RoBERTa-base have 220M and
123M parameters, respectively. The further investigation of the extend of facet diversification
on GPT-3 is left as future work, since experiments with diverse query sets require an extremely
large number of resources (e.g., running just one configuration of GPT-3-DaVinci single-attribute
prompt would cost 2,000$) and our T5 k-attribute prompt experiments indicate that the number of
queried attributes must also be treated as a hyperparameter.

Our final observation is that, despite the low performance for in-domain experiments, the
RoBERTa single-attribute prompt model performs the best in out-of-domain. Although the facet
diversification explains the performance difference with T5 all-attribute prompt, it doesn’t explain
why RoBERTa single-attribute prompt is slightly better than the T5 k-attribute prompt. To further
investigate this, we perform a manual error analysis of the output of both models and construct a
typology of their errors, which is discussed in Section 6.9.
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6.8 Model Analysis & Discussion
In this section we further analyze the models’ behavior with respect to the type of attributes they see
and their generalization properties. This study serves to uncover advantages and disadvantages of
each technique and suggest promising methods for future work to enhance both model performance
and robustness. For all our experiments in this section we use Open PI, as it is a more challenging
dataset than PiGLET with a large number of attributes.

6.8.1 Reasoning with Rare Attributes
Since some attributes are significantly more frequent than others, fine-tuned models have been
exposed to more data about them, which positively influences performance for these attributes.
For example, performance across all fine-tuned models for the most frequent attribute location
is substantially higher (F1 = 0.65–0.75) compared to other attributes such as taste, as shown in
Figure 6.5. Although all models perform well on such high frequency attributes, our analysis
shows that there are significant differences in performance for less frequent attributes.

Figure 6.7: Performance per attribute frequency in training data. Each bar shows the weighted-
F1 score across all attributes in the same frequency category. Unlike our proposed models,
RoBERTa zero-prompt’s performance is much lower when in lower frequency attributes and
reaching F1 = 0 for rare attributes (less than 100 instances).

We study per-attribute model performance based on each attribute’s frequency in training data
for the three best performing models: RoBERTa zero-prompt, RoBERTa single-attribute, and
T5 k-attribute. After grouping each attribute with respect to its frequency, we observe four dis-
tinct groups: low (<100 instances), medium-low (100-400 instances), medium-high (400-1000
instances) and high (>1000 instances) frequency. In Figure 6.7 we plot the weighted-F1 score per
group for each of the three models.
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Our first observation is that all models perform well for high-frequency attributes and differ-
ences in performance are very small across the models (F1 = 55–60). This confirms our hypothesis
that LLMs can learn physical interactions and achieve strong performance, if there is a sufficiently
large amount of labeled data to fine-tune on. This conclusion also agrees with our findings from
PiGLET, where LLMs achieve very good performance (F1 = 94), if trained with proper input.
Although the training set of PiGLET (5k instances) is smaller than the one of Open PI (11k in-
stances), PiGLET has a smaller number of attributes and entities. This results in more positive
instances per attribute, which is sufficient to generalize to most configurations possible within the
virtual environment.

RoBERTa,
zero-prompt

RoBERTa,
single-attribute

T5,
k-attribute

Spearman
correlation ⇢ = 0.82 ⇢ = 0.80 ⇢ = 0.51

Table 6.4: Spearman correlation between attribute frequency and F1 score. High correlation means
the model learns primarily high-frequency attributes. All results have p-value < 0.001.

Our second observation is that, although performance in high-frequency attributes is similar
across all models, it significantly drops for RoBERTa zero-prompt when attribute frequency de-
creases. This shows that the model struggles to learn with fewer examples. This difference is
most striking in the low-frequency cluster, where the model completely ignores the attributes (F1
= 0.0). On the other hand, the T5 k-attribute prompt model (followed by RoBERTa single-attribute
prompt) has relatively high performance even in low-frequency attributes. This supports one of
our main hypothesis in this chapter that,

by verbalizing and querying specific attributes, models pay attention to each attribute and learn
to imitate reasoning patterns, a crucial step in limited-data scenarios.

Finally, to quantify the effect of attribute frequency on performance, we estimate the per-
attribute Spearman correlation between performance and frequency for all three models. As we
see in Table 6.4, both the RoBERTa zero-prompt and the RoBERTa single-attribute prompt models
have a very strong correlation of performance to frequence, while the T5 k-attribute prompt has
only moderate correlation. Thus, the T5 k-attribute prompt model learns to predict attributes with-
out overly relying on their frequency. This results in a model with better generalization abilities to
limited-data scenarios and unseen attributes, as we also show in Section 6.9.

6.8.2 Diversifying the Facets via the k-attribute Prompt Model
To verify the generalization abilities of the models, we test them in out-of-domain scenarios with
unseen attributes. Through manual inspection we find that the all-attribute models have an inherent
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Figure 6.8: F1, Precision, and Recall scores as a function of the number of attributes used in the
prompt during in-domain evaluation for the k-attribute model.

bias towards generating attributes that appeared in the training data, even when prompted with new
ones. Their performance is in fact poor in the out-of-domain setting (2.2 F1, Table 6.3). Now the
question is whether this is a limitation of the reasoning abilities of the multi-attribute models or a
bias introduced by its training scheme.

We propose the k-attribute model to alleviate training biases by randomizing the queried at-
tributes. Notably, this model still maintains the core assumptions behind the multi-attribute prompt
model of querying multiple attributes at once. We observe that this simple technique results in the
same in-domain F1 score as the all-attribute prompt model, while significantly improving its out-
of-domain performance. This shows that the observed limitations with the all-attribute prompt
model are due to training biases that prevent the model from generalizing to unseen attributes.

Once trained, the k-attribute prompt model can be queried with varying number of attributes.
In Figure 6.8, we plot the performance of the model as a function of the number of attributes used
in the query during in-domain evaluation. We observe a drop in performance when the model is
queried with a single attribute (similar to the single-attribute prompt models). The performance is
highest around 10 attributes and drops slightly beyond that. We also observe that by varying k, we
can modulate precision and recall, suggesting that there are both lower and upper bounds on the
optimal number of attributes that LLMs can consider at once.

We also experimented by grouping attributes in a prompt based on their semantic similarity, but
this did not yield any significant changes in performance. We leave it to future work to investigate
further how to optimally choose the groups to use in a prompt during training and inference.

6.8.3 Degree of Generalization Abilities
A major obstacle for NLP models is to apply the reasoning patterns they have learned to unseen
attributes. Although the overall performance is lower in out-of-domain (best F1 = 23.5) compared
to in-domain experiments (best F1 = 51.4), we observe that it varies significantly across different
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attributes. In this part of our analysis, we investigate the models’ generalization abilities to out-of-
domain attributes, based on their relation to in-domain attributes.

Essentially we identify two types of out-of-domain attributes: (1) these that are semantically
similar to some in-domain attribute(s), and (2) these that have no similarity to any in-domain
attribute. These two groups of attributes also evaluate the degree of the model’s generalization
abilities, as it is easier to generalize to different verbalizations of a previously seen attribute than
to a completely new concept. For this part of the analysis we use the RoBERTa single-attribute
prompt model, as it has the best out-of-domain performance.

Out-of-domain In-domain
attribute synonym/antonym
activity motion
angle orientation
area shape
balance weight
capacity amount
consistency stability
contents composition
direction orientation
flexibility stability
granularity composition
height length
hydration wetness
intensity brightness
quantity amount
safety speed
softness hardness
tenseness pressure
tension pressure
thermal conductivity electric conductivity
tightness pressure
width length

Table 6.5: The most semantically similar in-domain attribute for each out-of-domain attribute
(Group Matched).

To identify related attributes, we firstly use cosine similarity distance on top of an encoder
trained for semantic similarity [Reimers and Gurevych, 2019]. After manual curation, we identify
21 out-of-domain attributes that are closely related to in-domain attributes (Group Matched), as we
see in Table 6.5. The 20 remaining out-of-domain attributes are more dissimilar and do not have
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matching in-domain attributes (Group Dissimilar).
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Figure 6.9: Out-of-domain performance in Matched group as a function of synonym’s frequency in
training data. T5 k-attribute prompt shows no correlation between performance and synonym
frequency, unlike RoBERTa single-attribute prompt (medium correlation).

For each of the two groups (Group Matched and Group Dissimilar), we estimate the weighted-
F1 score. We observe that Group Matched reaches F1 = 29.4, while Group Dissimilar F1 = 13.6.
For Group Matched, we also verify that the model’s performance on closely related attributes is
similar by measuring their Pearson correlation, which is r = 0.67 (p-value < 0.05). Both results
indicate that

the model understands the semantics of the attributes despite different verbalizations, however,
it struggles with more complex reasoning mechanisms, such as applying the acquired patterns to
entirely new attributes.

In the second part of our analysis, we further investigate the out-of-domain per-attribute per-
formance in the Matched Group. More specifically, we study how the out-of-domain performance
of an attribute relates to its in-domain synonym’s frequency. For this part, we used both the T5
k-attribute prompt and the RoBERTa single-attribute prompt models. As we observe in Figure 6.9,
the per-attribute performance of the T5 k-attribute prompt model is independent of the frequency
of the attribute’s synonym. However, the RoBERTa single-attribute prompt model has moderate
correlation between performance and synonym’s frequency. Combining this observation with our
results in subsection 6.8.1, we conclude that the T5 k-attribute prompt model has overall better
generalization abilities that do not depend on the frequency of an attribute or its verbalization, as
long as it has previously seen some change-of-state of a similar attribute.
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Figure 6.10: F1 scores per semantic type of attributes. Model struggles to generalize to unseen
attribute of Spatial and Behavioral types, highlighting that these semantic types are particu-
larly challenging.

6.8.4 Challenging semantic types
In the final part of our analysis, we explore why some classes of physical attributes appear to be in-
herently more difficult for LLMs. More specifically, we manually design an ontology of attributes
into seven major semantic types and then grouped each in-domain and out-of-domain attribute
according to the information it encodes, as seen in Table 6.6. Then, we study the performance
for each semantic type, both in-domain and out-of-domain. Via this analysis we aim to identify
evaluate each semantic type with respect to: (1) in-domain performance, and (2) generalization
to unseen attributes. For this analysis we use RoBERTa single-attribute prompt, as it has the best
out-of-domain performance.

As shown in Figure 6.10, with respect to in-domain performance, the model struggles to capture
Quantifiers and Temporal semantic types, which are known to be challenging for current LLMs
[Ravichander et al., 2019]. On the other hand, the semantic types Spatial, Behavioral, Sensory
Perception and Entity Specific have high weighted-F1 score in in-domain experiments.

Our second set of observations are related to the differences between in-domain and out-of-
domain performance. More specifically, we first observe that the Entity-specific and Material
semantic types are equally challenging for both in-domain and out-of-domain attributes. These
semantic types tend to describe inherent properties of an entity, such as fullness, that can only
change due to very specific events, such as put X into Y.

On the other hand, the semantic types Spatial and Behavioral have a large discrepancy between
in-domain and out-of-domain performance. This is surprising given that these semantic types con-
tain high-frequency attributes, like location, and, thus, more training instances. This observation
highlights
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Semantic Type In-domain Attributes Out-of-domain Attributes

Spatial
location, volume, shape, size,
orientation, length, distance,
organization

angle, direction, area, height,
width, pose, posture, spacial
relation

Material
texture, electric conductivity,
thickness, hardness, strength,
pressure

tenseness, tension, tightness,
softness, material, flexibility,
thermal conductivity, density,
granularity

Entity-Specific
cleanness, wetness, fullness,
ownership, openness, cost,
composition, coverage, focus

contents, wholeness, capacity,
hydration, consumption,
documentation, emotional state,
pain, usage

Behavioral knowledge, speed, motion,
stability, complexity, skill

activity, balance, consistency,
safety, familiarity, exposure,
viability, resistance

Quantifier amount intensity, quantity, magnitude

Temporal availability age, life, existence, time

Sensory Perception visibility
color, taste, temperature, smell,
sound, appearance, weight,
brightness

Table 6.6: Semantic types of attributes, both in-domain and out-of-domain. This ontology is con-
structed manually to study performance and generalization abilities per semantic type.

the limitations of current models to predict physical changes outside controlled environments
and that future work on physical event implications should evaluate models with respect to their
generalization abilities, besides in-domain performance.

6.9 Error Analysis & Challenges for LLMs
As we observed in subsection 6.4.2, performance drops significantly across all models when eval-
uated in out-of-domain attributes. Through our analysis section we investigated two groups of
attributes based on the existence of an in-domain synonym and the frequency of such a synonym.
Furthermore, we created a taxonomy of attributes to their semantic types and analyzed performance
per semantic type.

Both these analyses and our results assume that the annotations are exhaustive, thus, no addi-
tional attributes from the given attribute list change. However, since the out-of-domain attributes
were introduced by Amazon Turkers, there are attributes with significant overlap such as angle
and direction. These attributes may frequently change together, but given that each human an-
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notator had to introduce their own attributes, sparsity of annotations in such attributes becomes
unavoidable.

Due to these reasons we hypothesize that our models generate correct attribute changes that are
not present in the annotations and, thus, the real performance is higher than what is reflected by the
F1 score in our main results section. To confirm this hypothesis and identify the major challenges
of the models, we performed a manual error analysis. During this analysis, we inspect the output
of our best-performing models: the T5 k-attribute prompt model and the RoBERTa single-attribute
prompt. Given the expected attribute correlations, our error analysis is per-instance and not per-
attribute, where an instance is the pair of context and entity, and each instance may contain several
types of errors.

In Table 6.7 we show some real instances that we used in our error analysis. Although for
each instance all the out-of-domain attributes were queried, for brevity we only show attributes
that were identified as changed by either model or by the annotations. We observe that in many of
these examples the models predict attribute changes that are correct, despite not being captured by
the annotations. Such cases are Example 2, Example 4 and Example 5, where the T5 k-attribute
prompt correctly predicts attributes that were not identified by the annotators. These attributes
are not necessarily related to the annotated attribute, such as width and resistance in Example 2, or
hydration and softness in Example 4. However, some other instances may have predicted attributes
that are closely related to the annotated attribute, as we see in Example 1, where posture and angle
oftentimes change together.

Our final observation from Table 6.7 is that the models are able to correctly predict attributes
that require some common sense knowledge, which was not part of the provided context. For
example, T5 k-attribute prompt predicts in Example 4 that soaking beans implies that softness
changes, something that is not as an obvious conclusion as the change of hydration. Even more, in
Example 5 we observe that the model is able to understand the intent of the paragraph, which is to
change the softness of lips. These examples show that the T5 k-attribute prompt model is able to
perform some degree of reasoning, even for predictions that were considered wrong due to missing
annotations.

Based on our analysis of the full out-of-domain dataset, we identify four major types of errors
according to the degree of understanding of context and entities involved. The first category (Ad-
ditional attributes) includes errors where the model predicts attribute changes that are correct, but
are missing from the annotations. This error type shows that the model is performing as expected
and, instead, it was marked as an error due to the inadequacy of the annotations. We found that
almost 53% (T5 k-attribute prompt) and 44% (RoBERTa single-attribute) of the instances in this
category refer to attributes that are synonyms to the annotated attributes.

The second error category (Wrong context) includes attribute changes that are applicable to the
entity, but are incorrect given the context. This error type shows that the model captures some
relations about the entity involved and how they are typically affected, but struggles to understand
the consequence of the participant events.

The third category (Wrong context & entity) consists of attribute changes that are entirely wrong
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Example 1
Context: Begin by standing in Mountain Pose. Bend your right leg back and hold Entity: person
on to the inside of your foot behind you with your right hand. Annotated Attributes: balance

T5 k-attribute prompts: Consider the following attributes: flexibility, angle, T5 k-attribute output: posture, flexibility,
hydration, consumption. Which attribute changed for the person? angle, pose
RoBERTa single-attribute prompts: Is the flexibility of the person different? RoBERTa single-attribute output: No

Is the viability of the person different? Yes

Example 2
Context: Cut off a corner of a yeast packet. Entity: packet

Annotated Attributes: resistance

T5 k-attribute prompts: Consider the following attributes: contents, angle, T5 k-attribute output: contents, width
width, resistance, softness. Which attribute changed for the packet?
RoBERTa single-attribute prompts: Is the width of the packet different? RoBERTa single-attribute output: Yes

Is the resistance of the packet different? No

Example 3
Context: Drink a glass of hot milk. Entity: body

Annotated Attributes: thermal conductivity

T5 k-attribute prompts: Consider the following attributes: contents, hydration, T5 k-attribute output: thermal conductivity
thermal conductivity. Which attribute changed for the body?
RoBERTa single-attribute prompts: Is the thermal conductivity of the body different? RoBERTa single-attribute output: No

Is the hydration of the body different? Yes

Example 4
Context: Soak the dried beans and lentils overnight in a large bowl. Entity: beans

Annotated Attributes: hydration

T5 k-attribute prompts: Consider the following attributes: softness, contents, T5 k-attribute output: softness
granularity, hydration. Which attribute changed for the beans?
RoBERTa single-attribute prompts: Is the hydration of the beans different? RoBERTa single-attribute output: No

Is the softness of the beans different? No

Example 5
Context: Take the honey and mix it with the sugar, then add in a little bit of Vaseline or Entity: lips
petroleum jelly. When the mixture is all gritty, apply it on to your lips as you would with Annotated Attributes: granularity
lip balm. Leave on the mixture for about one minute.

T5 k-attribute prompts: Consider the following attributes: softness, pain, T5 k-attribute output: softness, pain
granularity. Which attribute changed for the lips?
RoBERTa single-attribute prompts: Is the softness of the lips different? RoBERTa single-attribute output: No

Is the granularity of the lips different? No

Table 6.7: Examples from out-of-domain and model predictions for the T5 k-attribute prompt
and the RoBERTa single-attribute prompt models. In many instances the predicted attribute is
correct, but the annotations fail to reflect this.
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for both the given entity and the context. This is the most severe error since it shows that the
model is not able to correctly predict neither the attributes that apply to the entity nor the potential
implications of the event.

The fourth category (No prediction) consists of instances with null predictions. Here the model
decides that there was no attribute change from the given list of attributes. Although such behavior
is preferred to a wrong attribute prediction and is expected in out-of-domain scenarios, it results in
significant drop in recall for both models.

Error Type T5, RoBERTa,
k-attribute single-attribute

Additional attributes 41.5% 25.4%
Wrong context 7.6 % 6.5%
Wrong entity &
context 2.7% 20.7%
No prediction 48.2% 47.4 %

Table 6.8: Error categories and prevalence of each category as a percentage of the number of in-
stances. Based on out-of-domain attributes. Many of the errors are due to missing annotations,
which shows that the real out-of-domain performance (and, thus, generalization abilities) of
T5 k-attribute prompt is higher than reported in subsection 6.7.2.

As we show in Table 6.8, the most prominent error type for both models is No prediction,
accounting for almost half of the errors. This highlights that both models struggle to identify which
out-of-domain attributes are relevant to a particular context and entity, showing weaknesses in the
generalization abilities. On the other hand, it is positive that they are self-aware of their limitations
and the semantic differences across in-domain and out-of-domain attributes, which leads them to
avoid wrong predictions in the presence of uncertainty. This observation shows that we can create
high-precision systems with a certain degree of generalization abilities to unseen attributes.

The second most prominent error is Additional attributes, where the models make correct pre-
dictions about attribute changes that the annotations failed to include. This category does not re-
flect a failure of the models, but instead failures of the evaluation and the dataset. Unlike in-domain
attributes, which is a predefined list of attributes given to human annotators, the out-of-domain at-
tributes were introduced by the human annotators themselves. This results in significant noise and
inconsistencies across this set of attributes and the annotations that mention them. As we mention
in Section 6.4.2, we spent a considerable amount of effort to curate the attributes and remove noise
and duplicates. However, since there was no given list of attributes, each annotator may introduce
attributes that were not considered by others while annotating different instances. This is particu-
larly prominent between almost synonymous concepts, such as width and size, which oftentimes
change together. As we see in Table 6.8, this category is responsible for 41.5% of errors for T5
k-attribute prompt and 25.4% for RoBERTa single-attribute. These results highlight that our sys-
tems’ real performance is significantly higher than what was reported in our previous section, since
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this error wrongfully hurts our reported precision and recall. Although performance for in-domain
attributes is still better than out-of-domain, this gap is in fact more narrow than what we thought,
showing that the models are able to generalize to some degree to unseen attributes.

This error is divided into two subcategories according to the type of additional attributes intro-
duced by the model. In the first category, these attributes are synonyms of the annotated attributes
and could replace them in the particular instance. In the second category, the additional attributes
are significantly different and complement the annotated attributes, such as flexibility and size. We
found that the first category is responsible for 53% (T5 k-attribute prompt) and 44% (RoBERTa
single-attribute) of the instances with Additional attributes errors. This observation shows that the
k-attribute prompt model is able to generate more detailed predictions of attribute changes.

The third category of error is Wrong context, which accounts only for 7.6% and 6.5% of in-
stances for the k-attribute and single-attribute prompt models, respectively. This reflects a real
challenge of the problem of event implications, since correctly answering these queries requires
a deep understanding of context instead of focusing only on the entity. Having fewer errors from
this category shows that the models are able to reason about event implications and how they affect
entities.

The final error category is Wrong entity and context, which includes attribute changes with no
obvious link to the entities or context. While this error is very rare for the T5 k-attribute model
(only 2.7%), it is more frequent for the RoBERTa single-attribute model (20.7%). Given that this
is the most severe error category, the large difference shows that the T5 k-attribute prompt model
is significantly better than the single-attribute prompt to generate correct attribute changes.

6.10 Conclusion
In Chapter 6 we discussed the problem of predicting event implications as entity change-of-state
with respect to physical attributes. In our work, we decompose the entity semantics into facets
that guide the model to retain the aspect of meaning relevant to the underlying reasoning rule we
aim to imitate. Compared to the multi-faceted representations of Chapter 3 where the facets were
given in the form of a relation, Chapter 6 assumes that a LLM only requires a verbalization of
the facets without a schematic representation of their values. By using prompting, a prominent
modern technique, as a means of communication with a LLM, we convey which facets are most
useful to complete the task. Our approach relies on two dimensions important for the facetization
of meaning: (1) verbalization of the facets, and (2) diversification of the facet decomposition per
instance, which boosts the generalization abilities of a model.

Predicting physical changes due to events is a challenging problem for current models, espe-
cially in out-of-domain or limited-data scenarios. We show that, by using proper task formulation,
LLMs can learn physical event implications even without physical interactions. Future work should
explore the question of whether physical interactions are necessary in more complex and realistic
settings, by (1) providing more challenging datasets that test the model limitations, and (2) ensure
a fair comparison of the language-only baselines.
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Furthermore, we show that the performance of a LLM may significantly vary based on how we
use it, and, overall, LLMs can benefit from: (1) verbalizing the attributes, (2) varying the prompt
information content across instances, and (3) querying multiple attributes in the same instance. By
following these guidelines, we show significant improvements in unseen attributes and attributes
of low-frequency. Last, our error analysis and discussion sections provide useful insights for future
work, with respect to prompt content and shortcomings of the current datasets that study physical
event implications.
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Chapter 7

Conclusion

Through this thesis we show that meaning has several aspects and, based on the context or task,
we might be interested to retain only one of these aspects in our representations. We discussed
how meaning can be decomposed to facets in representations for different semantic units: entities
(Chapter 3), sentences (Chapter 4) and events (Chapter 5). We show that by decomposing meaning
we achieve significant improvements with respect to both performance and generalization abilities
of a model. These improvements are particularly important in limited-data scenarios, where a
model is susceptible to shortcut learning.

In the final part of the thesis (Chapter 6), we explore meaning decomposition as a means to
share relevant information with the model and as a guide to learn reasoning patterns. Even high-
performing models such as LLMs are oftentimes unable to deduce which aspect of the entity or
sentence is relevant to answer complex questions, such as in commonsense reasoning tasks. While
in previous chapters we studied tasks that only require the extraction of the relevant aspect of
meaning, in this final chapter we study complex reasoning challenges, where the model must both
extract the relevant aspect of meaning and combine different pieces of information together in
order to learn reasoning patterns. By studying the task of event implications as entity change-of-
state with respect to a set of physical attributes, we evaluate the reasoning abilities of our models
and conclude that meaning decomposition functions as a catalyst in learning, which guides models
to learn reasoning patterns that generalize to new attributes and events.

7.1 Summary of Key Contributions
This thesis has the following contributions:

• Chapter 3 proposes an entity representation that decomposes meaning into a fixed set of
dimensions based on relations found in definitions. This representation exploits the fact that
definitions contain essential knowledge that generalizes across all instances of a concept. We
show that decomposing meaning leads to higher performance and interpretability in limited-
data scenarios.
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• Chapter 4 discusses the problem of covariate shift, as a set of systematic differences across
training and test data due to an underlying cause. It explores how such differences may neg-
atively influence performance by encoding the aspect of meaning that is not appropriate for
the task, while ignoring other important information (shortcut learning). We propose a novel
approach to tackle this problem by removing information from sentence representations that
correlates with the cause of the covariate shift.

• Chapter 5 discusses event representations in the form of semantic frames and sub-events.
Both representations aim to capture and understand the semantics of an event by decompos-
ing it into different aspects. While semantic frames provide surface information about the
event extracted from text, a representation via its sub-events provides explanations of the
semantics and how the event fits in the world.

• Chapter 6 discusses event implications as entity change-of-state with respect to physical at-
tributes. The chapter explores two components: (1) how meaning decomposition influences
performance and generalization of the models, and (2) the effect of language in learning
compared to physical interactions. To examine the first component we design training mech-
anisms that vary with respect to their meaning decomposition. Through this work, we show
that the generalization abilities of a model heavily rely on the meaning decomposition of
entities via their attributes, which function as filters to retain the relevant aspects of mean-
ing. Furthermore, we show that, despite the importance of physical interactions, we can still
learn reasoning patterns about physical event implications solely based on language.

7.2 Future Directions
In this section we describe possible future directions that are motivated by this thesis. Although
this list is not exhaustive, it is based on the main challenges and avenues for potential solutions
that we have identified from our research conclusions.

7.2.1 Using Definitions as Source of Knowledge
Definitions were successfully used in Chapter 3 to form entity representations. Definitions are
often used in language generation, where the main goal is to verify that a representation or model
contains sufficient information and is able to abstract over this information in order to generate a
correct definition.

Future directions in this area could focus on using definitions as a source of information in-
stead of an attainable goal. Due to manual curation, definitions capture only important aspects
of meaning that generalize across all instances of a class. This makes them a very useful tool to
combine with LLMs, particularly in limited-data scenarios or rare words, where the model cannot
see enough instances in order to be able to abstract over their meaning.
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7.2.2 Learning Meaning from Vision & Language
Recent work in the area of multi-modal deep learning has shown that we can achieve significant
improvements in various NLP tasks by combining information across multiple modalities, such
as vision and speech. Research in multi-modal learning focuses primarily on emotion recognition
[Busso et al., 2008, Zadeh et al., 2016] or sentiment analysis tasks [Zadeh et al., 2016], and,
more recently, on visual question-answering problems. Visual QA involves simple reasoning tasks
where, given an image and a natural language question about the image, the model has to generate
or predict the correct answer [Hudson and Manning, 2019, Singh et al., 2019, Gurari et al., 2018,
Goyal et al., 2017].

Despite the extensive use of multi-modal techniques for simple reasoning questions, these tasks
require only one modality to learn (typically vision) and the other modality (typically language)
to query and evaluate the model. Such an approach equates the problem to the task of object
recognition, without learning any significant knowledge from language. However, as we show in
Chapter 6, a model can learn from language even for physical reasoning challenges and, potentially
benefit if both modalities are combined. While language provides the right level of details needed
to answer reasoning questions, vision requires fewer data to learn physical properties of objects.
Thus, future directions should focus on developing models learning from both modalities, where
the model can both identify the relevant aspect of meaning and ground it in the physical world.

7.2.3 Determining Importance of Sub-events
In Chapter 5 we discussed our approach to extract sub-events during a large-scale crisis event.
Through our work we observe that a major challenge is to determine which sub-events are impor-
tant and could potentially change the outcome of the large event. Future research directions in that
area may focus on quantifying the essentiality or importance of sub-events based on their influence
on other sub-events and the large event as a whole.

7.2.4 Information Content in Query Formulation
In Chapter 6 we proposed different mechanisms to decompose an entity’s meaning based on a set
of attributes. An important observation from our experiments, is that the generalization properties
of the model depend on how we decompose meaning per instance, even if the same amount of
information remains through the entire training set. More specifically, we noticed that if we vary
the attributes that we query the model about, it learns to better generalize to unseen attributes.

We believe that future work should explore how a model can maximize its learning capacity
based on different decompositions of meaning. In our approach we randomly choose a subset
of the attributes per query, but, potentially, a model benefits more by selecting more similar (or
different) attributes per query and, thus, controlling the level of abstraction of the knowledge we
want to infuse our models with.
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7.2.5 Event Implications for Non-physical Attributes
Another observation from Chapter 6 is that attributes related to skills and behavior are more diffi-
cult to learn than other attributes. Although we only studied attributes that are related to physical
event implications, some of these events also affected the object’s abilities, such as balance.

Interesting future directions may analyze event implications for these inherent abilities of ob-
jects. Such attributes are more difficult to study because one can only test the acquisition or loss
of a certain ability during specific events (e.g., moving an object to test its balance). On the other
hand, to study changes in strictly physical characteristics such as length, we only need to observe
the object. This distinction makes these attributes particularly difficult to predict and shows the
complex nature of physical event implications.

7.2.6 Modeling Event Chains & Causality
In Chapter 6 we studied event implications as entities change-of-state. However, events do not
cause only changes in entities, but could also cause other events. Predicting causal relations is an
extremely difficult problem due to the number of causes or effects that an event may have. Thus, in
order to predict causality we do not only need to model the event implications of a single event but
a combination or series of events, typically called event chains. Naturally, although this problem
adds further complexity to current reasoning challenges, it is fundamental in order to create models
that can reason about the world.

7.2.7 Complex Coreference Resolution
Another future direction motivated by multi-faceted representations involves coreference resolu-
tion. Entity coreference occurs when two or more expressions (mentions) refer to the same person
or thing. The task of coreference resolution aims to identify phrases that refer to the same entity,
since each phrase may help us to extract more information about the entity.

In some cases, the coreferent mentions participate in similar or compatible events. This cer-
tainly facilitates the task of coreference resolution, since a similar aspect of the entity semantics
is used in each sentence meaning. However, there are certain cases of more complex coreference,
where the entity participates in unexpected events and, thus, the relevant aspect of its meaning is
completely different across sentences. For example, consider the entity paving stones. A typi-
cal use of the entity may refer to the material aspect of it, as in the road was constructed using
paving stones. However, we may later read the sentence during the protest, the paving stones from
the road were used to break the car windows. Although both mentions refer to the same object,
the relevant aspect of meaning for the latter is the hardness and sharp edges of the paving stone,
making it a weapon.

By representing different aspects of meaning and being able to choose what is relevant to con-
text, future work can construct a theoretical framework to model such difficult cases of coreference.

98



99



Bibliography

URL http://dcs.gla.ac.uk/~richardm/TREC_IS/2020/oldindex.html.

Dhekar Abhik and Durga Toshniwal. Sub-event detection during natural hazards using features of
social media data. In Proceedings of the 22nd International Conference on World Wide Web,
pages 783–788, 2013.

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Paşca, and Aitor Soroa. A
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A Appendix
This appendix provides supplementary material for the work described in Chapter 4.

A.1 Embedding Visualization of Tweets
In Figure A.1 we visualize the 2-D projection of the 200-D tweet embeddings h(ti) for all the
tweets from the 2012 Philippines flood data subset. We observe that the embedding distribution
generated by each of the models is different. It is important to note that the multitask model
achieved the lowest F1 score and the corresponding visualization shows two distinguishable clus-
ters. The baseline embeddings are visualized as uniformly distributed, while the adversarial model’s
(best performing model) embeddings are mostly clustered in two groups with few points between
the clusters.

The projection of the tweet embeddings from the adversarial model does not result into two
separable clusters as seen in Figure A.1c, like the ones shown in Figure A.1b for the multitask
embedding.

(a) Baseline (b) Multitask

(c) Adversarial

Figure A.1: Tweet encoder embeddings visualization. Encoder embeddings dimensionality
mapped to 2-D using UMAP. Blue circles represent non-critical tweets, red triangles represent
critical tweets.
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B Appendix
This appendix refers to details about work described in the second part of Chapter 5.

B.1 Crisis Event Types and Number of Tweets
In Table B.1 we show all the crisis events in our dataset and their corresponding event type. This
data is publicly available by Alam et al. [2020].

Crisis Event Type Crisis Event Name Crisis Event Name

Crash/Explosion 2013 Glasgow helicopter crash West Texas Fertilizer Company explosion (2)
2013 Dhaka garment factory collapse 2013 Lac-Mégantic rail disaster
2012 Amuay Oil Refinery explosion in Venezuela 2013 Kiss nightclub fire in Brazil
2013 Santiago de Compostela derailment in Spain 2013 Spuyten Duyvil derailment
2014 Malaysia Airlines Flight 17 2013 Chelyabinsk meteor

Earthquake 2013 Pakistan earthquake 2017 Iran–Iraq earthquake
2014 Iquique earthquake 2014 South Napa earthquake
2012 Costa Rica earthquake 2017 Puebla earthquake
April 2015 Nepal earthquake 2012 Guatemala earthquake
2013 Bohol earthquake 2012 Northern Italy earthquakes

Flood 2012 Philipinnes Floods 2013 Alberta Floods (2)
Srilanka Floods 2014 India Floods
2013 Manila Floods 2013 Italy Sardinia
2014 Pakistan Floods 2013 Queensland Floods-ontopic
2013 Queensland floods 2013 Colorado Floods

Hurricane/Typhoon/Cyclone 2015 Vanuatu Cyclone Hurricane Harvey
2012 Philippines Typhoon-pablo Hurricane Irma
2012 US Sandy Hurricane Hurricane Maria
2014 Philippines Typhoon 2014 Mexico Hurricane Odile
2013 Phillipines Typhoon Yolanda 2012 Sandy Hurricane-ontopic
2014 Philippines Typhoon-Hagupit 2012 US Sandy Hurricane-a144267
2015 Vanuatu Cyclone-pam

Terrorist Attack 2013 Boston Bombings 2013 La Airport Shootings
2013 Boston Bombings-ontopic

Tornado 2011 Joplin Tornado-a121571 2013 Oklahoma Tornado-ontopic
2011 Joplin Tornado-a131709

Wildfire 2012 Colorado Wildfires (2) 2013 Australia Bushfire

Volcano 2014 Iceland Volcano

Haze 2013 Singapore Haze

Landslide 2014-2015 Worldwide Landslides

Respiratory Syndrome 2014 Middle-east Respiratory-syndrome 2019 Covid pandemic

Ebola 2014 Worldwide Ebola

Table B.1: All crisis events in the dataset.
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C Appendix
This appendix refers to details about the work described in Chapter 6. Our experiments are built on
top of the Huggingface library [Wolf et al., 2019]. The code for our experiments will be available
as open source upon acceptance.

C.1 Metrics
Our task is a multi-label classification where, given some context and an entity of interest, we
need to identify which attributes change. For most pairs context, entity, event implications affect
only 1-2 attributes. This results in a few positive instances (i.e., attributes that change) and a large
number of negative instances (i.e., attributes that do not change). Furthermore, we observe that the
number of positive instances significantly varies across attributes: for example, in the training set
of Open PI, location has 4505 positive instances, while distance only 53. Due to the significant
label imbalance, in our experiments we report micro- Precision, Recall, and F1 for the positive
instances, across labels. In addition to these metrics, we measure per-attribute Precision, Recall
and F1 for both datasets.

C.2 Hyperparameters
We performed hyperparameter search in the following way. Based on the model size, we picked
the largest batch size that could fit on our GPUs. Then we performed hyperparameter search on
the dev set. We report in Table C.2 the hyperparameters we use in each case. We use Adam with
betas (0.9,0.999) and ✏ =1e-08 for T5 experiments.

Data Model Epochs Batch size Learning Rate Label Smoothing

PiGLET RoBERTa,
zero-prompt 30 20 4e-05 0.0
T5 all-attr 50 32 3e-05 0.1

Open PI RoBERTa,
zero-prompt 20 32 1e-05 0.0
RoBERTa,
single-attr 6 16 1e-05 0.1
T5 single-attr 8 16 5e-05 0.1
T5 all-attr 8 16 5e-05 0.1
T5 k-attr 10 16 5e-05 0.1

Table C.2: Hyperparameters.

To verify that model size differences do not impact our results, we also did experiments
with RoBERTa-base zero-prompt, which shows very similar performance to RoBERTa-large zero-
prompt.
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C.3 In-domain Attributes and their Frequency

Attribute Train Dev Test

location 4505 360 803
cleanness 1255 117 167
wetness 1211 80 215
temperature 1184 91 184
weight 1073 84 124
fullness 694 62 122
volume 676 56 174
composition 662 48 90
shape 538 55 65
texture 515 34 74
knowledge 409 27 119
orientation 330 15 45
color 292 13 33
size 264 26 50
power 245 11 18
organization 242 14 37
motion 242 15 33
ownership 212 6 19
availability 195 30 63
step 171 8 13
speed 151 3 18
pressure 148 4 14
taste 145 8 14
length 122 9 17
electric conductivity 121 9 18
smell 120 7 43
sound 68 6 6
brightness 65 0 7
thickness 64 4 16
strength 64 2 14
hardness 63 5 10
skill 62 3 4
openness 55 2 16
coverage 54 3 7
stability 54 6 14
focus 53 4 5
cost 53 6 9
distance 53 0 11
appearance 44 8 8
complexity 44 1 5
amount 40 3 16

Table C.3: Attribute occurrences in training, validation, and test sets.
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