
Polyphonic Sound Event Detection

with Weak Labeling

Yun Wang

CMU-LTI-18-017

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213
www.lti.cs.cmu.edu

Thesis committee:

Prof. Florian Metze, Chair (Carnegie Mellon University)
Prof. Alex Waibel (Carnegie Mellon University)

Prof. Alex Hauptmann (Carnegie Mellon University)
Dr. Aren Jansen (Google Inc.)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in Language and Information Technologies

c© 2018 Yun Wang

www.lti.cs.cmu.edu

Abstract

Sound event detection (SED) is the task of detecting the type as well as
the onset and offset times of sound events in audio streams. It is useful for
multimedia retrieval, surveillance, etc. SED is difficult because sound events
exhibit diverse temporal and spectral characteristics, and because they can
overlap with each other.

Ideally, SED systems should be trained with strong labeling, which
provides the type, onset time and offset time of each sound event occurrence.
However, such labeling is formidably tedious to produce by hand. Current
research on SED often uses weak labeling. This thesis deals with two types
of weak labeling: presence/absence labeling, which only states which types
of events are present in each recording without any temporal information,
and sequential labeling, which only provides the order of sound events, but
without timestamps. Even if the training data is weakly labeled, we still
want our SED systems to localize the sound events in time.

SED with presence/absence labeling is usually treated as a multiple
instance learning (MIL) problem, which requires a pooling function. In this
thesis, we compare six pooling functions both theoretically and empirically,
and establish the linear softmax pooling function as the optimal. Using this
function, we build a state-of-the-art network that not only recognizes the
types of sound events, but also localizes them temporally.

SED with sequential labeling has not received much attention. In
this thesis, we propose a novel connectionist temporal localization (CTL)
framework, which successfully makes use of the extra temporal information
in sequential labeling compared with presence/absence labeling.

Transfer learning is a popular technique to deal with insufficient training
data. In this thesis we extract features from two neural networks trained
for out-of-domain tasks, and show that these features can improve the SED
performance when the training corpus is small.

Keywords: Sound event detection (SED), weak labeling, multiple instance
learning (MIL), pooling function, connectionist temporal classification
(CTC), connectionist temporal localization (CTL), transfer learning

i

Contents

1 Introduction 1
1.1 History and State-of-the-Art of SED 4

1.1.1 Evolution of Models 4
1.1.2 Feature Extraction . 7
1.1.3 Corpora for Sound Event Detection 8

1.2 Contributions of This Thesis 10

2 Review of Machine Learning Techniques 12
2.1 Deep Learning and Neural Networks 12

2.1.1 Feed-Forward Neural Networks 12
2.1.2 Recurrent Neural Networks (RNN) 16
2.1.3 Convolutional / Time-Delay Neural Networks (CNN

/ TDNN) . 20
2.2 Connectionist Temporal Classification (CTC) 22
2.3 Multiple Instance Learning 25
2.4 Transfer Learning . 26

3 Sound Event Detection with Presence/Absence Labeling 28
3.1 The Max and Noisy-Or Pooling Functions 30

3.1.1 Motivation . 30
3.1.2 The Gradient Flow . 31
3.1.3 Experiment 1: Phoneme Recognition on TEDLIUM . 33
3.1.4 Experiment 2: The DCASE 2017 Challenge 38

3.2 The Average, Softmax and Attention Pooling Functions . . . 45
3.2.1 Motivation . 45
3.2.2 The Gradient Flow . 46
3.2.3 Experiment: The DCASE 2017 Challenge 48
3.2.4 Additional Remarks 57

3.3 TALNet: A Network for Large-Scale Joint Audio Tagging and
Localization . 58
3.3.1 Google Audio Set: Corpus and Metrics 59
3.3.2 TALNet: Training and Evaluation 60

3.4 Summary . 64

ii

4 Sound Event Detection with Sequential Labeling 65
4.1 Data Preparation . 67

4.1.1 Automatic Generation of Strong and Sequential Labels 67
4.1.2 Baseline Systems . 70

4.2 Standard CTC for SED with Sequential Labeling 73
4.3 Connectionist Temporal Localization (CTL) for SED with

Sequential Labeling . 76
4.3.1 The CTL Forward Algorithm 76
4.3.2 Experiment Results 79
4.3.3 Discussion: An Alternative CTL Algorithm 80

4.4 Combining CTL with MIL . 82
4.5 Discussion: Generalization to New Data 83
4.6 Summary . 85

5 Transfer Learning for Sound Event Detection 86
5.1 The Feature Extractors for Transfer Learning 87

5.1.1 The VGGish Network 87
5.1.2 SoundNet and Its Variants 89

5.2 Transfer Learning Experiments 95
5.2.1 Transfer Learning for the DCASE Challenge 95
5.2.2 Transfer Learning for Large-Scale Joint Audio Tag-

ging and Localization 97
5.2.3 Transfer Learning for Sequential Labeling 99

5.3 Summary . 101

6 Conclusion 103
6.1 Contributions of This Thesis 103
6.2 Potential Applications . 104
6.3 Future Work . 105

6.3.1 Continuation of Work in This Thesis 105
6.3.2 Utilizing the Hierarchy of Sound Events 105
6.3.3 Learning the Temporal Characteristics of Sounds . . . 106

Acknowledgments 107

Bibliography 108

List of Figures

1.1 Example sound events. 2
1.2 A categorization of sound events. 2

2.1 Common activation functions used in neural networks. 13
2.2 The effect of momentum in gradient descent. 15
2.3 The structures of a feed-forward neural network, a recurrent

neural network (RNN), and a bidirectional RNN. 17
2.4 The structures of an LSTM cell and a gated recurrent unit

(GRU). 19
2.5 The trellis for computing the CTC loss function. 23
2.6 The “peaky” output of a CTC speech recognition network. . 24

3.1 Block diagram of an instance-space multiple instance learning
(MIL) system for SED. 29

3.2 Evolution of the validation phone error rate (PER) of the
various systems on the TEDLIUM corpus. 35

3.3 The frame-wise predictions of the various systems on an
example utterance. 36

3.4 The structures of the networks used in Secs. 3.1.4 and 3.2.3. . 39
3.5 The frame-level predictions of the max and noisy-or pooling

systems on an example test recording. 43
3.6 The frame-level predictions of the max pooling, average

pooling, linear softmax, exponential softmax, and attention
systems on an example test recording. 52

3.7 The confusion matrices of the linear softmax system on the
test data of the DCASE 2017 challenge, for both Task A and
Task B. 53

3.8 The correlation between the Task A F1 and the frequency and
coverage of the event types. 55

3.9 The change of the Task B error rate and F1 metric of the
various systems as the threshold varies. 56

3.10 The structure of TALNet for joint audio tagging and locali-
zation. 61

iv

4.1 An example of the strong labels generated by TALNet. 68
4.2 The structures of the systems used in Chapter 4. 71
4.3 The frame-level predictions of the two baseline systems on an

example evaluation recording. 73
4.4 The frame-level predictions of the standard CTC system on

three example evaluation recordings. 75
4.5 The frame-level predictions of the CTL system on three

example evaluation recordings. 79
4.6 The class-wise frame-level F1’s of the CTL system compared

with the two baseline systems. 80
4.7 The frame-level predictions of the alternative CTL algorithm

on an example evaluation recording. 82
4.8 The effect of combining a CTL system with a MIL system

using different mixing weights. 83

5.1 The structure of the VGGish network. 88
5.2 The structure of the original SoundNet. 90
5.3 The structures of the four variants of SoundNet. 91
5.4 Training curves of the variants of SoundNet. 93
5.5 The features extracted from various layers of two variants of

SoundNet: SN-R and SN-CR. 94
5.6 The structure of the system used in Sec. 5.2.1. 96
5.7 The structure of the system used in Sec. 5.2.2. 96
5.8 The structures of the systems used in Sec. 5.2.3. 99
5.9 The macro-average frame-level F1 obtained with various

transfer learning features. 100

List of Tables

1.1 A summary of corpora available for SED. 10

2.1 Output layer activation functions and loss functions suitable
for different types of machine learning tasks. 14

3.1 The optimal hyperparameters and phoneme error rates of the
various systems on the TEDLIUM corpus. 34

3.2 The predicted phoneme sequences of the various systems on
an example utterance. 35

3.3 Detailed information and hyperparameters of all the networks
for audio tagging and SED used in Chapter 3. 40

3.4 The performance of the SLAT, max pooling and noisy-or
pooling systems on both subtasks of the DCASE 2017 challenge. 42

3.5 Breakdown of the errors made by the max pooling system on
Task B of the DCASE 2017 challenge. 44

3.6 Detailed performance of the max pooling, average pooling,
linear softmax, exponential softmax, and attention systems
trained and evaluated on the DCASE 2017 challenge. 50

3.7 Audio tagging and localization performance of TALNet, com-
pared against various systems in the literature and systems
trained with DCASE data only. 62

4.1 The 35 common events, and their corresponding noisemes and
Audio Set sound event types. 69

4.2 Some statistics of the data used for the experiments in
Chapter 4. 70

4.3 Performance of the CTL network with different values of max
concurrence. 79

4.4 The macro-average frame-level F1 of some systems Chapter 4,
measured on both the Audio Set evaluation data and the
Noiseme corpus. 84

5.1 The optimal hyperparameters and performance of the system
in Sec. 5.2.1 with different types of features. 97

vi

5.2 The optimal hyperparameters and performance of the system
in Sec. 5.2.2 with different types of features. The first row is
the performance of TALNet in Sec. 3.3. 98

List of Abbreviations

AP average precision

AUC area under the curve

BPTT back-propagation through time

BS bag-space

CASA computational auditory scene analysis

CHIL Computers in the Human Interaction Loop

CLEAR Classification of Events, Activities and Relationships

CMO confusion matrix ordering

CMU Carnegie Mellon University

CNN convolutional neural network

CRNN convolutional and recurrent neural network

CTC connectionist temporal classification

CTL connectionist temporal localization

DCASE Detection and Classification of Acoustic Scenes and Events

DNN deep neural network

ES embedding-space

ESC Environmental Sound Classification

FLAC Free Lossless Audio Codec

FN false negative

FP false positive

GMM Gaussian mixture model

GRU gated recurrent unit

HME hierarchical mixture of experts

HMM hidden Markov model

HTML hypertext markup language

iff if and only if

IS instance-space

KL Kullback-Leibler (divergence)

LIUM Laboratoire d’Informatique de l’Université du Maine

LSTM long short-term memory

MAP mean average precision

viii

MAUC mean area under the curve

MED multimedia event detection

MFCC Mel-frequency cepstral coefficients

MIL multiple instance learning

mi-SVM multiple instance support vector machine

MSE mean squared error

NIST National Institute of Standards and Technology

NMF non-negative matrix factorization

PCA principal component analysis

ReLU rectified linear unit

RNN recurrent neural network

ROC receiver operator characteristic

SED sound event detection

SGD stochastic gradient descent

SLAT strong labeling assumption training

SMI standard multiple instance (assumption)

SN-C SoundNet, convolutional

SN-CR SoundNet, convolutional and recurrent

SN-F SoundNet, fully connected

SN-R SoundNet, recurrent

SVM support vector machine

TDNN time-delay neural network

TED Technology, Entertainment, Design

TEDLIUM (see TED and LIUM)

TALNet tagging and localization network

TP true positive

TREC Text Retrieval Conference

TUT Tampere University of Technology

VGG Visual Geometry Group

WER word error rate

YFCC Yahoo Flickr Creative Commons

Chapter 1

Introduction

The environment of our daily life is filled with a complex mixture of sound
events, such as cars passing by in the streets, or doors opening and closing
in the office. Sound events exhibit great variability in a number of aspects.
They may originate from various sources (e.g. human, animals, machinery,
nature; see Fig. 1.1), and these sources may be either fixed or moving.
In terms of spectral characteristics, sound events may be either tonal
(exhibiting distinct peaks in the spectrum, e.g. sirens) or noise-like (with
power spanning a broad frequency band in the spectrum, e.g. cheering). In
terms of temporal behavior, sound events may be transient, continuous or
intermittent: transient sound events (e.g. gun shots) last for a very short
time, usually less than one second; continuous sound events last for a long
duration, and they may either be stationary (e.g. engine noise) or display
varying frequency characteristics (e.g. music); intermittent sound events
occur repetitively with short intervals in between, and they may either
exhibit a periodic pattern (e.g. footsteps) or occur at irregular intervals
(e.g. dog barks). Fig. 1.2 summarizes the categorization of sound events.

Sound events provide us with a tremendous amount of information
about the surroundings, and our auditory system is surprisingly good at
separating and recognizing them. If an intelligent system aims at interacting
with humans and the environment in a natural way, it must be able
to recognize and understand sound events. The procedure of a machine
turning the ambient sound signal into a meaningful representation is called
computational auditory scene analysis (CASA) [1]. CASA involves several
related tasks, such as acoustic scene recognition, sound event detection, and
source separation. These tasks are progressively harder: acoustic scene
recognition only requires determining the type of the environment (e.g.
office, restaurant, train); sound event detection requires the detection and
classification of each individual sound event; source separation requires
separating sound events in a mixed signal into clean audio streams. These
tasks are also closely related and can facilitate each other: knowing the

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Example sound events: singing, dog barking, ambulance siren,
wind.

Figure 1.2: A categorization of sound events.

acoustic scene reduces the uncertainty in the distribution of sound events,
while the types of the sound events are an important source of information
about the acoustic scene; having sound events separated from a mixture
makes their recognition easier, while knowing the spectral characteristics of
sound events also makes it easier to separate them. While there are works
that approach the task of sound event detection jointly with acoustic scene
recognition [2, 3] or with source separation [4, 5], we focus on the task of
sound event detection alone in this thesis.

The term “sound event detection” (SED) actually entails two subtasks:
classification and localization. Classification refers to determining the
type(s) of the sound event(s) occurring in an audio recording, without
pinpointing the onset and offset times of the events. It is also known as
“audio tagging” from a perspective of information retrieval. Localization
refers to determining the precise onset and offset times of each sound event
occurrence. While the scope of many works are limited to audio tagging, we
keep the task of localization in mind throughout this thesis.

Sound event detection is useful for many applications. For example, in
the automatic subtitling of TV dramas for hearing impaired people, it is
often necessary to include sound events (e.g. telephone ringing), because
they can be important for understanding the storyline. SED can also be

CHAPTER 1. INTRODUCTION 3

used for surveillance purposes, such as detecting the noise of a person falling
down stairs in hospitals [6], screams and shouts in subway trains [7, 8],
and gunshots [9]. In the fast developing area of autonomous driving, it
is also necessary for smart cars to be able to detect certain sounds in the
environment (e.g. honks of other cars, sirens of ambulances) and respond
to them properly. A more full-fledged application of SED is understanding
activities taking place in videos, such as a soccer game or a birthday party.
This can be used to generate metadata for the millions of videos uploaded
by Internet users every day, so they can be efficiently searched. This has
been the goal of the yearly NIST TREC Video Retrieval Evaluation1 since
2003. A number of systems based on the detection of sound events, either
learned in an unsupervised fashion [10, 11] or defined by humans [12, 13, 14]
have seen success on this task.

Sound event detection is made difficult by several factors. Besides the
great variability in their spectral and temporal characteristics, sound events
also often overlap in time, which means some of the events need to be
recognized in a signal-to-noise ratio less than 0 dB. Some SED systems
have made a simplifying assumption that there can only be one sound event
active at a time; such systems are called monophonic SED systems. On the
other hand, in this thesis we do not make this assumption, and tackle the
more realistic scenario of polyphonic sound event detection directly. The
systems we build are able to detect occurrences of sound events that overlap
with each other.

Another difficulty in developing SED systems is the lack of data. Until
2016, most SED systems were trained with no more than 20 hours of audio.
The amount of audio data also restricted the number of sound event types
that could be handled. Some corpora provided annotations of dozens of
sound event types, but many of these types were so rare that they suffered
from nearly zero recall. This difficulty has been alleviated by the release of
the Google Audio Set [15] in March 2017, which contains about 8 months
of audio data and involves 527 sound event types. However, SED is still far
from being a solved task.

The current eminent difficulty of SED is the weakness of the labeling.
Ideally, the training data for SED systems should be labeled with the type,
onset time and offset time of each sound event occurrence. This type
of labeling is called strong labeling. Strong labeling makes SED a fully
supervised machine learning problem, for which there are plenty of mature
models and techniques. However, such labeling can be formidably tedious
to create by hand. As a result, the research on how to learn to detect sound
events with weak labeling has become popular. In this thesis we deal with
two types of weak labeling. The first type, which we call presence/absence

1http://trecvid.nist.gov/

http://trecvid.nist.gov/

CHAPTER 1. INTRODUCTION 4

labeling2, only tells us whether each sound event type is active or not in
each recording, and does not contain any temporal information whatsoever.
The second type, which we call sequential labeling, is slightly stronger: it
describes the order in which sound events occur, but still does not provide
any timestamps.

In the remainder of this chapter, we will first give a review of the history
and state of the art of sound event detection. We will review the development
of models, features, and corpora for SED. After that, we will highlight the
contributions of this thesis and how they push the frontier of the research.

1.1 History and State-of-the-Art of SED

1.1.1 Evolution of Models

A multitude of models have been used to model sound events. An early
example is hidden Markov models (HMMs), e.g. [16, 17, 18, 19]. Each type
of sound events was modeled by a three-state HMM; left-to-right HMMs
were used for sound events with temporal structures, and ergodic HMMs
were used for relatively stationary ones. The distribution of acoustic feature
vectors belonging to each HMM state was modeled with Gaussian mixture
models (GMMs). Viterbi decoding was employed to generate sequences of
sound events, and to locate the onset and offset times of each sound event
instance. HMMs were popular because they enjoy the use of “language
models” of sound events to rule out unlikely sound event sequences. In
the CHIL3 project [20], it was shown [21] that an HMM-based system [17]
localized sound events better than a system that classified short segments
of audio with support vector machines (SVMs) [22], even though the latter
was more accurate at classifying individual segments.

A drawback of HMMs is the inability to deal with polyphony. To
compensate for this, a multi-pass decoding procedure was proposed in [2] for
polyphonic SED: at each frame in each pass of decoding, the Viterbi path
was prohibited from entering HMM states corresponding to sound events
that had already been detected at that frame in previous iterations. With
multi-pass decoding, HMMs were able to produce polyphonic detections, but
they still could not model how overlapping sound events affect the acoustic
characteristics of each individual sound event.

To explicitly deal with the overlapping of sound events, researchers
have resorted to source separation techniques, such as non-negative matrix
factorization (NMF) [23]. In NMF, the non-negative spectrogram X of a
mixture signal is decomposed into the product of a basis matrix W and
a gain matrix H, both with non-negative elements. The columns of the

2When the term “weak labeling” is used in the literature, it often only refers to
presence/absence labeling.

3“CHIL” stands for “computers in the human interaction loop”.

CHAPTER 1. INTRODUCTION 5

basis matrix W can be understood as the spectra of stationary sound events
or sub-units of sound events with a variable temporal structure, and the
elements of the gain matrix H indicate how much each basis is activated
at each frame. NMF has been applied to SED in multiple ways. In [4, 24],
a test recording was first decomposed into four streams before monophonic
SED was conducted on each stream. The training recordings were also
decomposed into streams to separate overlapping sound events, in order
to train better acoustic models (HMMs) of each sound event type. In
contrast, [25] did not attempt to separate the acoustic signals of overlapping
sound events. Instead, the authors treated the annotation of a recording as
a non-negative matrix similar to a spectrogram, and learnt one basis matrix
W1 for spectrograms and one for annotation matrices W2 jointly. If a basis
in W1 represented the spectrum of multiple overlapping sounds, then the
corresponding basis in W2 would have multiple entries with large values. For
a testing recording with a spectrogram X, a gain matrix H was estimated by
solving X = W1H, then the annotation matrix of the recording was given
by thresholding W2H. NMF is good at dealing with overlapping sounds;
however, it handles the spectrum of each frame independently, and fails to
model any temporal context.

With the rapid growth of deep learning techniques, neural networks
quickly became the mainstream solution to recognizing sound events. Neural
networks overcome many defects of previous approaches: they are no
longer restricted by the topology of HMMs, and they can take context into
consideration easily. More importantly, neural networks can be regarded
as trainable feature extractors, so they eliminate the need for complicated
feature engineering often required for HMMs, and their deep structure can
analyze the acoustic signal better than the simple matrix multiplication of
NMF.

The application of neural networks to SED started with feed-forward
neural networks. Feed-forward neural networks were used in [26, 27] to
classify isolated instances of sound events, taking the acoustic features
of many consecutive frames as input. This could be easily extended
to detecting sound events in audio streams by applying the network to
sliding windows of acoustic features and smoothing the decisions with a
simple median filter (e.g. [28]) or an HMM (e.g. [29]). The simple feed-
forward neural network in [28] yielded a significantly better polyphonic SED
performance than the HMM system with NMF pre-processing in [24].

Feed-forward networks treat all the input neurons independently, while
the spectrograms of sounds exhibit high correlation between neighboring
time-frequency units, just like images. To make better use of the spectro-
temporal locality of spectrograms, convolutional neural networks (CNNs)
were used to classify isolated events [30, 31, 32, 33, 34, 35] as well as to
detect sound events in mixtures [36, 37]. The CNN in [37] again yielded
superior performance compared with the feed-forward network in [29].

CHAPTER 1. INTRODUCTION 6

CNNs make a decision for each frame based on the signal within a
temporal window around this frame, thereby making use of limited context.
Taking this a step further, recurrent neural network (RNNs) make frame-
wise decisions based on unlimited context. Even though sound events usually
do not exhibit long-range dependence, the unlimited context may provide
information about the background they occur in, and make them easier
to recognize. In addition, the recurrent connections in the hidden layers
can function as an implicit “language model” of sound events, making it
unnecessary to smooth the frame-wise decisions. RNNs were successfully
applied to SED in [13, 38, 39, 40]. A more recent study [41] proposed a
network with convolutional layers followed by recurrent layers. Combining
the ability of CNNs to learn locally invariant filters and the power of RNNs
to model both long and short temporal dependencies, this network achieved
better polyphonic SED performances than either a CNN or an RNN alone on
four datasets. Such convolutional and recurrent neural networks (CRNNs)
have now become a common model for SED.

The studies above relied upon strong labeling, i.e. knowing the exact
onset and offset times of the sound event occurrences. In the past two years,
SED with presence/absence labeling has become a hot topic of research,
because this is the form of labeling provided by the large-scale Google Audio
Set [15]. SED with presence/absence labeling is usually treated as a multiple
instance learning (MIL) [42] problem: frames in a recording are regarded as
instances in a bag, and the presence or absence of events is only known on
the bag level. A common approach to solve this MIL problem is to predict
the presence or absence of events on the frame level using any type of the
neural networks introduced above, and then use a “pooling function” to
aggregate the frame-level predictions into a recording-level prediction which
can be compared against the ground truth. Conventional pooling functions
for MIL include the max pooling function [43, 44] and the noisy-or pooling
function [45, 46, 47]. More recent studies have seen the use of many other
types of pooling functions, including average pooling [48], “max-of-means”
pooling [49], various flavors of softmax pooling [50, 51, 52], and attention-
based pooling functions [53, 54, 55, 56, 57]. Many state-of-the-art systems
have emerged using these pooling functions, and this thesis will compare
some of the pooling functions both theoretically and empirically. Besides
aggregating frame-level predictions into a recording-level prediction, more
complicated MIL methods have been applied to SED as well, such as multiple
instance support vector machines (mi-SVM) [44] and manifold regularization
on graphs [3].

Besides presence/absence labeling, weak labeling may also come in the
form of sequential labeling. Sequential labeling is currently the predominant
form of supervision for training speech recognition systems: we only know
the phoneme sequence for each utterance, but not the temporal alignment.
Standard technique for training speech recognizers with sequential labeling

CHAPTER 1. INTRODUCTION 7

include connectionist temporal classification (CTC) [58], RNN transdu-
cers [59], and attention [60, 61]. Despite its pivotal importance in speech
recognition, sequential labeling has not received much attention in other
applications, with an important reason being the lack of data. One of the
few examples is [62], where the authors applied CTC to the detection of
actions in video recordings given only the order of actions in each recording.
We have done some preliminary work of applying CTC to sound event
detection [63, 64], but the results were limited. In this thesis, we modify
the CTC framework and present a novel connectionist temporal localization
(CTL) framework that successfully brings out the advantage of sequential
labeling over presence/absence labeling.

1.1.2 Feature Extraction

Before the times of deep learning, the choice of acoustic features was
important for sound event detection. Many types of low-level acoustic
features were explored, such as spectral, cepstral and perceptual features [65,
22]. In [13] and [63], we extracted as many as 6,669 dimensions of low-
level features originally designed for emotion recognition [66] using the
OpenSMILE [67] toolkit. Such high-dimensional features often require
dimensionality reduction as a post-processing step. Common dimensionality
reduction techniques include principal component analysis (PCA) [68] and
independent component analysis (ICA) [69].

The advent of deep learning eliminated the need for complex feature
engineering. SED systems in the form of convolutional or convolutional
and recurrent neural networks usually take the spectrogram or filterbank
outputs as input features; such input features can be treated as images, and
the convolutional layers in the networks are good at recognizing patterns in
them. Some studies (e.g. [70]) even feed raw waveforms directly into a neural
network, with the confidence that the network can learn the necessary filters
by itself.

The study of SED is constantly troubled by the lack of data, and
researchers have resorted to transfer learning to alleviate the problem. A
common technique of transfer learning is to train a model for a source task
with plenty of training data, and then use this model as a feature extractor
for the target task. When trained properly, such a feature extractor can
highlight the useful information in the input, which can be hard to discover
without enough training data. Many models have been trained as feature
extractors for SED. Two widely used examples are the VGGish network [71]
and SoundNet [72]: the former was trained for audio classification; the latter
was trained to predict visual object and scenes from the audio channel. The
VGGish network and SoundNet were both trained in a supervised fashion,
but models for feature extraction can be trained on unsupervised tasks,
too. In [73], a denoising auto-encoder network was trained to reconstruct

CHAPTER 1. INTRODUCTION 8

filterbank outputs corrupted with noise, and features were extracted from a
bottleneck layer in the network. The “Look, Listen and Learn” network [74]
was trained to predict whether a video frame and an audio segment matched
with each other, and it was found that the network learned a representation
of audio that could be used for other audio tasks such as SED. In [75],
a neural network was trained to learn relationships such as “X is more
like Y than like Z” on triples of audio samples, and it also proved able to
produce features that could be transferred to other tasks. In this thesis,
we investigate how much the supervised feature extractors (VGGish and
SoundNet) can help the learning of SED with weak labeling.

1.1.3 Corpora for Sound Event Detection

Data is of paramount importance to machine learning tasks such as SED.
Over the years, the community has compiled many corpora for the training
and evaluation of SED systems. The corpora have become larger and larger
in size, and their content has also got more and more diverse and realistic.
This section gives a review of some notable corpora for SED.

An early collection of sound events is ESC-504 [76]. This corpus
comprises 2,000 short clips of 5 seconds long, each clip containing an instance
of one of 40 sound event types recorded in a clean environment. This corpus
is of limited use by itself because the controlled clean recording environments
are drastically different from the complex acoustic scenes encountered in real
life, but the sound event samples can be used to generate synthetic data as
a means of data augmentation.

A corpus of sound events recorded in real-life environments is Urban-
Sound [77]. It contains 1,302 recordings totaling 27 hours, and includes 3,075
instances of 10 types of sound events frequently occurring in cities, such as
car horns, sirens, and street music. A weakness of this corpus, however,
is that each recording is only annotated for one type of sound events. No
overlapping sound events are annotated, and therefore the corpus cannot be
used for studies on polyphonic sound event detection.

Several global competitions of sound event detection have been orga-
nized. The CHIL project [20] conducted a CLEAR5 evaluation in 2006
and 2007 [78, 79]; more recently, the DCASE6 challenge has taken place
in 20137, 20168, 20179, and 201810. These competitions provide standard
corpora for SED, as well as benchmark results to compare with. The audio
data used in the CLEAR evaluations was seminars recorded in meeting

4“ESC” stands for “environmental sound classification”.
5“CLEAR” stands for “classification of events, activities and relationships”.
6“DCASE” stands for “detection and classification of acoustic scenes and events”.
7http://c4dm.eecs.qmul.ac.uk/sceneseventschallenge/
8http://www.cs.tut.fi/sgn/arg/dcase2016/
9http://www.cs.tut.fi/sgn/arg/dcase2017/

10http://dcase.community/challenge2018

http://c4dm.eecs.qmul.ac.uk/sceneseventschallenge/
http://www.cs.tut.fi/sgn/arg/dcase2016/
http://www.cs.tut.fi/sgn/arg/dcase2017/
http://dcase.community/challenge2018

CHAPTER 1. INTRODUCTION 9

rooms. The corpus contained 3 hours of development data and 2 hours of
evaluation data11. Twelve types of sound events commonly found in meeting
rooms were annotated; speech was also annotated but not evaluated. The
evaluation data contained 1,454 target sound event instances. The DCASE
2016 SED challenge [82] used 78 minutes (22 recordings) of development
data and 36 minutes (10 recordings) of evaluation data, broken down into
two environments: home and residential area. In the development part
of the data, 11 and 7 types of sound events were annotated in the two
environments respectively, with a total of 1,465 instances. The DCASE 2017
SED challenge [83] included a weakly labeled SED task, which provided a
much larger corpus. This corpus includes a training set of 51,172 recordings,
a public test set of 488 recordings, and a private evaluation set of 1,103
recordings. Each recordings lasts 10 seconds, so the total duration of the
data is about 147 hours. The corpus involves 17 types of vehicle and warning
sounds that are of interest for smart cars. A special feature of this corpus is
that the training set comes with only presence/absence labeling; the test and
evaluation sets are still strongly labeled in order to evaluate the localization
of sound events.

Researchers have also collected private corpora of sound events at various
sites as a complement to the insufficient data publicly available. At the
Tampere University of Technology (TUT) in Finland, a corpus has been
collected with a total duration of 1,133 minutes. The corpus contains
103 recordings collected from ten real-life environments, such as offices,
restaurants, and buses. 61 types of sound events are annotated with exact
onset and offset times. The average number of events active simultaneously,
called the average polyphony level, is 2.5312 [38]. This corpus was first
described in [84] and named “TUT-SED 2009” in [41], and it has been
used in a number of studies at TUT [19, 2, 24, 26, 28, 38, 41].

At Carnegie Mellon University (CMU), we have also collected and
annotated data for sound event detection. The corpus we have collected
is called the Noiseme corpus – the word “noiseme” was coined imitating
“phoneme” and “grapheme” since sound events are the basic units that make
up noises in an acoustic scene. The corpus has had three versions since its
first documentation in [85]; our previous work used Version 2 [13, 14, 63,
64]. The size of the corpus has grown from 7.9 hours (388 recordings) in
Version 1 to 12.9 hours (587 recordings) in Version 3; most of the recordings
are around 1 minute long. 48 types of sound events are annotated with exact
onset and offset times; because some event types are rare, we merged them

11These numbers follow the description of the CLEAR 2007 evaluation in [18] and [80].
Accounts differ in other references: [81] says the CLEAR 2006 evaluation used 5 seminars
each lasting 10 ∼ 20 minutes; [79] says the CLEAR 2007 evaluation used 100 minutes of
seminar data for development and 200 minutes for evaluation.

12It is not clear whether background segments (where no sound events occur) are
included when this number is calculated.

CHAPTER 1. INTRODUCTION 10

Name
No. of

Recordings
Avg. Rec.
Duration

Total
Duration

No. SE
Types

No. SE
Instances

Average
Polyphony

ESC-50 [76] 2,000 5 s 2.8 h 50 2,000

UrbanSound [77] 1,302 75 s 27.0 h 10 3,075

CLEAR 2007 [18, 80] 5.0 h 12 1,454

DCASE 2016 [82] 32 214 s 1.9 h 18 1,465
DCASE 2017 [83] 52,763 10 s 146.6 h 17 N/A

TUT-SED 2009 [84] 103 660 s 18.9 h 61 10,278 2.53

Noiseme [85]
v1 388 73 s 7.9 h 48

(merged
to 17)

9,237 1.40
v2 464 75 s 9.6 h 12,163 1.43
v3 587 79 s 12.9 h 14,382 1.40

Google Audio Set [15] 2.1 million 10 s 8 months 527 N/A

Table 1.1: A summary of corpora available for SED.

down to 17 types in our previous work. The average polyphony level ranges
between 1.40 and 1.43 in the non-silence regions.

In March 2017, Google released Audio Set [15]. This corpus is hundreds
of times larger than most of the aforementioned corpora, and is a superset
of the DCASE 2017 data. Audio Set contains 2.1 million 10-second excerpts
from YouTube videos, which sum up to 5,800 hours (8 months). The data
is annotated with 527 types of sound events. Unlike most corpora, Audio
Set only comes with presence/absence labeling : the annotation of Audio Set
does not specify the exact onset and offset times of the sound events, but
only indicates whether each type of sound event is present or absent in each
10-second excerpt. Because of this, Audio Set has made the study of SED
with presence/absence labeling a hot topic in the last two years.

A summary of the corpora available for SED can be found in Table 1.1.
The DCASE 2017 corpus and the Google Audio Set are the primary corpora
used in this thesis.

1.2 Contributions of This Thesis

In this thesis we make the following contributions:

• The choice of the pooling function is important in multiple instance
learning (MIL) systems for SED with presence/absence labeling. We
make a theoretical and empirical comparison of six common pooling
functions: max pooling, noisy-or pooling, average pooling, linear
softmax pooling, exponential softmax pooling, and attention pooling,
and establish linear softmax pooling as the optimal of the six.

• Using the linear softmax pooling function, we build a network called
TALNet13 that can perform audio tagging and localization simultane-
ously. This system closely matches the state-of-the-art performance

13“TAL” stands for “tagging and localization”.

CHAPTER 1. INTRODUCTION 11

on the Google Audio Set [15], while reaching a strong performance on
the DCASE 2017 challenge data [83] without any adaptation. As far
as we know, this is the first system to exhibit such good performance
on both corpora.

• We develop on our previous work and propose the first successful SED
system trained with sequential labeling. The system uses a connectio-
nist temporal localization (CTL) framework, which is adapted from the
connectionist temporal classification (CTC) framework often used for
speech recognition. On a subset of Audio Set with synthetic sequential
labels, the system closes one third of the performance gap between
presence/absence labeling and strong labeling.

• We investigate the use of the VGGish network [71] and SoundNet [72]
as transfer learning feature extractors for SED. We train variants of
SoundNet that reach a lower validation loss than the original, and
conduct extensive experiments to provide empirical knowledge about
when transfer learning is helpful.

The remainder of this thesis is organized as follows. Chapter 2 gives a
review of machine learning models and techniques relevant to this thesis,
including various architectures of neural networks, connectionist temporal
classification (CTC), multiple instance learning (MIL), and transfer lear-
ning. In Chapter 3, we study sound event detection with presence/absence
labeling. We make a theoretical and empirical comparison of six pooling
functions for multiple instance learning (MIL), and present our state-of-
the-art TALNet which performs audio tagging and localization well at the
same time. In Chapter 4, we approach SED with sequential labeling using
a connectionist temporal localization (CTL) framework, which is adapted
from the connectionist temporal classification (CTC) framework. We
demonstrate how the CTL framework overcomes the difficulties encountered
in previous studies and brings out the advantage of sequential labeling
over presence/absence labeling. In Chapter 5, we present how we trained
variants of SoundNet better than the original, and examine the results
of extensive experiments to understand when transfer learning is helpful.
Finally, Chapter 6 summarizes the contributions of this thesis, and discusses
potential applications and future work.

Our previous work that lays the foundation for this thesis has been
published in various conferences [13, 14, 63, 64]. A part of the content
of Chapter 3 has been published in Interspeech 2018 [86]. Applications of
the MIL systems and techniques in this thesis have been published in [87]
and [88]. We have also made to submissions to ICASSP 2019 [89, 90], based
on the content of Chapters 3 and 4, respectively.

The code for some of the experiments in Chapters 3 and 4 are available
on GitHub at https://github.com/MaigoAkisame/cmu-thesis.

https://github.com/MaigoAkisame/cmu-thesis

Chapter 2

Review of Machine Learning
Techniques

2.1 Deep Learning and Neural Networks

2.1.1 Feed-Forward Neural Networks

Neural networks have become the most popular machine learning model in
the past decade. With their tremendous power of approximating functions,
they can be used for a variety of pattern recognition tasks, including image
recognition, speech recognition, etc. All the models used in this thesis are
neural networks, too.

A neural network can be regarded as a complex function. The simplest
form of neural networks is feed-forward neural networks. Feed-forward
neural networks usually consist of many layers stacked on top of each other;
for this reason, they are also called deep neural networks (DNN). Each layer
consists of many neurons; collectively, they take a vector of a fixed size as
input, and generate a vector of a fixed size as output. Let h(l−1) ∈ Rm be
the input to the l-th layer, and h(l) ∈ Rn its output, then the behavior of
the layer can be expressed as:

h(l) = σ(W (l)h(l−1) + b(l)) (2.1)

In this equation, W (l) ∈ Rn×m and b(l) ∈ Rn are called the weight matrix
and the bias vector, and they are the parameters of the l-th layer. σ is a
non-linear function called the activation function, and it is this non-linearity
that gives neural networks the power to approximate functions. Commonly
used non-linear functions include element-wise function such as the logistic
sigmoid function (sigm), the hyperbolic tangent function (tanh), and the
rectified linear unit function (ReLU). The equations of these functions are

12

CHAPTER 2. REVIEW OF MACHINE LEARNING TECHNIQUES 13

−2 −1 0 1 2
−2

−1

0

1

2
sigm

−2 −1 0 1 2
−2

−1

0

1

2
tanh

−2 −1 0 1 2
−2

−1

0

1

2
ReLU

Figure 2.1: Common activation functions used in neural networks.

given below, and their graphs are shown in Fig. 2.1.

sigm(x) =
1

1 + e−x
(2.2a)

tanh(x) =
ex − e−x

ex + e−x
(2.2b)

ReLU(x) = max(x, 0) (2.2c)

The choice of the activation function is arbitrary for all but the output
layer. For the output layer, the activation function depends on the type
of the task that the network is trying to solve: for regression, the output
layer uses the identify function; for binary classification, the logistic sigmoid
function is used to generate values between 0 and 1, which can be interpreted
as probabilities; for multi-class classification, a non-element-wise softmax
function is used to generate a probability distribution. Let x1, . . . , xn be the
elements of the vector input to the softmax function, then the i-th element
of its output will be

yi =
exi∑n
j=1 exj

. (2.3)

It can be easily verified that yi > 0,∀ i and that
∑n

i=1 yi = 1, which
makes the vector y a valid probability distribution. The output layer
activation functions suitable for different types of machine learning tasks
are summarized in Table 2.1.

The training of a neural network is the procedure of learning the
parameters of its layers in order to minimize a scalar loss function. The loss
function is usually a sum or average of the contribution from each instance
of the training data. Denote by x the input of an instance, and t its target
output, and let y be the actual output of the network when x is fed into
it. The form of the contribution L(y, t) of this instance to the loss function
depends on the type of the task; the most common forms are also listed in
Table 2.1.

Given the training data, the loss function L on the entire training corpus
can be regarded as a function of the network parameters θ. There are

CHAPTER 2. REVIEW OF MACHINE LEARNING TECHNIQUES 14

Task
Output layer

activation
Loss function Expression of loss function

Regression Linear
Mean squared

error (MSE)
L(y, t) = ||y − t||22

Binary

classification
Sigmoid

Binary

cross-entropy

L(y, t) =−
∑n

i=1 ti log yi
−
∑n

i=1(1− ti) log(1− yi)
Multi-class

classification
Softmax

Categorical

cross-entropy

L(y, t) = −
∑n

i=1 ti log yi, or

L(y, t) = − log
∑n

i=1 tiyi

Table 2.1: Output layer activation functions and loss functions suitable for
different types of machine learning tasks. The two forms of categorical
cross-entropy loss function are equivalent when only one ti = 1 and all other
ti = 0.

many algorithms to minimize the loss function; most of them depend on
the gradient ∇L(θ) of the loss function with respect to the network para-
meters. The gradient can be computed using a procedure called error back-
propagation [91], which in essence is the procedure of repeatedly applying
the chain rule of differentiation. Modern deep learning toolkits, such as
Theano [92], TensorFlow [93], and Torch [94] (succeeded by PyTorch [95]),
can perform error back-propagation automatically, so there is no need to
derive formulas of the gradient by hand.

The easiest algorithm to minimize the loss function is gradient descent.
It is an iterative algorithm; in each step, we compute the gradient ∇L(θ),
and update the network parameters by subtracting the gradient times a
learning rate λ:

θi+1 = θi − λ∇L(θi) (2.4)

where the subscript stands for the number of iterations. Every once in a
while, the network is evaluated on a validation corpus (called a checkpoint);
if the performance on the validation corpus stops improving, the learning
rate λ is reduced.

The gradient descent algorithm needs to compute the gradient on the
entire training corpus before each update to the network parameters. To
accelerate training, stochastic gradient descent (SGD) is often employed in
practice. In SGD, the training corpus is divided into many minibatches.
The network parameters are updated after scanning and accumulating the
gradient on each minibatch. In this way, the parameters get updated more
often, and because each minibatch offers a slightly different gradient, the
parameters are less likely to get stuck in a bad local minimum. The
time it takes to go over the entire training data is called an epoch. It is
customary to shuffle the minibatches in order to avoid the network learning
false knowledge from the order of the minibatches. The learning rate is
also often adjusted after each complete pass over the training data, i.e. one
checkpoint is applied per epoch. For very large training corpora, validation

CHAPTER 2. REVIEW OF MACHINE LEARNING TECHNIQUES 15

(a) No momentum

−1 −0.5 0 0.5 1
−0.5

0

0.5
(b) Momentum µ = 0.8

−1 −0.5 0 0.5 1
−0.5

0

0.5
(c) Nesterov momentum µ = 0.8

−1 −0.5 0 0.5 1
−0.5

0

0.5

Figure 2.2: The effect of momentum in gradient descent. The loss function
being minimized is f(x, y) = x2 + 25y2. The starting point is (−1.0, 0.4);
the learning rate is 0.01 in all the three subfigures. The red dotted curve
shows the trajectory of the network parameters in the first 20 iterations.
Best viewed in color.

can be performed more often, i.e. one epoch contains multiple checkpoints.
Another commonly used technique to accelerate training is momentum.

With momentum, the update to the network parameters not only includes
the gradient on the current minibatch, but also includes the total update in
the past discounted by a momentum coefficient µ ∈ (0, 1). Let δi+1 be the
difference between the parameters before and after the (i+ 1)-th minibatch,
then the procedure of momentum-acclerated SGD can be summarized as:

θi+1 = θi + δi+1 (2.5a)

δi+1 = µδi − λ∇L(θi) (2.5b)

The initial total update δ0 is set to zero. Momentum is helpful when the
loss function has a narrow ravine. When momentum is not used, in order
to avoid oscillation across the ravine, the learning rate must be set to a
small value, leading to slow progress along the bottom of the ravine. With
momentum, the component of the gradient along the ravine adds up from
iteration to iteration, resulting in faster convergence (see Fig. 2.2 (a) and
(b)).

A direct improvement to the momentum method is the Nesterov momen-
tum [96]. Since we know a part of the update to the parameters is adding
µδi, we can use this look-ahead to evaluate the gradient at θi +µδi, instead
of θi. The formulas of Nesterov momentum can be written as:

δi+1 = µδi − λ∇L(θi + µδi) (2.6a)

θi+1 = θi + δi+1 (2.6b)

The effect of Nesterov momentum is shown in Fig. 2.2 (c); the look-ahead
reduces the oscillation across the ravine.

When implementing neural networks using deep learning toolkits, evalu-
ating the gradient at a point other than θi may incur a formidable amount of
computation. A common practice is to redefine θ′i = θi+µδi as the network
parameters. With some simple variable substitutions, Nesterov momentum

CHAPTER 2. REVIEW OF MACHINE LEARNING TECHNIQUES 16

can be reformulated as:

δi+1 = µδi − λ∇L(θ′i) (2.7a)

θ′i+1 = θ′i + µ2δi − (1 + µ)λ∇L(θ′i) (2.7b)

Momentum and Nesterov momentum can be regarded as indirect ways
of using different learning rates for different directions in the parameter
space: along the ravine, the updates in different iterations add up, effectively
increasing the learning rate; in the direction perpendicular to the ravine, the
updates cancel out, effectively decreasing the learning rate. A number of
optimization algorithms, such as RMSprop [97], Adagrad [98], Adadelta [99],
and Adam [100], maintain a different learning rate for each individual
parameter directly, and often converge faster or to a better set of final
parameters than simple SGD.

Because neural networks often have a huge number of parameters,
overfitting can occur easily. There are various algorithms to regularize the
network parameters, such as simple L2 regularization, dropout [101], and
batch normalization [102]. These algorithms also apply to the more complex
network structures to be introduced in the sections below.

2.1.2 Recurrent Neural Networks (RNN)

When applied to a sequence input, a feed-forward neural network processes
each frame independently, as shown in Fig. 2.3 (a). This means the
prediction yt at time t is only based on the input xt at the same moment,
without using any context information, which can be important for many
machine learning tasks. One way to make use of the context is to splice the
input features of several consecutive frames, but this only provides limited
context. A more principled way is to use a recurrent neural network (RNN).

The structure of an RNN is shown in Fig. 2.3 (b). The value of each
hidden layer not only depends on the layer below it at the same time step,
but also depends on the value of the same layer at the previous time step.

Denote by h
(l)
t the value of the l-th hidden layer at time t, then a RNN can

be described by the following formula:

h
(l)
t = σ(U (l)h

(l)
t−1 +W (l)h

(l−1)
t + b(l)) (2.8)

The matrix U (l) is the recurrent weight matrix of the l-th layer. The initial
states hl0 of the hidden layers may be set to zero, or they may be treated
as parameters of the network and optimized during training. Equations for
the first hidden layer and the output layer need to be modified slightly, but
we omit them for conciseness.

In the RNN structure described above, information flows in only one
direction along the time axis. This means the prediction at any time step
can only make use of information at and before this time step. But the

CHAPTER 2. REVIEW OF MACHINE LEARNING TECHNIQUES 17

1x

(1)
1h

(1)W

(2)
1h

(3)
1h

1y

2x

(1)
2h

(2)
2h

(3)
2h

2y

3x

(1)
3h

(2)
3h

(3)
3h

3y

(2)W

(3)W

(4)W

(1)W

(2)W

(3)W

(4)W

(1)W

(2)W

(3)W

(4)W

(a) A feed-forward neural network applied to a time sequence. Subscripts denote
time steps, and superscripts denote layers.

1x

(1)
1h

(1)W

(2)
1h

(3)
1h

1y

2x

(1)
2h

(2)
2h

(3)
2h

2y

3x

(1)
3h

(2)
3h

(3)
3h

3y

(2)W

(3)W

(4)W

(1)W

(2)W

(3)W

(4)W

(1)W

(2)W

(3)W

(4)W
(3)U

(2)U

(1)U

(3)U

(2)U

(1)U

(3)U

(2)U

(1)U

(3)U

(2)U

(1)U(1)
0h

(2)
0h

(3)
0h

(b) A recurrent neural network (RNN) applied to a time sequence. Subscripts
denote time steps, and superscripts denote layers.

(c) A bidirectional recurrent neural network applied to a time sequence. To avoid
clutter, the names of variables are omitted.

Figure 2.3: The structures of a feed-forward neural network, a recurrent
neural network (RNN), and a bidirectional RNN.

CHAPTER 2. REVIEW OF MACHINE LEARNING TECHNIQUES 18

future context is often as important as the past context, so it is desirable
to use a bidirectional RNN structure [103], as shown in Fig. 2.3 (c). Now
each hidden layer consists of a forward chain and a backward chain; both
chains of each layer are connected to both chains of the next layer. Besides

the forward recurrent weights
−→
U (l) and biases

−→
b (l), the network contains

another set of parameters, the backward recurrent weights
←−
U (l) and biases←−

b (l). Let
−→
h

(l)
t be the value of the forward chain in the l-th hidden layer at

time t,
←−
h

(l)
t the value of the backward chain, and h

(l)
t the concatenation of

the two. The dynamics of a bidirectional RNN is described by the following
formulas:

−→
h

(l)
t = σ(

−→
U (l)−→h (l)

t−1 +W (l)h
(l−1)
t +

−→
b (l)) (2.9a)

←−
h

(l)
t = σ(

←−
U (l)←−h (l)

t+1 +W (l)h
(l−1)
t +

←−
b (l)) (2.9b)

A bidirectional RNN enjoys unlimited context, i.e. the prediction at any
time step has access to the entire input sequence.

Recurrent neural networks that use the simple non-linear functions
(Eqs. 2.2a, 2.2b and 2.2c) often encounter difficulty in training, due to a
phenomenon called gradient vanishing or gradient explosion [104]. In RNNs,
the gradient of the loss function with respect to the network parameters
are computed using an algorithm called back-propagation through time
(BPTT) [105]. As the error is propagated through time in a hidden layer,
it is repeatedly multiplied by the recurrent weight matrix. If the spectral
radius (i.e. the maximum absolute value of its eigenvalues) of the recurrent
weight matrix is smaller than 1, the error will vanish, which means that
distant context has little effect on the prediction. If the spectral radius is
larger than 1, the error will explode, causing the training to diverge.

The gradient explosion problem can be solved by gradient clipping : if
the absolute value of any element of the gradient exceeds a threshold Θ, then
set the element to either Θ or −Θ depending on its sign. However, to solve
the gradient vanishing problem, it is necessary to use more complicated non-
linear functions than the ones introduced earlier. Such non-linear functions
often make use of the gating mechanism, and may contain a “memory cell” to
preserve information for a long time. Two widely used non-linear functions
are long short-term memory (LSTM) cells [106] and gated recurrent units
(GRUs) [107].

The structure of an LSTM cell is shown in Fig. 2.4 (a). It maintains

two state variables: the cell state c
(l)
t , and the output h

(l)
t . Inputs to the

LSTM cell includes the output h
(l−1)
t from the layer below, and the output

h
(l)
t−1 from the previous time step (for simplicity, we only discuss the case of

unidirectional RNNs). These inputs are used to generate a candidate value

c̃
(l)
t of the cell state, and to control the input gate, forget gate, and output

gate. The new cell state c
(l)
t may accept contributions from the candidate

CHAPTER 2. REVIEW OF MACHINE LEARNING TECHNIQUES 19

(a) An LSTM cell (b) A gated recurrent unit (GRU)

Figure 2.4: The structures of an LSTM cell and a gated recurrent
unit (GRU). Figures are edited from https://colah.github.io/posts/

2015-08-Understanding-LSTMs/.

input c̃
(l)
t and the previous cell state c

(l)
t−1; the input and forget gates controls

whether they are turned on or off. Finally, the output h
(l)
t of a cell is its

cell state passed through a simple non-linear function and modulated by
the output gate. The behavior of an LSTM cell can be described by the
following equations:

c̃
(l)
t = σc(U

(l)
c h

(l)
t−1 +W (l)

c h
(l−1)
t + b(l)c) (2.10a)

i
(l)
t = sigm(U

(l)
i h

(l)
t−1 +W

(l)
i h

(l−1)
t + b

(l)
i) (2.10b)

f
(l)
t = sigm(U

(l)
f h

(l)
t−1 +W

(l)
f h

(l−1)
t + b

(l)
f) (2.10c)

o
(l)
t = sigm(U (l)

o h
(l)
t−1 +W (l)

o h
(l−1)
t + b(l)o) (2.10d)

c
(l)
t = f

(l)
t � c

(l)
t−1 + i

(l)
t � c̃

(l)
t (2.10e)

h
(l)
t = o

(l)
t � σh(c

(l)
t) (2.10f)

The � sign stands for element-wise multiplication. The input, forget and
output gate must use the logistic sigmoid non-linearity in order to produce
values between 0 and 1. The non-linear functions σc for the candidate cell
state and σh for the output are configurable; the tanh function is a popular
choice.

The structure of a gated recurrent unit (GRU), shown in Fig. 2.4 (b), is

simpler. It maintains only one state variable h
(l)
t . It has a update gate z

(l)
t ,

which has a similar role to the forget gate in an LSTM cell. There is no
independent input gate; in other words, the input gate is coupled with the
update gate, so that their values must sum to one. There is also no output

gate; instead, a reset gate r
(l)
t is inserted between the previous and current

time steps when generating a candidate state variable h̃
(l)
t . The behavior of

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

CHAPTER 2. REVIEW OF MACHINE LEARNING TECHNIQUES 20

a GRU is described by the following equations:

z
(l)
t = sigm(U (l)

z h
(l)
t−1 +W (l)

z h
(l−1)
t + b(l)z) (2.11a)

r
(l)
t = sigm(U (l)

r h
(l)
t−1 +W (l)

r h
(l−1)
t + b(l)r) (2.11b)

h̃
(l)
t = σh(U

(l)
h (r

(l)
t � h

(l)
t−1) +W

(l)
h h

(l−1)
t + b

(l)
h) (2.11c)

h
(l)
t = (1− z(l)t)� h(l)

t−1 + z
(l)
t � h̃

(l)
t (2.11d)

As with LSTM cells, the update and forget gates must use the logistic
sigmoid non-linearity, while the candidate state variable often adopts the
tanh non-linearity.

In the LSTM structure, there is a path from the previous cell state c
(l)
t−1

to the current cell state c
(l)
t that only goes through the multiplication with

the forget gate f
(l)
t . Likewise, in the GRU structure, there is a path from

h
(l)
t−1 to h

(l)
t that only goes through the multiplication with one minus the

update gate (1 − z(l)t). When the value f
(l)
t or (1 − z(l)t) stays close to 1

for many time steps, the error can flow back through the gates without
much attenuation. This solves the gradient vanishing problem, and gives
LSTM and GRU networks much longer memory than RNNs using simpler
non-linear functions.

2.1.3 Convolutional / Time-Delay Neural Networks (CNN /
TDNN)

Another network structure suitable for exploiting context information is con-
volutional neural networks (CNNs). Such networks were initially called time-
delay neural networks (TDNNs) and applied to speech recognition [108, 109,
110, 111, 112]; later they also saw extensive use in image recognition [113,
114, 115].

A convolutional neural network usually consists of convolutional layers,
interweaved with pooling layers. The data passed between the layers are in
the form of 3-dimensional tensors, each slice of which is called a feature map.
We denote the p-th feature map at the output of the l-th layer by the matrix

by H
(l)
p . The parameters of a convolutional layer include a 4-dimensional

kernel tensor W (l) and a 3-dimensional bias tensor B(l). Let W
(l)
pq and B

(l)
p

be 2-dimensional slices of the kernel and bias tensors, then the behavior of
a convolutional layer is described by:

H(l)
p = σ

(∑
q

[W (l)
pq ∗H(l−1)

q] +B(l)
p

)
(2.12)

where the asterisk stands for 2-dimensional convolution, and σ is a non-linear
function.

CHAPTER 2. REVIEW OF MACHINE LEARNING TECHNIQUES 21

The behavior of pooling layers is simpler. A m×n pooling layer divides
each input feature map into regions of m × n pixels (m × n is called the
stride of the pooling layer), and computes a statistics for each region as the
output. The most common statistics include the maximum and the average.
An optional non-linearity may be applied to the pooling result.

When applied to image recognition, the neural network only needs to
make one prediction for an entire image, which is represented as 1 (for
gray-scale images) or 3 (for color images) input feature maps. The layers
are usually arranged in a way such that convolutional layers increase the
number of feature maps, and pooling layers reduce the size of the feature
maps. When the feature maps are sufficiently small, they are often flattened
into one single vector, followed by one or more fully connected layers to make
the prediction.

CNNs may be applied to audio signals in two ways. The first way is to
take the spectrogram or filterbank outputs as input. In this case, the input
is a 2-dimensional feature map whose axes are time and frequency, and
can be treated the same way as an image. The second way is to take the
raw waveform as input. In this case, the input is a 1-dimensional feature
map, which means the convolutional layers should perform 1-dimensional
convolutions instead of 2-dimensional ones. In audio-related tasks, we often
want a sequence output at a certain frame rate (e.g. 10 ms for speech
recognition, 100 ms for sound event detection). To achieve this, we can stop
applying pooling across time when the time resolution of the feature maps
has been reduced to the desired value.

The benefits of CNNs include shift invariance and locality. For image
recognition, shift invariance means that the prediction for an image should
not change when the object of interest moves within the image. Such a
property is also partially desirable for audio signals: a phoneme or sound
event should be recognized no matter where it occurs in an audio signal,
and a limited shift along the frequency axis should not affect the prediction.
CNNs ensure shift variance by applying the same convolution kernel to all
parts of the input. Locality means that the network has a sense of which
parts of the input are next to each other and which parts are far apart. This
is ensured by using neurons that receives information only from neurons
representing a neighboring region in the layer below. A consequence of
locality is that, when applied to audio, CNNs do not have unlimited context
as RNNs do. On the other hand, tasks that work with audio may not need
an unlimited context, because audio usually does not exhibit long-range
dependence the way natural language does.

CHAPTER 2. REVIEW OF MACHINE LEARNING TECHNIQUES 22

2.2 Connectionist Temporal Classification (CTC)

When training recurrent and convolutional neural networks, the ideal
scenario is to have frame-wise supervision available. For example, in speech
recognition, this means we know the exact onset and offset times of each
phoneme or sub-phonemic state; in sound event detection, this means we
know the onset and offset times of each sound event occurrence, or, in other
words, which events are active at each frame. The sequence formed by
concatenating frame-level labels is called an alignment.

In real-world tasks, however, the supervision often comes in the form of
a label sequence without alignment. For example, in the typical scenario
of training a speech recognition system, the only supervision available is
the phoneme sequences of the training utterances, without an alignment
between phonemes and frames. While sometimes it is possible to create
alignments either manually or automatically, it can be desirable to avoid
this extra effort. Connectionist temporal classification (CTC) [116] is one
way of defining a sequence-level loss function that depends only on the label
sequence, making it possible to train neural networks without alignment.

The CTC loss function on a single training sequence is the negative log-
likelihood of the probability of the label sequence. It is the sum of the
probabilities of all alignments that can be mapped to the label sequence.
The simplest way to map an alignment to a label sequence is to reduce all
consecutive repeating labels to a single one. For example, if the outputs
at the six frames of a sequence are ABBBAA, then it will map to the label
sequence ABA. This mapping function has two drawbacks: (1) it cannot
produce label sequences with consecutive repeating labels, such as ABBA; (2)
it requires that each frame must output a label, while it can make more sense
to allow some frames (e.g. silent frames) to output nothing. To overcome
these drawbacks, CTC adds a blank label, denoted by “-”, to the frame-
wise output vocabulary. The mapping function works in two steps: first,
it reduces consecutive repeating labels into a single one; second, it removes
the blank labels. In this way, the alignments -AB--BAA and ABBB-BBA will
both map to the label sequence ABBA.

Given the frame-level output distributions, the total probability of a label
sequence can be computed using a dynamic programming algorithm, similar
to the forward algorithm in HMMs [117]. The computation is conducted
on the trellis shown in Fig 2.5. The horizontal axis, which goes from 1
to T , stands for time steps; the vertical axis represents the target label
sequence with blank labels inserted at the beginning, at the end, and between
every pair of labels. Each alignment that can map to the target sequence
corresponds to a path in the trellis.

We denote by L the target label sequence augmented with blanks, and
its i-th label by li. Also let yt(c) be the probability of the label c in the
output distribution at step t. Define αt(i) as the total probability of the

CHAPTER 2. REVIEW OF MACHINE LEARNING TECHNIQUES 23

Figure 2.5: The trellis for computing the CTC loss function, taken
from [116]. The target label sequence is CAT. Black circles represent non-
blank labels, and white circles represent blanks.

path landing on li at time t and emitting all the labels along the way. At
each time step, the path is allowed to stay at the same label, transition to
the next label, or skip over the next label, but the skipping can only happen
when the label skipped over is a blank, and the two labels around it are
different. CTC assumes that the outputs at all the time steps are mutually
independent given the input sequence, because context dependency can be
taken care of by the recurrent layers of the network. Therefore it does not
model transition probabilities, and the α’s are computed with the following
recurrence formula:

αt(i) =

yt(li)

∑i
j=1 αt−1(j), if i ≤ 2

yt(li)
∑i

j=i−1 αt−1(j), if i > 2, and li = li−2
yt(li)

∑i
j=i−2 αt−1(j), if i > 2, and li 6= li−2

(2.13)

The path is allowed to start at either the first non-blank label or the blank
before it, so the α’s are initialized as:

α1(i) =

{
y1(li), if i ≤ 2
0, if i > 2

(2.14)

The path can finish at either the last non-blank label or the blank after it,
so the total probability of the target label sequence is

P (L) = αT (|L| − 1) + αT (|L|) (2.15)

where |L| is the length of the sequence L.

CHAPTER 2. REVIEW OF MACHINE LEARNING TECHNIQUES 24

Figure 2.6: The “peaky” output of a CTC speech recognition network on
the utterance “He made a sales call, he says”. Each colored line stands for
the probability of a phoneme. Best viewed in color.

Decoding on a network with a CTC output layer can be performed in
two ways. The theoretically correct way is to find the label sequence that
has the largest total probability. Doing so would require prefix search, and
it is relatively hard to implement. A simpler way of decoding is best path
decoding. It takes the label that has the maximum probability at each time
step to form an alignment, and then maps the alignment to a label sequence.
Because CTC does not model transition probabilities, this is equivalent to
finding the best path through the trellis, and mapping the path to a label
sequence. Best path decoding is a reasonable approximation of prefix search
decoding.

The evolution of the output of a CTC network during training exhibits
an interesting pattern [118]. In the first few epochs, the network may go
through a “warm-up” stage, in which the output distributions at all time
steps are dominated by the blank label. Afterwards, “peaks” will occur in
the probabilities of non-blank labels, and the sequence formed by reading
off the labels corresponding to the peaks will approximate the target label
sequence (see Fig 2.6). The peaks normally do not span the entire duration
of a phoneme, but only last one or two frames. In speech recognition, the
positions of the peaks have been found to match the positions where the
phonemes actually occur.

In Chapter 4 of this thesis, we modify the CTC framework to obtain
a connectionist temporal localization (CTL) framework. We then apply
the latter to the problem of sound event detection with sequential labeling,
i.e. when the supervision comes in the form of sequences of sound event
boundaries without frame-wise alignment.

CHAPTER 2. REVIEW OF MACHINE LEARNING TECHNIQUES 25

2.3 Multiple Instance Learning

Multiple instance learning (MIL) is a special case of machine learning. In
standard supervised machine learning, we have a set of training instances,
each having its own ground truth label. In multiple instance learning,
however, we do not know the labels of each individual training instance.
Instead, the instances are grouped into bags, and labels are known for the
bags only.

The article [119] gives an example of a MIL problem: drug discovery.
The task is to predict whether a given molecule is an effective drug or not.
A molecule may adopt multiple 3-D shapes (called “conformations”), and
it is possible that some conformations of a molecule are effective drugs,
while others are not. However, the training data only tells us whether each
molecule is effective or not, without providing any information about the
conformations. In this example of MIL, the molecules are bags, and their
conformations are instances.

The relationship between the bag label and the instance labels may vary.
In the situation when all the labels are binary, a common case is the standard
multiple instance (SMI) assumption: a bag is positive if it contains at least
one positive instance, and negative if it only contains negative instances.
In the drug discovery problem, for example, a molecule is an effective drug
iff it has at least one effective conformation. The task of MIL may be to
learn a classifier either for bags or individual instances. Again, in the same
example, we may only want to classify molecules as effective or not, but
we may also be interested in the question of which conformation(s) make a
molecule effective.

The article [42] gives a comprehensive review of methods for MIL, and
classifies them into a taxonomy of the following three paradigms:

• Instance-space (IS): A classifier is learned on the instance level,
whose decisions on the instances in a bag are aggregated to make the
bag-level prediction.

• Bag-space (BS): The classifier makes decisions directly on the bag
level, without making predictions for the instances. However, the
model does not extract an explicit feature representation of bags.

• Embedding-space (ES): Similar to the bag-space paradigm, but
bags are mapped into vectorial representations, which are then classi-
fied with a general-purpose classifier.

Generally speaking, bag-space and embedding-space methods are better at
classifying bags, but only instance-level methods can make predictions for
individual instances.

In the instance-space paradigm, the instance-level predictions are aggre-
gated into the bag-level prediction using a pooling function. The choice of

CHAPTER 2. REVIEW OF MACHINE LEARNING TECHNIQUES 26

the pooling function depends on the relationship between the instance labels
and the bag label. Under the SMI assumption, a natural choice is the max
pooling function (i.e. taking the “most positive” instance-level prediction
as the bag-level prediction), but other pooling functions have also been used
for other benefits.

In Chapter 3 of this thesis, we will formulate the task of sound event
detection with presence/absence labeling as an instance-space MIL problem,
and compare the effectiveness of six different pooling functions.

2.4 Transfer Learning

In supervised machine learning, we often run into situations when we do not
have enough labeled training data for the target task. However, there may
be plenty of labeled training data available for a different but related task,
or for the same task on a different domain. Since the tasks or domains are
related, it is natural to hope that we can borrow the knowledge embedded
in the training data for the related task or domain to help the learning of
the target task. Such borrowing of knowledge is called transfer learning.

For example, suppose we are running an online shopping website, and
we receive a huge volume of product reviews. Some of these reviews may be
spam, and we would like to build a classifier to filter the spam out. We do
not have enough labeled training data for the spam filter, but we do have
an abundant amount of labeled data for classifying the sentiment of product
reviews. Because both tasks involve some extent of language understanding,
we can reasonably hope that such knowledge of language can be shared
across the two tasks. We may first build a sentiment classifier, then adapt
the model to the task of spam detection; or we may extract features for
product reviews using the sentiment classifier and build a spam filter that
takes these features as input. Both approaches count as typical examples of
transfer learning.

The article [120] gives a good review of the types of transfer learning
scenarios, and the techniques suitable for each scenario. It defines transfer
learning as the action of using knowledge learned from a source task on a
source domain to help the learning of a source task on a target domain.
Rigorously speaking, the “domain” refers to the feature space the input
data lies in and how the data is distributed, while the “task” refers to the
output label space and the input-output correspondence to be learned. In
general, both the source/target domains and the source/target tasks may
be different. But in this thesis, we are only concerned with the case of
inductive transfer learning, which refers to the case of different tasks on the
same domain. This is because all the SED tasks we study are conducted on
the domain of natural audio recordings with rich sound events, but the sets
of sound event types to be recognized differ from corpus to corpus.

CHAPTER 2. REVIEW OF MACHINE LEARNING TECHNIQUES 27

Methods for inductive transfer learning are classified into the following
categories in [120] (we use the more concise terminology in Sec. 3.2 of [121]):

• Instance transfer: Training instances for the source task are selected
or weighted to form the training data for the target task;

• Model transfer: A model is learned for the source task, then adapted
for the target task;

• Feature transfer: A model is learned for the source task, then used
as a feature extractor for the target task;

• Relation transfer: These methods are used for learning relations
between entities, and is irrelevant to this thesis.

In this thesis, we primarily explore the potentials of feature transfer. In
Chapter 5, we use two neural networks built for different tasks as feature
extractors, and study whether they improve the performance of sound event
detectors. We would also like to mention that the “TALNet” we build in
Sec. 3.3 qualifies as a degenerate case of model transfer.

Chapter 3

Sound Event Detection with
Presence/Absence Labeling

This chapter studies the learning of sound events from presence/absence
labeling : it is only known whether each type of sound event is present
or absent in each audio recording; no temporal information is provided
whatsoever. Presence/absence labeling has become the mainstream scenario
of sound event detection since the release of the Google Audio Set [15] in
March 2017; a task of SED with presence/absence labeling has been included
in the DCASE challenges of both 2017 and 2018 [83, 122].

SED with presence/absence labeling can be regarded as a multiple
instance learning (MIL) problem [42]. We regard each audio recording as
a bag, and the frames in the recording as instances. For each sound event
type, the presence/absence label serve as the bag label: if an event type is
present in a recording, then the recording is a positive bag. The bag labels
and the instance labels conform to the standard multiple instance (SMI)
assumption: a bag is positive iff at least one of its instances is positive; in
other words, an event type is present in a recording iff it is present in any
frame of the recording.

Following the terminology of the DCASE 2017 challenge, the task
of recognizing which types of sound events are present in a recording
without localizing them temporally is called audio tagging. Because we are
interested in both audio tagging and localization, we approach the problem
of polyphonic SED with presence/absence labeling using the instance-space
paradigm (see Fig. 3.1). We train an instance-level classifier that predicts
the probability of each sound event type at each frame. This classifier
may be a convolutional and/or recurrent neural network that communicates
information across frames. To accommodate for polyphony, the instance-
level probabilities are produced by neurons with the sigmoid activation
function, and do not have to sum to one across sound event types. The
instance-level predictions are then aggregated (or “pooled”) into a bag-level

28

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 29

Figure 3.1: Block diagram of an instance-space multiple instance learning
(MIL) system for SED.

probability for each sound event type, which can be compared with the
bag labels to form a loss function. After the network has been trained, the
instance-level predictions can be used for localizing the sound events in time.

A key decision when designing a MIL system is the choice of the pooling
function. Traditionally, the max pooling function [43, 44] and the noisy-
or pooling function [45, 46, 47] are commonly used. Since the DCASE
challenge of 2017, we have also seen the usage of the average pooling
function [48], two softmax pooling functions based on linear weighting [50]
and exponential weighting [51] respectively, as well as an attention-based
pooling function [53, 54]. In this chapter, we compare these pooling
functions both theoretically and empirically.

While we do so, we end up with a deep convolutional and recurrent neural
network that can perform audio tagging and localization simultaneously.
We call this network TALNet, where “TAL” stands for “tagging and
localization”. This network closely matches the state-of-the-art performance
on the Google Audio Set, while exhibiting strong performance on the
DCASE 2017 challenge without any adaptation. As far as we know, this
is the first system that performs so well on both corpora at the same time.

The content of this chapter is organized as follows. In Sec. 3.1, we
compare the max and noisy-or pooling functions. We demonstrate that
max pooling succeeds while noisy-or pooling fails on two tasks: a phoneme
recognition task on TED talks, and the SED task of the DCASE 2017
challenge, and offer a theoretical explanation. In Sec. 3.2, we study the

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 30

behavior of the average pooling function, the two softmax pooling functions
and the attention-based pooling function on the DCASE challenge. We show
that while they alleviate the high false negative rate observed with the max
pooling function, some of them in turn make too many false positives; it
is only the linear softmax pooling function that achieves a good balance
between false negatives and false positives. In Sec. 3.3, we present TALNet
and compare it with a number of state-of-the-art systems found in the
literature.

3.1 The Max and Noisy-Or Pooling Functions

3.1.1 Motivation

Consider the instances x1, . . . ,xn in a MIL problem. Let f be an instance-
level classifier, and it makes a prediction yi = f(xi) for each instance. These
instance-level predictions are aggregated into a bag-level prediction y using
a pooling function.

The max pooling function is

y = max
i
yi (3.1)

It can be motivated from two perspectives. The first looks at how instance-
level and bag-level decisions are made. Suppose the instance-level decisions
are made by a thresholding rule: an instance xi is classified as positive iff yi
is above or equal to a certain threshold θ. According to the SMI assumption,
the bag should be classified as positive iff at least one yi ≥ θ, i.e. maxi yi ≥ θ.
This is equivalent to aggregating the instance-level predictions yi into the
bag-level prediction y using the max pooling function, and applying the same
threshold θ to the bag-level prediction. This reasoning is valid no matter
what the instance-level classifier is.

The second perspective looks at the training procedure of the classifier,
assuming it is a support vector machine (SVM) f(x) = wTx + b ∈ R. Let
t ∈ {1,−1} be the label of the bag. If the bag is positive (t = 1), the training
needs to make sure that at least one instance satisfies yi ≥ 1; if the bag is
negative (t = −1), then all the instances must satisfy yi ≤ −1. The two
cases may be subsumed by a single equation:

t ·max
i
yi ≥ 1 (3.2)

If we aggregate the instance-level predictions yi into the bag-level prediction
y using the max pooling function, then the training procedure can be
simplistically regarded as training a bag-level SVM to satisfy t · y ≥ 1.

SVMs optimize the margin between positive and negative instances.
However, many other classifiers (including neural networks) optimize a

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 31

probabilistic objective function (such as binary cross-entropy listed in
Table 2.1), and they treat both the instance-level prediction yi and bag-
level prediction y as probabilities. In this case, the SMI assumption (a bag
is negative iff all instances are negative) dictates a different relationship
between yi and y:

y = 1−
∏
i

(1− yi) (3.3)

This is called the noisy-or pooling function, because the equation effectively
implements the logical “or” gate if all the yi’s were binary. The noisy-
or pooling function appears to be a more natural choice for probabilistic
classifiers, but it assumes that all the instances in a bag are mutually
independent. This assumption is questionable in the case of SED, because
the frames in a recording are clearly correlated.

Now we have two pooling functions motivated in different ways. The
noisy-or pooling function appears to be more suitable for probabilistic
classifiers, but relies upon a questionable assumption of independence.
Before we move on to validate them using experiments, we would like to
further analyze them theoretically in terms of the gradient flow.

3.1.2 The Gradient Flow

A key step in the training of neural networks is the computation of the
gradient, i.e. error back-propagation. In this subsection, we compare the
gradient flow of the max and noisy-or pooling functions to see which one
makes training easier.

Let t ∈ {0, 1} be the ground truth label for a bag, and y ∈ [0, 1] be
the bag-level prediction. The bag-level prediction y is aggregated from the
instance-level predictions y1, . . . , yn ∈ [0, 1], using either the max (Eq. 3.1)
or noisy-or (Eq. 3.3) pooling function. The instance-level predictions are the
output of sigmoid units; let the input to the sigmoid units be z1, . . . , zn, then
we have yi = sigm(zi). Now we want to compute the error signals in back-
propagation, i.e. the derivative of the binary cross-entropy loss function

L = −t log y − (1− t) log(1− y) (3.4)

with respect to the zi’s. For convenience, we point out that the derivative
of the sigmoid function is dyi/dzi = yi(1− yi).

When using the max pooling function, the bag-level prediction y is
only dependent on the single maximum instance-level prediction. Let the
subscript of this instance be k, then the loss function is:

L = −t log yk − (1− t) log(1− yk) (3.5)

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 32

The derivative of L w.r.t. zk is:

∂L

∂zk
= − t

yk
· yk(1− yk) +

1− t
1− yk

· yk(1− yk) (3.6)

= yk − t (3.7)

while the derivative w.r.t. other zi’s are all zero.
The derivative in Eq. 3.7 makes sense. When the bag is positive (t = 1),

the k-th instance receives a negative gradient, and the gradient descent
algorithm will pull zk up, so yk gets closer to 1. When the bag is negative
(t = 0), the gradient is positive and zk will be pushed down. The amount
of boost or suppression that zk receives is proportional to the difference
between the prediction yk and the ground truth t.

A short-coming of the max pooling function, however, is that the error
signal is only given to the single instance reaching the maximum. In the case
of SED, the underlying convolutional and/or recurrent layers can alleviate
this problem to some extent: convolutional layers can pass on the error
signal as far as their perceptive fields reach; recurrent layers can pass on the
error signal until the forget gate is closed (which usually spans the duration
of one sound event occurrence). However, if a sound event occurs multiple
times far from each other in a recording, then only the one that yields the
maximum frame-level prediction will receive an error signal.

When using the noisy-or pooling function, the loss function takes the
following form:

L =

{
− log [1−

∏
i(1− yi)] , if t = 1

− log
∏
i(1− yi), if t = 0

(3.8)

This depends on all the instance-level predictions. Its derivative w.r.t. any
zi can be calculated to be:

∂L

∂zi
=

{
−yi(1− y)/y, if t = 1
yi, if t = 0

(3.9)

Let’s analyze what effects this gradient has on the learning process.
When the bag is negative (t = 0), the gradient is positive, so all zi’s will be
pushed down, in proportion to the instance-level predictions yi. When the
bag is positive (t = 1), the gradient is negative, and all zi’s will be boosted.
The strength of the boost depends on two factors. One is (1− y)/y, which
involves the bag-level prediction. The farther from 1 the bag-level prediction
y is, the more eager the model is to boost up the instance-level predictions.
The other factor is yi itself. At first glance this may seem counter-intuitive:
the instances whose yi are already closer to 1 get boosted more. However,
we should note that this is a multiple instance learning scenario, and we do
not need to make all the instances positive in a positive bag. Instead, we

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 33

only encourage the “hopeful” instances, and leave alone the instances that
would like to stay negative.

Compared with the max pooling function, the noisy-or pooling function
sends an error signal to every instance in a bag, instead of the single one with
the largest instance-level prediction. In addition, it adjusts the magnitude
of the error signals according to both the instance-level predictions and the
bag-level prediction. In this light, it may be hoped that the noisy-or pooling
function allows the gradient to flow more easily through the network, which
may accelerate the training.

3.1.3 Experiment 1: Phoneme Recognition on TEDLIUM

This was a proof-of-concept experiment that we did before applying MIL to
SED, and it turned out to reveal a lot of relevant properties of the max and
noisy-or pooling functions.

Experiment Setup

We conducted a phoneme recognition task on the TEDLIUM corpus.
Phonemes can be regarded as substitutes for sound events, although there
are two notable differences: phonemes are normally short, and they do not
overlap. We did not perform full speech recognition to avoid the extra
complexity introduced by the lexicon and the language model.

The TEDLIUM corpus1 consists of 206 hours of training data, 1.7 hours
of development data, and 3.1 hours of testing data. We used 95% of the
training data for training, and reserved the remaining 5% for validation.
Ground truth phoneme sequences were generated for all the utterances from
the transcriptions and the lexicon; we only retained the 39 “real” phonemes
and discarded all noise markers such as “breath” and “cough”.

The baseline system we compared against was a Theano [92] re-
implementation of the example CTC system2 in the EESEN toolkit [123],
which outperformed the original. This system took phoneme sequences as
training labels. The network consisted of five bidirectional LSTM layers,
with 320 memory cells in each direction of each layer. The input layer
had 40 neurons, which accepted 40-dimensional filterbank features3. The
CTC output layer consisted of 40 neurons arranged in a softmax group,
corresponding to the 39 phonemes plus a blank label.

We adapted the baseline system to build two MIL systems with presence/
absence labeling, using the max and noisy-or pooling functions, respectively.
The input and hidden layers were identical to the baseline system. The
output layer consisted of 39 neurons, without the one neuron dedicated to

1The corpus can be downloaded at http://www.openslr.org/resources/7/.
2https://github.com/srvk/eesen/tree/master/asr_egs/tedlium/v1
3Unlike the EESEN system, we did not use delta and double delta features.

http://www.openslr.org/resources/7/
https://github.com/srvk/eesen/tree/master/asr_egs/tedlium/v1

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 34

System
Hyperparameters Phoneme Error Rate

Grad. clip Init. LR Train Valid. Dev. Test

Baseline (CTC) 10−4 3 4.8 15.4 13.9 14.9
Max pooling 0.01 0.3 40.5 43.0 39.7 40.7

Noisy-or pooling 10−8 3000 91.0 91.6 91.6 91.5

Table 3.1: The optimal hyperparameters and phoneme error rates of the
various systems on the TEDLIUM corpus.

the blank label. These neurons used the sigmoid activation function. Even
though phonemes cannot overlap in time, we did not want to enforce this
restriction in the network. The frame-level predictions are then aggregated
across time into an utterance-level prediction (a 39-dimensional vector).

The baseline CTC system was trained to minimize the negative log-
likelihood averaged over frames. The MIL systems were trained to minimize
the binary cross-entropy loss; the loss was averaged over utterances and
phonemes for the max pooling system, but averaged over frames and
phonemes for the noisy-or pooling system, since the utterance-level pro-
babilities could be decomposed into a product of frame-level probabilities.
The optimization algorithm was stochastic gradient descent (SGD) with a
Nesterov momentum of 0.9 [96]. Each minibatch contained 20,000 frames;
an epoch consisted of about 2,000 minibatches. All the systems were trained
for 24 epochs, with the learning rate staying constant in the first 12 epochs,
and then halved in each of the next 12 epochs. We found it essential to apply
proper gradient clipping and a large initial learning rate, in order to ensure
that the network could get through the initial stage of instability safely and
progress with large enough steps after that. The gradient clipping limit and
initial learning rate of each system are also listed in Table 3.1.

We decoded all the systems using simple best path decoding : choosing
the most probable label (phoneme or blank) at each frame, collapsing
consecutive duplicate labels, and removing blanks. Since the output layer
of the two MIL systems did not have a neuron for the blank label, we set
the prediction to blank if the probability of the most probable phoneme was
smaller than 0.5. We evaluated all the systems using phoneme error rate
(PER).

Experiment Results

The phoneme error rates of the three systems on all the partitions of the
data are listed in Table 3.1. The evolution of the validation PER of the
systems is plotted in Fig. 3.2; the PERs on the development and test sets
followed similar trends. The baseline CTC system learnt fast and accurately,
reaching a PER of 30% after the first epoch and converging to 15%. The max
pooling system reached a PER of 43%. Even though there was a gap between

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 35

0 5 10 15 20 25
0

20

40

60

80

100

Epoch

V
al

id
at

io
n

P
E

R
 (

%
)

Baseline
Max pooling
Noisy−or pooling

Figure 3.2: Evolution of the validation phone error rate (PER) of the various
systems on the TEDLIUM corpus.

System Decoded Phoneme Sequence PER
Ground truth V EH R IY IH K S T R IY M T ER EY N

Baseline (CTC) ER IY EH K S T R IY M TH R IY 8/15
Max pooling R IY HH IY IH S T R IY M TH R IY 9/15

Noisy-or pooling S S TH S 14/15

Table 3.2: The predicted phoneme sequences of the various systems on
an example utterance. The ground truth transcription is “very extreme
terrain”.

the max pooling system and the baseline, the learning can be regarded
as successful considering that the max pooling system only saw presence/
absence labeling during training. The noisy-or pooling system, however,
exhibited a PER above 90% even after 24 epochs, and its predictions were
mostly blank.

Table 3.2 shows the predicted phoneme sequences of the various systems
on an example utterance in the validation set, and Fig. 3.3 shows the
underlying frame-wise predictions. The CTC system produces narrow peaks
that align well with the actual position of the phonemes, but the peaks do not
indicate the timespan of each phoneme. The max pooling system produces
wide peaks that clearly indicate the onset and offset time of each phoneme,
which is exactly the desired behavior for localization. The noisy-or pooling
system, contrary to our expectations, fails to predict anything meaningful,
and only three phonemes receive non-negligible probabilities.

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 36

Figure 3.3: The frame-wise predictions of the various systems on an
example utterance. The ground truth transcription is “very extreme terrain”
(both the baseline and the max pooling systems mis-recognize “terrain” as
“three”). Phonemes are differentiated by color. Peaks are annotated with
their corresponding phonemes; phonemes in parentheses were not selected
in the best path decoding.

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 37

Analysis: Why Does Noisy-Or Pooling Fail?

We have observed that the noisy-or pooling system exhibited some unex-
pected symptoms: it trained slowly, and preferred to predict most phonemes
as negative. We suspected that this indicated the system had difficulty in
starting to learn, but when we tried initializing the network parameters
to the values after one epoch of max pooling training (with a validation
PER of 82.1%), we observed that noisy-or training immediately brought
the PER back to above 90%, generating almost all blank outputs. Looking
at the frame-predictions in Fig. 3.3 (c) and (d), we find that the noisy-or
pooling function is inherently too harsh on false positives and lenient on
false negatives.

Noisy-or pooling is harsh on false positives precisely because it erro-
neously assumes that frames in a recording are independent. Because
consecutive frames in a sequence are often correlated, when the system
produces a false positive, it normally generates a peak that spans several
frames. This peak should be penalized only once, not for every frame it
spans. The noisy-or pooling function, however, multiplies the 1− yi of each
frame, which makes the bag-level prediction y extremely close to 1, and
results in a large loss − log(1 − y). For example, in Fig. 3.3 (c), the max
pooling system produces a false positive for the phoneme TH. The frame-level
prediction yi exceeds 0.999 for 7 frames; the maximum value is 1−2×10−7.
With the max pooling function, this incurs a loss of − log(2× 10−7) ≈ 15.5.
If we used noisy-or pooling instead, this false positive would incur a loss
of at least − log(1 − 0.999) × 7 ≈ 48. As a result, the noisy-or pooling
system only dared to generate a small peak for the phoneme TH, as shown
in Fig. 3.3 (d). The same situation happened with the phonemes HH and
AH: the max pooling system generated a moderate peak, while the noisy-or
pooling system generated no peak at all.

Noisy-or pooling is lenient on false negatives because the system may
believe it has made the correct bag-level prediction for a positive bag, while
all the instances-level predictions are negative. This also stems from the
multiplication in the noisy-or pooling function. Let’s look at the phoneme
IH. This phoneme is in the ground truth phoneme sequence, and the max
pooling system correctly predicts a peak (although not very tall) at 0.32 s.
The frame-level predictions of the noisy-or pooling system, however, are
hardly visible in Fig. 3.3 (d); they actually stay around 0.02 throughout
the 130-frame utterance. The noisy-or pooling function then calculates a
bag-level prediction of y ≈ 1 − (1 − 0.02)130 ≈ 0.93. Recall that the error
signal at the i-th frame is ∂L/∂zi = −yi(1− y)/y (Eq. 3.9). When the bag-
level prediction is close to one, the system will no longer make much effort
to boost the frame-level predictions. The phoneme IY illustrates a more
extreme case: its predicted probability fluctuates around 0.2, resulting in
a bag-level prediction of y ≈ 1 − (1 − 0.2)130 ≈ 1 − 2.5 × 10−13, The error

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 38

signal computed by Eq. 3.9 is virtually zero, causing the network to stop
learning. Now we see that, even though noisy-or pooling provides an error
signal for all frames, the term (1−y)/y can cause it to vanish. Such “gradient
vanishing” would limit the use of the noisy-or pooling function to very small
bags (e.g. less than 10 instances); unfortunately, phoneme recognition and
SED usually feature sequences with hundreds of frames.

3.1.4 Experiment 2: The DCASE 2017 Challenge

Experiment Setup

We also tested out the max and noisy-or pooling functions on Task 4 of the
DCASE 2017 challenge4 [83]. This task consists of two subtasks: Task A is
audio tagging, i.e. determining which events are present in each recording,
but without localizing the events; Task B is sound event detection, i.e.
Task A plus localization. Both subtasks consider 17 events related to vehicles
and warning sounds.

The data consists of a training set (51,172 recordings), a public test set
(488 recordings), and a private evaluation set (1,103 recordings). All the
recordings come from Google Audio Set [15], and are 10-second excerpts
from YouTube videos. The test and evaluation sets are strongly labeled so
they can be evaluated for both subtasks, but the training set only comes with
presence/absence labeling. Also, the test and evaluation sets have balanced
numbers of the events, but the training set is unbalanced. We set aside
1,142 recordings from the training set to make a balanced validation set,
and used the remaining 50,030 recordings for training. For this experiment,
we did not do anything about the class imbalance in the training data.

We compared max pooling and noisy-or pooling against a simple baseline
that does not use MIL. In the baseline system, the instance-level predictions
are not pooled into a bag-level prediction; instead, the ground truth label of
each bag is assigned to all its instances, and the loss function is computed on
an instance-by-instance basis. In plainer words, if a sound event is labeled
as present for a recording, it is assumed to be present in every frame of the
recording. This scheme of training has been applied in [71] and [124], and
named strong labeling assumption training (SLAT) in the latter. At first
glance this scheme wouldn’t seem to work, because it pollutes the labels
of all the negative instances in positive bags, and such polluted instances
may even outnumber the instances that are truly positive. However, if we
think about the discriminative nature of neural networks, we will realize
that this is not a problem. A neural network only models the conditional
distribution P (y|x), where x is the input feature and y is the label. Even
though SLAT alters the distribution P (x|y) a lot for the label y = 1, it does

4http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/

task-large-scale-sound-event-detection

http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-large-scale-sound-event-detection
http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-large-scale-sound-event-detection

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 39

1600 * 40 * 32

conv 5*5

800 * 20 * 32

pool 2*2

800 * 20 * 64

conv 5*5

400 * 10 * 64

pool 2*2

400 * 10 * 128

conv 5*3

100 * 5 * 128

pool 4*2

100 * 640

flatten

100 * 200

BiGRU 100*2

100 * 17

FC (sigmoid)

1 * 17

max / noisy-or

(a)

Filterbank features

400 * 64 * 32

conv 5*5

400 * 32 * 32

pool 1*2

400 * 32 * 64

conv 5*5

200 * 16 * 64

pool 2*2

200 * 16 * 128

conv 5*5

100 * 8 * 128

pool 2*2

100 * 1024

flatten

100 * 200

BiGRU 100*2

100 * 17
Frame-level predictions

FC (sigmoid)

1 * 17

max/ave/lin/exp/att

(b)

Filterbank features

100 * 17
Attention

FC (exponential)

Frame-level
predictions

Recording-level
predictions

Recording-level
predictions

1600 * 40 * 1 400 * 64 * 1

Figure 3.4: The structures of the networks for audio tagging and SED used
in Secs. 3.1.4 and 3.2.3. Shadowed boxes stand for 3-D tensors; their sizes
are specified in the order of time frames, frequency bins, and feature maps.
Plain boxes stand for 2-D tensors; the first dimension is time. All the
convolutional layers use the ReLU activation; the numbers after “conv”
(e.g. 5*5) specify the size of the kernel. All the pooling layers following
convolutional layers perform max pooling; the numbers after “pool” (e.g.
2*2) specify the stride. “FC” is short for “fully connected”. At the output
end, the “attention” block is only used with the attention pooling function.

not affect P (y|x) much. The distribution P (y|x) can be regarded as being
learned separately for positive instances and negative instances. SLAT does
not pollute the labels of the positive instances; it also will not affect the
label distribution P (y|x) over the negative instances much if the polluted
instances are few compared to unpolluted negative instances. For SED, most
sound events are absent in most recordings, so it is hopeful that SLAT can
work and serve as a baseline.

We trained a convolutional and recurrent neural network (CRNN) using
the Keras toolkit [125] with the Theano [92] backend. The structure of

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 40

Figure 3.4 (a) 3.4 (b) 3.10

Used in Sec. 3.1.4 3.2.3 3.3.2

Toolkit Keras + Theano PyTorch PyTorch

Trained on DCASE 2017 DCASE 2017 Audio Set

conv. layers 3 3 10

pool. layers 3 3 5

Output pooling SLAT/max/noisy-or max / ave / lin / exp / att

Batch norm. No No Yes

Dropout prob.
SLAT, noisy-or: 0.0

max: 0.1
0.0 0.0

Optimizer SGD + Nesterov 0.9 Adam Adam

Data balancing No Yes Yes

Batch size 100 100 250

Gradient clipping
SLAT: 0.1
max: N/A

noisy-or: 10−4
N/A N/A

Initial LR
SLAT, max: 0.1

noisy-or: 0.3
3× 10−4 10−3

Checkpoint
1 epoch

(500 batches)
1 epoch

(500 batches)
1,000 batches

Validation metric Val. loss Val. loss Val. MAP

LR decay factor
max: 0.8

others: N/A

lin: 0.5
exp: 0.3

others: 0.1
0.8

Table 3.3: Detailed information and hyperparameters of all the networks for
audio tagging and SED used in Chapter 3. Batch normalization is applied
to the convolutional layers only, before the ReLU activation. Dropout is
applied before each convolutional layer, and on both sides of the GRU layer.
Batch size is in the number of 10-second recordings. “LR” is short for
“learning rate”.

the network is shown in Fig. 3.4 (a)5. The input is filterbank features
extracted with the LibROSA toolkit6 [126]; it has 40 frequency bins and
1,600 time steps spanning 10 seconds (i.e. with a frame rate of 160 Hz).
The convolutional and pooling layers reduce the frame rate to 10 Hz, whose

5All the CRNNs in this thesis have one and only one GRU layer. We optimized some
hyperparameters such as the number of convolutional layers and their sizes (see Table 3.3),
but we did not explore alternative structures such as zero or more than one recurrent layer,
or replacing the GRU layer with an LSTM layer.

6Configuration for filterbank feature extraction: The waveform is downsampled to
16 kHz; frames of 480 samples (30 ms) are taken with a hop of 100 samples (6.25 ms);
each frame is Hanning windowed and padded to 2,048 samples before taking the Fourier
transform; the filterbank of 40 triangle filters spans a frequency range from 0 Hz to 5.8 kHz.
The upper frequency limit of the filterbank was a mistake; it should have been 8 kHz.

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 41

output is fed into a bidirectional GRU layer with 100 neurons in each
direction. A fully connected layer with 17 neurons and the sigmoid activation
function then predicts the probability of each sound event at each frame,
which can be used for SED (Task B); these frame-level predictions are also
aggregated with either the max or the noisy-or pooling function to produce
recording-level predictions for audio tagging (Task A)7. When training the
baseline SLAT system, the loss function is computed by comparing the
frame-level predictions directly to the recording-level labels of the training
data; when training the max pooling and noisy-or pooling systems, the loss
function is computed by comparing the recording-level predictions to the
recording-level labels.

We minimized the cross-entropy averaged over both recordings and
events using the SGD algorithm with a Nesterov momentum of 0.9 a batch
size of 100 recordings. We tuned the initial learning rate for each network
and applied gradient clipping where necessary; see the first column of
Table 3.3 for details. For the max pooling network, we applied dropout
with a rate of 0.1, and decayed the learning rate with a factor of 0.8 when
the lowest validation loss did not see any updates for 3 consecutive epochs,
which contributed marginally to the performance.

The frame-level and recording-level probabilities predicted by the net-
work must be thresholded to generate output for evaluation. The optimal
thresholds, however, depends on the evaluation metrics. The DCASE 2017
challenge used standard metrics for SED defined in [127]. Task A (audio
tagging) was evaluated by the micro-average F1 on the recording level.
Let TP (true positive) be the number of correctly predicted sound events,
FN (false negative) be the number of missed sound events, and FP (false
positive) be the number of spuriously predicted sound events, accumulated
over all recordings and sound event types. The F1 is defined as the harmonic
average of the precision and recall:

F1 =
2(

TP
TP+FP

)−1
+
(

TP
TP+FN

)−1 =
2TP

2TP + FP + FN
(3.10)

Task B (SED with localization) was evaluated by both the micro-average
error rate (ER) and the micro-average F1 on 1-second segments. The F1 is
defined in the same way as Eq. 3.10, but with TP , FN , and FP counted at
the segment level and accumulated over all segments and sound event types.
The ER is defined in terms of substitution (S), deletion (D) and insertion
(I) errors. For each segment, the number of substitutions is defined as
the minimum of false negatives and false positives; any extra false negative
counts as a deletion, and any extra false positive counts as an insertion. Let

7The baseline SLAT system also uses the max pooling function to make recording-level
predictions.

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 42

System
Val. Set Test Set Evaluation Set
Task A Task A Task B Task A Task B

F1 F1 ER F1 F1 ER F1

Baseline (SLAT) 53.7 49.2 82.4 41.4

Max pooling 53.3 50.1 79.7 39.4 50.7 75 46.9

Noisy-or pooling 53.4 49.6 97.9 4.8

Table 3.4: The performance of the SLAT, max pooling and noisy-or pooling
systems on both subtasks of the DCASE 2017 challenge. All numbers are
in percentages.

N = TP + FN be the total number of true occurrences of sound events at
the segment level, then the ER can be computed by

ER =
S +D + I

N
=
FN + FP − S
TP + FN

(3.11)

We found it critical to tune the threshold for each sound event class
individually. We devised an iterative procedure to tune class-specific
thresholds to optimize the micro-average F1 for Task A: first, we tuned
the threshold for each sound event class to maximize the F1 of that class
alone; then, we repeatedly picked a random class and re-tuned its threshold
to optimize the micro-average F1, until no improvements could be made.
After each epoch of training, we tuned the thresholds on the validation data
to optimize the audio tagging F1; the model with the highest F1 was picked
as the final model. The thresholds obtained on the validation data were
applied to the test and evaluation data for both Task A and Task B.

Experiment Results and Analysis

The performance of the three systems are listed in Table 3.4. We got in
touch with the organizers of the challenge and had our max pooling system
evaluated on the private evaluation set; our system would have ranked
3rd on Task A and 4th on Task B among the nine participants of the
challenge8. In the text below, however, we will compare systems based on
their performance on the public test set. From the table we can see that all
the three systems achieved similar performance on Task A. For Task B, the
max pooling system performed similarly to the baseline SLAT system, but
the noisy-or pooling system failed miserably, just like it did for the phoneme
recognition task.

One may doubt the value of the max pooling system if it only performs
on par with the simple SLAT system. However, we would like to argue
that the success of the SLAT system depends on the limited extent of label

8The higher ranking teams used combinations of either models or features, while we
trained a single system using a single type of feature.

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 43

(a) Filterbank features

20

40
B

an
d

(b) Ground truth (dark means active)
Train

Train horn

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

(c) Frame-level predictions of the max pooling system

Train
Train horn

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

(d) Frame-level predictions of the noisy-or pooling system

Train
Train horn

Figure 3.5: The frame-level predictions of the max and noisy-or pooling
systems on the example test recording “10i60V1RZkQ”. In (c), the dotted
lines indicate the thresholds for the two event classes. Best viewed in color.

pollution. Because the training set of the DCASE 2017 data is only weakly
labeled, we could not measure how many of the labels are polluted in this
set. Nevertheless, we were able to measure it on the strongly labeled test
set. It turned out that, averaged over the 17 sound event types, 5.0% of
the instances were positive and 95.0% were negative; among the negative
instances, only 2.3% had polluted labels. The small amount of polluted
data was the reason for SLAT’s success. In [124] and [128], it has also been
reported that SLAT does not perform as well as MIL. Therefore, rather than
resting satisfied with the simple SLAT method, we would like to explore
more principled MIL approaches that do not depend on the distribution of
the labels.

The noisy-or system failed for Task B for the same reasons why it failed
for the phoneme recognition task: the noisy-or pooling function is harsh
on false positives and lenient on false negatives, resulting in infinitesimal
frame-level predictions. Fig. 3.5 illustrates the frame-level predictions of the

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 44

True positive (TP) 1,311 (30.1%)
False negative (FN) 3,049 (78.2%)
False positive (FP) 976 (22.4%)

Precision 57.3%
Recall 30.1%

F1 39.4%

Substitution (S) 548 (12.6%)
Deletion (D) 2,501 (57.4%)
Insertion (I) 428 (9.8%)

Error rate (ER) 79.7%

Table 3.5: Breakdown of the errors (in number of 1-second segments) made
by the max pooling system on Task B of the DCASE 2017 challenge.

max pooling and the noisy-or pooling systems on an example test recording.
The recording contains the sound of a train sounding its horn intermittently.
Fig. 3.5 (c) indicates that the max pooling system is able to locate the
intervals during which the horn is sounding and produce reasonable frame-
level probabilities; it is even able to detect the pause of the horn between 4
and 5 seconds which is not labeled in the ground truth. Fig. 3.5 (d), however,
indicates that the noisy-or pooling system suffers from the same problem
observed in the phoneme recognition experiment: its frame-level predictions
are too small. Even though these small frame-level predictions can make
up reasonable recording-level probabilities through the multiplication in
the noisy-or pooling function (Eq. 3.3), they are not intuitive as frame-
level probabilities for SED. Because we applied the same thresholds to both
subtasks, most sound events were missed for Task B. This is why we saw an
error rate close to 100% and an F1 close to zero.

From both the phoneme recognition experiment and the DCASE 2017
challenge, we can draw the conclusion that noisy-or pooling is not suitable
for localization. There are two reasons behind this: (1) the noisy-or pooling
function makes the false assumption that the frames in a recording are
independent; (2) noisy-or pooling does not produce intuitively compatible
predictions on the recording level and the frame/segment level. On the
other hand, max pooling performs reasonably on both levels. Because max
pooling is more principled than the simple SLAT method, we will use max
pooling as the baseline for the study in the next section.

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 45

3.2 The Average, Softmax and Attention Pooling
Functions

3.2.1 Motivation

The experiments in the previous section show that the max pooling function
provides a reasonable solution to SED. But if we break down the errors
made by the max pooling system on Task B (see Table 3.5), we see that the
system produces a lot more false negatives than false positives, resulting in
a low recall. We conjecture this is due to the inefficient gradient flow of the
max pooling function: because only the maximum instance receives an error
signal, if a sound event occurs in more than one region of a recording, it is
possible that only one of the occurrences can be detected.

Recent literature has seen the use of the average pooling function, two
types of softmax pooling functions and an attention-based pooling function,
which claim to alleviate this problem. The attention-based pooling function
is receiving especially much attention from researchers. All these four
pooling functions compute the bag-level prediction y as a weighted average
of the instance-level predictions yi:

y =

∑
i yiwi∑
iwi

(3.12)

Actually, max pooling can also be regarded as a weighted average, where
the maximum instance gets a weight wi = 1, and all other instances get a
weight wi = 0. The average, softmax and attention pooling functions assign
weights in ways that the non-maximum instances receive some error signal,
too, so the gradient flow can be made easier.

The average pooling function [48] assigns an equal weight to each
instance. The bag-level prediction y is calculated by

y =
1

n

∑
i

yi (3.13)

where n is the number of instances in the bag.
The first softmax pooling function [50], which we call linear softmax,

assigns to each instance a weight that is proportional to the instance-level
prediction, yi. The bag-level prediction y is calculated by

y =

∑
i y

2
i∑

i yi
(3.14)

The second softmax pooling function [51], which we call exponential
softmax, assigns a weight of exp(yi) to an instance whose instance-level
prediction is yi. The bag-level prediction y is calculated by

y =

∑
i yi exp(yi)∑
i exp(yi)

(3.15)

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 46

The attention pooling function [53, 54] employs a separate output layer in
the neural network to learn the weights wi used for the weighted average. In
other words, separate parts of the network are used to learn the probabilities
of the sound events and the confidences about these probabilities. The bag-
level prediction y is then calculated by Eq. 3.12.

All the new pooling functions introduced above assign a positive weight
to instances that do not reach the maximum during training, so that
if a sound event occurs multiple times in a recording, the instance-level
probability yi at all the occurrences have a chance to be boosted. While
this facilitates the gradient flow, it makes the pooling functions deviate
from the standard multiple instance (SMI) assumption. The two softmax
pooling functions are relatively more loyal to the SMI assumption, because
the weight wi is monotonic in the instance-level prediction yi; the linear
softmax pooling function is even more so because wi approaches 0 when yi
approaches 0. The average and attention pooling functions, on the other
hand, appear to defy the SMI assumption; the attention pooling function
may learn large wi’s where the yi’s are small. This behavior, however,
may be justified by the motivation of decoupling the probability and the
confidence: the attention (i.e. weight) should be placed on instances where
the system has a high confidence about its judgment, regardless of whether
this judgment says a sound event is likely to occur there or not.

3.2.2 The Gradient Flow

Now we would like to compute the error signal that the output layer passes
down to lower layers.

Let t ∈ {0, 1} be the ground truth label for a bag, and y ∈ [0, 1] be
the bag-level prediction. The bag-level prediction y is aggregated from the
instance-level predictions y1, . . . , yn ∈ [0, 1] using the average (Eq. 3.13),
linear softmax (Eq. 3.14), exponential softmax (Eq. 3.15), or attention
(Eq. 3.12) pooling function; in the case of the attention, y also depends
on the learned weights w1, . . . , wn. The instance-level predictions must lie
within [0, 1], so they are produced with sigmoid units, i.e. yi = sigm(zi).
The weights only need to be non-negative; in our experiments we generate
them with exponential units, i.e. wi = exp(vi).

To compute the error signal, we need to find the derivative of the loss
function w.r.t. all the zi’s (and vi’s in the case of attention). The loss
function is

L = −t log y − (1− t) log(1− y) (3.16)

Its derivative w.r.t. the zi’s and vi’s can be decomposed as:

∂L

∂zi
=
∂L

∂y

∂y

∂yi

dyi
dzi

(3.17)

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 47

∂L

∂vi
=
∂L

∂y

∂y

∂wi

dwi
dvi

(3.18)

Some terms do not depend on the concrete expression of the pooling
function, which we compute here:

∂L

∂y
= − t

y
+

1− t
1− y

(3.19)

dyi
dzi

= yi(1− yi) (3.20)

dwi
dvi

= wi (3.21)

We notice that ∂L/∂y is negative when t = 1 and positive when t = 0, and
that both dyi/dzi and dwi/dvi are always positive. The different behavior
of the pooling functions will depend mainly on the middle terms ∂y/∂yi and
∂y/∂wi.

With the average pooling function (Eq. 3.13), we have

∂y

∂yi
=

1

n
(3.22)

This term is positive and constant for all instances. The consequence is that
all frames get boosted when the bag label is positive (t = 1), and all frames
get suppressed when the bag label is negative (t = 0). While it is generally a
good thing to bring yi closer to t, the gradient exhibits no selectivity across
the frames, so the average pooling function can be expected to have poor
localization performance.

With the linear softmax function (Eq. 3.14), we have

∂y

∂yi
=

2yi − y∑
j yj

(3.23)

This term is positive iff yi > y/2. Considering the terms ∂L/∂y and dyi/dzi
as well, we know that when t = 1, ∂L/∂zi is negative when yi > y/2 and
positive when yi < y/2. This indicates an interesting behavior: when the
ground truth bag label is positive, gradient descent will boost the zi’s (and
the yi’s) of the frames where the frame-level prediction yi is sufficiently large,
but suppress the frames where yi is small. This can lead to clean and well-
localized predictions of sound events. When the ground truth bag label is
negative (t = 0), we see the opposite behavior: frames with large yi’s are
suppressed, and frames with small yi’s are boosted. However, because the
threshold between “large” and “small” is y/2, in the long run all the yi’s
will be brought down to zero. This analysis shows that the linear softmax
function has desirable gradient flow properties.

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 48

With the exponential softmax function (Eq. 3.15), we have

∂y

∂yi
= (1− y + yi) ·

exp(yi)∑
j exp(yj)

(3.24)

Unlike the linear softmax function, this partial derivative is always positive.
As a result, all the frames get boosted when the bag label is positive (t = 1),
and all the frames get suppressed when the bag label is negative (t = 0). It is
not directly clear whether this will lead to poor localization performance like
the case of average pooling, because to some extent Eq. 3.24 still emphasizes
frames with larger probabilities.

With the attention pooling function (Eq. 3.12), we have

∂y

∂yi
=

wi∑
j wj

(3.25)

∂y

∂wi
=
yi − y∑
j wj

(3.26)

The first partial derivative, ∂y/∂yi, is always positive. As a result, the
attention pooling function will also boost all frames when t = 1 and suppress
all frames when t = 0. The strength of the boosting or suppression is
higher where the learned weight is higher, which is desirable. The second
partial derivative, ∂y/∂wi, is positive iff yi > y. When the bag label is
positive (t = 1), this will boost the attention of the frames where yi > y
and suppress the attention elsewhere, causing attention to concentrate on
the frames with large predictions. This is also reasonable behavior. But
when the bag label is negative (t = 0), the attention will concentrate on the
frames with small predictions. This agrees with the motivation of decoupling
probability and confidence, but it can cause incompatible bag-level and
instance-level predictions. Consider a case when the bag label is negative,
but the instance-level predictions vary between positive and negative. The
attention will focus on the negative instances and make a correct bag-level
prediction, but then the instances that are less attended to will end up as
false positives on the instance level.

3.2.3 Experiment: The DCASE 2017 Challenge

Experiment Setup

We compared the average pooling function, the two softmax pooling
functions and the attention pooling function on the DCASE 2017 challenge,
using the max pooling function as a baseline. We trained a convolutional and
recurrent neural network (CRNN) similar to the one used in Sec. 3.1.4, whose
structure is shown in Fig. 3.4 (b). To speed up the training, we implemented
the network using the PyTorch toolkit [95] instead of Keras + Theano.

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 49

The new network used a different size for the input filterbank features9

(400 × 64 instead of 1600 × 40); the sizes of the convolutional and pooling
layers were adjusted accordingly. At the output end, a fully connected layer
with the sigmoid activation function produces frame-level predictions, which
are then aggregated across time into recording-level predictions using any
of the five pooling functions (max, average, linear softmax, exponential
softmax, attention). If the attention pooling function is used, a separate
fully connected layer is used to generate the attention weights, which are
consumed by the pooling function. The authors of [53] used a softmax
activation function for the second fully connected layer, in which the
softmax acts across sound event types. We found the normalization across
sound event types unnecessary, and used the exponential activation function
instead. Because the attention pooling function is a weighted average across
time, this is equivalent to using a softwax acting across time.

When training the network, we balanced the amount of training data of
different sound event classes. This is done by creating a data generator for
each sound event class that cycles through all the training recordings labeled
with this class, and then sampling uniformly from all the data generators
to form the training batches. This data balancing eliminates the concept of
an “epoch”, but we still called it an “epoch” when the training had gone
through as many recordings as the training set contained. Note that in
such an epoch, the data of the rare sound event classes may have been seen
multiple times, while some of the data of the frequent sound event classes
may not have been seen at all. The data balancing was found to accelerate
the convergence, even though it did not significantly affect the evaluation
metrics.

We trained the network using the Adam optimizer [100] with an initial
learning rate of 3 × 10−4. The batch size was 100 recordings, so an epoch
consisted of 500 batches. We reduced the learning rate if the validation
loss did not reduce for 3 consecutive epochs; the reduction factor was tuned
for each pooling function (see the middle column of Table 3.3 for details).
We did not apply gradient clipping or dropout. All models converged by
Epoch 25, and we evaluated the models at this epoch.

A word must be said about how the predictions on 1-second segments
were made. If we predicted a segment as positive as long as one frame-level
prediction within the segment exceeded the threshold, we found we would
end up with an overwhelming number of false positives (yielding error rates
near 200%) when using the average, softmax or attention pooling functions.
Instead, we decided to treat each segment as a bag containing 10 frames,

9Configuration for filterbank feature extraction: The waveform is downsampled to
16 kHz; frames of 1,024 samples (64 ms) are taken with a hop of 400 samples (25 ms);
each frame is Hanning windowed and padded to 4,096 samples before taking the Fourier
transform; the filterbank of 64 triangle filters spans a frequency range from 0 Hz to 8 kHz.
This is also the configuration used in all subsequent experiments.

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 50

Max Pool. Ave. Pool. Lin. Soft. Exp. Soft. Attention

Task A
TP 284 297 317 298 301
FN 322 309 289 308 305
FP 364 285 359 324 317

Precision 43.8 51.0 46.9 47.9 48.7
Recall 46.9 49.0 52.3 49.2 49.7

F1 45.3 50.0 49.5 48.5 49.2

Task B
TP 1,206 2,114 1,832 2,121 1,926
FN 3,154 2,246 2,528 2,239 2,434
FP 1,253 3,758 2,187 3,437 3,309

Precision 49.0 36.0 45.6 38.2 36.8
Recall 27.7 48.5 42.0 48.6 44.2

F1 35.4 41.3 43.7 42.8 40.1

Task B
Sub. 712 1,385 1,040 1,292 1,275
Del. 2,442 861 1,488 947 1,159
Ins. 541 2,373 1,147 2,145 2,034

Error Rate 84.7 105.9 84.3 100.6 102.5

Table 3.6: Detailed performance of the max pooling, average pooling, linear
softmax, exponential softmax, and attention systems trained and evaluated
on the DCASE 2017 challenge. Errors of Task A are counted by the number
of recordings; errors on Task B are counted by the number of 1-second
segments.

and calculated the segment-level predictions by aggregating the frame-level
predictions using whichever pooling function was used in training. This
constrained the number of false positives within a reasonable range.

Experiment Results

Table 3.6 lists the performance of the max pooling, average pooling, linear
softmax, exponential softmax, and attention systems on both subtasks
of the DCASE 2017 challenge10. All the four new pooling functions
significantly11 outperform the max pooling function in terms of F1 for both
subtasks. In terms of error rate for Task B, however, only the linear softmax
system slightly outperforms the max pooling system; the average pooling,

10The max pooling system here does not perform as well as the one in Sec. 3.1.4.
However, we found the latter hard to reproduce even with the original network structure.

11We repeated all the experiments five times with different random seeds. For each
evaluation metric, we tested every pair of systems to see if one system had a significantly
lower mean than the other system. The test used was the one-tailed Welch’s t-test [129],
which assumes that the samples obey the normal distribution but do not necessarily have
an equal variance. This test is available in Matlab as the ttest2 function. Both claims
of significance passed the test at a significance level of 0.05.

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 51

exponential softmax and attention systems yield error rates higher than
100% and are significantly11 worse than the max pooling and linear softmax
systems.

Table 3.6 also includes a breakdown of the error types. All the five
systems achieve a reasonable balance between false negatives and false
positives for Task A. For Task B, however, only the linear softmax system
achieves a good balance. The max pooling system makes too many false
negatives. The reason has been analyzed in Sec. 3.1.2: when a sound event
occurs multiple times in a recording, the gradient flow of the max pooling
function only boosts the prediction at one occurrence. The average pooling,
exponential softmax and attention systems make too many false positives.
The reason has been analyzed in Sec. 3.2.2: these pooling functions put
too much weight on the frames with small-valued predictions, making it
necessary to have many large-valued frame-level predictions in order to make
a positive recording-level prediction. It turns out that at the operation
points of these systems, the error rate is very sensitive to false positives.
This is why the average pooling, exponential softmax and attention systems
perform badly on Task B.

Fig. 3.6 illustrates the false positives made by the average pooling,
exponential softmax and attention systems. The 10-second recording
contains the conversation between a man and a child, with the sound of
a bicycle chain turning from 1.5 s to 3.7 s. The DCASE challenge is only
interested in the bicycle sound. On this recording, all the five systems
correctly detect the bicycle sound and deny the existence of bus sounds
on the recording level. However, the average pooling, exponential softmax
and attention systems make false positives for the bus event on the frame
or segment levels. In Fig. 3.6 (c) ∼ (g), the solid line shows the frame-
level predictions for the bus event, the dashed line shows the recording-
level prediction for the bus event (which is calculated from the frame-level
predictions using the pooling function), and the dotted line shows the class-
specific threshold for the bus event. In the max pooling and linear softmax
systems, both the frame-level predictions and recording-level prediction
stay safely below the threshold. In the exponential softmax system, the
frame-level predictions exhibit undesired high values toward the end of the
recording. Even though these high values do not affect the recording-level
prediction much because other frames also have significant weight in the
pooling function, a frame-level false positive is made at 8.7 s. Similarly, the
average pooling system makes false positives around 2.6 s, 4.0 s and 9.0 s.
In the attention system, we see what we have anticipated in Sec. 3.2.2:
the attention (light blue line) mostly focuses on regions where the frame-
level predictions are low. This correctly produces a negative recording-level
prediction, but lets many frame-level false positives get away unconstrained.
The frame-level false positives also produce segment-level false positives on
the segments 4∼5 s and 5∼6 s, contradicting the recording-level prediction.

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 52

(a) Filterbank features

20
40
60

B
an

d

(b) Ground truth (dark means active)
Bicycle

Bus

0

0.5

P
ro

ba
bi

lit
y

(c) Predictions for "Bus" of the max pooling system

Frame-level pred.
Rec.-level pred.
Threshold

0

0.5

P
ro

ba
bi

lit
y

(d) Predictions for "Bus" of the average pooling system

Frame-level pred.
Rec.-level pred.
Threshold

0

0.5

P
ro

ba
bi

lit
y

(e) Predictions for "Bus" of the linear softmax system

Frame-level pred.
Rec.-level pred.
Threshold

0

0.5

P
ro

ba
bi

lit
y

(f) Predictions for "Bus" of the exponential softmax system

Frame-level pred.
Rec.-level pred.
Threshold

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

0.5

1

P
ro

ba
bi

lit
y

(g) Predictions for "Bus" of the attention system

Frame-level pred.
Attention (x 10)
Rec.-level pred.
Threshold

Figure 3.6: The frame-level predictions of the max pooling, average pooling,
linear softmax, exponential softmax, and attention systems for the bus event
on the example test recording “-nqm_RJ2xj8” (unfortunately, this recording
is no longer available on YouTube). Best viewed in color.

The false positives illustrated in Fig. 3.6 are common throughout the data.
Considering both the error rate and the F1 metric, as well as the

agreement between recording-level and frame-level predictions, we recom-
mend the linear softmax pooling function among all the pooling functions
we have studied.

Class-Wise Analysis

We visualized the confusion between the 17 sound event types via confusion
matrices, both on the recording level and the 1-second segment level. Due to

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 53

Task A

C A A F P C R T C C N B M T T B S S

Predicted

Civil defense siren
Air horn

Ambulance
Fire engine

Police car
Car alarm

Reversing beeps
Truck

Car passing by
Car

None
Bus

Motorcycle
Train

Train horn
Bicycle

Screaming
Skateboard

G
ro

un
d

tr
ut

h

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Task B

C A A F P C R T C C N B M T T B S S

Predicted

Civil defense siren
Air horn

Ambulance
Fire engine

Police car
Car alarm

Reversing beeps
Truck

Car passing by
Car

None
Bus

Motorcycle
Train

Train horn
Bicycle

Screaming
Skateboard

G
ro

un
d

tr
ut

h

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3.7: The confusion matrices of the linear softmax system on the test
data of the DCASE 2017 challenge, for both Task A and Task B.

polyphony, a recording or a segment may have multiple ground truth labels,
as well as multiple predicted labels. In such cases, we divide the recording
or segment into fractional recordings or segments with equal weights. For
example, if a recordings has the ground truth label car but is predicted to
contain both bus and train, then we break it down into two recordings both
having a weight of 1/2 and the ground truth label car, but one having the
prediction bus and the other having the prediction train.

The confusion matrices of the linear softmax system on the test data for
both Task A and Task B are shown in Fig. 3.7. For better visualization,
we arranged the rows and columns of the matrices so that large entries fall
near the diagonal using the confusion matrix ordering (CMO) algorithm12

introduced in [130]. In the confusion matrix for Task A, the row for the
event None is empty, because all test recordings contain at least one event
type.

The following results can be read from the confusion matrices:

• Civil defense siren and skateboard, arranged in the corners of
the confusion matrices, are the two best-learned sound event types.
They are seldom recognized as other events, nor are other events often
recognized as them.

• There is a lot of confusion between the sirens of the three types of
emergency vehicles: ambulance, fire engine, and police car. This
agrees with intuition.

• The event types car, truck and train receive a lot of false positives.
This is understandable because the first two of the three event types
have remarkably more training recordings than other events, which
may cause the system to bias toward them even though data balancing
is applied.

12Available in the clana toolkit: https://github.com/MartinThoma/clana.

https://github.com/MartinThoma/clana

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 54

• Events are missed more often on the segment level than on the
recording level.

The confusion matrices of systems using other pooling functions are more
or less similar, except that the max pooling system has a lot more misses
on the segment level, and that the attention system has slightly more false
positives for the events bicycle and bus for Task B.

We also tried to find out what properties of individual sound event types
affect how well they are learned. Because the error rate metric inherently
involves multiple sound event types, we studied the F1 metric for both
Task A and Task B. The properties we considered include the frequency
and coverage of each sound event type. The frequency is measured by how
many recordings in the training data contain a given sound event type. The
coverage reflects whether a given sound event type tends to cover the whole
recording or last for only a short time. It is measured by the percentage of
duration covered by a given sound event type in all recordings in which the
sound event type is labeled as present by the ground truth.

Calculating the coverage requires strong labeling. For the DCASE 2017
data, we could calculate the coverage of each event type on the strongly
labeled test data (488 recordings). We could also estimate the coverage from
the larger training data (50,030 recordings). To do so, we predicted frame-
level probabilities of the events using the linear softmax system (which was
found to produce balanced numbers of false negatives and false positives),
and thresholded these probabilities using class-specific thresholds tuned to
optimize the micro-average Task A F1 on the validation data. We then
calculated the coverage of each event type on the training recordings whose
ground truth was positive for this event type.

To understand the interplay between the evaluation metrics and the
properties of the sound event types, we calculated the Pearson’s correlation
coefficient between each pair of them. We observed the same trends for all
the systems using different pooling functions (see Fig. 3.8). First, we see
that the F1’s of both Task A and Task B are negatively correlated with the
frequency (excluding the two extremely frequent events: car and truck).
This means less common events are learned better; a partial explanation
may be that frequent events tend to receive more false positives. Second,
the F1’s of both Task A and Task B are strongly positively correlated with
the coverage estimated from the training data. The two best-learned event
types, civil defense siren and skateboard, happen to have the highest
coverage (> 70%). This means events that tend to last longer are learned
better. There are some caveats when interpreting this result, though: first,
we found that the coverage estimated from the training data did not correlate
well with the coverage directly calculated from the test data; second, it is not
clear whether higher coverage results in better learning, or better learning
results in a higher estimated value of coverage.

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 55

0 1000 2000 3000 4000

Frequency (# training recordings)

20

30

40

50

60

70

80

90

T
as

k
A

 F
1

(%
)

(a)

 Air horn
 Ambulance

 Bicycle

 Bus

 Car alarm

Car passing by

 Civil defense siren

 Fire engine

 Motorcycle

 Police car

 Reversing beeps

 Screaming
 Skateboard

 Train

 Train horn

 Truck

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Coverage (estimated from training data)

20

30

40

50

60

70

80

90

T
as

k
A

 F
1

(%
)

(b)

 Air horn
 Ambulance

 Bicycle

 Bus

 Car

 Car alarm

 Car passing by

Civil defense siren

 Fire engine

 Motorcycle

 Police car

 Reversing beeps

 Screaming
Skateboard

Train

 Train horn

 Truck

Figure 3.8: The correlation between the linear softmax system’s Task A F1

and the frequency and coverage of the event types. Each dot stands for an
event type; the dots for car and truck are omitted from the subplot (a)
because their frequency values are too large. The Task B F1 is not plotted
because it is highly correlated with the Task A F1. Systems with other
pooling functions exhibit similar patterns.

Discussion: Alternative Thresholding for Task B

As we tuned the hyperparameters for the experiment in this section, we
found it hard to get the error rate of Task B below 80%. The authors
of [53], however, achieved an error rate of 72% using the attention pooling
function, ranking second among the seven participants of the challenge who
submitted results for Task B. In our private correspondence with the authors,
we learned that their low error rate was a result of the following techniques:

• Using a deeper network (nine convolutional layers instead of three);

• Fusing the predictions of the models at different epochs;

• Using different thresholds for Task B than Task A;

• Smoothing the detected sound events.

All of these may be regarded as engineering efforts except the third point.
Recall that we tuned class-specific thresholds to optimize the Task A F1 on
the validation data, and then applied these thresholds to both subtasks on
the test data. While this can be expected to yield a good performance
for Task A, there is no particular reason why these thresholds should
work well for Task B. In the case of the max pooling function, using the
same thresholds for both subtasks guarantees compatible recording-level and
frame-level predictions, but this no longer holds for other types of pooling
functions. Therefore, we experimented with different thresholds for Task B.

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 56

60 70 80 90 100 110 120 130 140
Error rate

0

10

20

30

40

50
F1

0.1
0.2

0.3

0.4

0.5

0.6

0.7
0.8

0.9

1.0

0.20.30.40.5
0.6
0.7

0.8

0.9

1.0

0.10.20.3
0.4
0.5

0.6
0.7

0.8

0.9

1.0

0.20.30.4
0.5
0.6
0.7

0.8

0.9

1.0

0.20.30.4
0.5
0.6

0.7

0.8

0.9

1.0

Max
Ave
Lin
Exp
Att

Figure 3.9: The change of the Task B error rate and F1 metric of the various
systems as the threshold varies from 0 to 1, measured on the test data of the
DCASE 2017 challenge. The numbers on the curves indicate the thresholds
at those points; the big dots indicate the error rate and F1 obtained with
class-specific thresholds tuned to optimize the Task A F1 on the validation
data. Best viewed in color.

A problem we ran into was the lack of validation data. The validation
data of the DCASE 2017 challenge was not strongly labeled, so we could
not tune the thresholds for Task B on the validation data. The authors
of [53] tuned the thresholds on the public test data, and applied them to the
private evaluation data. Since we did not have access to the ground truth
of the evaluation data, all we could do was to tune the thresholds on the
test data, and then measure the evaluation metrics on the test data as well.
This inevitably introduced overfitting. To mitigate this overfitting, we no
longer tuned class-specific thresholds, but tuned a global threshold for all
the sound event types instead.

Fig. 3.9 shows the change of the Task B error rate and F1 as the global
threshold varies from 0 to 1. A good threshold should yield a low error
rate and a high F1, and this is represented by points lying in the upper
left corner of the curves. If the threshold is lowered, false positives will
increase, which quickly increases the error rate. The F1, however, is less
sensitive to false positives, because the recall tends to 100% and the precision

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 57

has a lower bound. If the threshold is raised, false negatives will increase,
which adversely affects both the error rate and the F1 metric. The optimal
threshold appears to be near 0.25, 0.5, 0.35, 0.5, and 0.45 for the max
pooling, average pooling, linear softmax, exponential softmax and attention
systems, respectively. The authors of [53] used a threshold of 0.5 for their
attention system, which is close to the optimal value.

However, if we compare all the five curves in Fig. 3.9, we see that even
with a threshold tuned separately for Task B, it is still the linear softmax
system that achieves the best error rate and F1, because its curve extends
more than the others to the left and above. In addition, we can look at the
big dots in the figure, which indicate the actual performance when the class-
specific thresholds tuned to optimize the F1 of Task A on the validation data
are directly applied to Task B (they do not have to fall on the curves). The
linear softmax system has a big dot that lies close to the optimal operating
point. This means the linear softmax system, unlike the average pooling,
exponential softmax and attention systems, does not require tuning the
thresholds separately for Task A and Task B.

The discussion in this section still points to the superiority of the linear
softmax pooling function. We conjecture that the performance of the
attention system in [53] can be further improved if the attention pooling
function is replaced by the simpler linear softmax pooling function.

3.2.4 Additional Remarks

So far we have shown linear softmax to be the best pooling function among
all the pooling functions we have studied. It has the following advantages:

• It facilitates the gradient flow;

• It achieves a good balance between false negatives and false positives;

• It makes consistent recording-level and frame-level predictions.

As a result, the linear softmax system achieves a low error rate on the
segment level, as well as a high F1 on both the recording level and the
segment level.

However, we do not believe that linear softmax is the ultimate optimal
pooling function for sound event detection. We notice that both softmax
pooling functions are actually special cases of weighted averaging with the
following weighting function:

wi = yβi exp(αyi) (3.27)

The linear softmax function is obtained when α = 0, β = 1, while the
exponential softmax function arises when α = 1, β = 0. As long as α, β ≥ 0,
the weight wi will be monotonically increasing in the prediction yi. It is

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 58

unlikely that α = 0, β = 1 are the optimal hyperparameters in this vast
hyperparameter space. Indeed, a study concurrent with ours [52] proposed
an adaptive pooling function with a weighting scheme of wi = exp(αyi),
where the coefficient α can take a different value for each sound event type,
and is trained jointly with all the network parameters.

And there is no reason why we must restrict ourselves to weighting
functions in the form of Eq. 3.27. The freedom to learn the weights, as
provided by the attention pooling function, is still attractive. However,
we have seen that if we do not impose any constraints, the attention can
tend to fall on frames with low predicted probabilities, which can generate
incompatible recording-level and frame-level predictions. To avoid this,
we may consider learning a weighting function wi = w(yi) that must be
monotonically increasing. Such a weighting function can enjoy as much
freedom as possible without suffering from too many frame-level false
positives, and is a promising direction for further study.

3.3 TALNet: A Network for Large-Scale Joint
Audio Tagging and Localization

In the previous two sections, we have compared six types of pooling functions
on the DCASE 2017 challenge, and established the linear softmax pooling
function as the optimal among the six. However, the corpus of the DCASE
challenge is a small dataset after all: it contains only about 140 hours
of audio for training, and involves only 17 types of vehicle and warning
sounds. In this section, we would like to confirm our findings on the large-
scale Google Audio Set, which contains more than 2 million 10-second audio
excerpts with a total duration of 8 months, and is concerned with 527 diverse
types of sound events.

Because Audio Set only comes with presence/absence labeling, the
default metrics only evaluate the performance of audio tagging. Never-
theless, our goal has always been to perform audio tagging and localization
simultaneously. To evaluate for both tasks, we train a network on Audio
Set, and evaluate the network on both Audio Set and the DCASE challenge.
Because the 527 sound event types of Audio Set is a superset of the 17 sound
event types of the DCASE challenge, we do not perform any adaptation
when we evaluate the network on the latter. We show that our network,
which we name TALNet13, not only closely matches the current state of
the art on Audio Set, but also exhibits strong performance on the DCASE
challenge. As far as we know, this is the first network that achieves such
good performance on both corpora at the same time.

13“TAL” stands for “tagging and localization”.

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 59

3.3.1 Google Audio Set: Corpus and Metrics

The Google Audio Set consists of 10-second YouTube video excerpts anno-
tated with the presence or absence of 527 types of sound events. It contains
over 2 million training recordings, in which the sound event types are not
uniformly distributed. About 22 thousand recordings are selected from these
to make a balanced training set, but we used the entire unbalanced set
for training because the balanced training set is too small. Audio Set also
provides an evaluation set of 20,371 recordings. We downloaded all the audio
data from YouTube around May 2017; about 1% of the data was already
unavailable at the time of the download. The audio was downsampled to
16 kHz and stored in the FLAC14 format; it takes more than 400 GB of
storage.

Since we would also evaluate the model on the DCASE 2017 challenge,
we excluded the recordings belonging to the validation, test or evaluation
set of the DCASE 2017 challenge from the Audio Set training data to ensure
a fair evaluation. We also built a validation set for Audio Set to monitor
the progress of model training. The data for this came from the DCASE
validation data and a part of the Audio Set training data; its size and the
distribution of sound events are comparable with the Audio Set evaluation
data.

Because Audio Set only provides presence/absence labeling, it is only
possible to evaluate the performance of audio tagging on this corpus. Three
(or actually two) metrics are widely used in the literature that uses Audio
Set: mean average precision (MAP), mean area under the curve (MAUC),
and d-prime (d′). These metrics measure how well a system separates
positive and negative recordings, and they do not require setting thresholds.
The metrics are calculated as below. For each sound event type, the system
generates a ranked list of the evaluation recordings, sorted by the probability
of the event in descending order. For every positive recording in the list,
we can set the threshold just below its probability and calculate a precision
score; the average of all these precision scores is defined as the average
precision (AP) of the event type. We can also plot the receiver operator
characteristic (ROC) curve for this event type, whose y-axis and x-axis
track the change of the true positive (TP) rate and false positive (FP) rate
as the threshold varies from 1 to 0; the area under the curve (AUC) metric
is defined as the area under the ROC curve. The AP and AUC values
are averaged over all sound event types to produce the MAP and MAUC
metrics. Because the MAUC metric is often very close to 1, it is warped
using the following formula to get the d-prime metric, in order to amplify
small changes:

d′ =
√

2Φ−1(AUC) (3.28)

14“FLAC” stands for “Free Lossless Audio Codec”.

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 60

where Φ is the accumulative density function of the standard normal
distribution. All of MAP, MAUC and d-prime are the larger the better.

3.3.2 TALNet: Training and Evaluation

We trained a convolutional and recurrent neural network (CRNN) whose
structure is shown in Fig. 3.10. The structure and the hyperparameters
were optimized so that all the five pooling functions (max pooling, average
pooling, linear softmax, exponential softmax, and attention) achieved a good
performance. The network consists of 10 convolutional layers interleaved
with 5 max pooling layers, followed by one bidirectional GRU layer and one
fully connected layer. The input to the network is 64-dimensional filterbank
features sampled at 40 frames per second, i.e. a feature map of size 400
× 64. The convolutional layers have a kernel size of 3 × 3; the number
of features maps were chosen so that the embedding size at each frame
(i.e. the number of feature maps times the number of frequency bins) was
2,048. Each max pooling layer reduces the number of frequency bins by half,
bringing the embedding size down to 1,024; the first two max pooling layers
also reduce the frame rate by half. The output of the last max pooling layer
is flattened into 100 frames of 1,024-dimensional vectors; they are fed into a
bidirectional GRU layer with 512 hidden units in each direction. The final
fully connected layer predicts the probabilities of the 527 sound event types
for each frame, which are then pooled using any of the five pooling functions
into recording-level predictions.

When training the network, we applied data balancing in the same
fashion as in Sec. 3.2.3. We found it essential to apply batch normalization
before the ReLU activation of each convolutional layer. We used the
Adam optimizer with an initial learning rate of 10−3. Each minibatch
contained 250 recordings. We measured the performance of the model
every 1,000 batches (called a checkpoint), and decayed the learning rate
by a factor of 0.8 if the best MAP on the validation set saw no updates
in 3 consecutive checkpoints. We did not apply dropout as we found it to
hurt the performance. These hyperparameters are summarized in the last
column of Table 3.3.

We evaluated the network using the metrics of both Audio Set and the
DCASE 2017 challenge. When evaluating on the DCASE challenge, we
selected the 17 columns corresponding to the 17 sound event types out of
the 527 columns in the network output. The Audio Set metrics do not
require setting thresholds, but the DCASE metrics do. Therefore, at each
checkpoint, we tuned class-specific thresholds on the DCASE validation data
to optimize the audio tagging F1, and then applied these thresholds to the
DCASE test data. For each system, we picked a checkpoint at which all the
metrics were close to the best value ever reached. This usually happened
between the 10th and 20th checkpoints.

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 61

400 * 64 * 32

conv 3*3 (*2)

Filterbank features

200 * 32 * 32

pool 2*2

200 * 32 * 64

conv 3*3 (*2)

100 * 16 * 64

pool 2*2

100 * 16 * 128

conv 3*3 (*2)

100 * 8 * 128

pool 1*2

100 * 8 * 256

conv 3*3 (*2)

100 * 4 * 256

pool 1*2

100 * 4 * 512

conv 3*3 (*2)

100 * 2 * 512

pool 1*2

100 * 1024

flatten

100 * 1024

BiGRU 512*2

100 * 527
Frame-level predictions

FC (sigmoid)

1 * 527

max/ave/lin/exp/att

100 * 527
Attention

FC (exponential)

Recording-level
predictions

400 * 64 * 1

Figure 3.10: The structure of TALNet for joint audio tagging and localiza-
tion. Shadowed boxes stand for 3-D tensors; their sizes are specified in the
order of time frames, frequency bins, and feature maps. Plain boxes stand
for 2-D tensors; the first dimension is time. All the convolutional layers use
the ReLU activation; the numbers after “conv” (e.g. 3*3) specify the size of
the kernel, and an additional “(*2)” means the layer is repeated twice. All
the pooling layers following convolutional layers perform max pooling; the
numbers after “pool” (e.g. 2*2) specify the stride. “FC” is short for “fully
connected”. At the output end, the “attention” block is only used with the
attention pooling function.

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 62

Group System
No. of

Training
Recs.

Audio Set DCASE 2017

MAP MAUC d’
Task A Task B

F1 ER F1

TALNet
(Sec. 3.3)

Max pooling

2M

0.351 0.961 2.497 52.6 81.5 42.2
Average pooling 0.361 0.966 2.574 53.8 101.8 46.8
Linear softmax 0.359 0.966 2.575 52.3 78.9 45.4
Exp. softmax 0.362 0.965 2.554 52.3 89.2 46.2

Attention 0.354 0.963 2.531 51.4 92.0 45.5

Literature

Hershey [71, 15] 1M 0.314 0.959 2.452
Kumar [128] 22k 0.213 0.927

Shah [48] 22k 0.229 0.927
Wu [131] 22k 0.927
Kong [54] 2M 0.327 0.965 2.558
Yu [55] 2M 0.360 0.970 2.660

Chen [56] 600k 0.316
Chou [57] 1M 0.327 0.951

DCASE only
(Sec. 3.2.3)

Max pooling

50k

45.3 84.7 35.4
Average pooling 50.0 105.9 41.3
Linear softmax 49.5 84.3 43.7
Exp. softmax 48.5 100.6 42.8

Attention 49.2 102.5 40.1

Table 3.7: Audio tagging and localization performance of TALNet, measured
on the evaluation set of Audio Set and the public test set of the DCASE
2017 challenge. The performance of various systems in the literature and
systems trained with DCASE data only is also included for comparison.
Bold numbers indicate the best performance in each group.

The performance of the network using different pooling functions is listed
in the top row of Table 3.7. In terms of audio tagging performance, the linear
softmax pooling function is not the optimal; it is better than the max and
attention pooling functions, but worse than the average and exponential
softmax pooling functions15. However, the linear softmax pooling function
is still the only pooling function that maintains a balance between false
negatives and false positives for the localization task. It has a significantly
lower Task B error rate than the average, exponential softmax and attention
pooling functions, which make too many false positives, and a significantly
higher Task B F1 than the max pooling function, which makes too many
false negatives16.

In the middle row of Table 3.7, we list the results on Audio Set reported
in all the literature that we can find. Not all these systems used the entire
unbalanced training set of 2 million recordings; some only used the balanced

15Just like in Sec. 3.2.3, we repeated the experiments five times and conducted the one-
tailed Welch’s t-test with a significance level of 0.05. In terms of MAP, the linear softmax
pooling function is significantly better than the max and attention pooling functions, but
significantly worse than the average and exponential softmax pooling functions. In terms
of d′ (regarded as a more precise version of MAUC), the linear softmax pooling function
is only significantly better than the attention pooling function. In terms of Task A F1, no
difference is significant.

16Significance again verified by the one-tailed Welch’s t-test at a level of 0.05.

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 63

training set of 22,000 recordings. The only competitive systems are those
of Kong et al. [54], Chou et al. [57], and Yu et al. [55]; our linear softmax
system outperforms the first two and closely matches the last17. We would
like to remark that the systems of Kong et al., Chou et al. and Yu et al.
either do not perform localization well, or do not perform localization at
all. The system of Kong et al. [54] uses the attention pooling function. As
we have demonstrated, this pooling function can cause many false positives
on the frame level, and suffer from a high error rate. The system of Chou
et al. [57] applies attention to the frame-level losses instead of the frame-
level predictions, but it is likely to suffer from the same problem. The
system of Yu et al. [55] uses multi-level attention: attention layers are built
upon multiple hidden layers, whose outputs are concatenated and further
processed by a fully connected layer to yield a recording-level prediction.
This deviates from the instance-space (IS) paradigm of MIL, and falls into
the embedding-space (ES) paradigm instead: the outputs of the attention
layers can be regarded as an explicit vectorial representation of the audio
recording. It is normal for ES methods to outperform IS methods on the bag
level, but ES systems cannot make instance-level predictions. Our TALNet
is the first system we know that achieves good performance for both audio
tagging and localization at the same time.

In the bottom row of Table 3.7, we also list the performance of the
systems in Sec. 3.2.3, which were trained only on the DCASE data. We see
that all the evaluation metrics got better when we moved from the DCASE
data to Audio Set. This is not simply a result of adding more training data,
because most of the Audio Set data is not related to the 17 DCASE event
types. Rather, we regard this as a successful case of model transfer18. Here
the source task is the 527-class SED on Audio Set, and the target task is
the 17-class SED on the DCASE challenge. TALNet, which is trained for
the source task on a large corpus, turned out to have learned more relevant
knowledge for the target task than a network trained directly for the target
task on a small corpus.

We also analyzed the correlation between the class-wise performance of
the 527 sound event types and their frequency and coverage. This time we
estimated the coverage on the evaluation data (about 20,000 recordings),
because the training data (about 2 million recordings) was too big. Just like
in Sec. 3.2.3, we found all the class-wise metrics (AP, AUC, d′) positively
correlated with the coverage. However, we found almost no correlation

17Because we could not repeat the experiments of Yu et al., we used the one-tailed
one-sample t-test (function ttest in Matlab) to test whether the mean performance of
TALNet with the linear softmax pooling function is significantly worse than the reported
performance of Yu et al.’s system. The gap between TALNet and Yu et al.’s system turned
out to be indeed significant at a level of 0.05.

18This is actually a degenerate case of model transfer, because the model is not adapted
at all when applied to the target task.

CHAPTER 3. SED WITH PRESENCE/ABSENCE LABELING 64

between the metrics and the frequency this time. These trends apply
uniformly to all the five systems using different pooling functions.

3.4 Summary

In this chapter, we have shown that multiple instance learning (MIL) is
a viable choice for sound event detection with presence/absence labeling.
Even though the training labels do not contain any information about
the temporal location of sound events, MIL is able to localize them with
reasonable accuracy.

The choice of the pooling function is an important question in MIL. In
this chapter, we have extensively studied six pooling functions: max pool-
ing, noisy-or pooling, linear softmax, exponential softmax, and attention.
Based on both theoretical analysis and experimental validation, we have
established linear softmax as the optimal of the six. The linear softmax
function facilitates the gradient flow, achieves a good balance between false
negatives and false positives, and makes consistent bag-level and instance-
level predictions. Nevertheless, we also point out potential directions for
discovering even better pooling functions, such as interpolating between
the linear and exponential softmax functions, or regularizing attention with
monotonicity constraints.

Based upon these findings, we built a network called TALNet that
achieves state-of-the-art performance on the Google Audio Set and strong
performance on the DCASE 2017 challenge at the same time. As far
as we know, this is the first system that exhibits such good performance
simultaneously on the two tasks of audio tagging and localization.

Chapter 4

Sound Event Detection with
Sequential Labeling

The previous chapter has studied sound event detection with presence/
absence labeling. While presence/absence labeling is the prevalent form
of annotation currently available, we are still interested in find out whether
a slightly stronger form of annotation can improve the performance of SED.

In this chapter, we explore sequential labeling, which is stronger than pre-
sence/absence labeling but still weaker than frame-wise labeling. Roughly
speaking, sequential labeling tells us the order of sound events occurring in
each recording, but not the exact onset and offset times of each occurrence.
It is similar to the form of supervision used to train contemporary speech
recognition systems: each utterance is labeled with an ordered sequence
of phonemes, but the exact onset and offset times of the phonemes are
unknown. Just as in the case of presence/absence labeling, we are not only
interested in detecting which types of sound events are present or recovering
the order of these events, but also interested in the precise localization of
the onsets and offsets of each occurrence.

There is one difference between the tasks of polyphonic SED and speech
recognition: sound events can overlap, while phonemes cannot. It can be
hard to define the order between overlapping sound events. To get around
this problem, we define sequential labeling as an ordered sequence of event
boundaries (i.e. onsets and offsets), instead of the event themselves. For
example, if a recording contains a dog bark followed by the sound of a car,
we label the recordings as <dog> </dog> <car> </car>1. On the other
hand, if a recording contains a bark while a car passes by, then we label it
as <car> <dog> </dog> </car>. When two different sound events start or
end at exactly the same time, we choose an arbitrary order for the onset or
offset labels involved.

1We borrow the notation from HTML: <event> signifies the onset of an event, and
</event> signifies the offset of an event.

65

CHAPTER 4. SED WITH SEQUENTIAL LABELING 66

In modern speech recognition systems, connectionist temporal classifica-
tion (CTC) is a popular technique to deal with sequential labeling. CTC
establishes a multiple-to-one mapping between the frame-level predictions
of a neural network and the label sequence of an recording, and, during
training, attempts to maximize the total probability of all frame-level
predictions corresponding to the ground truth label sequence. This idea may
be directly borrowed and applied to SED with sequential labeling. While
the standard CTC is good at detecting short events, it does not localize long
events well due to a “peak clustering” phenomenon. We modify the standard
CTC framework and propose a connectionist temporal localization (CTL)
framework. This framework solves the “peak clustering” problem and closes
about one third of the gap between presence/absence labeling and strong
labeling, measured in terms of frame-level F1 macro-averaged across sound
event types.

Sequential labeling is easier to produce manually than strong labeling.
Moreover, they may be mined from textual descriptions of audio recordings,
such as “a dog barks while a car passes by”. Nevertheless, building a
sequentially labeled corpus of a size similar to Google Audio Set is still an
enormous task beyond the abilities of the author’s lab. In order to test out
algorithms designed for sequential labeling and compare them to those desig-
ned for strong labeling and presence/absence labeling, we generated strong
labeling and sequential labeling for the Audio Set recordings automatically
with TALNet, a state-of-the-art multiple instance learning (MIL) system
trained with presence/absence labeling in Chapter 3. The automatic labels
are no doubt noisy, but they suffice to demonstrate the extra advantage that
sequential labeling brings about compared to presence/absence labeling.

The content of this chapter is organized as follows. Sec. 4.1 describes the
procedure we used to automatically generate strong labeling and sequential
labeling for Audio Set recordings, and the resulting corpus used in the
experiments in this chapter. We also establish an upper baseline and a lower
baseline with strong labeling and presence/absence labeling, respectively.
Sec. 4.2 demonstrates that a direct application of CTC to SED with
sequential labeling is able to detect short events, but it fails to localize long
events due to a “peak clustering” phenomenon. We analyze the cause and,
in Sec. 4.3, propose a connectionist temporal localization (CTL) framework,
which successfully surpasses the performance of presence/absence labeling.
In Sec. 4.4, we combine a CTL system with a MIL system for further
improvement. In Sec. 4.5, we briefly discuss the problem of generalizing
to different data, and Sec. 4.6 summarizes the contributions of this chapter.

CHAPTER 4. SED WITH SEQUENTIAL LABELING 67

4.1 Data Preparation

4.1.1 Automatic Generation of Strong and Sequential Labels

We decided to select recordings from the entire Google Audio Set [15] to
build the training, validation and evaluation sets for the experiments in this
chapter. This decision was made based upon both the quantity and the
quality of the data. One alternative choice we considered but did not adopt
was to use the data of the DCASE 2017 challenge [83], which is a subset of
Audio Set. The total duration of this data (140 hours) could be considered
enough for training, but this data is only concerned with 17 types of vehicle
and warning sounds, which are not diverse enough. In addition, a significant
portion of the recordings (> 40%) contain only one occurrence of a sound
event spanning the entire recording, which do not bring out the difference
between presence/absence labeling and sequential labeling. Another choice
was the Noiseme corpus [85]. The advantage of this corpus is that it is
strongly labeled by hand, but this corpus only contains about 13 hours
of audio, which is too little for training. We do briefly discuss using the
Noiseme corpus for testing in Sec. 4.5, though.

We first generated strong labels for the Audio Set recordings using
TALNet – the best system we trained in Sec. 3.3, i.e. the network shown in
Fig. 3.10 with the linear softmax pooling function. This system produced
frame-level probabilities for each sound event type; we binarized them using
class-specific thresholds to generate strong labels. The thresholds were tuned
to maximize the audio tagging F1 micro-averaged across the 527 sound event
types on the evaluation data of Audio Set. This was not an impeccable action
– a more prudent choice would be to tune the thresholds on the validation
data, but it is acceptable since it only affects the generation of the labels
and does not directly affect any of the experiments. An inspection of the
strong labels revealed that there were many very short occurrences of sound
events and very short gaps between occurrences of the same sound event
type. These could have been eliminated by smoothing, but we chose not to
apply any smoothing because (1) it was hard to pick optimal parameters
for smoothing, and (2) smoothing would have eliminated the occurrences of
many transient sound events (e.g. knocks) altogether.

Audio Set comes with a repertoire of 527 types of sound events. Using all
of them would be quite a burden for the experiments; in addition, not all the
sound event types have a high enough quality. Many of the event types form
a hierarchy, such as “speech – male speech”, and “animal – dog – bark”.
Quite often, a recording is only labeled with one event type in such chains,
even though its hypernyms and/or hyponyms also apply. For example, a
recording containing a man’s speech may be only labeled with speech, not
male speech. Because of this deficiency in the training data, TALNet also
often failed to predict labels such as male speech when it should. We

CHAPTER 4. SED WITH SEQUENTIAL LABELING 68

0 1 2 3 4 5 6 7 8 9 10 11 12

Frame

speech

dog

tone (car horn)S
ou

nd
 e

ve
nt

Figure 4.1: An example of the strong labels generated by TALNet. Dark
means active. The corresponding sequential labels are: <tone> <dog>

</dog> <dog> </dog> </tone> <speech> </speech>.

believed it was necessary to reduce the set of sound event types. The
Noiseme corpus [85] proposed an ontology of 42 sound event types, which
served as a good starting point. Starting from this ontology, we merged some
confusable event types (e.g. heavy engine, light engine, quiet engine),
and ended up with 35 classes (which we call “common events”). Because
the Audio Set ontology was designed with the noiseme ontology in mind,
it was not hard to find the Audio Set event type(s) corresponding to each
common event. The 35 common events, and the corresponding noiseme and
Audio Set event types are listed in Table 4.1. The 527-class strong labeled
were reduced to the 35 common events using the following rule: at each
frame, a common event is active iff any of its corresponding Audio Set event
is active. For simplicity, we did not descend down the hierarchy in this
step: if TALNet predicted the Audio Set event male speech as active at a
frame but speech as inactive, then the common event speech was labeled
as inactive.

Reducing the set of sound event types also reduced the amount of
training data. We discarded Audio Set recordings that did not contain any
of the 35 common events, according to the predictions of TALNet. Because
the common events speech, sing, music and crowd had overwhelmingly
large numbers of recordings, we further excluded recordings that did not
contain any of the other 31 common events. This filtering was applied to the
unbalanced training recordings of Audio Set to generate the training data
for the experiments in this chapter; the resulting training data contained
359,741 recordings totaling nearly 1,000 hours, which account for about
18% of the original unbalanced training recordings. The same filtering was
applied to the validation and evaluation data used in Chapter 3; the number
of surviving recordings was 4,879 and 5,301, respectively.

Table 4.2 lists some statistics of the data we gathered for the experiments
in this chapter. On average, each recording contains about 6 event
occurrences. Less than 10% of the training recordings contain only one event
occurrence, indicating that the ground truth of this data is less “boring”
than the DCASE data. The average duration of the event occurrences is
under 1 second. Such a short average duration can be attributed to two

CHAPTER 4. SED WITH SEQUENTIAL LABELING 69

Common event
Corresponding

noiseme(s)
Corresponding

Audio Set event(s)

00: speech
speech

speech ne
mumble

0: speech

01: sing
singing

music sing
27: singing

02: music
music

music sing
137: music

03: laugh laugh 16: laughter

04: cry cry 22: crying, sobbing

05: scream scream 14: screaming

06: cheer cheer 66: cheering

07: applause applause 67: applause

08: crowd crowd 69: crowd

09: human human

41: breathing
47: cough
49: sneeze
50: sniff

10: child child 6: babbling

11: dog anim dog 74: dog

12: cat anim cat 81: cat

13: bird anim bird 111: bird

14: knock knock 359: knock

15: thud thud 460: thump, thud

16: clap clap
63: clapping

427: gunshot, gunfire

17: click click 491: click

18: bang bang 466: bang

19: beep beep 481: beep

20: clatter clatter 489: clatter

21: rustle rustle 487: rustle

22: scratch scratch 474: scratch

23: hammer hammer 419: hammer

24: rub washboard 476: rub

25: engine

engine heavy
engine light
engine quiet
power tool

343: engine
424: power tool

26: phone phone 389: telephone

27: whistle whistle 402: whistle

28: squeak squeak 361: squeak

29: tone tone

482: ping
483: ding

308: Vehicle horn, car horn, honking
318: air horn, truck horn

30: siren siren 396: siren

31: water water 288: water

32: wind
wind

micro blow
other distorted

283: wind
285: wind noise (microphone)

33: radio radio 525: radio

34: white white noise 520: white noise

Table 4.1: The 35 common events, and their corresponding noisemes and
Audio Set sound event types.

CHAPTER 4. SED WITH SEQUENTIAL LABELING 70

Training Validation Evaluation

recordings 359,741 4,879 5,301
Average # event occurrences per recording 6.3 5.4 5.4

% recordings with only one event occurrence 8.6 % 16.2 % 12.3 %
Average duration of event occurrence 0.89 s 0.80 s 0.81 s

Polyphony in non-silence regions 1.11 1.09 1.07
% adjacent onset/offset pairs 81.0 % 83.7 % 86.4 %

% overlapping boundaries 10.9 % 9.7 % 8.1 %

Table 4.2: Some statistics of the data used for the experiments in Chapter 4.

reasons: first, we included many types of events that are inherently short
(e.g. knock, clap, click); second, our choice of no smoothing left us with
many short occurrences of events. The polyphony level is barely above 1,
which means there is not much overlap between the event occurrences.

Finally, we derived sequential labels from the strong labels generated by
TALNet. An example is shown in Fig. 4.1. When multiple event boundaries
occur at the same time, we had to impose an order on these boundaries:
we always put the offset labels before the onset labels; the offset labels
and onset labels were sorted according to the order in Table 4.1 among
themselves. This specific way to determine the order should not matter
much, because only about 10% of the event boundaries coincide exactly in
time. Also, we found that more than 80% of the time, the onset label of an
event is immediately followed by its corresponding offset label.

4.1.2 Baseline Systems

We built two baseline systems: the first system is trained with strong
labeling, and serves as an upper bound; the second system is a multiple
instance learning (MIL) system trained with presence/absence labeling, and
serves as a lower bound. The performance of an SED system that effectively
makes use of sequential labeling should fall between the two bounds, and
approach the upper bound as closely as possible.

The structure of the baseline systems are shown in Fig. 4.2 (a) and
(b). The network takes the same input as in Chapter 3: 64-dimensional
filterbank features extracted at 40 Hz. The network contains 6 convolutional
layers and 6 max pooling layers. The convolutional layers use the ReLU
activation function, and batch normalization is applied before the ReLU.
The first convolutional layer produces 16 feature maps, and each subsequent
convolutional layer doubles the number of feature maps. On the other hand,
each pooling layer reduces the number of frequency bins by half, so the
embeddings produced by all pooling layers have a dimensionality of 512.
The first two pooling layers also half the frame rate, so the number of frames
for a 10-second recording reduces from 400 to 100. The structure up to here
(and the GRU layer to follow) is shared across all the systems in this chapter;

CHAPTER 4. SED WITH SEQUENTIAL LABELING 71

400 * 64 * 16

conv 3*3

Filterbank features

200 * 32 * 16

pool 2*2

200 * 32 * 32

conv 3*3

100 * 16 * 32

pool 2*2

100 * 16 * 64

conv 3*3

100 * 8 * 64

pool 1*2

100 * 8 * 128

conv 3*3

100 * 4 * 128

pool 1*2

100 * 4 * 256

conv 3*3

100 * 512

flatten

100 * 512

BiGRU 256*2

1 * 35Recording-level prob.
of events

400 * 64 * 1

(b)
MIL system for

presence/absence labeling

100 * 2 * 256

pool 1*2

100 * 2 * 512

conv 3*3

100 * 1 * 512

pool 1*2

100 * 35Frame-level prob.
of events100 * 35Frame-level prob.

of events 100 * 71Frame-level prob.
of event boundaries 100 * 35Frame-level prob.

of events

101 * 70Frame-level prob.
of event boundaries

Fully connected
(sigmoid)

Rectified
delta

Shared layers ↑

Linear
softmax

(a)
Strong labeling system

(c)
Standard CTC system for

sequential labeling

(d)
CTL system for

sequential labeling

Figure 4.2: The structures of the strong labeling baseline system, the
multiple instance learning (MIL) baseline system, the standard CTC system,
and the connectionist temporal localization (CTL) system used in Chapter 4.
The layers above the dashed line are shared across the four systems.
Shadowed boxes stand for 3-D tensors; their sizes are specified in the order
of time frames, frequency bins, and feature maps. Plain boxes stand for
2-D tensors; the first dimension is time. All the convolutional layers use
the ReLU activation; the numbers after “conv” (e.g. 3*3) specify the size
of the kernel. All the pooling layers following convolutional layers perform
max pooling; the numbers after “pool” (e.g. 2*2) specify the stride. Batch
normalization is applied to all the convolutional layers before the ReLU
activation. Note that the output layer of the CTL system has only 70 units,
because there is no unit for the blank label.

CHAPTER 4. SED WITH SEQUENTIAL LABELING 72

it has been found to produce optimal or near optimal performance for all
the experiments.

The output of the last max pooling layer is flattened and fed into a GRU
layer; finally, a fully connected layer with the sigmoid activation function
predicts frame-level probabilities of the 35 common events. In the strong
labeling system, these frame-level probabilities are directly compared with
the labels generated by TALNet to compute the binary cross-entropy loss.
In the MIL system, the frame-level probabilities of events are aggregated
using the linear softmax pooling function into recording-level probabilities
of events, and then compared with the ground truth. Note that the ground
truth here is aggregated from the strong labels generated by TALNet using
the standard multiple instance assumption. We did not use the original
presence/absence labels provided by Audio Set because they would make
this system less comparable with the other systems in this chapter.

The evaluation metric we use throughout this chapter is the frame-level
F1 macro-averaged over all the 35 common events. This metric differs from
the micro-average segment-level F1 used in the DCASE challenge, and we
made such choices on purpose. Measuring F1 on the frame level instead of
the segment level avoids the influence of the segment length, and eliminates
the need for an algorithm to aggregate the frame-level predictions within a
segment. And we chose the macro-average (calculating the F1 for each event
type then taking the average) instead of the micro-average (aggregating the
TP, FN and FP counts first then calculating the F1) because the former
allows the evaluation of individual sound event types. The class-specific
thresholds were tuned to optimize this macro-averaged frame-level F1 on
the validation data, then applied to the evaluation data.

The baseline systems were trained using the Adam optimizer with a
constant learning rate of 10−3. The loss function was binary cross-entropy,
averaged over frames and events for the strong labeling system and over
recordings and events for the MIL system. We applied the same data
balancing technique as described in Sec. 3.2.3 to make all event types
account for an equal fraction of the training data. We used a batch size
of 500 recordings, and checked the performance every 200 batches (called
a checkpoint). At each checkpoint, we tuned class-specific thresholds to
optimize the macro-average frame-level F1 on the validation data, and
then applied the thresholds to the evaluation data. We report the highest
evaluation F1 obtained within 100 checkpoints. The same settings were used
to train all the networks in this chapter, except that the loss function differs
from network to network.

The strong labeling system reached an F1 of 67.38%, while the MIL
system reached an F1 of 55.83%. Fig. 4.3 demonstrates the frame-level
predictions of the two baseline systems on an evaluation recording. This
recording contains the sound of a dog whining intermingled with speech,
and will be referred to as the “whining dog” recording hereafter. While

CHAPTER 4. SED WITH SEQUENTIAL LABELING 73

0 1 2 3 4 5 6 7 8 9 10

Time (s)

00:speech

10:child

11:dog

E
ve

nt
(a) Strong labeling system, eval recording "whining dog"

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

Time (s)

00:speech

02:music

11:dog

E
ve

nt

(b) MIL system, eval recording "whining dog"

0

0.5

1

Figure 4.3: The frame-level predictions of the two baseline systems on the
evaluation recording 0F04c rY4aw (“whining dog”). Shades of gray indicate
the frame-level probabilities of the sound events; crosses indicate where these
probabilities exceed the class-specific thresholds, while dots indicate the
ground truth. Events that do not receive significant probability anywhere
in the recording are omitted.

both systems localize the dog sounds well, the MIL system does not localize
the speech sounds as well as the strong labeling system. This is probably
because the MIL system was trained with weaker supervision.

4.2 Standard CTC for SED with Sequential Labe-
ling

We built a SED system that handles sequential labeling with the standard
CTC, whose structure is shown in Fig. 4.2 (c). The layers up to the GRU
layer are identical to the baseline systems. The final fully connected layer
has 71 output neurons, which predict frame-level probabilities of the onset
and offset labels of the 35 common events, plus a blank label. These frame-
level probabilities are used to compute the probability of the ground truth
label sequence using the standard CTC forward algorithm as introduced in
Sec. 2.2. This network was trained using the same hyperparameters as the
baseline systems; the loss function was the log probability of the ground
truth label sequence, averaged across frames.

During evaluation, we decoded the predictions of the network using
best-path decoding : for each frame, we selected the label with the largest
probability, no matter whether it was an onset label, an offset label, or
a blank label. We did not apply class-specific thresholding. To generate
frame-level predictions of events (i.e. localization) for evaluation, we looked
at the selected labels for each event type: for each innermost matching pair
of onset/offset labels, we marked the event as active from the frame of the

CHAPTER 4. SED WITH SEQUENTIAL LABELING 74

onset to the frame of the offset. Non-matching or non-innermost matching
onset/offset labels were ignored.

This procedure is better illustrated with an example. Suppose the frame-
level probabilities of event boundaries (and the blank label) are given in the
following matrix:

blank .30 .40 .01 .20 .10 .05 .05 .60 .10
<cat> .40 .20 .95 .10 .10 .05 .05 .10 .10

</cat> .05 .10 .01 .10 .10 .10 .70 .30 .60
<dog> .20 .20 .01 .50 .60 .20 .10 .05 .10

</dog> .05 .10 .02 .10 .10 .60 .10 .05 .10
Frame 1 2 3 4 5 6 7 8 9

Picking the most probable label at each frame yields the following labels:

- -

<cat> <cat>

</cat> </cat>

<dog> <dog>

</dog>

Frame 1 2 3 4 5 6 7 8 9

For the cat event, the onset label at Frame 3 and the offset label at Frame 7
form an innermost matching pair, so the cat event is marked as active from
Frame 3 to Frame 7. The onset label at Frame 1 and the offset label at
Frame 9, even though they match, are not an innermost matching pair,
so they are ignored. For the dog event, the onset labels at Frames 4 and 5
should be treated as a single onset. In such a case, we still pick the innermost
onset label (at Frame 5) to match with the offset label at Frame 6. The
resulting frame-level predictions of events for evaluation is then (“+” stands
for active): []

cat − − + + + + + − −
dog − − − − + + − − −

Frame 1 2 3 4 5 6 7 8 9

The standard CTC algorithm, unfortunately, only reached a macro-
average frame-level F1 of 31.91%, which was even lower than the MIL
baseline. By inspecting the behavior of the standard CTC system on
some evaluation recordings, we found that it was actually good at detecting
short events, but had a prevalent failure mode on long event occurrences.
We plot the frame-level predictions of the network on three evaluation
recordings in Fig. 4.4. Graph (a) shows the predictions on a recording

CHAPTER 4. SED WITH SEQUENTIAL LABELING 75

0 1 2 3 4 5 6 7 8 9 10

Time (s)

blank
<speech>
</speech>

<tone>
</tone>

La
be

l
(a) Standard CTC system, eval recording "buzzer"

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

Time (s)

blank
<speech>
</speech>

<cry>
</cry>

<child>
</child>

<dog>
</dog>

<cat>
</cat>

La
be

l

(b) Standard CTC system, eval recording "whining dog"

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

Time (s)

blank
<speech>
</speech>
<engine>

</engine>

La
be

l

(c) Standard CTC system, eval recording "engine"

0

0.5

1

Figure 4.4: The frame-level predictions of the standard CTC system on three
evaluation recordings: -2EKWgTNEYU (“buzzer”), 0F04c rY4aw (“whining
dog”), and -z3n74RK92U (“engine”). Shades of gray indicate the frame-
level probabilities of event boundaries as well as the blank label; crosses
indicate the most probable label at each frame, while dots indicate the
ground truth events. Events whose boundaries do not receive significant
probability anywhere in the recordings are omitted.

containing intermittent buzzer tones: three of the five occurrences were
actually successfully detected. Graph (b) shows the predictions on the
“whining dog” recording: while many of the short segments of speech were
correctly detected, the longer dog whines were localized badly. Instead of
generating a clear onset peak at the beginning of each occurrence and a
clear offset peak at the end, the CTC system generated many vague pairs of
onset and offset labels clustered together at random places in the recording.
This failure mode is more pronounced in Graph (c): the recording contains
continuous engine noise, but the CTC system predicted many clustered pairs
of onset and offset peaks instead. This problem, which we dub the “peak
clustering” problem, has already been pointed out in our previous work [63].

Why does the CTC system tend to generate clustered onset and offset
peaks? There can be several reasons behind this. First, adjacent onset
and offset labels are an extremely common pattern in the training label

CHAPTER 4. SED WITH SEQUENTIAL LABELING 76

sequences. As the statistics indicate, more than 80% of the onset labels
in the training data are immediately followed by their corresponding offset
labels. As a result, CTC may misunderstand a pair of onset and offset labels
as collectively indicating the existence of an event, instead of understanding
them as separately indicating the event boundaries. Second, the CTC loss
function only mandates the order of the predicted labels, without imposing
any temporal constraints. In this case, the recurrent layer of the network
will prefer to emit onset and offset labels next to each other, because this
minimizes the effort of memory. Third, the output layer of the CTC network
is designed to predict frame-level probabilities of event boundaries; it is
expected to keep “silent” both when an event is inactive and when an event
is continuing. When the network predicts the onset and offset labels of a
long event occurrence next to each other, it is actually not violating this
expectation too much, and does not have enough incentive to correct this
behavior.

The third point actually points to a more serious problem with the
standard CTC: the network is trained to ignore the potentially huge
differences in the acoustic features when an event is continuing and when
it is inactive. This is in contrast with the baseline systems, which predict
frame-level probabilities of the events themselves: they are trained to make
different predictions when an event is continuing and when an event is
inactive, so they naturally learn to leverage the differences in the acoustic
features. This illuminates a way to make CTC work: the network should
predict frame-level probabilities of the events themselves just as the baseline
systems do, and the frame-level probabilities of the event boundaries can
be derived from those of the events themselves. This derivation step can
be regarded as a regularizer for the boundary probabilities, which helps
to prevent the network from falling into the undesirable local optima of
clustered peaks.

4.3 Connectionist Temporal Localization (CTL)
for SED with Sequential Labeling

4.3.1 The CTL Forward Algorithm

Inspired by the analysis in the previous section, we modified the CTC
framework into a connectionist temporal localization (CTL) framework for
SED with sequential labeling. The forward algorithm used during training
was also adapted accordingly, which we explain in this section.

The structure of a network using the CTL framework is shown in
Fig. 4.2 (d). After the GRU layer, a fully connected layer predicts the
frame-level probabilities of events in the same way as the baseline systems.
The following layer implements a fixed algorithm (i.e. without tunable

CHAPTER 4. SED WITH SEQUENTIAL LABELING 77

parameters) to derive frame-level probabilities of event boundaries. Finally,
a forward algorithm computes the total probability of the ground truth label
sequence based on these frame-level boundary probabilities.

We use a simple “rectified delta” operation to derive boundary proba-
bilities from event probabilities. More formally, let yt(e) be the probability
of the event e being active at frame t. Here 1 ≤ t ≤ T , where T is the
number of frames in the recording in question. Let zt(<e>) and zt(</e>) be
the probabilities of the onset and offset labels of the event e at frame t. We
calculate them using the following equations:

zt(<e>) = max[0, yt(e)− yt−1(e)]

zt(</e>) = max[0, yt−1(e)− yt(e)]
(4.1)

In these equations we allow t to range from 1 to T + 1, in order to
accommodate events that start at the first frame or end at the last frame.
When y0(e) or yT+1(e) is referenced, we assume it to be 0.

A problem that emerges immediately is that the sum of the zt(l)’s for
all the boundary labels l may exceed one, in which case it is hard to assign
a probability zt(blank) to the blank label. To avoid this problem, we treat
the boundary labels at a frame as mutually independent, instead of mutually
exclusive. Under this assumption, we may calculate the probability of not
emitting any boundary labels as:

εt =
∏
l

[1− zt(l)] (4.2)

where l goes over the onset and offset labels of all event types. The
probability of emitting a single boundary label l is then:

pt(l) = zt(l)
∏
l′ 6=l

[1− zt(l′)] (4.3)

If we define

δt(l) =
zt(l)

1− zt(l)
(4.4)

Then Eq. 4.3 reduces to
pt(l) = εt · δt(l) (4.5)

The assumption that boundary labels at the same frame are mutually
independent seems to eliminate the need for the blank label. Indeed,
in the standard CTC, the blank label serves two purposes: (1) to allow
emitting nothing at a frame, and (2) to separate consecutive repetitions
of the same label. With the independence assumption, the first purpose
is naturally achieved. As for the second point, we make the following
simplification: when mapping the frame-level emissions to the recording-
level label sequence, we no longer collapse consecutive repeating labels into

CHAPTER 4. SED WITH SEQUENTIAL LABELING 78

a single one. With this simplification, the blank label can be removed
altogether.

The independence assumption also allows us to assess the probability of
emitting multiple labels at the same frame, which is not possible with the
standard CTC. The probability of emitting multiple labels l1, . . . , lk together
at frame t can be calculated as

pt(l1, . . . , lk) =
k∏
i=1

zt(li)
∏

l /∈{l1,...,lk}

[1− zt(l)]

= εt

k∏
i=1

δt(li) (4.6)

Note that this probability does not specify an order of the labels l1, . . . , lk.
We make the assumption that this is also the probability of emitting these
labels in any specific order. One may argue that one should distribute
the probability pt(l1, . . . , lk) equally to all possible orders, i.e. define the
probability of any specific order as pt(l1, . . . , lk)/k!. But our assumption
can be more reasonable considering that when we generated the ground
truth label sequences, boundaries that coincide in time were assigned an
arbitrary order, while there should actually be no order at all. Eq. 4.6
requires the labels l1, . . . , lk to be all different, but we ignore this constraint
in the algorithm below.

Now we can formulate our CTL forward algorithm. What we want to
find is the total probability of emitting the ground truth label sequence
L = {l1, . . . , l|L|}, regardless of which labels are emitted at which frame.
What we are given is the frame-level probabilities of events yt(e), from which
we can derive the probability pt(·) of emitting zero, one or more labels at each
frame by Eq. 4.6. Let αt(i) be the probability of having emitted exactly the
first i labels of L after t frames. The α’s can be computed with the following
recurrence formula:

αt(i) =

i∑
j=0

αt−1(i− j) · pt(li−j+1, . . . , li)

=

i∑
j=0

αt−1(i− j) · εt
i∏

k=i−j+1

δt(lk) (4.7)

In the summation, the index j stands for the number of labels emitted at
frame t. The initial values are:

α0(i) =

{
1, if i = 0
0, if i > 0

(4.8)

The final value, αT+1(|L|), is the total probability of emitting the label
sequence L, and its negative logarithm is the contribution of the recording
in question to the loss function.

CHAPTER 4. SED WITH SEQUENTIAL LABELING 79

System F1 (%)

Max concurrence = 1 59.92
Max concurrence = 2 57.49
Max concurrence = 3 53.63

Strong labeling (upper baseline) 67.38
MIL (lower baseline) 55.83

Table 4.3: Performance of the CTL network with different values of max
concurrence.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

00:speech

29:toneE
ve

nt

(a) CTL system, eval recording "buzzer"

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

Time (s)

00:speech

11:dogE
ve

nt

(b) CTL system, eval recording "whining dog"

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

Time (s)

00:speech

25:engineE
ve

nt

(c) CTL system, eval recording "engine"

0

0.5

1

Figure 4.5: The frame-level predictions of the CTL system on three
evaluation recordings: -2EKWgTNEYU (“buzzer”), 0F04c rY4aw (“whining
dog”), and -z3n74RK92U (“engine”). Compare with Figs. 4.3 and 4.4.

Eq. 4.7 allows emitting arbitrarily many labels at the same frame. When
the ground truth label sequence is long, this can pose a problem of time
complexity. In practice, it is rare (only about 10% of the time) to observe
multiple labels emitted at the same frame. Therefore, it can be desirable to
limit the maximum number of concurrent labels, i.e. the maximum value of
j in Eq. 4.7. We call this maximum value the max concurrence.

4.3.2 Experiment Results

We trained a CTL network the same way as the standard CTC network.
We tried out a max concurrence from 1 to 3, and the resulting F1’s are
listed in Table 4.3. The results indicate that it is sufficient to allow only
one label to be emitted at each frame; allowing concurrent labels is actually
harmful. Also, if we compare the best performance of the CTL system
(59.92%) against the baseline systems, we find that it closes about one third
of the gap between the MIL system (55.83%) and the strong labeling system

CHAPTER 4. SED WITH SEQUENTIAL LABELING 80

00:speech
01:sing
02:m

usic
03:laugh
04:cry
05:scream
06:cheer
07:applause
08:crow

d
09:hum

an
10:child
11:dog
12:cat
13:bird
14:knock
15:thud
16:clap
17:click
18:bang
19:beep
20:clatter
21:rustle
22:scratch
23:ham

m
er

24:rub
25:engine
26:phone
27:w

histle
28:squeak
29:tone
30:siren
31:w

ater
32:w

ind
33:radio
34:w

hite

Event type

0

20

40

60

80

100
C

la
ss

-w
is

e
fr

am
e-

le
ve

l F
1

(%
)

Strong
MIL
CTL

Figure 4.6: The class-wise frame-level F1’s of the CTL system (with a max
concurrence of 1) compared with the two baseline systems. Best viewed in
color.

(67.38%).
Fig. 4.5 illustrates the predictions of the CTL system (with a max

concurrence of 1) on some evaluation recordings. Compared with the
standard CTC system (Fig. 4.4), the CTL system no longer fails for long
event occurrences (such as the dog sounds in Graph (b), and the engine

noise in Graph (c)). The huge improvement in the F1 can be mainly
attributed to getting rid of this failure mode. Compared with the baseline
systems (Fig. 4.3), the CTL system localizes the speech segments in the
“whining dog” recording better than the MIL system, but still not as well
as the strong labeling system. This exemplifies how the CTL system closes
part but not all of the gap between the two baselines.

Fig. 4.6 demonstrates the class-wise frame-level F1’s of the CTL system
(with a max concurrence of 1) and the two baseline systems. For 28 out
of the 35 common events, the F1 of the CTL system falls between the two
baselines. This indicates that the improvement from the MIL baseline to
the CTL system is not contributed by particular event types; most of the
event types benefited from the use of sequential labeling.

4.3.3 Discussion: An Alternative CTL Algorithm

As we explored the details of the CTL algorithm, we tried out an alternative
way of deriving the boundary probabilities zt(<e>) and zt(</e>) from the
event probabilities yt(e). Assuming the event probabilities as independent

CHAPTER 4. SED WITH SEQUENTIAL LABELING 81

across adjacent frames, we derived the boundary probabilities as:

zt(<e>) = [1− yt−1(e)] · yt(e)

zt(</e>) = yt−1(e) · [1− yt(e)]
(4.9)

Training with this alternative CTL algorithm turned out to be much
more difficult than using Eq. 4.1 in Sec. 4.3.1. During the training we
observed two failure modes. The first failure mode is shown in Fig. 4.7 (a):
for a random subset of event types (e.g. cry, human, bird) the frame-level
probabilities stayed at one for almost all frames, except for being 0.5 at the
first and last frames. This phenomenon usually manifested itself after only a
few minibatches, and never disappeared. Fortunately, we were able to solve
this problem by initializing the bias of the final fully connected layer to −1,
in order to discourage large frame-level predictions.

After applying the initial bias, the network was able to train normally
for 5 to 10 checkpoints. It reached a peak F1 around 43%. The frame-
level predictions at this checkpoint is shown in Fig. 4.7 (b); we can observe
some occurrences of dog noises taking shape. However, after this, the F1

started to drop, and the network got stuck in a new failure mode shown
in Fig. 4.7 (c): the frame-level predictions exhibited many peaks scattered
here and there.

Neither of the two failure modes was observed when deriving boundary
probabilities from event probabilities using Eq. 4.1. Here we attempt to give
an explanation why Eq. 4.1 works better than its alternative, Eq. 4.9. First,
we notice that in both failure modes, in any two consecutive frames, there is
always at least one frame whose probability is either 0 or 1. In this case, the
Eqs. 4.1 and 4.9 are equivalent. In other words, these failure modes incur
the same loss when using either equation. These failure modes appear to
be attractive local optima for Eq. 4.9, but this is not the case for Eq. 4.1.
A probable cause is that the “success mode” incurs a significantly smaller
loss when using Eq. 4.1 than when using Eq. 4.9, so the network can avoid
getting stuck in the failure modes when using the former equation. The
typical “success mode” for long event occurrences is like Fig. 4.5 (c): the
frame-level probability stays at a high value close to 1 (e.g. 0.9) for a long
time. In such stable regions, Eq. 4.1 derives almost zero probabilities for
the boundary labels. On the other hand, Eq. 4.9 derives a probability of
about 0.9 × 0.1 = 0.09 for all boundary labels. This can lead the system
to believe that something is likely to be emitted in the long stable regions,
which lowers the probability of the ground truth label sequence (which is
empty in these regions) and increases the loss.

The lesson to be learned from the failure of the alternative CTL algo-
rithm is: it may not be always good to attach probabilistic interpretations
to numbers, because it often requires making unrealistic assumptions of
independence. Actually, we have already learned this lesson once with the
noisy-or pooling function in Sec. 3.1.

CHAPTER 4. SED WITH SEQUENTIAL LABELING 82

0 1 2 3 4 5 6 7 8 9 10

Time (s)

00:speech
02:music

04:cry
09:human

10:child
11:dog
12:cat

13:bird

E
ve

nt
(a) Alternative CTL system, without bias, Checkpoint 7, eval recording "whining dog"

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

Time (s)

00:speech
02:music

04:cry
11:dog

30:siren

E
ve

nt

(b) Alternative CTL system, with bias, Checkpoint 6, eval recording "whining dog"

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

Time (s)

00:speech
02:music

04:cry
11:dog

30:siren

E
ve

nt

(c) Alternative CTL system, with bias, Checkpoint 30, eval recording "whining dog"

0

0.5

1

Figure 4.7: The frame-level predictions of the system using the alternative
CTL algorithm on the evaluation recording 0F04c rY4aw (“whining dog”),
captured at various checkpoints during training. Graphs (a) and (c)
illustrate two failure modes.

4.4 Combining CTL with MIL

Combining different systems for the same task often brings improvements
at no cost. When sequential labeling is available for training a SED system,
presence/absence labeling is automatically available. Therefore, it is a
natural idea to combine a CTL system with a MIL system to see if it can
improve the performance of the former.

Studying the combination of CTL and MIL systems has another po-
tential use. Because sequential labeling is harder to collect than presence/
absence labeling, we may have more data with presence/absence labeling
available than data with sequential labeling. In this scenario, a combined
system can make use of both types of data at the same time.

Since the CTL system and the MIL system have an identical structure
up to the fully connect layer that predicts frame-level probabilities of events,
the system combination boils down to assigning proper mixing weights to the
CTL and MIL loss functions. In our previous experiments in this chapter,
we found that the loss of MIL systems usually stabilized around 0.02, while
the loss of CTL systems usually stabilized around 0.2. For the experiments
in this section, we fixed the weight of the CTL loss to 1, and tried out the
following weights for the MIL loss: 30 (emphasizing the MIL loss more), 10

CHAPTER 4. SED WITH SEQUENTIAL LABELING 83

Pure MIL 30:1 10:1 3.3:1 Pure CTL
53

54

55

56

57

58

59

60

61
M

ac
ro

-a
ve

ra
ge

 fr
am

e-
le

ve
l F

1
(%

)

max concurrence = 1
max concurrence = 2
max concurrence = 3

Figure 4.8: The effect of combining a CTL system with a MIL system using
different mixing weights.

(weighting both losses equally), and 3.3 (emphasizing the CTL loss more).
We also tried out different values of the max concurrence: 1, 2 and 3.

Fig. 4.8 shows the macro-average frame-level F1 obtained with different
mixing weights of the loss functions and different values of max concurrence.
Due to the variance inherent in the experiments, the trend of how the F1

changes with the mixing weights is not totally consistent for different values
of max concurrence. Nevertheless, a mixing weight of 3.3:1 is generally a
good choice, and gives a marginal improvement on top of pure CTL.

4.5 Discussion: Generalization to New Data

When we selected the training data for this chapter in Sec. 4.1, we
excluded the Noiseme corpus because it only contained 13 hours of audio.
Nevertheless, the Noiseme corpus has the advantage that it is strongly
labeled by hand. In this section, we discuss its use as a test corpus.

We generated the ground truth for the Noiseme corpus by mapping the
original strong labels to the 35 common events according to Table 4.1. To
test out a network’s performance on the Noiseme corpus, we applied the
class-specific thresholds tuned on the validation data of Audio Set, and
measured the macro-average frame-level F1.

Unfortunately, the above procedure yielded miserable F1 numbers,
usually around 10%. We found an important reason to be that the class-
specific thresholds tuned on Audio Set were inappropriate for the Noiseme
corpus. To solve this problem, we performed 2-fold cross validation for
the class-specific thresholds on the Noiseme corpus: we divided the corpus
into two equal parts, tuned the thresholds on the two parts separately, and

CHAPTER 4. SED WITH SEQUENTIAL LABELING 84

System Audio Set F1 (%) Noiseme F1 (%)

Baselines
Strong labeling 67.38 21.75

MIL 55.83 20.44

CTL
Max concurrence = 1 59.92 20.66
Max concurrence = 2 57.49 21.30
Max concurrence = 3 53.63 20.12

CTL + MIL (weight 1:3.3)
Max concurrence = 1 58.65 20.02
Max concurrence = 2 59.99 21.00
Max concurrence = 3 59.76 20.90

Table 4.4: The macro-average frame-level F1 of some systems Chapter 4,
measured on both the Audio Set evaluation data and the Noiseme corpus.

applied the thresholds tuned on one part to the other. This brought the F1

numbers up to around 20%; this was also close to the oracle F1 which would
be obtained if the class-specific thresholds were tuned on the entire Noiseme
corpus directly.

In Table 4.4, we list the F1’s of many systems trained in this chapter,
measured on the evaluation set of Audio Set as well as on the Noiseme
corpus. We observe that the F1’s measured on the Noiseme corpus are much
lower than those measured on Audio Set. In addition, the F1’s measured on
the Noiseme corpus also exhibit a much smaller variance, and they do not
follow the same trend as the F1’s measured on Audio Set. In this case, it is
hard to say whether the variation is due to the different performance of the
systems or due to random fluctuation. It is because we could not make any
conclusive judgments from the F1’s measured on the Noiseme corpus that
we chose to use Audio Set for evaluation.

The huge gap between the F1’s measured on the two corpora indicates
that the systems trained in this chapter are probably overfitting to Audio
Set. Indeed, when we inspect the predictions on the noiseme data, we find
that the frame-level probabilities of most events (except speech and music)
are near zero. This means the systems fail to recognize the events in the
Noiseme corpus.

Such overfitting may arise from several factors. First, Audio Set and the
Noiseme corpus were annotated by different groups of people, who might
have had different notions about what each event sounded like. Second,
the strong labels of Audio Set were automatically generated by TALNet,
while those of the Noiseme corpus were produced by hand. As a result, the
ground truth of the Audio Set evaluation data would share some biases and
peculiarities with the Audio Set training data, while the ground truth of

CHAPTER 4. SED WITH SEQUENTIAL LABELING 85

the Noiseme corpus would not. For example, spurious short occurrences of
events would be common throughout the Audio Set because we chose to not
perform any smoothing on the labels; such occurrences should be rare in the
Noiseme corpus.

4.6 Summary

In this chapter, we have studied how to perform SED with sequential
labeling, i.e. using sequences of event boundaries as the supervision. The
technique of connectionist temporal classification (CTC) is well suited for
this type of supervision. However, when used to predict event boundaries
directly, CTC suffers from a “peak clustering” problem. We modified the
CTC framework and proposed a connectionist temporal localization (CTL)
framework to overcome this difficulty. The key features of the CTL fra-
mework include: (1) Instead of predicting frame-level probabilities of event
boundaries, the network explicitly predicts the frame-level probabilities of
the events themselves. The boundary probabilities are then derived from
the event probabilities using a “rectified delta” operation. (2) The event
probabilities at the same frame are treated as mutually independent instead
of mutually exclusive. This gets rid of the blank label in the forward
algorithm, and allows the emission of multiple labels at the same time.

We have also proposed a method for combining a CTL system with a
multiple instance learning (MIL) system. Because the CTL system explicitly
predicts the frame-level probabilities of events, combining it with a MIL
system becomes as simple as a weighted average of the two loss functions.
Such a combination can potentially be used when some part of the training
data has sequential labeling, but the other part the data only has presence/
absence labeling. A three-way combination of a strong labeling system, a
CTL system and a MIL system may also be considered if different parts
of the training data come with strong labeling, sequential labeling and
presence/absence labeling.

Because there is no corpus available with manually generated sequential
labeling, we generated strong labels and sequential labels automatically for
Audio Set, and used them to evaluate our systems. Using this synthetic
dataset, we have shown that our CTL framework closes one third of the
performance gap between a MIL system using presence/absence labeling
and a strong labeling system. The combination with a MIL system gives a
marginal further improvement.

Nevertheless, the performance of our systems does not generalize well to
unseen data. This overfitting remains a problem to solve in the future.

Chapter 5

Transfer Learning for Sound
Event Detection

Sound event detection has long been troubled by the problem of insufficient
training data. In such situations, transfer learning can help by borrowing
knowledge from a related task with a larger training corpus. Among the
many techniques of transfer learning, feature transfer is a simple and popular
method. It refers to the action of taking a model trained for a related task
as a feature extractor for the target task. In this chapter, we study how
feature transfer can can facilitate the learning of sound events. We would
like to answer the following questions: Does feature transfer help? When
does it help? And what types of transfer learning features help?

We consider two networks trained for different tasks as feature ex-
tractors for sound event detection. The first network, called the VGGish
network [71], is trained to classify audio recordings among more than three
thousand concepts not restricted to sound events. The second network,
called SoundNet [72], is trained to predict the object and scene in the
video stream given the audio stream. While we use the first network as is
without any modification, we retrain the second network ourselves in order
to study the effect of network structure and the layer from which to extract
features. We also considered the “Look, Listen and Learn” network [74],
which is trained to tell whether an audio segment and a video segment match
with each other, but gave it up because we could not find an open-source
implementation.

We apply the features extracted from both networks to all the three SED
experiments we have done in Chapters 3 and 4. Two of these experiments
use presence/absence labeling; they are conducted on the relatively small
corpus of the DCASE 2017 challenge and the large-scale Google Audio Set,
respectively. The goal is to perform audio tagging and localization well at
the same time. The third experiment uses sequential labeling, and the goal
is to show that the extra timing information provided by the sequential

86

CHAPTER 5. TRANSFER LEARNING FOR SED 87

labeling is helpful for localization. We study whether the transfer learning
features achieve these goals, and whether they achieve them better than the
simple filterbank features.

The content of this chapter is organized as follows. In Sec. 5.1, we
describe the VGGish network and SoundNet. We especially focus on how
we retrained the latter, and inspect the features extracted from the various
layers of it. In Sec. 5.2, we present our experiments with transfer learning
features, and answer the questions of when transfer learning helps and which
types of features help. Finally, Sec. 5.3 concludes the chapter.

5.1 The Feature Extractors for Transfer Learning

5.1.1 The VGGish Network

The first network we used as a feature extractor for transfer learning is called
the VGGish network1 [71]. It is a pre-trained network that can be used off
the shelf, and does not require any finetuning. Features extracted by this
model have also been used in [54] and [55].

The VGGish network was trained for audio classification on a prelimi-
nary version of the YouTube-8M [132] corpus. YouTube-8M is a large corpus
containing 6.1 million video recordings totaling 350,000 hours (40 years),
which is 60 times as large as Audio Set. The recordings are labeled with
3,862 Knowledge Graph2 entities, which are not restricted to sound events.

The structure of the VGGish network, shown in Fig. 5.1, is a variant of
the VGG network [115] for image recognition. The network works on audio
segments of 960 ms. The input to the network is filterbank features of the
audio segment, with a size of 96 frames and 64 frequency bins. The filterbank
features are subsequently processed by 6 convolutional layers, 4 max pooling
layers and 3 fully connected layers. The last of the 3 fully connected layers
is a bottleneck layer, which generate a 128-dimensional embedding for each
audio segment. The embedding is then fed into a final fully connected layer
with the softmax activation, in order to classify the audio segment among
the 3,862 Knowledge Graph entities of YouTube-8M.

We use the 128-dimensional embeddings as a type of acoustic features for
transfer learning, and we call them “VGGish features”. The download page
of Audio Set3 provides such embeddings extracted at 1 Hz (i.e. one feature
vector per second). Since we want to perform SED at a time resolution
of 0.1 s, we re-extracted the embeddings ourselves from 960 ms windows

1A TensorFlow [93] implementation of the VGGish network is available online at
https://github.com/tensorflow/models/tree/master/research/audioset.

2Knowledge Graph is a knowledge base used by Google; see https://www.google.com/

intl/es419/insidesearch/features/search/knowledge.html for more information.
3https://research.google.com/audioset/download.html

https://github.com/tensorflow/models/tree/master/research/audioset
https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html
https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html
https://research.google.com/audioset/download.html

CHAPTER 5. TRANSFER LEARNING FOR SED 88

96 * 64 * 64

conv 3*3

48 * 32 * 64

pool 2*2

48 * 32 * 128

conv 3*3

24 * 16 * 128

pool 2*2

Filterbank features

96 * 64 * 1

24 * 16 * 256

conv 3*3

24 * 16 * 256

conv 3*3

12 * 8 * 256

pool 2*2

12 * 8 * 512

conv 3*3

12 * 8 * 512

conv 3*3

6 * 4 * 512

pool 2*2

12288

flatten

4096

fully connected

4096

fully connected

128

fully connected

3862

fully connected

Figure 5.1: The structure of the VGGish network, used as a feature extractor
for transfer learning. Shadowed boxes stand for 3-D tensors; their sizes are
specified in the order of time frames, frequency bins, and feature maps. Plain
boxes stand for 1-D tensors. All convolutional layers and fully connected
layers use the ReLU activation, except the final fully connected layer which
uses the softmax activation; all pooling layers perform max pooling. The
“m∗n” at each layer specify the size of the kernel on the time and frequency
dimensions. The convolutional layers do not perform subsampling; the
pooling layers have a subsampling stride equal to the kernel size.

CHAPTER 5. TRANSFER LEARNING FOR SED 89

shifting 0.1 s at a time. For each recording of 10 seconds, this produced
100 feature vectors of 128 dimensions.

5.1.2 SoundNet and Its Variants

The Structures of SoundNet and Its Variants

The second network we used as a feature extractor for transfer learning
is SoundNet [72]. The overall architecture of SoundNet is shown on the
left side of Fig. 5.2. It is a deep convolutional network that takes raw
waveforms as input, and tries to predict the objects and scenes in video
streams at certain points. The ground truths of the objects and scenes are
produced by the image recognition network VGG16 [115]. Even though
what can be seen in the video may not always be heard in the audio
and vice versa, with sufficient training data, the network can still be
expected to discover the correlation between the audio and the video. After
the network is trained, the activations of an intermediate layer can be
considered a representation of the audio suitable for both visual object and
scene recognition and sound event detection. The features extracted with
SoundNet have outperformed other features and models by a significant
margin in the acoustic scene classification task of the DCASE 2013 challenge
and a sound event classification task on the ESC-50 corpus [72].

Detailed information about the layers of SoundNet is shown on the
right side of Fig. 5.2 (b). The input is a 20-second, monaural waveform
with a sampling rate of 22,050 Hz. The network has eight convolutional
layers interspersed with five max pooling layers. Each convolutional layer
doubles the number of feature maps and halves the frame rate; each max
pooling layer halves the frame rate as well. The output layer, which is
also convolutional, has 1,401 output units. These units are split into two
softmax groups of sizes 1,000 and 401, standing for the distributions of
objects and scenes, respectively. The output layer of SoundNet has a frame
rate of about 1/3 Hz. This corresponds to about 6.7 frames for 20-second
recordings, but considering boundary effects, the actual output only contains
the distributions of objects and scenes at 4 time steps.

To localize the onsets and offsets of sound events with a reasonable
temporal resolution, we need to extract features at a sufficient frame rate.
We have done all our SED experiments at a frame rate of 10 Hz. Only
one layer (“conv5”) in SoundNet has a frame rate close to this value. As
a result, if we were to extract features from SoundNet, we would be forced
to extract the features from this layer. However, we are curious whether
the higher layers would produce better features for SED, since they are
closer to the final classification layer, and may encode information that is
more directly related to concrete concepts such as objects, scenes, or sound
events. In order to be able to extract features from higher layers, we trained

CHAPTER 5. TRANSFER LEARNING FOR SED 90

Convolutional Neural Network

VGG16

Audio stream (20s)

Object & scene

distributions at

3s, 8s, 13s, 18s

(Target)

Object & scene

distributions at

3s, 8s, 13s, 18s

(Prediction)

Video stream (20s)

11025 Hz * 16

conv1: 64/2

1378 Hz * 16

pool1: 8/8

689 Hz * 32

conv2: 32/2

86 Hz * 32

pool2: 8/8

43 Hz * 64

conv3: 16/2

Waveform

22050 Hz * 1

21.5 Hz * 128

conv4: 8/2

10.8 Hz * 256

conv5: 4/2

2.69 Hz * 256

pool5: 4/4

1.35 Hz * 512

conv6: 4/2

0.67 Hz * 1024

conv7: 4/2

0.34 Hz * (1000 + 401)

conv8: 4/2

Figure 5.2: The structure of the original SoundNet. The left side shows the
overall architecture; the convolutional neural network (CNN) is trained to
minimize the KL divergence between the predicted and target distributions.
The right side lists the layers of the CNN. All tensors are 2-D; their sizes
are specified as “frame rate * number of feature maps”. All convolutional
layers use the ReLU activation, except the final layer which uses the softmax
activation; all pooling layers perform max pooling. The “m/n” at each layer
specify the size of the kernel (m) and the subsampling stride (n).

four variants of SoundNet, in which the frame rate stays constant once it
has been reduced to 10 Hz.

The structures of the variants of SoundNet are shown in Fig. 5.3. The
sampling rate of the input waveform is changed to 16,000 Hz to match what
we have done with the Google Audio Set and the Noiseme corpus. All of
the variants share the layers up to “pool5”, which reduce the frame rate to
exactly 10 Hz. The output of the “pool5” layer has a dimensionality of 128,
which is chosen to match the dimensionality of the VGGish features. The
four variants use different types of layers for the next three layers, and they
are named after the types:

• SN-F: Three fully connected layers;

• SN-C: Three convolutional layers;

• SN-CR: Two convolutional layers followed by one bidirectional GRU
layer;

• SN-R: Three bidirectional GRU layers.

CHAPTER 5. TRANSFER LEARNING FOR SED 91

8000 Hz * 16

conv1: 65/2

1600 Hz * 16

pool1: 5/5

800 Hz * 32

conv2: 33/2

160 Hz * 32

pool2: 5/5

80 Hz * 64

conv3: 17/2

Waveform

16000 Hz * 1

40 Hz * 128

conv4: 9/2

20 Hz * 128

conv5: 5/2

10 Hz * 128

pool5: 3/2

10 Hz * 128

conv6: 3/1

10 Hz * 128

conv7: 3/1

10 Hz * 128

conv8: 3/1

10 Hz * (1000 + 401)

fc9

Shared layers ↑

10 Hz * 128

fc6

10 Hz * 128

fc7

10 Hz * 128

fc8

10 Hz * (1000 + 401)

fc9

10 Hz * 128

conv6: 3/1

10 Hz * 128

conv7: 3/1

10 Hz * 128

gru8: 64*2

10 Hz * (1000 + 401)

fc9

10 Hz * 128

gru6: 64*2

10 Hz * 128

gru7: 64*2

10 Hz * 128

gru8: 64*2

10 Hz * (1000 + 401)

fc9

(a) SN-F (b) SN-C (c) SN-CR (d) SN-R

Figure 5.3: The structures of the four variants of SoundNet. The three layers
after the “pool5” layer are different, and the variants are named after the
types of these layers. Batch normalization is applied to all the convolutional
layers before the ReLU activation.

These three layers do not change the frame rate, and they keep the
dimensionality of the embedding at 128. Finally, a fully connected layer
with 1,401 neurons predicts the probabilities of 1,000 objects and 401 scenes,
just as in the original SoundNet. All the fully connected layers except the
last one and all the convolutional layers use the ReLU activation function.

We will extract features after the “pool5” layer and the next three
layers from the four variants. The features will be named with a pattern
of “SN-CR-6”: the prefix specifies which variant the features come from;
the suffix specifies the layer after which they are extracted. All the features

CHAPTER 5. TRANSFER LEARNING FOR SED 92

are collectively referred to as “SoundNet features”, in contrast to VGGish
features and filterbank features.

Training SoundNet and Its Variants

The training corpus of SoundNet consists of 2 million videos, accompanied
by a validation set of 147 thousand videos. This is approximately equal in
size to the Google Audio Set. Since the network is intended to be used as
a feature extractor instead of a classifier, there is no evaluation data. The
videos come from either the YFCC100M4 corpus [133] or the Flickr website.
The first 20 seconds of the audio tracks are used for training the network,
and these sum up to 1 year worth of audio. The annotation, generated by
the VGG16 image recognition network [115], contains the distributions of
1,000 objects and 401 visual scenes at keyframes. From the filenames, we
infer that the keyframes are selected at 3 s, 8 s, 13 s and 18 s of each video;
the total number of keyframes is 7 million for training and 0.5 million for
validation. All the audio tracks, keyframe images, and object and scene
distributions can be downloaded from the demo page5.

The original SoundNet was trained using the Torch [94] toolkit. It was
trained to minimize the KL divergence between the predicted object and
scene distributions and the ground truth on the validation data (the object
KL divergence is added to the scene KL divergence, and averaged over the
keyframes). Even though the interval between the keyframes do not agree
with the frame rate of the output layer of SoundNet, the four keyframes
were assigned as the ground truth of the four time steps of the output layer
anyway. The optimizer was Adam with a fixed learning rate of 10−3 and
a momentum of 0.9. Each minibatch contained 64 videos, and the network
was trained for 100,000 minibatches (about 3 epochs). Batch normalization
was applied to all convolutional layers before the ReLU activation, except
the last layer.

We trained the four variants of SoundNet using the PyTorch [95]
toolkit. We used the same training set, but to speed up the validation,
we randomly selected 1,000 videos from the validation data. The ground
truth distributions were compared against the predicted distributions at
exactly 3 s, 8 s, 13 s and 18 s to compute the KL divergence. To start with,
we also used the Adam optimizer with a fixed learning rate of 10−3 (but
without momentum) and a batch size of 64 videos. Because the training
corpus was huge, we checked the loss on the 1,000-video validation set after
every 160 minibatches (about 0.5% of an epoch). Batch normalization was
applied to all convolutional layers before the ReLU activation. We tried
applying batch normalization to the other types of layers or removing the

4“YFCC” stands for “Yahoo Flickr Creative Commons”.
5https://projects.csail.mit.edu/soundnet/

https://projects.csail.mit.edu/soundnet/

CHAPTER 5. TRANSFER LEARNING FOR SED 93

0 50 100 150 200 250 300 350 400 450 500

Checkpoint

4.6

4.8

5

5.2

5.4

5.6

5.8

V
al

id
at

io
n

K
L

di
ve

rg
en

ce
 (

na
t)

SN-F
SN-C
SN-CR
SN-R

Figure 5.4: Training curves of the four variants of SoundNet, showing how
the validation KL divergence decrease over time. The curves are smoothed
with a moving average filter of length 31. The final rise in the curves is an
artifact of this smoothing, and should be ignored.

batch normalization from convolutional layers, but found that these did not
have a significant effect on the performance.

The evolution of the validation KL divergence up to 500 checkpoints
(about 3 epochs) while training the four variants of SoundNet is depicted
in Fig. 5.4. The variants SN-R and SN-CR exhibit a clear advantage over
the other two variants. For reference, if we evaluated the original SoundNet
on the 1,000-video validation set, we would get an average KL divergence of
5.13 nats6, which is on par with our purely convolutional variant, SN-C. We
may claim that we have trained two variants of SoundNet (SN-R and SN-CR)
that perform object and scene classification significantly better than original,
and we no longer use the other two variants (SN-C and SN-F) hereafter.

We tried tuning the hyperparameters of training for better performance.
We found it marginally beneficial to increase the batch size to 128 videos.
The checkpoint size was kept at 160 minibatches, which would now be about
1% of an epoch. We also found it helpful to decrease the learning rate in an
exponential fashion: multiplying it by 0.998 every checkpoint. We let the
two variants (SN-R and SN-CR) train for 48 hours, at the end of which the
learning rate became so small that the training had converged. SN-R reached

6This number was measured after excluding about 2% of the keyframes, because on
these frames SoundNet predicted zero probabilities for some object or scene classes.

CHAPTER 5. TRANSFER LEARNING FOR SED 94

SN-R, layer pool5

0 2 4 6 8 10
-4

-2

0

2

4

6

SN-R, layer gru6

0 2 4 6 8 10
-1

-0.5

0

0.5

1

SN-R, layer gru7

0 2 4 6 8 10

-0.5

0

0.5

SN-R, layer gru8

0 2 4 6 8 10

Time (s)

-0.5

0

0.5

SN-CR, layer pool5

0 2 4 6 8 10

-2

0

2

4

SN-CR, layer conv6

0 2 4 6 8 10

-4

-2

0

2

4

SN-CR, layer conv7

0 2 4 6 8 10

-6

-4

-2

0

2

SN-CR, layer gru8

0 2 4 6 8 10

Time (s)

-0.5

0

0.5

Figure 5.5: The features extracted from various layers of two variants
of SoundNet, SN-R and SN-CR, for the Audio Set evaluation recording
-2EKWgTNEYU (“buzzer”).

a lowest KL divergence of 4.467 nats at Checkpoint 1,657 (16.57 epochs);
SN-CR reached a lowest KL divergence of 4.523 nats at Checkpoint 2,133
(21.33 epochs).

Inspecting the SoundNet Features

Before applying the SoundNet features to experiments, let’s first inspect
them to see if there are any obvious problems. We ran the variants SN-R
and SN-CR on the “buzzer” recording we used in Chapter 4, and plot the
features in Fig. 5.5. The recording contains intermittent buzzer tones. The
boundaries of the buzzer tones are clearly visible in the features extracted
after the “pool5” and “gru6” layers of SN-R and the “pool5”, “conv6” and
“conv7” layers layers of SN-CR, but they are smeared out in the features

CHAPTER 5. TRANSFER LEARNING FOR SED 95

extracted from higher layers. The “smeared out” features may not have the
necessary temporal resolution for SED.

We speculate that the smearing out effect is due to the inadequate quality
of the supervision. First, the objects and scenes may not change frequently
in the videos. It is not rare for a 20-second video to contain only one
shot. Second, the supervision may be imposed at places a few frames off
from the correct places. Influence by these two factors, the recurrent layers
in the networks will tend to “remember” their predictions at one frame
and reproduce the same predictions at nearby frames, because doing so
maximizes the chance of “guessing” correctly. Finally, the supervision is so
sparse in time that it does not emphasize the transition between different
objects and scenes, so the recurrent layers do not adequately learn when to
forget, either.

5.2 Transfer Learning Experiments

In this section, we repeat the experiments in Chapters 3 and 4 with
the VGGish features and the various SoundNet features. The first two
experiments are joint audio tagging and localization with presence/absence
labeling, carried out on the DCASE challenge and the Google Audio Set,
respectively; they correspond to Secs. 3.2 and 3.3. The last experiment is
localization with sequential labeling, and corresponds to Chapter 4.3.

5.2.1 Transfer Learning for the DCASE Challenge

In this subsection, we repeat our experiments in Sec. 3.2 with transfer
learning features. The task of the experiments is to perform audio tagging
(Task A) and localization (Task B) simultaneously on the corpus of the
DCASE 2017 challenge, which is a small (140 hours) subset of Audio Set
and involves only 17 types of vehicle and warning sounds. The purpose of
the experiments in Chapter 3 was to compare different pooling functions
for multiple instance learning. Since the conclusion was clear that the linear
softmax pooling function was the best, we only use this one pooling function
in this subsection, and turn our focus to the comparison of different transfer
learning features among themselves and against the filterbank features. The
evaluation metrics include the F1 for Task A, plus the error rate and F1

calculated on 1-second segments for Task B. All the metrics are micro-
averaged across the event types.

The structure of the network we built for this task is shown in Fig. 5.6.
This network has several notable differences from the networks in Chapter 3.
First, it is a rather small network, because the training corpus is small.
Second, the intermediate layers are 2-D instead of 3-D. This is because the
128 dimensions of the transfer learning features do not form a frequency
axis as the filterbank features do; in other words, a transfer learning feature

CHAPTER 5. TRANSFER LEARNING FOR SED 96

100 * 200

1 * 17Recording-level prob.
of events

100 * 17Frame-level prob.
of events

Fully connected
(sigmoid)

Linearly weighted
softmax pooling

100 * 128

Transfer learning features

conv 5

100 * 256

conv 5

100 * 256

conv 5

100 * 256

BiGRU 100*2

Figure 5.6: The structure of
the system used in Sec. 5.2.1.
“conv 5” specifies the kernel size.
Batch normalization is not app-
lied.

100 * 1024

1 * 527Recording-level prob.
of events

100 * 527Frame-level prob.
of events

Fully connected
(sigmoid)

Linearly weighted
softmax pooling

100 * 128

Transfer learning features

conv 3

100 * 1024

conv 3

100 * 1024

conv 3

100 * 1024

BiGRU 512*2

Figure 5.7: The structure of
the system used in Sec. 5.2.2.
“conv 3” specifies the kernel size.
Batch normalization is applied to
all the convolutional layers before
the ReLU activation.

sequence should be treated as 128 feature maps of size 100 × 1, instead of
1 feature map of size 100 × 128. Finally, there are also no max pooling
layers, because there is no frequency axis to reduce, and the features were
extracted at the target time resolution from the beginning.

The network was trained in a very similar way to Sec. 3.2.3. We
found it necessary to apply dropout to prevent overfitting. We applied
dropout before each convolutional layer and on both sides of the GRU layer,
and tuned the dropout probability. We also tuned the factor of learning
rate decay: we multiplied the learning rate by this factor whenever the
validation loss did not see any updates for 3 consecutive epochs. All other
hyperparameters were kept the same as in the middle column of Table 3.3.

We evaluated all the systems with different transfer learning features at
Epoch 35, when they have all converged. For each system, class-specific
thresholds were tuned on the validation set of the DCASE challenge for
Task A, then applied directly to Task B. The performance numbers, together
with the optimal dropout probability and learning rate decay factor, are
listed in Table 5.1.

CHAPTER 5. TRANSFER LEARNING FOR SED 97

Feature
Dropout

prob.
LR decay

factor
Task A Task B

F1 ER F1

Filterbank 0.0 0.5 49.5 84.3 43.7

VGGish 0.3 0.1 56.4 73.5 50.4

SN-R-5 0.3 0.1 50.2 80.5 44.6
SN-R-6 0.2 0.1 50.2 80.9 43.0
SN-R-7 0.0 0.1 44.4 88.5 38.2
SN-R-8 0.1 0.3 39.1 98.0 33.9

SN-CR-5 0.3 0.1 51.3 81.4 45.2
SN-CR-6 0.3 0.1 53.8 81.4 45.3
SN-CR-7 0.5 0.3 51.2 78.1 45.7
SN-CR-8 0.1 0.1 45.2 91.9 37.6

Table 5.1: The optimal hyperparameters and performance of the system in
Sec. 5.2.1 with different types of features.

This experiment is a typical successful example of transfer learning.
Except for the features that smear out in time (SN-R-7, SN-R-8, and
SN-CR-8), all transfer learning features outperform the baseline filterbank
features, in terms of both audio tagging and localization. Considering that
SoundNet is trained with 1 year worth of audio while the DCASE corpus
has only about 140 hours of audio for training, it is no wonder that the
SoundNet features can provide useful knowledge that cannot be mined from
the DCASE training data alone. The best performance is achieved by the
VGGish features; this is reasonable since the VGGish network is trained with
40 years of audio. These results indicate that transfer learning is helpful
when the amount of data used to train the source model is significantly
larger than the amount of data available for training the target model, and
the more training data, the better.

Among the SoundNet features, the SN-CR features perform better than
the SN-R features, even though the SN-R network reaches a slightly lower
KL divergence. This indicates that better performance on the source task
does not directly translate to better performance on the target task. The
difference between features extracted from different layers is rather small.
The SN-CR-6 features achieve a slightly higher F1 for audio tagging; the
SN-CR-7 features achieve a slightly lower error rate for localization.

5.2.2 Transfer Learning for Large-Scale Joint Audio Tagging
and Localization

In this subsection, we repeat our experiments in Sec. 3.3 with transfer
learning features. The main task is to perform audio tagging on the entire
Audio Set, but at the same time the system must also perform audio

CHAPTER 5. TRANSFER LEARNING FOR SED 98

Feature
Hyperparameters Audio Set Metrics DCASE Metrics

Dropout
prob.

LR decay
factor

MAP MAUC d’
Task A Task B

F1 ER F1

Filterbank 0.0 0.8 0.359 0.966 2.575 52.3 78.9 45.4

VGGish 0.3 0.8 0.340 0.962 2.510 54.0 81.1 48.6

SN-R-5 0.3 0.9 0.289 0.950 2.323 47.1 92.2 39.3

SN-CR-5 0.3 0.9 0.300 0.952 2.349 50.5 90.1 42.7
SN-CR-6 0.2 1.0 0.289 0.952 2.351 47.6 93.5 41.7
SN-CR-7 0.3 0.8 0.276 0.949 2.311 47.6 93.4 39.4

Table 5.2: The optimal hyperparameters and performance of the system in
Sec. 5.2.2 with different types of features. The first row is the performance
of TALNet in Sec. 3.3.

tagging and localization on the DCASE 2017 challenge data reasonably well.
Besides the metrics of the DCASE challenge, the evaluation metrics of this
experiment also include the mean average precision (MAP), mean area under
the curve (MAUC), and d-prime on Audio Set. The metrics evaluate how
well a system ranks the test recordings for each event, and therefore do not
require thresholding. Please refer to Sec. 3.3.1 for their definitions. Just like
the previous subsection, we only use the linear softmax pooling function.
Because Audio Set is large and the features can take up a huge amount of
storage, we only try out the following types of SoundNet features in this
subsection: SN-R-5, SN-CR-5, SN-CR-6, SN-CR-7.

The structure of the network we built for this task is shown in Fig. 5.7.
This network is significantly shallower than TALNet, because the transfer
learning features are already a result of several layers of neural processing.
The network was trained in a very similar way to Sec. 3.3. We increased
the batch size from 250 recordings to 500 recordings, and tuned the dropout
probability and learning rate decay factor. All other hyperparameters were
kept the same as in the last column of Table 3.3.

Table 5.2 lists the evaluation results. While the Audio Set evaluation
metrics do not require thresholding, the DCASE metrics still do, so we
tuned class-specific thresholds on the DCASE validation set for Task A,
and then applied them directly to Task B. For each system evaluated, we
picked a checkpoint at which all the metrics were close to the best value ever
reached.

This time we no longer see the VGGish features leaving the baseline
filterbank features far behind. While the VGGish features achieve a higher
audio tagging F1 and localization F1 on the DCASE data, it fails to beat
TALNet on the other metrics. A possible reason is that the training data
for TALNet (8 months) is already large enough, so it no longer needs
information transferred from another task. Another possible reason is that
while the DCASE challenge only involves 17 types of sound events, Audio
Set is concerned with 527 types, which may not be well covered by the

CHAPTER 5. TRANSFER LEARNING FOR SED 99

100 * 1024

1 * 35Recording-level prob.
of events

(b)
MIL system for

presence/absence labeling

100 * 35Frame-level prob.
of events100 * 35Frame-level prob.

of events 100 * 35Frame-level prob.
of events

101 * 70Frame-level prob.
of event boundaries

Fully connected
(sigmoid)

Rectified
delta

Shared layers ↑

Linear
softmax

(a)
Strong labeling system

(c)
CTL system for

sequential labeling

100 * 128

Transfer learning features

conv 3

100 * 1024

conv 3

100 * 1024

conv 3

100 * 1024

BiGRU 512*2

Figure 5.8: The structures of the strong labeling baseline system, the
multiple instance learning (MIL) baseline system, and the CTL system used
in Sec. 5.2.3. The layers above the dashed line are shared across the three
systems. All tensors are 2-D; their sized are specified by the number of
frames and the number of feature maps. All the convolutional layers use the
ReLU activation; the number after “conv” (e.g. 3) specifies the size of the
kernel. Batch normalization is applied to all the convolutional layers before
the ReLU activation.

Knowledge Graph entities the VGGish network is trained to recognize.
All SoundNet features fall behind the baseline. This may be due to

the fact that SoundNet is only trained with 1 year of audio, which is not
much larger than the size of Audio Set (8 months). Among the SoundNet
features, SN-CR-5 yields the best performance. This is in contradiction to
our hypothesis that higher layers should produce better features.

5.2.3 Transfer Learning for Sequential Labeling

In this subsection, we repeat our main experiments in Chapter 4 with
transfer learning features. The task of the experiments is to perform SED
with sequential labeling on a subset of Audio Set, which accounts for about

CHAPTER 5. TRANSFER LEARNING FOR SED 100

67.38

59.92

55.83
55.27

46.89

45.45

57.40

50.19

48.59

55.24

47.52

46.03

48.30

42.46

38.31
37.53

31.61
32.07

58.24

48.70

47.81

57.20

49.01

48.05

56.57

48.32

46.70
46.88

38.96

36.88

Filterbank VGGish SN-R-5 SN-R-6 SN-R-7 SN-R-8 SN-CR-5 SN-CR-6 SN-CR-7 SN-CR-8

Feature type

30

35

40

45

50

55

60

65

70
M

ac
ro

-a
ve

ra
ge

 fr
am

e-
le

ve
l F

1
(%

)

Strong labeling baseline
CTL
MIL baseline

Figure 5.9: The macro-average frame-level F1 obtained by the CTL system,
compared with the strong labeling and MIL baselines, using various types
of transfer learning features as well as the filterbank features.

18% the size of the entire corpus and involves 35 “common events”. We build
neural networks that take various transfer learning features as input, using
the CTL framework which has proven successful in Chapter 4. To evaluate
the performance in context, we also build a strong labeling baseline system
and a multiple instance learning (MIL) baseline system for each feature type.
The performance is measured by the frame-level F1 macro-averaged across
all the event types.

The structures of the systems we built are shown in Fig. 5.8. Again,
the networks are shallow compared to those used in Chapter 4, because the
transfer learning features already encode several layers of neural processing.
The networks were trained in almost the same way as in Chapter 4, except
that we found it sometimes beneficial to apply dropout. For the strong
labeling baseline, we found 0.2 to be a good value for the dropout probability.
For the MIL baseline and the CTL system, we found it was best to apply
dropout with a probability of 0.1 or not to apply dropout at all; we chose
the better of the two for each feature type. For the CTL system, the max
concurrence was set to 1. The macro-average frame-level F1’s obtained by
the three systems using different features are illustrated in Fig. 5.9.

The corpus for sequential learning falls between the DCASE data and
the entire Audio Set, in terms of both the total duration of the audio and
the number of sound event types. The outcome of the current experiment
is critical, because it would provide a lot of information to answer this
question: How much training data do we need so that transfer learning

CHAPTER 5. TRANSFER LEARNING FOR SED 101

no longer helps? From Fig. 5.9, we see that none of the transfer learning
features surpass the performance of filterbank features. However, we are not
confident to conclude that the subset of Audio Set used in this experiment is
already large enough so transfer learning is no longer necessary. Remember
that the labels of this data are generated by TALNet, which is trained using
filterbank features, so the labels will no doubt contain idiosyncracies that
are easier to approximate with filterbank features. We suspect that the good
performance of filterbank features may be due to overfitting.

Among the transfer learning features, all feature types do a reasonable
job except those that smear out in time (SN-R-7, SN-R-8, and SN-CR-8). A
surprising fact is that SoundNet features now perform better than VGGish
features, even though the latter were trained with way more data. Among
the SoundNet features, SN-R-5 achieves the highest performance, while the
SN-CR features extracted from layers 5, 6 and 7 are on par with each
other. These results are not in agreement with what we have observed
in the previous experiments. They may imply that the effect of transfer
learning needs to be investigated on a case-by-case basis.

With all the feature types but SN-R-8, we see the performance of the
CTL network surpass that of the MIL baseline, even though it does not close
as much as one third of the gap between the two baselines. This confirms
that the CTL framework is able to leverage the extra temporal information
in the sequential labeling.

5.3 Summary

In this chapter, we have explored how to improve the learning of sound
events by feature transfer. We used two networks as feature extractors:
VGGish and SoundNet. We used the VGGish network off the shelf, while
we trained several variants of SoundNet ourselves. The variants SN-R and
SN-CR outperformed the original SoundNet significantly in terms of KL
divergence.

The SED experiments using transfer learning features showed mixed
results. A most brief summarization of the comparison between different
types of features is given below (only the single best type of SoundNet
features is listed):

• Experiment 1 (DCASE):
VGGish > SN-CR-6/7 > filterbank;

• Experiment 2 (Audio Set):
Filterbank > VGGish > SN-CR-5;

• Experiment 3 (sequential labeling):
Filterbank > SN-R-5 > VGGish.

CHAPTER 5. TRANSFER LEARNING FOR SED 102

The results indicate that there are certain conditions for transfer learning
to succeed. The most import condition is the amount of training data for the
source task and the target task. When the target task has a small training
corpus (e.g. Exp. 1), transfer learning can offer a big improvement. On
the other hand, when the target task already has plenty of training data
(e.g. Exp. 2), it is best to let the network find out on itself the most useful
information in the raw input. Generally speaking, the source task has to
have about 50 times as much training data as the target task to make a
significant difference.

For SoundNet, we hypothesized that features extracted from higher
layers would perform better because they would encode concepts more
closely related to the classification targets. However, we did not observe this
to be true. An important reason is the “smearing out” effect that recurrent
layers had on the features, and we suspect this is due to the inadequate form
of supervision used during training.

Chapter 6

Conclusion

6.1 Contributions of This Thesis

This thesis has studied the task of sound event detection when there is
only weak labeling available. Weak labeling may come in the form of either
presence/absence labeling or sequential labeling, and we have pushed the
frontier of the research in both cases. We have also investigated transfer
learning as a means to improve the performance when training data is
insufficient.

Below is a summary of the contributions made by this thesis:

• We have made a theoretical and empirical comparison of six common
pooling functions: max pooling, noisy-or pooling, average pooling,
linear softmax pooling, exponential softmax pooling, and attention
pooling. We establish the linear softmax pooling function as the best
of the six, because it has the following advantages: it facilitates the
gradient flow, achieves a good balance between false negatives and
false positives, and makes consistent recording-level and frame-level
predictions. (Secs. 3.1 and 3.2)

• Using the linear softmax pooling function, we have built a network
called “TALNet” that can perform audio tagging and localization
simultaneously. This system closely matches the state-of-the-art
performance on the Google Audio Set [15], while reaching a strong
performance on the DCASE 2017 challenge data [83] without any
adaptation. As far as we know, this is the first system to exhibit
such good performance on both corpora. (Sec. 3.3)

• We have modified the standard connectionist temporal classification
(CTC) framework and proposed a novel connectionist temporal loca-
lization (CTL) framework for SED with sequential labeling. The CTL
framework overcomes the “peak clustering” problem encountered in

103

CHAPTER 6. CONCLUSION 104

previous work, and closes one third of the performance gap between
presence/absence labeling and strong labeling. (Chapter 4)

• We have investigated the use of the VGGish network [71] and Sound-
Net [72] as transfer learning feature extractors for SED. We have
trained variants of SoundNet that reach a lower validation loss than
the original. Through extensive experiments, we have found that a
successful application of transfer learning may require up to 50 times
as much data for the source task as for the target task. (Chapter 5)

6.2 Potential Applications

This thesis does not only contribute to the field of sound event detection.
A direct downstream application of SED is multimedia event detection
(MED), which is the task of detecting what activity is happening in video
recordings (e.g. parade, birthday party). MED is usually performed in
two stages. The first stage generates a high-level representation of each
recording, which can be either a single vector or a sequence of frame-
wise vectors. The frame-level probabilities of sound events constitute a
popular representation. The second stage performs binary or multi-class
classification on the representations of recordings to decide which activities
are active. Common classifiers include support vector machines (SVMs)
and recurrent neural networks (RNNs); we have also devised a model called
“recurrent SVMs” in [14] which combines the advantages of the two. Having
improved sound event detectors will no doubt also improve the performance
of multimedia event detection.

The techniques studied in this work, including multiple instance learning
(MIL) and connectionist temporal classification / localization (CTC / CTL),
can also apply to other sequence learning tasks with weak supervision. For
example, they may be used to detect scenes and actions in videos (e.g.
fighting), if the data comes with textual descriptions that specify sequences
or the presence/absence of scenes and actions but do not specify their exact
starting and ending times [62]. These techniques may also used to diagnose
pathological speech: if we collect speech from a sufficient number of patients
labeled with the types of speech anomalies they are diagnosed with (e.g.
stuttering), we can train a system that learns what these types of anomalies
sound like and helps in diagnosing future patients. They may also be applied
to motion tracking data to recognize the moving states of people carrying
mobile devices (e.g. walking, running, driving), because the users may only
provide information about what they did but not exactly when they did it.
Another application is the detection and localization of malicious code or
vulnerabilities in programs [134], because often we only know that a program
has a bug but do not know which part of the code causes the bug.

CHAPTER 6. CONCLUSION 105

6.3 Future Work

6.3.1 Continuation of Work in This Thesis

Even though we have obtained exciting results in this thesis, there is still
work that could make the conclusions stronger. These include:

• Investigate the attention-based pooling function for multiple instance
learning with the constraint that the attention must be monotonic in
the frame-level probabilities;

• Improve the generalization of the CTL framework to new data;

• Find out the true cause of the “smearing out” effect in the features
extracted from the recurrent variants of SoundNet, and, after solving
the problem, study how the transfer learning performance is affected
by the layer from which features are extracted.

6.3.2 Utilizing the Hierarchy of Sound Events

The sound event types in the Google Audio Set comes in an ontology. There
are broader classes (e.g. animal) that subsume finer classes (e.g. dog, cat).
In this thesis, we did not make use of this hierarchical information, and
trained one big neural network to recognize all the sound event types at the
same time. Such a big network may not spare enough attention to learn the
finer classes, which occur fewer times in the training data than the broader
classes.

There exist multiple ways to incorporate hierarchical information into
neural networks. Modular networks [135, 136, 137] were proposed in the
early days of speech recognition, when computational resources were not
enough to support the training of one monolithic network to recognize all
phonemes. A modular network consists of many smaller networks (called
modules), each of which focuses on a subset of the classes (phonemes or
sound events) to distinguish. A top-level network then summarizes the
opinions of the modules to make a final prediction. For sound event
detection, the Audio Set ontology can provide guidance on the creation
of subsets of sound event types. Compared to a monolithic network, the
modules in a modular network may be trained to better distinguish similar
and confusable classes. It is also easier to add new classes to an already
trained network: it suffices to add modules for recognizing the new classes
and to fine-tune the top-level network; existing modules can be kept intact.

A more sophisticated way to exploit the ontology is a hierarchical mixture
of experts (HME) [138]. An HME has a bottom-up tree structure: the leaf
nodes are expert classifiers that specialize in classifying certain subsets of
classes, just like the modules in modular networks; the internal nodes are
gating networks that select or combine the predictions of their child nodes.

CHAPTER 6. CONCLUSION 106

The recursive structure of an HME allows for a more logical organization
of the classes to recognize, and the Audio Set ontology may be directly
mapped to the structure of an HME. The tree structure of an HME may
also be grown adaptively [139]; a comparison between the adaptively grown
tree structure and the Audio Set ontology may be performed to discover
imperfections in the latter.

6.3.3 Learning the Temporal Characteristics of Sounds

Sound events also have different temporal characteristics. There are
continuous sound events which span a long time interval, transient sound
events which only lasts a few frames, as well as intermittent sound events
which display a rhythmic structure. It would be beneficial if the network
could detect and exploit these temporal characteristics.

Such attempts have been made in [140] and [43]. The authors restrict the
kernel in a convolutional layer to have a Gaussian shape with tunable width;
the width will end up being larger for continuous sound events and shorter
for transient sound events. To accommodate for intermittent sound events,
we may also consider using kernels that have the shape of an oscillating
function.

The adaptive pooling function in [52] also has the side benefit of
distinguishing transient events from continuous ones. The pooling function
has a class-dependent parameter α that can bias the pooling function toward
either max pooling or average pooling. It is found that the pooling function
will tend toward max pooling for transient events, while tending toward
average pooling for continuous events.

Another approach to learning the temporal characteristics of sounds
is the duration-controlled hidden semi-Markov models used in [141], in
which the duration distributions of different sound event types are explicitly
modeled. All the techniques above are promising ways toward learning the
temporal characteristics of sounds.

Acknowledgments

I would like to express my gratitude for my PhD advisor, Prof. Florian
Metze, and my master advisor, Prof. Qin Jin, for their constant support
during my eight years at CMU. I would also like to thank all the committee
members for their valuable advice on my thesis proposal and defense.

I would like to thank Susi Burger for her effort in compiling and
annotating the Noiseme corpus, without which my research wouldn’t have
been possible. I am also grateful to Juncheng (Billy) Li for his cooperation
in the DCASE 2017 challenge. Finally, I would like to thank Qiuqiang
Kong and Yong Xu at the University of Surrey, UK, for sharing the code of
their SED system and for their long discussions with me about the pooling
functions.

This work used the Extreme Science and Engineering Discovery Environ-
ment (XSEDE) [142], which is supported by National Science Foundation
(NSF) grant number ACI-1548562. Specifically, it used the Comet system
at San Diego Supercomputer Center (SDSC) and the Bridges system at the
Pittsburgh Supercomputing Center (PSC).

107

Bibliography

[1] D. Wang and G. J. Brown, Computational auditory scene analysis:
Principles, algorithms, and applications. Wiley-IEEE Press, 2006.

[2] T. Heittola, A. Mesaros, A. Eronen, and T. Virtanen, “Context-
dependent sound event detection,” EURASIP Journal on Audio,
Speech, and Music Processing, vol. 2013, no. 1, 2013.

[3] B. Raj and A. Kumar, “Audio event and scene recognition: A
unified approach using strongly and weakly labeled data,” in Interna-
tional Joint Conference on Neural Networks (IJCNN), IEEE, 2017,
pp. 3475–3482.

[4] T. Heittola, A. Mesaros, T. Virtanen, and A. Eronen, “Sound event
detection in multisource environments using source separation,”
in Workshop on Machine Listening in Multisource Environments
(CHiME), 2011, pp. 36–40.

[5] Q. Kong, Y. Xu, W. Wang, and M. D. Plumbley, “A joint separation-
classification model for sound event detection of weakly labeled
data,” in International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), IEEE, 2018, pp. 321–325.

[6] Y.-T. Peng, C.-Y. Lin, M.-T. Sun, and K.-C. Tsai, “Healthcare audio
event classification using hidden Markov models and hierarchical
hidden Markov models,” in International Conference on Multimedia
and Expo (ICME), IEEE, 2009, pp. 1218–1221.

[7] P. Laffitte, D. Sodoyer, C. Tatkeu, and L. Girin, “Deep neural
networks for automatic detection of screams and shouted speech in
subway trains,” in International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), IEEE, 2016, pp. 6460–6464.

[8] P. Laffitte, Y. Wang, D. Sodoyer, and L. Girin, “Assessing the per-
formances of different neural network architectures for the detection
of screams and shouts in public transportation,” Expert Systems with
Applications, vol. 117, pp. 29–41, 2019.

[9] C. Clavel, T. Ehrette, and G. Richard, “Events detection for an
audio-based surveillance system,” in International Conference on
Multimedia and Expo (ICME), IEEE, 2005, pp. 1306–1309.

108

BIBLIOGRAPHY 109

[10] S. Chaudhuri, M. Harvilla, and B. Raj, “Unsupervised learning of
acoustic unit descriptors for audio content representation and classi-
fication,” in Proceedings of Interspeech, ISCA, 2011, pp. 2265–2268.

[11] B. Byun, I. Kim, S. M. Siniscalchi, and C.-H. Lee, “Consumer-
level multimedia event detection through unsupervised audio signal
modeling,” in Proceedings of Interspeech, ISCA, 2012, pp. 2081–2084.

[12] Y. Wang, S. Rawat, and F. Metze, “Exploring audio semantic
concepts for event-based video retrieval,” in International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), IEEE, 2014,
pp. 1360–1364.

[13] Y. Wang, L. Neves, and F. Metze, “Audio-based multimedia event
detection using deep recurrent neural networks,” in International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
IEEE, 2016, pp. 2742–2746.

[14] Y. Wang and F. Metze, “Recurrent support vector machines for
audio-based multimedia event detection,” in International Confe-
rence on Multimedia Retrieval (ICMR), ACM, 2016, pp. 265–269.

[15] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen, W.
Lawrence, R. C. Moore, M. Plakal, and M. Ritter, “Audio Set: An on-
tology and human-labeled dataset for audio events,” in International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
IEEE, 2017, pp. 776–780.

[16] R. Malkin, D. Macho, A. Temko, and C. Nadeu, “First evaluation
of acoustic event classification systems in CHIL project,” in Joint
Workshop on Hands-Free Speech Communication and Microhpone
Arrays (HSCMA), 2005.

[17] C. Zieger, “An HMM based system for acoustic event detection,” in
Multimodal Technologies for Perception of Humans, 2008, pp. 338–
344.

[18] X. Zhou, X. Zhuang, M. Liu, H. Tang, M. Hasegawa-Johnson, and T.
Huang, “HMM-based acoustic event detection with AdaBoost feature
selection,” in Multimodal Technologies for Perception of Humans,
Springer, 2008, pp. 345–353.

[19] A. Mesaros, T. Heittola, A. Eronen, and T. Virtanen, “Acoustic
event detection in real life recordings,” in European Signal Processing
Conference (EUSIPCO), IEEE, 2010, pp. 1267–1271.

[20] A. Waibel and R. Stiefelhagen, Computers in the Human Interaction
Loop. Springer-Verlag London, 2009.

BIBLIOGRAPHY 110

[21] A. Temko, R. Malkin, C. Zieger, D. Macho, C. Nadeu, and M.
Omologo, “Acoustic event detection and classification in smart-room
environments: Evaluation of CHIL project systems,” in IV Jornadas
en Tecnoloǵıa del Habla, ISCA, 2006.

[22] A. Temko and C. Nadeu, “Classification of meeting-room acoustic
events with support vector machines and variable-feature-set cluste-
ring,” in International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), IEEE, 2005, pp. V-505–V-508.

[23] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in Advances in Neural Information Processing Systems
(NIPS), 2001, pp. 556–562.

[24] T. Heittola, A. Mesaros, T. Virtanen, and M. Gabbouj, “Supervised
model training for overlapping sound events based on unsupervised
source separation,” in International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), IEEE, 2013, pp. 8677–8681.

[25] O. Dikmen and A. Mesaros, “Sound event detection using non-
negative dictionaries learned from annotated overlapping events,”
in Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA), IEEE, 2013.

[26] O. Gencoglu, T. Virtanen, and H. Huttunen, “Recognition of acoustic
events using deep neural networks,” in European Signal Processing
Conference (EUSIPCO), IEEE, 2014, pp. 506–510.

[27] M. Ravanelli, B. Elizalde, K. Ni, and G. Friedland, “Audio concept
classification with hierarchical deep neural networks,” in European
Signal Processing Conference (EUSIPCO), IEEE, 2014, pp. 606–610.

[28] E. Çakır, T. Heittola, H. Huttunen, and T. Virtanen, “Polyphonic
sound event detection using multi-label deep neural networks,” in
International Joint Conference on Neural Networks (IJCNN), IEEE,
2015.

[29] M. Espi, M. Fujimoto, Y. Kubo, and T. Nakatani, “Spectrogram
patch based acoustic event detection and classification in speech
overlapping conditions,” in Joint Workshop on Hands-free Speech
Communication and Microphone Arrays (HSCMA), IEEE, 2014,
pp. 117–121.

[30] H. Zhang, I. McLoughlin, and Y. Song, “Robust sound event
recognition using convolutional neural networks,” in International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
IEEE, 2015, pp. 559–563.

BIBLIOGRAPHY 111

[31] H. Phan, L. Hertel, M. Maass, and A. Mertins, “Robust audio
event recognition with 1-max pooling convolutional neural networks,”
arXiv e-prints, 2016. [Online]. Available: http://arxiv.org/abs/
1604.06338.

[32] K. J. Piczak, “Environmental sound classification with convolutional
neural networks,” in International Workshop on Machine Learning
for Signal Processing (MLSP), IEEE, 2015.

[33] J. Salamon and J. P. Bello, “Deep convolutional neural networks
and data augmentation for environmental sound classification,” IEEE
Signal Processing Letters, vol. 24, no. 3, pp. 279–283, 2017.

[34] N. Takahashi, M. Gygli, B. Pfister, and L. Van Gool, “Deep convo-
lutional neural networks and data augmentation for acoustic event
detection,” arXiv e-prints, 2016. [Online]. Available: http://arxiv.
org/abs/1604.07160.

[35] Y. Tokozume and T. Harada, “Learning environmental sounds with
end-to-end convolutional neural network,” in International Confe-
rence on Acoustics, Speech, and Signal Processing (ICASSP), IEEE,
2017, pp. 2721–2725.

[36] A. Gorin, N. Makhazhanov, and N. Shmyrev, “DCASE 2016 sound
event detection system based on convolutional neural network,”
DCASE2016 Challenge, Tech. Rep., 2016.

[37] M. Espi, M. Fujimoto, K. Kinoshita, and T. Nakatani, “Exploiting
spectro-temporal locality in deep learning based acoustic event de-
tection,” EURASIP Journal on Audio, Speech, and Music Processing,
2015.

[38] G. Parascandolo, H. Huttunen, and T. Virtanen, “Recurrent neural
networks for polyphonic sound event detection in real life recordings,”
in International Conference on Acoustics, Speech, and Signal Proces-
sing (ICASSP), IEEE, 2016, pp. 6440–6444.

[39] S. Adavanne, G. Parascandolo, P. Pertilä, T. Heittola, and T.
Virtanen, “Sound event detection in multichannel audio using spatial
and harmonic features,” in Workshop on Detection and Classification
of Acoustic Scenes and Events (DCASE), IEEE, 2016, pp. 6–10.

[40] T. Hayashi, S. Watanabe, T. Toda, T. Hori, J. Le Roux, and K.
Takeda, “Bidirectional LSTM-HMM hybrid system for polyphonic
sound event detection,” in Workshop on Detection and Classification
of Acoustic Scenes and Events (DCASE), IEEE, 2016, pp. 35–39.

[41] E. Çakır, G. Parascandolo, T. Heittola, H. Huttunen, and T. Virta-
nen, “Convolutional recurrent neural networks for polyphonic sound
event detection,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 25, no. 6, pp. 1291–1303, 2017.

http://arxiv.org/abs/1604.06338
http://arxiv.org/abs/1604.06338
http://arxiv.org/abs/1604.07160
http://arxiv.org/abs/1604.07160

BIBLIOGRAPHY 112

[42] J. Amores, “Multiple instance classification: Review, taxonomy and
comparative study,” Artificial Intelligence, vol. 201, pp. 81–105, 2013.

[43] T.-W. Su, J.-Y. Liu, and Y.-H. Yang, “Weakly-supervised audio event
detection using event-specific gaussian filters and fully convolutional
networks,” in International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), IEEE, 2017, pp. 791–795.

[44] A. Kumar and B. Raj, “Audio event detection using weakly labeled
data,” in Multimedia Conference, ACM, 2016, pp. 1038–1047.

[45] O. Maron and T. Lozano-Pérez, “A framework for multiple-instance
learning,” in Advances in Neural Information Processing Systems
(NIPS), 1998, pp. 570–576.

[46] C. Zhang, J. C. Platt, and P. A. Viola, “Multiple instance boosting
for object detection,” in Advances in Neural Information Processing
Systems (NIPS), 2006, pp. 1417–1424.

[47] B. Babenko, P. Dollár, Z. Tu, and S. Belongie, “Simultaneous learning
and alignment: Multi-instance and multi-pose learning,” in Workshop
on Faces in Real-Life Images: Detection, Alignment, and Recognition,
2008.

[48] A. Shah, A. Kumar, A. G. Hauptmann, and B. Raj, “A closer look at
weak label learning for audio events,” arXiv e-prints, 2018. [Online].
Available: http://arxiv.org/abs/1804.09288.

[49] P. Joshi, D. Gautam, G. Ramakrishnan, and P. Jyothi, “Time aggre-
gation operators for multi-label audio event detection,” in Proceedings
of Interspeech, ISCA, 2018, pp. 3309–3313.

[50] A. Dang, T. H. Vu, and J.-C. Wang, “Deep learning for DCASE2017
challenge,” DCASE2017 Challenge, Tech. Rep., 2017.

[51] J. Salamon, B. McFee, and P. Li, “DCASE 2017 submission: Multiple
instance learning for sound event detection,” DCASE2017 Challenge,
Tech. Rep., 2017.

[52] B. McFee, J. Salamon, and J. P. Bello, “Adaptive pooling operators
for weakly labeled sound event detection,” arXiv e-prints, 2018.
[Online]. Available: http://arxiv.org/abs/1804.10070.

[53] Y. Xu, Q. Kong, W. Wang, and M. D. Plumbley, “Large-scale weakly
supervised audio classification using gated convolutional neural net-
work,” in International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), IEEE, 2018, pp. 121–125.

[54] Q. Kong, Y. Xu, W. Wang, and M. D. Plumbley, “Audio set
classification with attention model: A probabilistic perspective,” in
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), IEEE, 2018, pp. 316–320.

http://arxiv.org/abs/1804.09288
http://arxiv.org/abs/1804.10070

BIBLIOGRAPHY 113

[55] C. Yu, K. S. Barsim, Q. Kong, and B. Yang, “Multi-level attention
model for weakly supervised audio classification,” arXiv e-prints,
2018. [Online]. Available: http://arxiv.org/abs/1803.02353.

[56] S. Chen, J. Chen, Q. Jin, and A. Hauptmann, “Class-aware self-
attention for audio event recognition,” in International Conference
on Multimedia Retrieval (ICMR), ACM, 2018, pp. 28–36.

[57] S.-Y. Chou, J.-S. R. Jang, and Y.-H. Yang, “Learning to recognize
transient sound events using attentional supervision,” in Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), 2018,
pp. 3336–3342.

[58] A. Graves and N. Jaitly, “Towards end-to-end speech recognition
with recurrent neural networks,” in International Conference on
Machine Learning (ICML), ACM, 2014, pp. 1764–1772.

[59] A. Graves, “Sequence transduction with recurrent neural networks,”
arXiv e-prints, 2012. [Online]. Available: http://arxiv.org/abs/
1211.3711.

[60] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio,
“Attention-based models for speech recognition,” in Advances in
Neural Information Processing Systems (NIPS), 2015, pp. 577–585.

[61] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and
spell: A neural network for large vocabulary conversational speech
recognition,” in International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), IEEE, 2016, pp. 4960–4964.

[62] D.-A. Huang, F.-F. Li, and J. C. Niebles, “Connectionist temporal
modeling for weakly supervised action labeling,” in European Confe-
rence on Computer Vision, 2016, pp. 137–153.

[63] Y. Wang and F. Metze, “A first attempt at polyphonic sound
event detection using connectionist temporal classification,” in In-
ternational Conference on Acoustics, Speech, and Signal Processing
(ICASSP), IEEE, 2017, pp. 2986–2990.

[64] Y. Wang and F. Metze, “A transfer learning based feature extractor
for polyphonic sound event detection using connectionist temporal
classification,” in Proceedings of Interspeech, ISCA, 2017, pp. 3097–
3101.

[65] D. P. Ellis and K. Lee, “Features for segmenting and classifying long-
duration recordings of personal audio,” in Tutorial and Research
Workshop on Statistical and Perceptual Audio Processing, ISCA,
2004.

[66] B. Schuller, S. Steidl, and A. Batliner, “The Interspeech 2009 emotion
challenge,” in Proceedings of Interspeech, ISCA, 2009, pp. 312–315.

http://arxiv.org/abs/1803.02353
http://arxiv.org/abs/1211.3711
http://arxiv.org/abs/1211.3711

BIBLIOGRAPHY 114

[67] F. Eyben, F. Weninger, F. Gross, and B. Schuller, “Recent develop-
ments in openSMILE, the Munich open-source multimedia feature
extractor,” in Multimedia Conference, ACM, 2013, pp. 835–838.

[68] R. G. Malkin and A. Waibel, “Classifying user environment for
mobile applications using linear autoencoding of ambient audio,” in
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), IEEE, 2005, pp. 509–512.

[69] F. Kraft, R. Malkin, T. Schaaf, and A. Waibel, “Temporal ICA for
classification of acoustic events ia kitchen environment,” in European
Conference on Speech Communication and Technology, 2005.

[70] E. Cakır and T. Virtanen, “End-to-end polyphonic sound event
detection using convolutional recurrent neural networks with learned
time-frequency representation input,” arXiv e-prints, 2018. [Online].
Available: http://arxiv.org/abs/1805.03647.

[71] S. Hershey et al., “CNN architectures for large-scale audio classifica-
tion,” in International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), IEEE, 2017, pp. 131–135.

[72] Y. Aytar, C. Vondrick, and A. Torralba, “SoundNet: Learning
sound representations from unlabeled video,” in Advances in Neural
Information Processing Systems (NIPS), 2016, pp. 892–900.

[73] Y. Xu, Q. Huang, W. Wang, P. Foster, S. Sigtia, P. J. Jackson,
and M. D. Plumbley, “Unsupervised feature learning based on deep
models for environmental audio tagging,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 25, no. 6, pp. 1230–
1241, 2017.

[74] R. Arandjelovic and A. Zisserman, “Look, listen and learn,” in
International Conference on Computer Vision (ICCV), IEEE, 2017,
pp. 609–617.

[75] A. Jansen, M. Plakal, R. Pandya, D. P. W. Ellis, S. Hershey, J. Liu,
R. C. Moore, and R. A. Saurous, “Unsupervised learning of semantic
audio representations,” in International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), IEEE, 2018, pp. 126–130.

[76] K. J. Piczak, “ESC: Dataset for environmental sound classification,”
in Multimedia Conference, ACM, 2015, pp. 1015–1018.

[77] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy
for urban sound research,” in Multimedia Conference, ACM, 2014,
pp. 1041–1044.

[78] R. Stiefelhagen, K. Bernardin, R. Bowers, J. Garofolo, D. Mostefa,
and P. Soundararajan, “The CLEAR 2006 evaluation,” in Interna-
tional Evaluation Workshop on Classification of Events, Activities
and Relationships, 2006, pp. 1–44.

http://arxiv.org/abs/1805.03647

BIBLIOGRAPHY 115

[79] R. Stiefelhagen, K. Bernardin, R. Bowers, R. Rose, M. Michel,
and J. Garofolo, “The CLEAR 2007 evaluation,” in International
Evaluation Workshop on Classification of Events, Activities and
Relationships, 2007, pp. 3–34.

[80] X. Zhuang, X. Zhou, M. A. Hasegawa-Johnson, and T. S. Huang,
“Real-world acoustic event detection,” Pattern Recognition Letters,
vol. 31, no. 12, pp. 1543–1551, 2010.

[81] A. Temko, R. Malkin, C. Zieger, D. Macho, C. Nadeu, and M.
Omologo, “CLEAR evaluation of acoustic event detection and clas-
sification systems,” in International Evaluation Workshop on Classi-
fication of Events, Activities and Relationships, 2006, pp. 311–322.

[82] A. Mesaros, T. Heittola, and T. Virtanen, “TUT database for
acoustic scene classification and sound event detection,” in European
Signal Processing Conference (EUSIPCO), IEEE, 2016, pp. 1128–
1132.

[83] A. Mesaros, T. Heittola, A. Diment, B. Elizalde, A. Shah, E.
Vincent, B. Raj, and T. Virtanen, “DCASE 2017 challenge setup:
Tasks, datasets and baseline system,” in Proceedings of the Detection
and Classification of Acoustic Scenes and Events 2017 Workshop
(DCASE2017), 2017.

[84] T. Heittola, A. Mesaros, A. Eronen, and T. Virtanen, “Audio con-
text recognition using audio event histograms,” in European Signal
Processing Conference (EUSIPCO), IEEE, 2010, pp. 1272–1276.

[85] S. Burger, Q. Jin, P. F. Schulam, and F. Metze, “Noisemes: Manual
annotation of environmental noise in audio streams,” Carnegie Mel-
lon University, Tech. Rep. CMU-LTI-12-07, 2012.

[86] Y. Wang, J. Li, and F. Metze, “Comparing the max and noisy-or
pooling functions in multiple instance learning for weakly supervised
sequence learning tasks,” in Proceedings of Interspeech, ISCA, 2018,
pp. 1339–1343.

[87] J. Li, Y. Wang, J. Szurley, F. Metze, and S. Das, “A light-weight
multimodel framework for improved environmental audio tagging,” in
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), IEEE, 2018, pp. 6832–6836.

[88] S.-Y. Tseng, J. Li, Y. Wang, F. Metze, J. Szurley, and S. Das, “Mul-
tiple instance deep learning for weakly supervised small-footprint
audio event detection,” in Proceedings of Interspeech, ISCA, 2018,
pp. 3279–3283.

BIBLIOGRAPHY 116

[89] Y. Wang, J. Li, and F. Metze, “A comparison of five multiple
instance learning pooling functions for sound event detection with
weak labeling,” arXiv e-prints, 2018. [Online]. Available: http://
arxiv.org/abs/1810.09050.

[90] Y. Wang and F. Metze, “Connectionist temporal localization for
sound event detection with sequential labeling,” arXiv e-prints, 2018.
[Online]. Available: http://arxiv.org/abs/1810.09052.

[91] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 6088, pp. 533–
536, 1988.

[92] Theano Development Team, “Theano: A Python framework for fast
computation of mathematical expressions,” arXiv e-prints, 2016.
[Online]. Available: http://arxiv.org/abs/1605.02688.

[93] M. Abadi et al., TensorFlow: Large-scale machine learning on hete-
rogeneous systems, 2015. [Online]. Available: http://tensorflow.
org/.

[94] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A Matlab-
like environment for machine learning,” in BigLearn, NIPS Works-
hop, 2011.

[95] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differen-
tiation in PyTorch,” in NIPS Workshop, 2017.

[96] Y. Nesterov, “A method of solving a convex programming problem
with convergence rate O(1/sqr(k)),” Soviet Mathematics Doklady,
vol. 27, no. 2, pp. 372–376, 1983.

[97] T. Tieleman and G. Hinton, RMSprop: Divide the gradient by a
running average of its recent magnitude, Coursera: Neural Networks
for Machine Learning, Lecture 6.5, 2012.

[98] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, no. 7, pp. 2121–2159, 2011.

[99] M. D. Zeiler, “ADADELTA: An adaptive learning rate method,”
arXiv e-prints, 2012. [Online]. Available: http://arxiv.org/abs/
1212.5701.

[100] D. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv e-prints, 2014. [Online]. Available: http://arxiv.org/
abs/1412.6980.

http://arxiv.org/abs/1810.09050
http://arxiv.org/abs/1810.09050
http://arxiv.org/abs/1810.09052
http://arxiv.org/abs/1605.02688
http://tensorflow.org/
http://tensorflow.org/
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

BIBLIOGRAPHY 117

[101] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” Journal of Machine Learning Research, vol. 15,
no. 1, pp. 1929–1958, 2014.

[102] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in International
Conference on Machine Learning (ICML), ACM, 2015, pp. 448–456.

[103] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural
networks,” IEEE Transactions on Signal Processing, vol. 45, no. 11,
pp. 2673–2681, 1997.

[104] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, “Gradient
flow in recurrent nets: The difficulty of learning long-term dependen-
cies,” in A Field Guide to Dynamical Recurrent Neural Networks,
IEEE Press, 2001.

[105] P. J. Werbos, “Generalization of backpropagation with application
to a recurrent gas market model,” Neural networks, vol. 1, no. 4,
pp. 339–356, 1988.

[106] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[107] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” in NIPS
Workshop on Deep Learning, 2014.

[108] A. Waibel, T. Hanazawa, G. Hinton, and K. Shikano, “Phoneme
recognition using time-delay neural networks,” ATR Interpreting
Telephony Research Laboratories, Tech. Rep. TR-I-0006, 1987.

[109] A. Waibel, “Phoneme recognition using time-delay neural networks,”
in Meeting of the Institute of Electrical, Information and Communi-
cation Engineers (IEICE), 1987, pp. 19–24.

[110] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang,
“Phoneme recognition using time-delay neural networks,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 37,
no. 3, pp. 328–339, 1989.

[111] J. B. Hampshire II and A. Waibel, “Connectionist architectures for
multi-speaker phoneme recognition,” in Advances in Neural Informa-
tion Processing Systems (NIPS), 1990, pp. 203–210.

[112] H. Sawai, “Frequency-time-shift-invariant time-delay neural net-
works for robust continuous speech recognition,” in International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
IEEE, 1991, pp. 45–48.

BIBLIOGRAPHY 118

[113] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541–551,
1989.

[114] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems (NIPS), 2012.

[115] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in International Conference on
Learning Representations (ICLR), ACM, 2015.

[116] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Con-
nectionist temporal classification: Labelling unsegmented sequence
data with recurrent neural networks,” in International Conference
on Machine Learning (ICML), ACM, 2006, pp. 369–376.

[117] L. R. Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, 1989.

[118] T. Bluche, H. Ney, J. Louradour, and C. Kermorvant, “Framewise
and CTC training of neural networks for handwriting recognition,”
in International Conference on Document Analysis and Recognition
(ICDAR), IEEE, 2015, pp. 81–85.

[119] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez, “Solving the
multiple instance problem with axis-parallel rectangles,” Artificial
intelligence, vol. 89, no. 1, pp. 31–71, 1997.

[120] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22, no. 10,
pp. 1345–1359, 2010.

[121] N. Segev, “Transfer learning using decision forests,” Master’s thesis,
Technion – Israel Institute of Technology, 2015.

[122] R. Serizel, N. Turpault, H. Eghbal-Zadeh, and A. P. Shah, “Large-
scale weakly labeled semi-supervised sound event detection in domes-
tic environments,” arXiv e-prints, 2018. [Online]. Available: http:
//arxiv.org/abs/1807.10501.

[123] Y. Miao, M. Gowayyed, and F. Metze, “EESEN: End-to-end speech
recognition using deep RNN models and WFST-based decoding,”
in Workshop on Automatic Speech Recognition and Understanding
(ASRU), IEEE, 2015, pp. 167–174.

[124] A. Kumar and B. Raj, “Deep CNN framework for audio event
recognition using weakly labeled web data,” arXiv e-prints, 2017.
[Online]. Available: http://arxiv.org/abs/1707.02530.

http://arxiv.org/abs/1807.10501
http://arxiv.org/abs/1807.10501
http://arxiv.org/abs/1707.02530

BIBLIOGRAPHY 119

[125] F. Chollet et al., Keras, 2015. [Online]. Available: https://github.
com/fchollet/keras.

[126] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg,
and O. Nieto, “librosa: Audio and music signal analysis in Python,” in
Proceedings of the 14th Python in Science Conference, 2015, pp. 18–
25.

[127] A. Mesaros, T. Heittola, and T. Virtanen, “Metrics for polyphonic
sound event detection,” Applied Sciences, vol. 6, no. 6, pp. 162–178,
2016.

[128] A. Kumar, M. Khadkevich, and C. Fügen, “Knowledge transfer from
weakly labeled audio using convolutional neural network for sound
events and scenes,” in International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), IEEE, 2018, pp. 326–330.

[129] B. L. Welch, “The generalization of ‘Student’s’ problem when several
different population variances are involved,” Biometrika, vol. 34,
no. 1–2, pp. 28–35, 1947.

[130] M. Thoma, “Analysis and optimization of convolutional neural net-
work architectures,” Master’s thesis, Karlsruhe Institute of Techno-
logy, 2017.

[131] Y. Wu and T. Lee, “Reducing model complexity for DNN based large-
scale audio classification,” in International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), IEEE, 2018, pp. 331–335.

[132] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici, B.
Varadarajan, and S. Vijayanarasimhan, “YouTube-8M: A large-
scale video classification benchmark,” arXiv e-prints, 2016. [Online].
Available: http://arxiv.org/abs/1609.08675.

[133] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D.
Poland, D. Borth, and L.-J. Li, “YFCC100M: The new data in
multimedia research,” Communications of the ACM, vol. 59, no. 2,
pp. 64–73, 2016.

[134] B. Athiwaratkun and J. W. Stokes, “Malware classification with
LSTM and GRU language models and a character-level CNN,” in
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), IEEE, 2017, pp. 2482–2486.

[135] A. Waibel, “Modular construction of time-delay neural networks for
speech recognition,” Neural Computation, vol. 1, no. 1, pp. 39–46,
1989.

[136] A. Waibel, “Consonant recognition by modular construction of large
phonemic time-delay neural networks,” in Advances in Neural Infor-
mation Processing Systems (NIPS), 1989, pp. 215–223.

https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://arxiv.org/abs/1609.08675

BIBLIOGRAPHY 120

[137] A. Waibel, H. Sawai, and K. Shikano, “Modularity and scaling in
large phonemic neural networks,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 37, no. 12, pp. 1888–1898, 1989.

[138] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and
the EM algorithm,” Neural computation, vol. 6, no. 2, pp. 181–214,
1994.

[139] J. Fritsch, M. Finke, and A. Waibel, “Adaptively growing hierarchical
mixtures of experts,” in Advances in Neural Information Processing
Systems (NIPS), 1997, pp. 459–465.

[140] U. Bodenhausen and A. Waibel, “The Tempo 2 algorithm: Adjusting
time-delays by supervised learning,” in Advances in Neural Informa-
tion Processing Systems (NIPS), 1991, pp. 155–161.

[141] T. Hayashi, S. Watanabe, T. Toda, T. Hori, J. Le Roux, and K.
Takeda, “Duration-controlled LSTM for polyphonic sound event
detection,” IEEE/ACM Transactions on Audio, Speech and Language
Processing, vol. 25, no. 11, pp. 2059–2070, 2017.

[142] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw,
V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies,
J. R. Scott, and N. Wilkins-Diehr, “XSEDE: Accelerating scientific
discovery,” Computing in Science & Engineering, vol. 16, no. 5,
pp. 62–74, 2014.

	Introduction
	History and State-of-the-Art of SED
	Evolution of Models
	Feature Extraction
	Corpora for Sound Event Detection

	Contributions of This Thesis

	Review of Machine Learning Techniques
	Deep Learning and Neural Networks
	Feed-Forward Neural Networks
	Recurrent Neural Networks (RNN)
	Convolutional / Time-Delay Neural Networks (CNN / TDNN)

	Connectionist Temporal Classification (CTC)
	Multiple Instance Learning
	Transfer Learning

	Sound Event Detection with Presence/Absence Labeling
	The Max and Noisy-Or Pooling Functions
	Motivation
	The Gradient Flow
	Experiment 1: Phoneme Recognition on TEDLIUM
	Experiment 2: The DCASE 2017 Challenge

	The Average, Softmax and Attention Pooling Functions
	Motivation
	The Gradient Flow
	Experiment: The DCASE 2017 Challenge
	Additional Remarks

	TALNet: A Network for Large-Scale Joint Audio Tagging and Localization
	Google Audio Set: Corpus and Metrics
	TALNet: Training and Evaluation

	Summary

	Sound Event Detection with Sequential Labeling
	Data Preparation
	Automatic Generation of Strong and Sequential Labels
	Baseline Systems

	Standard CTC for SED with Sequential Labeling
	Connectionist Temporal Localization (CTL) for SED with Sequential Labeling
	The CTL Forward Algorithm
	Experiment Results
	Discussion: An Alternative CTL Algorithm

	Combining CTL with MIL
	Discussion: Generalization to New Data
	Summary

	Transfer Learning for Sound Event Detection
	The Feature Extractors for Transfer Learning
	The VGGish Network
	SoundNet and Its Variants

	Transfer Learning Experiments
	Transfer Learning for the DCASE Challenge
	Transfer Learning for Large-Scale Joint Audio Tagging and Localization
	Transfer Learning for Sequential Labeling

	Summary

	Conclusion
	Contributions of This Thesis
	Potential Applications
	Future Work
	Continuation of Work in This Thesis
	Utilizing the Hierarchy of Sound Events
	Learning the Temporal Characteristics of Sounds

	Acknowledgments
	Bibliography

