
Text Representation, Retrieval, and
Understanding with Knowledge Graphs

Chenyan Xiong

CMU-LTI-18-016

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213
www.lti.cs.cmu.edu

Thesis Committee:
Jamie Callan (Chair), Carnegie Mellon University

William Cohen, Carnegie Mellon University
Tie-Yan Liu, Carnegie Mellon University & Microsoft Research

Bruce Croft, University of Massachusetts, Amherst

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in Language and Information Technologies

c© 2018 Chenyan Xiong





Abstract
This dissertation aims to improve text representation, retrieval, and understand-

ing with knowledge graphs. Previous information retrieval systems were mostly built
upon bag-of-words representations and frequency-based retrieval models. Effective
as they are, word-based representations and frequency signals only provide shallow
text understanding and have various intrinsic challenges. Utilizing entities and their
structured semantics from knowledge graphs, this dissertation goes beyond bag-of-
words and improves search with richer text representations, customized semantic
structures, sophisticated ranking models and neural networks.

This thesis research starts by enriching query representations with entities and
their textual attributes. It first presents query expansion methods that better represent
the query with words from entity descriptions. Then it develops a supervised latent-
space ranking model that connects query and documents through related entities
from the knowledge graph. It also provides a novel supervised related entity finding
technique in the entity search setup.

Then this dissertation presents our entity-oriented search framework that repre-
sents query and documents with entity-based text representations and matches them
in the entity space. We construct a bag-of-entities model that represents texts us-
ing automatically linked entities with a customized linking strategy. Ranking with
bag-of-entities can be done either solely with discrete match—as in classic retrieval
models—or by our Explicit Semantic Ranking approach that soft matches the query
and documents with continuous knowledge graph embeddings. The entity-based text
representations are then combined with word-based representations in a word-entity
duet representation method. In the duet, query and documents are represented by
both bag-of-words and bag-of-entities; the ranking of them goes through both in-
space matches and cross-space matches which together incorporates various types
of semantics from knowledge graphs. The duet framework also introduces a hierar-
chical ranking model that learns the linking of entities and the ranking of documents
jointly from relevance labels.

This thesis research concludes with a neural entity salience estimation model
that provides a deeper text understanding capability. We developed a Kernel En-
tity Salience Model that better estimates the importance of entities in text with dis-
tributed representations and kernel-based interactions. Not only does it improve the
salience estimation accuracy, it can also be used to estimate the importance of query
entities in documents, which provides effective ranking features that transfer the
model’s deeper text understanding capability to improve retrieval.

With the effective usage of entities, their structured semantics, customized se-
mantic grounding techniques and novel machine learning models, this dissertation
formulates a new entity-oriented search paradigm that overcomes the limitation of
bag-of-words and frequency based retrieval. The better text representation, retrieval,
and understanding ability provided by this dissertation is a solid step towards the
next generation of intelligent information systems.





Acknowledgements

I never thought I would be a Ph.D. when entering collage. After three years of death march for the
college entrance exam, I thought I was done studying after undergraduate. No more textbooks,
no more exams, go get a real job.

It was 2008 when I thought I should try academia. I was working on my internship project
about automatic entity extraction from queries. I read a lot of papers from information retrieval
conferences and implemented many in the production environment. I was excited that those
papers are really interesting and (some) are indeed useful. However, I was also unhappy because
I found that, compared to implementing existing technologies, I am more into creating my own.
And I found the best way to learn creating new technologies—to pursue a Ph.D. myself.

Sometimes it feels surreal that a simple decision took ten years of execution. There are many
times that I did not think I had a chance at all. I was very lucky and blessed. Much of this
blessedness come from the wonderful environment and people around me.

First and foremost, I wish to express my deepest gratefulness to my advisor Jamie Callan.
I learned a lot from Jamie in the past six years, not only about how to conduct research, but
also how to be a researcher. I hope our collaboration continues and we can keep pushing the
boundaries together.

I wish to thank the rest of my Ph.D. committee, Bruce Croft, William Cohen, and Tie-Yan
Liu, for their insightful suggestions and comments. This dissertation benefits a lot from their
advices.

I wish to share my special gratitude to Tie-Yan Liu. As my role model and hero since the
beginning of my research career, I learned a lot from Tie-Yan’s vision, dedication to impactful
research, and the never-ending pursuit to greatness. I will keep learning from him and hope I
will become a better researcher myself.

I wish to thank Professor Yi-dong Shen, for his guidance and the warmest supports for me
during my Ph.D. study. It is a bless to have Prof. Shen as my advisor in my master study.

I also would like to thank Russell Power, for hosting me a wonderful internship in Allen
Institute, for helping me start in deep learning, and for his countless supports as a mentor and as
a friend. My research would be less interesting without him.

I am grateful to my friends, students, and collaborators. I especially would like to mention
Oren Etzioni, Taifeng Wang, Zhiyuan Liu, Yiqun Liu, Kristian Balog, Eduard Hovy, Teruko Mi-
tamura, Yiming Yang, Laura Dietz, Edgar Meij, Jeff Dalton, Bhavana Dalvi, Guoqing Zheng,
Yubin Kim, Anagha Kulkarni, Reyyan Yeniterzi, Jing Chen, Zhuyun Dai, Zhengzhong Liu,
Di Wang, Xiaohua Yan, William Wang, Miaomiao Wen, Zi Yang, Yin Xu, Michael Belmonte,
Faegheh Hasibi, Cheng Luo, Van Dang, Bin Wu, Zhenghao Liu, Liang Du, Xuan Li, Hongyu Li,

v



Ziqi Wang, Wenkui Ding, Meiwen Ouyang, and many many more. I benefited and learned a lot
from our interactions in research and in personal life.

I own a great deal to my parents who provide me the environment to pursue my aspirations.
It is not easy to be the parents of a Ph.D. student who sometimes is absent from the real world.

This dissertation is dedicated to my wife, Mengqiao Liu. Without her tremendous supports
and understanding, this dissertation work would be less enjoyable and probably will not finish
on time.

vi



To My Family.





Contents

1 Introduction 1
1.1 Information Retrieval by Bag-of-Words . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Information Retrieval with Human Knowledge . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and Related Work 11
2.1 Controlled Vocabularies and Information Retrieval . . . . . . . . . . . . . . . . 11
2.2 Knowledge Graph Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Related Semantic Grounding Techniques . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Enriching Query Representations with Knowledge Graphs 19
3.1 Query Expansion with Knowledge Base . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Related Work in Query Expansion . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Expansion Using Freebase . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.3 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.4 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.5 Summary of Query Expansion with Knowledge Base . . . . . . . . . . . 33

3.2 EsdRank: Connect Query-Documents through Entities . . . . . . . . . . . . . . 33
3.2.1 EsdRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.4 EsdRank Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Learning to Rank Related Entities . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.1 Related Work in Entity Search . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.2 Learning to Rank Entities . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.3 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.4 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.5 Summary of Related Entities Finding . . . . . . . . . . . . . . . . . . . 55

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

ix



4 Entity-Based Text Representation 57
4.1 Bag-of-Entities Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Bag-of-Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.2 Experiment Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.4 Bag-of-Entities Summary . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Explicit Semantic Ranking with Entity Embedding . . . . . . . . . . . . . . . . 64
4.2.1 Related Work in Academic Search and Soft-Match Retrieval . . . . . . . 65
4.2.2 Query Log Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.3 Our Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.4 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.5 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.6 Explicit Semantic Ranking Summary . . . . . . . . . . . . . . . . . . . 79

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Combining Word-based and Entity-based Representations 81
5.1 Word-Entity Duet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.1 Duet Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.1.2 Attention-based Ranking Model . . . . . . . . . . . . . . . . . . . . . . 87
5.1.3 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1.4 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.1.5 Word-Entity Duet Summary . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Joint Entity Linking and Entity-based Ranking . . . . . . . . . . . . . . . . . . . 98
5.2.1 Joint Semantic Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2.2 Experiment Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2.4 JointSem Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 From Representation to Understanding through Entity Salience Estimation 107
6.1 Entity Salience Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1.1 Related Work in Term Salience Estimation . . . . . . . . . . . . . . . . 108
6.1.2 Background: Kernel-based Neural Ranking Model . . . . . . . . . . . . 110
6.1.3 Kernel Entity Salience Model . . . . . . . . . . . . . . . . . . . . . . . 114
6.1.4 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . 116
6.1.5 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Ranking with Entity Salience . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2.1 Ranking Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2.2 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

x



7 Conclusion 131
7.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.3 Best Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.4 Thesis Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Bibliography 141

xi





List of Figures

2.1 Examples of a controlled vocabulary (MeSH) and a knowledge base (Freebase) . 12

3.1 Query Level Relative Performance of Freebase Expansion . . . . . . . . . . . . 31
3.2 Query Level Relative Performance of Learning to Rank Entity . . . . . . . . . . 52
3.3 Field and Feature Study in Learning to Rank Entity . . . . . . . . . . . . . . . . 54

4.1 Semantic Scholar Query Log Analysis . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Explicit Semantic Ranking Pipeline . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 Query Level Relative Performance of Explicit Semantic Ranking . . . . . . . . . 75
4.4 Performances of Explicit Semantic Ranking with Different Matching Levels . . . 76

5.1 The Architecture of the Attention-based Ranking Model . . . . . . . . . . . . . 88
5.2 Incremental Analysis for Duet Ranking Features . . . . . . . . . . . . . . . . . . 95
5.3 Effectiveness of Attention Mechanism at Different Number of Query Entities . . 96
5.4 Effectiveness of Soft Linking with JointSem . . . . . . . . . . . . . . . . . . 104

6.1 K-NRM Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Effect of Kernels in Ranking and Learning . . . . . . . . . . . . . . . . . . . . . 112
6.3 KESM Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.4 Distribution of Entity Salience Prediction . . . . . . . . . . . . . . . . . . . . . 121
6.5 Entity Salience Estimation Performance at Varying Document Lengths . . . . . . 122
6.6 Ranking with KESM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xiii





List of Tables

3.1 Unsupervised Query Expansion Methods Using Freebase. . . . . . . . . . . . . 24
3.2 Performance of Unsupervised Expansion Using Freebase. . . . . . . . . . . . . . 27
3.3 Query Level Comparison between Unsupervised Query Expansion Methods . . . 27
3.4 Performance of Supervised Expansion Using Freebase . . . . . . . . . . . . . . 29
3.5 Candidate Expansion Word Quality from Web Corpus and Freebase . . . . . . . 29
3.6 Classification Performances of Supervised Query Expansion . . . . . . . . . . . 29
3.7 The queries Most Helped and Hurt by Freebase Query Expansion . . . . . . . . . 32
3.8 Query-Entity Features and Entity-Document Feawtures in EsdRank . . . . . . . 41
3.9 Document Ranking Features in EsdRank . . . . . . . . . . . . . . . . . . . . . 42
3.10 Overal Performance of EsdRank on ClueWeb09, ClueWeb12, and OHSUMED . 44
3.11 Performance of ListMLE with flat features from knowledge bases. . . . . . . . 46
3.12 Performance of EsdRank at Different Related Entity Quality. . . . . . . . . . . 47
3.13 Entity Search Query Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.14 Query-Entity features used in Learning to Rank Entity. . . . . . . . . . . . . . . 51
3.15 Overall Performance of Learning to Rank Entity . . . . . . . . . . . . . . . . . . 53
3.16 Peformance of Learning to Rank Entity with Mixed Queries . . . . . . . . . . . 55

4.1 Coverage of Entity Annotations on ClueWeb Queries and Documents . . . . . . 61
4.2 Entity Linking Performance on ClueWeb Queries . . . . . . . . . . . . . . . . . 61
4.3 Overall Performance of Bag-of-Entity Based Ranking . . . . . . . . . . . . . . . 62
4.4 Performance of Bag-of-Entity Ranking at Different Query Annotation Quality . . 63
4.5 Semantic Scholar Ranking Benchmark Statistics . . . . . . . . . . . . . . . . . . 72
4.6 Entity Linking Performances on Semantic Scholar Queries . . . . . . . . . . . . 73
4.7 Overall Performance of Explicit Semantic Ranking . . . . . . . . . . . . . . . . 73
4.8 Abaltion Study of Explicit Semantic Ranking . . . . . . . . . . . . . . . . . . . 78

5.1 Query Words to Document Words Ranking Features . . . . . . . . . . . . . . . . 84
5.2 Query Entities to Document Words Ranking Features . . . . . . . . . . . . . . . 84
5.3 Query Words to Document Entities Ranking Features . . . . . . . . . . . . . . . 85
5.4 Query Entities to Document Entities Ranking Features . . . . . . . . . . . . . . 85
5.5 Attention Features for Query Entities. . . . . . . . . . . . . . . . . . . . . . . . 87
5.6 Overall Performance of Attention-based Duet Ranking . . . . . . . . . . . . . . 92
5.7 Performance of Duet Ranking Feature Groups . . . . . . . . . . . . . . . . . . . 93
5.8 Examples of Active Entities in Duet Ranking . . . . . . . . . . . . . . . . . . . 94
5.9 Effectiveness of Attention at Different Query Annotation Accuracy . . . . . . . . 96

xv



5.10 Examples of Learned Attention Weights . . . . . . . . . . . . . . . . . . . . . . 97
5.11 Spotting, Linking, and Ranking Features in JointSem . . . . . . . . . . . . . . 99
5.12 Overall Performance of JointSem . . . . . . . . . . . . . . . . . . . . . . . . 103
5.13 Ablation Study of JointSem . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1 Statistics of entity salience estimation datasets . . . . . . . . . . . . . . . . . . . 117
6.2 Entity Salience Features in Baseline . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3 Overall Performance on Entity Salience Estimation Tasks . . . . . . . . . . . . . 120
6.4 Ranking Accuracy with Entity Salience . . . . . . . . . . . . . . . . . . . . . . 126
6.5 Performance of Salience-based Ranking at Different Document Fields . . . . . . 127
6.6 Examples of Ranking via Entity Salience . . . . . . . . . . . . . . . . . . . . . 128

xvi



Chapter 1

Introduction

Ad hoc search is the core task of information retrieval. Consider the following query and docu-
ment that a search engine may encounter:

Query: "Carnegie Mellon Location"

Document: "Carnegie Mellon University is a private research university in Pitts-
burgh, Pennsylvania. Founded in 1900 by Andrew Carnegie as the Carnegie Tech-
nical Schools, the university became the Carnegie Institute of Technology in 1912
and began granting four-year degrees. In 1967, the Carnegie Institute of Technology
merged with the Mellon Institute of Industrial Research to form Carnegie Mellon
University." 1

The goal of ad hoc search is to find the relevant documents that satisfy the information needs
behind the query, such as the example query-document pair. In a typical ranking system, this
process can be divided into two steps: representation, which transfers the natural language query
and documents into computer understandable formats, and ranking, which ranks documents by
modeling their relevance to the query. In modern information retrieval, the representation and
ranking are mostly done through bag-of-words.

1.1 Information Retrieval by Bag-of-Words

In bag-of-words based search engines, the query and documents are represented by discrete vec-
tors, whose dimensions correspond to terms in the texts. For example, the bag-of-words for the
example query can be "{Carnegie:1, Mellon:1, Location:1}", where the weights are the impor-
tance of the corresponding words in the text. In the bag-of-words representation, texts are broken
into terms and the terms are considered independent with each other. These simplifications make
bag-of-words efficient to construct and maintain. It scales up easily to the large amount of query
traffic and web pages.

With the bag-of-words representation, ranking models are able to leverage term-level statis-
tics to model the relevance between query and documents based on their relevance to the query.

1https://en.wikipedia.org/wiki/Carnegie_Mellon_University

1

https://en.wikipedia.org/wiki/Carnegie_Mellon_University


Standard term-level statistics include how many times the query terms appear in the document’s
vector (term frequency), the frequency of query terms in the entire corpus (document frequency),
and the document length. Term-level statistics have been used by both unsupervised retrieval
models and learning to rank models. Unsupervised retrieval models (e.g. query likelihood, vec-
tor space models, BM25, and DPH [29]) developed various ways to combine these term-level
statistics to produce document rankings. Learning to rank models leverage features from unsu-
pervised retrieval and document qualities, and combine them with supervised learning [60].

The bag-of-words based search engines are a huge success. Millions of users are using them
per day. However, their effectiveness is mostly a result of the development of the ranking models
in recent decades; the representation part stays almost the same. The overlooked representation
part limits the information available to the ranking models. For example, despite being derived
from variant theories, current unsupervised retrieval models all rely on the same set of term-
level statistics: term frequency (TF), inverse document frequency (IDF) and document length.
Learning to rank models utilize all kinds of machine learning models, but their features are
almost the same: retrieval models based on term-level statistics, document qualities, and perhaps
also user feedbacks in the commercial environment. Only the fancy ranking models themselves
did not overcome the limitation of the isolated word-based representation space.

Many techniques have been developed to address the limitation of bag-of-words represen-
tation. For example, query expansion techniques expand the query with a larger set of related
terms, with the hope that the expansion terms can better retrieve relevant documents. Sequential
dependency model (SDM) takes phrases into consideration and matches query and documents
not only by their words but also ngrams. However, within the bag-of-words scenario, the term
vector based representation is only an approximation about how search engine users understand
texts. Search engine users generate queries and read returned documents with their prior knowl-
edge that is external to the query or corpus. Also, they understand the texts structurally instead
of by flat term vectors. Individual term counts and statistic models provide an empirical approx-
imation that works well, but the gap between user’s and search engine’s understanding of query
and documents is inevitably there.

1.2 Information Retrieval with Human Knowledge

Another way to bridge the gap between users and search systems is to incorporate human knowl-
edge. Since centuries ago, librarians have been using controlled vocabularies, such as subject
headings and thesauri, to describe, index, and retrieve books. Controlled vocabularies are a set
of manually selected terms that refer to real world concepts like ‘Education’ and ‘University’.
The controlled vocabulary terms are often grouped into a carefully designed ontology, which
partitions the target domain into tree-structured categories. For example, a possible top-down
path in the ontology is ‘Education’ ⇒ ‘University’ ⇒ ‘Private university’. The earliest search
engines adopted the librarian’s approach and represented documents by controlled vocabular-
ies [83]. In these retrieval systems, human editors manually annotate documents with terms
from a controlled vocabulary, and the retrieval of documents is done in the controlled vocabulary
space.

Controlled vocabularies based representation has several advantages. The terms in controlled

2



vocabularies are manually selected informative units, for example, concepts of a certain domain.
The vocabularies are controlled to be clean and of real-world meaning. The design of the on-
tology and the categorization of terms are done by experts using their domain knowledge. They
provide search engines meaningful external information to refer to during retrieval. The annota-
tion of controlled vocabularies to documents is done by editors according to their understandings
about the documents. The vocabulary mismatch problem is also less severe as both query and
documents are grounded manually to a small controlled vocabulary. The controlled vocabulary
based search systems can retrieve documents accurately with simple retrieval models. They are
still being used by search engines in several domains [66].

The involvement of human experts makes controlled vocabulary representation more intelli-
gent but also restricts the scale of its usage. The manual construction of a controlled vocabulary
requires substantial expert efforts. Thus, the coverage of controlled vocabularies over general
domain texts is limited—it is impossible to manually assign controlled vocabulary terms to the
nearly infinite number of documents in modern search engines. The focus of ranking model re-
search in recent decades is also mainly on bag-of-words representations. It was unclear whether
and how those new ranking models can improve controlled vocabulary based search engines.

Recently, large scale knowledge bases or knowledge graphs have emerged. Knowledge bases
store human knowledge into computer-understandable format in graph-like structures. Each node
in the knowledge graph records a basic information unit, called ‘object’ or ‘entity’. An object or
entity can be a named entity (e.g., Carnegie Mellon University), a concept (e.g., University), or
anything that corresponds to real-world stuff. The edges in the knowledge graph connect entities
by their relationships or link entities to their attributes. The information represented by an edge
is usually called ‘fact’. A fact can be an attribute (e.g., the enrollment of Carnegie Mellon), a
category (e.g., CMU is a University), or a relationship to another entity (e.g., CMU locates in
Pittsburgh). Knowledge bases share the similar goal of storing human knowledge into structured
formats with controlled vocabularies, but they are also different in many perspectives. Modern
knowledge bases are curated by community efforts (e.g., Wikipedia), semi-automatically by both
human and machines (e.g., Google’s Knowledge Vault [35]), or automatically by information
extraction systems (e.g., NELL [19]). They are carefully curated thus with higher quality than
document corpus, but are usually less precise than controlled vocabularies which are manually
created by domain experts. The annotation of entities to texts can also be done automatically
using entity linking systems [20, 47]. The automatic nature makes it possible to obtain knowledge
graphs at large scale with richer information (e.g., Freebase), and to annotate large web corpora
(e.g., Google’s FACC1 annotation [39]). This brings a new opportunity to explore knowledge
bases’ ability in information retrieval, but the noises and contradictions due to automation also
raise new challenges to address.

1.3 Thesis Research

This dissertation aims to improve the representation, retrieval, and understanding of texts using
knowledge graphs. It starts by enriching the original word-based text representations in search
engines with entities and their attributes in knowledge graphs. Then it presents new entity-based
text representations that represent and match query and documents directly in the entity space.

3



After that, this thesis research develops a word-entity duet paradigm that combines the word-
based and the entity-based text representations as well as machine learning models to handle
the uncertainties in entity-based representations. The last part of this thesis research presents
a new path towards text understanding through entities. It develops a graph-based representa-
tion that leverages neural networks to model the interactions between entities and words in the
texts, which better estimates the importance/salience of entities in texts and also improves search
accuracy.

The Definition of Knowledge Graph.

This thesis research uses a flexible definition of knowledge graph—any data resource that con-
tains entities and some information about the entities is considered as a knowledge graph. There
is no restriction on the specific format or structure on knowledge graphs in this dissertation.

Our scope of entities includes named entities, general entities, or any thing that refers to a
concept. Name entities can be people names, brands, locations, etc. General entities include
common things, for example, ‘table’, ‘laptop’, and ‘university’. The concept can be a real-world
concept such as ‘physics’ or a fictional concept such as ‘cyberpunk’. Practically, anything that
has its own meaning can be considered an entity, for example, all Wikipedia entries are entities
in this thesis research.

The information about entities, which this dissertation refers to as ‘knowledge graph seman-
tics’, also has a wide scope. There is no restriction of the specific format, origin, or aspect of
the information, as long as it is about the entity. This definition includes the entity attributes
in a typical knowledge base, e.g., the names, aliases, description and types of Freebase enti-
ties, are information about. The entity relations are also included. In addition to those standard
knowledge graph semantics, weak-structured information such as bag-of-words or embeddings
of entities are also feasible knowledge graph semantics. The knowledge graph semantics can
be expert-written or automatically extracted; they do not have to be precise, exactly-defined or
structurally-organized.

This dissertation thus defines knowledge graph as a data resource that contains entries (‘en-
tities’) that have their own meanings and also information (‘knowledge graph semantics’) about
those entries. Following this definition, a web corpus is not a knowledge graph as there is no
‘meaningful entry’; a list of controlled vocabulary words is not a knowledge graph as there is
no ‘additional information about those entries’. But controlled vocabularies, modern knowl-
edge graphs, and automatically constructed semantic resources are all considered as knowledge
graphs in this dissertation, as long as they store information (knowledge graph semantics) around
meaningful nodes (entities).

Enriching Word-Based Retrieval with Knowledge Graphs.

The first focus of this thesis research is to enrich the word-based text representation of queries.
Queries are usually short and carelessly written, unable to fully describe user’s information
needs behind them. We utilize the information about entities in knowledge graphs to enrich
the word-based query representations. For example, entities such as Carnegie Mellon Univer-
sity, Andrew Carnegie, and Language Technologies Institute are linked with their descriptions,

4



attributes, types and related entities. This knowledge can be useful in explaining various queries
about Carnegie Mellon. Many existing techniques can be used to find useful entities for a query.
Query annotations provide entities that directly appear in the query string. Entity search retrieves
entities that are related to the query. Document annotations provide entities that connect to the
query through retrieved documents, which are also useful under the pseudo relevance feedback
assumption.

We start by using query expansion, a widely used technique, to expand queries with terms
from relevant entity’s textual descriptions. The carefully written textual descriptions of knowl-
edge base entities can help explain corresponding queries. For example, the description of
Carnegie Mellon University contains terms ‘research’, ‘computer’, ‘Turing’, and ’award’, all
useful for query ‘CMU’. Our method first finds relate entities for a given query, for example,
Carnegie Mellon University, Pittsburgh and Computer Science for query ‘CMU’, using entity
search and document annotations. Terms that frequently appear in their descriptions, or fall into
similar categories with the query are selected to expand the query. The expansion terms from
knowledge base turned out to be very effective in both improving the accuracy of existing rank-
ing models and reducing the risk of query expansion. This result motivates us to further explore
the potential of knowledge bases in information retrieval.

Knowledge graph entities bring much richer information than just textual descriptions. To
better make use of them, we develop EsdRank, a framework that connects query and documents
through such external semi-structured data. In EsdRank, entities that appear in the query, are
retrieved by the query, and frequently appear in query’s top retrieved documents are selected to
enrich the query. EsdRank framework makes it possible to use all kinds of information associated
with these entities to improve document ranking. Recall our example query ‘Carnegie Mellon
Location’, the relevant documents should have strong connections to the entity Carnegie Mellon
University. The connection is not only about text similarity, but can also be determined by
whether the document contains query entities and whether it falls into similar categories with
the query entities. To make use of the new and heterogeneous evidence introduced by query
entities, a novel learning to rank model is developed to learn the connection from query to entities
and the rank of documents jointly. The new entity based query representation adds information
retrieval with richer external evidence and a sophisticated but suitable learning to rank model,
thus significantly improving the state-of-the-art of document ranking.

An essential step in our knowledge based query representations is to find relevant entities
for the query. In our previous systems, it was done by existing automatic approaches. One of
them is entity search, which provides entities that are useful for our systems, but also found to
be a bottleneck of the ranking performance. We address this problem by developing our own
entity search system using learning to rank. The facts about an entity in the knowledge base
are grouped into the fields of a virtual document. Text similarity features between the query
and entity’s virtual document are extracted and used in learning to rank models. This leads to
significantly better entity search accuracies on several test collections.

Representing Texts with Entities

The second part of this thesis research presents the entity-based text representations, which, in-
stead of enriching the original word-based representations, directly represent texts using their

5



related entities. We human beings do not understand texts through individual words. We see
“Carnegie Mellon University” together as one concept and do not break it down into three indi-
vidual words as in the bag-of-words model. If search engines can process and match texts in the
concept level, it will automatically avoid some strong assumptions introduced by bag-of-words.
In fact, it is how search was done in the early controlled vocabularies based search engines.
However, they have been taken over by bag-of-words due to their inability to scale.

This part of this thesis research first builds entity-based text representations by revisiting the
controlled vocabulary based text representations, with larger knowledge bases and automatic en-
tity linking systems. Given the text, in the query or the document, we construct a bag-of-entities
vector from its automatically linked entity annotations. For example, the query “Carnegie Mellon
Location” is now represented by the entities “Carnegie Mellon” and “Location”. We relax the
precision constraint of entity linking systems and show that the coverage of bag-of-entities with
automatically entity annotation can provide sufficient coverage on general domain texts. Match-
ing texts in the entity space provide advantages of automatic chunking, i.e. “Carnegie Mellon”
is considered as one term, and also automatic synonym resolution, i.e. “CMU” is matched to
“Carnegie Mellon” as both are linked to the same entity. Although the accuracy of the automatic
annotations is not high, exact-matching query and documents with bag-of-entities can already
outperform standard word-based retrieval.

The entity-based representations provide much more opportunities than exact-matching bag-
of-entities. Entities come with structured semantics in the knowledge graphs. They are not
isolated terms in a dictionary. The thesis research then developed Explicit Semantic Ranking
(ESR), which uses the structured semantics associated with entities to match query and doc-
uments. With some prior knowledge, we know that “CMU” is a University and is located in
Pittsburgh. It helps us formulate queries and understand documents. To utilize such structured
semantics from knowledge graphs, ESR embeds them as distributed representations of entities
which allows matching the entities in the query and document softly in the embedding space.
Thus the relevance connections can be made through entities that are not the same but related
to each other. Our analyses find that the inability to “understand” such semantics of entities is
the major cause of failures in an online academic search engine. Our experiments on its online
search logs show that ESR is able to address those word-based search failures and significantly
improves the ranking accuracy.

Combining Word-Based and Entity-Based Text Representations

The third part of this dissertation presents the word-entity duet representation, a framework to
fuse word-based and entity-based text representations. As shown by our previous progress, bag-
of-entities provides a different way to represent texts and introduces novel ranking signals that
are not available in word-based retrieval systems. On the other hand, entities are only part of the
texts, and the entity-based representations are automatically constructed thus not perfect. The
development of entity-based ranking has also provided various novel ranking signals. It is also
time to study how they interact and compensate with the original word-based ranking signals
from modern information retrieval.

The word-entity duet framework provides a systematic view for ranking with the two rep-
resentations. It first allocates the classic word-based ranking features and the new entity-based

6



ranking features (from ESR) as the in-space matching signals within the word or the entity space.
This formulation also introduces new cross-space matching between bag-of-words and bag-of-
entities through the textual attributes of entities. For example, documents that discuss a lot of
“CMU” culture probably can be matched with the description of the entity “CMU” in the query.
All the four-way interactions cover different aspects of query-document relevance and can be
combined by learning to rank models. We further developed a hierarchical ranking model to
handle the noisy entity annotations in the query—the major bottleneck in many entity-based
search systems. Its attention mechanism helps shift the ranking model away from noisy entities
and is essential for noisy queries.

Instead of treating the entity linker as a black box and only trying to demote its errors, we
propose the JointSem method that learns how to link entities and how to rank documents with
entities jointly using the hierarchical ranker. JointSem introduces a soft-linking scheme that
keeps multiple possible entity candidates for the query and uses the ranking labels to learn the
weights (attention) on each possible candidate. It delays the annotation decision until the entity-
based ranking under the guidance of the ranking model. The soft linking provide more flexibility
for the ranking model to fix some linking errors that would have been made by hard linking. It is
also more robust on ambiguous queries without enough signal. For example, “CMU” can also be
“Central Michigan University”. Keeping both “Carnegie Mellon” and “Central Michigan” and
letting the ranking model to decide globally is more effective than just picking one of the two in
the linking step.

From Text Representation to Understanding

The last part of this thesis research moves from representation to understanding by better-
estimating entity salience. In the bag-of-words, bag-of-entities, or the word-entity duet repre-
sentations, the importance of terms, words or entities, is largely defined by their frequencies
in the text. However, many cases frequency is not equal to importance and breaking texts into
isolated terms only provides shallow text understanding. It has been a long desired goal in infor-
mation retrieval to go beyond “bag-of-terms” and model the interactions between them to better
estimate term importance.

We revisit this idea with the advantage of entities, structured semantics, and neural networks.
We develop a Kernel Entity Salience Model (KESM) that estimates the importance (salience) of
entities in the texts not only by their frequencies but also by their interactions. The interactions
are modeled by KESM in the embedding space, through our new kernel interaction model that
learns multi-level interaction patterns between terms. The interaction patterns are then used by
KESM to estimate the importance of entities for the text.

The kernel entity salience model is first tested in the task of estimating the impor-
tance/salience of entities in a document, a preliminary step of text understanding. Leveraging
the large amount of training data in the task, the end-to-end trained KESM is much more effective
in predicting which entity is important in a document than frequency-based and feature-based
methods. For example, given a new article about CMU, even if the entity “CMU” is only men-
tioned several times, the graph-based representation is able to better predict its salience based on
all other entities and words in the document, based on the interactions between those terms in
the embedding space, as modeled by the kernels.

7



The better text understanding capability from KESM also improves ranking accuracy. The
public ranking benchmarks are often in limited scale and thus prevent end-to-end learning of
complex neural networks. We use the pre-trained model in the salience task and use it to esti-
mate the importance of query entities in candidate documents. The model promotes documents
that focus on the query concepts instead of just mentioning them. For example, it can promote
documents that are exclusively about “Carnegie Mellon” for the query “CMU” because the tar-
get entity is more important in the document, compared to documents that contain a list of many
universities. It demonstrates that our model successfully converts the text understanding ability
learned from the salience task to search. It effectively models the interactions and consistency
of query entities in documents, which have been long desired goals in information retrieval and
very challenging tasks with the bag-of-terms framework.

Contributions

This dissertation aims to better represent and understand texts and improve search engines with
knowledge graphs. It enriches the original word-based text representations, builds entity-based
text representations, and also develops a duet framework that systematically fuses the two rep-
resentations for query and documents. A series of new ranking approaches are developed to
incorporate the semantics from knowledge graphs in the search systems, including query ex-
pansion, latent learning to rank, embedding-based soft match models and joint learning models.
This thesis research also goes beyond bag-of-terms representation by modeling the interactions
between terms using embeddings and kernels. The formulated graph-based representations pro-
vide a deeper text understanding ability that generalizes well across modeling entity salience and
ranking documents based on the interactions of query entities within them.

The effectiveness of this thesis research has been demonstrated generally across various sce-
narios, including general domain web search, medical search, and academic search, on highly
competitive academic benchmarks and also online search logs. The knowledge graphs utilized
range from classical controlled vocabularies, modern large scale knowledge graphs, to an auto-
matically constructed knowledge graph. The methods presented in this dissertation achieve the
state-of-the-art in various search tasks, including but not limited to query expansion, unsuper-
vised retrieval, and feature-based learning to rank. Recently, the techniques developed in this
dissertation have also been successfully adopted in deep learning models and improved state-of-
the-art neural ranking models.

This dissertation research has provided a new entity-oriented search paradigm that effectively
integrates entities and their semantics from knowledge graphs to information retrieval systems.
It is now almost a disadvantage not to consider this thesis research when working in core rank-
ing research. This dissertation research also goes beyond bag-of-terms representations using
knowledge graphs and neural networks. Our Kernel Entity Salience Estimation model shows
deeper text understanding abilities that can also be generalized to improve real information re-
trieval tasks. Previously it is very challenging for such fine-grain text processing techniques to
improve search accuracy. The landscape this thesis research sets up provides a wide range of
opportunities for future research in utilizing structured knowledge, developing ranking models,
and constructing new knowledge graphs that better fits the needs of real-world applications. We
believe this dissertation has pointed out several promising paths towards the future intelligent

8



systems and will inspire more Ph.D. dissertation research in the near future.
The rest of this dissertation organizes as follows. A brief overview of knowledge bases

and related works are presented in Chapter 2. Our research about enriching word-based query
representations is in Chapter 3, with query expansion with knowledge base in Session 3.1, Es-
dRank with query entities in Session 3.2, and relevant entity finding in Session 3.3. The research
about entity-based text representations is in Chapter 4. It includes the bag-of-entities model in
Session 4.1 and the Explicit Semantic Ranking model in Session 4.2. The research about word-
entity duet is presented in Chapter 5, including the duet representation in Section 5.1 and the
joint model for linking and ranking in Section 5.2. Chapter 6 presents the last part of this disser-
tation research that improves text understanding with entity salience estimation. The last chapter
concludes and discusses the impacts of this dissertation.

9





Chapter 2

Background and Related Work

This chapter first provides some background about controlled vocabulary based information re-
trieval. Then it gives an overview of knowledge graphs, semantic grounding techniques, and
related works.

2.1 Controlled Vocabularies and Information Retrieval

The use of controlled vocabularies can date back to at least two thousand years ago, when the
librarians in Egypt use them to organize books in the Library of Alexandria, 300 BCE. Instead of
using all words, controlled vocabularies restrict themselves to a much smaller set of informative
terms. These terms are carefully selected to represent real-world objects, for example, concepts,
common names, and domain terminologies. The controlled vocabularies are still being used by
most libraries and also on the Internet. Famous representatives include World Bank Thesaurus,
Medical Subject Headings (MeSH), and Library of Congress Subject Headings (LCSH).

Although different controlled vocabulary datasets may make different choices on what to in-
clude, there are some common ones among various datasets. Synonym, or alias, is one of the
first things to include in a controlled vocabulary, since one significant use of controlled vocab-
ulary is to resolve language variety. Ontology, or taxonomy, is another important component of
many controlled vocabularies. Based on domain experts’ understanding, ontology partitions the
domain knowledge into a tree level structure, to organize, index, and retrieve target information.
Textual descriptions are also often included to define and explain a controlled vocabulary term.
The description helps users understand the term and facilitates the usage for domain experts.
Figure 2.1a illustrates a part of MeSH’s ontology [1] and some facts associated with the term
“Ascorbic Acids”, including its aliases (“Entry Term”) and description (“Scope Note”).

Information retrieval researchers inherited the librarians’ approach and built controlled vo-
cabulary based search engines. In the earliest search engines, documents were represented by
terms from controlled vocabularies, e.g., thesaurus or subject headings. The annotation of con-
trolled vocabularies to documents was performed manually by domain experts, using their un-
derstandings and prior knowledge. The documents were then indexed based on their annotations,
and the retrieval was done by matching them with the query in the controlled vocabulary space.

As full-text search became popular, controlled vocabularies continued to be used in some

11



Organic Chemicals
[D02]

Alcohols
[D02.033]

Carboxylic Acids 
[D02.241]

Acids, Acyclic 
[D02.241.081]

Sugar Acids
[D02.241.081.844]

Ascorbic Acids
[D02.241.081.844.107]

Entry Term

“Vitamin C”,
“Hybrin”,

“Magnorbin”,
…….

Unique ID

D001205

“A six carbon compound related 
to glucose. It is found naturally 
in citrus fruits and many 
vegetables. Ascorbic acid is an 
essential nutrient in human 
diets…..”Scope Note

(a) A part of the MeSH ontology. The attributes of “Ascorbic Acids” are shown.

(b) A subgraph of Freebase. Example relations and attributes around the entities “The Brothers
Grimm” and “Terry Gilliam” are illustrated.

Figure 2.1: Examples of a controlled vocabulary (MeSH) and a knowledge base (Freebase)

12



systems. The use of controlled vocabularies is almost a necessity in medical search engines.
Medical queries are often about diseases, treatments, and genes. Their names may not convey
their domain-specific meanings. Typical procedures include using controlled vocabularies as
alternative representations to match query and document [66, 78], and expanding queries using
synonyms [65]. There is also rich literature about overcoming vocabulary mismatch by adding
synonyms and related concepts to queries and documents [57]. These approaches can be useful in
enterprise search and domain-specific search environments [41], or improving recall of relevant
documents in general search environments [57]. One can also improve the ranking accuracy by
combining controlled vocabulary and bag-of-words [78].

Nevertheless, bag-of-words plays a more crucial role in most current search engines, because
the use of controlled vocabularies faces many obstacles, especially in general domains and large
scale search environments. It is expensive for experts to construct a large enough controlled
vocabulary that has sufficient coverage in general domains, if ever possible. The construction
of controlled vocabulary representations requires annotations. In search environments where the
sizes of corpora are enormous, manual annotation is not feasible. One on-going research topic
is to automatically annotate texts to controlled vocabulary ontologies using large scale multi-
class classification techniques [40]. Another on-going research topic is how to automatically
leverage the information in controlled vocabulary in search engines. For example, synonyms of
medical terms are very important for medical search, in which vocabulary mismatch problem
is severe. However, the results of the TREC Genomics Track illustrate the difficulty of using
controlled vocabularies in medical search; most systems require human efforts to be success-
ful [87]. One particular challenge is how to pick and weight the synonyms correctly [65]. The
ontology and cross-reference of controlled vocabulary terms provide structural information that
connects individual terms. Using these connections intuitively should be able to improve the
matching between query and documents; however, the experiments in recent works only show
mixed results [51, 57]. The importance of controlled vocabulary based search engines nowadays
is mostly in special domains serving domain experts who can formulate high-quality structured
queries, for example, in the medical domain and the legal domain.

2.2 Knowledge Graph Overview

Knowledge Graphs, or Knowledge Bases, are collections that store human knowledge in
computer-understandable formats. The collections can be manually or semi-automatically cu-
rated, for example, Freebase [13], YAGO [89], and DBPedia [56], or automatically constructed,
for example, NELL [19] and OpenIE [5]. They are usually organized semi-structurally as a
graph. For example, Figure 2.1b shows a sub-graph of Freebase. In the graph, a node is an entity
(object), with a unique Machine Id. An edge in the graph links an entity to its attribute or another
entity. There are many kinds of edges in Freebase, representing different facts. For example, in
Figure 2.1b, “The Brothers Grimm” is connected to “Terry Gilliam” by a “Directed_by” edge,
showing that the movie “The Brothers Grimm” is directed by the director “Terry Gilliam”; the
two nodes also associated with its attributes such as aliases (synonyms), types (category) and
textual descriptions.

The knowledge graph is usually stored as RDF triples. Each triple of subject-predicate-

13



object corresponds to a head, edge, and tail in the knowledge graph. The head is an entity, or
object, which can be a named entity, general domain entity, or just a noun phrase. The edge
stores the type of the connection. Its type can be chosen from a vocabulary predefined manually
by domain experts, called closed schema (e.g., in Freebase and DBpedia). It can also be verb
phrases automatically extracted by information extraction techniques, called open schema (e.g.,
in NELL and OpenIE). The tail can be a related entity, or an attribute such as name, description
or category of the subject entity.

The modern knowledge graphs make different choices with classic controlled vocabularies in
recording real-world semantics. Controlled vocabularies are carefully edited by domain experts,
more precise but mainly designed for specific domains at a smaller scale. Modern knowledge
bases choose a looser schema to facilitate semi-automatic or automatic construction, which also
introduces noise and contradictions. For example, MeSH, a widely used medical controlled vo-
cabulary, contains about 27 thousand descriptors (terms), while Freebase contains more than 58
million entities. They also favor different semantic information. Controlled vocabularies focus
more on the ontologies. For example, MeSH has a carefully defined ontology that partitions
medical knowledge into a thirteen-level hierarchical tree. In comparison, although storing gen-
eral domain knowledge at much larger scale, Freebase only has a two-level ontology. But modern
knowledge bases include a wider range of attributes and relationships. For example, the entity
Carnegie Mellon University is associated with 640 facts from 74 types in Freebase, while most
MeSH terms only have less than ten attributes.

The large scale, richness, and flexibility of modern knowledge graphs bring a new opportu-
nity to reconsider their potential in information retrieval. However, through these divergences,
modern knowledge bases, and classic controlled vocabularies share the same spirits: storing
human knowledge in structured formats. They both organize around semantically informative
objects: controlled vocabulary terms or knowledge graph entities. The information they store
also overlaps: ontologies or type systems, scope notes or descriptions, references or relations.
From the perspective of full-text search engines, they are all external information to the user,
query, and corpus.

This thesis research uses a broader definition of knowledge graphs that includes all such
external and semi-structured collections, with the goal of developing general solutions to improve
the representation, retrieval, and understanding of texts. We also use a more general scope of
‘entity’ which is the ‘basic’ information unit or object in such structured semantic collections.
It includes concepts, noun phrases, named entities, controlled vocabulary terms, and general
entities. In the rest of this chapter, we will first discuss the related semantic grounding techniques
that align knowledge graphs to texts, and then the related work in utilizing knowledge graphs to
improve full-text search engines.

2.3 Related Semantic Grounding Techniques

Another widely used technique in this dissertation is semantic grounding, which aims to auto-
matically ground natural language texts to semantic structures, such as knowledge graphs. It
enables us to automatically find related entities for the query and documents, instead of requiring
manual annotations as in the classic controlled vocabulary based search engines. This section

14



provides an overview of related grounding techniques.
Entity search aims to find the related entities in knowledge graphs for a given text query.

The query format can vary from keywords to natural language questions [3, 45], but the infor-
mation needs target knowledge graph entities. For example, the query can be “Carnegie Mellon
University”, “List of Universities in Pittsburgh”, or “What are the best Universities in Computer
Science”, while the targets of them all include the entity “CMU”.

Various techniques have been proposed to tackle entity search. On recent public benchmarks,
although the information associated with entities comes in a structured format, the most effective
approaches are to convert the attributes, types, and relations to textual fields of the entity and
apply full-text retrieval models on them [3]. Along this line of research, Zhiltsov et al. developed
the fielded sequential dependence model (FSDM) for entity search, which groups the attributes
of an entity into five manually defined fields and applies the sequential dependence model on
them [112]. Nikolaev et al. applied supervised learning to tune the parameters in the fielded
sequential dependence model [76]. Hasibi et al. matches query and entities using the entity
annotations on their texts [44], which is the bag-of-entities model for entity search and was
developed in parallel with our bag-of-entities model for full-text search (Section 4.1).

Entity linking aims to recognize the appearance of entities in text and link them to corre-
sponding entries in the knowledge graph. For example, given the first sentence of our example
document in Chapter 1, an entity linking system may annotate it as "Carnegie Mellon University
is a private research university in Pittsburgh, Pennsylvania.", with the underlined phrases linked
to corresponding entities in the knowledge graph.

A standard way to perform entity linking is to first match ngrams in the text to names and
aliases of entities in the knowledge graph (spotting), and then pick the right one for each spot
from all entities have the same name (disambiguation). The linking process considers various
information from the knowledge graph and the text. The decision is made based on both local
evidence about the entity and the ngram, and the global evidence across the entire text and all
other possible entity links. Famous entity linking systems include (but are not limited to as there
are so many) TagMe [38], DBPedia spotlight [68], Wikification [72] and S-MART [106]. Linking
long documents is the first focus of entity linking research [47], while research about linking
on shorter text such as tweets and queries has also emerged recently [20, 43]. After years of
development, now entity linking systems can be reliable and fast enough to annotate knowledge
graphs as large as Freebase to large scale web corpora such as ClueWeb09 and ClueWeb12 (e.g.,
Google’s FACC1 annotation [39]).

This dissertation explores and experiments with various entity search and entity linking tech-
niques to find related entities for the query or documents. Throughout this thesis research, we
studied the applicability of existing grounding techniques in information retrieval tasks, found
various discrepancies between the existing grounding techniques, and developed our own ones
based on the needs of information retrieval applications, for example, in Section 3.3, Section 4.1,
and Chapter 5.

15



2.4 Related Work

Recently, the rapid developments of knowledge graphs, automatic grounding techniques, and ma-
chine learning techniques have drawn wide attention in improving the intelligence of information
systems using structured semantics. This dissertation is one of the first to study the capability
of modern knowledge graphs in information retrieval tasks. During this thesis research, there
have been several parallel research from other groups that share similar focuses with us. Interest-
ingly, the parallel progress aligns rather well with the first half of this dissertation: first to enrich
existing word-based retrieval systems and then to construct entity-based text representations.

The first group of related work includes Entity Query Feature Expansion [31] and Latent
Entity Space [61]. They stay within the modern information retrieval framework and contribute
by bringing extra ranking signals from knowledge graphs to an existing word-based ranking
system.

The Entity Query Feature Expansion (EQFE) approach by Dalton et al. enriches the ranking
features using information from entities related to the query [31]. They study several ways to
align Freebase entities to a query using query annotation, textual similarity, an entity context
model, and annotations from top retrieved documents. The name, alias and type fields of these
entities are considered as possible expansion candidates. The combination of different linking
methods, expansion fields, and hyperparameters in the expansion are enumerated to get various
expanded queries. These expansion queries are then used to calculate ranking scores for each
document using a query likelihood or sequential dependency model. A learning to rank model
uses these ranking scores as features for each document and produces final document rankings.
Their results on news retrieval (Robust 04) and web search (TREC Web Track)‘ are among one
of the first to demonstrate that knowledge graphs can compete with state-of-the-art bag-of-words
based ranking methods on general domain search tasks.

The Latent Entity Space (LES) approach developed by Liu et al. utilizes entities to build
latent connections between query and documents [61]. They use entities manually labeled to a
query as a hidden layer between query and documents. The latent entities provide alternative
connections between query and documents. With them, the ranking of documents is determined
not only by query-document matching, but also by the textual similarities between those docu-
ments to latent entities, and between latent entities to the query. This evidence is incorporated in
an unsupervised latent space language model to rank documents. Their experiments on multiple
test collections and in the TREC Web Track competition [62] provide evidence of knowledge
graphs’ potential in unsupervised retrieval.

The second group of related work includes Entity-based Language Models [80] and
Semantics-Enabled Language Model [37]. They construct entity-based text representations using
entity annotations and match query and document in the entity space.

The Entity-based Language Models (ELM) approach by Raviv et al. uses language models to
exact-match the entity-based text representations of query and documents [80]. They use stan-
dard entity linking systems, for example, TagMe [38] and Wikifier [79], to annotate the texts in
the query and document automatically. The annotated entities form entity-based representations
the same as words for bag-of-words. Standard language models are built upon the entity-based
representations. They explore various ways to integrate the entity linking confidence information

16



to the language models, as well as how to combine the entity-based language models with the
original word-based ones. Their experiments demonstrate that the result language models are
more effective than the phrase-based sequential dependency model, that entities provide extra
information than enumerating phrases in the unsupervised exact match settings.

The Semantics-Enabled Language Model (SELM) by Ensan et al. enriches ELM with soft
matches between entities [37]. Besides the exact match signals provided by the overlap of the
entity-based representations, SELM introduces the correlation scores between entities to form soft
matches between query and documents. The correlation scores are provided by the entity linkers,
originally used to disambiguate entities. SELM aggregates the correlation scores between entities
in the query and candidate documents under standard retrieval models. The soft match signals
are then integrated with existing ranking signals by unsupervised retrieval models. Experiments
show that the soft matches through entity correlation scores provide useful ranking signals.

Among those related approaches, EQFE and LES are related to our approach in Chapter 3.
LES is the unsupervised version of EsdRank in Section 3.2. It often requires manual cleaning
on the query entities so is not a suitable baseline for our fully-automatic and supervised meth-
ods [61]. EQFE is a main baseline throughout this dissertation. On the other hand, ELM and
SELM fall into the category of entity-based text representations in Chapter 4. ELM was devel-
oped in parallel and is almost identical to the bag-of-entities model in Section 4.1. SELM is
a special case of Explicit Semantic Ranking which is compared against in Section 4.2. It also
requires manual cleaning of annotation noise.

Besides the related work about utilizing knowledge graphs in full-text search discussed
above, there is other research related to the specific topics of the individual sections in this dis-
sertations. These related works are discussed in detail in the corresponding sections: Section 3.1
discusses the related work in query expansion; Section 3.3 presents the related work in entity
search with more details; Section 4.2 describes the related work in academic search and soft
match based retrieval; and Chapter 6 presents the related work in term importance estimation.

2.5 Summary
This chapter first reviews controlled vocabularies and their usage in information retrieval. Then
it provides an overview of modern knowledge graphs, their divergence and commonness with
controlled vocabularies, and the scope of knowledge graphs in this dissertation. After that, it
discusses the related semantic grounding techniques—entity search and entity linking. The last
section presents several related works about using knowledge graphs to improve information
retrieval.

17





Chapter 3

Enriching Query Representations with
Knowledge Graphs

This chapter presents how to enrich query representations with knowledge graphs. As the first
part of this dissertation research, we stayed in the traditional word-based retrieval framework and
focused on improving it with knowledge graphs. Specifically, this chapter focuses on the query
part, which is often short and not carefully written, thus ambiguous or insufficient to describe
the information needs. The rich semantic information stored in knowledge bases, for example,
synonyms, ontologies, entities, and relationships, gives search engine a different perspective to
understand the query and provides a new opportunity for improving the retrieval accuracy.

In Section 3.1 we develop several query expansion methods that select terms from related en-
tities in a knowledge base to expand the original query. Then Section 3.2 presents our EsdRank
framework that connects query and documents using entities in a novel learning to rank model.
In both sections, we used existing methods to find related entities for the query, and we found
the quality of them plays a vital role in determining the final ranking performances. In last part
of this chapter, Section 3.3 presents our research about how to better find related entities for a
query with entity search.

3.1 Query Expansion with Knowledge Base
Query expansion techniques, which generate expansion terms to enhance the original query, have
been widely used to find better term based query representations. This section presents a simple
and effective method of using Freebase, one of the large scale modern knowledge graphs, to im-
prove query representation using query expansion techniques1. We decompose the problem into
two components. The first component identifies query-specific entities for query expansion. We
present implementations that retrieve entities directly or select entities from retrieved documents.
The second component uses information about these entities to select potential query expansion
terms. We present implementations that select words with a tf.idf method or using category in-
formation. Finally, a supervised model is trained to combine information from multiple sources

1Chenyan Xiong and Jamie Callan. Query Expansion with Freebase. In Proceedings of the First ACM SIGIR
International Conference on the Theory of Information Retrieval (ICTIR 2015) [98].

19



for better expansion.
Our experiments on the TREC Web Track ad-hoc task demonstrate that all our methods, when

used individually, are about 20% more effective than previous state-of-the-art query expansion
methods, including Pseudo Relevance Feedback (PRF) on Wikipedia [105] and supervised query
expansion [17]. In addition to these improvements, experimental results show that our methods
are more robust and have better win/loss ratios than state-of-the-art baseline methods, reducing
the number of damaged queries by 50%. This makes query expansion using Freebase more
appealing, because it is well-known that most query expansion techniques are ‘high risk / high
reward’ insofar as they often damage as many queries as they improve, which is a considerable
disadvantage in commercial search systems. The supervised model also successfully combines
evidence from multiple methods, leading to 30% gains over the previous state-of-the-art. Besides
being the first to improve query expansion this much on the widely used ClueWeb09 web corpus,
the methods presented here are also fully automatic.

Section 3.1.2 discusses our new methods of using Freebase for query expansion. Experimen-
tal methodology and evaluation results are described in Sections 3.1.3 and 3.1.4 respectively.
The last part of this section summarizes contributions.

3.1.1 Related Work in Query Expansion
Queries are usually short and not written carefully, which makes it more difficult to understand
the intent behind a query and retrieve relevant documents. A common solution is query expan-
sion, which uses a broader set of related terms to represent the user’s intent and improve the
document ranking.

Among various query expansion techniques, Pseudo Relevance Feedback (PRF) algorithms
are the most successful. PRF assumes that top ranked documents for the original query are
relevant and contain good expansion terms. For example, Lavrenko et al.’s RM model selects
expansion terms based on their term frequency in top retrieved documents, and weights them by
documents’ ranking scores:

s(t) =
∑
d∈D

p(t|d)f(q, d)

where D is the set of top retrieved documents, p(t|d) is the probability that term t is generated
by document d’s language model, and f(q, d) is the ranking score of the document provided by
the retrieval model [54]. Later, Metzler added inverse document frequency (IDF) to demote very
frequent terms:

s(t) =
∑
d∈D

p(t|d)f(q, d) log
1

p(t|C)
(3.1)

where p(t|C) is the probability of term t in the corpus language model C [34].
Another famous PRF approach is the Mixture Model by Tao et al. [92]. They assume the

terms in top retrieved documents are drawn from a mixture of two language models: a query
model θq and a background model θB. The likelihood of a top retrieved document d is defined

20



as:

log p(d|θq, αd, θB) =
∑
t∈D

log(αd p(t|θq) + (1− αd) p(t|θB)).

αd is a document-specific mixture parameter. Given this equation, the query model θq can be
learned by maximizing the top retrieved documents’ likelihood using EM. The terms that have
non-zero probability in θq are used for query expansion.

Although these two algorithms have different formulations, they both focus on term fre-
quency information in the top retrieved documents. So do many other query expansion algo-
rithms [26, 55, 70, 108]. For example, Robertson et al.’s BM25 query expansion selects terms
based on their appearances in relevant (or pseudo-relevant) documents versus in irrelevant doc-
uments [81]. Lee et al. cluster PRF documents and pick expansion terms from clusters [55].
Metzler and Croft include multi-term concepts in query expansion and select both single-term
concepts and multi-term concepts by a Markov Random Field model [70].

The heavy use of top retrieved documents makes the effectiveness of most expansion meth-
ods highly reliant on the quality of the initial retrieval. However, web corpora like ClueWeb09
are often noisy, and documents retrieved from them may not generate reasonable expansion
terms [8, 75]. Cao et al.’s study shows that top retrieved documents contain as many as 65%
harmful terms [17]. They then propose a supervised query expansion model to select good ex-
pansion terms. Another way to avoid noisy feedback documents is to use a high-quality external
dataset. Xu et al. proposed a PRF-like method on top retrieved documents from Wikipedia,
whose effectiveness is verified in TREC competitions [75, 105]. Kotov and Zhai demonstrated
the potential effectiveness of concepts related to query terms in ConceptNet for query expansion,
and developed a supervised method that picks good expansion concepts for difficult queries [52].

Another challenge of query expansion is its ‘high risk / high reward’ property; often as many
queries are damaged as improved. This makes query expansion risky to use in real online search
service because users are more sensitive to failures than successes [23]. Collins-Thompson et
al. [26] address this problem by combining the evidence from sampled sub-queries and feedback
documents. Collins-Thompson also proposes a convex optimization framework to find a robust
solution based on previous better-on-average expansion terms [24, 25]. The risk is reduced by
improving inner difference between expansion terms, and enforcing several carefully designed
constraints to ensure that expansion terms provide sufficient coverage of query concepts.

3.1.2 Expansion Using Freebase
In this section, we introduce our methods of using Freebase for query expansion. We first dis-
cuss our unsupervised expansion methods utilizing different information from Freebase. Then
we propose a supervised query expansion method to combine evidence from our unsupervised
methods.

3.1.2.1 Unsupervised Expansion Using Freebase

We perform unsupervised query expansion using Freebase in two steps: finding related entities
and selecting expansion words. In finding related entities, we develop implementations that

21



retrieve entities directly, or select them from annotations in top-ranked documents. In selecting
expansion words, we also present two implementations: one uses the tf.idf information from
entity descriptions; the other uses similarity of the query and the word distributions in Freebase’s
categories.

Formally, given a query q, and a ranked list of documents from initial retrieval D =
{d1, ...dj..., dN}, the goal of the entity finding step is to generate a ranked list of Freebase
entities E = {e1, ...ek..., eK}, with ranking scores r(E) = {r(e1), ...r(ek)..., r(eK)}. The
goal of word selection is to find a set of expansion words W = {w1, ...wi..., wM} and
their scores s(W ) = {s(w1), ...s(wi)..., s(wM)} from related entities using their descriptions
g(E) = {g(e1), ...g(ek)..., g(eK)} and Freebase categories C = {c1, ...cu..., cU}.

Finding Related Entities

Our first method retrieves entities directly. The query q is issued to the Google Freebase Search
API2 to get its ranking of entities E with ranking scores rs(E). The ranking score ranges from
zero to several thousand, with a typical long-tailed distribution. We normalize them so that the
ranking scores of each query’s retrieved entities sum to one.

Our second approach selects related entities from the FACC1 annotations [39] in top retrieved
documents. It is a common assumption that top retrieved documents are a good representation of
the original query. Intuitively the entities that frequently appear in them shall convey meaningful
information as well. We utilize such information by finding entities that are frequently annotated
to top retrieved documents.

Specifically, for a query q’s top retrieved documents D, we fetch their FACC1 annotations,
and calculate the ranking score for entity ek as:

rf (ek) =
∑
dj∈D

tf(dj, ek) log
|F |
df(ek)

. (3.2)

In Equation 3.2, tf(dj, ek) is the frequency of entity ek in document dj’s annotations, and df(ek)
is the total number of documents ek is annotated to in the whole corpus. |F | is the total number
of documents in the corpus that have been annotated in the FACC1 annotation. |F |

df(ek)
in Equation

3.2 serves as inverse document frequency (IDF) to demote entities that are annotated to too many
documents. rf (ek) is normalized so that ranking scores of each query’s entities sum to one.

Selecting Expansion Words from Related Entities

We develop two methods to select expansion words from related entities.
PRF Expansion: The first method does tf.idf based Pseudo Relevance Feedback (PRF) on

related entities’ descriptions. PRF has been successfully used with Wikipedia articles [8, 75,
105]. It is interesting to see how it works with Freebase.

2The Google Search Freebase API is deprecated.

22



Given the ranked entities E and their ranking scores r(E), the PRF score of the word wi is
calculated by:

sp(wi) =
∑
ek∈E

tf(g(ek), wi)

|g(ek)|
× r(ek)× log

|G|
df(wi)

(3.3)

where tf(g(ek), wi) is the word frequency of wi in the description of e, |g(ek)| is the length of
the description, df(wi) is the document frequency of wi in the entire Freebase description corpus
G. |G| is the total number of entities in Freebase that have a description.

Category-based Expansion: Our second word selection method uses Freebase categories.
Freebase organizes entities in a multi-level ontology tree, which conveys the topic information
of entities as well as their texts. We use the highest level in the ontology tree, such as /people
and /movie, to make sure sufficient instances exist in each category. There are in total U = 77
first level categories in Freebase. The descriptions of entities in these categories are training data
to learn the language models used to describe these categories.

Our second approach selects words based on the similarities of their category distributions
with the query’s, which reflect their relatedness with the query in view of the Freebase ontology.
The distribution of a word in Freebase categories is estimated using a Naive Bayesian classifier.
We first calculate the probability of a word ti generated by a category cu via:

p(wi|cu) =

∑
ek∈cu tf(g(ek), wi)∑

ek∈cu |g(ek)|
where ek ∈ cu refers to the entity ek belongs to the category cu.

Assuming uniform prior distribution over Freebase categories C, the probability of word wi
belonging to category cu is:

p(cu|wi) =
p(wi|cu)∑
cu∈C p(wi|cu)

.

With the same uniform prior, the category distribution of a query q is:

p(cu|q) =
p(q|cu)∑
cu∈C p(q|cu)

.

Then, with the assumption that the categories of query words are independent with each other

p(q|cu) =
∏
wi∈q

p(wi|cu).

These derivations together provide us the multinomial categorical distributions of a
word wi: p(C|wi) = {p(c1|wi), ...p(cu|wi)..., p(cU |wi)} and the query q: p(C|q) =
{p(c1|q), ...p(cu|q)..., p(cU |q)}.

The category-based expansion score sc(wi) of the word wi for the query q is then calculated
by the negative Jenson-Shannon divergence between their categorical distributions, p(C|wi) and
p(C|q):

sc(wi) = −1

2
KL(p(C|q)||p(C|q, wi))−

1

2
KL(p(C|wi)||p(C|q, wi))

23



Table 3.1: Unsupervised Query Expansion Methods Using Freebase.

Found by Search Found by FACC1
Select by PRF FbSearchPRF FbFaccPRF
Select by Category FbSearchCat FbFaccCat

where:

p(C|q, wi) =
1

2
(p(C|q) + p(C|wi))

and KL(·||·) is the KL divergence between two distributions. sc(wi) is the expansion score for a
word wi. We use a min-max normalization to re-range all sc(wi) into [0, 1].

As a result, we have two methods to find related Freebase entities to a query, and two methods
to select expansion words from related entities. They together form four unsupervised expansion
methods, as listed in Table 3.1.

3.1.2.2 Supervised Expansion Using Freebase

Different related entity finding and word selection algorithms have different strengths. Entity
search finds entities that are directly related to the query by keyword matching. FACC1 an-
notation provides entities that are more related in meanings and does not require exact textual
matches. In expansion word selection, PRF picks words that frequently appear in entities’ de-
scriptions. The category similarity method selects words that have similar distributions with the
query in Freebase’s categories. They together provide three scores describing the relationship
between a query-word pair:
• FbSearchPRF: Pseudo Relevance Feedback score in retrieved entities;
• FbFaccPRF: Pseudo Relevance Feedback score in top retrieved documents’ FACC1 an-

notations;
• FbSearchCat & FbFaccCat: The category-based expansion score using query-word

category distribution similarity. FbSearchCat and FbFaccCat differ in candidate
words but provide the exact same expansion scores.

The three scores are used as features for a supervised model, FbSVM, which learns how to
select better expansion words. All words in related entities’ descriptions are used as candidates
for query expansion. The ground truth score for a candidate word is generated by its influence
on retrieved documents, when used for expansion individually. If a word increases the rank-
ing scores of relevant documents, or decreases the ranking scores of irrelevant documents, it is
considered to be a good expansion word, and vice versa.

The influence of a word ti over retrieved documents is calculated as:

y(wi) =
1

|D+|
∑
dj∈R

(f(q + wi, dj)− f(q, dj))

− 1

|D−|
∑
dj∈D−

(f(q + wi, dj)− f(q, dj))

24



where D+ and D− are the sets of relevant and irrelevant documents in relevance judgments.
f(q, dj) is the ranking score for document dj and query q in the base retrieval model. f(q+wi, dj)
is the ranking score for dj when the query is expanded using expansion word ti individually.
Binary labels are constructed using y(w). Words with y(w) > 0 are treated as good expansion
words and the rest as bad expansion words.

Our training label generation is a little different than Cao et al.’s [17]. Their labels were
generated by a word’s influence on documents’ ranking positions: if relevant documents are
moved up, or irrelevant documents are pushed down by a word, it is considered a good expansion
word, otherwise a bad one. In comparison, we use influence on ranking scores which reflect an
expansion word’s effectiveness more directly. Our preliminary experiments also confirm that
both their method and our method work better with our ground truth labels.

We used a linear SVM classifier to learn the mapping from the three features of a word w
to its binary label. To get the expansion weights, we used the probabilistic version of SVM in
the LibSVM [21] toolkit to predict the probability of a word being a good expansion word. The
predicted probabilities are used as words’ expansion scores, and those words with highest scores
are selected for query expansion.

3.1.2.3 Ranking with Expansion Words

We use the selected expansion words and their scores to re-rank the retrieved documents with the
RM model [54]:

f ∗(dj, q) = αqf(q, dj) + (1− αq)(
∑
wi∈W

s(wi)f(wi, dj))). (3.4)

In Equation 3.4, f ∗(q, dj) is the final ranking score to re-rank documents. f(q, dj) and f(wi, dj)
are the ranking scores generated by the base retrieval model, e,g, BM25 or query likelihood, for
query q and the expansion word wi respectively. αq is the weight on the original query. W is
the set of selected expansion words and s(wi) is the expansion score of the word wi. Expansion
scores are normalized so that the scores of a query’s expansion words sum to one.

3.1.3 Experimental Methodology
This section introduces our experimental methodology, including dataset, retrieval model, base-
lines, hyper-parameters, and evaluation metrics.

Dataset: Our experiments use ClueWeb09, TREC Web Track 2009-2012 adhoc task queries
and the relevance judgments provided by TREC annotators. This dataset models a real web
search scenario: queries are selected from the search log from Bing, and ClueWeb09 is a widely
used web corpus. ClueWeb09 is known to be a hard dataset for query expansion [8, 31, 75],
because it is much noisier than carefully edited corpora like the Wall-street Journal, news, and
government web sets.

We use Category B of ClueWeb09 and index it using the Indri search engine [88]. Typical
INQUERY stopwords are removed before indexing. Documents and queries are stemmed using
the Krovetz stemmer [53]. Spam filtering is very important for ClueWeb09; we filter the 70%
most spammy documents using the Waterloo spam score [27].

25



We retrieved Freebase entities and fetched their descriptions using the Google Freebase API
on July 16th, 2014. Entity linking from documents to entities are found in FACC1 annota-
tion [39]. Corpus statistics such as word IDF and categories’ language models were calculated
from the April 13th, 2014 Freebase RDF dump.

Retrieval Model: We use Indri’s language model [34] as our base retrieval model. The rank-
ing score of a document is the probability of its language model generating the query. Dirichlet
smoothing is applied to avoid zero probability and incorporate corpus statistics:

p(q|dj) =
1

|q|
∑
wi∈q

tf(dj, wi) + µp(wi|C)
|dj|+ µ

, (3.5)

where p(wi|C) is the probability of seeing word wi in the whole corpus, and µ is the parameter
controlling the smoothing strength, set to the Indri default: 2500.

Baselines: We compare our four unsupervised expansion methods (as listed in Table 3.1) and
the supervised method described in Section 3.1.2.2 (FbSVM) with several baselines. The first
baseline is the Indri language model (IndriLm) as in Equation 3.5. All relative performances
and Win/Loss evaluations of other methods are compared with IndriLm if without specific
reference. Our second baseline is the Sequential Dependency Model (SDM) [69], a strong com-
petitor in TREC Web Tracks.

We also include two well-known state-of-the-art query expansion methods as baselines. The
first one is Pseudo Relevance Feedback on Wikipedia (RmWiki) [8, 75, 105]. We indexed the
Oct 1st 2013 Wikipedia dump using the same setting we used for ClueWeb09. Standard Indri
PRF with the IDF component [75] was performed to select expansion words.

The other query expansion baseline is SVMPRF, a supervised query expansion method [17].
We extracted the ten features described in their paper and trained an SVM classifier to select good
expansion words. We used our word-level ground truth labels as discussed in Section 3.1.2.2,
because their model performs better with our labels. Following their paper, the RBF kernel was
used, which we also found necessary for that method to be effective.

For clarity and brevity, we do not show comparison with other methods such as RM3 [54],
Mixture Model [92], or EQFE [31] because they all perform worse on ClueWeb09 than RmWiki
and SDM in our experiment, previous TREC competitions [75], or in their published papers.

Parameter Setting: Hyper parameters in our experiment, including the number of ex-
pansion words (M), number of entities (K) in Freebase linked for expansion, and num-
ber of PRF documents for RmWiki and SVMPRF, are selected by maximizing the perfor-
mance on training folds in a five-fold cross validation. The number of expansion words is
selected from {1, 3, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100}, the number of entities is se-
lected from {1, 3, 5, 10, 15, 20, 30, 40, 50} and the number of PRF documents is selected from
{5, 10, 15, 20, 25, 30}.

Parameters of SVM in supervised expansion (FbSVM and SVMPRF) are selected by an-
other five-fold cross validation. In each of the five folds of the outside cross-validation that
were used to select expansion parameters, we performed a second level cross-validation to se-
lect the parameters of SVM. The explored range of cost c of linear kernel and RBF kernel is
{0.01, 0.1, 1, 10, 100}. The range of γ in RBF kernel is {0.1, 1, 10, 100, 1000, 10000}.

To keep the experiment tractable, other parameters were fixed following conventions in pre-
vious work [17, 75, 105]. The weight of the original query wq is 0.5, and the re-rank depth is

26



Table 3.2: Performance of unsupervised expansion using Freebase. Relative gain is calculated
using ERR over IndriLm. Win/Loss/Tie is the number of queries helped, hurt, and not changed
comparing with IndriLm. †, ‡, § and ¶ mark the statistic significant improvements (p < 0.05)
over IndriLm, SDM, RmWiki and SVMPRF respectively. The best results in each column are
marked bold.

Method MAP@20 NDCG@20 ERR@20 Relative Gain Win/Loss/Tie
IndriLm 0.357 0.147 0.116 NA NA
SDM 0.387† 0.166† 0.122† 5.52% 58/27/115
RmWiki 0.362 0.161† 0.114 −1.70% 67/72/61
SVMPRF 0.367 0.158† 0.125 8.00% 63/72/65
FbSearchPRF 0.436†,‡,§,¶ 0.186†,‡,§,¶ 0.152†,‡,§,¶ 30.80% 84/30/86
FbSearchCat 0.421†,‡,§,¶ 0.182†,‡,§,¶ 0.144†,‡,§,¶ 23.99% 67/43/90
FbFaccPRF 0.428†,‡,§,¶ 0.184†,‡,§,¶ 0.145†,‡,§,¶ 24.71% 97/55/48
FbFaccCat 0.400†,§,¶ 0.173† 0.136†,‡,§ 17.25% 88/67/45

Table 3.3: Query level Win/Loss/Tie comparison between unsupervised query expansion meth-
ods. Each cell shows the number of queries helped (Win), damaged (Loss) and not changed (Tie)
by row method over column method.

FbSearchPRF FbSearchCat FbFaccPRF FbFaccCat
FbSearchPRF NA/NA/NA 73/47/80 82/74/44 95/65/40
FbSearchCat 47/73/80 NA/NA/NA 72/86/42 87/72/41
FbFaccPRF 74/82/44 86/72/42 NA/NA/NA 84/67/49
FbFaccCat 65/95/40 72/87/41 67/84/49 NA/NA/NA

1000. We chose re-ranking instead of retrieval again in the whole index because the latter is
costly with the large set of expansion words and did not show any significant difference in our
experiments. When using FACC1 annotations to link entities, we used the FACC1 annotations
in the top 20 retrieved documents provide by IndriLm. The candidate words for FbSVM were
generated from the top 20 retrieved entities and top 20 linked FACC1 annotations. To reduce
noise in entity descriptions, we ignored words that contained less than three characters.

Evaluation Metric. Our methods re-ranked the top retrieved documents, so we mainly focus
evaluation on the top 20 documents in the re-ranked list. We chose ERR@20 as our main evalu-
ation metric, which is the primary metric of the TREC Web Track adhoc task. We also show the
evaluation results for MAP@20 and NDCG@20.

3.1.4 Evaluation Results

This section first evaluates the unsupervised expansion methods. Then it presents results from
the supervised expansion method. It concludes with case studies and discussions.

27



3.1.4.1 Performance of Unsupervised Expansion

The average performances on MAP, NDCG and ERR are shown in Table 3.2. The relative gain
and Win/Loss ratio are compared with IndriLm on ERR. Statistical significance tests are per-
formed using the permutation test. Labels †, ‡, § and ¶ indicate statistical significance (p < 0.05)
over IndriLm, SDM, RmWiki and SVMPRF respectively.

Our unsupervised expansion methods outperform all state-of-the-art baselines by large mar-
gins for all evaluation metrics. All the gains over IndriLm are statistically significant,
while SVMPRF and RmWiki are only significantly better on NDCG. Three of the methods,
FbSearchPRF, FbSearchCat and FbFaccPRF, are significantly better than all baselines.
FbFaccCat’s improvements do not always pass the statistical significance test, even when the
relative gains are almost 10%. This reflects the high variance of query expansion methods, which
is addressed in Section 3.1.4.3.

Comparing the performances of our methods, linking entities by search works better than
by FACC1 annotations, and selecting expansion words by PRF works better than using category
similarity. One possible reason is that entities from FACC1 annotation are noisier because they
rely on the quality of top retrieved documents. Also, the category similarity suffers because
suitable categories for query or words may not exist.

We further compare our unsupervised expansion methods at the query level. The results are
shown in Table 3.3. Each cell shows the comparison between the method in the row and the
method in the column. The three numbers are the number of queries in which the row method
performs better (win), worse (loss), and equally (tie) with the column method respectively. The
results demonstrate that our methods do perform differently. The two most similar methods
are FbSearchPrf and FbSearchCat, doing the same on 80 queries out of 200. But 36
queries have no returned entities from the Google Search API, on which two methods retreat to
IndriLm. Otherwise, our four unsupervised methods perform the same for at most 49 queries.

These results showed the different strengths of our unsupervised methods. The next ex-
periment investigates whether they can be combined for further improvements by a supervised
method.

3.1.4.2 Performance of Supervised Expansion

The performance of our supervised method FbSVM, which utilized the evidence from our un-
supervised methods, is shown in Table 3.4. To investigate whether the combination of multiple
sources of evidence is useful, we conduct statistical significance tests between FbSVM with our
unsupervised methods. †, ‡, § and ¶ indicates statistical significance in the permutation test over
FbSearchPRF, FbSearchCat,FbFaccPRF and FbFaccCat correspondingly.

The results demonstrate that evidence from different aspects of Freebase can be combined
for further improvements: FbSVM outperforms IndriLm by as much as 42%. Statistical sig-
nificance is observed over our unsupervised methods on NDCG, but not always on MAP and
ERR. We have also run statistical significance tests between FbSVM and all other baselines,
which are all statistically significant as expected.

FbSVM and SVMPRF differ in their candidate words and features. FbSVM selects words from
Freebase, while SVMPRF selects from web corpus. FbSVM uses features from Freebase’s related

28



Table 3.4: Performance of supervised expansion using Freebase. Relative gain and Win/Loss/Tie
are calculated comparing with IndriLm on ERR. †, ‡, § and ¶ mark the statistically significant
improvements over FbSearchPRF, FbSearchCat,FbFaccPRF and FbFaccCat respec-
tively. Best results in each column are marked bold.

Method MAP@20 NDCG@20 ERR@20 Relative Gain Win/Loss/Tie
FbSearchPRF 0.436 0.186 0.152 30.80% 84/30/86
FbSearchCat 0.421 0.182 0.144 23.99% 67/43/90
FbFaccPRF 0.428 0.184 0.145 24.71% 97/55/48
FbFaccCat 0.400 0.173 0.136 17.25% 88/67/45
FbSVM 0.444 0.199†,‡,§,¶ 0.165‡,§,¶ 42.42% 96/63/41

Table 3.5: Candidate word quality from top retrieved documents (Web Corpus) and related enti-
ties’ descriptions (Freebase). Good and bad refer to the number of words that have positive and
negative influences on ranking accuracy respectively. Their fractions are shown in percentages.

Source Good Words Bad Words
Web Corpus 9, 263 41.4% 13, 087 58.6%
Freebase 19, 247 39.6% 29, 396 60.4%

entities’ descriptions and categories, while FbSVM uses word distribution and proximity in top
retrieved documents from web corpus. Table 3.5 shows the quality of candidate words from
two sources. Surprisingly, Freebase’ candidate words are slightly weaker in quality (39.4% vs.
41.4%), and there are more of them. However, FbSVM’s classification Precision is about 10%
relatively better than SVMPRF, as shown in Table 3.6. The Recall of both methods is low due
to the large number of ‘good’ expansion terms available in the top retrieved documents or entity
descriptions. In general, FbSVM picks more good expansion words given the larger number of
good candidate words in Freebase.

Nevertheless, the relative improvements of FbSVM over our best performing unsupervised
method FbSearchPRF are not as high as expected. Our preliminary analysis shows that one
possible reason is the features between query and words are limited, i.e., only three dimensions.
Another possible reason is the way of using the supervised information (document relevance
judgments). Document relevance judgments are used to generate labels at the word level using
heuristics, while the final document ranking is still computed using unsupervised retrieval mod-
els. A more powerful machine learning framework seems necessary to better utilize Freebase
information. This would be a good topic for further research.

Table 3.6: Classification performance of supervised query expansion.

Method Precision Recall
SVMPRF 0.5154 0.0606
FbSVM 0.5609 0.0400

29



3.1.4.3 Query Level Analysis

A common disadvantage of query expansion methods is their high variance: they often hurt as
many queries as they helped. To evaluate the robustness of our methods, we compare the query
level performance of each method versus IndriLm and record the Win/Loss/Tie numbers. The
results are listed in the last columns of Tables 3.2 and 3.4. Table 3.2 shows that SDM, which is
widely recognized as effective across many datasets, is reasonably robust and hurts only half as
many queries as it helps. It also does not change the performance of 115 queries partly because 53
of them only contain one word on which nothing can be done by SDM. In comparison, RmWiki
and SVMPRF hurt more queries than they help, which is consistent with observations in prior
work [23].

Our methods have much better Win/Loss ratios than baseline query expansion methods.
When selecting words using PRF from related entities’ descriptions, FbSearchPRF and
FbFaccPRF improve almost twice as many queries as they hurt. The variance of word se-
lection by category is higher, but FbSearchCat and FbFaccCat still improve at least 30%
more queries than they hurt. Linking by object retrieval has slightly better Win/Loss ratios than
by FACC1 annotation, but it also helps a smaller number of queries. One reason is that for some
long queries, there is no object retrieved by Google API.

More details of query level performance can be found in Figure 3.1. The x-axis is the bins
of relative performances on ERR compared with IndriLm. The y-axis is the number of queries
that fall into corresponding bins. If the performance is the same for a query, we put it into 0 bin.
If a query is helped by 0 to 20%, we put it into bin 20%, etc. Figure 3.1 confirms the robustness
of our methods. Especially for FbSearchPRF and FbFaccPRF, more queries are helped, fewer
queries are hurt, and much fewer queries are extremely damaged.

FbSVM’s robustness is average among our expansion methods, and is better than RmWiki
and SDM. Fewer queries fall into bin 0, as it is rare that none of our evidence affects a query.
However, the number of damaged queries is not reduced. One possible reason is that the ground
truth we used to train the SVM classifier is the individual performance of each candidate word,
and only the average performance is considered in model training/testing. As a result, our model
might focus more on improving average performance but not on reducing risk.

3.1.4.4 Case Study and Discussion

To further understand the properties of our object linking and word selection methods, Table 3.7
lists the queries that are most helped or hurt by different combinations of methods. The ↑ row
shows the most helped queries and ↓ row shows those most hurt3. The comparison is done on
ERR compared to IndriLm too.

Table 3.7 shows the different advantages of linking by object search and FACC1 annota-
tion. For example, the query ‘fybromyalgia’ is damaged by FbFaccPRF, while improved by
FbSearchPRF and FbSearchCat. The FACC1 annotation leads to a set of weakly related
entities, like doctors and organizations focused on diseases, which generate overly-general ex-
pansion words. Instead, object search is precise and returns the object about ‘fybromyalgia’.

3More details including related entities and expansion words are available at http://boston.lti.cs.
cmu.edu/appendices/ICTIR2015/.

30

http://boston.lti.cs.cmu.edu/appendices/ICTIR2015/
http://boston.lti.cs.cmu.edu/appendices/ICTIR2015/


−100% −80% −60% −40% −20% 0 20% 40% 60% 80% 100% 100%+

Relative ERR@20 Gain/Loss Compared with IndriLm

0

20

40

60

80

100

120

N
um

be
ro

fQ
ue

rie
s

SDM
RmWiki
SVMPRF
FbSearchPRF
FbSearchCat
FbFaccPRF
FbFaccCat
FbSVM

Figure 3.1: Query level relative performance. The x-axis is the bins of relative performance
on ERR compared with IndriLm. Y-axis is the number of queries that fall into each bin.
Bin 0 refers to queries that were not changed, 20% refers to queries that improved between
(0%, 20%], etc. The left-to-right ordering of histograms in each cell corresponds to the top-to-
bottom ordering of methods shown in the key.

Sometimes the generality of FACC1 annotations can help instead. For example, for query ‘rock
art’ whose main topic is about rock painting, object search links to entities about rock music,
while FACC1 annotation is more general and links to related entities for both rock painting and
rock music.

Our two word selection methods also have different behaviors. An exemplary case is the
query ‘computer programming’, on which FbSearchPRF and FbFaccPRF perform very well,
while FbSearchCat and FbFaccCat do not. The related entities of two methods are both
reasonable: object search mostly links to programming languages, and FACC1 annotation brings
in programming languages, textbooks, and professors. With the good quality of related entities,
PRF selects good expansion words from their descriptions. However, category similarity picks
words like: ‘analysis’, ‘science’, ‘application’ and ‘artificial’, which are too general for this
query. The granularity of the Freebase ontology’s first level is too coarse for some queries, and
lower levels are hard to use due to insufficient instances. Nevertheless, when the related entities
are noisy, like for the query ‘sore throat’, the category information helps pick more disease-
related words using the ‘/medicine’ category and provides better performance.

Some queries are difficult for all methods. For example, ‘wedding budget calculator’ contains
the entities ‘wedding’, ‘budget’ and ‘calculator’, but refers to the concept ‘wedding budget’ and
how to calculate it. Similar cases are ‘tangible personal property tax’ and ‘income tax return
online’, whose meanings cannot be represented by a single Freebase object.

There are also queries on which Freebase is very powerful. For example, the query ‘UNC’
asks for the campuses of the University of North Carolina. Freebase contains multiple entities
about UNC campuses, and campuses of other related universities, which generate good expan-

31



Table 3.7: The queries most helped and hurt by our methods. ↑ row shows the five most-helped
queries for each method, and ↓ shows the most-hurt queries.

FbSearchPRF FbSearchCat

↑

porterville
hobby stores
fybromyalgia
computer programming
figs

unc
porterville
fybromyalgia
bellevue
figs

↓

von willebrand disease
website design hosting
403b
ontario california airport
rock art

rock art
espn sports
ontario california airport
computer programming
bobcat

FbFaccPRF FbFaccCat

↑

signs of a heartattack
computer programming
figs
idaho state flower
hip fractures

porterville
idaho state flower
bellevue
flushing
atari

↓

wedding budget calculator
poem in your pocket day
fybromyalgia
ontario california airport
becoming a paralegal

poem in your pocket day
ontario california airport
computer programming
bobcat
blue throated hummingbird

sion words. Freebase is also very effective for ‘Figs’, ‘Atari’, ‘Hoboken’ and ‘Korean Language’,
whose meanings are described thoroughly by related Freebase entities.

To sum up, our object linking and word selection methods utilize different parts of Freebase
and thus have different specialties. In object linking, object search is aggressive and can return
the exact object for a query, when there are no ambiguities. FACC1 annotation relies on top
retrieved documents and usually links to a set of related entities. Thus, it is a better choice
for queries with ambiguous meanings. In word selection, Pseudo Relevance Feedback via tf.idf
directly reflects the quality of related entities. It performs better when the related entities are
reasonable. In contrast, category similarity offers a second chance to pick good expansion words
from noisy related entities, when proper category definition exists for the query. FbSVM provides
a preliminary way to combine the strength from different evidence and does provide additional
improvements. Next in Section 3.2 we develop a more sophisticated method that better use
supervision and richer evidence from Freebase, which further improves the ranking accuracy.

32



3.1.5 Summary of Query Expansion with Knowledge Base
This section uses Freebase, a large general domain knowledge graph, to improve query represen-
tation using query expansion techniques. We investigate two methods of identifying the entities
associated with a query, and two methods of using those entities to perform query expansion.
A supervised model combines information derived from Freebase descriptions and categories
to select words that are effective for query expansion. Experiments on the ClueWeb09 dataset
with TREC Web Track queries demonstrate that these methods are almost 30% more effective
than strong state-of-the-art query expansion algorithms. In addition to improving average per-
formance, some of these methods have better win/loss ratios than baseline algorithms, with 50%
fewer queries damaged. To the best of our knowledge, this work is the first to show the effective-
ness of Freebase for query expansion on the widely used ClueWeb09 web corpus.

3.2 EsdRank: Connect Query-Documents through Entities

The last section discussed our methods for enriching word-based query representations with
query expansion techniques. Effective as they are, only the words in entity descriptions are
used and only term frequency and ontology information from Freebase are utilized. This section
presents EsdRank, a new technique that learns to connect the query and documents directly
in the learning to rank framework4. EsdRank treats entities from a knowledge graph as latent
entities connecting query and documents. The information from the knowledge graph is used
as features between the query and entities. The document ranking evidence used in LeToR
research is used as features between entities and documents. Instead of treating the features about
query-entity and features about entity-document individually, EsdRank uses a latent-listwise
LeToR model, Latent-ListMLE. The model treats the entities as a latent layer between query and
documents, and learns how to handle the features between query, entities, and documents in one
unified procedure directly from document relevance judgments.

One major challenge in using external data is to find related entities for a query and doc-
uments. Several methods have been used by prior research [31, 105] and by our prior work
(Section 3.1), but it is not clear how each of them contributes to final performance. This sec-
tion explores three popular methods to select related entities from external data, including query
annotation, entity search, and document annotation. To investigate their effectiveness, we apply
EsdRank with related entities generated by these methods on Freebase [13], and also the classic
medical controlled vocabulary, MeSH [1], which is also considered as a special domain knowl-
edge graph with a smaller scale, in web search and medical search respectively. Experiments on
TREC Web Track and OHSUMED datasets show EsdRank’s significant effectiveness over state-
of-the-art ranking baselines, especially when using entities from query annotations. Experiments
also show that the effectiveness not only comes from the additional information from external
data, but also our Latent-ListMLE model that uses it properly.

In the rest of this section, Section 3.2.1 discusses EsdRank, its Latent-ListMLE ranking

4 Chenyan Xiong and Jamie Callan. EsdRank: Connecting Query and Documents through External Semi-
Structured Data. In Proceedings of the 24th ACM International Conference on Information and Knowledge Man-
agement (CIKM 2015) [97].

33



model, related entity selection, and features. The experimental methodology and evaluation
results are described in Sections 3.2.2 and 3.2.3 respectively. The last part of this section
summarizes the contribution of EsdRank.

3.2.1 EsdRank

EsdRank is intended to be a general technique for using external semi-structured data to improve
ranking. External data elements are modeled as entities. An entity could be a term from another
corpus or a knowledge graph entity. The evidence from the query, external data, and the corpus
is incorporated as features to express the relationship between query, entity and document. A
ranking model is then learned to rank documents with these entities and evidence.

In the first part of this section, we propose a novel latent listwise learning to rank model,
Latent-ListMLE, as our ranking model. Latent-ListMLE handles the entities as a latent space
between query and documents. The evidence between query-entity and entity-document is nat-
urally expressed as features connecting the query to the latent space, and then connecting latent
space to documents.

Prior research found that a major challenge in using external data is to find related entities [20,
31, 105]. In the second part of this section, we explore three popular related entity selection
methods used in prior research. In the final part of this section, we describe the features used to
connect query, entities and documents.

3.2.1.1 Latent-ListMLE

Given a query q and an initial set of retrieved documents D, a set of entities E =
{e1, ..., ej, ..., em} related to q and D is produced by one of the related entity selection methods
as described in Section 3.2.1.2. Features that describe relationships between query q and entity
ej are denoted as vector vj . Features that describe relationships between entity ej and document
di are denoted as uij . The goal of Latent-ListMLE, like other learning to rank methods, is to re-
rank D, but with the help of the related entities E and feature vectors U = {u11, ..., uij, .., unm}
and V = {v1, ..., vj, ..., vm}.

Latent-ListMLE treats E as the latent space between q and D and uses V, U as features
to describe the relationships between query-entity, and entity-document. We will first revisit
ListMLE [96], the listwise learning to rank model which Latent-ListMLE is built upon. Then we
discuss the construction, learning, and ranking of Latent-ListMLE.

ListMLE Revisited

ListMLE defines the probability of a ranking (a list) being generated by a query in a parametric
model. Maximum likelihood estimation (MLE) is used to find parameters that maximize the
likelihood of the best ranking(s). However, the sample space of all possible rankings is the
permutation of all candidate documents D, which is too large. One contribution of ListMLE
is that it reduces the sample space by assuming the probability of a document being ranked at
position i is independent of those ranked at previous positions.

34



Specifically, with a likelihood loss and a linear ranking model, ListMLE defines the proba-
bility of a document di being ranked at position i as:

p(di|q, Si) =
exp(wTxi)∑n
k=i exp(wTxk)

, (3.6)

where Si = {di . . . dn} are the documents that were not ranked in positions 1 . . . i − 1, xi is the
query-document feature vector for di, and w is the parameter vector to learn.

Equation 3.7 defines the likelihood of a given ranking ~D of candidate documents.

p( ~D|q;w) =
n∏
i=1

exp(wTxi)∑n
k=i exp(wTxk)

. (3.7)

The parameter vector w is learned by maximizing the likelihood for all given queries qk and
their best rankings ~D∗k given document relevance judgments:

ŵ = arg max
w

∏
k

p( ~D∗k|qk;w). (3.8)

This is an unconstrained convex optimization problem that can be solved efficiently by gradient
methods.

Latent-ListMLE Construction

Latent-ListMLE extends ListMLE by adding a latent layer in the ranking generation process.
The latent layer contains related entities E as possible representations of the original query q.

With the latent entities E, the ideal generation process of a ranking ~D is to first sample a
ranking of entities ~E, and then sample document ranking ~D based on ~E. However, this process
is also impractical due to the huge sampling space. Similarly to ListMLE, we assume that the
probabilities of picking entities and documents at each position are independent with those at
previous positions. Thus, the generative process is redefined to be:

For each position from 1 to N:
1. Sample ej from multinomial distribution Multi(E|q), with probability p(ej|q); and

2. Sample di from multinomial distribution Multi(Si|ej), with probability p(di|ej, Si).
We further define:

p(ej|q) =
exp(θTvj)∑m
k=1 exp(θTvk)

(3.9)

p(di|ej, Si) =
exp(wTuij)∑n
k=i exp(wTukj)

, (3.10)

where vj is the query-entity feature vector for ej; uij is the entity-document feature vector be-
tween di and ej; m is the number of entities; and θ and w are the model parameters.

35



In this generative process, the latent layer is the sampled entities produced by query q, and
the document ranking probability is conditioned on the sampled entities instead of the query.
With this extension, the probability of picking di at position i is:

p(di|q, Si) =
m∑
j=1

p(di|ej, Si)p(ej|q) (3.11)

=
m∑
j=1

exp(wTuij)∑n
k=i exp(wTukj)

exp(θTvj)∑m
k=1 exp(θTvk)

(3.12)

and the probability of ranking ~D given q is:

p( ~D|q;w, θ) =
n∏
i=1

m∑
j=1

p(di|ej, Si)p(ej|q). (3.13)

Latent-ListMLE also uses query-document features by adding a ‘query node’ e0 to E that
represents query q. The features relating query q to e0 are set to 0, thus, e0 is the ‘origin point’
for related entities. The features relating e0 to documents are typical LeToR query-document
features. The combination of query-document features and entity-document features is done by
treating them as individual dimensions in U , and setting missing feature dimensions’ values to
zero. So the dimensions referring to entity-document similarities for the query node are set to
zero, and vice versa.

Our idea of representing the query via related entities (p(e|q)) is similar to query expansion.
In fact, if we use expansion terms as our related entities, and discard the document ranking
part, Latent-ListMLE becomes a supervised query expansion method. On the other hand, if we
only use the query node as the related entity, Latent-ListMLE is exactly the same as ListMLE.
The difference is that, in Latent-ListMLE, the connections from query to latent layer, and from
latent layer to documents are learned together in one unified procedure, which finds the best
combination of query representation (p(e|q)) and document ranking (p(d|e)) together, instead of
only focusing on one of them.

Learning

The parameters w and θ are learned using MLE with given queries and their best rankings. To
keep the notation clear, we present the derivation with one training query q, without loss of
generality.

For a training query q and its best ranking ~D∗ derived from relevance labels, their log likeli-
hood is:

l( ~D∗|q;w, θ) = log p( ~D∗|q;w, θ) (3.14)

=
n∑
i=1

log
m∑
j=1

(
exp(wTuij)∑n
k=i exp(wTukj)

× exp(θTvj)∑m
k=1 exp(θTvk)

)
. (3.15)

36



The goal of MLE is to find parameters w∗, θ∗ such that:

w∗, θ∗ = arg max
w,θ

l( ~D∗|q;w, θ). (3.16)

Directly maximizing Equation 3.15 is difficult due to the summation of the latent variables
inside the log, thus we use the EM algorithm to solve this optimization problem.

The E step finds the posterior distribution of hidden variable ej for each ranking position
given the current parameters θold and wold.

π(ej|di, q) = p(ej|di, q; θold, wold)

=
p(di|ej, Si;wold)p(ej|q; θold)∑m
k=1 p(di|ek, Si;wold)p(ek|q; θold)

.

The M step maximizes the expected log complete likelihood.

E(l̃) =Eπ( ~E| ~D∗,q) log p( ~D∗, ~E|q;w, θ)

=
n∑
i=1

m∑
j=1

π(ej|di, q) log p(di|ej, Si)p(ej|q)

=
∑
i,j

π(ej|di, q) log
exp(wTuij)∑n
k=i exp(wTukj)

exp(θTvj)∑m
k=1 exp(θTvk)

.

We use gradient ascent to maximize the expectation. The gradients are:

∂E(l̃)

∂w
=
∑
i,j

π(ej|di, q)
{
uij −

∑n
k=i ukj expwTukj∑n
k=i expwTukj

}
(3.17)

∂E(l̃)

∂θ
=
∑
i,j

π(ej|di, q)
{
vj −

∑m
k=1 vk exp(θTvk)∑m
k=1 exp(θTvk)

}
. (3.18)

The E step is very efficient with the closed form solution. The M step is an easy convex
optimization problem. Intuitively, the E step finds the best assignment of entity probabilities
under current parameters and best document rankings, thus transferring document relevance in-
formation to latent entities. The M step learns the best parameters that fit the entity probabilities
provided by the E step. EM iterations are guaranteed to improve the likelihood until convergence.
However, the overall optimization is not convex and has local optima. In practice, the local op-
tima problem can be suppressed by repeating the training several times with random initial w
and θ, and using the result that converges to the largest likelihood.

Ranking

Given a learned model, a query, and an initial ranking, a new ranking is constructed by picking the
document that has the highest probability p(di|q, Si) at each position from 1 to n. The complexity
of picking one document is O(nm), thus the total cost of ranking n documents with m related
entities is O(n2m), which is slower than ListMLE’s O(n log n) ranking complexity. We can
restrict the number of documents n (e.g. 100) and related entities m (e.g. < 5) to maintain
reasonable efficiency.

37



3.2.1.2 Related Entities

How to find related entities E given query q and documents D is important for using external
data. Many options have been proposed by prior research [31, 62, 77, 105], but it is not clear
which is the most reliable. This research studies the following three popular automatic methods
to find related entities.

Query Annotation selects the entities that directly appear in the query. Based on specific
entity types in the external data, one can choose corresponding techniques to ‘annotate’ them to
the query, for example, entity linking techniques [20] to find entities that appear in the query, or
all query terms when the entities are terms from an external corpus.

Entity Search selects the entities that are textually similar to the query. Search engines can
be used to find such entities. We can build an index for all the entities in external data, in which
each document is the textual data about the entity, for example, name, alias, description and
context words of an entity. Then textually similar entities can be retrieved by running the query
on the index.

Document Annotation selects the entities that appear in retrieved documents D. The terms
in retrieved documents have been widely used in query expansion. The entities that are annotated
to D were also useful in prior work [31]. This method introduces entities that are more indirectly
related to the query, such as ‘President of United States’ for the query ‘Obama family tree’. A
typical method to score and select entities from retrieved documents is the RM3 pseudo relevance
feedback model [54].

3.2.1.3 Features

Representing the relationship between query and related entities is the major focus of prior re-
search in using external data. We explore the following query-entity features in EsdRank.

Features between Query and Entities

Entity Selection Score features are the scores produced by the entity selection step: Annotator
confidence, entity ranking score, and RM3 model score s(q, e).

Textual Similarity features cover the similarities between the query and the entity’s textual
fields. For example, one can use coordinate matches, BM25 scores, language model scores, and
sequential dependency model (SDM) scores between the query and the entity’s textual fields,
such as name, alias (if any) and descriptions if using entities.

Ontology Overlap features use the ontology, a common type of information for some exter-
nal semi-structured datasets. When an ontology is available, one can build a multiclass classifier
that classifies the query into the ontology, and use the overlaps with the entity’s ontology as
features.

Entity Frequency is the number of documents in the corpus the entity appears in (e.g. term)
or is annotated to (e.g. entity). This feature is query independent and distinguishes frequent
entities from infrequent ones.

Similarity with Other Entities are the max and mean similarity of this entity’s name with
the other related entities’. These features distinguish entities that have similar names with other
related entities from those that do not.

38



Features between Entities and Documents

In learning to rank, rich query-document ranking features, such as multiple retrieval algorithms
on different document fields, have been shown very important for ranking performance [59]. Our
entity-document features are similar to query-document features widely used in LeToR research.
But entities may have richer contents than queries, enabling a larger set of features.

Textual Similarity features measure the similarity of a document and an entity’s textual
fields. BM25, language model, SDM, coordinate match, and cosine similarity in the vector
space model are used to calculate similarities between all combinations of an entity’s textual
fields and a document’s fields. These retrieval models are applied by using the entity to ‘retrieve’
the document. The fusion of these similarity features provides multiple ways to express the
entity-document similarities for EsdRank.

Ontology Overlap features are the same as the ontology overlap features between query and
entity. The same multiclass classifier can be used to classify documents, and overlaps in the
entity’s and document’s top categories can be used as features.

Graph Connection features introduce information about the relationships in the external
data and document annotations. If such graph-like information is available, one can start from
the entity, traverse its relations, and record the number of annotated entities reached at each step
(usually within 2 steps) as features. These features model the ‘closeness’ of the entity and the
document’s annotations in the external data’s relationship graph.

Document Quality features are commonly used in learning to rank. We use classic document
quality features such as document length, URL length, spam score, the number of inlinks, stop
word fraction, and whether the document is from Wikipedia (web corpus only).

3.2.1.4 Discussion

EsdRank provides general guidance about how to use external semi-structured data in ranking.
When an external dataset is available, to use it in ranking, one can first use entity selection
methods to find related entities for each query, and then extract query-entity and entity-document
features. Although the detailed entity selection methods and features may vary for different
datasets, we list some common related entity selection methods and features that have been used
widely in prior research to start with. One can also derive new related entity selection methods
and features based on other available information.

Related entities and features are handled by our latent listwise LeToR model, Latent-
ListMLE. It models the entities as the latent space. As a result, the evidence is decoupled into
a query-entity part and an entity-document part, which is easier to learn than mixed together (as
shown in Section 3.2.3.2). Instead of solely focusing on the query-entity part, or the document
ranking part, Latent-ListMLE learns them together using EM. Our experiments show that the
additional evidence from external data and Latent-ListMLE are both necessary for EsdRank’s
effectiveness.

39



3.2.2 Experimental Methodology
EsdRank is intended to be a general method of using external semi-structured data, and exper-
iments test it with two types of semi-structured data and search tasks: Web search using the
Freebase knowledge base, and medical search using the MeSH controlled vocabulary. The for-
mer uses a newer type of semi-structured data, a noisy corpus, and queries from web users;
the latter uses a classic form of semi-structured data, a clean corpus, and queries from domain
experts. Datasets and ranking features are determined by these two choices, as described below.

Data. Experiments on web search using Freebase were conducted with ClueWeb09-B and
ClueWeb12-B13, two web corpora used often in IR research. Each corpus contains about 50 mil-
lion English web documents. The 2009-2013 TREC Web Tracks provided 200 queries with rel-
evance assessments for ClueWeb09 and 50 queries with relevance assessments for ClueWeb12.
We used a snapshot of Freebase provided by Google on Oct 26th, 2014.5

Experiments on medical search using the MeSH controlled vocabulary were conducted with
the OHSUMED corpus, a medical corpus used often in IR research. It contains abstracts of
medical papers that are manually annotated with MeSH terms. The OHSUMED dataset includes
106 queries with relevance assessments. We used the 2014 MeSH dump provided by the U.S.
National Library of Medicine (NIH).6

Indexing and Base Retrieval Model. The ClueWeb and OHSUMED corpora were indexed
by the Indri search engine, using default stemming and stopwords. ClueWeb documents contain
title, body and inlink fields. OHSUMED documents contain title and body fields.

Freebase and MeSH also were indexed by Indri, with each entity treated as a document
containing its associated text fields (name, alias, description). Entities without descriptions were
discarded. Retrieval was done by Indri using its default settings.

Spam filtering is important for ClueWeb09. We removed the 70% spammiest documents
using Waterloo spam scores [27]. Prior research questions the value of spam filtering for
ClueWeb12 [31], thus we did not filter that dataset.

Related Entities. The three related entity generation methods in Section 3.2.1.2 are used:
Query annotation (AnnQ) was done by TagMe [38], one of the best systems in the Short

(Query) Track at the ERD14 workshop competition [20]. TagMe annotates the query with
Wikipedia page ids. Wikipedia page ids were mapped to Freebase entities using their Wikipedia
links and to MeSH controlled vocabulary terms using exact match.

Entity search (Osrch) was done with the Indri search engine for both external semi-
structured datasets. We investigated using Google’s Freebase Search API to search for Freebase
entities and PubMed’s MeSH query annotations to annotate MeSH entities. Neither was signif-
icantly better than Indri search or TagMe annotation. Thus, we only report results with public
solutions.

Google’s FACC1 dataset provided annotations of Freebase entities in ClueWeb docu-
ments7 [39]. The OHSUMED dataset contains MeSH annotations for each document. Docu-
ment annotation (AnnD) entities are generated by first retrieving documents from the ClueWeb
or OHSUMED corpus, and then using the RM3 relevance model [54] to select annotated entities

5https://developers.google.com/freebase/data
6http://www.nlm.nih.gov/mesh/filelist.html
7http://lemurproject.org/clueweb09/

40



Table 3.8: Query-Entity and Entity-Document Features. ‘Web’ and ‘Medical’ list the feature
dimensions in each corpus. ‘Field combinations’ refers to combinations of an entity’s and a
document’s fields. An entity’s fields include name, alias, description, query minus name, query
minus alias, and query minus description. ClueWeb documents (for Fb) contain title, body and
inlink fields. OSHUMED documents (for MeSH) contain title and body fields.

Query-Entity Feature Web Medical
Score from Query Annotation 1 1

Score from Entity Search 1 1
Score from Document Annotation 1 1

Language model of entity’s description 1 1
SDM of entity’s description 1 1
BM25 of entity’s description 1 1

Coordinate match of entity’s text fields 3 3
Top 3 categories overlap 1 1

Entity’s idf in corpus’s annotation 1 1
Similarity with other entities 2 2

Total Dimensions 13 13
Entity-Document Feature Web Medical

Language model of field combinations 18 12
SDM of field combinations 18 12

Cosine correlation of field combinations 18 12
Coordinate match of field combinations 18 12

BM25 of field combinations 18 12
Top 3 cateogories overlap 1 1
Is annotated to document 1 1

Connected in graph at 1,2 hop 2 0
Total Dimensions 94 62

from these documents.
Thus, the experiments consider query annotation (EsdRank-AnnQ), entity search

(EsdRank-Osrch) and document annotation (EsdRank-AnnD) methods to select related en-
tities.

Feature Extraction. We extract features described in Section 3.2.1.3. Our feature lists are
shown in Tables 3.8–3.9.

For entity-document text similarity features, each entity field is dynamically expanded with
a virtual field that contains any query terms that the field does not contain. For example, given
an entity with name ‘Barack Obama’ and query ‘Obama family tree’, the text ‘family tree’ is
added to the entity as a virtual field called ‘query minus name’. Similar expansion is performed
for ‘query minus alias’ and ‘query minus description’ fields. As a result, Latent-ListMLE also
knows which part of the query is not covered by an entity. This group of features is very important
for long queries, in order to make sure documents only related to a small fraction of the query
are not promoted too much.

41



Table 3.9: Query-Document and document quality features used by EsdRank and learning to
rank baselines. ‘Web’ and ‘Medical’ indicate the number of features in each corpus.

Feature Web Medical
Language model of doc’s fields 3 2

SDM of doc’s fields 3 2
Cosine correlation of doc’s fields 3 2
Coordinate match of doc’s fields 3 2

BM25 of doc’s fields 3 2
Spam Score 1 0

Number of inlinks 1 0
Stop word fraction 1 1

URL length 1 0
Document length 1 1

Is Wikipedia 1 0
Total Dimensions 21 12

The ontology features use the linear multiclass SVM implementation of SVMLight [48] as
the classifier. The Freebase classes are the 100 most frequent (in the FACC1 annotation) bottom
categories in Freebase’s two-level ontology tree. The classes for MeSH are all of the top level
categories in MeSH’s ontology. The training data is the descriptions of entities in each class.
Entities are classified by their descriptions. Documents are classified by their texts. Queries are
classified using voting by the top 100 documents that Indri retrieves for them [16]. The accuracy
of Multiclass SVM in cross-validating on training data is above 70%.

The graph connection features between Freebase entities and ClueWeb documents are calcu-
lated using Freebase’s knowledge graph. We treat all edges the same, leaving further exploration
of edge type to future work. We only use the reachable at zero hop for OHSUMED, that is
whether the MeSH term is annotated to the document.

Evaluation Metrics. We use ERR@20 and NDCG@20, which are the main evaluation
metrics in the TREC Web Track ad hoc task. Besides these two metrics that focus on the top
part of the ranking, we also use MAP@100, which considers the quality over the entire reranked
section.

Statistical Significance was tested by the permutation test (Fisher’s randomization test) with
p-value < 0.05, which is a common choice in IR tasks.

Hyper-Parameters and Training. We follow standards in prior work to set hyper-
parameters. The number of documents retrieved and re-ranked is set to 100. The same set of
documents is used to generate document annotation AnnD. All supervised ranking models are
evaluated on the testing folds in 10-fold cross validation. Cross-validation partitioning is done
randomly and kept the same for all experiments. To suppress the local optima problem, in each
cross-validation fold Latent-ListMLE is trained ten times with random initialization. The train-
ing result with the largest likelihood on training data is used for testing. In order to maintain
reasonable ranking efficiency and avoid too many noisy entities, the number of related entities
from AnnD and Osrch are restricted to at most 3. This restriction does not change AnnQ as

42



none of our queries has more than 3 annotations.
Baselines. The first baseline is the Sequential Dependency Model (SDM) [70] approach which

is widely recognized as a strong baseline. For ClueWeb datasets, we find that Dalton et al’s SDM
results obtained with Galago8 are stronger than our SDM results obtained with Indri, thus we
use their SDM results as a baseline. We also use EQFE rankings provided by them as the second
baseline on ClueWeb data sets. On OHSUMED, we use the Indri query language to obtain SDM
results. EQFE is not included for OHSUMED as it is specially designed for knowledge bases.
The third and fourth baselines are two state-of-the-art learning to rank baselines: RankSVM
(pairwise) [49] and ListMLE (listwise) [96]. Their features are shown in Table 3.9 and are
trained and tested exactly the same as EsdRank.

Three of our baseline algorithms were used widely in prior research; the fourth (EQFE) is
included because it has important similarities to EsdRank. We could have included other methods
that use external data, for example, Wikipedia for query expansion [15, 105], Wikipedia as one
resource for query formulations [10], and MeSH as an alternate document representation [66].
These methods mainly focus on using external data to better represent the query; they rank
documents with unsupervised retrieval models. In recent TREC evaluations, supervised LeToR
systems that use rich ranking features have shown much stronger performance than unsupervised
retrieval systems. Thus, we mainly compare with LeToR models with document ranking features,
e.g., those in Table 3.9, which we believe are the strongest baselines available now.

3.2.3 Evaluation Results
This section first presents experimental results about EsdRank’s overall accuracy. Then it in-
vestigates the effectiveness of our Latent-ListMLE model, together with the influence of
related entity quality on EsdRank’s performance.

3.2.3.1 Overall Performance

Tables 3.10a, 3.10b, and 3.10c show the retrieval accuracy of several baseline methods and three
versions of EsdRank on ClueWeb09, ClueWeb12, and OHSUMED datasets. The three variants
of EsdRank differ only in how related entities are selected. †, ‡, § and ¶ indicate statistical
significance over SDM, RankSVM, ListMLE and EQFE. The change relative to ListMLE is
shown in parentheses. Win/Tie/Loss is the number of queries improved, unchanged or dam-
aged as compared to ListMLE by ERR@20. The best performing method according to each
evaluation metric is marked bold.

On all three data sets, the best EsdRank methods outperform all baselines on all metrics.
The gain over ListMLE varies from 3.33% (OHSUMED, MAP@100) to 21.85% (ClueWeb09,
ERR@20), with 5–7% being typical. We note that ListMLE is a very strong baseline; there is
little prior work that provides statistically significant gains of this magnitude over ListMLE on
the ClueWeb datasets. These improvements show the effectiveness of external data in ranking,
which is EsdRank’s only difference with ListMLE.

On ClueWeb data sets, all three versions of EsdRank outperform EQFE, and the best per-
forming version improves over EQFE by 10%-30%. Both EQFE and EsdRank use Freebase

8http://ciir.cs.umass.edu/downloads/eqfe/runs/

43



Table 3.10: Performance of EsdRank. AnnQ, Osrch and AnnD refer to the entity selection
methods: Query annotation, entity search and document annotation. Relative changes compared
to ListMLE are shown in parentheses. Win/Tie/Loss is the number of queries improved, un-
changed or hurt, compared to ListMLE. †, ‡, § and ¶ show statistic significance over SDM†,
RankSVM‡, ListMLE§ and EQFE¶. The best method for each evaluation metric is marked
bold. SDM scores are from Dalton et al. [31] which is a highly-tuned Galago implementation and
performs better than Indri’s SDM in Table 3.2.

(a) ClueWeb09

Method MAP@100 NDCG@20 ERR@20 Win/Tie/Loss
SDM 0.375 0.214 0.135 (−13.52%) 75/30/95
EQFE 0.364 0.213 0.139 (−11.21%) 77/27/96
RankSVM 0.352† 0.193† 0.147 (−6.10%) 59/37/104
ListMLE 0.410†,‡,¶ 0.221†,‡ 0.156† – –
EsdRank-AnnQ 0.437†,‡,§,¶ 0.237†,‡,§,¶ 0.190†,‡,§,¶ (21.85%) 88/42/70
EsdRank-Osrch 0.397†,‡,¶ 0.219†,‡ 0.155† (−0.75%) 71/47/82
EsdRank-AnnD 0.403†,‡,¶ 0.221†,‡ 0.167†,¶ (6.70%) 75/36/89

(b) ClueWeb12

Method MAP@100 NDCG@20 ERR@20 Win/Tie/Loss
SDM 0.293 0.126 0.091 (−25.66%) 18/7/25
EQFE 0.319 0.146† 0.106 (−13.61%) 17/7/26
RankSVM 0.383† 0.161† 0.114 (−7.48%) 16/13/21
ListMLE 0.397†,¶ 0.174†,¶ 0.123† – –
EsdRank-AnnQ 0.410†,¶ 0.181†,¶ 0.133†,‡,§,¶ (8.39%) 20/12/18
EsdRank-Osrch 0.391†,¶ 0.167† 0.121† (−1.26%) 22/10/18
EsdRank-AnnD 0.440†,‡,§,¶ 0.186†,‡,§,¶ 0.132†,¶ (7.67%) 24/14/12

(c) OHSUMED

Method MAP@100 NDCG@20 ERR@20 Win/Tie/Loss
SDM 0.413 0.332 0.453 (−6.14%) 38/11/57
RankSVM 0.396 0.336 0.453 (−6.12%) 43/14/49
ListMLE 0.414 0.343 0.483 – –
EsdRank-AnnQ 0.428‡,§ 0.355†,‡,§ 0.511†,‡,§ (5.77%) 56/16/34
EsdRank-Osrch 0.427‡,§ 0.347 0.489‡ (1.29%) 44/17/45
EsdRank-AnnD 0.416 0.342 0.500†,‡ (3.59%) 44/20/42

as external data and learning to rank models to rank documents. The features between query
and entity in EsdRank are very similar with those used in EQFE. Why does EsdRank perform
better than EQFE?

One difference is in the entity-document features. EQFE uses the language model or SDM
score between an entity’s textual fields and the whole document to connect the entity to the

44



document, while EsdRank uses a much larger feature set (Table 3.8). The entity-document
features in Table 3.8 provide multiple different views of entity-document relevancy, which has
been shown very effective in LeToR research [59]. More entity-document features also better
propagate document relevance judgments to latent entities in Latent-ListMLE’s EM training
procedure, and help it learn better weights for query-entity features. We have tried EsdRank
with only language model scores between an entity’s textual fields and the document as entity-
document features, however, results with this smaller feature set are no better than EQFE. In
Section 3.2.3.2, our second experiment also shows that our Latent-ListMLEmodel is another
essential factor for EsdRank’s performance with its ability to handle features in the two parts
properly.

On ClueWeb09 and OHSUMED, query annotation (EsdRank-AnnQ) performs the best
with statistically significant improvements on almost all evaluations over all baselines, indi-
cating query annotation is still the most effective in finding reliable entities. On ClueWeb12,
EsdRank-AnnQ also outperforms all baselines, although less statistical significance is observed
due to fewer training queries (only 50). It is interesting to see that EsdRank-AnnD performs
better than EsdRank-AnnQ on ClueWeb12. This is consistent with results of EQFE [31], show-
ing that FACC1 annotation might be of better quality for ClueWeb12 queries than ClueWeb09
queries. EsdRank-Osrch performs the worst on all three data sets. The reason is that en-
tity search provides related entities that might be textually similar to the query, but are actually
noise. The ranking models designed to rank document use assumptions that may not be suitable
for entities, leaving room for improvement in future research.

The different effectiveness of EsdRankwith different related entity selection methods shows
the importance of related entity quality. It is also well recognized as one of the most essential
factors in determining the usefulness of external data in prior research [20, 32, 62] (Section 3.1).
In Section 3.2.3.3, our third experiment studies the correlation between related entities’ quality
and EsdRank’s performance.

3.2.3.2 Effectiveness of Latent-ListMLE

To investigate the effectiveness of Latent-ListMLE, in this experiment, we compare it with
ListMLE, using the same external evidence, but with features generated by feature engineering
techniques similar to those in Dalton et al. [31].

Formally, for each query q and document di pair, we have entities {e1, ..., ej, ..., em}, query-
entity features V = {v1, ..., vj, ...., vm} and entity-document featuresUi = {ui1, ..., uij, ...., uim}.
Let |u| and |v| be the feature dimensions for query-entity features and entity-document features.
We generate |u| × |v| features xi = {xi(1, 1), ..., xi(k1, k2), ..., xi(|u|, |v|)} by enumerating all
combination of features in Ui and V . The combination of k1-th feature in V and k2-th feature
Ui is defined as: xi(k1, k2) =

∑
j vj(k1) × uij(k2), the summation of corresponding features

over all possible related entities. One may notice that if we only use language model scores as
entity-document features, this set up is exactly the same as EQFE. We name these ‘flat’ features
in comparison with Latent-ListMLE’s latent space model.

We put these ‘flat’ features into ListMLE and use the same training-testing procedure to
evaluate them on our datasets. Evaluation results are shown in Table 3.11. ListMLE-AnnQ,
ListMLE-Osrch and ListMLE-AnnD refer to the flat model with features from related en-

45



Table 3.11: Performance of ListMLE with flat features derived from external data. AnnQ,
Osrch and AnnD refer to entity selection methods: Query annotation, entity search and docu-
ment annotation. Relative changes and Win/Tie/Loss are compared to ListMLE. O and H in-
dicate statistic significantly weaker performance compared to ListMLE and EsdRank (which
uses the same information but Latent-ListMLE).

(a) ClueWeb09

Method MAP@100 NDCG@20 ERR@20
ListMLE-AnnQ 0.389H (−4.96%) 0.208H (−5.88%) 0.170H (8.99%)
ListMLE-Osrch 0.331O,H (−19.33%) 0.168O,H (−23.79%) 0.127O,H (−18.34%)
ListMLE-AnnD 0.357O,H (−12.79%) 0.197O,H (−10.63%) 0.155 (−0.61%)

(b) ClueWeb12

Method MAP@100 NDCG@20 ERR@20
ListMLE-AnnQ 0.355H (−10.71%) 0.137O,H (−21.04%) 0.098O,H (−20.37%)
ListMLE-Osrch 0.368 (−7.43%) 0.154 (−11.32%) 0.105 (−14.39%)
ListMLE-AnnD 0.337O,H (−15.06%) 0.149O,H (−14.38%) 0.098O,H (−20.65%)

(c) OSHUMED

Method MAP@100 NDCG@20 ERR@20
ListMLE-AnnQ 0.388O,H (−6.13%) 0.323O,H (−5.64%) 0.444O,H (−7.94%)
ListMLE-Osrch 0.400H (−3.37%) 0.323O,H (−5.58%) 0.445O,H (−7.84%)
ListMLE-AnnD 0.397O,H (−4.12%) 0.339 (−1.14%) 0.494 (2.43%)

tities selected by query annotation, entity search and document annotation respectively. Relative
performance (in brackets) and Win/Tie/loss values are compared with ListMLE, which uses
the same model but query-document features. O indicates significantly worse performance than
ListMLE in the permutation test (p < 0.05). H indicates significantly worse performance com-
pared to the corresponding version of EsdRank. For example, ListMLE-AnnQ is significantly
worse than EsdRank-AnnQ if marked by H.

Most times these flat features hurt performance, with significant drops compared to
ListMLE and corresponding EsdRank versions. Even on ClueWeb09, where the most training
data is available, it is typical for flat features to perform more than 10% worse than EsdRank.
These results demonstrate the advantage of using a latent space learning to rank model instead of
a flat model to handle external evidence: By modeling related entities as hidden variables in la-
tent space, Latent-ListMLE naturally separates query-entity and entity-document evidence,
and uses the EM algorithm to propagate document level training data to the entity level. As a
result, Latent-ListMLE avoids feature explosion or confusing machine learning algorithms
with highly correlated features, while still only requiring document relevance judgments.

46



Table 3.12: The performances of EsdRank’s variants when they agree or differ with other vari-
ants, combined from three data sets. ‘Agree’ is defined by at least one overlap in related entities.
Relative gain, Win/Tie/Loss and statistical significance § are compared with ListMLE on cor-
responding queries. The best relative gains for each variant are marked bold.

(a) EsdRank-AnnQ

Versus Group MAP@100 NDCG@20 ERR@20 Win/Tie/Loss

AnnD
Agree 0.541§ (14.80%) 0.299§ (12.89%) 0.254§ (24.18%) 54/14/26
Differ 0.390 (0.90%) 0.252 (2.45%) 0.286§ (8.14%) 110/56/96

Osrch
Agree 0.495§ (7.10%) 0.328§ (6.69%) 0.347§ (7.53%) 74/17/39
Differ 0.393 (3.75%) 0.227§ (4.28%) 0.238§ (15.31%) 90/53/83

(b) EsdRank-Osrch

Versus Group MAP@100 NDCG@20 ERR@20 Win/Tie/Loss

AnnD
Agree 0.490 (1.81%) 0.287 (1.66%) 0.210 (0.08%) 29/9/21
Differ 0.388 (−1.70%) 0.243 (−0.56%) 0.258 (0.45%) 108/65/124

AnnQ
Agree 0.482§ (4.41%) 0.320§ (4.02%) 0.340§ (5.37%) 72/16/42
Differ 0.361 (−4.81%) 0.210 (−3.53%) 0.198 (−4.08%) 65/58/103

(c) EsdRank-AnnD

Versus Group MAP@100 NDCG@20 ERR@20 Win/Tie/Loss

Osrch
Agree 0.504 (4.71%) 0.292 (3.49%) 0.233§ (11.41%) 30/7/22
Differ 0.394 (−0.28%) 0.244 (0.09%) 0.267 (3.92%) 113/63/121

AnnQ
Agree 0.527§ (11.69%) 0.285§ (7.74%) 0.248§ (21.19%) 50/12/32
Differ 0.371 (−4.12%) 0.241 (−1.99%) 0.266 (0.47%) 93/58/111

3.2.3.3 Influence of Related Entity Quality

Prior research [20, 32, 62] (Section 3.1) and our evaluation results on EsdRank with different
related entities all indicate the great influence of selected entities’ quality on ranking accuracy.
The third experiment further studies its influence on EsdRank’s performance. Although directly
measuring the quality is hard due to the lack of entity level labels, we can indirectly characterize
the quality by comparing the related entities selected by different methods, with the hypothesis
that entities selected by multiple entity selectors are more likely to have higher quality.

For each variant of EsdRank, queries were divided into two groups (Agree, Differ)
based on whether the query had at least one related entity in common with another variant.
The two groups were compared using the same methodology reported earlier. The results are
summarized in Table 3.12. Each row is the performance of one variant (first column), divided
by overlaps with another variant (second column). Relative gains, Win/Tie/Loss, and statistical
significance (§) are calculated based on comparison with ListMLE. Results for ClueWeb09,
ClueWeb12, and OSHUMED queries are combined because their trends are similar.

The two groups clearly perform differently. On queries with common entities (Agree),
EsdRank is much more effective. For example, when the less effective AnnD and Osrch entity

47



selectors agree with the more effective AnnQ selector, they both outperform ListMLE with
statistical significance. When they differ, they may be worse than ListMLE. Although AnnQ
is the most effective individual method, its performance is further improved when it agrees with
AnnD, outperforming ListMLE by more than 10% on all metrics. This level of improvement is
close to the gains reported by Liu et al. [62] with manual query annotations.

The results also show that EsdRank behaves predictably. When simple entity selectors
agree, EsdRank is more likely to improve retrieval quality; when they disagree, the search
engine can simply retreat to ListMLE.

Finding related entities for query and document is still an open problem in the literature.
In the SIGIR ERD’14 workshop [20], many teams built their query annotators upon TagMe
and obtained about 60% accuracy. It is still not clear how to adapt full-text retrieval models
to perform better entity search. Document annotation can be done with very high precision
but there is still room to improve recall, even on the widely used Google FACC1 annotations.
Some prior research questions whether current Freebase query annotation is too noisy to be use-
ful [32, 62]. With the help of features between query, entity and document, Latent-ListMLE
is able to improve retrieval accuracy even when entity selection is noisy. As researchers im-
prove the quality of entity search and annotation, producing less noisy entities, we would expect
Latent-ListMLE’s ranking accuracy to improve further.

3.2.4 EsdRank Summary
EsdRank is a general method of using external semi-structured data in modern LeToR systems.
It uses objects from external data, which are entities in this work but can also be words, as
an interlingua between query and documents. Query-entity and entity-document relationships
are expressed as features. Latent-ListMLE treats entities as latent layers between query and
document, and learns how to use evidence between query, entities and documents in one unified
procedure. This general method can be applied to a variety of semi-structured resources, and is
easily trained using ordinary query-document relevance judgments.

Experiments with two rather different types of knowledge graphs – a classic controlled vo-
cabulary and a modern general domain knowledge graph – and three well-known datasets show
that EsdRank provides statistically significant improvements over several state-of-the-art ranking
baselines.

Experiments with the single-layer LeToR model, which uses exactly the same information
but expressed by ‘flat’ features, show much weaker performance than Latent-ListMLE. This
result confirms the advantage of separating evidence about query-entity and entity-document
relationships with the latent space, instead of mixing them together. The single-layer approach
may result in a large and highly correlated feature space, which is hard for machine learning
models to deal with.

Finding related entities for query and documents is an important step for using external data in
ranking. EsdRank is tested with three popular related entity selection methods: query annotation,
entity search, and document annotation. The evaluation results demonstrate the essential effect of
related entity quality on ranking accuracy, and suggest that query annotation is the most reliable
source for related entities. Section 3.3 further discusses our work in finding related information
from knowledge graphs for queries with entity search.

48



3.3 Learning to Rank Related Entities
Previous studies in this chapter demonstrate the influence of related entities’ quality to knowledge
based information retrieval systems’ performance. However, entity linking and entity search are
both on-going research topics themselves. There is a huge room to improve in both techniques
in order to acquire better entities to represent query.

This section presents our research about using entity search to find better related entities9.
Prior state-of-the-arts represent each entity as a structured document by grouping RDF triples
of an entity in knowledge base into fields [3, 112] or a tree [64]. Then entities can be retrieved
by conventional document retrieval algorithms such as BM25, query likelihood, or sequential
dependency models. However, the problem is far from solved. The current P@10 of prior state-
of-the-art [112] is at most 25%, introducing much noise to our ranking systems. This work
studies whether it is possible to utilize supervision to improve entity search accuracy. We rep-
resent entities following the previous state-of-the-art’s multi-field representations [112], extract
text similarity features for query-entity pairs, and use learning to rank models trained on entity
level relevance judgments to rank entities.

Experimental results on an entity search test collection based on DBpedia [3] confirm that
learning to rank is as powerful for entity ranking as for document ranking, and significantly
improves the previous state-of-the-art. The results also indicate that learning to rank models
with text similarity features are especially effective on keyword queries.

3.3.1 Related Work in Entity Search
Ad-hoc entity search was originally a task widely studied in the semantic web community, and
recently draws attentions from information retrieval researchers as knowledge bases became pop-
ular. A major challenge discovered in previous entity search research is how to represent the enti-
ties. In knowledge bases, there are many kinds of information available for each entity, stored by
RDF triples with different types of predicates. Recently Neumayer et al. found it more effective
to just group the facts into two fields: title (name) and content (all others), and use standard field
based document retrieval models such as BM25F and fielded language model [74]. Balog and
Neumayer later produced a test collection that combines various previous entity search bench-
marks, with different search tasks including single entity retrieval, entity list retrieval, and natural
language question answering [3]. They also provide thorough experimental studies of baselines.
Their experiment results demonstrate that in ad-hoc entity search, it is effective to combine en-
tities’ facts into fields of virtual documents, treat entity search as a document retrieval problem,
and apply field based document retrieval models.

More recently, Zhiltsov et al. introduce the widely used fielded sequential dependence model
(FSDM) to entity search [112]. They combine entities’ facts into five manually defined fields.
The five-fielded representation groups entities’ RDF triples more structurally than only using a
name field and a body field, and is also not too complex for learning to rank models to learn.

9 Jing Chen, Chenyan Xiong, and Jamie Callan. An Empirical Study of Learning to Rank for Entity Search.
In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 2016) [22]. This work was done by collaborating with Jing Chen, a master student in MIIS
program, through her first semester Directed Study, which I co-advised.

49



FSDM achieves the state-of-the-arts with FSDM on multiple entity search benchmarks, espe-
cially on keyword queries [112]. On natural language question queries, Lu et al. shows that it
is more effective to keep the original graph structure of knowledge bases as question queries are
more complex than short keyword queries [64]. They parse the question into a tree structure,
and finds the answer by mapping the parsed question tree to entity’s facts, very similar to knowl-
edge based question-answer technique (OpenQA) [6, 107]. As our focus is more on keyword
queries, this work follows ad-hoc entity search methods [3, 112] and introduces the widely used
and effective learning to rank techniques from document ranking to entity search.

Another related work is Schuhmacher et al. [85], in which the authors propose a new task of
ranking entities specially for web queries, from web search’s point of view. They use learning
to rank model to rank the entities that are annotated to top retrieved documents for a web query,
instead of retrieving entities directly from the knowledge base. In this way, it is not directly
comparable with prior work about entity search.

3.3.2 Learning to Rank Entities

The first question in entity search is how to represent entities. We follow Zhiltsov et al. [112]
and group RDF triples into five fields: Name, which contains the entity’s names; Cat, which
contains its categories; Attr, which contains all attributes except name; RelEn, which includes
the names of its neighbor entities; and SimEn, which contains its aliases. We only include RDF
triples whose predicates are among the top 1,000 most frequent in DBpedia in the fields [3].

In state-of-the-art learning to rank systems for document ranking, most features are the
scores of common unsupervised ranking algorithms applied to different document representa-
tions (fields). The different ranking algorithms and representations provide different views of the
relevance of the document to the query. The multiple perspectives represented by these features
are the backbone of any learning to rank system.

This approach can be applied to entity search by extracting features for query-entity pairs.
We use the following ranking algorithms on each of an entity’s five fields: Language model
with Dirichlet smoothing (µ = 2500), BM25 (default parameters), coordinate match,
cosine correlation, and sequential dependency model (SDM). We also in-
clude Zhiltsov et al’s. [112] fielded sequential dependency model (FSDM)
score for the full document as a feature. As a result, there are in total 26 features as listed in
Table 3.14.

With features extracted for all query-entity pairs, all learning to rank models developed
for ranking documents can be used to rank entities. We use two widely-used LeToR models:
RankSVM, which is an SVM-based pairwise method, and Coordinate Accent, which is a
gradient-based listwise method that directly optimizes mean average precision (MAP). Both of
these LeToR algorithms are robust and effective on a variety of datasets.

3.3.3 Experimental Methodology

This section describes our experiment methodology in studying the effectiveness of learning to
rank in entity search.

50



Table 3.13: Entity Search Query Sets.

Query Set Queries Search Task
SemSearch ES 130 Retrieve one entity
ListSearch 115 Retrieve a list of entities
INEX-LD 100 Mixed keyword queries
QALD-2 140 Natural language questions

Table 3.14: Query-Entity features used in Learning to Rank Entity.

Features Dimension
FSDM 1

SDM on all fields 5
BM25 on all fields 5

Language model on all fields 5
Coordinate match on all fields 5

Cosine on all fields 5

Dataset: Our experiments are conducted on the entity search test collection provided by
Balog and Neumayer [3], which others also have used for research on entity retrieval [64, 112].
The dataset has 485 queries with relevance judgments on entities from DBpedia version 3.7.
These queries come from seven previous competitions and are merged into four groups based on
their search tasks [112]. Table 3.13 lists the four query groups used in our experiments.

Base Retrieval Model: We use the fielded sequential dependency model
(FSDM) as the base retrieval model to enable direct comparison to prior work [112]. All learning
to rank methods are used to rerank the top 100 entities per query retrieved by FSDM, as provided
by Zhiltov et al. [112].

Ranking Models: RankSVM implementation is provided by SVMLight toolkit10.
Coordinate Ascent implementation is provided by RankLib11. Both methods are trained
and tested using five fold cross validation. We use linear kernel in RankSVM. For each fold,
hyper-parameters are selected by another five fold cross validation on the training partitions
only. The ‘c’ of RankSVM is selected from range 1 − 100 using step size of 1. The number of
random restarts and iterations of Coordinate Ascent are selected from range 1 − 10 and
10− 50 respectively using step size of 1.

Baselines: The main baseline is FSDM, the state-of-the-art for the benchmark dataset [112].
We also include SDM-CA and MLM-CA results as they perform well in this test collection [112].

Evaluation Metrics: All methods are evaluated by MAP@100, P@10, and P@20 following
previous work [112]. We also report NDCG@20 because it provides more details. Statistical
significance tests are performed by Fisher Randomization (permutation) tests with p < 0.05.

10https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
11http://sourceforge.net/p/lemur/wiki/RankLib/

51

https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
http://sourceforge.net/p/lemur/wiki/RankLib/


Figure 3.2: Query level relative performance in four query groups. X-axis lists all queries,
ordered by relative performance. Y-axis is the relative performance of RankSVM comparing
with FSDM in NDCG@20. Positive value indicates improvement and negative value indicates
loss.

3.3.4 Evaluation Results

We first present experimental results for learning to rank on entity search. Then we provide
analysis of the importance of features and fields, and the influence of different query tasks on
LeToR models.

3.3.4.1 Overall Performance

The ranking performances of learning to rank models are listed in Table 3.15. We present results
separately for each query group and also combine the query groups together, shown in the All
section of Table 3.15. Relative performances over FSDM are shown in parenthesis. †, ‡, § indicate
statistical significance over SDM-CA, MLM-CA, and FSDM respectively. The best performing
method for each metric is marked bold. Win/Tie/Loss are the number of queries improved,
unchanged and hurt, also compared with FSDM.

The results demonstrate the power of learning to rank for entity search. On all query sets and
all evaluation metrics, both learning methods outperform FSDM, defining a new state-of-the-art in
entity search. The overall improvements on all queries can be as large as 8%. On SemSearch
ES, ListSearch and INEX-LD, where the queries are keyword queries like ‘Charles Dar-
win’, LeToR methods show significant improvements over FSDM. However, on QALD-2, whose
queries are questions such as ‘Who created Wikipedia’, simple text similarity features are not as
strong.

Similar trends are also found in individual query performances. Figure 3.2 compares the
best learning method, RankSVM, with FSDM at each query. The x-axis lists all queries, ordered
by relative performance. The y-axis is the relative performance of RankSVM over FSDM on
NDCG@20. On keyword queries more than half queries are improved while only about a quarter
of queries are hurt. On questions (QALD-2), about the same number of queries are improved
and hurt. A more effective method of handling natural question queries is developed recently by
Lu et al. in which queries are parsed using question-answering techniques [64]. That method
achieves 0.25 in P@10, but performs worse than FSDM on keyword queries. Section 3.3.4.3
further studies the influence of query types on entity-ranking accuracy.

52



Table 3.15: Performance of learning to rank methods on entity search. Relative improvements
over FSDM are shown in parentheses. Win/Tie/Loss show the number of queries improved, un-
changed and hurt, comparing with FSDM. All section combines the evaluation results of the
other four sections. †, ‡, § indicate statistical significance over SDM-CA, MLM-CA, and FSDM
respectively. The best method for each metric is marked bold.

SemSearch ES
MAP@100 P@10 P@20 NDCG@20 Win/Tie/Loss

SDM-CA 0.254 0.202 0.148 0.355 (-29.5%) 26/15/89
MLM-CA 0.320† 0.250† 0.178† 0.443† (-12.0%) 30/32/68
FSDM 0.386†‡ 0.286†‡ 0.203†‡ 0.503†‡ - -
RankSVM 0.410†‡§ 0.304†‡§ 0.213†‡§ 0.527†‡§ (+4.7%) 65/27/38
Coor-Ascent 0.396†‡ 0.295†‡ 0.206†‡ 0.511†‡ (+1.5%) 48/32/50

ListSearch
MAP@100 P@10 P@20 NDCG@20 Win/Tie/Loss

SDM-CA 0.197 0.252 0.202 0.296 (+1.7%) 55/23/37
MLM-CA 0.190 0.252 0.192 0.275 (-5.3%) 39/28/48
FSDM 0.203 0.256 0.203 0.291 - -
RankSVM 0.224†‡§ 0.303†‡§ 0.235†‡§ 0.332†‡§ (+14.3%) 61/23/31
Coor-Ascent 0.225†‡§ 0.300†‡§ 0.229†‡§ 0.328†‡§ (+12.9%) 62/21/32

INEX-LD
MAP@100 P@10 P@20 NDCG@20 Win/Tie/Loss

SDM-CA 0.117‡ 0.258 0.199 0.284 (-0.9%) 43/7/50
MLM-CA 0.102 0.238 0.190 0.261 (-8.8%) 34/13/53
FSDM 0.111‡ 0.263‡ 0.214†‡ 0.287‡ - -
RankSVM 0.126‡§ 0.282‡ 0.231†‡§ 0.317†‡§ (+10.6%) 55/9/36
Coor-Ascent 0.121‡§ 0.275‡ 0.224†‡ 0.306†‡§ (+6.7%) 53/7/40

QALD-2
MAP@100 P@10 P@20 NDCG@20 Win/Tie/Loss

SDM-CA 0.184 0.106 0.090 0.244‡ (-6.8%) 36/66/38
MLM-CA 0.152 0.103 0.084 0.206 (-21.3%) 17/78/45
FSDM 0.195‡ 0.136†‡ 0.111‡ 0.262‡ - -
RankSVM 0.197‡ 0.136†‡ 0.113†‡ 0.266‡ (+1.6%) 31/74/35
Coor-Ascent 0.208‡ 0.141†‡ 0.115†‡ 0.278‡ (+5.9%) 40/71/29

All
MAP@100 P@10 P@20 NDCG@20 Win/Tie/Loss

SDM-CA 0.192 0.198 0.155 0.294 (-13.1%) 160/111/214
MLM-CA 0.196 0.206 0.157 0.297 (-12.1%) 120/151/214
FSDM 0.231†‡ 0.231†‡ 0.179†‡ 0.339†‡ - -
RankSVM 0.246†‡§ 0.251†‡§ 0.193†‡§ 0.362†‡§ (+7.0%) 212/133/140
Coor-Ascent 0.245†‡§ 0.248†‡§ 0.189†‡§ 0.358†‡§ (+5.7%) 203/131/151

53



(a) Influence of fields

(b) Influence of feature groups

Figure 3.3: The contribution of fields and feature groups to RankSVM’s performance. X-axis
lists the fields or feature groups. Y-axis is the relative NDCG@20 difference between RankSVM
used with all fields or feature groups and without corresponding field or feature group. Larger
values indicate more contribution.

3.3.4.2 Field and Feature Study

The second experiment studies the contribution of fields and feature groups to learning to rank
models. For each field or feature group, we compare the accuracy of models when used without
field or features from that group to those with all features. The change in accuracy indicates
the contribution of the corresponding field or feature group. The field and feature studies for
RankSVM are shown in Figures 3.3a and 3.3b respectively. The x-axis is the field or feature
group studied. The y-axis is the performance difference between the two conditions (All versus
held out). Larger values indicate greater contributions. Figure 3.3a organizes features by the
fields they are extracted from, including Name, Cat, Attr, RelEn, and SimEn. Figure 3.3b
organizes features into five groups, with one retrieval model per group. SDM related contains
FSDM and SDM scores as they are very correlated.

Figure 3.3a shows that RankSVM favors different fields for different query sets. The Name
field is useful for ListSearch and QALD-2, but does not contribute much to the other two
query sets. RelEn provides the most gain to keyword queries, but is not useful at all for the
natural language question queries in QALD-2. For feature groups we find that SDM related
features are extremely important and provide the most gains across all query sets. This result is
expected because all of the queries are relatively long queries and often contain phrases, which
is where SDM is the most useful.

3.3.4.3 Query Type Differences

Previous experiments found that when different models are trained for different types of queries,
each model favors different types of evidence. However, in live query traffic different types of
queries are mixed together. The third experiment investigates the accuracy of a learning to rank
entities system in a more realistic setting. The four query sets are combined into one query set,

54



Table 3.16: Performance of learning to rank models when queries from different groups are all
trained and tested together. Relative performances and Win/Tie/Loss are compared with the same
model but trained and tested separately on each query group.

All Queries Mixed Together
MAP@100 P@10 P@20 NDCG@20 Win/Tie/Loss

RankSVM 0.234 0.238 0.185 0.347 (-4.3%) 153/136/196
Coor-Ascent 0.233 0.232 0.179 0.344 (-3.8%) 148/129/208

and new models are trained and tested using five fold cross validation as before.
Table 3.15 All shows the average accuracy when different models are trained for each of

the four types of query. Table 3.16 shows the accuracy when a single model is trained for all
types of queries. Despite being trained with more data, both learning to rank algorithms produce
less effective models for the diverse query set than for the four smaller, focused query sets.
Nonetheless, a single learned model is as accurate as the average accuracy of four carefully-
tuned, query-set-specific FSDM models.

This results suggests that diverse query streams may benefit from query classification and
type-specific entity ranking models. They may also benefit from new types of features or more
sophisticated ranking models.

3.3.5 Summary of Related Entities Finding
We use learning to rank models to improve entity search. Entities are represented by multi-
field documents constructed from RDF triples. How well a query matches an entity document
is estimated by text similarity features and a learned model. Experimental results on a standard
entity search test collection demonstrate the power of learning to rank in entity retrieval. Statis-
tically significant improvements over the previous state-of-the-art are observed on all evaluation
metrics. Further analysis reveals that query types play an important role in the effectiveness of
learned models. Text similarity features are very helpful for keyword queries, but less effective
with longer natural language question queries. Learned models for different query types favor
different entity fields because each query type targets different RDF predicates.

3.4 Summary
This chapter focuses on enriching the word-based representations of queries using knowledge
graphs. We presented several query expansion methods that select expansion terms from the
descriptions of retrieved entities and document annotations, using pseudo relevance feedback
and ontology similarities with the query. Then we developed the EsdRank approach to represent
query directly with entities, and a latent learning to rank model that jointly reasons about the
connection from query to query entities and document ranking. The experiments demonstrate
the effectiveness of our methods but also found the quality of related entities is a bottleneck of
the system performances. The last section provides a possible approach to improve related entity
finding using learning to rank methods.

55



The research presented in this chapter is from the first stage of this thesis research, when we
were exploring and proving the effectiveness of knowledge graphs in information retrieval tasks.
Thus the methods proposed mainly aim to improve the existing standard word-based retrieval
models. The next chapter presents a new entity-oriented search paradigm that directly constructs
entity-based text representations which leads to more intrinsic approaches to integrate and utilize
knowledge graph semantics in search.

56



Chapter 4

Entity-Based Text Representation

This chapter presents our entity-based text representations and ranking approaches with them.
Entities are more meaningful minimum language units than individual words: when reading a
document, we humans process the entity “Carnegie Mellon University” as one concept instead
of breaking it down to three individual words. The idea of representing texts by entities has been
widely used by controlled vocabulary based retrieval. However, it was challenging because of
the needs of expensive manual annotations and lack of coverage.

This chapter revisit this idea with large scale modern knowledge graphs and automatic entity
linking systems. It first constructs a bag-of-entities text representation using automatic entity
annotations—with careful studies of their precision, coverage, and applicability with standard
unsupervised retrieval models. Then it proceeds with leveraging the rich structural semantics in
knowledge graphs to perform soft matches in the entity-based representation space. In addition,
we also provide case studies on the needs, coverage, and effectiveness of our entity-based ranking
systems in the environment of an online academic search engine: Semantic Scholar.

In the rest of this chapter, Section 4.1 presents the bag-of-entities representation and the un-
supervised exact match retrieval models built upon it. Section 4.2 presents the Explicit Semantic
Ranking model that soft matches query and documents with using bag-of-entities as well as the
structured semantics associated with them.

4.1 Bag-of-Entities Representation

Recall that in the earliest information retrieval systems, query and documents were both repre-
sented by terms manually picked from predefined controlled vocabularies [83]. The controlled
vocabulary representation conveys clean and distilled information and can be ranked accurately
by simple methods. However, its usage is mainly limited to specific domains because manual
annotations are required and the scale of classic controlled vocabulary dataset is usually small.
Now that knowledge bases have grown to rather a large scale, and automatic entity annotation is
made possible by entity linking research [20], it is time to reconsider whether a pure entity based
representation can provide decent ranking performance.

This section presents a new bag-of-entities based representation for document ranking, as a

57



heritage of the classic controlled vocabulary based representation, but with the aid of modern
large scale knowledge graphs and automatic entity linking systems1. We represent queries and
documents by their bag-of-entities constructed from the annotations provided by three entity
linking systems: Google’s FACC1 [39] with high precision, CMNS [43] with high recall, and
TagMe [38] with balanced precision and recall. With the deeper text understanding provided by
entity linking, documents can be ranked by their overlap with the query in the entity space.

To investigate the effectiveness of bag-of-entities representations, we conducted experiments
with a state-of-the-art knowledge graph, Freebase, and two large scale web corpora, ClueWeb09-
B and ClueWeb12-B13, together with their queries from the TREC Web Track. Our evaluation
results first confirm that current entity linking systems can provide sufficient coverage over gen-
eral domain queries and documents. Then we compare bag-of-entities with bag-of-words in
standard document ranking tasks and demonstrate that although the accuracy of entity linking is
not perfect (about 50% − 60% on TREC Web Track queries), the ranking performance can be
improved by as much as 18% with bag-of-entities representations.

4.1.1 Bag-of-Entities

We construct bag-of-entities representations for query and documents using several entity link-
ing systems. When annotating texts, an entity linking system does not just match the n-grams
with entity names, but makes the decision jointly by also considering external evidence such
as the entity descriptions and relationships in the knowledge graph, and corpus statistics like
commonness, linked probability and contexts of entities. As a result, representing texts by enti-
ties naturally incorporates the semantics from the linking process: Entity synonyms are aligned,
polysemy in entity mentions is disambiguated, and global coherence between entities is incorpo-
rated.

We continue using Freebase as our choice of the knowledge graph, with which several entity
linking systems have been developed. This work explores the following three popular ones to
annotate query and documents with Freebase entities.

FACC1 is the Freebase annotation of TREC queries and ClueWeb corpora provided by
Google [39]. It aims to achieve high precision, which is believed to be around 80-85%, based on
a small-scale human evaluation2.

TagMe is a system [38] widely used in entity linking competitions [20] and in our previous
work (Section 3.2). It balances precision and recall, both at about 60% in various evaluations.

CMNS is an entity linking system that spots texts using surface forms from the FACC1 anno-
tation, and links all of them to their most frequently linked entities [43]. It achieves almost 100%
recall on some query entity linking datasets, but the precision may be lower than TagMe [43].

Given the annotations of a query or document, we construct its bag-of-entities vector ~Eq or
~Ed, in which each dimension ( ~Eq(e) or ~Ed(e)) refers to an entity e in Freebase, and its weight is
the frequency of that entity being annotated to the query or document.

Compared to the controlled vocabularies based retrieval, the bag-of-entities representation

1 Chenyan Xiong, Jamie Callan, and Tie-Yan Liu. Bag-of-Entities Representation for Ranking. In Proceedings
of the Second ACM SIGIR International Conference on the Theory of Information Retrieval (ICTIR 2016) [99].

2http://lemurproject.org/clueweb09/FACC1/

58

http://lemurproject.org/clueweb09/FACC1/


also uses entities as its basic information unit. As with controlled vocabulary terms, entities are
more informative than words. However, whereas in controlled vocabularies based retrieval, the
annotations were assigned manually, bag-of-entities used automatically linked entities, which is
more efficient but also more uncertain. With controlled vocabularies, simple ranking methods
such as Boolean retrieval work well, because the representation is clean and distilled [83], while
with bag-of-words perhaps more sophisticated ranking models are required. Given the heritage
to the classic controlled vocabulary based search systems, we start simple and use the following
two basic ranking models to study the power of bag-of-entities representations.

Coordinate Match (COOR) ranks a document by the number of query entities it contains:

fCOOR(q, d) =
∑

e: ~Eq(e)>0

1( ~Ed(e) > 0) (4.1)

Entity Frequency (EF) ranks document by the frequency of query entities in it:

fEF(q, d) =
∑

e: ~Eq(e)>0

~Eq(e) log( ~Ed(e)) (4.2)

fCOOR(q, d) and fEF(q, d) are the ranking scores of document d for query q using coordinate
match (COOR) and entity frequency (EF) respectively. 1(·) is the indicator function.

COOR performs Boolean retrieval, which is the most basic ranking method and often works
well with controlled vocabularies. EF studies the value of term frequency information, another
basis for document ranking. These simple models investigate basic properties of ranking with
bag-of-entities, and provide understanding and intuition for the future development of more ad-
vanced ranking models.

4.1.2 Experiment Methodology
This section provides details about our experiments to study the quality of annotations and the
effectiveness of bag-of-entities in ranking.

Dataset: Our experiments are conducted on TREC Web Track datasets. TREC Web Tracks
use two large web corpora: ClueWeb09 and ClueWeb12. We use the ClueWeb09-B and
ClueWeb12-B13 subsets. There are 200 queries with relevance judgments from TREC 2009-
2012 for ClueWeb09, and 100 queries in 2013-2014 for ClueWeb12. Manual annotations pro-
vided by Dalton et al. [31] and Liu et al. [61] are used as query annotation labels.

Indexing and Base Retrieval Model: We indexed both corpora with Indri. Default stem-
ming and stopword removal were used. Spam in ClueWeb09 was filtered using the default thresh-
old (70%) for Waterloo spam scores. Spam filtering was not used for ClueWeb12 because its
effectiveness is unclear. Indri language model with default Dirichlet smoothing (µ = 2500) was
used to retrieve 100 documents per query for the evaluation of entity linking and ranking. All
our methods re-rank the top 100 documents retrieved by the Indri language model.

Entity Linking Systems: We used TagMe software provided by Ferragina et al. [38] to
annotate queries and documents. It annotates text with Wikipedia entities. The same as in Sec-
tion 3.2, we aligned Wikipedia entities to Freebase entities using the Wikipedia ID field in Free-
base.

59



CMNS is implemented by ourselves, following Hasibi et al. [43]. The boundary overlaps of
surface forms are resolved by only linking the earliest and then the longest one [20, 43].

FACC1 entity annotations for ClueWeb documents are provided by Google [39]. They also
annotated ClueWeb09 queries’ intent descriptions, but not the queries. We used the descriptions’
annotations as approximations of queries’ annotations, and manually filtered out entities that did
not appear in the original queries to reduce disturbance. ClueWeb12’s queries are not annotated
by Google so we are only able to study FACC1 annotations on ClueWeb09.

Baselines: We used two standard unsupervised bag-of-words ranking models as baselines:
Indri’s unstructured language model (Lm) and sequential dependency model (SDM), both with
default parameters: µ = 2500 for Lm, and query weights (0.8, 0.1, 0.1) for SDM. Typically these
baselines do well in competitive evaluations such as TREC. There are better rankers, for example
learning to rank methods. However, methods that combine many sources of evidence usually
outperform methods that use a single source of evidence; such comparison would not reveal
much about the value of the bag-of-entities representation.

Compared to Section 3.1, the experimental settings in ClueWeb09-B are kept the same, ex-
cept that the relevance judgments are updated to the ‘category B’ setting in which only documents
in ClueWeb09-B are included in the TREC qrel file. This leads to slightly different ‘absolute’
scores for baselines. This section also uses Indri’s implementation as the SDM baseline, instead
of the highly-tuned Galago implementation from Dalton et al. [31]. More comparisons with the
Galago SDM implementation are presented in later sections.

There were three representations for ClueWeb09 (FACC1, TagMe and CMNS), and two for
ClueWeb12 (TagMe and CMNS). COOR and EF were used to re-rank the top 100 documents per
query retrieved by Lm. Ties were broken by Lm’s score.

Evaluation Metrics: The entity annotations were evaluated by the lean evaluation metric
from Hasibi et al. [43]. The ranking performance was evaluated by the TREC Web Track Ad-
hoc Task’s official evaluation metrics: ERR@20 and NDCG@20. Statistical significance was
tested by the Fisher randomization test (permutation test) with p < 0.05.

4.1.3 Evaluation Results
This section evaluates the accuracy and coverage of entity annotations and bag-of-entities’ per-
formance in ranking.

4.1.3.1 Annotation Accuracy and Coverage

Table 4.2 shows the precision, recall, and F1 of FACC1, TagMe, and CMNS on ClueWeb queries.
TagMe performs the best on ClueWeb09 queries with higher precision, while CMNS performs
better on ClueWeb12 queries. The ClueWeb09 queries are more ambiguous because they needed
to support the TREC Web Track’s Diversity task; TagMe’s disambiguation was more useful on
this set. ClueWeb12 queries needed to support risk minimization research, and have been shown
to be harder; both systems perform worse on them. FACC1 query annotation does not perform
well as its goal was to annotate the query’s description, not the query itself.

There is no gold standard entity annotation for ClueWeb documents, preventing a quantitative
evaluation. Nevertheless, our manual examination confirms that FACC1 has high precision;

60



Table 4.1: Coverage of annotations. Freq and Dens are the average number of entities linked
per query/document and per word respectively. Missed is the percentage of queries or docu-
ments that have no annotation at all. ClueWeb12 queries do not have FACC1 annotations as they
are published later than FACC1.

(a) ClueWeb09

Query Document
Freq Dens Missed Freq Dens Missed

FACC1 0.42 0.20 62% 15.95 0.13 30%
TagMe 1.54 0.70 1% 92.31 0.20 2%
CMNS 1.50 0.69 1% 252.41 0.55 0%

(b) ClueWeb12

Query Document
Freq Dens Missed Freq Dens Missed

FACC1 NA NA NA 24.52 0.06 26%
TagMe 1.77 0.57 0% 246.76 0.37 0%
CMNS 1.75 0.55 0% 324.37 0.48 0%

Table 4.2: Entity linking performance on ClueWeb queries. All methods are evaluated by
Precison, Recall and F1.

ClueWeb09 Query ClueWeb12 Query
Prec Rec F1 Prec Rec F1

FACC1 0.274 0.236 0.254 NA NA NA
TagMe 0.581 0.597 0.589 0.460 0.555 0.503
CMNS 0.577 0.596 0.587 0.485 0.575 0.526

TagMe performs a little better on documents with more contexts; and CMNS performs worse
than TagMe on documents as it only uses the surface forms.

One concern of controlled vocabulary based search systems is the low coverage on general
domain queries, restricting their usage mainly to specific domains. With the much larger scale
of current knowledge bases, it is interesting to study whether their coverage is sufficient to influ-
ence the majority of general domain queries. Table 4.1 shows the coverage results of our entity
annotations on ClueWeb queries and their top 100 retrieved documents. Freq and Dens are
the average number of entities linked per query/document, and per word respectively. Missed
is the percentage of queries/documents that have no linked entity. The results show that TagMe
and CMNS have good coverage on ClueWeb queries and documents. Almost all queries and
documents have at least one linked entity. The annotations are no longer sparse. There can be
up to 324 entities linked per documents on average. However, precision and coverage have not
been achieved together yet. FACC1 has the highest precision but provides very few entities per
document and misses many documents.

61



Table 4.3: Ranking performance of bag-of-entity based ranking models. FACC1, TagMe and
CMNS refer to the bag-of-entity representation constructed from corresponding annotations.
COOR and EF refer to the coordinate match and entity frequency ranking models. Percentages
show the relative changes compared to SDM. Win/Tie/Loss are the number of queries improved
(Win), unchanged (Tie) and hurt (Loss) comparing with SDM. † and ‡ indicate statistic signif-
icance (p < 0.05 in permutation test) over Lm and SDM. The best method for each metric is
marked bold. The Indri Lm and SDM scores are higher than those in Table 3.2 because they are
evaluated by the category-B relevance judgments instead of the category-A ones.

(a) ClueWeb09

Method NDCG@20 ERR@20 Win/Tie/Loss
Lm 0.176 -12.92% 0.119 -5.23% 39/88/71
SDM 0.202† – 0.126† – –
FACC1-COOR 0.173 -14.16% 0.126 -0.21% 64/56/78
FACC1-EF 0.167 -17.32% 0.116 -8.14% 63/51/84
TagMe-COOR 0.211† 4.55% 0.133† 5.55% 108/35/55
TagMe-EF 0.229†,‡ 13.71% 0.149† 18.04% 96/24/78
CMNS-COOR 0.210† 4.08% 0.131† 4.21% 105/37/56
CMNS-EF 0.216† 6.97% 0.136 7.52% 97/22/79

(b) ClueWeb12

Method NDCG@20 ERR@20 Win/Tie/Loss
Lm 0.106 -2.10% 0.086 -4.69% 28/29/43
SDM 0.108 – 0.090 – –
FACC1-COOR NA NA NA NA NA
FACC1-EF NA NA NA NA NA
TagMe-COOR 0.117†,‡ 8.35% 0.095† 5.02% 42/20/38
TagMe-EF 0.107 -0.90% 0.091 1.08% 42/18/40
CMNS-COOR 0.120†,‡ 11.03% 0.101† 11.20% 43/22/35
CMNS-EF 0.110 2.03% 0.102 12.71% 36/20/44

These results show that the entity linking itself is still an open research problem. Precision
and coverage can not yet be achieved at the same time. Thus, the ranking method must be robust
and able to accommodate a noisy representation.

4.1.3.2 Ranking Performance

The ranking performances of bag-of-entities based ranking models are shown in Table 4.3. EF
and COOR are used to rerank top retrieved documents using the bag-of-entities representations
built from FACC13, TagMe, and CMNS.

On ClueWeb09, both TagMe and CMNS work well with EF and COOR. They outperform all

3FACC1 annotations not available for ClueWeb12 queries.

62



Table 4.4: Performances of bag-of-entity based ranking models on queries that are correctly
annotated and not correctly annotated, compared with manual annotations. The relative perfor-
mance and Win/Tie/Lossare calculated by comparing with SDM on the same query group. † and
‡ indicate statistic significance (p < 0.05 in permutation test) over Lm and SDM. The best method
for each metric is marked bold.

(a) Correctly Annotated Query

Method NDCG@20 ERR@20 Win/Tie/Loss
TagMe-COOR 0.214†,‡ 14.56% 0.153†,‡ 12.71% 59/16/17
TagMe-EF 0.243†,‡ 30.43% 0.178†,‡ 31.19% 53/10/29
CMNS-COOR 0.211† 4.28% 0.146† 4.89% 53/22/20
CMNS-EF 0.240†,‡ 18.44% 0.168 20.74% 52/11/32

(b) Mistakenly Annotated Query

Method NDCG@20 ERR@20 Win/Tie/Loss
TagMe-COOR 0.200† −3.28% 0.111 −1.93% 49/21/38
TagMe-EF 0.209 0.65% 0.118 4.30% 43/16/49
CMNS-COOR 0.201† 3.90% 0.112 3.40% 52/17/36
CMNS-EF 0.185 −4.09% 0.100 −8.12% 45/13/47

baselines on all evaluation metrics. The best method, TagMe-EF, outperforms SDM as much as
18% on ERR@20. On ClueWeb12, COOR outperforms all baselines on all evaluation metrics by
about 12%. These results demonstrate that even with current imperfect entity linking systems,
bag-of-entities is a valuable representation on which very basic ranking models can significantly
outperform standard bag-of-words based ranking.

Bag-of-entities’ representation power correlates with the entity linking system’s accuracy.
ClueWeb09 queries are more ambiguous, favoring TagMe in annotation accuracy, and TagMe
provides the most improvements when ranking for ClueWeb09 queries. ClueWeb12 queries have
lower annotation quality, and bag-of-entities based ranking is not as powerful as on ClueWeb09
queries. FACC1’s coverage is too low and can not well represent the documents. This also
explains why prior research mainly uses it as a pool to select query entities [31] (Section 3.1,
3.2).

Entity linking is a rapidly developing area; improvement in the future is likely. To study how
the bag-of-entities can benefit from improvements in annotation accuracy, we used the manual
query annotations [31, 61] to divide queries into two groups: Correctly Annotated, and Mistak-
enly Annotated. Better ranking performance is expected for Correctly Annotated queries. Ta-
ble 4.4 shows the ranking performances of TagMe and CMNS on the two groups in ClueWeb09.
We omit FACC1 as it always hurts, and ClueWeb12 queries as there are not enough queries in
either group to provide reliable observations. The relative performance, W/T/L and statistical sig-
nificance over SDM are calculated on the same queries. The results are as expected: On Correctly
Annotated queries, bag-of-entities provides more accurate ranking; On Mistakenly Annotated
queries, the improvements are smaller, and sometimes bag-of-entities reduces accuracy.

63



Our experiments show that intuitions developed for bag-of-words representations do not nec-
essarily apply directly to bag-of-entities representations. A long line of research shows that
frequency based (e.g., tf.idf) ranking models are superior to Boolean ranking models. Thus, one
might expect EF to provide consistently more accurate ranking than COOR, however, that is not
the case in our experiments. We found that the majority of annotation errors are missed annota-
tions, which makes entity frequency counts less reliable. However, it is rare for the entity linker
to miss every mention of an important entity in a document, thus, the Boolean representation is
robust to this majority type of errors.

We also examined the effectiveness of other ranking intuitions, such as inverse document fre-
quency (idf) and document length normalization. In our bag-of-entities representations, they did
not provide improvements when used individually or in language modeling and BM25 rankers.
We speculate that idf had less impact because most queries contained just one or two entities,
thus most of the queries were ‘short’ in the bag-of-entities representation; idf is known to be
less important for short queries. We also speculate that the lack of improvement from document
length normalization is related to the lack of improvement from frequency-based weighting (EF),
as discussed above. Our work suggests that better ranking will require thinking carefully about
models designed for the unique characteristics of entities, rather than simply assuming that enti-
ties behave like words.

4.1.4 Bag-of-Entities Summary
This section presents a new bag-of-entities representation for search. Query and documents
are represented by bag-of-entities representations developed from entity annotations; ranking
is performed by exact-matching them in the entity space. Experiments on TREC Web Track
datasets demonstrate that bag-of-entities representations have sufficient coverage and ranking
with them outperforms bag-of-words based retrieval models by as much as 18% in standard
retrieval tasks.

4.2 Explicit Semantic Ranking with Entity Embedding

This section presents Explicit Semantic Ranking (ESR), a new ranking technique that soft
matches query and documents in the entity space4. The structured semantics associated with
entities form the majority information in knowledge graphs; only exact matching entities does
not fully leverage those semantics. However, these structures are challenging to use due to their
high variety and sparse nature. For example, it is often that two highly related entities have no
edges between them nor share common neighbors, even in large scale general domain knowl-
edge graphs such as Freebase. ESR addresses this challenge with knowledge graph embeddings
that convert the sparse structure into dense, continuous representations. Then given the bag-
of-entities representations of query and documents, the semantic relatedness between their en-

4Chenyan Xiong, Russell Power, and Jamie Callan. Explicit Semantic Ranking for Academic Search via Knowl-
edge Graph Embedding. In Proceedings of the 26th International World Wide Web Conference (WWW 2017) [103].
Part of this work was done during my 2016 summer internship at the Allen Institute for Artificial Intelligence. Rus-
sell was my internship mentor.

64



tities can be easily calculated in the embedding space, providing soft match between query and
document entities. ESR uses a two-stage pooling to generalize these entity-based matches to
query-document ranking features and uses a learning to rank model to combine them.

Furthermore, this section applies our techniques in a new search domain: academic search.
We provide analysis on the search intent and the error cases in the online search log of Seman-
tic Scholar (S2), the academic search engine from Allen Institute for Artificial Intelligence. The
analysis shows the importance of understanding entities in a real online production system. Then,
to apply ESR in domains where large scale domain-specific knowledge graphs are not available,
we propose a simple knowledge graph construction approach that automatically build the aca-
demic knowledge graph using Freebase and the S2 corpus. This section then applies ESR on this
academic knowledge graph to improve the search accuracy of Semantic Scholar.

The explicit semantics from the knowledge graph has the ability to improve ranking in mul-
tiple ways. The entities and surface names help the ranking model recognize which part of a
query is an informative unit, and whether different phrases have the same meaning, providing
a powerful exact match signal. Embeddings of entities from the knowledge graph can also be
leveraged to provide a soft match signal, allowing ranking of documents that are semantically
related but do not match the exact query terms. Our experiments on S2 ranking benchmark
demonstrate the effectiveness of this explicit semantics. ESR improves the already-reliable S2
online production system by more than 10%. The gains are robust, with bigger gains and smaller
errors, and also favoring top ranking positions. Further analysis confirms that both exact match
and soft match in the entity space provide effective and novel ranking signals. These signals
are successfully utilized by ESR’s ranking framework, and greatly improve the queries that S2’s
word-based ranking system finds hard to deal with.

The rest of this section first discusses related work in academic search and soft-match re-
trieval. Then it analyzes the search traffic of Semantic Scholar. After that, it presents the Explicit
Semantic Ranking system, experimental methodologies, and evaluation results. The last part of
this section summarizes the contributions of Explicit Semantic Ranking.

4.2.1 Related Work in Academic Search and Soft-Match Retrieval
Besides the related work discussed in Chapter 2, the research presented in this Section is also
related to other work in academic search and also soft-match retrieval.

Prior research in academic search is more focused on the analysis of the academic graph
than on ad-hoc ranking. Microsoft uses its Microsoft Academic Graph to build academic dialog
and recommendation systems [86]. Other research on academic graphs includes the extraction
and disambiguation of authors, integration of different publication resources [91], and expert
finding [4, 28, 109]. The academic graph can also be used to model the importance of papers [94]
and to extract new entities [2].

Soft match is a widely studied topic in information retrieval, mostly in word-based search
systems. Translation models treat ranking as translations between query terms and document
terms using a translation matrix [11]. Topic modeling techniques have been used to first map
query and document into a latent space, and then matching them in it [95]. Word embedding
and deep learning techniques have been studied recently. One possibility is to first build query
and document representations using their words’ embeddings heuristically, and then match them

65



in the embedding space [93]. The DSSM model directly trains a representation model using
deep neural networks, which learns distributed representations for the query and document, and
matches them using the learned representations [46]. A more recent method, DRMM, models
the query-document relevance with a neural network built upon the word-level translation ma-
trix [42]. The translation matrix is calculated with pre-trained word embeddings. The word-level
translation scores are summarized by bin-pooling (histograms) and then used by the ranking
neural network.

4.2.2 Query Log Analysis

The Semantic Scholar (S2) launched in late 2015, with the goal of helping researchers find
papers without digging through irrelevant information. The project has been a success, with over
3 million visits in its first year after launch. Its current production ranking system is based on
the word-based model in ElasticSearch that matches query terms with various parts of a paper,
combined with document features such as citation count and publication time in a learning to
rank architecture [59]. In user studies conducted at Allen Institute, this ranking model provides
at least comparable accuracy with other academic search engines.

S2’s current ranking system is built on top of ElasticSearch’s vector space model. It com-
putes a ranking score based on the tf.idf of the query terms and bi-grams on papers’ title, abstract,
body text and citation context. Static ranking features are also included, for example, the number
of citations, recent citations, and the time of publication. To handle the request for an author
or for a particular paper by title, a few additional features match explicitly against authors and
boost exact title matches. The ranking system was trained using learning to rank on a training set
created at Allen Institute. Before and after release, several rounds of user studies were conducted
by researchers at Allen Institute (mostly Ph.D.’s in Computer Science) and by a third party com-
pany. The results agree that on computer science queries S2 performs at least on par with other
academic search engines on the market.

The increasing online traffic in S2 makes it possible to study the information needs in aca-
demic search, which is important for guiding the development of ranking models. For example, if
users are mostly searching for paper titles, the ranking would be straightforward exact-matches;
if users are mostly searching for author names, the ranking would be mainly about name disam-
biguation, aggregation, and recognition.

We manually labeled the intents of S2’s 400 most frequent queries in the first six months
of 2016. A query was labeled based on its search results and clicks. The result shows that the
information needs on the head traffic can be categorized into the following categories:
• Concept: Searching for a research concept, e.g. ‘deep reinforcement learning’;
• Author: Searching for a specific author;
• Exploration: Exploring a research topic, e.g. ‘forensics and machine learning’;
• Title: Searching for a paper using its title;
• Venue: Searching for a specific conference; and
• Other: Unclear or not research related.
Figure 4.1a shows the distribution of these intents. More than half of S2’s head traffic is

66



0%

10%

20%

30%

40%

50%

Concept Author Explore Title Venue Other

(a) Query Intent Distribution

0%

10%

20%

30%

40%

Author Name Not
Recognized

Concept Not
Understood

Unclear Informational
Query

Corpus Coverage Other

(b) Error Source Distribution

Figure 4.1: Query log analysis in Semantic Scholar’s search traffic in the first six months of 2016.
Query intents are manually labeled on the 400 most frequent queries. Error sources are manually
labeled on the 200 worst performing queries.

research concept related: searching for an academic concept (39%) and exploring research topics
(15%). About one-third is searching an author (36%). Very little of the head queries are paper
titles; most of such queries are in the long tail of the online traffic.

The large fraction of concept related queries shows that much of academic search is an ad-hoc
search problem. The queries are usually short, on average about 2-3 terms, and their information
needs are not as clear as the author, venue, or paper title queries. They are very typical ad-hoc
search queries, in a specific domain – computer science.

To understand where S2 is making mistakes, we studied the error sources of the failure
queries in the query log. These failure queries were picked based on the average click depth in
the query log: The lower the click, the worse S2 might be performing. Among the queries with
more than 10 clicks, we manually labeled the top 200 worst performing ones. The distribution
of error types is shown in Figure 4.1b. The two major causes of failure are author name not
recognized (22%) and concept not understood (20%).

S2’s strategy for author queries is to show the author’s page. When the author name is not
recognized, S2 uses its normal ranking based on papers’ textual similarity with the author name,
which often results in unrelated papers.

A concept not understood error occurs when S2 returns papers that do not correctly match
the semantic meanings of concept queries. Since this is the biggest error source in S2’s ad-hoc
ranking part, we further analyzed what makes these queries difficult.

The first part of the difficulty is noise in the exact-match signal. Due to language variety, the
query term may not appear frequently enough in the relevant documents (vocabulary mismatch),

67



for example, ‘softmax categorization’ versus ‘softmax classification’. The segmentation of query
concepts is also a problem. For example, the whole query ‘natural language interface’ should be
considered as a whole because it is one informative unit, but the ranking model matches all words
and n-grams of the query, and the result is dominated by the popular phrase ‘natural language’.

The second part is more subtle as it is about the meaning of the query concept. There can
be multiple aspects of the query concept, and a paper that mentions it the most frequently may
not be about the most important aspect. For example, ‘ontology construction’ is about how to
construct ontologies in general, but may not be about how a specific ontology is constructed; ‘dy-
namic programming segmentation’ is about word segmentation in which dynamic programming
is essential, but is not about image segmentation.

To conclude, our analysis finds that there is a gap between query-documents’ textual simi-
larity and their semantic relatedness. Ranking systems that rely solely on term-level statistics
have few principled ways to resolve this discrepancy. Our desire to handle this gap led to the
development of ESR.

4.2.3 Our Method
We now describe the academic knowledge graph we automatically constructed and then intro-
duce the Explicit Semantic Ranking (ESR) method that soft matches query and documents using
the knowledge graph.

4.2.3.1 Automatically Constructed Academic Knowledge Graph

The prerequisite of semantic ranking systems is a knowledge graph that stores semantic infor-
mation. Usually, an entity linking system that links natural language text with entities in the
knowledge graph is also necessary [31, 61] (Section 3.2 and 4.1). In this work, we build a
standard knowledge graph G with concept entities (E) and edges (predicates P and tails T ) by
harvesting S2’s corpus and Freebase, and use a popularity based entity linking system to link
query and documents.

Concept Entities in our knowledge graph can be collected from two different sources:
corpus-extracted (Corpus) and Freebase. Corpus entities are keyphrases automatically
extracted from S2’s corpus. Key phrase extraction is a widely studied task that aims to find
representative keyphrases for a document, for example, to approximate the manually assigned
keywords of a paper. This work uses the keyphrases extracted by S2’s production system, which
extracts noun phrases from a paper’s title, abstract, introduction, conclusion and citation con-
texts, and selects the top ranked ones in a keyphrase ranking model with typical features such as
frequency and location [18].

The second source of entities is Freebase. Despite being a general domain knowledge
base, our manual examination found that Freebase has rather good coverage on the computer
science concept entities in S2’s head queries.

Entity Linking: We use CMNS which links surface forms (entity mentions) in a query or
document to their most frequently linked entities in Google’s FACC1 annotation [39, 43] (Sec-
tion 4.1). Although CMNS does not provide entity disambiguation, it has been shown to be effec-
tive for query entity linking [43], and the language in computer science papers is less ambiguous

68



Ranking
Model

Query

Document

Query Entities ܧ

Document Entities ܧௗ

Entity Similarity Matrix Max‐Pooled  Ԧܵሺ݀ሻ Matching Histogram ܤሺݍ, ݀ሻ

Entity Linking
Entity 
Connections

Query Level 
Max‐Pooling

Bin‐Pooling

Ranking Score

Figure 4.2: Explicit Semantic Ranking Pipeline

than in a more general domain.
Edges in our knowledge graph include three parts: Head H , Predicates P and tails T . From

Freebase and the CMNS annotated S2 corpus, the following four types of edges are harvested:
• Author edges link an entity to an author if the author has a paper which mentioned the

entity in the title;
• Context edges link an entity to another entity if the two co-occur in a window of 20

words more than 5 times in the corpus;
• Desc edges link an entity to words in its Freebase description (if one exists); and
• Venue edges link an entity to a venue if the entity appears in the title of a paper published

in the venue.
The knowledge graph G contains two types of entities: Corpus-extracted (Corpus) and

Freebase, and four types of edges: Author, Context, Desc and Venue.
Embeddings of our entities are trained based on their neighbors in the knowledge graph.

The graph structure around an entity conveys the semantics of this entity. Intuitively, entities
with similar neighbors are usually related. We use entity embeddings to model such semantics.

We train a separate embedding model for each of {Author, Context, Desc, Venue}
edges using the skip-gram model [73]:

l =
∑

e∈E,t∈T

w(e, t)
(
σ(V (e)TU(t))− Et̂∼Tσ(−V (e)TU(t̂))

)
.

The loss function l is optimized using a typical gradient method. V and U are the entity
embedding matrices learned for entities and tails of this edge type. Each of their rows (V (e) or
U(t)) is the embedding of an entity e or a tail t, respectively. σ is the Sigmoid function. T is the
collection of all tails for this edge type. Et̂∼T () samples negative instances based on the tails’
frequency (negative sampling). w(e, t) is the frequency of entity e and tail t being connected, for
example, how many times an entity is used by an author.

4.2.3.2 Ranking Model

Given a query q, and a set of candidate documents D = {d1, ..., dn}, the goal of ESR is to
find a ranking function f(q, d|G), that better ranks D using the explicit semantics stored in
the knowledge graph G. The explicit semantics include entities (E = {e1, ..., e|E|}) and edges

69



(predicates P and tails T ). The rest of this section describes the ESR framework, which is also
shown in Figure 4.2.

Entity-based Representations

ESR represents query and documents by their bag-of-entities constructed using their entity an-
notations linked by CMNS [80] (Section 4.1). Each query or document is represented by a vector
( ~Eq or ~Ed). Each dimension in the vector corresponds to an entity e in the query or document’s
annotation, and the weight is the frequency of the entity being annotated to it.

Match Query and Documents in the Entity Space

Instead of being restricted to classic retrieval models [80] (Section 4.1), ESR matches query and
documents’ entity representations using the knowledge graph embedding.

ESR first calculates a query-document entity translation matrix. Each element in the matrix
is the connection strength between a query entity ei and a document entity ej , calculated by their
embeddings’ cosine similarity:

s(ei, ej) = cos(V (ei), V (ej)). (4.3)

A score of 1 in the entity matrix refers to an exact match in the entity space. It incorporates the
semantics from entities and their surface forms: The entities in the text are recognized, different
surface forms of an entity are aligned, and the exact match is done at the entity level. We call this
effect ‘smart phrasing’. Scores less than 1 identify related entities as a function of the knowledge
graph structure and provide soft match signals.

Then ESR performs two pooling steps to generalize the exact matches and soft matches in
the entity translation matrix to query-document ranking evidence.

The first step is a max-pooling along the query dimension:

~S(d) = max
ei∈ ~Eq

s(ei, ~Ed). (4.4)

~Eq and ~Ed are the bag-of-entities of q and d. ~S(d) is a | ~Ed| dimensional vector. Its jth dimension
is the maximum similarity of the document entity ej to any query entities.

The second step is a bin-pooling (histogram) to count the matches at different strengths [42]:

Bk(q, d) = log
∑
j

I(stk ≤ ~Sj(d) < edk). (4.5)

[stk, edk) is the range for the kth bin. Bk is the number of document entities whose scores fall
into this bin.

The max-pooling matches each document entity to its closest query entity using embeddings,
which is the exact-match if one exists. Its score describes how closely related a document entity is
to the query. The bin-pooling counts the number of document entities with different connection
strengths to the query. The bin with range [1, 1] counts the exact matches, and the other bins
generate soft match signals [42]. The two pooling steps together summarize the entity matches
to query-document ranking evidence.

70



Ranking with Semantic Evidence

The bin scores B are used as features for standard learning to rank models in ESR:

f(q, d|G) = w0fS2(q, d) +W TB(q, d) (4.6)

where fS2(q, d) is the score from S2’s production system, w0 and W are the parameters to
learn, and f(q, d|G) is the final ranking score. Based on which edge type the entity embed-
ding is trained, there are four variants of ESR: ESR-Author, ESR-Context, ESR-Desc,
and ESR-Venue.

With entity-based representations, the exact matches (smart phrasing) allow ESR to consider
multiple words as a single unit in a principled way, and the knowledge graph embeddings allow
ESR to describe semantic relatedness via soft matches. The exact match and soft match signals
are utilized by ESR’s unified framework of embedding, pooling, and ranking.

4.2.4 Experimental Methodology
This section describes the ranking benchmark of S2 and the experimental settings.

4.2.4.1 Semantic Scholar Ranking Benchmark

The queries of the benchmark are sampled from S2’s query log in the first six months of 2016.
There are in total 100 queries, 20 uniformly sampled from the head traffic (100 most frequent
queries), 30 from the median (queries that appear more than 10 times), and 50 hard queries from
the 200 worst performing queries based on the average click depth. Author and venue queries
are manually ignored as they are more about name recognition instead of ranking.

The candidate documents were generated by pooling from several variations of S2’s ranking
system. First, we labeled several of the top ranked results from S2. Then several variations of
S2’s ranking systems, with same features, but different learning to rank models, are trained and
tested on these labels using cross-validation. The top 10 results from these rankers obtained from
cross-validation were added to the document pool. They were then labeled for another iteration
of training. The training-labeling process was repeated twice; after that, rankings had converged.

We also tried pooling with classic retrieval models such as BM25 and the query likelihood
model, but their candidate documents were much worse than the production system. Our goal
was to improve an already-good system, so we chose to use the higher quality pool produced by
S2 variants.

We used the same five relevance categories used by the TREC Web Track. Judging the rele-
vance of research papers to academic queries requires a good understanding of related research
topics. It is hard to find crowd-sourcing workers with such research backgrounds. Thus we asked
two researchers in the Allen Institute to label the query-document pairs. Label differences were
resolved by discussion.

The distribution of relevance labels in our dataset is shown in Table 4.5. The same statistics
from the TREC Web Track 2009-2012 are also listed for reference. Our relevance judgments
share a similar distribution, although our data is cleaner, for example, due to a lack of spam.

The benchmark dataset is available at http://boston.lti.cs.cmu.edu/
appendices/WWW2016/.

71

http://boston.lti.cs.cmu.edu/appendices/WWW2016/
http://boston.lti.cs.cmu.edu/appendices/WWW2016/


Table 4.5: Distribution of relevance labels in Semantic Scholar’s benchmark dataset. S2
shows the number and percentage of query-document pairs from the 100 testing queries that are
labeled to the corresponding relevance level. TREC shows the statistics of the relevance labels
from TREC Web Track 2009-2012’s 200 queries.

Relevance Level S2 TREC
Off-Topic (0) 3080 65.24% 54660 77.45%
Related (1) 1060 22.45% 10778 15.27%
Relevant (2) 317 6.71% 3681 5.22%
Exactly-Right (3) 213 4.51% 598 0.85%
Navigational (4) 51 1.08% 858 1.22%

4.2.4.2 Experimental Settings

Data: Ranking performances are evaluated on the benchmark dataset discussed in Section
4.2.4.1. The entity linking performance is evaluated on the same queries with manual entity
linking from the same annotators.

Baselines: The baseline is the Semantic Scholar (S2) production system on July 1st
2016, as described in Section 4.2.2. It is a strong baseline. An internal evaluation and a third-
party evaluation indicate that its accuracy is at least as good as other academic search engines on
the market. We also include BM25-F and tf.idf-F for reference. The BM25 and vector space
model are applied to the paper’s title, abstract, and body fields. Their parameters (field weights)
are learned using the same learning to rank model as our method in the same cross-validation
setting.

Evaluation Metrics: Query entity linking is evaluated by Precision and Recall at the query
level (strict evaluation [20]) and the average of query level and entity level (lean evaluation [43]).
Ranking is evaluated by NDCG@20, the main evaluation metric in the TREC Web Track. As
an online production system, S2 especially cares about top positions, so NDCG@{1, 5, 10} are
also evaluated. Statistical significances are tested by permutation test with p < 0.05.

ESR Methods: Based on which edge type is used to obtain the entity embedding, there are
four versions of ESR: ESR-Author, ESR-Context, ESR-Desc, and ESR-Venue. Embed-
dings for ESR-Author and ESR-Venue are trained with authors and venues with more than
1 publication. Description and context embeddings are trained with entities and terms with the
minimum frequency of 5.

Entity linking is done by CMNS with all linked entities kept to ensure recall [43] (Sec-
tion 4.1). Corpus entities do not have multiple surface forms so CMNS reduces to exact match.
Freebase entities are linked using surface forms collected from Google’s FACC1 annota-
tion [39].

Entity connection scores are binned into five bins: [1, 1], [0.75, 1), [0.5, 0.75), [0.25, 0.5),
[0, 0.25) with the exact match bin as the first bin [42]. We discard the negative bins as negative
cosine similarities between entities are not informative: most of them are not related at all.

All other settings follow previous standards. The embedding dimensionality is 300; The
five bins and three paper fields (title, abstract, and body) generate 15 features, which are com-

72



Table 4.6: Entity linking evaluation results. Entities are linked by CMNS. Corpus shows the
results when using automatically extracted keyphrases as the targets. Freebase shows the
results when using Freebase entities as the targets. Precison and Recall from lean evaluation and
strict evaluation are displayed.

Lean Evaluation Strict Evaluation
Prec Rec Prec Rec

Corpus 0.5817 0.5625 0.5400 0.5400
Freebase 0.6960 0.6958 0.6800 0.6800

Table 4.7: Overall accuracy of ESR compared to Semantic Scholar (S2). ESR-Author,
ESR-Context, ESR-Desc and ESR-Venue are ESR with entity embedding trained
from corresponding edges. Relative performances compared with S2 are in percentages.
Win/Tie/Loss are the number of queries a method improves, does not change, or hurts, com-
pared with S2. Best results in each metric are marked Bold. Statistically significant improve-
ments (P>0.05) over S2 are marked by †.

Method NDCG@5 NDCG@20 W/T/L
tf.idf-F 0.2254 −54.93% 0.3299 −39.91% 28/01/71
BM25-F 0.2890 −42.20% 0.3693 −32.75% 32/01/67
Semantic Scholar 0.5000 – 0.5491 – –/–/–
ESR-Author 0.5501† +10.02% 0.5935† +8.08% 60/10/30
ESR-Context 0.5417† +8.35% 0.5918† +7.77% 58/04/38
ESR-Desc 0.5496† +9.92% 0.5875† +6.99% 55/11/34
ESR-Venue 0.5700† +13.99% 0.6090† +10.91% 59/11/30

bined with S2’s original score using linear RankSVM [49]. All models and baselines’ pa-
rameters are trained and evaluated using a 10-fold cross validation with 80% train, 10% de-
velopment and 10% test in each fold. The hyper-parameter ‘c’ of RankSVM is selected from
{0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1} using the development part of each fold.

4.2.5 Evaluation Results
Five experiments investigated entity linking and document ranking accuracy, as well as the ef-
fects of three system components (entity based match, embedding, pooling).

4.2.5.1 Entity Linking Performance

The entity linking accuracy of CMNS on our queries is shown in Table 4.6. Corpus and
Freebase refer to using entities from extracted keyphrases in S2’s corpus or Freebase.
Precison and Recall are evaluated by lean evaluation (query and entity averaged) and strict eval-
uation (query only) metrics.

The results in Table 4.6 reveal a clear gap between the quality of automatically extracted
entities and manually curated entities. Linking performance is 10-25% better with Freebase

73



entities than Corpus entities on all evaluation metrics, demonstrating the significant differences
in the quality of their entity sets. Further analysis finds that Freebase not only provides a larger set
of surface forms, but also a cleaner and larger set of computer science concept entities. Indeed,
our manual examination found that only the most frequent automatically extracted keyphrases
(about ten thousand) are reliable. After that, there is much noise. Those most frequent keyphrases
are almost all included in Freebase; little additional information is provided by the Corpus
entities.

The absolute Precision and Recall are higher than those on the general domain (TREC Web
Track) queries (evaluated in Section 4.1). Our manual examination finds that a possible reason
is the lower ambiguity in academic queries than in TREC Web Track queries. Also, since our
queries are from the head and middle of the online traffic, they are mostly about popular topics.
Freebase’s coverage on them is no worse than on general domain queries. Due to its dominating
entity linking accuracy, the rest of our experiments used only Freebase.

4.2.5.2 Ranking Performance

The overall performance of ESR is shown in Table 4.7. The four versions of ESR only differ in
the edges they used to obtain the entity embedding. Relative performances comparing with the
production system Semantic Scholar (S2) are shown in percentages. Win/Tie/Loss are
the number of queries outperformed, unchanged, and hurt by each method compared with S2.
Statistically significant improvements over S2 are marked by †.

The production system S2 outperforms BM25-F by a large margin. NDCG@1 is almost
doubled. This result confirms the quality of the current production system. Although half of the
queries were deliberately picked to be difficult, at all depths S2 achieves absolute NDCG scores
above 0.5.

ESR provides a further jump over the production system by at least 5% on all evaluation
metrics and with all edge types. With Venue, the improvements are consistently higher than
10%. On the earlier positions which are more important for user satisfaction, ESR’s perfor-
mances are also stronger, with about 2 − 3% more improvements on NDCG@1 and NDCG@5
than on NDCG@20. The improvements are statistically significant, with the only exception of
ESR-Desc on NDCG@1. We think this behavior is due to the edge types Author, Context,
and Venue being domain specific, because they are gathered from S2’s corpus, whereas Desc
is borrowed from Freebase and no specific attention is paid to the computer science domain.

ESR is designed to improve the queries that are hard for Semantic Scholar. To verify
that ESR fulfills this requirement, we plot ESR’s performance on individual queries with respect
to S2’s in Figure 4.3. Each point in the figure corresponds to a query. S2’s NDCG@20 is shown
in the x-axis. The relative performance of ESR compared with S2 is shown in the y-axis.

In all four sub-figures, ESR’s main impact is on the hard queries (the left side). On the
queries where S2 already performs well, ESR makes only small improvements: Most queries
on the right side stay the same or are only changed a little bit. On the queries where S2’s
word-based ranking fails, for example, on those whose NDCG < 0.3, the semantics from the
knowledge graph improve many of them with large margins. The improvements are also robust.
More than half of the queries are improved with big wins. Fewer queries are hurt and the loss is
usually small.

74



‐100%

0%

100%

200%

300%

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Semantic Scholar's NDCG@20 at each query

ESR‐Author's Relative NDCG@20 At Individual Queries

ESR‐Author's Relative
Performance

‐100%

0%

100%

200%

300%

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Semantic Scholar's NDCG@20 at each query

ESR‐Context's Relative NDCG@20 At Individual Queries

ESR‐Context's Relative
Performance

‐100%

0%

100%

200%

300%

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Semantic Scholar's NDCG@20 at each query

ESR‐Desc's Relative
Performance

‐100%

0%

100%

200%

300%

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Semantic Scholar's NDCG@20 at each query

ESR‐Venue's Relative
Performance

Figure 4.3: ESR’s relative NDCG@20 compared with Semantic Scholar (S2) on individ-
ual queries. Each point corresponds to a query. The value on the x-axis is S2’s NDCG@20 on
each query. The y-axis shows ESR’s relative NDCG@20 (percentage) compared with S2.

75



0.50

0.52

0.54

0.56

0.58

0.60

0.62

ESR‐Author ESR‐Context ESR‐Desc ESR‐Venue

N
DC

G
@
20

Semantic Scholar Exact Match First 2 Bins
First 3 Bins First 4 Bins All Bins (ESR)

Figure 4.4: ESR accuracy using different numbers of matching bins. For each group, from left
to right: Semantic Scholar, the baseline; Exact match which only uses the first bin;
First 2 Bins, First 3 Bins, and First 4 Bins which refer to only using the first
k bins with the highest matching scores; the last one All Bins is the original ESR.

This experiment demonstrates ESR’s ability to improve a very competitive online production
system. ESR’s advantages also favor online search engines’ user satisfaction: More improve-
ments are at early ranking positions, the improvements are robust with fewer queries badly dam-
aged, and most importantly, ESR fixes the hard queries that the production system finds difficult.

4.2.5.3 Effectiveness of Entity-Based Match

ESR matches query and documents on their entity representations using the semantics from the
knowledge graph. The semantic contribution to ESR’s ranking can come from two aspects:
exact match with smart phrasing and soft match with knowledge graph embedding. The third
experiment investigated the effectiveness of ESR’s entity-based matching, both exact match and
soft match.

Recall that ESR uses five bins to combine and weight matches of different strengths. This
experiment used the same ranking model, but varies the bins used. We started with only using
the first exact match bin [1, 1]; then we added in the second bin [0.75, 1), the third [0.5, 0.75),
and the fourth [0.25, 0.5), and evaluated effectiveness of exact match and soft matches at varying
strength. Figure 4.4 displays the performance of ESR with different number of bins. For each
ESR version, the bins correspond to, from left to right: Semantic Scholar, the baseline;
Exact match which only uses the first bin; First 2 Bins, First 3 Bins, and First
4 Bins which refer to only using the first k bins with the highest matching scores; the last one
All Bins is the original ESR. For brevity, only NDCG@20 is shown (the y-axis). The behavior
is similar for other depths.

Entities’ exact match information (the first bin) provides about 6% gains over S2, with
Context and Venue. The exact match signals with ESR-Author and ESR-Desc are sparse,
because some entities do not have Author or Desc edges. In that case, their rankings are re-
duced to S2, and their gains are smaller. Our manual examination found that this gain does come
from the ‘smart phrasing’ effect: an entity’s mention is treated as a whole unit and different

76



phrases referring to the same entity are aligned. For example, the rankings of queries like ‘natu-
ral language interface’ and ‘robust principle component analysis’ are greatly improved, while in
S2 their textual similarity signals are mixed by their individual terms and sub-phrases.

The soft match information (later bins) contributes approximately another 5% of improve-
ment. The soft-match bins record how many document entities are related to the query entities
at certain strengths. Intuitively, the soft match should contribute for all queries as knowing more
about the document entities should always help. But our examination finds this information is
more effective on some queries, for example, ‘dynamic segmentation programming’, ‘ontology
construction’ and ‘noun phrases’. The soft match helps ESR find the papers whose meanings
(e.g. research area, topic, and task.) are semantically related to these queries’ information needs,
while S2’s word-based match fails to do so.

This experiment helps us understand why the explicit semantics in knowledge graphs is useful
for ranking. By knowing which entity a phrase refers to and whether different phrases are about
the same thing, the exact match signal is polished. By knowing the relatedness between query
entities and document entities through their embeddings, additional soft match connections that
describe query-document relatedness with semantics are incorporated.

4.2.5.4 Effectiveness of Embedding

ESR captures the semantic relatedness between entities by using their distance in the embedding
space. An advantage of using embeddings compared with the raw knowledge graph edges is their
efficiency, which is tightly constrained in online search engines. By embedding the neighbors of
an entity into a dense continuous vector, at run time, ESR avoids dealing with the graph structure
of the knowledge graph, which is sparse, of varying length, and much more expensive to deal
with than fixed length dense vectors.

However, does ESR sacrifice effectiveness for efficiency? The fourth experiment studied the
influence of embeddings on ESR’s effectiveness, by comparing it with the ranking performance
of using raw knowledge graph edges. In this experiment, a discrete vector representation is
formed for each entity for each edge type. Each of the vector’s dimensions is a neighbor of the
entity. Its weight is the frequency of them being connected together. The Raw variants of ESR are
then formed with the knowledge graph embedding replaced by this discrete entity representation
and everything else kept the same.

Table 4.8 shows the results of such ‘Raw’ methods. Different versions of Raw use different
edges (Author, Context, Desc and Venue) to represent entities. The relative perfor-
mance and Win/Tie/Loss are compared with the corresponding ESR version that uses exactly
the same information but with knowledge graph embedding. The result shows that ESR actually
benefits from the knowledge graph embedding; Raw methods almost always perform worse than
the corresponding ESR version. We believe that the advantage of knowledge graph embedding
is similar with word embedding [73]: the embedding better captures the semantics by factoring
the raw sparse data into a smooth low-dimensional space.

77



Table 4.8: Performance of different strategies that make use of the knowledge graph in rank-
ing. Raw directly calculates the entity similarities in the original discrete space. Mean uses
mean-pooling when generalizing the entity translation matrix to query-document ranking evi-
dence. Max uses max-pooling. Mean&Bin replaces the max-pooling in ESR’s first stage with
mean-pooling. Relative performances (percentages), statistically significant differences (†), and
Win/Tie/Loss are compared with the ESR version that uses the same edge type and embedding;
for example, Raw-Author versus ESR-Author.

Method NDCG@20 W/T/L
ESR-Author 0.5935 – –/–/–
ESR-Context 0.5918 – –/–/–
ESR-Desc 0.5875 – –/–/–
ESR-Venue 0.6090 – –/–/–
Raw-Author 0.5821 −1.91% 45/06/49
Raw-Context 0.5642† −4.66% 38/06/56
Raw-Desc 0.5788 −1.48% 46/05/49
Raw-Venue 0.5576† −8.43% 28/07/65
Mean-Author 0.5685† −4.22% 33/09/58
Mean-Context 0.5676† −4.08% 39/06/55
Mean-Desc 0.5660 −3.66% 45/12/43
Mean-Venue 0.5599† −8.07% 32/10/58
Max-Author 0.5842 −1.56% 38/10/52
Max-Context 0.5861 −0.95% 52/07/41
Max-Desc 0.5659† −3.67% 41/12/47
Max-Venue 0.5763† −5.38% 32/12/56
Mean&Bin-Author 0.5823 −1.89% 41/06/53
Mean&Bin-Context 0.5808 −1.85% 41/08/51
Mean&Bin-Desc 0.5694 −3.07% 38/14/48
Mean&Bin-Venue 0.5639† −7.41% 31/10/59

4.2.5.5 Effectiveness of Pooling

ESR applies a two stage pooling on the entity translation matrix to obtain query-document rank-
ing evidence. The first, max-pooling, is used to match each document entity to its closest query
entity. The second, bin-pooling, is used to summarize the matching scores of each document
entity into match frequencies at different strengths. This experiment evaluates the effectiveness
of ESR’s pooling strategy.

We compare ESR’s two-stage pooling with several common pooling strategies: mean-pooling
that summarizes the translation matrix into one average score; max-pooling that only keeps the
highest score in the matrix; and mean&bin-pooling which is the same as ESR’s max-pooling and
bin-pooling, but in the first step the document entities are assigned with their average similarities
to query entities. Except for the pooling strategy, all other settings of ESR are kept.

The results of different pooling strategies are shown in the second half of Table 4.8. Relative

78



performances and Win/Tie/Loss are compared with the corresponding ESR version. The results
demonstrate the effectiveness of ESR’s two-stage pooling strategy: All other pooling strategies
perform worse. Abstracting the entire entity translation matrix into one mean or max score
may lose too much information. Mean&bin pooling also performs worse. Intuitively, we would
prefer document entities that match one of the query entities very well, rather than entities that
have mediocre matches with multiple query entities. Also, the exact match information is not
preserved in the mean&bin-pooling when there are multiple query entities.

This result shows that generalizing the entity level evidence to the query-document level is
not an easy task. One must find the right level of abstraction to obtain a good result. There are
other abstraction strategies that are more complex and could be more powerful. For example,
one can imagine building an RNN or CNN upon the translation matrix, but that would require
more training labels. We believe ESR’s two-stage pooling provides the right balance of model
complexity and abstraction granularity, given the size of our training data.

4.2.6 Explicit Semantic Ranking Summary
This section presents Explicit Semantic Ranking, a new technique that utilizes the explicit seman-
tics from a knowledge graph in academic search. In ESR, queries and documents are represented
in the entity space using their annotations, and the ranking is defined by their semantic related-
ness described by their entities’ connections, in an embedding, pooling, and ranking framework.

Explicit Semantic Ranking is first applied on the academic search domain. This section first
provides analysis on the query logs from Semantic Scholar and shows the crucial role entities
played in the online production system. Then it presents a simple and effective knowledge graph
construction method that automatically built an academic knowledge graph using Freebase and
the Semantic Scholar corpus. ESR then utilizes this automatically constructed knowledge graph
to improve the search accuracy of Semantic Scholar.

Experiments on a Semantic Scholar testbed demonstrate that ESR improves the pro-
duction system by 6% to 14%. Additional analysis revealed the effectiveness of the explicit
semantics: the entities and their surface forms help recognize the concepts in a query, and polish
the exact match signal; the knowledge graph structure helps build additional connections between
query and documents, and provides effective and novel soft match evidence. With the embed-
ding, pooling, and ranking framework that successfully utilizes this semantics, ESR provides
robust improvements, especially on the queries that are hard for word-based ranking models.

Perhaps surprisingly, we found that using Freebase entities was more effective than
keyphrases automatically extracted from S2’s corpus. Although Freebase is considered general-
purpose, it provides surprisingly good coverage of the entities in our domain - computer science.
The value of this knowledge graph can be further improved by adding domain specific semantics
such as venues and authors. This result is encouraging because good domain-specific knowl-
edge bases can be difficult to build from scratch. It shows that entities from a general-domain
knowledge base can be a good start.

Different edge types in the knowledge graph convey rather different semantics. In our ex-
periments, there is less than 15% overlap between the close neighbors of an entity in different
embedding spaces. The different variants of ESR also perform rather differently on different
queries. This work mainly focuses on how to make use of each edge type individually and

79



specifically in the academic search domain. The following chapters will present more unified
approaches to utilize knowledge graph semantics as well as their applications in general domain
search environments.

4.3 Summary
This chapter presents the bag-of-entities representations and the Explicit Semantic Ranking ap-
proach that represents and matches query and documents in the entity space. Instead of restricting
to the word-based retrieval framework, it provides a fully entity-driven approach that resembles
the classic controlled vocabulary based retrieval but with the advantage of large scale knowledge
graphs, automatic entity linking techniques, and new machine learning models. We present thor-
ough analysis showing the applicability of automatic entity annotations in representing query
and documents in both the general domain (web search) and a special domain (academic search).
The search log analysis on Semantic Scholar further demonstrate the crucial role entities played
in a real online production system and the needs of deeper text understanding about entities.

This chapter provides new ranking models that perform both exact match and soft match
using the entity-based representations of query and documents. The exact match leverages the
semantics from entity linking—disambiguation, synonym resolution, and chunking—and the
soft match leverages the structural semantics associated with entities in the knowledge graph and
is able to build connections between related entities in the query and documents. Various exper-
iments have demonstrated the effectiveness of the entity-based text representations in search.

The bag-of-entities representation and the Explicit Semantic Ranking form the backbone of
entity-oriented search, which is a new research topic in information retrieval that aims to leverage
knowledge graphs in search systems. Next, Chapter 5 studies how to combine the entity-based
text representations with the original word-based representations; it also develops new machine
learning models that addresses the uncertainties brought in by the automatic construction of
entity-based representations: entity linking errors.

80



Chapter 5

Combining Word-based and Entity-based
Representations

This chapter studies how to combine entity-based text representations with the original word-
based representations for search. In the previous chapter, we have shown the effectiveness of
bag-of-entities representations and the advantage of matching query and documents in the entity
space. Entity-oriented search operates in the automatically constructed bag-of-entities space and
the ranking signals convey information from knowledge graphs that is external to the word-based
search system. It is natural to study how the two search paradigms interact with each other and
how to them to get the best of both representation spaces.

This chapter first proposes a word-entity duet framework that integrates bag-of-words and
bag-of-entities. The framework not only combines the two but also leverages the interactions
between them which leads to additional ranking signals. It also includes a hierarchical ranking
model that handles the noise in the query annotations which is a major bottleneck in entity-
oriented search. Then this chapter proposes the JointSem approach, which increases the scope
of the hierarchical ranking model to include the entity linking step. In JointSem, the decision
of entity linking is jointly made with entity-based document ranking. Thus the ranking model no
longer treats the entity linker as a black box. Instead, it learns how to link entities and how to
rank documents simultaneously from relevance judgments.

In the rest of this chapter, Section 5.1 presents the duet framework and Section 5.2 presents
the JointSem approach.

5.1 Word-Entity Duet

This section presents the word-entity duet framework to utilize knowledge graphs in information
retrieval1 . Instead of centering around words or entities, this work treats them equally and
represents the query and documents using both word-based and entity-based representations.
Thus the interaction of query and document is no longer a ‘solo’ of their words or entities,

1 Chenyan Xiong, Jamie Callan, and Tie-Yan Liu. Word-Entity Duet Representations for Document Ranking.
In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 2017) [100].

81



but a ‘duet’ of their words and entities. Working together, the word-based and entity-based
representations form a four-way interaction: query words to document words (Qw-Dw), query
entities to document words (Qe-Dw), query words to document entities (Qw-De), and query
entities to document entities (Qe-De). This leads to a general methodology for incorporating
knowledge graphs into text-centric search systems.

The rich and novel ranking evidence from the word-entity duet does come with a cost. Be-
cause it is created automatically, the entity-based representation also introduces uncertainties.
For example, an entity can be mistakenly annotated to a query, and may mislead the search
system. This sections develops an attention-based ranking model, AttR-Duet, that employs
a simple attention mechanism to handle the noise in the entity representation. The matching
component of AttR-Duet focuses on ranking with the word-entity duet, while its attention
component focuses on steering the model away from noisy entities. Trained directly from rele-
vance judgments, AttR-Duet learns how to demote noisy entities and how to rank documents
with the word-entity duet simultaneously.

The effectiveness of AttR-Duet is demonstrated on the ClueWeb Category B corpora and
TREC Web Track queries. On both ClueWeb09-B and ClueWeb12-B13 , AttR-Duet outper-
forms previous word-based and entity-based ranking systems by at least 14%. We demonstrate
that the entities bring additional exact match and soft match ranking signals from the knowl-
edge graph; all entity-based rankings perform similar or better compared to solely word-based
rankings. We also find that, when the automatically-constructed entity representations are not as
clean, the attention mechanism is necessary for the ranking model to utilize the ranking signals
from the knowledge graph. Jointly learned, the attention mechanism is able to demote noisy
entities and distill the ranking signals, while without such purification, ranking models become
vulnerable to noisy entity representations, and the mixed evidence from the knowledge graph
may be more of a distraction than an asset. In the rest of this section, we first present the word-
entity duet framework for utilizing knowledge graphs in ranking and then the attention-based
ranking model. Experimental settings and evaluations are described in Sections 5.1.3 and 5.1.4.
This section wraps up with conclusions about the duet framework.

5.1.1 Duet Framework

We now present our word-entity duet framework for utilizing knowledge graphs in search. Given
a query q and a set of candidate documents D = {d1, ..., d|D|}, our framework aims to provide
a systematic approach to better rank D for q, with the help of a knowledge graph G. In the
framework, query and documents are represented by two representations, one word-based and
one entity-based (Section 5.1.1.1). The two representations’ interactions create the word-entity
duet and provide four matching components (Section 5.1.1.2).

5.1.1.1 Word and Entity Based Representations

Word-based representations of query and document are standard bag-of-words: Qw(w) =
tf(w, q), and Dw(w) = tf(w, d). Each dimension in the bag-of-words Qw and Dw corresponds
to a word w. Its weight is the word’s frequency (tf) in the query or document.

82



A standard approach is to use multiple fields of a document, for example, title and body.
Each document field is usually represented by a separate bag-of-words, for example, Dwtitle and
Dwbody, and the ranking scores from different fields are combined by ranking models. In this
work, we assume that a document may have multiple fields. However, to make notation simpler,
the field notation is omitted in the rest of this section unless necessary.

Entity-based representations are bag-of-entities constructed from entity annotations (Sec-
tion 4.1): Qe(e) = tf(e, q) and De(e) = tf(e, d), where e is an entity linked to the query or the
document. We use automatic entity annotations from an entity linking system to construct the
bag-of-entities (Section 4.1).

An entity linking system finds the entity mentions (surface forms) in a text, and links each
surface form to a corresponding entity. For example, the entity ‘Barack Obama’ can be linked to
the query ‘Obama Family Tree’. ‘Obama’ is the surface form.

Entity linking systems usually contain two main steps [38]:
1. Spotting: To find surface forms in the text, for example, to identify the phrase ‘Obama’;

and

2. Disambiguation: To link the most probable entity from the candidates of each surface
form, for example, choosing ‘Barack Obama’ from all possible Obama-related entities.

A commonly used information in spotting is the linked probability (lp), the probability of a sur-
face form being annotated in a training corpus, such as Wikipedia. A higher lp means the surface
form is more likely to be linked. For example, ‘Obama’ should have a higher lp than ‘table’. The
disambiguation usually considers two factors. The first is commonness (CMNS), the universal
probability of the surface form being linked to the entity. The second is the context in the text,
which provides additional evidence for disambiguation. A confidence score is usually assigned to
each annotated entity by the entity linking system, based on spotting and disambiguation scores.

The bag-of-entities is not the set of surface forms that appear in the text (otherwise it is not
much different from phrase-based representation). Instead, the entities are associated with rich
semantics from the knowledge graph. For example, in Freebase, the information associated with
each entity includes (but is not limited to) its name, alias, type, description, and relations with
other entities. The entity-based representation makes these semantics available when matching
query and documents.

5.1.1.2 Matching with the Word-Entity Duet

By adding the entity based representation into the search system, the ranking is no longer a
solo match between words, but a word-entity duet that includes four different ways a query can
interact with a document: query words to document words (Qw-Dw); query entities to document
words (Qe-Dw); query words to document entities (Qw-De); and query entities to document
entities (Qe-De). Each of them is a matching component and generates unique ranking features
to be used in our ranking model.

Query Words to Document Words (Qw-Dw): This interaction has been widely studied in
information retrieval. The matches of Qw and Dw generate term-level statistics such as term
frequency and inverse document frequency. These statistics are combined in various ways by
standard retrieval models, for example, BM25, language model (Lm), and vector space model.

83



Table 5.1: Ranking features from query words to document words (title and body) (ΦQw-Dw).

Feature Description Dimension
BM25 2
TF-IDF 2
Boolean OR 2
Boolean And 2
Coordinate Match 2
Language Model (Lm) 2
Lm with JM smoothing 2
Lm with Dirichlet smoothing 2
Lm with two-way smoothing 2
Total 18

Table 5.2: Ranking features from query entities (name and description) to document words (title
and body) (ΦQe-Dw).

Feature Description Dimension
BM25 4
TF-IDF 4
Boolean Or 4
Boolean And 4
Coordinate Match 4
Lm with Dirichlet Smoothing 4
Total 24

This work applies these standard retrieval models on document title and body fields to extract the
ranking features ΦQw-Dw in Table 5.1.

Query Entities to Document Words (Qe-Dw): knowledge graphs contain textual attributes
about entities, such as names and descriptions. These textual attributes make it possible to build
cross-space interactions between query entities and document words. Specifically, given a query
entity e, we use its name and description as pseudo queries, and calculate their retrieval scores on
a document’s title and body bag-of-words, using standard retrieval models. The retrieval scores
from query entities (name or description) to document’s words (title or body) are used as ranking
features ΦQe-Dw. The detailed feature list is in Table 5.2.

Query Words to Document Entities (Qw-De): Intuitively, the texts from document entities
should help the understanding of the document. For example, when reading a Wikipedia article,
the description of a linked entity in the article is helpful for a reader who does not have the
background knowledge about the entity.

The retrieval scores from the query words to document entities’ name and descriptions are
used to model this interaction. Different from Qe-Dw, in Qw-De, not all document entities are
related to the query. To exclude unnecessary information, only the highest retrieval scores from

84



Table 5.3: Ranking features from query words to document entities (name and description)
(ΦQw-De).

Feature Description Dimension
Top 3 Coordinate Match on Title Entities 6
Top 5 Coordinate Match on Body Entities 10
Top 3 TF-IDF on Title Entities 6
Top 5 TF-IDF on Body Entities 10
Top 3 Lm-Dirichlet on Title Entities 6
Top 5 Lm-Dirichlet on Body Entities 10
Total 48

Table 5.4: Ranking features from query entities to document’s title and body entities (ΦQe-De).

Feature Description Dimension
Binned translation scores, 1 exact match bin,

12
5 soft match Bins in the range [0, 1).

each retrieval model are included as features:

ΦQw-De ⊃ max-k({score(q, e)|∀e ∈ De}),
where score(q, e) is the score of q and document entity e from a retrieval model, and max-k()
takes the k biggest scores from the set. Applying retrieval models on title and body entities’
names and descriptions, the ranking features ΦQw-De in Table 5.3 are extracted. We choose a
smaller k for title entities as titles are short and rarely have more than three entities.

Query Entities to Document Entities (Qe-De): There are two ways the interactions in the
entity space can be useful. The exact match signal addresses the vocabulary mismatch of surface
forms [80] (Section 4.1). For example, two different surface forms, ‘Obama’ and ‘US President’,
are linked to the same entity ‘Barack Obama’ and thus are matched. The soft match in the entity
space is also useful. For example, a document that frequently mentions ‘the white house’ and
‘executive order’ may be relevant to the query ‘US President’.

We apply the Explicit Semantic Ranking (ESR) technique, presented in Section 4.2, to obtain
Qe-De features. ESR first calculates an entity translation matrix of the query and document
using entity embeddings. Then it gathers ranking features from the matrix by histogram pooling.

ESR was originally applied in Semantic Scholar and its entity embeddings were trained using
domain specific information like author and venue. In the general domain, there is much research
that aims to learn entity embeddings from the knowledge graph [14, 58]. We choose the TransE
model which is effective and efficient enough to be applied on large knowledge graphs [14].

Given the triples (edges) from the knowledge graph (eh, p, et), including eh and et the head
entity and the tail entity, and p the edge type (predicate), TransE learns entity and relationship
embeddings (~e and ~p) by optimizing the following pairwise loss:∑

(eh,p,et)∈G

∑
(e′h,p,e

′
t)∈G′

[1 + ||~eh + ~p− ~et||1 − ||~e′h + ~p− ~e′t||1]+,

85



where [·]+ is the hinge loss, G is the set of existing edges in the knowledge graph, and G′ is
the randomly sampled negative instances. The loss function ensures that entities in similar graph
structures are mapped closely in the embedding space, using the compositional assumption along
the edge: ~eh + ~p = ~et.

The distance between two entity embeddings describes their similarity in the knowledge
graph [14]. Using L1 similarity, a translation matrix can be calculated:

T (ei, ej) = 1− ||~ei − ~ej||1. (5.1)

T is the |Qe| × |De| translation matrix. ei and ej are the entities in the query and the document
respectively.

Then the histogram pooling technique is used to gather query-document matching signals
from T [42] (Section 4.2):

~S(De) = max
e∈Qe

T (e,De),

Bk(~S(De)) = log
∑
j

I(stk ≤ ~Sj(De) < edk),

where ~S(d) is the max-pooled |De| dimensional vector, whose jth dimension is the maximum
similarity of the jth document entity to any query entities. Bk() is the kth bin that counts the
number of translation scores in its range [stk, edk).

We use the same six bins as in Section 4.2: [1, 1], [0.8, 1), [0.6, 0.8), [0.4, 0.6), [0, 2, 0.4),
[0, 0, 2). The first bin is the exact match bin and is equivalent to the entity frequency model
(Section 4.1). The other bin scores capture the soft match signal between query and documents
at different levels. These bin scores generated the ranking features ΦQe-De in Table 5.4.

5.1.1.3 Recap

The word-entity duet incorporates various semantics from the knowledge graph: The textual
attributes of entities are used to model the cross-space interactions (Qe-Dw and Qw-De); the
relations in the knowledge graphs are used to model the interactions in the entity space (Qe-De),
through the knowledge graph embedding. The word-based retrieval models are also included
(Qw-Dw).

Many prior methods are generalized by the duet framework. For example, the two query
expansion methods using Wikipedia or Freebase represent the query using related entities, and
then use these entities’ texts to build additional connections with the document’s text [31, 105]
(Section 3.1); the latent entity space techniques first find a set of highly related query entities,
and then rank documents using their connections with these entities [61] (Section 3.2); and the
entity based ranking methods model the interactions between query and documents in the entity
space using exact match [80] (Section 4.1) and soft match (Section 4.2).

Each of the four interactions generates a set of ranking signals. A straightforward way is to
use them as features in learning to rank models. However, the entity representations may include
noise and generate misleading ranking signals, which motivates our AttR-Duet ranking model
in the next section.

86



5.1.2 Attention-based Ranking Model
Unlike bag-of-words, entity-based representations are constructed using automatic entity linking
systems. It is inevitable that some entities are mistakenly annotated, especially in short queries
where there is less context for disambiguation. If an unrelated entity is annotated to the query, it
will introduce misleading ranking features; documents that match the unrelated entity might be
promoted. Without additional information, ranking models have little leverage to distinguish the
useful signals brought in by correct entities from those by the noisy ones, and their accuracies
might be limited.

We address this problem with an attention-based ranking model AttR-Duet. It first extracts
attention features to describe the quality of query entities. Then AttR-Duet builds a simple
attention mechanism using these features to demote noisy entities. The attention and the match-
ing of query-documents are trained together using back-propagation, enabling the model to learn
simultaneously how to weight entities of varying quality and how to rank with the word-entity
duet. The attention features are described in Section 5.1.2.1. The details of the ranking model
are discussed in Section 5.1.2.2.

Table 5.5: Attention Features for Query Entities.

Feature Description Dimension
Entropy of the Surface Form 1
Is the Most Popular Candidate Entity 1
Margin to the Next Candidate Entity 1
Embedding Similarity with Query 1
Total 4

5.1.2.1 Attention Features

Two groups of attention features are extracted for each query entity to model its annotation
ambiguity and its closeness to the query.

Annotation Ambiguity features describe the risk of an entity annotation. There is a risk
that the linker may fail to disambiguate the surface form to the correct entity, especially when
the surface form is too ambiguous. For example, ‘Apple’ in a short query can be the fruit or
the brand. It is risky to put high attention on it. There are three ambiguity features used in
AttR-Duet.

The first feature is the entropy of the surface form. Given a training corpus, for example,
Wikipedia, we gather the probability of a surface form being linked to different candidate entities,
and calculate the entropy of this probability. The higher the entropy is, the more ambiguous the
surface form is, and the less attention the model should put on the corresponding query entity.
The second feature is whether the annotated entity is the most popular candidate of the surface
form, i.e. has the highest commonness score (CMNS). The third feature is the difference between
the linked entity’s CMNS to the next candidate entity’s.

A Closeness attention feature is extracted using the distance between the query entity and
the query words in an embedding space. An entity and word joint embedding model are trained

87



Qw‐Dw Qw‐Deܴ௪

Matching Feature

1D‐CNN

௪ܨ

Qe‐Dw Qe‐Deܴ 1D‐CNN

ܨ
Matching Model

௪ܣ

Attention Feature

௪ߙ

ܣ
ߙ

Attention Model

1D‐CNN

1D‐CNNConcatenation Concatenation

Dot Product

AttR‐Duet: ݂ሺݍ, ݀ሻ
Obama
Family
Tree

‘Barack Obama’
‘Family Tree’

Obama
Family
Tree

‘Barack Obama’
‘Family Tree’

Figure 5.1: The Architecture of the Attention based Ranking Model for Word-Entity Duet
(AttR-Duet). The left side models the query-document matching in the word-entity duet.
The right side models the importances of query entities using attention features. They together
produce the final ranking score.

on a corpus including the original documents and the documents with surface forms replaced by
linked entities. The cosine similarity between the entity embedding to the query embedding (the
average of its words’ embeddings) is used as the feature. Intuitively, a higher similarity score
should lead to more attention.

The full list of entity attention features, Att(e), is listed in Table 5.5.

5.1.2.2 Model

The architecture of AttR-Duet is illustrated in Figure 5.1. It produces a ranking function
f(q, d) that re-ranks candidate documents D for the query q, with the ranking features in Ta-
ble 5.1-5.4 and attention features in Table 5.5. f(q, d) is expected to weight query elements more
properly and rank document more accurately.

Model inputs: Suppose the query contains words {w1, ..., wn} and entities {e1, ... , em},
there are four input feature matrices: Rw, Re, Aw, and Ae. Rw and Re are the ranking feature
matrices for query words and entities in the document. Aw and Ae are the attention feature
matrices for words and entities. These matrices’ rows are feature vectors previously described:

Rw(wi, ·) = ΦQw-Dw(wi) t ΦQw-De(wi) (5.2)
Re(ej, ·) = ΦQe-Dw(ej) t ΦQe-De(ej) (5.3)
Aw(wi, ·) = 1 (5.4)
Ae(ej, ·) = Att(ej). (5.5)

ΦQw-Dw, ΦQw-De, ΦQe-Dw, and ΦQe-De are the ranking features from the word-entity duet, as de-
scribed in Section 5.1.1. The two feature vectors of a query element are concatenated (t). Att(ej)
is the attention features for entity ej (Table 5.5). In this work, we use uniform word attention
(Aw = 1), because the main goal of the attention mechanism is to handle the uncertainty in the
entity representations.

The matching part contains two Convolutional Neural Networks (CNN’s). One matches
query words to d (Rw); the other one matches query entities to d (Re). The convolution is
applied on the query element (word/entity) dimension, assuming that the ranking evidence from
different query words or entities should be treated the same. The simplest setup with one 1d

88



CNN layer, 1 filter, and linear activation function can be considered as a linear model applied
‘convolutionally’ on each word or entity:

Fw(wi) = Wm
w ·Rw(wi, ·) + bmw (5.6)

Fe(ej) = Wm
e ·Re(ej, ·) + bme . (5.7)

Fw(wi) and Fe(ej) are the matching scores from query word wi and query entity ej , respectively.
The matching scores from all query words form an n dimensional vector Fw, and those from
entities form an m dimensional vector Fe. Wm

w ,W
m
e , b

m
w , and bme are the matching parameters to

learn.
The attention part also contains two CNN’s. One weights query words with Aw and the

other one weights query entities with Ae. The same convolution idea is applied as the attention
features on each query word/entity should be treated the same.

The simplest set-ups with one CNN layer are:

αw(wi) = ReLU(W a
w · Aw(wi, ·) + baw) (5.8)

αe(ej) = ReLU(W a
e · Ae(ej, ·) + bae). (5.9)

αw(wi) and αe(ej) are the attention weights on word wi and entity ej . {W a
w,W

a
e , b

a
w, b

a
e} are the

attention parameters to learn. ReLU activation is used to ensure non-negative attention weights.
The matching scores can be negative because only the differences between documents’ matching
scores matter.

The final ranking score combines the matching scores using the attention scores:

f(q, d) = Fw · αw + Fe · αe. (5.10)

The training is done by optimizing the pairwise hinge loss:

l(q,D) =
∑
d∈D+

∑
d′∈D−

[1− f(q, d) + f(q, d′)]+. (5.11)

D+ and D− are the set of relevant documents and the set of irrelevant documents. [·]+ is the
hinge loss. The loss function can be optimized using back-propagation in the neural network,
and the matching part and the attention part are learned simultaneously.

5.1.3 Experimental Methodology
This section describes the experiment methodology, including dataset, baselines, and the imple-
mentation details of our methods.

Dataset: Ranking performances were evaluated on the TREC Web Track ad-hoc task, the
standard benchmark for web search. TREC 2009-2012 provided 200 queries for ClueWeb09,
and TREC 2013-2014 provided 100 queries for ClueWeb12. The Category B of both corpora
(ClueWeb09-B and ClueWeb12-B13) and corresponding TREC relevance judgments were used.

On ClueWeb09-B, the SDM runs provided by EQFE [31] are used as the base retrieval. It
is a well-tuned Galago-based implementation and performs better than Indri’s SDM. All their

89



settings are inherited, including spam filtering using Waterloo spam score (with a threshold of
60), INQUERY plus web-specific stopwords removal, and KStemming. On ClueWeb12-B13,
not all queries’ rankings are available from prior work, and Indri’s SDM performs similarly to
its language model. For simplicity, the base retrieval on ClueWeb12-B13 used is Indri’s default
language model with KStemming, INQUERY stopword removal, and no spam filtering. All our
methods and learning to rank baselines re-ranked the first 100 documents from the base retrieval.

The ClueWeb web pages were parsed using Boilerpipe2. The ‘KeepEverythingExtractor’ was
used to keep as much text from the web page as possible, to minimize the parser’s influence. The
documents were parsed to two fields: title and body. All the baselines and methods implemented
by ourselves were built upon the same parsed results for fair comparisons.

The Knowledge Graph used in this work is Freebase [13]. The query and document entities
were both annotated by TagMe [38]. No filter was applied on TagMe’s results; all annotation
were kept. This is the most widely used setting of entity-based ranking methods on ClueWeb [80]
(Section 3.2, 4.1).

Baselines included standard word-based baselines: Indri’s language model (Lm), sequential
dependency model (SDM), and two state-of-the-art learning to rank methods: RankSVM3 [49]
and coordinate ascent (Coor-Ascent4) [71]. RankSVM was trained and evaluated using a 10-
fold cross-validation on each corpus. Each fold was split to train (80%), develop (10%), and test
(10%). The develop part was used to tune the hyper-parameter c of the linear SVM from the set
{1e − 05, 0.0001, 0.001, 0.01, 0.03, 0.05, 0.07, 0.1, 0.5, 1}. Coor-Ascent was trained using
RankLib’s recommended settings, which worked well in our experiments. They used the same
word based ranking features as in Table 5.1.

Entity-based ranking baselines were also compared. EQFE [31] runs are provided by
its authors. Our own entity-oriented search methods, including EsdRank (Section 3.2),
BOE-TagMe (Section 4.1) and ESR (Section 4.2) are also compared. The comparisons with
EQFE and EsdRank are mainly done on ClueWeb09, because when they were developed not
all ClueWeb12 TREC queries were released. BOE-TagMe is the best TagMe based runs in
Section 4.1, which is TagMe-EF on ClueWeb09-B and TagMe-COOR on ClueWeb12-B13. We
apply ESR on web search with the same set-up as it was applied on academic search (Section 4.2)
except the entity embeddings are obtained by TransE [14] on Freebase instead of Skip-gram on
the academic knowledge graph.

There are also other unsupervised entity-based systems [61, 80] (Section 3.1); it is unfair to
compare them with our supervised methods.

Evaluation was done by NDCG@20 and ERR@20, the official TREC Web Track ad-hoc
task evaluation metrics. Statistical significances were tested by permutation test with p< 0.05.

Feature Details: All parameters in the unsupervised retrieval model features were kept de-
fault. All texts were reduced to lower case, punctuation was discarded, and standard INQUERY
stopwords were removed. Document fields included title and body, both parsed by Boilerpipe.
Entity textual fields included name and description. When extracting Qw-De features, if a docu-
ment did not have enough entities (3 in title or 5 in body), the feature values were set to−20. The

2https://github.com/kohlschutter/boilerpipe
3https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
4https://sourceforge.net/p/lemur/wiki/RankLib/

90



TransE embeddings were trained using Fast-TransX library5. The embedding dimension used is
50.

When extracting the attention features in Table 5.5, the word and entity joint embeddings
were obtained by training a skip-gram model on the candidate documents using Google’s
word2vec [73] with 300 dimensions; the surface form’s statistics were calculated from Google’s
FACC1 annotation [39].

Model Details: AttR-Duet was evaluated using 10-fold cross validation with the same
partitions as RankSVM. Deeper neural networks were explored but did not provide much im-
provement so the simplest CNN setting was used: 1 layer, 1 filter, linear activation for the rank-
ing part, and ReLU activation for the attention part. All CNN’s weights were L2-regularized.
Regularization weights were selected from the set {0, 0.001, 0.01, 0.1} using the develop fold
in the cross validation. Training loss was optimized using the Nadam algorithm [90]. Our im-
plementation was based on Keras. To facilitate implementation, input feature matrices of query
elements were padded to the maximum length with zeros. Batch training was used, given the
small size of training data.

Using a common CPU, the training took 4-8 hours to converge on ClueWeb09-B and 2-
4 hours on ClueWeb12-B13. The testing is efficient as the neural network is shallow. The
document annotations, TransE embeddings, and surface form information can be obtained off
line. Query entity linking is efficient given the short query length. If the embedding results
and entities’ texts are maintained in memory, the feature extraction is of the same complexity as
typical learning to rank features.

The rankings, evaluation results, and the data used in our experiments are available online
at http://boston.lti.cs.cmu.edu/appendices/SIGIR2017_word_entity_
duet/.

5.1.4 Evaluation Results
This section first evaluates the overall ranking performances of the word-entity duet with atten-
tion based learning to rank. Then it analyzes the two parts of AttR-Duet: Matching with the
word-entity duet and the attention mechanism.

5.1.4.1 Overall Performance

The overall accuracies of AttR-Duet and baselines are shown in Table 5.12. Relative perfor-
mances over RankSVM are shown in percentages. Win/Tie/Loss are the number of queries a
method improves, does not change, and hurts, compared with RankSVM on NDCG@20. Best
results in each metric are marked Bold. § indicates statistically significant improvements over
all available baselines.

AttR-Duet outperformed all baselines significantly by large margins. On ClueWeb09-B, a
widely studied benchmark for web search, AttR-Duet improved RankSVM, a strong learning
to rank baseline, by more than 20% at NDCG@20, and more than 30% at ERR@20, showing
the advantage of the word-entity duet over bag-of-words. ESR, EQFE and EsdRank, previous

5https://github.com/thunlp/Fast-TransX

91

http://boston.lti.cs.cmu.edu/appendices/SIGIR2017_word_entity_duet/
http://boston.lti.cs.cmu.edu/appendices/SIGIR2017_word_entity_duet/


Table 5.6: Overall accuracies of AttR-Duet. (U) and (S) indicate unsupervised or supervised
method. (E) indicates that information from entities is used. Relative performances compared
with RankSVM are shown in percentages. Win/Tie/Loss are the number of queries a method
improves, does not change, or hurts, compared with RankSVM on NDCG@20. Best results are
marked bold. § marks statistically significant improvements over all baselines. The baseline
scores are in general higher than in previous sections because the experimental setups are im-
proved with more proper relevance judgments (Category-B), a better HTML parser (Boilerpipe),
better tuned base retrieval models (from EQFE [31]), and revised ranking features.

ClueWeb09-B
Method NDCG@20 ERR@20 W/T/L

Lm (U) 0.1757 −33.33% 0.1195 −22.63% 47/28/125
SDM (U) 0.2496 −5.26% 0.1387 −10.20% 62/38/100
RankSVM (S) 0.2635 – 0.1544 – –/–/–
Coor-Ascent (S) 0.2681 +1.75% 0.1617 +4.72% 71/47/82
BOE-TagMe (UE) 0.2294 −12.94% 0.1488 −3.63% 74/25/101
ESR (SE) 0.2695 +2.30% 0.1607 +4.06% 80/39/81
EQFE (SE) 0.2448 −7.10% 0.1419 −8.10% 77/33/90
EsdRank (SE) 0.2644 +0.33% 0.1756 +13.69% 88/28/84
AttR-Duet (SE) 0.3197§ +21.32% 0.2026§ +31.21% 101/37/62

ClueWeb12-B13
Method NDCG@20 ERR@20 W/T/L

Lm (U) 0.1060 −12.02% 0.0863 −6.67% 35/22/43
SDM (U) 0.1083 −10.14% 0.0905 −2.08% 27/25/48
RankSVM (S) 0.1205 – 0.0924 – –/–/–
Coor-Ascent (S) 0.1206 +0.08% 0.0947 +2.42% 36/32/32
BOE-TagMe (UE) 0.1173 −2.64% 0.0950 +2.83% 44/19/37
ESR (SE) 0.1166 −3.22% 0.0898 −2.81% 30/23/47
EQFE (SE) n/a – n/a – –/–/–
EsdRank (SE) n/a – n/a – –/–/–
AttR-Duet (SE) 0.1376§ +14.22% 0.1154§ +24.92% 45/24/31

state-of-the-art entity-based ranking methods, were outperformed by at least 15%. It is not sur-
prising because the duet framework includes all of their effects, as discussed in Section 5.1.1.3.
ClueWeb12-B13 has been considered a hard dataset due to its noisy corpus and harder queries.
The size of its training data is also smaller, which limits the strength of our neural network. How-
ever, AttR-Duet still significantly outperformed all available baselines by at least 14%. The
information from entities is effective and also different with those from words: AttR-Duet
influences more than 75% of the queries, and improves the majority of them.

92



Table 5.7: Ranking accuracy with each group of matching feature from the word-entity duet.
Base Retrieval is SDM on ClueWeb09 and Lm on ClueWeb12. LeToR-Qw-Dw uses the
query and document’s BOW (Table 5.1). LeToR-Qe-Dw uses the query’s BOE and docu-
ment’s BOW (Table 5.2), LeToR-Qw-De is the query BOW + document BOE (Table 5.3), and
LeToR-Qe-De uses the query and document’s BOE (Table 5.4). LeToR-All uses all groups.
Relative performances in percentages, Win/Tie/Loss on NDCG@20, and statistically significant
improvements (†) are all compared with Base Retrieval.

ClueWeb09-B
Method NDCG@20 ERR@20 W/T/L

Base Retrieval 0.2496 −− 0.1387 −− –/–/–
LeToR-Qw-Dw 0.2635† +5.55% 0.1544† +11.36% 100/38/62
LeToR-Qe-Dw 0.2729 +9.33% 0.1824† +31.51% 82/34/84
LeToR-Qw-De 0.2867† +14.83% 0.1651† +19.07% 91/39/70
LeToR-Qe-De 0.2695† +7.97% 0.1607† +15.88% 99/40/61
LeToR-All 0.3099† +24.13% 0.1955† +40.97% 103/38/59

ClueWeb12-B13
Method NDCG@20 ERR@20 W/T/L

Base Retrieval 0.1060 −− 0.0863 −− –/–/–
LeToR-Qw-Dw 0.1205 +13.67% 0.0924 +7.14% 43/22/35
LeToR-Qe-Dw 0.1110 +4.66% 0.0928 +7.63% 40/20/40
LeToR-Qw-De 0.1146 +8.09% 0.0880 +1.96% 42/20/38
LeToR-Qe-De 0.1166 +10.01% 0.0898 +4.13% 38/20/42
LeToR-All 0.1205 +13.69% 0.1000 +15.93% 47/19/34

5.1.4.2 Matching with Word-Entity Duet

In a sophisticated system like AttR-Duet, it is hard to tell the contributions of different com-
ponents. This experiment studies how each of the four-way interactions in the word-entity duet
contributes to the ranking performance individually. For each group of the matching features
in Table 5.1- 5.4, we train a RankSVM individually, which resulted in four ranking models:
LeToR-Qw-Dw, LeToR-Qe-Dw, LeToR-Qw-De, and LeToR-Qe-De. LeToR-All which
uses all ranking features is also evaluated. In LeToR-Qw-De and LeToR-Qe-De, the score of
the base retrieval model is included as a feature, so that there is a feature to indicate the strength
of the word-based match for the whole document. All these methods were trained and tested
in the same setting as RankSVM. As a result, LeToR-Qw-Dw is equivalent to the RankSVM
baseline, and LeToR-Qe-De is equivalent to the ESR baseline.

Their evaluation results are listed in Table 5.7. Relative performances (percentages),
Win/Tie/Loss, and statistically significant improvements (†) are all compared with Base
Retrieval (SDM on ClueWeb09 and Lm on ClueWeb12). All four groups of matching fea-
tures were able to improve the ranking accuracy of Base Retrieval when used individu-
ally as ranking features, demonstrating the usefulness of all matching components in the duet.
On ClueWeb09-B, all three entity related components, LeToR-Qe-Dw, LeToR-Qw-De, and

93



Table 5.8: Examples of entities used in Qw-De and Qe-De. The first half are examples of
matched entities in relevant and irrelevant documents, which are used to extract Qw-De features.
The second half are examples of entities falls into the exact match bin and the closest soft match
bins, used to extract Qe-De features.

Examples of Most Similar Entities to the Query
Query In Relevant Documents In Irrelevant Documents

Uss Yorktown
‘USS Yorktown (CV-10)’

‘Charles Cornwallis’,
Charleston SC ‘USS Yorktown (CV-5)’

Flushing
‘Roosevelt Avenue’, ‘Flushing (physiology)’,
‘Flushing, Queens’ ‘Flush (cards)’

Examples of Neighbors in Knowledge Graph Embedding
Query In Exact Match Bin In Soft Match Bins

Uss Yorktown ‘USS Yorktown (CV-10)’, ‘Empire of Japan’,
Charleston SC ‘Charleston, SC’ ‘World War II’

Flushing ‘Flushing, Queens’
‘Brooklyn’, ‘Manhattan’,

‘New York’

LeToR-Qe-De, provided similar or better performances than the word-based RankSVM. When
all features were used together, LeToR-All significantly improved RankSVM by 17% and 26%
on NDCG@20 and ERR@20, showing that the ranking evidence from different parts of the duet
can reinforce each other.

On ClueWeb12-B13, entity-based matching was less effective. LeToR-All’s NDCG@20
was the same as RankSVM’s, despite additional matching features. The difference is that the
annotation quality of TagMe on ClueWeb12 queries is lower (Table 5.9). The noisy entity rep-
resentation may mislead the ranking model, and prevent the effective usage of entities. To deal
with this uncertainty is the motivation of the attention based ranking model, which is studied in
Section 5.1.4.4.

5.1.4.3 Matching Feature Analysis

The features from the word space (Qw-Dw) are well understood, and the feature from the query
entities to document words (Qe-Dw) have been studied in prior research [31, 61] (Section 3.2).
This experiment analyzes the features from the two new components (Qw-De and Qe-De).

Qw-De features match the query words with the document entities. For each document, the
query words are matched with the textual fields of document entities using retrieval models, and
the highest scores are Qw-De features.

We performed an incremental feature analysis of LeToR-Qw-De. Starting with the highest
scored entities from each group in Table 5.3, we incrementally added the next highest ones to
the model and evaluated the ranking performance. The results are shown in Figure 5.2a. The
y-axis is the relative NDCG@20 improvements over the base retrieval model. The x-axis is the
used features. For example, ‘Top 3 Scores’ uses the top 3 entities’ retrieval scores in each row of
Table 5.3.

94



‐5%

0%

5%

10%

15%

20%

ClueWeb09 ClueWeb12Re
la
tiv

e 
N
DC

G
@
20

Top 1 Scores Top 2 Scores Top 3 Scores
Top 4 Scores Top 5 Scores

(a) Features from Query Words to Document En-
tities (Qw-De)

0%

3%

6%

9%

12%

ClueWeb09 ClueWeb12

Re
la
tiv
e 
N
DC

G
@
20

Exact Bins First 2 Bins First 3 Bins
First 4 Bins First 5 Bins All Bins

(b) Features from Query Entities to Document En-
tities (Qe-De)

Figure 5.2: Incremental analysis for duet ranking features. The y-axis is the relative NDCG@20
improvement over the base retrieval. The x-axis refers to the features from only top k (1-5) entity
match scores (5.2a), and the features from only first k (1-6) bins in the ESR model (5.2b), both
ordered incrementally from left to right.

The highest scores were very useful. Simply combining them with the base retrieval provided
nearly 10% gain on ClueWeb09-B and about 7% on ClueWeb12-B13. Adding the following
scores was not that stable, perhaps because the corresponding entities were rather noisy, given
the simple retrieval models used to match query words with them. Nevertheless, the top 5 scores
together further improve the ranking accuracy.

The first half of Table 5.8 shows examples of entities with highest matching scores. We found
that such ‘top’ entities from relevant documents are frequently related to the query, for example,
‘Roosevelt Avenue’ is an avenue across Flushing, NY. In comparison, entities from irrelevant
documents are much noisier. Qw-De features make use of this information and generate useful
ranking evidence.

Qe-De features are extracted using the Explicit Semantic Ranking (ESR) method (Sec-
tion 4.2). ESR is built upon the translation model. It operates in the entity space, and extracts the
ranking features using histogram pooling. ESR was originally applied on academic search. This
section introduces ESR to web search and uses the TransE model [14] to train general domain
embeddings from the knowledge graph.

To study the effectiveness of ESR in our setting, we also performed an incremental feature
analysis of LeToR-Qe-De. Starting from the first bin (exact match), the following bins (soft
matches) were incrementally added into RankSVM, and their rankings were evaluated. The
results are shown in Figure 5.2b. The y-axis is the relative NDCG@20 over the base retrieval
model they re-rank. The x-axis is the features used. For example, First 3 Bins refers to using the
first three bins: [1, 1], [0.8, 1), and [0.6, 0.8).

The observation on Semantic Scholar (Section 4.2) holds on ClueWeb: Both exact match
and soft match with entities are useful. The exact match bin provided a 7% improvement on
ClueWeb09-B, while only 2% on ClueWeb12-B13. Similar exact match results were also ob-
served in our prior study (Section 4.1). It is another reflection of the entity annotation quality
differences on the two datasets. Adding the later bins almost always improves the ranking accu-
racy, especially on ClueWeb12.

95



Table 5.9: Query annotation accuracy and the gain of attention mechanism. TagMe Accuracy in-
cludes the precision and recall of TagMe on ClueWeb queries, evaluated in Section 4.1. Attention
Gains are the relative improvements of AttR-Duet compared with LeToR-All. Statistical
significant gains are marked by †.

TagMe Accuracy Attention Gain
Precision Recall NDCG@20 ERR@20

ClueWeb09 0.581 0.597 +3.16%† +3.65%

ClueWeb12 0.460 0.555 +14.20%† +15.45%†

0%

2%

4%

6%

8%

0

50

100

150

1 2 3

A
tt
en

ti
o
n
 R
el
at
iv
e 
G
ai
n

N
u
m
b
er
 o
f 
Q
u
er
ie
s

NDCG ERR

(a) ClueWeb09-B

0%

20%

40%

0

10

20

30

40

50

1 2 3

A
tt
en

ti
o
n
 R
el
at
iv
e 
G
ai
n

N
u
m
b
er
 o
f 
Q
u
er
ie
s

NDCG ERR

(b) ClueWeb12-B13

Figure 5.3: Attention mechanism’s gain on queries that contain different number of entities. The
x-axis is the number of entities in the queries. The y-axis is the number of queries in each group
(histogram), and the gain from attention (plots).

The second half of Table 5.8 shows some examples of entities in the exact match bin and the
nearest soft match bins. The exact match bin includes the query entities and is expected to help.
The first soft match bin usually contains related entities. For example, the neighbors of ‘USS
Yorktown (CV-10)’ include ‘World War II’ which is when the ship was built. The further bins
are mostly background noise because they are too far away. The improvements are mostly from
the first 3 bins.

5.1.4.4 Attention Mechanism Analysis

The last experiment studies the effect of the attention mechanism by comparing AttR-Duet
with LeToR-All. If enforcing flat attention weights on all query words and entities,
AttR-Duet is equivalent to LeToR-All: The matching features, model function, and loss
function are all the same. The attention part is their only difference, whose effect is reflected in
this comparison.

The gains from the attention mechanism are shown in Table 5.9. To better understand the
attention mechanism’s effectiveness in demoting noisy query entities, the query annotation’s
quality evaluated in Section 4.1 is also listed. The percentages in the Attention Gain columns
are relative improvements of AttR-Duet compared with LeToR-All. † marks statistical
significance. Figure 5.3 breaks down the relative gains to queries with different numbers of
query entities. The x-axis is the number of query entities. The histograms are the number of

96



queries in each group, marked by the left y-axis. The plots are the relative gains, marked by the
right y-axis.

Table 5.10: Examples of learned attention weights. The entities in bold blue draw more atten-
tion; those in gray draw less attention.

Query Entity Attention

Balding Cure
‘Cure’
‘Clare Balding’

Nicolas Cage Movies
‘Nicolas Cage’
‘Pokemon (Anime)’

Hawaiian Volcano ‘Volcano’; ‘Observatory’
Observatories ‘Hawaiian Narrative’;

Magnesium Rich Foods
‘Magnesium’; ‘Food’
‘First World’

Kids Earth Day ‘Earth Day’
Activities ‘Youth Organizations in the USA’

The attention mechanism is essential to ClueWeb12-B13. Without the attention model,
LeToR-All was confused by the noisy query entities and could not provide significant im-
provements over word-based models, as discussed in the last experiment. With the attention
mechanism, AttR-Duet improved LeToR-All by about 15%, outperforming all baselines.
On ClueWeb09 where TagMe’s accuracy is better (Section 4.1), the ranking evidence from the
word-entity duet was clean enough for LeToR-All to improve ranking, so the attention mecha-
nism’s effect was smaller. Also, in general, the attention mechanism is more effective when there
are more query entities, while if there is only one entity there is not much to tweak.

The motivation for using attention is to handle the uncertainties in the query entities, a crucial
challenge in utilizing knowledge bases in search. These results demonstrated its ability to do
so. We also found many intuitive examples in the learned attention weights, some listed in
Table 5.10. The bold blue entities on the first line of each block gain more attention (> 0.6
attention score). Those in gray on the second line draw less attention (< 0.4 score). The attention
mechanism steers the model away from those mistakenly linked query entities, which makes it
possible to utilize the correct entities’ ranking evidence from a noisy representation.

5.1.5 Word-Entity Duet Summary

This section presents a word-entity duet framework for utilizing knowledge bases in document
ranking. In the framework, the query and documents are represented by both word-based and
entity-based representations. The four-way interactions between the two representation spaces
form a word-entity duet that can systematically incorporate various semantics from the knowl-
edge graph. From query words to document words (Qw-Dw), word-based ranking features are
included. From query entities to document entities (Qe-De), entity-based exact match and soft
match evidence from the knowledge graph structure are included. The entities’ textual fields

97



are used in the cross-space interactions Qe-Dw, which expands the query, and Qw-De, which
enriches the document.

To handle the uncertainty introduced from the automatic-thus-noisy entity representations, a
new ranking model AttR-Duet is developed. It employs a simple attention mechanism to de-
mote the ambiguous or off-topic query entities, and learns simultaneously how to weight entities
of varying quality and how to rank documents with the word-entity duet.

Experimental results on the TREC Web Track ad-hoc task demonstrate the effectiveness of
proposed methods. AttR-Duet significantly outperformed all word-based and entity-based
ranking baselines on both ClueWeb corpora and all evaluation metrics. Further experiments
reveal that the strength of the method comes from both the advanced matching evidence from the
word-entity duet, and the attention mechanism that successfully ‘purifies’ them. On ClueWeb09
where the query entities are cleaner, all the entity related matching components from the duet
provide similar or better improvements compared with word-based features. On ClueWeb12
where the query entities are noisier, the attention mechanism steers the ranking model away
from noisy entities and is necessary for stable improvements.

5.2 Joint Entity Linking and Entity-based Ranking

In entity-oriented search systems, a key step is entity linking, which aligns the texts in the query
and document to the knowledge graph’s semantics. Though significant progress has been made
in both fronts, entity linking and entity-based ranking research were developed separately. Entity
linking systems are mostly optimized for their own metrics, which may not suit the needs of
entity-based ranking. For example, entity linking systems may prefer high accuracy on several
named entity categories [20], while entity-based search systems need high recall on general do-
main entities to ensure coverage of the query traffic (Section 4.2). On the other hand, entity-based
ranking systems merely treat the entity linker as a pre-processing step, and use the annotation as
a black box. Even the state-of-the-art automatic entity linking systems still make mistakes, espe-
cially on short queries (Section 5.1). Frequently the noise introduced by the entity linker is the
main error source of entity-based ranking systems [61] (Section 3.2). Without access to the de-
tailed linking process, the best an entity-based search system can do is manual correction [31, 61]
and post-pruning (Section 3.2, 5.1).

This section presents JointSem, a joint semantic ranking method that combines query en-
tity linking and entity-based document ranking6. JointSem spots surface forms in the query,
links multiple candidate entities to each spotted surface form to avoid over committing (soft-
alignment), and ranks documents using the linked entities. The spotting and linking evidence
widely used in the entity linking literature are incorporated to weight the entities, and standard
entity-based ranking features are used to rank documents. The whole system – spotting, linking,
and ranking – is trained jointly by a learning-to-rank model using document relevance labels.

6 Chenyan Xiong, Zhengzhong Liu, Jamie Callan, and Eduard Hovy. JointSem: Combining Query Entity Linking
and Entity based Document Ranking. In Proceedings of the 26th ACM International Conference on Information and
Knowledge Management (CIKM 2017) [102]. The majority of this work was done as the course project for the
class ‘11-727, Computational Semantics for NLP’ at Carnegie Mellon University. Zhengzhong Liu was the TA and
Eduard Hovy was a Instructor of the course. They provided valuable feedback and helped the paper writing.

98



Table 5.11: Spotting, linking, and ranking features. Surface Form Features are extracted for each
spotted surface form. Entity Features are extracted for each candidate entity from each spot.
Entity-Document Ranking Features are extracted for each entity-document pair. The number in
brackets is the dimension of the corresponding feature group.

Surface Form Features (φs) Entity Features (φe)
(1) Linked Probability (1) Commonness
(1) Surface Form Entropy (2) Max and Mean Similarity
(1) Top Candidate Entities Margin with Query Words
(1) Surface Form Length and Coverage (2) Max and Mean Similarity
(1) Surface Form Coverage with Other Query Entities

Entity-Document Ranking Features (φr)
(16) BM25, Coordinate Match, TFIDF and language model with Dirichlet smoothing

from entity’s textual fields (name and description) to document’s fields (title and body)

Our experiments on TREC Web Track datasets demonstrate that the joint model is more
effective for ranking; significant improvements were found over both word-based and entity-
based ranking systems. Our analysis further reveals that the advantage of JointSem comes
from both the soft-alignment that passes more information to the ranking model, and the joint
modeling of spotting, linking, and ranking signals.

5.2.1 Joint Semantic Ranking
This section first describes the spotting, linking, and ranking features used in JointSem, and
then the joint learning-to-rank model.

5.2.1.1 Spotting, Linking, and Ranking

JointSem first aligns entities from the knowledge graph to the given query q in a two-step
approach: spotting and linking. The spotting step detects surface forms (entity mentions)
S = {s1, ...si..., sM} that appear in the query. The linking step aligns each surface form si
to some candidate entities: Ei = {ei1, ...eij..., eiN}. JointSem uses a soft-alignment so that
multiple candidate entities are kept. Typical spotting and linking features are extracted for the
final ranking model to decide the importance of each soft-aligned entity.

Spotting: The spotting step is conducted by looking up the n-grams in the query in a surface
form dictionary. The surface form dictionary contains all the possible surface forms (names and
aliases) of entities, and is collected from a training corpus, for example, Wikipedia. Following
prior convention [20], we start from the first word, spot the longest surface forms, and then move
to the word after the surface form. No overlapped spots are allowed.

In spotting, the following features (φs(si)) are extracted to describe the reliability of the
surface form.
• Linked Probability is the probability of a surface form being linked to any entity in the

training corpus.

99



• Surface Form Entropy is the entropy of the probabilities of a surface form being linked to
different entities in the training corpus (Section 5.1).

• Top Candidate Margin is the difference between the probabilities of the surface form being
linked to the most frequent entity and the second one.

• Surface Form Length and Coverage are the number of words the surface form contains and
the fraction of the query words it covers.

Linking: The linking step aligns entities to each spotted surface form. The surface form
dictionary contains the mapping from surface forms to its candidate entities, collected from the
training corpus. If a surface form has multiple possible candidate entities, all of them are linked
(soft-alignment).

The relevance of an entity (e) to the query is described by the following features (φe(e)).
• Commonness is the probability of the surface form being linked to the entity among all its

appearances in the training corpus (Section 5.1).
• Similarity with Query Words: The similarity between a query word and a candidate entity

is calculated by the cosine of their pre-trained embeddings (see §5.2.2). The max and mean
of the entity’s embedding similarity to all query words are used as features.

• Similarity with Other Query Entities: The similarities between an entity and the top entity
(the one with the highest Commonness) of the other spots are calculated using the pre-
trained embeddings. The max and mean of these similarity scores are used as its features.

Ranking: The aligned query entities provide many new ranking features. For each linked
entity, JointSem uses its textual fields as pseudo queries, and extracts entity-document ranking
features using standard retrieval models. The ranking features φr used in this work are: BM25,
TFIDF, Coordinate Match, and language model with Dirichlet smoothing, applied on the entity’s
name and description and the document’s title and body [61] (Section 3.2, 5.1). The descriptions
are lower-cased and the standard INQUERY stopwords are removed.

The full list of features is shown in Table 5.11. In a re-ranking setting, all these features
are efficient enough to be extracted online if the surface form dictionary, embeddings, and the
entity’s textual fields are maintained in the memory.

5.2.1.2 Joint Learning to Rank

JointSem ranks the candidate document d for q using the entity-based ranking features
φr(E, d). Additionally, JointSem aims to learn how to better utilize the entity-based rank-
ing signals using the surface form features φs(S) and entity features φe(E). The joint ranking
model contains three components.

The first part learns the importance of the surface form si:

fs(si) = wTs φs(si).

The second part learns the importance of the aligned entity eij:

fe(e
i
j) = wTe φe(e

i
j).

100



The third part learns the ranking of document for the entity eij:

fr(e
i
j, d) = wTr φr(e

i
j, d).

The three parts are combined to the final ranking score:

f(q, d|θ, S, E) =
M∑
i=1

N∑
j=1

fs(si) · fe(eij) · fr(eij, d), (5.12)

where M is the number of surface forms in the query, N is the number of candidate enti-
ties aligned per surface form (N > 1), f(q, d|θ, S, E) is the final ranking score produced by
JointSem, and θ = {ws, we, wr} are the parameters to learn.

Training uses standard pairwise learning-to-rank with hinge loss:

θ∗ = argminθ
∑
q

∑
d+,d−∈D+,−

q

[1− f(q, d+|S,E) + f(q, d−|S,E)]+.

D+,−
q is the pairwise document preferences (d+ > d−). The whole model is differentiable and is

optimized by standard back-propagation.
In Equation 5.12, fs(si) and fe(eij) together produce the weight, or attention, for the aligned

entity eij , which is used to weight the document ranking score fr(eij, d) produced by the entity.
As the whole model is trained jointly by learning-to-rank, the query entity linking is optimized
together with the entity-based ranking for better end-to-end ranking performance.

5.2.2 Experiment Methodology
The experiments conducted in this section follows the same settings as in Section 5.1.

Dataset: Our experiments use two ClueWeb Category B corpora, TREC Web Track queries
and corresponding relevance judgments. ClueWeb09-B has 200 queries from TREC Web Track
2009-2012; ClueWeb12-B13 has 100 queries from TREC Web Track 2013-2014.

All our methods re-rank the top 100 candidate documents from a base retrieval model. On
ClueWeb09, the base retrieval is the SDM runs from the well-tuned and widely used EQFE [31].
On ClueWeb12, not all rankings are publicly available from EQFE, so the base retrieval is Indri’s
default language model, with KSteming, INQUERY stopword removal, and no spam filtering.

When extracting ranking features, the document’s title and body are parsed by Boilerpipe
with the ‘KeepEverythingExtractor’; all parameters of the retrieval models used are kept default.
Baselines: Word-based baselines are unsupervised language model (Lm) and SDM, and super-
vised learning-to-rank models, including RankSVM and Coordinate Ascent. They are the
same as in Section 5.1.

Entity-based ranking baselines include the widely used EQFE [31] and EsdRank (Section 3.2)
on ClueWeb09-B. We also compare with LeToR-Qe-Dw with query entities from an off-the-
shelf entity linker [38] and similar entity-based ranking features (Section 5.1).

The main goal of this experiment is to show the effectiveness of joint query entity linking and
entity-based ranking; other entity-based ranking systems that use manual annotations or involve
document entities are not fair comparisons.

101



Evaluation Metrics: The TREC Web Track’s official evaluation metrics, NDCG@20 and
ERR@20, are used. Statistical significance is tested by the permutation test with p < 0.05.
Implementation Details: All supervised methods implemented by us are evaluated using the
same 10-fold cross validation, done separately on ClueWeb09 or ClueWeb12 queries. In each
fold, the training of JointSem and its variants were repeated 20 times, and the one with the
best training loss is used in testing.

The knowledge graph used is Freebase. The surface form dictionary, including the sur-
face forms, their candidate entities, and corresponding commonness scores are obtained from
Google’s FACC1 annotation on the two ClueWeb corpora. The linked probabilities of the surface
forms are calculated on a recent Wikipedia dump (20170420). The word and entity embeddings
are trained with the skip-gram model in Google’s word2vec toolkit, with 300 dimensions. The
training corpus of embeddings is the Wikipedia dump mixed with its duplicate on which the
manual entity annotations are replaced by their Freebase Ids. The base retrieval score is added
as a ranking feature to JointSem.

The training uses batch training and ndam optimization. The maximum entities allowed per
surface form (N ) is 5; candidate entities not in the top 5 are extremely rare or noise.

5.2.3 Evaluation

This section presents the overall evaluation results and the analysis of JointSem’s source of
effectiveness.

5.2.3.1 Overall Performance

The overall evaluation results in Table 5.12 demonstrate that jointly modeling the linking of
entities and entity-based ranking helps. JointSem outperforms all entity-based baselines which
also use query annotations and similar ranking evidence, but treat the entity linking step as a fixed
pre-processing step. The performances of entity-based systems are also correlated with the entity
linking difficulties on corresponding queries. On ClueWeb09 where the entity linking systems
perform better (Section 5.1), directly using TagMe’s results is already helpful (LeToR-Qe-Dw),
and the improvement of joint semantic ranking is relatively smaller (5 − 10%); on ClueWeb12
where query entity linking is harder (Section 5.1), fully trusting entity linking’s results sometimes
even fails to outperform word-based ranking, and JointSem’s improvements are bigger (15%).

Factoring in the entity linking influences most of the queries. JointSem acts rather differ-
ently than baselines, improving about half of the queries. The statistical significances are more
frequently observed on ClueWeb09 but less on ClueWeb12, although the relative improvements
on the latter are higher. Part of the reason is that ClueWeb12 has fewer queries (100), which also
makes the learning of the query level models (spotting and linking) less stable.

JointSem differs from previous entity-based ranking systems in two aspects: the soft-
alignment that introduces multiple entities per spot, and the joint modeling of the spotting, link-
ing and ranking signals to optimize end-to-end ranking performance. The rest of the experiments
study the effectiveness of these two factors.

102



Table 5.12: Overall accuracies of JointSem. Relative performances compared with
LeToR-Qe-Dw are shown as percentages. Win/Tie/Loss are the number of queries a method
improves, does not change, or hurts, compared with LeToR-Qe-Dw on NDCG@20. Best re-
sults in each metric are marked bold. †, ‡, §, and ¶ indicate statistically significant improvements
over Coordinate Ascent†, EQFE‡, EsdRank§, and LeToR-Qe-Dw¶, respectively.

ClueWeb09-B
Method NDCG@20 ERR@20 W/T/L

Lm 0.1757 −35.63% 0.1195 −34.48% 70/25/99
SDM 0.2496 −8.54% 0.1387 −23.96% 84/28/82
RankSVM 0.2635 −3.46% 0.1544 −15.32% 90/29/75
Coordinate Ascent 0.2681 −1.77% 0.1617 −11.32% 91/28/75
EQFE 0.2448 −10.32% 0.1419 −22.18% 76/28/90
EsdRank 0.2644 −3.14% 0.1756 −3.73% 93/25/76
LeToR-Qe-Dw 0.2729 – 0.1824 – –/–/–
JointSem 0.3054†‡§¶ +11.89% 0.1926†‡ +5.63% 99/30/65

ClueWeb12-B13
Method NDCG@20 ERR@20 W/T/L

Lm 0.1060 −4.45% 0.0863 −7.09% 40/20/40
SDM 0.1083 −2.41% 0.0905 −2.52% 43/20/37
RankSVM 0.1205 +8.61% 0.0924 −0.45% 39/22/39
Coordinate Ascent 0.1206 +8.70% 0.0947 +1.96% 44/23/33
EQFE n/a – n/a – –/–/–
EsdRank n/a – n/a – –/–/–
LeToR-Qe-Dw 0.1110 – 0.0928 – –/–/–
JointSem 0.1314¶ +18.46% 0.1076 +15.93% 54/20/26

5.2.3.2 Effectiveness of Soft Alignment

This experiment studies the soft-alignment’s influence by varying the number of entities allowed
per spot in JointSem. The results are shown in Figure 5.4. The y-axis marks the relative
improvements compared with LeToR-Qe-Dw which uses ‘hard alignment’ but similar ranking
features. The ‘k’ in JointSem-Topk refers to the number of candidate entities considered per
spot, selected by their commonness scores.

Although in most cases the Top1 entity is the right choice, in general, considering more
candidate entities, especially when using all top 5, improves the ranking accuracy. Without
many contexts in short queries, an entity linking system tends to merely choose the most popular
candidate entity. Our manual examination found that improvements are often seen on ambiguous
queries whose most popularly linked candidate entities are not the right choice. For example, the
query ‘bobcat’ refers to bobcat the company, but bobcat the animal is the more popular choice
for the entity linking system. JointSem’s soft-alignment avoids such over-commitment, and
lets the final ranking model select the most useful one(s).

103



0%

5%

10%

15%

20%

ClueWeb09 NDCG ClueWeb12 NDCG ClueWeb09 ERR ClueWeb12 ERRRe
la
tiv
e 
G
ai
ns

JointSem‐Top1 JointSem‐Top2 JointSem‐Top3
JointSem‐Top4 JointSem‐Top5

Figure 5.4: Relative improvements of JointSem with different numbers (TopK) of candidate
entities per spot. The relative gains marked by the y-axis are compared with LeToR-Qe-Dw.

Table 5.13: Ablation study of JointSem. JointSem-NoAtt is the entity-based rank-
ing without attention. JointSem-SpotAtt uses the spot attention with entity-based
ranking. JointSem-EntityAtt uses the entity attention with entity-based ranking.
JointSem-All is the full model. Relative performances and Win/Tie/Loss are compared
with JointSem-NoAtt.

ClueWeb09-B
Method NDCG@20 ERR@20 W/T/L

JointSem-NoAtt 0.2919 – 0.1835 – –/–/–
JointSem-SpotAtt 0.3005 +2.95% 0.1882 +2.61% 83/55/56
JointSem-EntityAtt 0.2999 +2.74% 0.1872 +2.06% 85/50/59
JointSem-All 0.3054 +4.62% 0.1926 +5.00% 88/49/57

ClueWeb12-B13
Method NDCG@20 ERR@20 W/T/L

JointSem-NoAtt 0.1258 – 0.1012 – –/–/–
JointSem-SpotAtt 0.1247 −0.88% 0.1010 −0.27% 31/32/37
JointSem-EntityAtt 0.1240 −1.48% 0.1058 +4.52% 36/34/30
JointSem-All 0.1314 +4.44% 0.1076 +6.31% 46/27/27

5.2.3.3 Effectiveness of Joint Modeling

This experiment studies the effectiveness of joint modeling by comparing JointSem and its
sub-models. The results are listed in Table 5.13. JointSem-NoAtt uses the Top1 entity per
spot as fixed and only includes the ranking part (fr(E, d)). JointSem-SpotAtt includes the
surface form attention part (fs), but only the Top1 entities are included with uniform weights;
it is similar to the recent attention-based ranking model with word-entity duet (Section 5.1), but
without document entities. JointSem-EntityAtt includes the soft-alignment and entity
weighting (fe), but without surface form weighting. JointSem-All is the full model.

The ranking part alone provides better or comparable performance with baselines. Adding
in the spotting or the linking part individually helps on ClueWeb09 but has mixed effects on
ClueWeb12. Only JointSem-All provides stable 5% improvements, confirming the impor-
tance of jointly modeling the linking and the utilization of entities for document ranking.

104



5.2.4 JointSem Summary
This section addresses the discrepancy between entity linking and entity-based ranking systems
by performing the two tasks jointly. Our method, JointSem, spots and links entities in the
query, and then uses the linked entities to rank documents. The signals from spotting and linking
are incorporated as entity importance features, and the similarities between entities’ texts and
the document are used as ranking features. JointSem uses a joint learning-to-rank model that
combines all three components together, and directly optimizes them towards the end-to-end
ranking performance.

Experiments on two TREC Web Track datasets demonstrated the effectiveness of
JointSem, and the influences of the two novelties: the soft-alignment includes multiple en-
tities per spot thus is more robust to ambiguous queries; and the joint modeling stably combines
the features from spotting, linking, and ranking together. These results demonstrate that entity
linking, a widely studied natural language processing task, and document ranking, a core infor-
mation retrieval task, can be, and should be developed together.

5.3 Summary
This chapter first presents the word-entity duet framework that integrates the word-based and
entity-based representations. The duet representation naturally leads to a four-way match scheme
that provide a systematic way to incorporate various information from the knowledge graph. To
handle the noise from automatically linked query entities, we develop an attention-based learning
to rank model that utilizes the attention mechanism on query entities. The four-way matches and
the hierarchical ranking model together improve the word-based learning to rank systems by
large margins. The same attention-based ranking model is then generalized in Section 5.2 to
include entity linking. It leads to a soft-linking approach that enables the ranking model to ‘fix’
some linking errors instead of ‘pruning’ them.

The research presented in this chapter wraps up our exploration of knowledge graphs in
search within the feature-based framework. With a series of progress, we successfully developed
the entity-oriented search paradigm that effectively and systematically integrates entities and
their structured semantics from knowledge graphs to search engines. The next chapter goes
beyond the ‘bag-of-terms’ representations and aims to improve text understanding with more
structure and neural networks.

105





Chapter 6

From Representation to Understanding
through Entity Salience Estimation

Understanding the meaning of text has been a long desired goal in information retrieval. In
search engines, the processing of texts begins with the representations of query and documents.
The representations can be bag-of-words, bag-of-entities (Chapter 4), or the combination of them
(Chapter 5). After representation, the next step is to estimate the term (word or entity) importance
in the text, which is also called term salience estimation [33, 36]. The ability to know which terms
are important and central (salient) to the meaning of a text is crucial to many text processing tasks.
In ad hoc search, the ranking of documents is often determined by the salience of query terms in
the documents, which is typically estimated by combining frequency-based signals such as term
frequency and inverse document frequency [29].

Effective as it is, frequency is not equal to salience. For example, a Wikipedia article about
an entity may not repeat the entity the most times; a person’s homepage may only mention her
name once; a frequently mentioned term may be a stopword. In word-based retrieval, many
approaches have been developed to better estimate term importance and improve retrieval mod-
els [12]. However, in entity-based representations (Sections 4.2 and 5.1), although richer seman-
tics are conveyed by entities, entity salience estimation is a rather immature task [33, 36] and its
effectiveness in search has not yet been explored.

This chapter focuses on improving text understanding and retrieval by better estimating the
entity salience in documents1. We present a Kernel Entity Salience Model (KESM) that models
the entity salience end-to-end using neural networks. Given annotated entities in a document,
KESM represents them using Knowledge Enriched Embeddings and models the interactions of
an entity with other entities and words using a Kernel Interaction Model [101]. In the entity
salience task [36], the kernel scores from the interaction model are combined by KESM to esti-
mate entity salience, and the whole model, including the Knowledge Enriched Embeddings and
Kernel Interaction Model, is learned end-to-end using a large number of salience labels.

Our experiments on a news corpus [36] and a scientific proceedings corpus (Section 4.2)

1 Chenyan Xiong, Zhengzhong Liu, Jamie Callan, and Tie-Yan Liu. Towards Better Text Understanding and Re-
trieval through Kernel Entity Salience Modeling. In Proceedings of the 41st International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR 2018) [104]. Zhengzhong Liu pointed me to the
salience task, pre-processed the Annotated NYT data and conducted entity salience baselines.

107



demonstrate KESM’s effectiveness in the entity salience task. It outperforms previous frequency-
based and feature-based models by large margins; it also requires less linguistic pre-processing
than the feature-based model. Our analyses found that KESM has a better balance on popular
(head) entities and rare (tail) entities when predicting salience, while frequency-based or feature-
based methods are heavily biased towards the most popular entities—less attractive to users as
they are more expected. Also, KESM is more reliable on documents with different lengths while
frequency-based methods are not as effective on shorter documents.

KESM also improves ad hoc search by modeling the salience of query entities in candidate
documents. Given a query-document pair and their entities, KESM uses its kernels to model
the interactions of query entities with the entities and words in the document. It then merges
the kernel scores to ranking features and combines these features to rank documents. In ad hoc
search, KESM can either be trained end-to-end when sufficient ranking labels are available, or
use its pre-trained distributed representations and kernels from the entity salience task to provide
salience ranking features for standard learning to rank systems.

Our experiments on TREC Web Track search tasks show that KESM’s text understanding
ability in estimating entity salience also improves search accuracy. The salience ranking fea-
tures extracted by KESM’s pre-trained embeddings and kernels on the news corpus outperform
both word-based and entity-based features in learning to rank, despite various differences in the
salience and search tasks. Our case study found interesting examples showing that KESM distin-
guishes documents that are more focused on the query entities from those just mentioning the
query terms. We found it encouraging that the fine-grained text understanding ability of KESM—
the ability to model the consistency and interactions between entities and words in texts—is
indeed able to improve the accuracy of ad hoc search.

In the rest of this chapter, Section 6.1 describes KESM, the Kernel Entity Salience Model, and
its application in entity salience estimation; Section 6.2 discusses the application of KESM in ad
hoc search; Section 6.3 concludes this chapter.

6.1 Entity Salience Modeling

This section first discusses the related work in term importance estimation. Then it provides the
background information about the kernel technique which was originally developed for neural
information retrieval. After that, this section presents the Kernel Entity Salience Model (KESM),
the experimental methodology, and the evaluation results in entity salience modeling.

6.1.1 Related Work in Term Salience Estimation

Representing and understanding texts is a key challenge in information retrieval. The standard
approaches in modern information retrieval represent a text by a bag-of-words and model a term’s
importance using frequency-based signals such as term frequency (TF), inverse document fre-
quency (IDF), and document length [29]. The bag-of-words representation and frequency-based
signals are the backbone of modern information retrieval and have been used by many unsuper-
vised and supervised retrieval models [29, 59].

108



Nevertheless, bag-of-words and frequency-based statistics only provide shallow text under-
standing. One way to improve the text understanding is to use more meaningful language units
than words in the text representations. These approaches include the first generation of search
engines that were based on controlled vocabularies [29] and also the recent entity-oriented search
systems which utilize knowledge graphs in search [31, 61, 80] (Chapter 4-5). In these ap-
proaches, the texts are often represented by entities, which introduces information from tax-
onomies and knowledge graphs to improve various components of search engines.

In both word-based and entity-based text representations, frequency signals such as TF and
IDF provide good approximations for the importance or salience of terms (words or entities).
However, solely relying on frequency signals limits the search engine’s text understanding capa-
bility. Many approaches have been developed to improve term importance estimation.

In the word space, the query term weighting research focuses on modeling the importance of
words or phrases in the query. For example, Bendersky et al. use a supervised model to combine
the signals from Wikipedia, search log, and external collections to better estimate term impor-
tance in verbose queries [9]; Zhao and Callan predict the necessity of query terms using evidence
from pseudo relevance feedback [110]; word embeddings have also been used as features in su-
pervised query term importance prediction [111]. These are just a few examples from that broad
literature. In general, these methods leverage extra signals to model how important a term is to
the search intent.

Many graph-based approaches have been developed to better model the word importance
in documents, for example, TextRank [12] and TW-IDF [82]. Instead of using isolated words,
the graph-based approaches connect words by co-occurrence or proximity. Then graph ranking
algorithms, for example, PageRank and in-degree, are used to estimate the term importance in
the document. The graph ranking scores reflect the centrality and connectivity of words and
better estimate the word importance [12, 82].

In the entity space, modeling the term importance is even more crucial. Unlike word-based
representations, the entity-based representations are automatically constructed and inevitably in-
clude noisy entities. The noisy query entities have been a major bottleneck for entity-oriented
search and often required manual cleaning [31, 37, 61]. In this dissertation, we have presented
a series of approaches to model the importance of entities in a query, including the latent-space
learning to rank (Section 3.2) and the attention-based hierarchical ranking network (Section 5.1).
These approaches learn the importance of query entities and the ranking of documents jointly
using ranking labels. The features used to describe the entity importance include IR-style fea-
tures (Section 3.2) and NLP-style features from entity linking (Section 5.1).

Previous research on modeling entity importance mainly focused on query representations,
while the entities in document representations are still weighted by frequencies, i.e. in the bag-
of-entities model (Section 4.1) and the word-entity duet (Section 5.1). Recently, Dunietz and
Grllick [36] proposed the entity salience task using the New York Times corpus [84]; they con-
sider the entities annotated in the expert-written summary to be salient to the article, enabling
them to automatically construct millions of training data. Dojchinovski et al. constructed a
deeper study and found that crowdsource workers consider entity salience an intuitive task [33].
They demonstrated that the frequency of an entity is not equal to its salience in the document; a
supervised model with linguistic and semantic features is able to outperform frequency, though
mixed findings have been found with graph-based methods such as PageRank.

109



…

300

…

Embedding
Layer

…

…

…

…

Translation
Layer

Translation Matrix
M!×#

…

Soft-TF Ranking
Features

Kernel
Pooling

Learning-To-Rank

W , b

KernelsQuery
(! words)

Document
(# words)

012
032

0(2

014
034

054

064

Final	
Ranking	
Score

…

…

…

012

0(2

…

…

…
7	
�

�

300

300

300
300
300

300

Figure 6.1: The Architecture of K-NRM. Given input query words and document words, the
embedding layer maps them into distributed representations, the translation layer calculates the
word-word similarities and forms the translation matrix, the kernel pooling layer generate soft-
TF counts as ranking features, and the learning to rank layer combines the soft-TF to the final
ranking score.

6.1.2 Background: Kernel-based Neural Ranking Model

An important component of our Kernel Entity salience Model is the kernels that effectively model
the interactions between terms in the embedding space. The kernel technique was originally
developed in our kernel-based neural ranking model (K-NRM), which uses kernels to capture the
soft match patterns between query and document words. To better understand KESM, this section
first provide the necessary background about K-NRM, including its architecture, learning, and
effectiveness in neural information retrieval.2

6.1.2.1 K-NRM Architecture

K-NRM was first developed for ad hoc search. It takes a query-document pair (q, d) and gen-
erates a ranking score f(q, d) using query words q = {tq1, ...tqi ..., tqn} and document words
d = {td1, ...tdj ..., tdm}. As shown in Figure 6.1, K-NRM includes three components: translation
model, kernel-pooling, and learning to rank.

Translation Model: K-NRM first uses an embedding layer to map each word t to an

2Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. End-to-End Neural Adhoc Rank-
ing with Kernel Pooling. In Proceedings of the 40th International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR 2017) [101]. Zhuyun and I contributed equally to this work. Zhiyuan and
Russell helped with the paper writing.

110



L-dimension embedding ~vt:

t⇒ ~vt.

Then a translation layer constructs a translation matrix M . Each element in M is
the embedding similarity between a query word and a document word:

Mij = cos(~vtqi , ~vtdj ).

The translation model in K-NRM uses word embeddings to recover the word similarities instead
of trying to learn one for each word pair. Doing so requires much fewer parameters to learn. For
a vocabulary of size |V | and the embedding dimension L, K-NRM’s translation model includes
|V | × L embedding parameters, much fewer than learning all pairwise similarities (|V |2).

Kernel-Pooling: K-NRM then uses kernels to convert word-word interactions in the transla-
tion matrix M to query-document ranking features ρ(M):

ρ(M) =
n∑
i=1

log Φ(Mi)

Φ(Mi) = {φ1(Mi), ..., φK(Mi)}

Φ(Mi) applies K kernels to the i-th query word’s row of the translation matrix, summarizing
(pooling) it into a K-dimensional feature vector. The log-sum of each query word’s feature
vector forms the query-document ranking feature vector ρ.

The effect of Φ depends on the kernel used. This work uses the RBF kernel3:

φk(Mi) =
∑
j

exp(−(Mij − µk)2
2σ2

k

).

As illustrated in Figure 6.2a, the RBF kernel φk calculates how word pair similarities are dis-
tributed around it: the more word pairs with similarities closer to its mean µk, the higher its
value. Kernel pooling with RBF kernels is a generalization of existing pooling techniques. As
σ →∞, the kernel pooling function devolves to the mean pooling. µ = 1 and σ → 0 results in a
kernel that only responds to exact matches, equivalent to the TF value from sparse models. Oth-
erwise, the kernel functions as ‘soft-TF’. µ defines the similarity level that ‘soft-TF’ focuses on;
for example, a kernel with µ = 0.5 calculates the number of document words whose similarities
to the query word are close to 0.5. σ defines the kernel width, or the range of its ‘soft-TF’ count.

Learning to Rank: The ranking features ρ(M) are combined by a ranking layer to produce
the final ranking score:

f(q, d) = tanh(wTρ(M) + b).

3The RBF kernel is one of the most popular choices. Other kernels with similar density estimation effects can
also be used, as long as they are differentiable. For example, polynomial kernel can be used, but histograms [42]
cannot as they are not differentiable.

111



So
ft- TF

Word Pair Similarity

K1 K2 K3

(a) Ranking

So
ft- TF

K1 K2 K3

gradient

gradient

!(#$(%&))

!(%&() Word Pair Similarity
(b) Learning

Figure 6.2: Effect of Kernels in Ranking and Learning. (a) illustrates how kernels convert the
five word pair similarities into three kernel scores in the ranking process. (b) shows how the
kernels use gradients to adjust the word pair similarities during training.

w and b are the ranking parameters to learn. tanh() is the activation function. It controls the
range of ranking score to facilitate the learning process. It is rank-equivalent to a typical linear
learning to rank model.

Putting every together, K-NRM is defined as:

f(q, d) = tanh(wTρ(M) + b) Learning to Rank (6.1)

ρ(M) =
n∑
i=1

log Φ(Mi) Soft-TF Features (6.2)

Φ(Mi) = {φ1(Mi), ..., φK(Mi)} Kernel Pooling (6.3)

φk(Mi) =
∑
j

exp(−(Mij − µk)2
2σ2

k

) RBF Kernel (6.4)

Mij = cos(~vtqi , ~vtdj ) Translation Matrix (6.5)

t⇒ ~vt. Word Embedding (6.6)

Eq. 6.5-6.6 embed query words and document words, and calculate the translation matrix. The
kernels (Eq. 6.4) count the soft matches between query and document’s word pairs at multiple
levels, and generate K soft-TF ranking features (Eq. 6.2-6.3). Eq. 6.1 is the learning to rank
model. The ranking of K-NRM requires no manual features. The only input used is the query
and document words. The kernels extract soft-TF ranking features from word-word interactions
automatically.

6.1.2.2 K-NRM Learning

The training of K-NRM uses the pairwise learning to rank loss:

l(w, b,V) =
∑
q

∑
d+,d−∈D+,−

q

max(0, 1− f(q, d+) + f(q, d−)). (6.7)

112



D+,−
q are the pairwise preferences from the ground truth: d+ ranks higher than d−. The parame-

ters to learn include the ranking parameters w, b, and the word embeddings V .
The parameters are optimized using back propagation through the neural network. Starting

from the ranking loss, the gradients are first propagated to the learning-to-rank part (Eq. 6.1)
and update the ranking parameters (w, b), the kernels pass the gradients to the word similarities
(Eq. 6.2-6.4), and then to the embeddings (Eq. 6.5).

Back propagations through the kernels: The embeddings contain millions of parameters V
and are the main capacity of the model. The learning of the embeddings is guided by the kernels.

The back propagation first applies gradients from the loss function (Eq. 6.7) to the ranking
score f(q, d), to increase it (for d+) or decrease it (for d−); the gradients are propagated through
Eq. 6.18 to the feature vector ρ(M), and then through Eq. 6.2 to the the kernel scores Φ(Mi).
The resulted g(Φ(Mi)) is a K dimensional vector:

g(Φ(Mi)) = {g(φ1(Mi)), ..., g(φK(Mi)}.

Its each dimension g(φk(Mi)) is jointly defined by the ranking score’s gradients and the ranking
parameters. It adjusts the corresponding kernel’s score up or down to better separate the relevant
document (d+) from the irrelevant one (d−).

The kernels spread the gradient to word similarities in the translation matrix Mij , through
Eq. 6.4:

g(Mij) =
K∑
k=1

g(φk(Mi))× σ2
k

(µk −Mij) exp(
(Mij−µk)2
−2σ2

k
)
. (6.8)

The kernel-guided embedding learning process is illustrated in Figure 6.2b. A kernel pulls
the word similarities closer to its µ to increase its soft-TF count, or pushes the word pairs away
to reduce it, based on the gradients received in the back-propagation. The strength of the force
also depends on the the kernel’s width σk and the word pair’s distance to µk: approximately, the
wider the kernel is (bigger σk), and the closer the word pair’s similarity to µk, the stronger the
force is (Eq. 6.8). The gradient a word pair’s similarity received, g(Mij), is the combination of
the forces from all K kernels.

The word embedding model receives g(Mij) and updates the embeddings accordingly. In-
tuitively, the learned word embeddings are aligned to form multi-level soft-TF patterns that can
separate the relevant documents from the irrelevant ones in training, and the learned embedding
parameters V memorize this information. When testing, K-NRM extracts soft-TF features from
the learned word embeddings using the kernels and produces the final ranking score using the
ranking layer.

6.1.2.3 K-NRM Effectiveness in Ranking

K-NRM is effective for various search scenarios. Using commercial search logs where large scale
user feedback signals are available for end-to-end training, K-NRM outperforms feature-based
learning to rank models and other previous neural models by large margins, as was shown by
our experiments on a Chinese search log dataset from Sogou.com [101] and a English search log

113



dataset from Bing.com [30]. Its effectiveness can also be transferred to public search benchmarks
(TREC Web Track) by adapting the model trained from the Bing search log to TREC queries [30].

The effectiveness of K-NRM comes from the kernels; they provide effective multi-level soft
match signals by locating terms in the embedding space to capture the relevance match pattern
reflected from data [101]. Building from K-NRM’s success, the rest of this chapter develops
an entity salience estimation model, which uses the kernels to capture the interaction patterns
between entities and words in text for salience estimation (Section 6.1.3-6.1.5). Then the learned
entity salience model is also adapted to improve the ranking accuracy using our entity-oriented
search framework (Section 6.2).

6.1.3 Kernel Entity Salience Model
We now present our Kernel Entity Salience Model (KESM), which leverages the knowledge graph
embeddings (Section 4.2) and the kernel technique (Section 6.1.2) to estimate entity salience. As
shown in Figure 6.3, the two techniques form KESM’s two main components: the Knowledge
Enriched Embedding (Figure 6.3a) and the Kernel Interaction Model (Figure 6.3b).

Knowledge Enriched Embedding (KEE) encodes each entity e into its distributed represen-
tation ~ve. It is achieved by first using an embedding layer that maps the entity to an embedding:

e
V−→ ~e. Entity Embedding

V is the parameters of the embedding layer to be learned from data.
An advantage of entities is that they are associated with external semantics in the knowledge

graph, for example, synonyms, descriptions, types, and relations. Those external semantics pro-
vide prior knowledge about entities which can help improve the generalization ability of their
distributed representations [63]. Thus, instead of only using the “data-driven” embedding ~e, KEE
also enriches the entity representation with its description in the knowledge graph.

Specifically, given the description D of the entity e, KEE uses a Convolutional Neural Net-
work (CNN) to compose the words in D: {w1, ..., wp, ..., wl}, into one embedding:

wp
V−→ ~wp, Word Embedding

Cp = W c · ~wp:p+h, CNN Filter
~vD = max(C1, ..., Cp, ..., Cl−h). Description Embedding

It embeds the words into ~w using the embedding layer, composes the word embeddings using
CNN filters, and generates the description embeddings ~vD using max-pooling. W c and h are the
weights and length of the CNN.

~vD is then combined with the entity embedding ~e by projection:

~ve = W p · (~e t ~vD). KEE Embedding

t is the concatenation operator and W p is the projection weights. ~ve is the KEE vector for e. It
incorporates the external information from the knowledge graph and is to be learned as part of
KESM.

114



Cosine Similarity

Ԧ݁	

ଵݓ

…

ଶݓ
ଷݓ

ݓ

…
Max 

Pooling
	Ԧݒ

CNN

Knowledge Enriched
Embedding (KEE)

Ԧݒ

Ԧభݒ …
Ԧమݒ Ԧమݒ Ԧݒ

…

…

ଵݓ ଶݓ ଷݓ ݓ
Embeddings of 

Document Words

…

…

RBF
Kernels

Φሺ݁, Eሻ

Φሺ݁,Wሻ

KEE of Document 
Entities

 ԦKEE ofݒ
Target Entity

…

ܹ

Entity
Embedding

Description Words

Entity 
Kernels

Word
Kernels

⊔
“Barack Obama”

Obama
American
politician

presidency

Target Entity

(a) Knowledge Enriched Embedding (KEE)

Cosine Similarity

Ԧ݁	

ଵݓ

…

ଶݓ
ଷݓ

ݓ

…
Max 

Pooling
	Ԧݒ

CNN

Knowledge Enriched
Embedding (KEE)

Ԧݒ

Ԧభݒ …
Ԧమݒ Ԧమݒ Ԧݒ

…

…

ଵݓ ଶݓ ଷݓ ݓ
Embeddings of 

Document Words

…

…

RBF
Kernels

Φሺ݁, Eሻ

Φሺ݁,Wሻ

KEE of Document 
Entities

 ԦKEE ofݒ
Target Entity

…

ܹ

Entity
Embedding

Description Words

Entity 
Kernels

Word
Kernels

⊔
“Barack Obama”

Obama
American
politician

presidency

Target Entity

(b) Kernel Interaction Model (KIM)

Figure 6.3: KESM Architecture. (a): Entities are represented using embeddings enriched by
their descriptions. (b): The salience of an entity in a document is estimated by kernels that
model its interactions with entities and words in the document. Squares are continuous vectors
(embeddings) and circles are scalars (cosine similarities).

Kernel Interaction Model (KIM) models the interactions of a target entity, e.g. an entity in
the document (for the salience task) or in the query (for entity-oriented search), with entities and
words in the document using their distributed representations.

Given a document d, its annotated entities E = {e1, ...ei..., en}, and its words W =
{w1, ...wj..., wm}, KIM models the interactions of a target entity ei with E and W using ker-
nels:

KIM(ei, d) = Φ(ei,E) t Φ(ei,W). (6.9)

The entity kernels Φ(ei,E) model the interaction between ei and document entities E:

Φ(ei,E) = {φ1(ei,E), ...φk(ei,E)..., φK(ei,E)}, (6.10)

φk(ei,E) =
∑
ej∈E

exp

(
−
(
cos(~vei , ~vej)− µk

)2
2σ2

k

)
. (6.11)

~vei and ~vej are the KEE embeddings of ei and ej . φk(ei,E) is the k-th RBF kernel with mean µk
and variance σ2

k. If (µk = 1, σk →∞), φk counts the entity frequency. Otherwise, it models the
interactions between the target entity ei and other entities in the KEE representation space. The
role of kernels in salience estimation is to count the number of entities whose similarities with ei
are in its region (µk, σ2

k); it can also be viewed as collecting votes from other entities in a certain
neighborhood (kernel region) of the current entity.

The word kernels Φ(ei,W) model the interactions between ei and document words W:

Φ(ei,W) = {φ1(ei,W), ...φk(ei,W)..., φK(ei,W)}, (6.12)

φk(ei,W) =
∑
wj∈W

exp

(
−(cos(~vei , ~wj)− µk)2

2σ2
k

)
. (6.13)

~wj is the word embedding of wj , mapped by the same embedding parameters (V ). The word
kernel φk(ei,W) models the interactions between ei and document words, gathering ‘votes’ from

115



words to ei in its kernel region. The distributed representations make it convenient to model the
interactions between a word and a entity as they are mapped to the same continuous embedding
space.

For each entity ei, KEE encodes it to ~vei and KIM models its interactions with entities and
words in the document. The kernel scores KIM(ei, d) include signals from three sources: the
description of the entity in the knowledge graph, its interaction with the document entities, and
its interactions with the document words.

Estimating Entity Salience. Combining the KIM kernel scores yields the salience score of
the entity:

f(ei, d) = W s ·KIM(ei, d) + bs. (6.14)

f(ei, d) is the salience score of ei in d. W s and bs are parameters to learn.
Learning: The entity salience training data are labels on document-entity pairs that indicate

whether the entity is salient to the document. For example, the salience label of entity ei to
document d is:

y(ei, d) =

{
+1, if ei is a salient entity in d,
−1, otherwise.

We use pairwise learning to rank [59] to train KESM:∑
e+,e−∈d

max(0, 1− f(e+, d) + f(e−, d)), (6.15)

w.r.t. y(e+, d) = +1 & y(e−, d) = −1.

The loss function enforces KESM to rank the salient entities e+ ahead of the non-salient ones e−

within the same document.
The learning of KESM is end-to-end using back-propagation. During training, the gradients

from the labels are first propagated to the Kernel Interaction Model (KIM) and then the Knowl-
edge Enriched Embedding (KEE). KESM updates the kernel weights; KIM converts the gradients
from kernels to ‘expectations’ on the distributed representations—how the entities and words
should be located in the space to better reflect salience; KEE updates its embeddings and pa-
rameters according to these ‘expectations’. The knowledge learned from the training labels is
encoded and stored in the model parameters, mainly the embeddings (Section 6.1.2).

6.1.4 Experimental Methodology
This section presents the experimental methodology for the entity salience task. It mainly follows
the setup by Dunietz and Gillick [36] with some revisions to facilitate the applications in search.
An additional dataset is also introduced.

Datasets used include New York Times and Semantic Scholar.
The New York Times corpus has been used in previous work [36]. It includes more than half

million news articles and their expert-written summaries [84]. Among all entities annotated to a

116



Table 6.1: Statistics of entity salience estimation datasets. New York Times are news articles
and salient entities are those in the expert-written news summaries. Semantic Scholar are paper
abstracts and salient entities are those in the titles.

New York Times Semantic Scholar
Train Dev Test Train Dev Test

# of Documents 526k 64k 64k 800k 100k 100k
Entities Per Doc 198 197 198 66 66 66
Salience Per Doc 27.8 27.8 28.2 7.3 7.3 7.3
Unique Word 609k 278k 281k 921k 300k 301k
Unique Entity 622k 319k 317k 331k 162k 162k

news article, those that also appear in the summary of the article are considered as salient entities
and others are not [36].

The Semantic Scholar corpus is a one million papers random sampled from the index of
SemanticScholar.org, the academic search engine we experimented with in Section 4.2. The full
texts of the papers are not publicly available. We treat the entities annotated in the abstract as the
candidate entities of a paper and those also annotated in the title as salient.

The entity annotations on both corpora are Freebase entities linked by TagMe [38], a setup
widely used in entity-oriented search. Instead of only keeping named entities in several cate-
gories [36], we keep all annotated entities in all categories to ensure coverage, which has been
found very crucial in providing effective text representations (Section 4.1).

The statistics of the two corpora are listed in Table 6.1. The Semantic Scholar corpus has
shorter documents (paper abstracts) and a smaller entity vocabulary because its papers are mostly
in the computer science and medical science domains.

Baselines: Three baselines from previous research are compared: Frequency,
PageRank, and LeToR.

Frequency [36] estimates the salience of an entity by its frequency. It is a straightfor-
ward but effective baseline in many related tasks. IDF is not as effective in entity-based text
representations [80] (Chapter 4), so we used only frequency counts.

PageRank [36] estimates the salience score of an entity using its PageRank score. It is
also a widely used baseline in graph-based text representations [12]. We conduct a supervised
PageRank on a fully connected graph whose nodes are the entities in the document and edges are
the embedding similarities of corresponding entity pairs. The entity embeddings are configured
and learned using the same pairwise loss as used in KESM.

Similar to previous work [36], we found PageRank not very effective in the entity salience
task. It is hard for the model to learn anything; many times the training loss did not drop at
all. The best setup we were able to find and presented in the evaluation results is the one-
step random walk linearly combined with Frequency. It is essentially an embedding-based
translation model [101].

LeToR [36] is a feature-based learning to rank (entity) model. It is trained using the same
pairwise loss with KESM, which we found more effective than the pointwise loss used in prior
research [36].

117



Table 6.2: Entity salience features used by the LeToR baseline [36]. The features are extracted
via various natural language processing techniques.

Name Description
Frequency The frequency of the entity being annotated to the document
First Location The first location of the entity annotation
Head Word Count The frequency of the entity’s first head word in dependency parsing
Is Named Entity Whether the entity is recognized by named entity recognition
Coreference Count The frequency of the entity mentions after entity coreference resolution
Embedding Vote Cosine similarities with other entities in skip-gram embedding

We tried our best to reproduce the features used by Dunietz and Gillick [36]. As listed in Ta-
ble 6.2, the features are extracted by various linguistic and semantic techniques including entity
linking, dependency parsing, named entity recognition, and entity coreference resolution. The
entity embeddings are trained on the same corpus using Google’s Word2vec toolkit [73]. Entity
linking is done by TagMe; all entities (named entities or general entities) are kept (Section 4).
Other linguistic and semantic preprocessing use the Stanford CoreNLP toolkit [67].

Compared to Dunietz and Gillick [36], we do not include the headline feature because it uses
information from the expert-written summary and does not improve the performance much any-
way; we also replace the head-lex feature with Embedding Vote which has similar effectiveness
but is more efficient.

Evaluation Metrics: We use the ranking-focused evaluation metrics: Precision@{1, 5} and
Recall@{1, 5}. These ranking evaluation metrics avoid the requirement to select cutoff thresh-
olds in the classification evaluation metrics [36], which may vary across documents and are tricky
to choose properly. Statistical significances are tested by permutation (randomization) test with
p < 0.05.

Implementation Details: The hyper-parameters of KESM are configured following popular
choices or previous research. The dimension of entity embeddings, word embeddings, and CNN
filters are all set to 128. The kernel pooling layers use one exact match kernel (µ = 1, σ =
1e − 3) and ten soft match kernels with µ equally splitting the cosine similarity range [−1, 1],
i.e. µ ∈ {−0.9,−0.7, ..., 0.9} and σ = 0.1 [101]. The length of the CNN used to encode entity
description is set to 3 which is tri-gram. The entity descriptions are fetched from Freebase. The
first 20 words of the description are used which defines and explains the entity. The words or
entities that appear less than 2 times in the training corpus are replaced with “Unk_word” or
“Unk_entity”.

The parameters include the embeddings V , the CNN weights W c, the projection weights
W p, and the kernel weights W s, bs. They are learned end-to-end using Adam optimizer, size 64
mini-batching, and early-stopping on the development split. V is initialized by the word2vec of
words and entities jointly trained on the training corpora, which takes several hours (Section 5.1).
With our PyTorch implementation, KESM usually only needs one pass on the training data and
converges within several hours on a typical GPU. In comparison, LeToR takes days to extract
its features since parsing and coreference are costly.

118



6.1.5 Evaluation Results

This section first presents the overall evaluation results for the entity salience task. Then it
analyzes the advantages of modeling salience over counting frequency.

6.1.5.1 Entity Salience Performance

Table 6.3 shows the experimental results for the entity salience task. Frequency provides
reasonable estimates of entity salience. The most frequent entity is often salient to the document;
the Precision@1 is rather high, especially for the New York Times. PageRank barely improves
Frequency, although its embeddings are trained by the salience labels. LeToR, on the other
hand, significantly improves both Precision and Recall of Frequency [36], which is expected
as it has much richer features from various sources.

KESM outperforms all baselines significantly. Its improvements over LeToR are more than
10% on both datasets with only one exception: Precision@1 on New York Times. The improve-
ments are also robust: About twice as many documents are improved (Win) than hurt (Loss).

We also conducted ablation studies on the individual source of evidence in KESM. Those
marked with (E) include only the entity kernels; those with (W) also include word kernels; those
with (K) enrich the entity embeddings with description embeddings. All variants include the
entity kernels (E), which is the essential evidence.

KESM performs better than all of its variants, showing that all three sources contributed. In-
dividually, KESM (E) outperforms all baselines. Compared to PageRank, the only difference
is that KESM (E) uses kernels to model the interactions which are much more powerful than
the raw embedding similarities used in PageRank [101]. KESM (EW) always significantly
outperforms KESM (E). The interaction between an entity and document words conveys useful
information, the distributed representations make them easily comparable, and the kernels model
the word-entity interactions effectively. Knowledge enrichment (K) provides mixed results. A
possible reason is that the training data is large enough to train good entity embeddings. Never-
theless, we find that adding the external knowledge makes the training converge faster and more
stable.

6.1.5.2 Modeling Salience VS. Counting Frequency

This experiment provides two analyses that study the advantage of KESM over counting fre-
quency.

Ability to Model Tail Entities. The first advantage of KESM is that it is able to model
the salience on less frequent (tail) entities. To demonstrate this effect, Figure 6.4 illustrates the
distribution of predicted-salient entities in different frequency ranges. The entities with top k
highest predicted scores are predicted-salient. k is the number of salient entities in the ground
truth. The frequency percentiles of these entities in the corpus are labeled on the x-axes. < 0.1%
refers to the top 0.1% most frequent entities. Their distributions are marked by the y-axes. The
distribution of Ground Truth is also displayed.

In both datasets, the frequency-based methods are highly biased towards the head entities:
The top 0.1% most popular entities receive almost two-times more salience predictions from

119



Table
6.3:

E
ntity

salience
perform

ances
on

N
ew

Y
ork

Tim
es

and
Sem

antic
Scholar.

(E
),(W

),and
(K

)
m

ark
the

resources
used

by
K
E
S
M:E

ntity
kernels,W

ord
kernels,and

K
now

ledge
enrichm

ent.
K
E
S
M

is
the

fullm
odel.

R
elative

perform
ances

over
L
e
T
o
R

are
show

n
in

the
percentages.W

/T
/L

are
the

num
berofdocum

ents
a

m
ethod

im
proves,does

notchange,and
hurts,com

pared
to
L
e
T
o
R.

†,‡,§,and¶
m

ark
the

statistically
significantim

provem
ents

over
F
r
e
q
u
e
n
c
y
†,P

a
g
e
R
a
n
k
‡,L

e
T
o
R
§,and

K
E
S
M

(
E
)
¶.

N
ew

York
Tim

es
M

ethod
Precision@

1
Precision@

5
R

ecall@
1

R
ecall@

5
W

/T
/L

F
r
e
q
u
e
n
c
y

0.5840
−

8.5%
0.4065

−
11.8%

0.0781
−

11.9%
0.2436

−
14.4%

6k/39k/19k
P
a
g
e
R
a
n
k

0.5845
†

−
8.5%

0.4069
†

−
11.7%

0.0782
†

−
11.8%

0.2440
†

−
14.3%

6k/39k/19k
L
e
T
o
R

0.6385
–

0.4610
–

0.0886
–

0.2848
–

–/–/–
K
E
S
M

(
E
)

0.6470
†‡§

+
1.3%

0.4782
†‡§

+
3.7%

0.0922
†‡§

+
4.0%

0.3049
†‡§

+
7.1%

20k/28k/16k
K
E
S
M

(
E
K
)

0.6528
†‡§¶

+
2.2%

0.4769
†‡§

+
3.5%

0.0920
†‡§

+
3.8%

0.3026
†‡§

+
6.3%

19k/30k/15k
K
E
S
M

(
E
W
)

0.6767
†‡§¶

+
6.0%

0.5018
†‡§¶

+
8.9%

0.0989
†‡§¶

+
11.6%

0.3277
†‡§¶

+
15.1%

23k/26k/14k
K
E
S
M

0
.6
8
6
6
†‡§¶

+
7.5%

0
.5
0
8
0
†‡§¶

+
10.2%

0
.1
0
1
0
†‡§¶

+
13.9%

0
.3
3
3
5
†‡§¶

+
17.1%

23k/27k/13k

Sem
antic

Scholar
M

ethod
Precision@

1
Precision@

5
R

ecall@
1

R
ecall@

5
W

/T
/L

F
r
e
q
u
e
n
c
y

0.3944
−

10.0%
0.2560

−
11.4%

0.1140
−

12.2%
0.3462

−
13.7%

11k/65k/24k
P
a
g
e
R
a
n
k

0.3946
†

−
9.9%

0.2561
†

−
11.3%

0.1141
†

−
12.1%

0.3466
†

−
13.6%

11k/64k/24k
L
e
T
o
R

0.4382
–

0.2889
–

0.1299
–

0.4010
–

–/–/–
K
E
S
M

(
E
)

0.4793
†‡§

+
9.4%

0.3192
†‡§

+
10.5%

0.1432
†‡§

+
10.3%

0.4462
†‡§

+
11.3%

28k/56k/16k
K
E
S
M

(
E
K
)

0.4901
†‡§¶

+
11.9%

0.3161
†‡§

+
9.4%

0.1492
†‡§¶

+
14.9%

0.4449
†‡§

+
11.0%

28k/54k/18k
K
E
S
M

(
E
W
)

0.5097
†‡§¶

+
16.3%

0.3311
†‡§¶

+
14.6%

0.1555
†‡§¶

+
19.8%

0.4671
†‡§¶

+
16.5%

33k/50k/17k
K
E
S
M

0
.5
1
6
9
†‡§¶

+
18.0%

0
.3
3
3
6
†‡§¶

+
15.5%

0
.1
5
8
5
†‡§¶

+
22.1%

0
.4
7
1
3
†‡§¶

+
17.5%

32k/52k/16k

120



0%
10%
20%
30%
40%
50%

<0.1% [0.1%,
0.5%)

[0.5%,
1%)

[1%,
2%)

[2%,
3%)

[3%,
4%)

[4%,
5%)

>5%

Frequency LeToR KESM Ground Truth
(a) New York Times

0%
10%
20%
30%
40%
50%

<0.1% [0.1%,
0.5%)

[0.5%,
1%)

[1%,
2%)

[2%,
3%)

[3%,
4%)

[4%,
5%)

>5%

Frequency LeToR KESM Ground Truth
(b) Semantic Scholar

Figure 6.4: The distribution of salient entities predicted by different models. The entities are
binned by their frequencies in testing data. The bins are ordered from most frequent (Top 0.1%)
to less frequent (right). The x-axes mark the percentile range of each group. The y-axes are the
fraction of salient entities in each bin. The histograms are ordered the same as the legends.

Frequency than in ground truth. This is an intrinsic bias of frequency-based methods which
not only limits their effectiveness but also attractiveness—less unexpected entities are selected.

In comparison, the distributions of KESM are much closer to the ground truth. KESM does a
better job in modeling tail entities because it estimates salience not only by frequency but also
by modeling the interactions between entities and words. A tail entity can be estimated salient
if many other entities and words in the document are closely related to it. For example, there
are many entities and words describing various aspects of an entity in its Wikipedia page; the
entities and words on a personal homepage are probably related to the person; these entities and
words can ‘vote up’ the title entity or the person because they are strongly connected to it/her.
The ability to model such interactions with distributed representations and kernels is the main
source of KESM’s stronger text understanding capability.

Reliable on Short Documents. The second advantage of KESM is its reliability on short
texts. To demonstrate it, we analyzed the performances of models on documents with varying
lengths. Figure 6.5 groups the testing documents into five bins by their lengths (number of
words), ordered from short (left) to long (right). Their upper bounds and percentiles are marked
on the x-axes. The Precision@5 of corresponding methods are marked on the y-axes.

Both Frequency and LeToR (whose features are also mostly frequency-based) are less

121



0

0.2

0.4

0.6

175
(20%)

518
(40%)

876
(60%)

1232
(80%)

32k
(100%)

Frequency LeToR KESM
(a) New York Times

0

0.2

0.4

0.6

122
(20%)

172
(40%)

228
(60%)

302
(80%)

1323
(100%)

Frequency LeToR KESM
(b) Semantic Scholar

Figure 6.5: Performances on documents with varying lengths (number of words). The x-axes are
the maximum length of the documents and the percentile of each group. The y-axes mark the
performances on Precision@5. The histograms are ordered the same as the legends.

reliable on shorter documents. The advantages of KESM are more significant when documents
are shorter, while even in the longest bins where documents have thousands of words, KESM still
outperforms Frequency and LeToR. Solely counting frequency is not sufficient to understand
documents. The interactions between words and entities provide richer evidence and help KESM
perform more reliably on shorter documents.

6.2 Ranking with Entity Salience

This section presents the application of KESM in ad hoc search. It first show how to adapt KESM
for the ad hoc search task. Then it describes the experimental methodologies and evaluation
results in improving search accuracy.

6.2.1 Ranking Approach

Ranking: Knowing which entities are salient in a document indicates a stronger text under-
standing ability [33, 36]. The improved text understanding should also improve search accuracy:
the salience of query entities in a document reflects how focused the document is on the query,
which is a strong indicator of relevancy. For example, a web page that exclusively discusses
Barack Obama’s family is more relevant to the query “Obama Family Tree” than those that just
mention his family members.

The ranking process of KESM following this intuition is illustrated in Figure 6.6. It first
calculates the kernel scores of the query entities in the document using KEE and KIM. Then
it merges the kernel scores from multiple query entities to ranking features and uses a ranking
model to combine these features.

Specifically, given query q, query entities Eq, candidate document d, document entities Ed,

122



Obama Family Tree

Query

“Obama” “Family Tree”
Entity
Linking

Query Entities

Family of 
Barack 
Obama…
…………

Document

Ԧభݒ Ԧమݒ
KEE 

… …

KIM

Log Sum

…Ranking Features

ܹ݂ሺݍ, ݀ሻRanking Score

Entity Linking

“Obama”

“Family”

Document Entities

Ԧభݒ

Ԧݒ

KEE 

ଵݓ

ݓ

Word 
Embeddings

… …

Entity
Kernels

Word
Kernels

… …

…

Figure 6.6: Ranking with KESM. KEE embeds the entities. KIM calculates the kernel scores
of query entities vs. document entities and words. The kernel scores are combined to ranking
features and then to the ranking score.

and document words Wd, the ranking score is calculated as:

f(q, d) = W r ·Ψ(q, d), (6.16)

Ψ(q, d) =
∑
ei∈Eq

log

(
KIM(ei, d)

|Ed|

)
, (6.17)

KIM(ei, d) are the kernels scores of the query entity ei in document d, calculated by the KIM
and KEE modules described in last section. |Ed| is the number of entities in d. W r is the ranking
parameters and Ψ(q, d) are the salience ranking features.

To apply KESM in ad hoc search, several adaptations have been made compared to Sec-
tion 4.2. First, Equation (6.17) normalizes the kernel scores by the number of entities in the doc-
ument (|Ed|), making them more comparable across different documents. In the entity salience
task, this is not required because the goal is to distinguish salient entities from non-salient ones
in the same document. Second, there can be multiple entities in the query and their kernel scores
need to be combined to model query-document relevance. We use log-sum for the combination,
following language modeling approaches [29].

123



Learning: In the search task, KESM is trained using standard pairwise learning to rank and
relevance labels: ∑

d+∈D+,d−∈D−
max(0, 1− f(q, d+) + f(q, d−)). (6.18)

D+ and D− are the relevant and irrelevant documents. f(q, d+) and f(q, d−) are the ranking
scores calculated by Equation (6.16).

There are two ways to train KESM for ad hoc search. First, when sufficient ranking labels
are available, for example, in commercial search engines, the whole KESM model can be learned
end-to-end by back-propagation from Equation (6.18). On the other hand, when ranking labels
are not available for end-to-end learning such as in TREC benchmarks, the KEE and KIM can be
first trained using the labels from the entity salience task, and only the ranking parameters W r

need to be learned from relevance labels. As a result, the knowledge learned by KIM and KEE
from the salience labels is conveyed to ad hoc search through the ranking features, which can be
used in any learning to rank system.

6.2.2 Experimental Methodology
This section presents the experimental methodology for the ad hoc search task, which is kept the
same as in Section 5.1.

Datasets are again the ClueWeb09-B and ClueWeb12-B13 corpora with TREC queries. The
pre-processing and re-ranking setups used in Section 5.1 are kept: The ClueWeb09-B rank-
ings re-ranked the top 100 documents provided by the Galogo sequential dependency model
(SDM) with standard post-retrieval spam filtering [31]; the ClueWeb12-B13 rankings re-ranked
the vanilla Indri language model with no spam filtering (Section 5.1); all documents were parsed
by Boilerpipe [50] to title and body fields.

Evaluation Metrics are NDCG@20 and ERR@20. Statistical significances are tested by
permutation test (randomization test) with p < 0.05.

Baselines: The goal of our experiments is to explore the usage of entity salience modeling in
ad hoc search. To this purpose, our experiments focus on evaluating the effectiveness of KESM’s
entity salience features in standard learning to rank; the proper baselines are the ranking features
from word-based matches (IRFusion) and entity-based matches (ESR). Unsupervised retrieval
with words (BOW) and entities (BOE) are also included.

BOW is the base retrieval model, which is SDM on ClueWeb09-B and Indri language model
on ClueWeb12-B.

BOE is the frequency-based retrieval with bag-of-entities (Section 4.1). It uses TagMe anno-
tations and exact-matches query and documents in the entity space. It performs similarly to the
entity language model [80] as they use the same information.

IRFusion is the learning to rank system in Section 5.1 which uses standard word-based IR
features such as language model, BM25, and TFIDF applied to body and title fields.

ESR is the Explicit Semantic Ranking implementation for web search in Section 5.1. Com-
pared to KESM, it also matches query and documents in the entity space, but represents the
query and documents by frequency-based bag-of-entities. Its entity embeddings are also from
the TransE knowledge graph embedding [14] instead of from the entity salience task.

124



Implementation Details: As discussed in Section 6.2.1, the TREC benchmarks do not have
sufficient relevance labels for effective end-to-end learning; we pre-trained the KEE and KIM
of KESM using the New York Time corpus and used them to extract salience ranking features.
The entity salience features are combined by the same learning to rank model (RankSVM [49])
as used by IRFusion and ESR, with the same cross validation setup (Section 5.1). Similar to
ESR, the base retrieval score is included as a feature in KESM. In addition, we also concatenate
the features of ESR or KESM to IRFusion to evaluate their effectiveness when combined with
word-based features. The resulting feature sets ESR+IRFusion and KESM+IRFusion were
evaluated exactly the same as they were individually.

As a result, the comparisons of KESM with LeToR and ESR hold out all other factors and
directly investigate the effectiveness of the salience ranking features in a widely used learning
to rank model (RankSVM). Given the current exploration stage of entity salience in information
retrieval, we believe this is more informative than mixing entity salience signals into more so-
phisticated ranking systems such as latent space models [61] (Section 3.2) and attention-based
models (Section 5.1), where many other factors come into play.

6.2.3 Evaluation Results
This section presents the evaluation results and a case study in the ad hoc search task.

6.2.3.1 Overall Results

Table 6.4 lists the ranking evaluation results. The three supervised methods, IRFusion, ESR,
and KESM, all use the exact same learning to rank model (RankSVM) and only differ in their
features. ESR+IRFusion and KESM+IRFusion concatenate the two feature groups and use
RankSVM to combine them.

On both ClueWeb09-B and ClueWeb12-B13, KESM features are more effective than
IRFusion and ESR features. On ClueWeb12-B13, KESM individually outperforms other fea-
tures significantly by 8 − 20%. On ClueWeb09-B, KESM provides more novel ranking signals
and KESM+IRFusion significantly outperforms ESR+IRFusion. The fusion on ClueWeb12-
B13 (KESM+LeToR) is not as successful. A possible reason is that there are not enough ranking
labels (training data) in ClueWeb12-B13 to learn a stable combination of the features.

To better investigate the effectiveness of entity salience in search, we evaluated the features on
individual document fields. Table 6.5 shows the ranking accuracies of the three feature groups
when only the title field (Title) or the body field (Body) is used. As expected, KESM is
more effective on the body field than on the title field: Titles are less noisy and perhaps all title
entities are salient—not much new information is provided by salience modeling; on the other
hand, body texts are longer and more complicated, providing more opportunities for better text
understanding.

The salience ranking features also behave differently than ESR and IRFusion. As shown
by the W/T/L ratios in Table 6.4 and Table 6.5, more than 70% query rankings are changed by
KESM. The ranking evidence provided by KESM features is from the interactions of query entities
with the entities and words in the candidate documents. This evidence is learned from the entity
salience corpus and is hard to be described by traditional frequency-based features.

125



Table 6.4: Ad hoc search accuracy of KESM when used as ranking features in learning to rank.
Relative performances over IRFusion are shown in the percentages. W/T/L are the number
of queries a method improves, does not change, or hurts, compared with IRFusion. †, ‡,
§, and ¶ mark the statistically significant improvements over BOE†, IRFusion‡, ESR§, and
ESR+IRFusion¶. BOW is the base retrieval model, which is SDM in ClueWeb09-B and lan-
guage model in ClueWeb12-B13.

ClueWeb09-B
Method NDCG@20 ERR@20 W/T/L

BOW 0.2496 −5.26% 0.1387 −10.20% 62/38/100
BOE 0.2294 −12.94% 0.1488 −3.63% 74/25/101
IRFusion 0.2635 – 0.1544 – –/–/–
ESR 0.2695† +2.30% 0.1607 +4.06% 80/39/81
KESM 0.2799† +6.24% 0.1663 +7.68% 85/35/80
ESR+IRFusion 0.2791†‡ +5.92% 0.1613 +4.46% 91/34/75
KESM+IRFusion 0.2993†‡§¶ +13.58% 0.1797†‡§¶ +16.38% 98/35/67

ClueWeb12-B13
Method NDCG@20 ERR@20 W/T/L

BOW 0.1060 −12.02% 0.0863 −6.67% 35/22/43
BOE 0.1173 −2.64% 0.0950 +2.83% 44/19/37
IRFusion 0.1205 – 0.0924 – –/–/–
ESR 0.1166 −3.22% 0.0898 −2.81% 30/23/47
KESM 0.1301†§ +7.92% 0.1103‡§¶ +19.35% 43/25/32
ESR+IRFusion 0.1281 +6.30% 0.0951 +2.87% 45/24/31
KESM+IRFusion 0.1308†§ +8.52% 0.1079‡§¶ +16.77% 43/23/34

6.2.3.2 Case Study

The last experiment provides case studies about how KESM transfers its text understanding ability
to search, by comparing the rankings of KESM-Body with ESR-Body. Both ESR and KESM
match query and documents in the entity space, but ESR uses frequency-based bag-of-entities to
represent documents while KESM uses entity salience. We picked the queries where KESM-Body
improved or hurt compared to ESR-Body and manually examined the documents on which they
disagreed. The examples are listed in Table 6.6.

The improvements from KESM are mainly from its ability to determine whether a candidate
document emphasizes the query entities or just mentions the query terms. As shown in the top
half of Table 6.6, KESM promotes documents where the query entities are more salient: the
Wikipedia page about the ER TV show, a homepage about wind power, and a news article about
the hurricane. On the other hand, ESR’s frequency-based ranking might be confused by web
pages that only partially talk about the query topic. It is hard for ESR to exclude those web pages
because they also mention the query entities multiple times.

Many errors KESM made are due to the lack of text understanding on the query side. KESM
focuses on modeling the salience of entities in the candidate documents and its ranking model

126



Table 6.5: Ranking performances of IRFusion, ESR, and KESM with title or body field in-
dividually. Relative performances (percentages) and Win/Tie/Loss are calculated by comparing
with IRFusion on the same field. † and ‡ mark the statistically significant improvements over
IRFusion† and ESR‡, also on the same field.

ClueWeb09-B
Method NDCG@20 ERR@20 W/T/L

IRFusion-Title 0.2584 −3.51% 0.1460 −5.16% 83/48/69
ESR-Title 0.2678 – 0.1540 – –/–/–
KESM-Title 0.2780† +3.81% 0.1719†‡ +11.64% 91/46/63
IRFusion-Body 0.2550 +0.48% 0.1427 −3.44% 80/46/74
ESR-Body 0.2538 – 0.1478 – –/–/–
KESM-Body 0.2795†‡ +10.13% 0.1661†‡ +12.37% 96/39/65

ClueWeb12-B13
Method NDCG@20 ERR@20 W/T/L

IRFusion-Title 0.1187 +6.23% 0.0894 +3.14% 41/23/36
ESR-Title 0.1117 – 0.0867 – –/–/–
KESM-Title 0.1199 +7.36% 0.0923 +6.42% 35/28/37
IRFusion-Body 0.1115 +4.61% 0.0892 −3.51% 36/30/34
ESR-Body 0.1066 – 0.0924 – –/–/–
KESM-Body 0.1207‡ +13.25% 0.1057†‡ +14.44% 43/24/33

treats all query entities equally. As shown in the lower half of Table 6.6, the query entities may
contain errors, for example, “Malindi Fickle”, or general entities that blur the (perhaps implied)
query intent, for example “Civil War”, “State government”, and “US Tax’. These query entities
do not align well with the information needs and thus mislead KESM. Modeling the entity salience
in queries is a different task which is more about understanding search intents. To address these
error cases may require a deeper fusion of KESM in more sophisticated entity-oriented search
systems that also focus on handling noisy query entities (Section 3.2, 5.1). However, that may
require more training labels than those currently available in public benchmarks.

127



Table 6.6: Examples from queries that KESM improved or hurt, compared to ESR. Documents are
selected from those where ESR and KESM disagreed. Their doc id’s in ClueWeb and descrip-
tions are listed. Their descriptions are manually written to describe their main topics. Documents
in blue are those KESM promoted. Those in gray are those KESM demoted. Both compared to the
original ranking of ESR.

Cases KESM Improved
Query Query Entities Promoted/Demoted Document

“ER TV Show”
“ER (TV Series)”

clueweb09-enwp00-55-07707
The Wikipedia page of “ER (TV series)”

“TV Program”
clueweb09-enwp02-22-20096

A list of films in Wikipedia

“Wind Power” “Wind Power”

clueweb12-0009wb-54-01932
A homepage solely about wind energy

clueweb12-0200wb-66-32730
Mainly about home solar power

“Hurricane Irene “Hurricane Irene” clueweb12-0715wb-81-29281

Flooding in “Flood”
Videos and news about Hurricane Irene

clueweb12-0705wb-49-04059
Manville NJ” “Manville, NJ” Discusses Hurricane Irene disaster funding

Cases KESM Hurt
Query Query Entities Promoted/Demoted Document

“Fickle Creek Farm”

“Malindi Fickle” clueweb09-en0005-66-00576

“Stream”
A list of hotels near Fickle Creak

clueweb09-en0003-97-27345
“Farm” A list of breeding farms

“Illinois State Tax”

“Illinois” clueweb09-en0011-23-05274

“State Government”
Discusses retirement-related state taxes

clueweb09-enwp01-67-20725
“US Tax” Discusses sales taxes in the US

“Battles in the Civil War”
“Battles”

clueweb09-enwp01-30-04139
A list of wars in the Muslim world

“Civil War”
clueweb09-enwp03-20-07742

A list of American Civil War battles

6.3 Summary
This chapter presents KESM, the Kernel Entity Salience Model that estimates the salience of en-
tities in documents. KESM represents entities and words with distributed representations, models
their interactions using kernels, and combines the kernel scores to estimate entity salience. The
semantics of entities in the knowledge graph—their descriptions—are also incorporated to en-
rich entity embeddings. In the entity salience task, the whole model is trained end-to-end using
automatically generated salience labels.

128



In addition to the entity salience task, KESM is also applied to ad hoc search and ranks docu-
ments by the salience of query entities in them. KESM calculates the kernel scores of query en-
tities in the document, combines them to salience ranking features, and uses a ranking model to
predict the query-document ranking score. When ranking labels are scarce, the ranking features
can be extracted by pre-trained distributed representations and kernels from the entity salience
task and then used by standard learning to rank. These ranking features convey KESM’s text
understanding ability learned from entity salience labels to search.

Our experiments on two entity salience corpora, a news corpus (New York Times) and a sci-
entific publication corpus (Semantic Scholar), demonstrate the effectiveness of KESM in the en-
tity salience task. Significant and robust improvements are observed over frequency and feature-
based methods. Compared to those baselines, KESM performs significantly better on rare entities
and short documents where frequency signals are limited; its Kernel Interaction Model is also
more powerful than the raw similarities used by PageRank. Overall, KESM is a stronger model
with richer sources of evidence and a more powerful architecture.

In our ad hoc search experiments, the salience features provided by KESM trained on the New
York Times corpus outperform both word-based ranking features and frequency-based entity-
oriented ranking features, despite differences between the salience task and the ranking task.
The advantages of the salience features are more observed on the document bodies on which
more sophisticated text understanding is required.

Our case studies on the winning and losing queries of KESM demonstrate the influence of
entity salience in search. By considering the salience of query entities, KESM favors the candi-
date documents where the query entities are the core topics (salient) over those only mentioning
the query entities. For example, many candidate documents demoted by KESM contain lists of
entities; the query entities are only partial to their topics. With only frequency signals, it is hard
to distinguish such documents from more relevant ones.

We find it very encouraging that KESM successfully conveys the text understanding ability
from entity salience estimation to search. Estimating entity salience is a fine-grained text under-
standing task that focuses on the detailed interactions between entities and words. Previously it
was uncommon for text processing techniques at this granularity to be as effective in informa-
tion retrieval. Often shallower methods worked better for search. However, the fine-grained text
understanding provided by KESM—the interaction and consistency between query entities with
the document entities and words—actually improves the ranking accuracy. We view this work as
an encouraging step from “search by matching” to “search with meanings” [7] and hope it will
motivate more future explorations towards this direction.

129





Chapter 7

Conclusion

The final chapter concludes this dissertation with its summary and contributions. It also discusses
some best practices found in this thesis research and its potential impacts.

7.1 Thesis Summary

This thesis research improves the representation, retrieval, and understanding of texts using
knowledge graphs. It progresses through four stages: enriching word-based query representa-
tion with knowledge graphs (Chapter 3), building and ranking with entity-based text represen-
tations (Chapter 4), the word-entity duet framework that integrates word-based and entity-based
representations (Chapter 5), and the entity salience model which improves the understanding of
documents (Chapter 6).

Chapter 3 presents a series of techniques that integrate the information from knowledge
graphs into word-based retrieval systems through query representations. Section 3.1 improves
query expansion with entities from knowledge graphs. It develops a two-step query expansion
method. The first step finds relevant entities from entity search results and top retrieved doc-
uments’ annotations. The second step selects expansion words from the textual descriptions of
related entities by frequency and their ontology similarities with the query. This two-step process
introduces new signals to the search systems: the alignment from query to related entities, the
words from entity descriptions, and the ontology from the knowledge graph. These signals are
external to the original query and candidate documents, while also often at a higher quality: En-
tity search and entity linking are usually more accurate than ad hoc retrieval; entity descriptions
are often a cleaner source of expansion terms than pseudo relevance feedback documents; the
ontology is carefully designed and incorporates expert knowledge. These methods improve both
the effectiveness and the robustness of previous query expansion methods on TREC datasets,
with about 30% better accuracy and 50% less damaged queries. This performance shows the
great potential of knowledge graphs in information retrieval and motivated this thesis research.

Section 3.2 presents EsdRank which improves supervised ranking by connecting query and
documents through related entities. It proposes and experimented with three sources of related
entities: query annotations, entity search, and entities annotated to top retrieved documents.
These related entities serve as a latent layer and introduce additional connections between query

131



and documents. They introduce information from knowledge graphs as features between query,
related entities, and candidate documents. The ranking process with the latent entity space is
formulated as a generative process and modeled by a novel latent space learning to rank model,
Latent-ListMLE, which learns the latent entity weights and the document rankings jointly from
ranking labels. EsdRank outperforms word-based learning to rank systems on both the general
domain using Freebase, and the medical domain with the medical controlled vocabulary. As
shown in our analyses, the improvements come from both the effective ranking signals from the
knowledge and the latent ranking model that effective uses them. Our experiments also find that
query entity linking is a more effective way to find related entities. These conclusions are widely
adopted in the rest of this thesis research.

Section 3.3 provides a new entity search method using learning to rank. When using knowl-
edges in search, a crucial step is to find related entities, which can be done be entity search. In
the same time, entity search itself is a real-world task that has a wide range of applications. This
work represents our initial attempt to build our own related entity finding system in the format of
entity search. It uses learning to rank to combine the text similarities features between query and
entity’s predefined fields. The feature-based ranking model significantly outperforms previous
entity retrieval systems in queries with variant search intent. Interestingly, even for queries that
intended to search for entity attributes, the multi-field text representations and textual ranking
features still perform the best in our analyses. These observations further confirms the effective-
ness of entity texts in information retrieval tasks.

Chapter 4 presents entity-based text representations. Rather than relying on the word-based
representations and trying to enrich them with knowledge graphs, Chapter 4 directly represents
text in the entity space using automatic entity annotation, which is the most reliable source of
related entities found in previous chapters.

Section 4.1 conducts the studies of the feasibility of pure entity-based representations in
the environment of general domain web search. It first studies the accuracy and coverage of
three popular entity linking systems. The results show that though the annotation accuracy is
far from perfect (about 60%), if configured properly, the coverage on general domain texts is
promising. Then it builds a simple bag-of-entities model that represent query and documents by
their entity annotations. In our experiments on TREC data, simple frequency-based unsupervised
retrieval models built upon bag-of-entities are able to outperform their bag-of-words versions,
even with imperfect automatic entity annotations. Those results confirmed the feasibility of
automatic entity-based representations.

Section 4.2 presents Explicit Semantic Ranking (ESR), a new ranking technique that inte-
grates knowledge graph semantics in search in the format of entity embeddings. It builds upon
the bag-of-entities representations and matches query and document in the entity space. Com-
pared to the exact match based models in Section 4.1, ESR leverages knowledge graph edges—
relations and attributes—to soft match entities in the query and documents. An obstacle found in
utilizing knowledge graphs is the sparsity of their edges: many related entities are not connected
in the graph or even share no neighbors. To handle this sparsity, ESR converts the edges around
an entity into its distributed representations using embeddings, which are dense, continuous, and
easy to handle. The ranking in ESR is performed by a translation model and a pyramid pooling
layer. The translation model calculates the embedding similarities between all query-document
entity pairs; the pyramid pooling layer convert the translation scores into multi-level soft match

132



features to be used in learning to rank. This section also introduces our techniques into a new
search domain, Academic Search, by using the search logs and benchmarks from Semantic-
Scholar.org. ESR improves the word-based online production systems of Semantic Scholar, with
the majority of improvements on the queries that are hard for word-based search. The knowledge
graph embeddings and multi-level soft matches are crucial for these improvements. They made
ESR one of the first to successfully utilize knowledge graph relations in ad hoc search.

Chapter 5 presents the duet framework that combines the word-based and entity-based text
representations. The effectiveness of bag-of-entities makes combining it with bag-of-words a
natural step to improve search accuracy. The research presented in Chapter 5 provides a system-
atic approach to perform this combination.

Section 5.1 develops the general word-entity duet framework to combine the two represen-
tation spaces. It represents query and documents in the duet space of bag-of-words and bag-of-
entities. The duet provides four different ways to match query-document: matching within the
word space, within the entity space, and two cross-space matches from query words to document
entities and the other way around. The in-space matches cover the ranking features previously
studied in word-based retrieval and entity-based retrieval; the cross-space matches incorporate
signals from entity texts, for example, features in EsdRank and entity search (Section 3.3). This
section then provides a novel hierarchical learning to rank model to handle the noise in the query
annotations: Queries are short and often ambiguous; linking them inevitably introduces noisy
entities. The hierarchical ranking model builds an attention mechanism on the query entities,
which utilizes signals from entity linking and embeddings to model their reliability. The model
is jointly trained using relevance labels without requiring ground truth labels at the entity level.
Our experiments in the TREC benchmarks demonstrate the effectiveness of each of the four-way
matches, as well as the necessity of the hierarchical ranking model on noisy queries.

Section 5.2 presents JointSem, which jointly conducts query entity linking and document
ranking using the hierarchical ranking model.Its linking part keeps multiple possible candidate
entities and provides entity relatedness and ambiguity features to the attention mechanism. The
latter learns the weights on the candidate entities simultaneously with the ranking part. This
leads to a soft-linking scheme where the decision of entity linking is not to pick one from possible
candidate entities but to learn the weights on multiple choices. As shown in our experiments, this
“soft-linking” is very useful on ambiguous queries; it diversifies the linking results and allows
the ranking model to “fix” some linking errors.

Chapter 6 advances this thesis research from frequency-based text representations to salience-
based. In bag-of-words and bag-of-entities, the texts are broken down into isolated terms, and
the term importances are based on frequency signals. Effective as it is, frequency is only shal-
low text understanding. The research presented in Chapter 6 improves text understanding by
better estimating the importance of entities in texts with neural networks and knowledge graph
semantics.

Section 6.1 developed a new entity salience estimation model, KESM, that better estimate
term salience by modeling their interactions. Given entities and words in the text, KESM repre-
sents them using distributed representations and uses a novel kernel technique to model the term
interactions in the embedding space. The kernels convert the embedding similarities into multi-
level interaction strengths which also are smooth and trainable. The interaction patterns modeled
by the kernels are then combined by KESM to estimate entity salience. The knowledge graph

133



semantics can also be integrated as external memories (extra embeddings) of the corresponding
entities. In the entity salience task, KESM is learned end-to-end and encodes the entity salience
signals into its embeddings, which are optimized by the kernels. KESM provides more accurate
and balanced entity salience estimations on both a new corpus and a scientific publication corpus.
The kernels are crucial to its effectiveness as shown in our experiments.

Section 6.2 adapts KESM to ad hoc search using our entity-oriented search framework. It uses
KESM to estimate the salience of query entities in candidate documents, assuming that documents
centered around query entities are more likely to be relevant than those just mention the query
terms. In search scenarios where not sufficient relevance labels are available to train large neural
models, we train KESM in the entity salience estimation task, and use the pre-trained model
to produce kernel interaction scores between query entities and document terms. The kernel
scores can be used in standard learning to rank systems as salience ranking features. In our
experiments on the TREC ad hoc search benchmarks, the KESM pre-trained in the Those adapted
salience ranking features perform better than word-based features and frequency-based features
from Explicit Semantic Ranking. They model the interaction between query terms and document
terms and help promote documents whose main topics are about the query entities. These results
demonstrate that KESM transfers its text understanding capability learned from the salience task
to improve the search task. Previously it is uncommon for such fine-grained text understanding
techniques to be effective at ad hoc search tasks.

7.2 Thesis Contributions

This dissertation improves the representation, retrieval, and understanding of texts in search en-
gines using entities and their semantics from knowledge graphs. The idea of integrating human
knowledge in search dates back to the classic controlled vocabulary based retrieval systems.
However, until recently, structured semantics were mainly applicable to specifically designed
task and a few particular domains. This thesis research revisits this classic idea with the aids of
modern knowledge graphs, automatic grounding techniques, and novel machine learning mod-
els. It contributes a new entity-oriented search paradigm, which not only successfully utilizes
knowledge graphs to improve search, but also achieves this success robustly in various search
domains, different types of knowledge graphs, and multiple search tasks.

Throughout this thesis research, three main ideas lead to the success of entity-oriented search.
The rest of this section describes each of them in detail.

Semantic Grounding for Search

A prerequisite to the utilization of knowledge graph in search is the alignment of knowledge
graphs to the search process. More specifically, it needs to find related entities for the query and
documents. This dissertation explored the effectiveness of two ground techniques, entity linking
and entity search, and found their insufficiencies in finding related entities for search: Entity
linking focuses more on precision and named entities; entity search focuses more on satisfying
the information needs of a few query types; they both only cover a small fraction of the general
search traffic.

134



This dissertation developed a series of semantic grounding techniques that emphasize gen-
eral domain coverage to meet the needs of general search tasks. We examined the entity linking
technique and discovered the necessity of recall in finding related entities for search. Then by
relaxing the precision constraint, we developed a recall-oriented entity linking system that has
sufficient coverage in both special domain and general domain search. It becomes the stan-
dard way to find related entities in entity-oriented search. Later, this dissertation developed the
JointSem method that collectively conducts the entity alignment step and the ranking step. It
directly tailors the alignment step towards to needs of the ranking model and thus reduces the
discrepancy between the two parties.

These approaches resemble the information retrieval tradition of “noisy information is better
than no information”. They provide simple and practical solutions for aligning knowledge graphs
to query and documents, which are crucial to the advancement of entity-oriented search. These
techniques are also not only limited to retrieval tasks and could offer the benefits of knowledge
graphs to a broad range of text applications.

Integrating Knowledge Graph Semantics in Search

The structures in knowledge graphs follow the conventions in symbolic systems: attributes, on-
tologies, and relations organized in RDF triples. These precise structures make the corresponding
semantic systems precise but fragile. From the perspective of search engines, it was unclear how
to utilize these ‘symbolic’ evidence to improve search in a general and robust way.

This dissertation invented a series of approaches to integrate the knowledge graph semantics
to search. Instead of restricting to the symbolic style, our approaches find a middle-ground be-
tween their precise structures and IR-style text processing. We convert the RDF triples into bag-
of-words of entities and extracts IR-style ranking features, which are effective and easy-to-use in
existing search systems. We encode the sparse relations into embeddings, which effectively soft
match query and documents in the bag-of-entities space. We also develop a domain adaptation
approach that transfers the text understanding capability learned from entity salience to improve
ad hoc search.

These approaches provide robust, flexible, and effective integration of knowledge graph se-
mantics in search. They do not require 100% accuracy from the knowledge graph—errors are
mitigated as the ranking features and embeddings are expected to be non-exact. The inclusion of
unstructured elements from knowledge graphs, e.g., entity descriptions, also leads to significant
improvements. These properties also make our approaches more compatible with automatically
constructed semantic resources. For example, our academic knowledge graph, with just four
types of automatically extracted edges, improves academic search accuracy significantly.

Joint Learning

The automatic and coverage-oriented entity annotations inevitably include errors. This type of
errors is a significant bottleneck for entity-oriented search and often required manual filtering. To
address this problem, this dissertation developed several machine learning models that learn how
to handle the errors in entity annotations jointly with the ranking process. The first such joint
learning model is the latent-space learning to rank model. It uses the probabilistic graphic model

135



approach, treats the entities as a latent space between query and documents, and leverages the
EM method to learn the entity weights. Then we built an attention-based neural ranking model,
which applies an attention mechanism to learn to weight entities directly from ranking labels.
Our final model, JointSem, directly combines the query entity linking step with the entity-based
ranking step in a neural network.

These joint learning models are applicable to any supervised ranking scenarios, as document
relevance labels are already available. They effectively leverage ranking labels to handle the
annotation noisy, which dramatically relaxes the needs of entity linking quality. Their plug-
in-and-use flexibility and effectiveness significantly broadened the influence of entity-oriented
search, especially to search scenarios where the entity annotations are noisy.

7.3 Best Practices

This thesis research explored and experimented with variants design choices in multiple do-
mains. This section suggests some of the best practices and requirements for building knowledge-
enhanced information retrieval (KG4IR) systems .

High Coverage Entity Set

A preliminary requirement when building a KG4IR system is a high-coverage entity set in the
target domain. It determines the potential impacts of this dissertation’s techniques on the search
system—If there is no entity available in the query and documents, there is little knowledge
graphs can help.

In the general domain, Wikipedia and Freebase often provide the entity set with sufficient
coverage. In specific domains, one should start with the entities from domain-specific resources,
for example, medical controlled vocabularies for the medical domain. If such domain-specific
resources are not available, we suggest to start with inheriting entities from general domain
knowledge graphs. Usually Wikipedia contain many in-domain entities, which are a good start-
ing point. More in-domain entities can be added to the set later (Section 4.2). We also recom-
mend include entities from all possible categories. Entities only from handful of named entity
categories are unlike to provide sufficient coverage on the search traffic.

There are many approaches that automatically recognize and extract entities. In our expe-
riences, automatically extracted entities do not outperform Wikipedia entities in precision or
coverage. Even in some special domains, the automatically extracted ones are often very noisy
and the correct ones often also exist in Wikipedia. At the current stage, the best practice is to
leverage entities from existing resources (and add high-confident extracted ones to them), not to
extract everything automatically.

In-Domain Knowledge Graph Semantics

The most important factor of useful knowledge graph semantics is that they convey in-domain
information for the target application. For example, academic search requires semantics about
the academic domain (Section 4.2); medical search prefers the medical controlled vocabulary

136



(Section 3.2); general domain web search work well with Freebase. Semantics about another
domain is not as helpful as those in-domain; those from the general domain might be to general
for the target domain. When using the knowledge graph semantics, the coverage is also crucial;
overly emphasizing the structure preciseness often results in limited coverage and restricts the
potential of knowledge graph semantics in real-world applications.

On the other hand, the formats and precision of the knowledge graph semantics are rather
flexible. The formats can vary from textual attributes, RDF triples, closed form schema rela-
tions, or just entity contexts. They can be manually curated as in Wikipedia or automatically
extracted. In fact, the two main approaches utilizing knowledge graph semantics in this disser-
tation are by bag-of-words and embeddings. Both are flexible—other semantic formats can be
easily converted to them—and also robust—they are used to draw connections between related
texts and do not have to be as exact as when used in reasoning.

Recall-Oriented and Efficient Entity Alignment

In the entity alignment stage (entity linking or related entity finding), the two most important
properties required for the alignment system is its recall and efficiency. Recall is required to
ensure the coverage of aligned entities. Efficiency is required when aligning entities to the query
and the documents. The alignment on queries is often done online during search; it must sat-
isfy the latency requirements of the search engine. The alignment on documents cannot be too
complicated when the corpus is large. Some exiting entity linking systems require too many
computing resource to process large corpora such as ClueWeb.

On the other hand, the entity alignment does not have to be perfect. In many cases, this thesis
research finds simple entity linking systems work reasonably well, and their precise is not far
from more complex ones in the open domain. In our experience, the best practice is to start with
simple entity linkers such as TagMe [38] and CMNS [43], with ‘keep everything setup’ to ensure
coverage. The linking accuracy can be fixed by integrating the entity linking stage into the search
system and joint learning the two together (Section 5.2).

Choice of Ranking Model

The choice of ranking model depends on the quality of aligned entities and the training data size.
If the quality of introduced entities is not as good, the ranking model needs to handle their

noises. This is more common in the general domain whose texts are more ambiguous than special
domains. In this case, hierarchical ranking models that also learn to weight entities are preferred.
If the quality of related entities is decent, for example, with more than 70% accuracy, adding the
entity information as features to existing learning to rank systems can already be effective.

The size of training data determines the complexity of the ranking model. With limited
training data, feature-based systems are often easier to work with. Sometimes the feature set
may needs pruning to prevent overfitting, especially when using hierarchical ranking models.
For example, in a typical TREC benchmark with one hundred labeled queries, more than one
hundred feature dimensions may make the learning unstable. On the other hand, if sufficient
training data is available, end-to-end learned neural models might be more effective.

137



7.4 Thesis Impact

This last section discusses potential research directions motivated by this dissertation.

Building Knowledge Graphs for Information Retrieval Systems

The current knowledge graphs follow the traditions of symbolic systems, which do not fully align
with the needs of search engines. The semantics in existing knowledge graphs are precise but
may lack the coverage on search tasks. The structures of knowledge graph semantics are also
strict and complex, but the most effective way to use them now is through shallow formats such
as bag-of-words and embeddings.

One potential future direction is to build knowledge graphs towards the needs of real-world
information retrieval systems. Different applications have different needs: Web search benefits
more from entity texts; recommendation systems prefer relations about user shopping behaviors;
dialog systems require task slots and action states. Instead of building a knowledge graph for all
possible applications, constructing a knowledge graph specifically for the target application may
be more doable. Towards this line of research, a potential research topic is to automatically iden-
tify the needs of semantic information for downstream tasks. Another possible topic is to build
end-to-end knowledge-enhanced search systems that actively extract knowledge to integrate to
the search process.

The format of knowledge graph semantics can also be further studied. RDF triples work well
with tasks such as logic reasoning, but their exact structures might be too fragile. Bag-of-words
and embeddings are more robust, but might be too shallow. Identifying the right granularity of
structures for different scenarios is an interesting future research topic. Perhaps the solution is to
maintain flexible structures with variant complexities.

Combining Neural Networks and Knowledge Graphs

Variant parts of this dissertation have demonstrate the advantages of combining neural techniques
and knowledge graphs. This combination leads to many promising future research directions.

One direction is in improving the utilization of knowledge graphs with neural methods. For
example, neural techniques may better select which part of the knowledge graph to use for the
current task, perhaps with more sophisticated neural architectures. They can also improve the
ranking of documents in the entity space, perhaps by learning better entity representations and
more fine-grained soft matches.

Another direction is to bring the advantage of knowledge graphs to neural systems. The in-
corporation of prior knowledge can improve the generalization ability of neural networks, as the
information from knowledge graphs is more generally applicable and shared across domains [63].
Entities and explicit structures may also make the neural systems more explainable.

We believe future intelligent systems will benefit from the joint effort of knowledge graphs
and neural networks. This dissertation provides some initial evidence for it; we hope more will
come in the near future.

138



Deeper Language Understanding in Information Systems

Previously it was hard for fine-grained text processing techniques to improve information re-
trieval tasks. In many cases, search engines use user clicks to by-pass the needs of understanding
language. However, as information systems try to serve more and more sophisticated information
needs, deeper language understanding becomes more and more necessary.

One research direction in this area is to build more advanced text representations. The
text representations built in this dissertation include weak structures around entities to integrate
knowledge graph semantics. A possible next step is to learn more structures within the document.
The structures can be formed by entities, embeddings, and text fragments, with the goal to better
reflect text meanings, for example, the sub topics, salience sentences, or discourse transactions
in the document. Research questions to study include how to learn these structures, how to find
proper training data, and how to utilize the learned structures in downstream applications.

Deeper language understanding will change the way search engines interact with users. It
may enable search engines to present users more distilled information, e.g. those abstracted from
the search result page through information extraction and summarization. It can also help user
modeling if search engines better understand user’s text data. For example, it might be possible
to maintain a personalized knowledge graph for each user, which contains her points of interests,
past actions, level of expertises, and potential information needs. Such a personal knowledge
graph can help a wild range of applications, for example, web search engines, conversational
search systems and personal assistants.

Language understanding is one of the most critical milestones in Artificial Intelligence.
Achieving it will require efforts from multiple research communities. We hope this disserta-
tion has illustrated a promising picture and will lead to much more in the future.

139





Bibliography

[1] Medical Subject Headings - Home Page. http://www.nlm.nih.gov/mesh/
meshhome.html. Accessed: 2018-06-01. 2.1, 3.2

[2] Andrew Arnold and William W Cohen. Information extraction as link prediction: Us-
ing curated citation networks to improve gene detection. In International Conference on
Wireless Algorithms, Systems, and Applications (WASA 2009), pages 541–550. Springer,
2009. 4.2.1

[3] Krisztian Balog and Robert Neumayer. A test collection for entity search in DBpedia. In
Proceedings of the 36th International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (SIGIR 2013), pages 737–740. ACM, 2013. 2.3, 3.3, 3.3.1,
3.3.2, 3.3.3

[4] Krisztian Balog, Leif Azzopardi, and Maarten De Rijke. Formal models for expert finding
in enterprise corpora. In Proceedings of the 29th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR 2006), pages 43–50. ACM,
2006. 4.2.1

[5] Michele Banko, Michael J Cafarella, Stephen Soderland, Matthew Broadhead, and Oren
Etzioni. Open information extraction for the web. In Proceedings of the 14th International
Joint Conference on Artificial Intelligence (IJCAI 2007), pages 2670–2676. IJCAI, 2007.
2.2

[6] Hannah Bast and Elmar Haussmann. More accurate question answering on Freebase. In
Proceedings of the 24th ACM International Conference on Information and Knowledge
Management (CIKM 2015), pages 1431–1440. ACM, 2015. 3.3.1

[7] Hannah Bast, Björn Buchhold, Elmar Haussmann, et al. Semantic search on text and
knowledge bases. Foundations and Trends in Information Retrieval, 10(2-3):119–271,
2016. 6.3

[8] Michael Bendersky, David Fisher, and W Bruce Croft. UMass at TREC 2010 Web Track:
Term dependence, spam filtering and quality bias. In Proceedings of The 19th Text Re-
trieval Conference, (TREC 2010). NIST, 2010. 3.1.1, 3.1.2.1, 3.1.3, 3.1.3

[9] Michael Bendersky, Donald Metzler, and W. Bruce Croft. Parameterized concept weight-
ing in verbose queries. In Proceedings of the 34th International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR 2011), 2011. 6.1.1

[10] Michael Bendersky, Donald Metzler, and W Bruce Croft. Effective query formulation with
multiple information sources. In Proceedings of the Fifth ACM International Conference

141

http://www.nlm.nih.gov/mesh/meshhome.html
http://www.nlm.nih.gov/mesh/meshhome.html


on Web Search and Data Mining (WSDM 2012), pages 443–452. ACM, 2012. 3.2.2

[11] Adam Berger and John Lafferty. Information retrieval as statistical translation. In Pro-
ceedings of the 22nd International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR 1999), pages 222–229. ACM, 1999. 4.2.1

[12] Roi Blanco and Christina Lioma. Graph-based term weighting for information retrieval.
Information Retrieval, 15(1):54–92, 2012. 6, 6.1.1, 6.1.4

[13] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: A
collaboratively created graph database for structuring human knowledge. In Proceedings
of the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD
2008), pages 1247–1250. ACM, 2008. 2.2, 3.2, 5.1.3

[14] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In Advances
in Neural Information Processing Systems (NIPS 2013), pages 2787–2795, 2013. 5.1.1.2,
5.1.3, 5.1.4.3, 6.2.2

[15] Wladmir C Brandão, Rodrygo LT Santos, Nivio Ziviani, Edleno S Moura, and Altigran S
Silva. Learning to expand queries using entities. Journal of the Association for Informa-
tion Science and Technology (JASIST), 65(9):1870–1883, 2014. 3.2.2

[16] Andrei Z Broder, Marcus Fontoura, Evgeniy Gabrilovich, Amruta Joshi, Vanja Josifovski,
and Tong Zhang. Robust classification of rare queries using web knowledge. In Proceed-
ings of the 30th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 2007), pages 231–238. ACM, 2007. 3.2.2

[17] Guihong Cao, Jian-Yun Nie, Jianfeng Gao, and Stephen Robertson. Selecting good ex-
pansion terms for pseudo-relevance feedback. In Proceedings of the 31st International
ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR
2008), pages 243–250. ACM, 2008. 3.1, 3.1.1, 3.1.2.2, 3.1.3

[18] Cornelia Caragea, Florin Adrian Bulgarov, Andreea Godea, and Sujatha Das Gollapalli.
Citation-enhanced keyphrase extraction from research papers: A supervised approach. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP 2014), pages 1435–1446. ACL, 2014. 4.2.3.1

[19] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R Hruschka Jr,
and Tom M Mitchell. Toward an architecture for never-ending language learning. In
Proceedings of the 24th AAAI Conference on Artificial Intelligence, volume 5, page 3.
AAAI, 2010. 1.2, 2.2

[20] David Carmel, Ming-Wei Chang, Evgeniy Gabrilovich, Bo-June (Paul) Hsu, and Kuansan
Wang. ERD’14: Entity recognition and disambiguation challenge. In Proceedings of the
37th International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 2014). ACM, 2014. 1.2, 2.3, 3.2.1, 3.2.1.2, 3.2.2, 3.2.3.1, 3.2.3.3, 4.1,
4.1.1, 4.1.2, 4.2.4.2, 5.2, 5.2.1.1

[21] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software

142



available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. 3.1.2.2

[22] Jing Chen, Chenyan Xiong, and Jamie Callan. An empirical study of learning to rank
for entity search. In Proceedings of the 39th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR 2016), pages 737–740. ACM,
2016. 9

[23] Kevyn Collins-Thompson. Robust Model Estimation Methods for Information Retrieval.
PhD thesis, Carnegie Mellon University, December 2008. 3.1.1, 3.1.4.3

[24] Kevyn Collins-Thompson. Estimating robust query models with convex optimization. In
Proceedings of the 21st Advances in Neural Information Processing Systems (NIPS 2009),
pages 329–336. NIPS, 2009. 3.1.1

[25] Kevyn Collins-Thompson. Reducing the risk of query expansion via robust constrained
optimization. In Proceedings of the 18th ACM Conference on Information and Knowledge
Management (CIKM 2009), pages 837–846. ACM, 2009. 3.1.1

[26] Kevyn Collins-Thompson and Jamie Callan. Estimation and use of uncertainty in pseudo-
relevance feedback. In Proceedings of the 30th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR 2007), pages 303–310. ACM,
2007. 3.1.1

[27] Gordon V Cormack, Mark D Smucker, and Charles LA Clarke. Efficient and effective
spam filtering and re-ranking for large web datasets. Information Retrieval, 14(5):441–
465, 2011. 3.1.3, 3.2.2

[28] Nick Craswell, Arjen P. de Vries, and Ian Soboroff. Overview of the TREC 2005 En-
terprise Track. In Proceedings of The 14th Text Retrieval Conference (TREC 2005), vol-
ume 5, pages 199–205, 2005. 4.2.1

[29] W Bruce Croft, Donald Metzler, and Trevor Strohman. Search Engines: Information
Retrieval in Practice. Addison-Wesley Reading, 2010. 1.1, 6, 6.1.1, 6.2.1

[30] Zhuyun Dai, Chenyan Xiong, Jamie Callan, and Zhiyuan Liu. Convolutional neural net-
works for soft-matching n-grams in ad-hoc search. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining (WSDM 2018), pages 126–134.
ACM, 2018. 6.1.2.3

[31] Jeffrey Dalton, Laura Dietz, and James Allan. Entity query feature expansion using knowl-
edge base links. In Proceedings of the 37th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (SIGIR 2014), pages 365–374. ACM,
2014. 2.4, 3.1.3, 3.1.3, 3.2, 3.2.1, 3.2.1.2, 3.2.2, 3.10, 3.2.3.1, 3.2.3.2, 4.1.2, 4.1.3.2,
4.1.3.2, 4.2.3.1, 5.1.1.3, 5.1.3, 5.6, 5.1.4.3, 5.2, 5.2.2, 6.1.1, 6.2.2

[32] Laura Dietz and Patrick Verga. UMass at TREC 2014: Entity query feature expansion
using knowledge base links. In Proceedings of The 23st Text Retrieval Conference (TREC
2014). NIST, 2014. 3.2.3.1, 3.2.3.3

[33] Milan Dojchinovski, Dinesh Reddy, Tomás Kliegr, Tomas Vitvar, and Harald Sack.
Crowdsourced corpus with entity salience annotations. In Proceedings of the 10th Edition
of the Languge Resources and Evaluation Conference (LREC 2016), 2016. 6, 6.1.1, 6.2.1

143

http://www.csie.ntu.edu.tw/~cjlin/libsvm


[34] Metzler Jr Donald A. Beyond Bags of Words: Effectively Modeling Dependence and
Features in Information Retrieval. PhD thesis, University of Massachusetts Amherst,
September 2007. 3.1.1, 3.1.3

[35] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy,
Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: A web-scale ap-
proach to probabilistic knowledge fusion. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD 2014), pages
601–610. ACM, 2014. 1.2

[36] Jesse Dunietz and Daniel Gillick. A new entity salience task with millions of training
examples. In Proceedings of the 14th Conference of the European Chapter of the Associ-
ation for Computational Linguistics (EACL 2014), pages 205–209, 2014. 6, 6.1.1, 6.1.4,
6.1.4, 6.1.4, 6.2, 6.1.5.1, 6.2.1

[37] Faezeh Ensan and Ebrahim Bagheri. Document retrieval model through semantic link-
ing. In Proceedings of the Tenth ACM International Conference on Web Search and Data
Mining (WSDM 2017), pages 181–190. ACM, 2017. 2.4, 6.1.1

[38] Paolo Ferragina and Ugo Scaiella. Fast and accurate annotation of short texts with
Wikipedia pages. arXiv preprint arXiv:1006.3498, 2010. 2.3, 2.4, 3.2.2, 4.1, 4.1.1, 4.1.2,
5.1.1.1, 5.1.3, 5.2.2, 6.1.4, 7.3

[39] Evgeniy Gabrilovich, Michael Ringgaard, and Amarnag Subramanya. FACC1: Freebase
annotation of ClueWeb corpora, Version 1 (Release date 2013-06-26, Format version 1,
Correction level 0). http://lemurproject.org/clueweb09/FACC1/, 2013.
Accessed: 2018-06-01. 1.2, 2.3, 3.1.2.1, 3.1.3, 3.2.2, 4.1, 4.1.1, 4.1.2, 4.2.3.1, 4.2.4.2,
5.1.3

[40] Siddharth Gopal and Yiming Yang. Recursive regularization for large-scale classification
with hierarchical and graphical dependencies. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD 2009), pages
257–265. ACM, 2013. 2.1

[41] Gregory Grefenstette and Laura Wilber. Search-Based Applications: At the Confluence of
Search and Database Technologies. Morgan & Claypool Publishers, 2010. 2.1

[42] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W.Bruce Croft. A deep relevance matching
model for ad-hoc retrieval. In Proceedings of the 25th ACM International on Conference
on Information and Knowledge Management (CIKM 2016), pages 55–64. ACM, 2016.
4.2.1, 4.2.3.2, 4.2.3.2, 4.2.4.2, 5.1.1.2, 3

[43] Faegheh Hasibi, Krisztian Balog, and Svein Erik Bratsberg. Entity linking in queries:
Tasks and evaluation. In Proceedings of the Fifth ACM International Conference on The
Theory of Information Retrieval (ICTIR 2015), pages 171–180. ACM, 2015. 2.3, 4.1,
4.1.1, 4.1.2, 4.2.3.1, 4.2.4.2, 7.3

[44] Faegheh Hasibi, Krisztian Balog, and Svein Erik Bratsberg. Exploiting entity linking in
queries for entity retrieval. In Proceedings of the 2016 ACM International Conference on
the Theory of Information Retrieval (SIGIR 2016), pages 209–218. ACM, 2016. 2.3

144

http://lemurproject.org/clueweb09/FACC1/


[45] Faegheh Hasibi, Fedor Nikolaev, Chenyan Xiong, Krisztian Balog, Svein Erik Bratsberg,
Alexander Kotov, and Jamie Callan. DBpedia-Entity v2: A test collection for entity
search. In Proceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR 2017), pages 1265–1268. ACM, 2017.
2.3

[46] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. Learn-
ing deep structured semantic models for web search using clickthrough data. In Proceed-
ings of the 22nd ACM International Conference on Information & Knowledge Manage-
ment (CIKM 2013), pages 2333–2338. ACM, 2013. 4.2.1

[47] Heng Ji, Joel Nothman, Ben Hachey, and Radu Florian. Overview of TAC-KBP 2015 tri-
lingual entity discovery and linking. In Proceedings of the 2015 Text Analysis Conference
(TAC2015). NIST, 2015. 1.2, 2.3

[48] T. Joachims. Making large-scale SVM learning practical. LS8-Report 24, Universität
Dortmund, LS VIII-Report, 1998. 3.2.2

[49] Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings
of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD 2002), pages 133–142. ACM, 2002. 3.2.2, 4.2.4.2, 5.1.3, 6.2.2

[50] Christian Kohlschütter, Peter Fankhauser, and Wolfgang Nejdl. Boilerplate detection us-
ing shallow text features. In Proceedings of the Third ACM International Conference on
Web Search and Data Mining (WSDM 2010), pages 441–450. ACM, 2010. 6.2.2

[51] Bevan Koopman, Guido Zuccon, Peter Bruza, Laurianne Sitbon, and Michael Lawley.
Information retrieval as semantic inference: A graph inference model applied to medical
search. Information Retrieval, 19:6–37, 2016. 2.1

[52] Alexander Kotov and ChengXiang Zhai. Tapping into knowledge base for concept feed-
back: Leveraging ConceptNet to improve search results for difficult queries. In Proceed-
ings of the Fifth ACM International Conference on Web Search and Data Mining (WSDM
2012), pages 403–412. ACM, 2012. 3.1.1

[53] Robert Krovetz. Viewing morphology as an inference process. In Proceedings of the
16th International ACM SIGIR Conference on Research and Development in Information
Retrieval, (SIGIR 1993), pages 191–202. ACM, 1993. 3.1.3

[54] Victor Lavrenko and W Bruce Croft. Relevance based language models. In Proceedings
of the 24th International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (SIGIR 2001), pages 120–127. ACM, 2001. 3.1.1, 3.1.2.3, 3.1.3, 3.2.1.2,
3.2.2

[55] Kyung Soon Lee, W Bruce Croft, and James Allan. A cluster-based resampling method
for pseudo-relevance feedback. In Proceedings of the 31st International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (SIGIR 2008), pages 235–
242. ACM, 2008. 3.1.1

[56] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N.
Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören Auer, and

145



Christian Bizer. DBpedia - A large-scale, multilingual knowledge base extracted from
Wikipedia. Semantic Web Journal, 2014. 2.2

[57] Hang Li and Jun Xu. Semantic matching in search. Foundations and Trends in Information
Retrieval, 8:89, 2014. 2.1

[58] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and
relation embeddings for knowledge graph completion. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence (AAAI 2015), pages 2181–2187, 2015. 5.1.1.2

[59] Tie-Yan Liu. Learning to rank for information retrieval. Foundations and Trends in Infor-
mation Retrieval, 3(3):225–331, 2009. 3.2.1.3, 3.2.3.1, 4.2.2, 6.1.1, 6.1.3

[60] Tie-Yan Liu, Jun Xu, Tao Qin, Wenying Xiong, and Hang Li. LETOR: Benchmark dataset
for research on learning to rank for information retrieval. In Proceedings of SIGIR 2007
Workshop on Learning to Rank for Information Retrieval, pages 3–10, 2007. 1.1

[61] Xitong Liu and Hui Fang. Latent entity space: A novel retrieval approach for entity-
bearing queries. Information Retrieval, 18(6):473–503, 2015. 2.4, 4.1.2, 4.1.3.2, 4.2.3.1,
5.1.1.3, 5.1.3, 5.1.4.3, 5.2, 5.2.1.1, 6.1.1, 6.2.2

[62] Xitong Liu, Peilin Yang, and Hui Fang. Entity came to rescue - Leveraging entities to min-
imize risks in web search. In Proceedings of the 23st Text Retrieval Conference, (TREC
2014). NIST, 2014. 2.4, 3.2.1.2, 3.2.3.1, 3.2.3.3

[63] Zhenghao Liu, Chenyan Xiong, Maosong Sun, and Zhiyuan Liu. Entity-duet neural rank-
ing: Understanding the role of knowledge graph semantics in neural information retrieval.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguis-
tics (ACL 2018), page To Appear. ACL, 2018. 6.1.3, 7.4

[64] Chunliang Lu, Wai Lam, and Yi Liao. Entity retrieval via entity factoid hierarchy. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
(ACL 2015), pages 514–523. ACL, 2015. 3.3, 3.3.1, 3.3.3, 3.3.4.1

[65] Yue Lu, Hui Fang, and Chengxiang Zhai. An empirical study of gene synonym query
expansion in biomedical information retrieval. Information Retrieval, 12(1):51–68, 2009.
2.1

[66] Zhiyong Lu, Won Kim, and W John Wilbur. Evaluation of query expansion using MeSH
in PubMed. Information Retrieval, 12(1):69–80, 2009. 1.2, 2.1, 3.2.2

[67] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard,
and David McClosky. The Stanford CoreNLP natural language processing toolkit. In
Association for Computational Linguistics (ACL 2014) System Demonstrations, pages 55–
60. ACL, 2014. 6.1.4

[68] Pablo N Mendes, Max Jakob, Andrés García-Silva, and Christian Bizer. DBpedia spot-
light: Shedding light on the web of documents. In Proceedings of the 7th International
Conference on Semantic Systems, pages 1–8. ACM, 2011. 2.3

[69] Donald Metzler and W Bruce Croft. A Markov random field model for term dependen-
cies. In Proceedings of the 28th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 2005), pages 472–479. ACM, 2005. 3.1.3

146



[70] Donald Metzler and W Bruce Croft. Latent concept expansion using Markov random
fields. In Proceedings of the 30th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 2007), pages 311–318. ACM, 2007. 3.1.1,
3.2.2

[71] Donald Metzler and W Bruce Croft. Linear feature-based models for information retrieval.
Information Retrieval, 10(3):257–274, 2007. 5.1.3

[72] Rada Mihalcea and Andras Csomai. Wikify!: Linking documents to encyclopedic knowl-
edge. In Proceedings of the 16th ACM Conference on Information and Knowledge Man-
agement (CIKM 2007), pages 233–242. ACM, 2007. 2.3

[73] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Proceedings of the
27th Advances in Neural Information Processing Systems 2013 (NIPS 2013), pages 3111–
3119, 2013. 4.2.3.1, 4.2.5.4, 5.1.3, 6.1.4

[74] Robert Neumayer, Krisztian Balog, and Kjetil Nørvåg. When simple is (more than) good
enough: Effective semantic search with (almost) no semantics. In Proceedings of the 34th
European Conference on Information Retrieval (ECIR 2012), pages 540–543. Springer,
2012. 3.3.1

[75] Dong Nguyen and Jamie Calan. Combination of evidence for effective web search. In
Proceedings of The 19th Text Retrieval Conference (TREC 2010). NIST, 2010. 3.1.1,
3.1.2.1, 3.1.3, 3.1.3

[76] Fedor Nikolaev, Alexander Kotov, and Nikita Zhiltsov. Parameterized fielded term de-
pendence models for ad-hoc entity retrieval from knowledge graph. In Proceedings of the
39th International ACM SIGIR conference on Research and Development in Information
Retrieval (SIGIR 2016), pages 435–444. ACM, 2016. 2.3

[77] Dazhao Pan, Peng Zhang, Jingfei Li, Dawei Song, Ji-Rong Wen, Yuexian Hou, Bin Hu,
Yuan Jia, and Anne De Roeck. Using Dempster-Shafer’s evidence theory for query expan-
sion based on freebase knowledge. In Information Retrieval Technology, pages 121–132.
Springer, 2013. 3.2.1.2

[78] TB Rajashekar and Bruce W Croft. Combining automatic and manual index representa-
tions in probabilistic retrieval. Journal of the American Society for Information Science,
46(4):272–283, 1995. 2.1

[79] Lev Ratinov, Dan Roth, Doug Downey, and Mike Anderson. Local and global algorithms
for disambiguation to Wikipedia. In Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Language Technologies (ACL-HLT 2011),
pages 1375–1384. ACL, 2011. 2.4

[80] Hadas Raviv, Oren Kurland, and David Carmel. Document retrieval using entity-based
language models. In Proceedings of the 39th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR 2016), pages 65–74. ACM,
2016. 2.4, 4.2.3.2, 4.2.3.2, 5.1.1.2, 5.1.1.3, 5.1.3, 6.1.1, 6.1.4, 6.2.2

[81] Stephen E Robertson and Steve Walker. Okapi/Keenbow at TREC-8. In Proceedings of

147



The 8th Text Retrieval Conference (TREC 1999), pages 151–162. NIST, 1999. 3.1.1

[82] François Rousseau and Michalis Vazirgiannis. Graph-of-word and TW-IDF: New ap-
proach to ad hoc IR. In Proceedings of the 22nd ACM International Conference on Con-
ference on Information & Knowledge Management (CIKM 2013), pages 59–68. ACM,
2013. 6.1.1

[83] Gerard Salton and Michael J McGill. Introduction to modern information retrieval. 1986.
1.2, 4.1, 4.1.1

[84] Evan Sandhaus. The New York Times annotated corpus. Linguistic Data Consortium,
Philadelphia, 6(12):e26752, 2008. 6.1.1, 6.1.4

[85] Michael Schuhmacher, Laura Dietz, and Simone Paolo Ponzetto. Ranking entities for
web queries through text and knowledge. In Proceedings of the 24th ACM International
on Conference on Information and Knowledge Management (CIKM 2015), pages 1461–
1470. ACM, 2015. 3.3.1

[86] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-june Paul Hsu, and
Kuansan Wang. An overview of Microsoft academic service (MAS) and applications.
In Proceedings of the 24th International Conference on World Wide Web (WWW 2015),
pages 243–246. ACM, 2015. 4.2.1

[87] Nicola Stokes, Yi Li, Lawrence Cavedon, and Justin Zobel. Exploring criteria for success-
ful query expansion in the genomic domain. Information Retrieval, 12(1):17–50, 2009.
2.1

[88] Trevor Strohman, Donald Metzler, Howard Turtle, and W Bruce Croft. Indri: A language
model-based search engine for complex queries. In Proceedings of the International Con-
ference on Intelligent Analysis, volume 2, pages 2–6. Central Intelligence for Analysis and
Production, 2005. 3.1.3

[89] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A core of semantic
knowledge. In Proceedings of the 16th International Conference on World Wide Web
(WWW 2007), pages 697–706. ACM, 2007. 2.2

[90] Ilya Sutskever, James Martens, George E Dahl, and Geoffrey E Hinton. On the importance
of initialization and momentum in deep learning. In Proceedings of the 29th International
Conference on Machine Learning (ICML 2013), pages 1139–1147, 2013. 5.1.3

[91] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. ArnetMiner: Extrac-
tion and mining of academic social networks. In Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD 2008), pages
990–998. ACM, 2008. 4.2.1

[92] Tao Tao and ChengXiang Zhai. Regularized estimation of mixture models for robust
pseudo-relevance feedback. In Proceedings of the 29th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval (SIGIR 2006), pages 162–
169. ACM, 2006. 3.1.1, 3.1.3

[93] Ivan Vulić and Marie-Francine Moens. Monolingual and cross-lingual information re-
trieval models based on (bilingual) word embeddings. In Proceedings of the 38th Inter-

148



national ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR 2015), pages 363–372. ACM, 2015. 4.2.1

[94] Alex D Wade, Kuansan Wang, Yizhou Sun, and Antonio Gulli. WSDM Cup 2016: Entity
ranking challenge. In Proceedings of the Ninth ACM International Conference on Web
Search and Data Mining (WSDM 2016), pages 593–594. ACM, 2016. 4.2.1

[95] Xing Wei and W Bruce Croft. LDA-based document models for ad-hoc retrieval. In Pro-
ceedings of the 29th International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR 2006), pages 178–185. ACM, 2006. 4.2.1

[96] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. Listwise approach to
learning to rank: Theory and algorithm. In Proceedings of the 25th International Confer-
ence on Machine Learning (ICML 2008), pages 1192–1199. ACM, 2008. 3.2.1.1, 3.2.2

[97] Chenyan Xiong and Jamie Callan. EsdRank: Connecting query and documents through
external semi-structured data. In Proceedings of the 24th ACM International Conference
on Information and Knowledge Management (CIKM 2015), pages 951–960. ACM, 2015.
4

[98] Chenyan Xiong and Jamie Callan. Query expansion with Freebase. In Proceedings of
the Fifth ACM International Conference on the Theory of Information Retrieval (ICTIR
2015), pages 111–120. ACM, 2015. 1

[99] Chenyan Xiong, Jamie Callan, and Tie-Yan Liu. Bag-of-entities representation for rank-
ing. In Proceedings of the sixth ACM International Conference on the Theory of Informa-
tion Retrieval (ICTIR 2016), pages 181–184. ACM, 2016. 1

[100] Chenyan Xiong, Jamie Callan, and Tie-Yan Liu. Word-entity duet representations for
document ranking. In Proceedings of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR 2017), pages 763–772. ACM,
2017. 1

[101] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. End-to-end
neural ad-hoc ranking with kernel pooling. In Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2017),
pages 55–64. ACM, 2017. 6, 2, 6.1.2.3, 6.1.4, 6.1.4, 6.1.5.1

[102] Chenyan Xiong, Zhengzhong Liu, Jamie Callan, and Eduard H. Hovy. JointSem: Combin-
ing query entity linking and entity based document ranking. In Proceedings of the 2017
ACM on Conference on Information and Knowledge Management (CIKM 2017), pages
2391–2394. ACM, 2017. 6

[103] Chenyan Xiong, Russell Power, and Jamie Callan. Explicit semantic ranking for aca-
demic search via knowledge graph embedding. In Proceedings of the 25th International
Conference on World Wide Web (WWW 2017), pages 1271–1279. ACM, 2017. 4

[104] Chenyan Xiong, Zhengzhong Liu, Jamie Callan, and Tie-Yan Liu. Towards better text
understanding and retrieval through kernel entity salience modeling. In Proceedings of the
41st International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 2018), page To Appear. ACM, 2018. 1

149



[105] Yang Xu, Gareth JF Jones, and Bin Wang. Query dependent pseudo-relevance feedback
based on Wikipedia. In Proceedings of the 32nd International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR 2009), pages 59–66. ACM,
2009. 3.1, 3.1.1, 3.1.2.1, 3.1.3, 3.2, 3.2.1, 3.2.1.2, 3.2.2, 5.1.1.3

[106] Yi Yang and Ming-Wei Chang. S-MART: Novel tree-based structured learning algorithms
applied to tweet entity linking. In Proceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics (ACL2015), pages 504–513. ACL, 2015. 2.3

[107] Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. Semantic parsing via
staged query graph generation: Question answering with knowledge base. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (ACL 2015), pages
1321–1331. ACL, 2015. 3.3.1

[108] Chengxiang Zhai and John Lafferty. Model-based feedback in the language modeling
approach to information retrieval. In Proceedings of the 10th ACM Conference on Infor-
mation and Knowledge Management (CIKM 2001), pages 403–410. ACM, 2001. 3.1.1

[109] Jing Zhang, Jie Tang, and Juanzi Li. Expert finding in a social network. In International
Conference on Database Systems for Advanced Applications, pages 1066–1069. Springer,
2007. 4.2.1

[110] Le Zhao and Jamie Callan. Term necessity prediction. In Proceedings of the 19th ACM
International on Conference on Information and Knowledge Management (CIKM 2010),
pages 259–268, 2010. 6.1.1

[111] Guoqing Zheng and Jamie Callan. Learning to reweight terms with distributed representa-
tions. In Proceedings of the 38th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 2015), pages 575–584. ACM, 2015. 6.1.1

[112] Nikita Zhiltsov, Alexander Kotov, and Fedor Nikolaev. Fielded sequential dependence
model for ad-hoc entity retrieval in the web of data. In Proceedings of the 38th Inter-
national ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR 2015), pages 253–262. ACM, 2015. 2.3, 3.3, 3.3.1, 3.3.2, 3.3.3

150


	1 Introduction 
	1.1 Information Retrieval by Bag-of-Words
	1.2 Information Retrieval with Human Knowledge
	1.3 Thesis Research

	2 Background and Related Work 
	2.1 Controlled Vocabularies and Information Retrieval
	2.2 Knowledge Graph Overview
	2.3 Related Semantic Grounding Techniques
	2.4 Related Work 
	2.5 Summary

	3 Enriching Query Representations with Knowledge Graphs
	3.1 Query Expansion with Knowledge Base
	3.1.1 Related Work in Query Expansion
	3.1.2 Expansion Using Freebase 
	3.1.3 Experimental Methodology 
	3.1.4 Evaluation Results
	3.1.5 Summary of Query Expansion with Knowledge Base

	3.2 EsdRank: Connect Query-Documents through Entities
	3.2.1 EsdRank
	3.2.2 Experimental Methodology
	3.2.3 Evaluation Results 
	3.2.4 EsdRank Summary

	3.3 Learning to Rank Related Entities
	3.3.1 Related Work in Entity Search
	3.3.2 Learning to Rank Entities
	3.3.3 Experimental Methodology
	3.3.4 Evaluation Results
	3.3.5 Summary of Related Entities Finding

	3.4 Summary

	4 Entity-Based Text Representation
	4.1 Bag-of-Entities Representation
	4.1.1 Bag-of-Entities
	4.1.2 Experiment Methodology
	4.1.3 Evaluation Results
	4.1.4 Bag-of-Entities Summary

	4.2 Explicit Semantic Ranking with Entity Embedding
	4.2.1 Related Work in Academic Search and Soft-Match Retrieval
	4.2.2 Query Log Analysis
	4.2.3 Our Method
	4.2.4 Experimental Methodology
	4.2.5 Evaluation Results
	4.2.6 Explicit Semantic Ranking Summary

	4.3 Summary

	5 Combining Word-based and Entity-based Representations
	5.1 Word-Entity Duet
	5.1.1 Duet Framework
	5.1.2 Attention-based Ranking Model
	5.1.3 Experimental Methodology
	5.1.4 Evaluation Results
	5.1.5 Word-Entity Duet Summary

	5.2 Joint Entity Linking and Entity-based Ranking
	5.2.1 Joint Semantic Ranking
	5.2.2 Experiment Methodology
	5.2.3 Evaluation
	5.2.4 JointSem Summary

	5.3 Summary

	6 From Representation to Understanding through Entity Salience Estimation
	6.1 Entity Salience Modeling
	6.1.1 Related Work in Term Salience Estimation
	6.1.2 Background: Kernel-based Neural Ranking Model
	6.1.3 Kernel Entity Salience Model
	6.1.4 Experimental Methodology
	6.1.5 Evaluation Results

	6.2 Ranking with Entity Salience
	6.2.1 Ranking Approach
	6.2.2 Experimental Methodology 
	6.2.3 Evaluation Results

	6.3 Summary

	7 Conclusion 
	7.1 Thesis Summary
	7.2 Thesis Contributions
	7.3 Best Practices
	7.4 Thesis Impact

	Bibliography

