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Abstract

A concept hierarchy is a set of concepts and relations between those concepts. Since ancient

times, concept hierarchies have been used to organize and access information. In some situ-

ations, task-specific and user-specific concept hierarchies are necessary to allow an overview

and easy access a large set of documents. For example, in regulatory reforms, rule-makers in

government regulatory agencies must quickly identify and respond to issues raised in public

comments. A concept hierarchy constructed for a set of public comments hierarchically or-

ganizes the comments and a user is able to easily “drill down” into documents that discuss

a specific topic.

Particularly, this dissertation addresses how to construct concept hierarchies from text

collections automatically or with a-human-in-the-loop. The novel metric-based concept

hierarchy construction framework transforms concept hierarchy construction into a multi-

criterion optimization problem. It incrementally clusters concepts based on minimum evo-

lution of hierarchy structure, as well as optimization derived from the modeling of concept

abstractness and concept coherence. Moreover, this dissertation represents the semantic

distance between concepts as a wide range of features, each of which corresponds to a state-

of-the-art concept hierarchy construction technique, such as lexico-syntactic pattern, con-

textual information, and co-occurrence. The use of multiple features allows a further study

of the interaction between features and di↵erent types of semantic relations as well as the

interaction between features and concepts at di↵erent abstraction levels.

Besides the automatic framework for concept hierarchy construction, this dissertation

also proposes an e↵ective human-guided concept hierarchy construction framework to address

personalization by learning from periodic manual guidance and directing the learned models

towards personal preferences. Through human-computer interactions, the human and the
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machine work together to organize concepts into hierarchies. The machine’s predictions not

only save the user’s e↵ort but also make sensible suggestions to assist the user. This is one

of the first works of real-time machine learning for organizing personalized and task-specific

information in an interactive paradigm.

This dissertation also studies user behaviors during concept hierarchy construction. It

explores whether people create concept hierarchies more quickly or more consistently using

the proposed frameworks, whether there are consistent dataset-specific or user-specific dif-

ferences in the hierarchies that people construct, whether people are self-consistent, and how

these factors interact with di↵erent construction methods. The user study elaborates that

dataset di�culty is a major factor a↵ecting how people organize information into concept

hierarchies. It also reveals that people are quite self-consistent in building hierarchies. This

novel finding provides foundations to study the di↵erences in concept hierarchy construction

behaviors between individuals.

Last but not least, the dissertation proposes a novel similarity metric for measuring

hierarchy similarity. Fragment-based Similarity (FBS) employs a unique bag-of-word repre-

sentation for hierarchies and takes a fragment-based view to calculate hierarchy similarity.

FBS well approximates tree edit distance and greatly improves tree edit distance’s e�ciency

from NP-hard to only O(n3) and O(n) if pairwise node similarities are pre-calculated.

The research in this dissertation is an important step forward of concept hierarchy con-

struction. It addresses important problems of concept hierarchy construction, especially

considers how to better model these problems with good theoretical foundations, to study

these problems via extensive empirical experiments and user studies, and to solve these

problems by developing practical applications for constructing personal concept hierarchies.
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Chapter 1

Introduction

In our daily work and life, the following situation should be familiar to many of us: given a

large set of documents, which could be a long list of search results, a pile of research papers,

or a set of lawsuit documentation, a user needs to find out not just one piece of precise,

highly accurate answer to fulfil a lookup information need, instead, she needs to learn and

investigate a comprehensive set of information for a complex task-oriented information need.

This kind of information needs correspond to a broad spectrum of representations for the

set of complete and comprehensive information. At one end of this spectrum is the simplest

representation that could be a list of all relevant documents about a concept or a search

query. At another end is the most sophisticated representation that could be a comprehensive

summary and analysis, aiming to provide the user an analytic result with inferencing and

reasoning and to supply decisions as an intelligent decision engine. Somewhere between the

two ends is presenting the related concepts and issues mentioned in the document set in an

organized form, in particular, a concept hierarchy, to ease information triage and access.

Concept hierarchies are used to organize information since ancient times. A concept

hierarchy is a hierarchical organization which provides an overview of data at di↵erent levels

of granularity. A concept hierarchy includes the concepts discussed in a certain domain, and

the relations among those concepts. Concepts represent the topics of interests in the domain

and relations determine how to organize the concepts into a hierarchy.

Concept hierarchy is a good choice to organize data for later access and use. Concept

hierarchies can provide an overview of the data and presents a “lay of the land” of the range

1
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of the issues raised in the data. It can also provide direct access to information when the

concepts are associated with data sources. Data sources can be text documents, videos,

audios, blog posts, etc. Concept hierarchies allow a user to quickly access information by

“drilling down” into the data sources that discuss particular topics. Examples of concept

hierarchies include the Library of Congress Subject Headings1 (LCSH, Figure 1.1), where the

entire Library of Congress are organized into hierarchical structures, the Yahoo! Directory 2

(Figure 1.2) and the Open Directory Project3 (ODP, Figure 1.3), where the entire Web data

are attempted to be organized into hierarchical structures.

Moreover, concept hierarchies are able to pull up and make visible the content which is

ranked low in a sequential document list ordered either by creation dates, document docket

identification numbers, or relevance to a search query. By pulling up documents that are

ranked low, concept hierarchies greatly increase these documents’ visibility to the user, hence

increase a user’s awareness of the overall picture of a domain and makes it easier for the user

to directly access particular documents that interest her.

Many concept hierarchies, such as LCSH, Yahoo! Directory and ODP, aim to cover a

wide range of topics, support a large set of users and tasks, and usually have long lifespans to

serve for a long period of time. The creation and maintenance of these concept hierarchies

demand a large amount of manual e↵orts from multiple experts. Manual construction is

often time-consuming; the maintenance of manually-constructed concept hierarchies is often

challenging, too. In fact, the high labor cost and the tight time constraints make these

concept hierarchies infeasible in many real-life situations, such as when a data analyst must

respond in a timely manner and when a Web user needs to organize search results for a

short-term information need. Such situations call for task-specific and user-specific concept

hierarchies that can be constructed quickly either automatically or semi-automatically. We

illustrate two of such situations and show how concept hierarchies can help as follows.

1
http://www.loc.gov/.

2
http://dir.yahoo.com/.

3
http://www.dmoz.org/.
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Figure 1.1: A portion of the Library of Congress Subject Headings (updated list on May 18,
2011).

1.1 Data Exploration in Notice Comment Rulemaking

Jane is a government employee working in the O↵ce of Policy within the Department of

Homeland Security. She participates in the rule-making process in the rules that issued

by her department. In Notice Comment Rulemaking [YCS06], rule-makers, including Jane,

from administrative agencies of the U. S. government are required to seek comments from

the stakeholders and the public, and respond to substantive issues in the final rule within

a limited amount of time. By law, rule-makers must consider every substantive issue raised

during the comment period. Each year a few high profile rules attract hundreds of thousands

of comments. When comment volume is high and the time for processing comments is short,

evaluating each comment quickly and thoroughly brings the rule-makers, such as Jane, a

significant burden.
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Figure 1.2: A portion of the Yahoo! Directory.

For a public comment set submitted about a rule, Jane would like to have a quick

overview of the public comments (about a certain rule) that submitted to her deparment.

A concept hierarchy particularly constructed for public comments about a certain proposed

rule is desirable for her to have a quick overview of the “lay of the land” of the comments

and to well understand the range of the issues raised in the comments. Figure 1.4 shows a

hierarchy manually built by government employees using ICF’s CommentWorks4 for the set of

public comments about “Minimum Standards for Driver’s Licenses and Identification Cards

Acceptable by Federal Agencies for O�cial Purposes” (Docket id: DHS-2006-0030). The

dataset contains 210,000 public comments submitted to the U.S. Department of Homeland

Security (DHS) during a sixty-day comment period in 2007. For such large amount of email

comments sent from all around the country, Jane needs to find out what the major issues

are and respond to the issues within a limited period of time.

CommentWorks displays a concept hierarchy on its left pane. The hierarchy shown in

Figure 1.4 organizes the comments according to the subjects mentioned in the proposed

4
http://www.icfi.com/insights/products-and-tools/commentworks/.
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Figure 1.3: The top level of the Open Directory Project (ODP).

rule. The top-level concept clusters include general opinions, analysis of the proposed rule,

state certification process, driver’s license and identification, intelligent records, solicitatior

of comments, regulatory analysis, and out of scope. Once the concept hierarchy is built, Jane

can browse the concept hierarchy, click one of the nodes in the hierarchy, and easily access

the set of comments related to that concept. She is happy with this organization of the

comments.

Mike is another employee working in the same o�ce as Jane’s. He helps to write review

reports for public comments. He is also involved in the outreach program of the department

and often pays attention to comments sent from di↵erent groups of stakeholders. Therefore

when Mike organizes comments, he often oraganizes them based on the stakeholders who care

about this proposed rule. For instances, for the comments in Figure 1.4 Mike organizes them

into top-level concept clusters including drivers, government o�cers, immigration lawyers,

and professors who study political science. This is a totally di↵erent organization from the

previous concept hierarchy for the same public comment set organized by Jane.

Jane and Mike organize the same set of public comments di↵erently to serve their own

purpose. The multiple concept hierarchy representations enable them organizing the same
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Figure 1.4: A concept hierarchy for public comment dataset “Metropolitan Bridge and
Tunnel Proposed Rule”, by CommentWorks.

data into di↵erent views due to di↵erent preferences and purposes. The resulting hierarchy

depends on the preferences of the employee who builds the hierarchy. Each concept hierarchy

is a personalized concept hierarchy.

Concept hierarchies can be of little use once the task is done. Jane and Mike are free

to keep it for later uses or share with other users with similar information needs. But, they

are also free to discard the concept hierarchy as soon as it is not their interests any more.

Therefore, this type of concept hierarchies must be built in a relatively cheaper way, either

automatically or semi-automatically.

1.2 Search Result Organization in Web Search

In the last two decades, search engines have become the most popular online tools to search

for information. Search engines invest most of their resources in looking up relevant docu-

ments. Many search queries submitted to Web search engines such as Google, Bing or Yahoo!

are just revisiting queries, i.e., queries aiming to find pages that have already been visited

by a user at an earlier time. In fact, more than 50% Web page visits are re-visits [ATDE09]
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Figure 1.5: Concept hierarchies help in learning and investigation. (Adapted from a slide by
Gary Marchionini [Mar07].)

and more than a third of Web searches are re-finding queries [TAJP07]. In these Web page

revisits, a user is crystal clear about what the search target is. Usually a search target is

just one Web document. Search engines perform pretty well in finding a single search target,

and people are satisfied with the search performance for these simple look-up search tasks.

In many other cases, however, the search target is not a singleton, but multiple parts in

multiple Web documents. This frequently occurs for task-based queries where the information

need is to learn and to investigate. The user has to extracts important concepts that she

cares about from multiple search results and organizes the concepts into some structures that

make sense to her. She usually does the extraction and organization in her mind. Usually,

the information need is too complicated to be fully expressed by a single search query. We

therefore often see that a user has to reformulate and resubmit her search queries many times

to a search engine in order to find useful information. This process is time-consuming.

Marchionini pointed out that people actually invest most of their time in Web search in

examining search results and in learning and investigating [Mar07]. Such activities include

exploring the structure of the retrieved Web documents, acquiring the knowledge, compar-

ing the search results, comprehending the meanings, analyzing or evaluating the materials

(Figure 1.5). That long process of examining search results, repeatedly reformulating search
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queries, and trying di↵erent ways to express what is in one’s mind is tiresome and frustrating.

For example, Jeni↵er is a relative of Jane. She loves to go to fields trips. Jennifer wants

to come to Washington, DC to visit Jane and her family. When Jeni↵er planning her trip to

DC, she submits a search query “trip to DC” to a Web search engine to gather information.

The search engine returns a long list of blue links (a list of more than 500,000 document

URLs), each of which leads to a Web document. Jeni↵er must click some, sometimes many,

of these links, read the documents, extract the related information, and organize it by herself.

Here, search engines push the burden of processing and organizing information to the user,

which is not desirable and clearly needs to be improved.

A concept hierarchy built over the search results is able to show the “landscape” of the

topics and hence save Jane from this tiresome information triage process. Figure 1.6 shows a

hierarchy constructed by Yippy 5 for search results of the query “trip to DC”. The hierarchy

is built automatically by clustering the results generated by the search engine. Specifically,

the hierarchy groups the search results into planning, Washington DC trip, field trips, and

a few more related topics. With the help of this concept hierarchy, Jennifer can easily view

the options and make her decision about the trip. Therefore it becomes easier for her to find

her path to reach the relevant documents. Concept hierarchies arethus able to go beyond

the basic search and provide significant help for the task of information triage/seeking.

Similar to rule-makers’ personal preferences in organizing the public comments, individ-

ual Web user’s preferences also play a large role in how to organize the information. Di↵erent

people probably plan their trips di↵erently and wish to show their own preferences in the

concept hierarchies. Jeni↵er may want to build the hierarchy as shown in Figure 1.6, or-

ganizing the Web search results into di↵erent plans for field trips. Another user may build

the hierarchy based on places of interests (museums, historical buildings) and transportation

options (subway, taxi, train). An ideal concept hierarchy in these situations should be able

to capture the user preferences.

5
http://search.yippy.com/.
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Figure 1.6: Clustering of Web search results of “Trip to DC”, by Yippy.

1.3 Personalization in Concept Hierarchies

We have seen two examples where concept hierarchies, especially personalized concept hier-

archies, can help in information triage and access. It is unlikely that such concept hierarchies

can be directly made of or adapted from existing manually-crafted concept hierarchies, such

as ODP, Yahoo! Directory, and LCSH. The following summarizes the issues that potentially

make existing concept hierarchies fail in learning and in investigating a specific new domain.

First, there may simply be no existing concept hierarchy that can provide the right

coverage of concepts and details for a task. For example, public comments are collected

from the general public about a proposed rule that often does not exist before. No concept

hierarchy would possibly exist before the rule is issued and the comments are collected. Even

if a rule is related to some existing concept hierarchies, for example, the aforementioned

rule by DHS may be related to a portion of ODP about driver’s license, the relation is

limited. Most existing concept hierarchies are built beforehand by domain experts and

nearly impossible to contain the specific concepts in the rule and in the comments.

Second, even if existing concept hierarchies include the concepts that the user is interested
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The most agreeable concept pairs The least agreeable concept pairs

Information

Concept pairs (parent,child) Agreements Concept pairs (parent,child) Agreements

telecommunications telecommunica-

tions re-sellers

21 information, sound recording

studios

1

publishing industries, software pub-

lishers

20 newspapers & publishers, book

publishers

1

publishing industries, greeting card

publishers

19 sound recording industries, ra-

dio stations

1

telecommunications, wired telecom-

munications carriers

19 publishers, music publishers 1

publishing industries, newspaper peri-

odical book and directory publishers

19 production, sound recording

studios

1

Kindergarten

program, summer program 24 example of schools, waldorf

school

1

program, early childhood program 24 sta↵, person 1

skill, cognitive skill 23 school topics, art 1

program, back-up care program 23 development stages of child,

toddler

1

student, lower school student 23 subjects, communication 1

Polar bear

hunter, sport hunter 24 laws, polar bear recovery plan 1

pollution, greenhouse gas pollution 23 polar bear protection act, polar

bear recovery plan

1

energy, traditional energy 23 organization, gas industry 1

hunter, trophy hunter 23 stakeholder, pollution pro-

ducer

1

extinction, mass extinction 22 organization involved, polar

bear specialist group

1

Table 1.1: The most and the least agreeable concept pairs for datasets information, kinder-
garten, and polar bear.

in, there are many ways to organize a given set of concepts. For example, jewelries can be

organized by types of gemstones, or by brands. Existing concept hierarchies are mainly

created by domain experts, who are probably not the users. Thus a user can only consume

the provided concept hierarchy and cannot input her opinion to customize the hierarchy

in any way. The pre-determined, static organization is not tailored to specific tasks or for

specific users. In the situations where user preferences play a significant role (e.g., trip

planning), a static organization of information is not flexible enough to serve the purpose.

In most cases, just like personal computers and search engines, concept hierarchies only

work for one user. We admit that some di↵erences between concept hierarchies constructed

by di↵erent people are caused by multiple facets or mixed initiatives that can be agreed and

shared by multiple users. However, for a concept hierarchy construction tool to support a

single user, it needs to adapt to the user’s personal preferences. Whether her preference



CHAPTER 1. INTRODUCTION 11

comes from di↵erent facets or mixed-initiatives, or purely comes from her unique point

of view, makes little di↵erence in terms of training the tool. Because for this tool, unless

collaboration among multiple users has to be taken into account, all its training and learning

data is supplied by this user only. Therefore, in this dissertation research, we focus on

studying concept hierarchy construction with personal preferences.

1.3.1 An Experiment on Personal Di↵erences in Concept Hierar-

chies

To better understand personalization in concept hierarchies, we explore the concept hierar-

chies constructed by real users in a user study (more details about the user study are shown

in Chapter 6 and Chapter 7). In particular, we look for commonality and di↵erences among

the concept hierarchies constructed by the participants.

Twenty-four participants were involved in the user study, hence we have twenty-four

concept hierarchies constructed for each of the 20 datasets. The datasets cover a wide

range of domains, such as “organizing information-related terms”, “planning a trip to DC”,

“finding a good wedding videographer”, and “organizing financial terms” (more details in

Chapter 3 and Chapter 6). To study the commonality and the di↵erences between concept

hierarchies, we break each concept hierarchy into pairs of parent and child nodes, and count

how many participants agree on a pair. The agreements range from 1 to 24.

Table 1.1 lists the most agreeable and the least agreeable concepts by the participants.

Here we only show three representative datasets: the“information” dataset, the “kinder-

garten” dataset, and the “polar bear” dataset. The table lists the 5 most agreeable and the

5 least agreeable pairs of parent and child concepts in the concept hierarchies as well as how

many participants agree on organizing them in that way.

We find that there exist concepts that all participants agree on how to organize them and

there also exist concepts that no participant agrees on how to organize them. And this is

true for every dataset that we examine. For instance, in “kindergarten” dataset, “program”

is the parent concept for “early childhood program”, which all 24 participants agree. These

most agreeable concept pairs show that people can indeed agree on how to organize certain

concepts. However, only a few pairs have more than 5 people to agree on how to organize

them.
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Figure 1.7: Agreements among participants for the parent-child pairs (for three example
concept hierarchies: information, kindergarten, and polar bear).

The unique concept pairs that no participant agrees on, i.e., concept pairs having only 1

participant votes for them, show personal preference among the participants. For example,

one participant considered “publishers” is the parent node of “music publishers”, while other

participants did not organize them in that way. There are much more pairs of nodes that

are uniquely organized by a participant than pairs of nodes that are commonly agreed by

many participants.

We further plot the number of agreements for every concept pair in the three example

datasets in Figure 1.7. We observe a long-tail power-law distribution in the plots for all

three datasets. In particular, we find that in the dataset “information”, there are about 300

unique concept pairs, while in the datasets “kindergarten” and “polar bear”, more than 200

unique concept pairs exist.

This shows that although commonality and di↵erences co-exist in concept hierarchies

created for the same dataset by di↵erent participants, the di↵erences are much more dom-

inate than the commonality. People use rich and diverse expressions to construct concept

hierarchies and organize information di↵erently within them. The di↵erences between con-

cept hierarchies constructed by di↵erent people are considered as personalization in concept

hierarchies.
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Personal Concept Hierarchy Construction is the outcome when concept hierarchy con-

struction meets with personal preferences. To aid quick navigation to information and to

capitalize on the power of (semi)-automatic organization of the information, we are motivated

to explore the task of personal concept hierarchy construction in this dissertation.

In the remainder of this chapter, we present the challenges, approach, and contributions

of this dissertation research, and outline the structure of this document.

1.4 Challenges

The challenges of personal concept hierarchy construction rise from both concept hierarchy

construction and personalization.

A major challenge in concept hierarchy construction is to extend the existing work on

concept hierarchy construction as well as to present new solutions. Existing work on con-

cept hierarchy construction has been conducted under a variety of names, such as, ontology

learning, taxonomy induction, semantic class learning, relation acquisition, and relation ex-

traction. The existing approaches fall into two main categories: pattern-based and clustering-

based. Pattern-based approaches define lexico-syntactic patterns for relations, and use these

patterns to discover instances of relations. The approaches are known for their high accuracy

in discovering relations. However they cannot find relations which do not explicitly appear

in text or represented by patterns. The direct implication of this limitation is that only a

small number of relations are captured. Clustering-based approaches hierarchically cluster

terms based on their semantic similarities. In order to derive the semantic similarity between

terms, terms are usually represented by a vector of features in the semantic space. These

approaches complement the pattern-based approaches by their ability to discover relations

which do not explicitly appear in text. However, they cannot generate relations as accurate

as pattern-based approaches largely due to inaccurate estimations of semantic similarities

among concepts. Concept hierarchy construction demands for new solutions that extend the

existing technologies and combine the strengths of both approaches naturally and flexibly

into a unified framework. With this new framework, we are able to not only greatly improve

the accuracy of concept hierarchy construction, but also investigate and evaluate the impact

of the individual techniques in existing approaches.
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Another challenge in concept hierarchy construction is to deal with concept abstractness.

Concepts can be divided into abstract concepts and concrete concepts. Concrete concepts

often represent physical entities, such as “basketball” and “mercury pollution”; while ab-

stracts concepts, such as “science” and “economy”, do not have a physical form thus we

must imagine their existence. In a hierarchy, concrete concepts usually lay at the bottom of

the hierarchy while abstract concepts often occupy the intermediate and the top levels. The

obvious di↵erences between the two types of concepts suggest that there is a need to treat

them di↵erently in concept hierarchy construction. Moreover, there are di↵erent degrees

of abstractness within the abstract concepts, e.g., “science” is more abstract than “com-

puter science”. However, most current technologies avoid these issues and simply treat all

concepts similarly hoping that the impact of concept abstractness on concept hierarchy con-

struction is small and di↵erent behaviors of concrete and abstract concepts can be captured

by lexico-syntactic patterns. In this dissertation research, we take the challenge and propose

to explicitly model concept abstractness in concept hierarchy construction.

A third challenge in concept hierarchy construction is to deal with concept coherence.

Sometimes, concepts along a branch in a hierarchy may not be coherent. This problem is

mainly caused by polysemy - multiple meanings for the same word. For example, two parent-

child relations, “financial institutions ! bank” and “bank ! Monongahela River”, without

special constraints are connected to form a longer concept chain “financial institutions !
bank ! Monongahela River”. This concept chain is obviously invalid at the semantic level.

The challenge is how to introduce proper constraints to guarantee that polysemies go to

di↵erent branches and concepts within the same branch are coherent. In this dissertation,

we show how to enforce concept coherence in long distance relations as one of the optimization

criteria in the proposed framework.

A fourth challenge in concept hierarchy construction is to fairly evaluate the quality of

a concept hierarchy. This problem can be transformed into a task of measuring the sim-

ilarity between a constructed hierarchy and a reference hierarchy. The more similar the

automatically constructed hierarchy is to the reference hierarchy, the better the quality the

constructed hierarchy is. Although it is generally accepted that similarity measure for hier-

archies is the Tree Edit Distance [Bil05][ZSS92], its NP-completeness and MAX SNP-hard

property [ZJ94] make it infeasible to be widely used in real applications. To the best of our
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knowledge, no standard feasible method is available for measuring hierarchy similarity. A

new solution is needed for hierarchy similarity measurement.

The challenges of personalization are also significant. The first challenge in personaliza-

tion is how to incorporate personal preferences in the concept hierarchy construction process.

When assisting one to organize information, personal concept hierarchy construction must

adapt to her personal understanding of the problem, to her preference towards a certain

aspect of the problem, and to her purpose of the actual information seeking task. For in-

stance, one may organize “polar bear” and “seal” together since they both are arctic marine

mammals; while someone else may organize “polar bear” and “black bear” together since

they both are bears. Neither way is wrong; the choice is simply due to di↵erent personal

criteria. Personal preferences need to be captured during concept hierarchy construction and

to be reflected in a general human-teaching-machine-learning procedure.

Moreover, as a practical system, the second challenge in personalization is to respond

in real-time. Personal concept hierarchy construction needs to interact with a user and

collaboratively construct the hierarchy. This requires an interactive learning algorithm to

quickly adjust and make predictions based on a few user inputs as training data. In real-

time interactions, a learning algorithm needs to be e�cient enough to quickly customize

the formulas and statistical learning models. Since we use trees, whose computation and

construction could be expensive [ZJ94], it is crucial to find good constraints to greatly reduce

the search space in order to respond in real time.

Last but not least, understanding user behaviors for personal concept hierarchy construc-

tion and studying the possible implications of the behaviors are also challenging. Although

the focus of this dissertation is on how to build light-weight concept hierarchies that reflect

personal preferences, it is also important to investigate whether, how, and why concept hi-

erarchies constructed by di↵erent individuals are di↵erent. It is interesting to understand

the underlying reasons of people’s preferences for concept hierarchies, whether people are

self-consistent, whether their preferences for concept hierarchies are caused by their di↵erent

construction methods (manual or interactive), use of di↵erent semantic feature functions, or

di↵erences in demographics (such as gender, major, and age).

With all the challenges in mind, and all the possibilities that these challenges can bring

to us, we explore the wonderful field of personal concept hierarchy construction.
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Figure 1.8: Constructing a personal concept hierarchy.

1.5 Our Approach

Personal concept hierarchy construction concerns task specifications and user preferences.

With a large set of unstructured data, our goal is to organize the relevant information within

a domain into an easy-to-comprehend concept hierarchy that suits specific needs for both

the user and the task. Figure 1.8 demonstrates the proposed process of how to construct a

personal concept hierarchy. Personal concept hierarchy construction consists of two subtasks:

concept extraction and relation formation.

Concept extraction acquires concepts from a given dataset such as a document collection.

Concepts are topics of interest in the given dataset. They usually are nouns, noun phrases,

or named entities. They are directly extracted from the document collection, whose size can

range from a few hundreds to millions of documents. Techniques of how to extract concepts

are presented in Chapter 4 - concept extraction.

After the concepts are extracted, their relations need to be identified. The relations

determine how the concepts are organized and how the resulting concept hierarchy look like.

Relation formation in this dissertation research is done by going through two processes. The

first is an fully-automated process, which proposes an initial concept hierarchy to the user

so that it saves the user’s e↵ort from building everything from scratch. It incrementally
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clusters concepts based on semantic distances between concepts and transforms the task

of concept hierarchy construction into a multi-criterion optimization based on optimization

of hierarchy structures and modeling of concept abstractness and concept coherence. This

automatic framework is presented in Chapter 5 - metric-based concept hierarchy construction.

Once an initial concept hierarchy is presented to a user, she works interactively with the

system to construct a personal concept hierarchy. This interactive process adopts a human-

guided machine learning approach. In this interactive process, the user interacts with the

system and makes improvements to the concept hierarchy. The system learns what the user

changes and adapts to make sensible predictions about the remaining un-organized concepts

and provides its suggestions to the user. After observing what the system suggests, the user

evaluates them and makes a few more improvements if necessary. Through several iterations

of exchanging opinions between the user and the system, a personal concept hierarchy that

satisfies the user’s need is finally constructed. This interactive framework is presented in

Chapter 6 - human-guided concept hierarchy construction.

1.6 Contributions of This Dissertation

This dissertation presents new techniques for personal concept hierarchy construction. In

particular, it elaborates both automatic concept hierarchy construction as well as interactive

concept hierarchy construction. Our approach combines the strengths of existing pattern-

based and clustering-based approaches by employing a feature representation which includes

heterogeneous features. The features vary from simple statistics to complicated syntactic

dependency features, basic word length to comprehensive Web-based contextual features.

The flexible design of the learning framework allows us to use all but not limited to these

features. This more general feature representation has the potential to learn more complex

concept hierarchies than prior studies. Moreover, the flexible design of the framework allows

a further study of the interaction between features and di↵erent types of relations, as well

as the interaction between features and concepts with di↵erent levels of abstractness.

The metric-based concept hierarchy construction framework, presented in Chapter 5, ad-

dresses concept abstractness in concept hierarchy construction and enforces concept coher-

ence in long distance relations. It models abstract concepts and concrete concepts di↵erently
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in the learning framework to produce more sensible results. The incremental clustering pro-

cess transforms concept hierarchy construction into an optimization problem based on three

desirable properties: minimum evolution, concept abstractness, and concept coherence. An

evaluation with WordNet and Open Directory Project data demonstrates that the framework

is e↵ective for concept hierarchy construction.

The human-guided concept hierarchy construction framework, presented in Chapter 6,

addresses personalization and human computer interaction in the process of personal concept

hierarchy construction. Periodic manual guidance provides training data for learning a dis-

tance metric, which is then used during automatic activities to further construct the concept

hierarchy. A user study demonstrates that human-guided machine learning is able to gen-

erate concept hierarchies with manually-built quality. The human-guided concept hierarchy

construction framework is the first concept hierarchy construction framework to construct

personalized and task-specific concept hierarchies.

This dissertation also studies user behaviors during concept hierarchy construction. It ex-

plores whether people create concept hierarchies more quickly or more consistently using the

proposed methods, whether there are consistent dataset-specific or user-specific di↵erences

in the concept hierarchies that people construct, whether people are self-consistent, and how

these factors interact with di↵erent construction methods. The user study elaborates that

human-guided concept hierarchy construction is promising since it not only reduces time and

e↵ort as expected but also provides assistance when a user knows little about a domain.

In addition, this dissertation contributes to hierarchy similarity measurement. We present

a unique bag-of-word representation for hierarchies and a novel similarity metric, Fragment-

Based Similarity (FBS), for measuring hierarchy similarity. We discuss and empirically

evaluate various design decisions that lead to the proposed similarity measure. Most im-

portantly, we propose a very e�cient similarity measure which well approximates Tree Edit

Distance with a time complexity of only O(n3).

The research in this dissection is the first step of personal concept hierarchy construction,

and an important step forward of concept hierarchy construction. It develops both automated

and interactive methods that assist information seeking, organization, and management ac-

tivities, especially methods that will not only lead to practical systems of immediate benefit,

but also push our ability to reason about the sophisticated information systems of the future.
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This work addresses important problems of personal concept hierarchy construction, espe-

cially considers how to better model these problems with good theoretical foundations, to

study these problems via extensive empirical experiments and user studies, and to solve these

problems by developing practical applications for constructing personal concept hierarchies.

1.7 Outline

The rest of this dissertation is organized as follows. Chapter 2 discusses the related work.

Chapter 3 presents the problem, datasets, software tool, and evaluation metrics used in

this dissertation research. Chapter 4 presents the techniques for concept extraction. Chap-

ter 5 describes the fully-automatic metric-based concept hierarchy construction framework.

Chapter 6 presents the human-guided concept hierarchy construction framework. Chapter

7 elaborates the user study. Chapter 8 summarizes the main ideas of this dissertation, ad-

dresses the contributions of this dissertation research, and describes some concrete issues as

the future work.



Chapter 2

Related Work

This chapter reviews the related work to this dissertation research. The related work is

about three aspects of concept hierarchy construction, namely ontology learning, human-

guided machine learning, and interactive techniques for concept hierarchy construction.

2.1 Ontology Learning

There has been a substantial amount of research on ontology learning. Existing work on on-

tology learning has been conducted under a variety of names, such as taxonomy induction,

semantic class learning, relation acquisition, and relation extraction. The two most popu-

lar classes of approaches are pattern-based ontology learning and clustering-based ontology

learning.

2.1.1 Pattern-Based Ontology Learning

Pattern-based approaches are the main trends for ontology learning. The approaches define

lexico-syntactic patterns for relations, and use these patterns to discover instances of relations

in text.

For example, one pattern for the most widely used is-a relation is “NPx, and other NPy”,

where NPy indicates hypernym, the parent concept, and NPx indicates hyponym, the child

concept. An exhaustive search of this pattern in a text corpus can discover many instances

for is-a relation. Each instance contains a pair of noun phrases, filling the positions of NPx

20
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and NPy. For example, a noun phrase pair NPx = ‘lawn spray’ and NPy = ‘chemicals’

can be found in the sentence “Mercury, lawn spray, and other chemicals are harmful to

fetus development”. The pattern identifies an instance of is-a relation: is-a(lawn spray,

chemicals).

Once an instance of relation is identified, it can be used to find more patterns and in-

stances through an iterative technique called bootstrapping. Bootstrapping is commonly used

in pattern-based approaches [Hea92, ECD+05, GBM03, RH02, PP06]. It utilizes a few hand-

crafted seed patterns to extract matching instances from corpora, then extracts new patterns

using these instances, and continues the cycle to find new instances and new patterns. For

example, if “lawn spray” and “chemicals” both appear in a sentence “Commonly-used chem-

icals include lawn spray and mercury”, we may infer NPy include NPx as a new pattern for

is-a relation. Bootstrapping is e↵ective and scalable to large datasets; however, uncontrolled

bootstrapping soon generates undesired instances once a noisy pattern is brought into the

cycle.

Pattern-based approaches have been applied to extract various types of semantic rela-

tions, including is-a, part-of, sibling, and many others. We review a few approaches for each

type of relation as follows.

Is-A Patterns

Pattern-based approaches started from and still pay a great deal of attention to the most

common is-a relation. It is also known as hypernym relation. Hearst pioneered using a hand-

crafted list of is-a patterns, such as “NPx, and/or other NPy” and “NPy including NPx”,

as seeds and bootstrapping to discover new instances and patterns for is-a relation [Hea92].

In her work, Hearst manually identified six commonly used lexico-syntactic patterns that

indicated is-a relation and used them as the seed patterns. The seed patterns were used to

search for instances of is-a relation in text. Each identified instance, consisting of a few noun

phrases, was used to search contexts where the noun phrases occurred syntactically near one

another. The contexts were recorded and the common contexts (selected manually) yielded

new patterns that indicated is-a relation. The new patterns were then used to discover more

instances of the relation. Through this bootstrapping technique, abundant new instances of

is-a relation were identified; these instances were successfully used to verify and augment
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the WordNet [Fel98] noun ontologies.

Since Hearst’s work, many approaches have used lexico-syntactic patterns in their work

on is-a relation. For instance, Mann built a fine-grained proper noun ontology from news

texts [Man02]. Mann extracted instances of is-a relation for proper nouns using a single

pattern: “(the)? NPy NPx”, where NPy is a noun phrase tagged with NN/NNS (noun

or plural noun) and NPx is a proper noun phrase tagged with NNP/NNPS (proper noun

or plural proper noun). Similar to Hearst patterns, NPy represents the parent and NPx

represents the child. For example, one instance of this pattern is the automaker Mercedes-

Benz, from which we can get a relation is-a(Mercedes-Benz,automaker). Mann claimed that

“(the)? NPy NPx” is more productive than Hearst patterns for the corpus he used. Mann

also used the acquired instances to augment WordNet and to infer answers for TREC-style

factoid questions [Voo02]. He further extended the pattern’s coverage by inferring new

instances through a simple rule. The rule was “is-a(NPa, NPy) and is-a(NPb, NPy) and

is-a(NPb, NPz) =) is-a(NPa, NPz)”. For example, if we knew instances is-a(Mercedes-

Benz, automaker) and is-a(Opel, automaker) and is-a(Opel, car company), we could infer a

new instance, is-a(Mercedes-Benz, car company). Such inference rule was able to extend the

coverage of lexico-syntactic patterns, however, as pointed out by Mann himself, care must

be taken to ensure the inferences were proper. However, Mann did not discuss how to ensure

proper inferencing in his paper.

Pantel, Ravichandran, and Hovy also worked on mining instances of is-a relation [PRH04].

Unlike Hearst’s work, which identified new patterns by hand, this work automatically identi-

fied new is-a patterns by a minimal edit distance algorithm. The algorithm selected common

patterns as new patterns based on the overall costs associated with each string insertion and

deletion among similar instances. For example, for the sentence “Platinum is a precious

metal”, which was POS-tagged as “NNP VBZ DT JJ NN ”, and the sentence “Molybdenum

is a metal”, which was POS-tagged as “NNP VBZ DT NN ”, the optimal common pattern

was “NNP is a (*s*) metal”, where (*s*) was a wildcard operator. The authors applied the

patterns to a 15GB text corpus; this made them the first to test lexico-syntactic patterns

for is-a relation at the tera-scale.

Etzioni et al. bootstrapped lexico-syntactic patterns and discovered named entities at the

Web scale in the KnowItAll system [ECD+05]. The KnowItAll system is an earlier version of
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the TextRunner system [BE08]. This work looked for class members of a certain category, for

instances, names of scientists. We can view categories as parent concepts, and class members

as child concepts. The authors used three methods to extract the class members. The first

was a set of domain-specific extraction rules based on linguistic analysis. The second was

lexico-syntactic patterns, such as “chemist” and “biologist” are class members of “scientists”.

The third method was an HTML-based list extractor to extract class members as entries in

a list on Web pages. It learned a wrapper for each list and then extracted name entities from

the list. KnowItAll was probably the first Web-scale fact extractor in literature. It extracted

over 50,000 named entities. A challenge with such Web scale knowledge acquisition system

was how to increase the recall without sacrificing the precision. KnowItAll was one of the

earliest attempts of using statistical measures, in particular point-wise mutual information

(PMI), to select and control the quality of the extracted named entities.

Kozareva, Rilo↵, and Hovy proposed a single double-anchored pattern, “NPy such as

NPx and NPz”, for recognizing child concepts for a given category (parent) [KRH08]. The

first noun phrase NPy indicates the parent, the second noun phrase NPx indicates a child,

the thrid noun phrase NPz indicates another child. This pattern was used to find instances

for is-a relations, particularly to find more children for a known parent. The double-anchored

pattern was more specific since both the parent and a child are required to appear in the

pattern. Not surprisingly, the double-anchored pattern is more accurate with the sacrifice of

pattern coverage. The pattern could also bootstrap to get more instances and then substi-

tuted the new instances as the child in another double-anchored pattern. The bootstrapping

increased coverage, but also introduced many incorrect instances. To control the quality of

the instances, the authors employed a graph representation of concept linkages, and then

measured the candidate instances’ popularity (a candidate was discovered by other instances)

and productivity (a candidate lead to discoveries of many other instances). Based on these

two measures, the quality of new instances were well-controlled.

Sibling Patterns

Another commonly-used relation is sibling, which describes the relation of sharing similar

meanings and being members of the same class.

An observation is that sibling words are often co-occur together in text. For example,
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they often co-occur in conjunctions (lions, tigers, and bears), lists (lions, tigers, bears ...),

appositive (the stallion, a white Arabian), and nominal compounds (Arabian stallion; tuna

fish) [RS97]. A conjunction of noun phrases are phrases connected by and, for instance,

vice-president and his wife, evaluation methodology, tools and equipment. An appositive is a

phrase connected by comma and referring to the same concepts. For example, Steve Jobs,

president of Apple Inc.. Inspired by the observation, Rilo↵ and Shepherd used co-occurrence

statistics in local context to discover instances of sibling relation for nouns [RS97]. Their

work used a small set of seed words that belonged to a given category (a parent concept), and

identified more words that also belonged to that category. In particular, a narrow context

window consisting of only the left first noun and the right first noun to each seed word was

collected. The authors reported that such a narrow context window performed better than a

larger context window for this task. The top five nouns showed high conditional probability

within the context windows were selected as new seed words. The authors reported that an

eight-iteration bootstrapping worked well. Although this work did not directly use lexico-

syntactic patterns to mine instances, it used narrow context windows to mimic patterns

which represent conjunctions, lists, appositive, and nominal compounds. Therefore, this

work is still considered as a pattern-based approach. A limitation of this work is that it only

handled nouns, not noun phrases.

Roark and Charniak also used co-occurrence statistics in local context to discover in-

stances of sibling relation [RC98]. They extended Rilo↵ and Shepherd’s work to noun phrases

by only counting head noun’s co-occurrence within a sentence. A head noun in a noun phrase

is the noun that determines the semantics of the phrase; other words in the noun phrase

modify the head noun. For example, in the sentence “A cargo aircraft, fighter plane, or

combat helicopter ...”, only aircraft, helicopter, and plane would be counted as co-occurring

with each other. In contrast, in Rilo↵ and Shepherd’s work, cargo, aircraft, and fighter would

also be counted as co-occurring with each other; the calculation was incorrect in this case.

Moreover, Roark and Charniak tried to distinguish nominal compounds whose non-head

noun was a legitimate member of a class versus nominal compounds whose non-head noun

was not a legitimate member of a class. Only the former kind of nominal compounds were

selected as candidates for new seeds. The authors made this distinction by setting a cuto↵

threshold on the relative frequency of a noun occurs as a non-head noun in any nominal



CHAPTER 2. RELATED WORK 25

compound over this noun occurs in any nominal compound. If the relative frequency was

above the threshold, this non-head noun was kept as a new child for the parent indicated

by the head noun. For instance, in fighter plane the non-head noun fighter was a child of

plane; whereas in government plane the non-head noun government was not a child of plane

because government was usually not a non-head noun. The selected patterns are similar to

Mann’s within-phrase pattern “(the)? NPy NPx” [Man02].

Widdows and Dorow built a graph representation of similar words to extract the sibling

concepts [WD02]. Only one symmetric sibling pattern, “NPx and/or NPy” was used in their

work. It was similar to using conjunctions. Each pair of concepts matched with this pattern

were considered as sibling concepts and between them potentially existed a link in a graph

where semantically-related words were connected. For example, “apple” could be related

to “pear”, “ibm”, “tree”, and “novell” in the graph. However, not every single instance

matched the above pattern was added into the graph. A new node to the graph was the

node that was neighbor to the most existing nodes in the graph. Ten word categories were

studied in the work. They are crimes, places, tools, vehicle conveyance, musical instruments,

clothes, diseases, body parts, academic subjects, and food stu↵s. One contribution of this work

was that the graph built upon noun co-occurrence flow naturally to recognize polysemies.

Multiple word sense ambiguity was captured by di↵erent siblings to a node in the graph.

Davidov and Rappoport also used symmetric patterns for identifying sibling relations

[DR06]. They proposed an interesting approach of discovering new patterns. There were

two steps in this approach. First, meta patterns were used to identify pattern candidates.

The meta patterns were composed as “CHC”, “CHCH”, “CHHC”, and “HCHC”. “C”

meant a content word, which contained real semantic meanings. “H” meant a high frequency

word, which usually contained no actual meaning. For example, “apple” and “student” were

content words, “is” and “or” were high frequency words. Such general meta patterns could

identify many candidate patterns. Second, among those candidates, symmetric patterns

were searched in order to identify sibling words. Similar to [WD02], symmetric patterns were

collected through a graph representation of the concepts. The graph was a uni-directional

graph with the content words being the nodes and the high frequency words being the

arcs. Content word could be the slots for sibling words. The arc could represent a pattern

between two slots. A pattern that allowed a large percentage of content words to appear
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at both ends (not just one of them) of an arc was considered as a good pattern, because

it indicated symmetric relations. If the graph was further constrained to be bidirectional,

the rate between the number of symmetric nodes in the bidirectional graph and that in the

uni-directional graph could be used to filter out the low quality patterns. The higher the

rate, the better a pattern. The high quality symmetric patterns were then used to extract

sibling words.

Part-of Patterns

The third common type of relation is part-of. Part-of relation is also known as “part-

whole” relation or “meronym” relation. Part-of relation is a bit more complicated than

is-a relation and sibling relation because there are many di↵erent kinds of part-whole struc-

tures. As pointed out by Girju et al. in [GBM03], there exist six types of part-whole

relations: component-integral (wheel-car), member-collection (student-university), portion-

mass (meter-kilometer), stu↵-object (alcohol-wine), feature-activity (paying-shopping), and

place-area (DC-USA).

The earliest research on automatically identifying part-of relations was Berland and

Charniak’s work [BC99]. In their work, they only used two part-of patterns, “NPy’s NPx”

and “NPx of a/an NPy”, to discover instances with part-of relation. NPy indicates the

whole and NPx indicates the part. The example instances for these two patters included

“the basement of the building” and “the building’s basement” [BC99]. No bootstrapping

was used in their work to discover more patterns or more instances as usually pattern-based

approaches do. The authors used two statistical metrics to rank and select the matched

instances. The first metric was a log-likelihood metric which measured how surprised one

would be to observe the di↵erence between the frequency of a word indicating the whole

and the frequency of a word indicating the part. The second metric measured how far apart

the distributions of p(whole|part) and p(whole) were if a significant level of 0.05 or 0.01 was

required. The authors claimed that the second metric was better since it did not overestimate

the importance of data frequency at the expense of the di↵erence between p(whole|part) and
p(whole).

Girju et al. took a bootstrapping approach similar to [Hea92] for part-of relations.

Although they pointed out six types of part-of relations, the authors did not distinguish the
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di↵erences between di↵erent types of relations in their paper. The discovered patterns were

either phrase-level patterns in examples such as “high heel shoes”, “girl’s mouth”, “eyes

of a baby”, and “door knob”, or sentence-level patterns in examples such as “the wheel is

part of the car” and“ the car contains four wheels” [GBM03]. The selection of new patterns

and new instances from the discovered ones was done by a supervised decision tree learning

algorithm.

Patterns for Other Types of Relations

Other types of relations that have been studied by pattern-based approaches include syn-

onyms and antonyms by Lin et al. [LZQZ03], verb relations (including similarity, strength,

antonym, enablement and temporal) by Chklovski and Pantel [CP04], question-answer re-

lations (such as birthdates, why-famous, and inventor) by Ravichandran and Hovy [RH02],

general purpose analogy by Turney et al. [TLBS03], entailment by Szpektor et al. [STDC04],

and more specific relations, such as consist-of, purpose, creation, and completion by Cimi-

ano andWenderoth [CW07], LivesIn(Person, Location), EmployedBy(Person, Organization),

and CorpAcquired(Organization, Organization) by Bunescu and Mooney [BM07]. Due to

space limitation, we focus on three representative works and present them below.

Lin et al. studied how to identify synonyms and antonyms in [LZQZ03]. The widely-

used Distributional Hypothesis states that words with similar meanings tend to appear in

similar context [Har54]. However, Lin et al. pointed out that many closely located words

were actually not synonyms, but antonyms. For example, “ally” was often closely located

to “adversary”, but it was an antonym not a synonym to “adversary” [LZQZ03]. The

authors took a clever two-step approach to remove antonyms in the synonym candidate

pool suggested by Distributional Hypothesis. First, two patterns from X to Y and either

X or Y were used to identify antonyms. The ratio of the number of words matched in

these two patterns and the number of words appearing in AltaVista search results was

used to decide whether two words were indeed antonyms, which were then removed from

the synonym candidate pool. Second, a bilingual dictionary was used to check whether

two words’ translations in another language were the same. For example, “advocate” and

“attorney” could both be translated to the French word defenseur [LZQZ03]. Therefore,

they remained as synonyms in the pool.
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Chklovski and Pantel used 35 lexico-syntactic patterns to identify five verb relations

[CP04]. The five verb relations were similarity (maximize-enhance, produce-create), strength

(taint-poison, permit-authorize), antonyms (buy-sell, live-die), enablement (access-review,

accomplish-complete), and happens-before (marry-divorce, tie-untie) [CP04]. The authors

used word co-occurrence in the Web to find highly-related verbs. Each pair of such verbs,

based on their specific pattern type, were assigned a semantic relativeness score by human

assessors. For example, for a strength verb relation, a judge was asked to evaluate whether

outrage was stronger than shock by judging whether the pattern “X outrage Y” was stronger

than the pattern “X shock Y”. The work was among one of the first for identifying verb

relations by using lexico-syntactic patterns.

Ravichandran and Hovy employed machine learning techniques to learn lexico-syntactic

patterns for question answering [RH02]. It has been noted that in the task of question

answering, certain types of questions and answers were expressed by fixed patterns. For

example, for a birthdate question “when was X born?”, the answers to it typically fell into

one of the following patterns: “X was born in YEAR”, “X (YEAR-YEAR)”, and “X (YEAR

- )”. The answer patterns consisted of specific types of named entities or parts-of-speech, and

could be expressed as lexico-syntactic patterns. The authors used the AltaVista search engine

to get the text pool and bootstrapped more answer instances and more answer patterns

from the pool. Specifically, a question’s key terms and a known answer were submitted

together to AltaVista. The top 100 returned documents were split into sentences. Only the

sentences that contained both the question terms and the answer terms were used to infer

more patterns. The authors successfully applied this technique to find good patterns for

several question types, including birthdate, why-famous, and inventor.

Advantages

Pattern-based approaches are known for their high accuracy in recognizing instances of

relations if the patterns are carefully chosen. The patterns can be obtained either manually

[BC99, KRH08] or via automatic bootstrapping [Hea92, ECD+05, GBM03, RH02, PP06].

Bootstrapping is widely used in pattern-based approaches. It is able to scale to text

collections as large as the Web. It is a data-driven approach and helps to find more patterns

which may not be easily hand-crafted by a human expert. However, it needs to control
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the quality of the new patterns acquired. To aid bootstrapping, methods of pattern quality

control are widely applied. Statistical measures, such as point-wise mutual information

[ECD+05, PP06] and conditional probability [CW07], have been shown to be e↵ective to

rank and select patterns and instances. Pattern quality control is also investigated by using

WordNet [GBM06], graph structures built among terms [WD02, KRH08], clusters of similar

patterns [DR06], and topic modeling for multiple membership [ZZSW09].

Weaknesses

Although pattern-based approaches are able to produce highly accurate instances of relations,

the approaches su↵er from sparse coverage of patterns in a given corpus. Recent studies

[ECD+05, KRH08] show that if the size of a corpus, such as the Web, is nearly unlimited,

a pattern has a higher chance to explicitly appear in the corpus. However, a corpus’ size

is often not that large therefore the problem still exists. Moreover, since patterns usually

extract instances in pairs, e.g., a pair of parent-child or a pair of siblings, the approaches

su↵er from the problem of inconsistent concept chains after connecting pairs of instances to

form concept hierarchies. For instance, car has hyponyms of coupe, sedan and sport, sport

has basketball. It is obvious that car should not be an ascendent of basketball in this context.

2.1.2 Clustering-Based Ontology Learning

Clustering-based ontology learning approaches apply the techniques in hierarchical clustering

[BPd+92, Lin98] to organize concepts into ontologies. They usually represent word contexts

as numeric vectors and cluster words based on similarities of those vectors. Since clustering

is often based on similarity of concepts, clustering-based approaches usually only deal with

is-a and sibling relations.

Based on the types of clustering algorithms used, clustering-based ontology learning can

be further divided into three groups: agglomerative approaches, divisive approaches, and

incremental approaches.
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Agglomerative-Clustering-Based Ontology Learning

Agglomerative clustering, also known as bottom-up clustering, iteratively merges the most

similar clusters into bigger clusters [BPd+92, Car99]. In agglomerative-clustering-based on-

tology learning, an algorithm organizes the concept hierarchy in a bottom-up fashion. It

first groups the most similar concepts together, usually two by two, to form clusters at the

leaf level. It then names the newly-formed clusters and moves up in the hierarchy to merge

the most similar clusters iteratively until all concepts are merged into one big cluster.

Lin defined a similarity measure between two words based on their occurrences in syn-

tactic dependency triples [Lin98]. A syntactic dependency triple consisted of two words

and their grammatical relationship. For example, Lin defined the triples “brown adj-mod-of

dog”, “have subject I”, “I subject-of have”, “dog obj-of have”, “dog adj-mod brown”, “dog

det a”, and “a det-of dog” for the sentence “I have a brown dog”. The triples becomes

patterns when some slots in the triples were substituted with wildcards. The frequency of

every pattern was counted. The similarity of two words was defined over the number of

various patterns with wildcards containing one or both of them. Particularly, point-wise

mutual information (PMI), cosine, Hindle, Dice, and Jacard were used to calculated the

similarity. PMI was reported that it gave the best performance. The authors then used an

agglomerative clustering algorithm to group concepts as well as to compare a concept group

to existing ontologies such as WordNet.

Caraballo represented a word’s context as a vector containing the counts of every other

word appearing in conjunction or in appositive with the word in a corpus [Car99]. All words

were then agglomeratively clustered based on the cosine similarity between the vectors. The

approach took a rather standard agglomerative clustering approach to group similar concepts

in a bottom-up fashion. When combining the two most similar words into a new common

parent, the new parent node’s similarity was computed over an weighted average of the

similarities between each of its children and other existing nodes in the ontology. Note that

the new parent node had no name, just represented by the set of the child nodes.

Rosenfeld and Feldman used surface text patterns as features, selected the features by

statistical measures, and then applied agglomerative clustering based on cosine similarity

between the feature vectors. Instead of directly using lexico-syntactic patterns as features,

the authors used some arbitrary surface text patterns. They were further filtered by how
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often a word matched a pattern in text. The authors found that among all the possible

patterns, only those su�ciently powerful contextual patterns produced good results. By

implementing and comparing several agglomerative options, the authors reported that the

most e↵ective option was the single linkage method.

Divisive-Clustering-Based Ontology Learning

Another type of clustering algorithm is divisive clustering. Divisive clustering, a.k.a. top-

down clustering, iteratively splits clusters into smaller clusters using a partitioning clustering

algorithm, such as K-means [Mac67]. This procedure is applied recursively until each concept

has its own singleton cluster.

Clustering By Committee (CBC) is an example of divisive-clustering-based ontology

learning [PL02, PR04]. The CBC algorithm first found the most similar words among all

pairs of words, then identified several sets of highly-related words. These highly-related

words were named as “committees”. The committees formed the core of each cluster. The

cluster centroids were obtained by averaging the feature vectors of the committees. The algo-

rithm then iteratively assigned the remaining words, those did not belong to any committee,

into the existing clusters represented by committees.

Cimiano et al. used bi-secting k-means divisive clustering for ontology learning [CHS04].

The algorithm initiated with a randomly selected word, and then computed the centroid of

the entire dataset and the di↵erence between the centroid and the random word. It then

divided the data space into two subclusters, according to the relative distances of all the

words in the two subclusters to the current cluster centroids. The cluster centroids were

then updated based on the feature vectors of existing words in the two subclusters. Note

that the features were semantic features which represented by a feature lattice. The updates

of clustering centroid and the cluster membership alternatively iterated until the clustering

was stable.

Similar to agglomerative clustering approaches, divisive clustering approaches create new

non-leaf nodes during the clustering process. For an ontology, these new non-leaf nodes need

to be named. However, naming clusters is a very challenging task.
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Incremental-Clustering-Based Ontology Learning

Both agglomerative and divisive clustering approaches face the challenge of how to appro-

priately label non-leaf clusters. In agglomerative clustering, clusters are merged into bigger

clusters, which need to be labelled; in divisive clustering, parents of split clusters also need

to be labelled. Labelling amplifies the di�culty in creation and evaluation of ontologies.

The incremental clustering approaches avoid this problem by assuming that all the con-

cepts are known and make-do on the available concepts as the best choices. It adds concepts

and relations into an ontology one at a time. All nodes, including both leaf and non-leaf

nodes, are assumed coming from the existing set of concepts. The advantage of the incre-

mental approach is that it eliminates the trouble of inventing cluster labels and concentrates

on placing concepts in the correct positions in an ontology.

The work by Snow et al. [SJN06] took an incremental approach of ontology construction.

In their work, an ontology grew based on maximization of conditional probability of relations

given evidence. The evidence was the instances matched with patterns defined on syntactic

dependency parse trees. It is the most similar piece of work to our approach, however

there are significant di↵erence from their work to this dissertation research. The concept

hierarchy construction algorithm presented in this dissertation research grows a concept

hierarchy based on optimization of hierarchy structures and modeling of concept abstractness

and concept coherence (Chapter 5) while Snow et al. used maximization of conditional

probability. Moreover, our approach employs heterogeneous features from a wide range while

Snow et al. used only syntactic dependency. We compare system performance between this

work and the metric-based concept hierarchy construction framework in Chapter 5.

Advantages

A main advantage of clustering-based approaches is that they are able to discover relations

which do not explicitly appear in text. This is because they do not require a concept explicitly

appear in text to match with a pattern; as long as the context of the concept is similar to

the context of other concepts, a relation can be identified. Clustering-based approaches also

avoid the problem of inconsistent chains by addressing the structure of a concept hierarchy

globally from the outset.
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Weaknesses

Nevertheless, it was pointed out by researchers that clustering-based approaches cannot

generate relations as accurately as pattern-based approaches. As reported by Pantel and

Pennacchiotti, clustering-based approaches generally failed to produce coherent cluster for

small corpora [PP06]. Moreover, the performance of clustering-based approaches is largely

influenced by the types of features used. The common types of features include contextual

features [Lin98], verb-noun relations [PTL93], syntactic dependency [PR04, SJN05], surface

patterns [RF07], co-occurrence [YC08a], conjunction and appositive features [Car99]. So

far, there is no systematic study of which features are the best for automatic concept hier-

archy construction under various conditions. This dissertation research is the first to study

how various types of features interact with di↵erent types of relations for concept hierarchy

construction (Chapter 5).

2.1.3 Other Ontology Learning Approaches

Besides the popular pattern-based and clustering-based approaches, researchers proposed

other interesting approaches for concept hierarchy construction. We present several ap-

proaches in this subsection.

Sanderson and Croft identified is-a relation by studying the ratio of document frequencies

for two concepts [SC99]. In their approach, a concept x was another concept y ’s parent in a

concept hierarchy if the conditional probability p(x|y) is greater than 0.8 and the conditional

probability p(y|x) is less than 1. The intuition was that a word x subsumed (i.e. is the parent

of) another word y if the documents containing y were a subset of the documents containing

x. The threshold of 0.8, instead of 1, was empirically set to relax the restriction a bit to

include the cases when y (the child) did not co-occur with x (the parent). The technique

worked well for high quality text such as news articles, but did not work well for low quality

text such as Web search results. The authors used search query terms and their expanded

query terms as the concepts to work on. Those search queries were from the TREC text

retrieval tasks [Voo01]. An initial set of documents was retrieved and analyzed to generate

concepts co-occurring frequently in di↵erent passages. Sanderson and Croft presented several

resulting ontologies in their paper. In general, the ontologies looked good. However, some
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Figure 2.1: A screen capture of Sanderson and Croft’s system [SC99].

fragments of the ontologies were not clear why they were organized in that way. For example,

an example in [SC99] (Figure 2.1), “disease”� >“children”, “disease”� >“americas” were

two parent-child relations in the hierarchy. It meant “children” and “americas” should be

siblings; this seems wrong. This pure statistical approach did not constrain coherence among

the concepts, therefore it su↵ered from the problem of concept incoherence as we mentioned

earlier in Chapter 1.

Lawrie and Croft [LC03] employed language models to develop ontologies as document

summaries. In particular, they estimated whether a word should be a concept by measuring

the Kullback-Leibler (KL) contribution of this word to a set of documents. A concept

hierarchy was generated iteratively in a top-down manner. Initially, the document set was

the entire collection. Once the words about a topic were found necessary for a topic, they

were selected as the concepts at the top level. Then the document collection was reduced to

the retrieval results for individual concepts. The child of a concept were determined from

this reduced set of documents by the above method again. The approach did not use many

features. Instead, it used only one feature - the existence within sub-topics - to derive the

organization of concepts. The authors claimed that using only a single feature could produce

ontologies easier to interpret.
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Cimiano et al. applied Formal Concept Analysis [CHS04] to construct ontologies. They

represented concepts as objects and feature lattices, then looked for common features shared

by di↵erent objects as the super-concepts for them. This approach could be considered

similar to the idea of Semantic Web. It required that the semantic information was built

into the documents before a concept hierarchy was constructed. Because of this special

requirement, it built ontologies easy to understand but was not e�cient enough to be applied

to large scale datasets.

2.2 Human-Guided Machine Learning

Human-guided machine learning is an emerging topic which unites the research areas of hu-

man computer interaction (HCI) and machine learning (ML). It is the study of designing

and developing machine learning algorithms which receive manual guidance in a complete

human-teaching-machine-learning loop. Inspired by the Situated Learning Theory in cog-

nitive science [Gre84], human-guided machine learning provides a framework for real-time

learning from interactions with humans, and studies the e↵ects of manual guidance on the

learning process.

While significant attention has been paid to developing machine learning algorithms

trained by data that is provided all at once and perform well on their own, much less

attention has been paid to developing human-guided machine learning algorithms. To date,

human-guided machine learning has only been studied in the subfields of robot task learning

[NM03, CV08], reinforcement learning [MST+05, TB06], classification [SK01, TC09], and

clustering [KKSM05, HM07]. Among these subfields, human-guided clustering is the subfield

which is the most related to our task.

Kerne et al. employed document clustering for generating spacial hypertext documents

[KKSM05]. The clustering was done based on meta data, document locations, and user-

specified weights to each semantic features in the vectors representing each concept. The

most interesting part of this work was that a user could view the relative weights for the

semantic features through sliding the boundaries within a pie chart. This allowed the user

to directly participate in feature selection and interaction with the clustering algorithm.
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Huang and Mitchell defined a two-way-communication between the human and the ma-

chine in a mixed-initiative clustering approach [HM07, HM08]. During the communication

from the machine to the human, the SpeClustering algorithm [HM06] presented a list of

properties, including labels of instances, must-links among instances, cluster existence, and

key features, to the human. During the communication from the human to the machine, the

human provided feedback, such as approval, disapproval, modification, and introduction of

new properties, to the machine. The machine took the human feedback as true values or con-

straints to these properties, and re-trained the clustering algorithm by adjusting probabilities

according to the feedback.

In our work, we use human-guided machine learning to collect personal preferences. In

Chapter 6, we develop a human-guided concept hierarchy construction framework, which col-

lects manual guidance during the concept hierarchy construction process. The manual guid-

ance is implicitly presented by a partial human-constructed concept hierarchy. The learning

algorithm takes the partial human-constructed concept hierarchy as training data and learns

a distance function between concepts; the algorithm then applies the newly-learned distance

function to unclustered concepts. The loop continues until human satisfaction.

Human-guided machine learning is related to but di↵erent from Active Learning [CGJ96,

SC00]. Active learning algorithms try to make use of abundant unlabeled data and actively

requests manual labels for data with low confidence. Lots of e↵ort in active learning has

been put on how to select the right data samples for users to label. Human-guided machine

learning and active learning are similar in terms of the human involvement in machine

learning. However, they di↵er in whether the human or the machine leads the interaction.

In active learning, a machine learning algorithm is in control of the interaction and actively

requests data labels from human users, ignoring what they want to provide. In contrast,

in human-guided machine learning, the human leads the interaction and actively provides

guidance to the machine learning algorithm via data labeling or other methods; the machine

learning algorithm does not actively choose data samples for the human to label. Moreover,

human-guided machine learning and active learning are di↵erent in their goals. Active

learning aims to save human labelling e↵ort while human-guided machine learning aims to

design learning algorithms which follow human directions in real-time and produce results

that reach human satisfaction.
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2.3 Interactive Technologies for Ontologies

Because concept hierarchy construction involves human-computer interaction, it is neces-

sary to review the related research in Human-Computer Interaction (HCI) for interactive

technologies related to concept hierarchy construction.

Faaborg and Lieberman presented a web browser which generalized and predicted users’

search activities by Programming-By-Example and using knowledge from ontologies rep-

resented as networks [FL06]. Examples of ontologies they used included MIT’s Concept-

Net1and Stanford’s TAP2. The generalization of information was done by matching terms

on a page to other terms in ontologies by is-a relations. This was basically a rule-based

match. By predicts a user’s goal, the web browser was able to activate the specific web

functions for that goal. This evaluation was done over 34 participants, which is comparable

to our user study (24 participants) in terms of scales.

Clark et al. described a graphical interface for users to easily enter knowledge into a

knowledge-base, a.k.a. an ontology [CTB+01]. Axioms and facts were displayed as graphical

elements, and the participants could create and modify the graph based on the knowledge

needed to be entered. The four operations presented in their work were specialize (click a

graph node and change the label), add (click an empty button and enter the label), unify

(drag and drop a node), and connect (sketch an arc between two nodes). The work considered

knowledge capture as a task of graphical component assembly rather than axiom-writing.

The evaluation was carried out by only 4 participants working on a moderate size concept

hierarchy, which was about a 11-page subsection from a graduate-level textbook on cell

biology. One independent biologist was hired as the judge to evaluate the ontologies created

by the 4 participants. The biologist rated their work as mostly correct.

Tribble and Rose compared three forms of representations of ontologies, namely graphical

network-like representation, hierarchical representation, and list representation of knowledge

axioms, for the task of concept hierarchy construction [TR06]. In their objective experimen-

tal results, hierarchical representation showed the quickest response time, and the highest

correctness for a given task. In their subjective evaluation, hierarchical representation was

selected by the participants as the easiest form of representation to understand, as well as

1
http://web.media.mit.edu/ hugo/conceptnet/.

2
http://ksl.stanford.edu/projects/TAP/.
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the form generating moderate confidence about the answers. Although the scale of the study

was not big (only 9 participants), and the statistical analysis revealed no significant e↵ects,

hierarchical representation of concept hierarchy clearly showed the potential to be the best

way to represent concepts and relations in ontologies.

Ziegler et al. presented a new method of visualizing ontological data [ZKB02]. Basically,

it used trees to represent hierarchical structures, such as part-of and is-a relations. The

innovation of this paper was about how to visualize other more specific relations. The

proposed method connected the nodes in two trees by an adjacent matrix. In the matrix,

nodes of two ontologies were shown along the horizontal and vertical axes of the matrix.

The entries in the matrix were marked to indicate whether two nodes that belong to the row

and the column were connected with an arc in a relational graph. The user study showed

that this matrix browser allowed less search time and better search accuracy in comparison

to conventional network-like representations. This evaluation was done over 5 participants

only, which is much smaller than our user study in terms of scales.

2.4 Summary

This chapter reviews the related work to this dissertation research from three aspects: ontol-

ogy learning, human-guided machine learning, and interactive techniques for concept hier-

archy construction. Particularly, it extensively reviews various approaches of pattern-based

ontology learning and clustering-based ontology learning, as well as emerging approaches

in human-guided (mixed-initiative) clustering and di↵erent interface designs for interactive

concept hierarchy construction.

This chapter provides the necessary backgrounds for the related research fields. In the

following chapters, we will mainly present and discuss our own approaches.



Chapter 3

The Problem

Concept hierarchy construction aims to organize information as well as to customize the

organization according to user preference. To summarize, the most common situation where

people need to use concept hierarchies is when dealing with a large amount of unstructured

data, which needs to get sorted, digested, and organized into information content with

structure. This structure is adapted to the preference of the person who creates and uses

the concept hierarchy.

Before we dive into the specific techniques and algorithms, this chapter presents the

background knowledge for this dissertation research. It describes the problem definition,

the concept hierarchy construction tool, the datasets and the evaluation metrics used in the

dissertation research.

3.1 Problem Definition

As in the examples shown in Chapter 1, Jane works in a government regulatory agency. Her

job is to handle public comments sent from the general public about the proposed rules in

her agency. For a set of public comments about a certain proposed rule, by law, she must

read all comments in a week or two, and provides analysis and generates a summary report

to address the important issues and unique opinions raised in the comment set. The issues

mentioned in her report will be addressed in the final rule, which will take e↵ect as a federal

regulation to influence many families in the country. However, sometimes the amount of

39
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comments people submitted could reach hundreds of thousands, which makes it impossible

for Jane to handle the public comments and generate her report on time. Jane needs a tool

to help her quickly and comprehensively find all the important issues mentioned in the public

comments.

In her spare time, Jane likes to travel with her family. Jane is planning a Christmas trip

with her kids to Orlando, Florida. She uses a search engine (Google) to gather information.

Jane would like to book flight tickets, hotel rooms, car rentals, and theme park tickets. She

also needs to plan the multi-day trip to various di↵erent theme parks including Disneyland,

Universal Studio, Kennedy Space Center, etc. During an economic crisis, Jane also needs

to keep the budget a↵ordable hence she wants more information about available promotions

and sales. Jane’s information need is complex and hence she has to read through many

search results returned by the search engine to discover information items that interest her,

and probably takes notes or bookmarks the web pages that are useful to her. Moreover, to

fulfil such a complex task-oriented search, multiple search queries are issued. Thus Jane has

to read even more Web documents to accomplish her task. Again, she needs a tool to help

her quickly and comprehensively find all the related information mentioned in the piles of

search results.

Many similar examples exist in both our work places and daily life. The common task

shared by all these scenarios is that given a document set (could be in any domain), a user

wants to be able to quickly overview the important issues within the document set and be able

to browse the document set to discover useful information. A concept hierarchy constructed

for browsing the document set is necessary to serve this purpose. It can be constructed by

extracting the important concepts within the document set and then organizing them into a

semantically meaningful hierarchical structure to ease information seeking and access within

the document set. A concept hierarchy benefits a user’s information seeking and access in

the following ways:

1. Quickly providing an overview of all important issues in a document set;

2. Producing meaningful and personalized organization of the document set;

3. Increasing the visibility of documents that are ranked low in a list;
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4. Presenting the subset of documents about a concept together to allow focused reading

for the subset of documents.

Note that concept hierarchy construction is task-specific and user-specific. Whether or

not a concept represents an important issue and whether or not the concept hierarchy is

semantically meaningful are totally up to the user who creates and uses this concept hierar-

chy. Therefore, personal preferences from the user are an important factor in constructing

concept hierarchy.

Formally, concept hierarchy construction is for a user P to create a concept hierarchy T

for a set of documents (or we call it a domain) D. User P provides her manual guidance G

to create the personal concept hierarchy T , which contains a set of concepts C for D, as well

as the relations R for those concepts.

Specifically, we define that a personal concept hierarchy is a data model T that represents

a set of concepts C and a set of relations R between those concepts according to manual

guidance G for a given domain D.

T = (C,R|D,G), (3.1)
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cepts, and r is the type of the relation (for example, r can be “is-a”, “part-of”, “sibling”,

etc.). The relations are pairwise relations indicating an edge between two concepts in a con-

cept hierarchy. When there is no manual guidance provided, concept hierarchy construction

reduces to the task of ordinary automatic concept hierarchy construction, where an concept

hierarchy can be defined as:

T = (C,R|D). (3.2)

As we introduced in Chapter 1, concept hierarchies in this dissertation research are

considered as tree structures. Every node in the tree corresponds a concept c 2 C. A concept

c is linked to a related subset of documents d
c1

, d
c2

, ... ✓ D, such that D is hierarchically

organized and user P can browse D via the concept hierarchy T . A document could be

associated with multiple concepts.

As shown in Figure 1.8, the process of concept hierarchy construction contains the fol-

lowing basic components: concepts extraction to acquire C, an automatic concept hierarchy
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construction algorithm to obtain an initial concept hierarchy T = (C,R|D), and an inter-

active concept hierarchy construction algorithm to obtain the personal concept hierarchy

T = (C,R|D,G). These algorithms are presented in the following chapters.

3.2 OntoCop - A Concept Hierarchy Construction Tool

Concept hierarchy construction studies how to organize the information in the documents

into a concept hierarchy reflecting user preference. In this process, a user needs a software

tool to construct concept hierarchies, which incorporates the techniques presented in this

dissertation research. Our tool is called OntoCop (Ontology Construction Panel) [YC08a,

YC08b]. It is a Java application developed as part of this dissertation research. It can

support both manual and interactive methods to construct concept hierarchies.

Figure 3.1 shows the user interface of OntoCop. The left pane displays a concept hier-

archy as a tree. Each node in the tree represents a concept in the concept hierarchy. The

hierarchical organization of the nodes indicates the hierarchical relations of the concepts.

Particularly in this example, the concept hierarchy deals with the “is-a” relation among the

concepts. Therefore a node on an upper level is the parent of the nodes under it. The user

can select a node and move it around by dragging and dropping it in the tree. This is the

major functionality that a user needs to use in constructing a concept hierarchy. She can

also change the name of a concept by double-clicking a node and entering a new name for

the node.

The lower toolbar displays buttons for other concept hierarchy editing functions. The user

can use “add sibling” and “add child” buttons to add a new node to the concept hierarchy

as the sibling or the child of an existing node. She can delete a node by selecting the node

and clicking the “delete” button. She can also move a concept up and down or promote

it to the upper level by selecting the node and clicking the “move up”, “move down”, or

“promote” buttons. The user can also undo her actions by clicking the “undo” button one

or more times.

For manual concept hierarchy construction,a user only employs the above editing func-

tions. She is able to provide the organization of concepts with the help of our editing

functions such as dragging & dropping and renaming.
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Figure 3.1: A screen capture of OntoCop.

The right pane of OntoCop displays the related documents for a selected concept in the

concept hierarchy. When the user wants to know more about a concept and its context, she

can first select the concept and then click the “text search” button on the upper toolbar

to retrieve the documents that mention the concept from the indexed document collection.

OntoCop provides a link and a summary for each relevant document, and highlights the

concepts in the summaries. The user views the summaries or reads the documents if she

wants to know more about the selected concept. This functionality helps her to better

understand the meaning of a concept in the specific corpus and to better construct the

concept hierarchy.

The upper toolbar displays buttons for the non-editing functions. The user can use the

buttons to “open” a concept hierarchy from an existing file, “save” a concept hierarchy to a



CHAPTER 3. THE PROBLEM 44

file with the extension “.ont”, and “find” a particular concept in the concept hierarchy. She

can perform “text search” for the related documents for a concept as we described earlier.

She can also view the statistics of the current concept hierarchy by using the “statistics”

function, which displays the number of nodes in the hierarchy, the depth of the hierarchy,

and how many nodes locate at each levels of the hierarchy.

The last button on the upper toolbar is the “interact” button. It is related to interactive

method of concept hierarchy construction. We describe the “interact” function more in

Chapter 6.

3.3 Datasets

We expect that OntoCop and the techniques presented in this dissertation research are

general enough to be applied on various domains. We hence examine our system on datasets

from a variety of domains. The datasets can be categorized into two di↵erent types of

datasets: document collections and reference concept hierarchies.

The “document collection” datasets contain no inherent concept sets and hence the con-

cepts must be extracted from the documents. This type of datasets includes the public

comment datasets and the Web datasets. They are both text, but they are di↵erent kinds

of text. The public comments datasets cover email communications about a specific federal

policy or rule. These datasets are from the public; each has a narrow domain. The Web

datasets cover search results for specific Web queries that submitted to search engines. These

datasets contain properly edited Web pages.

The “reference concept hierarchy” datasets have well-defined concept sets and relations

that represent a community agreement about how to organize information; they provide gold

standards, but no documents. This type of datasets include hierarchy fragments extracted

from the North American Industry Classification System (NAICS), WordNet, and Open

Directory Project (ODP). They are used to test to a community-agreed gold standard how

close a constructed hierarchical organization can be. NAICS datasets cover broad and diverse

concepts and are used to test agreement with industrial standards. WordNet is an English

dictionary and is used to test general purpose hierarchical organization for words. ODP is

used to test agreement with community-agreed Web document classifications.
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Statistic TRI Wolf Polar Bear Mercury Trans. Fee Organic
#comments 86,763 282,992 624,947 536,975 100,732 207,936
#unique
comments

16,367 59,109 73,989 104,146 60,345 67,525

#words 1,862,180 6,404,810 13,110,343 10,456,425 5,625,534 6,546,732
#words
after du-
plicate
removal

141,063 707,515 472,366 6,327,563 764,347 775,334

#vocabulary 6,582 27,742 16,346 31,975 25,556 30,876

Table 3.1: Statistics of public comment datasets.

3.3.1 The Public Comment Datasets

The U.S. law defines a process known as Notice and Comment Rulemaking that requires

regulatory agencies to seek comments from the public before establishing new regulations.

Most proposed regulations attract few comments from the public, but each year a few regula-

tions attract hundreds of thousands of comments. The comments can be in various formats,

including emails, scanned images of mailed letters, faxed documents, etc. Since there is

unavoidable recognition lost in converting scanned images to text, only text emails are used

in the experiments reported in this dissertation.

Public comments usually include many comments that are generated based on form

letters written by special interest groups, such as BushGreenWatch, which claimed to “track

the Bush administration’s environmental misdeeds”. Modifying an electronic form letter

is very easy, hence many people have begun doing so to better express their opinions. As

a result, public comment datasets often contain duplicated or near-duplicated comments.

In this work, we use near-duplicate detection techniques [YC06] to remove near-duplicate

documents as well as the duplicated texts in documents. After duplicate detection, there are

still tens of thousands of unique comments.

Six public comment datasets are used for the experiments in this dissertation, namely

“Toxic Release Inventory (TRI)” (Docket id: USEPA-TRI-2005-0073),“Wolf” (USFWS-

R6-ES-2008-0008), “Polar Bear” (USDOI-FWS-2007-0008), “Mercury” (USEPA-OAR-2002-

0056), “Transportation Registration Fee (Transportation Fee)” (USDOT-PHMSA-2006-25589),

and “National Organic Program (Organic)” (USDA-TMD-94-00-2).
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The TRI dataset was collected by the U.S. Environmental Protection Agency (EPA)

in 2006. These public comments are about a rule that EPA proposed to revise certain

requirements for the Toxic Release Inventory to reduce reporting burden while continuing to

provide valuable information to the public.

The Wolf dataset was solicited by the U.S. Department of Interior, Fish and Wildlife

Service (FWS) in 2008. These public comments are about a rule that the FWS proposed

to designate the northern Rocky Mountain population of gray wolf as a distinct population

segment, and to remove gray wolf from the federal list of endangered and threatened wildlife.

The Polar Bear dataset was also gathered by FWS in 2007. These public comments are

about a rule proposed to list the polar bears as a threatened species under the Endangered

Species Act and to initiate a scientific review to study the current situation and future of

polar bears.

The Mercury dataset was collected by EPA in 2004. These public comments are about the

proposed national emission standards for hazardous air pollutants and about the proposed

standards of performance for new and existing stationary sources including electric utility

steam generating units.

The Transportation Fee dataset was sought by the U.S. Department of Transportation

(DOT) in 2006. The dataset is about a rule proposed to increase the registration fees for

persons who provide services to transport hazardous materials within the country and outside

the country.

The Organic dataset was gathered by the U.S. Department of Agriculture in 2003. It

is about a proposed rule of establishing the National Organic Program. The program was

proposed for establishment of national standards governing the marketing of certain agricul-

tural products as organically produced to facilitate commerce in fresh and processed food

and to assure consumers that such products meet consistent standards.

Table 3.1 displays the total number of comments, the number of comments after duplicate

detection (unique comments), the total number of words, the total number of words after

duplicate detection, and the vocabulary size for the public comment datasets.

Among the six public comment datasets, the TRI dataset is used to train the participants

for the user study described in Chapter 7. Other five public comment datasets are used as

testing tasks in the user study.



CHAPTER 3. THE PROBLEM 47

Table 3.2: Statistics of the Web Datasets
Datasets # documents # words # vocabulary
Find a good kindergarten 100 17,050 3,767
Purchase a used car 100 23,840 2,911
Plan a trip to DC 100 18,583 5,639
How to make a cake 94 14,923 2,056
Find a wedding videographer 98 19,425 2,532

3.3.2 The Web Datasets

The Web datasets were created by submitting queries to and collecting the returned Web

documents from two search engines: Bing1 and Google2. For each dataset, four to five queries

related to the same topic were submitted to the search engines. For example, queries “trip

to DC”, “Washington DC”, “DC”, and “Washington” were submitted to create a dataset

about the topic “plan a trip to DC”. Each query contributes about 25 web documents;

around 100 web documents are collected as a Web dataset.

In total, we created five Web datasets on the topics of find a good kindergarten, purchase

a used car, plan a trip to DC, how to make a cake, and find a wedding videographer. For each

dataset, we extracted about 40 concepts to organize them into concept hierarchies as testing

tasks in the user study (Chapter 7). Table 3.2 presents the statistics of the Web datasets.

3.3.3 North American Industry Classification System (NAICS)

North American Industry Classification System (NAICS) is the industry standard used by

the U.S. federal statistical agencies in classifying business establishments. In the latest 2007

version of NAICS, there are 92 top categories and 2,328 concepts in total. The relation

described in NAICS datasets is is-a. We do not attempt to reconstruct the entire NAICS.

We only extract several top categories of concepts from the 2007 NAICS as our datasets.

Each category is one dataset. NAICS provides a well-developed ground truth to evaluate

the quality of the constructed concept hierarchies. Unlike the public comments and the

Web datasets, no document is available for this type of datasets. Instead, they only contain

hierarchy fragments from the existing NAICS hierarchy.

1
www.bing.com/.

2
www.google.com/.
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Table 3.3: Statistics of NAICS Datasets
Datasets/Concept hierarchies # concepts Depth The level w/ most concepts
Information 40 4 3
Health care 40 3 3
Administrative services 40 4 3
Professional services 40 2 2
Finance 40 4 3
Construction 36 3 3
Public administration 35 2 2
Food manufacturing 40 3 3
Chemistry manufacturing 40 3 2
Merchant wholesalers 40 2 2

In total, we created ten NAICS datasets on the topics of information, health care, ad-

ministrative services, professional services, finance, construction, public administration, food

manufacturing, chemistry manufacturing, and merchant wholesalers. They are used as test-

ing tasks for the user study. Each dataset contains about 40 concepts. Table 3.3 presents

the statistics of the NAICS concept hierarchies.

3.3.4 WordNet

WordNet is a manually built English hierarchical dictionary. It consists of around 117,000

English words. We do not attempt to reconstruct the entire WordNet. Instead, we only

extract some fragments from WordNet; each of these fragments is used as a dataset. They

are used to evaluate the automatic concept hierarchy construction method, metric-based

concept hierarchy construction (Chapter 5).

We extract both hypernym and meronym hierarchies from WordNet. The hypernym

hierarchies indicate is-a relation among concepts; the meronym hierarchies indicate part-

of relation among concepts. In particular, we only use one word sense within a particular

hierarchy to avoid word sense ambiguity.

In total, there are 50 hypernym hierarchies and 50 meronym hierarchies extracted from

WordNet. The 50 WordNet hypernym hierarchies are obtained from 12 topics: gathering,

professional, people, building, place, milk, meal, water, beverage, alcohol, dish, and herb.

The 50 WordNet meronym hierarchies are obtained from 15 topics: bed, car, building, lamp,
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Table 3.4: Statistics of WordNet and ODP Datasets.
Statistic WordNet/is-a ODP/is-a WordNet/part-of

total #datasets 50 50 50
total #concepts 1,964 2,210 1,812

average #concepts 39 44 37
max #concepts 86 104 79
average depth 5.5 5.9 4.9
max depth 9 8 7

the level w/ most concepts 4 4 3

earth, television, body, drama, theater, water, airplane, piano, book, computer, and watch.

Table 3.4 shows the hierarchy statistics, including the number of datasets, the total, average

and maximum number of concepts, the average and maximum number of depth of the

hierarchies, and the id of the level that containing that most number of concepts for the

WordNet hierarchies.

3.3.5 ODP

Open Directory Project (ODP) is also a manually built concept hierarchy. It aims to organize

the entire Web into hierarchies. Similar to the WordNet hierarchies, we only extract some

fragments from ODP; each of these fragments is used as a dataset.

There is no meronym hierarchy available in ODP. Therefore we only extract hypernym hi-

erarchies from ODP. In particular, we parse the topic lines, such as “Topic r:id=‘Top/Arts/Movies’”,

in the XML databases to obtain relations, such as is-a(movies, arts).

We extract 50 ODP hypernym hierarchies from 16 topics: computers, robotics, intranet,

mobile computing, database, operating system, linux, tex, software, computer science, data

communication, algorithms, data formats, security multimedia, and artificial intelligence.

The statistics about these ODP hypernym hierarchies are also listed in Table 3.4.

3.3.6 Summary

In total, we use 171 datasets from 5 di↵erent sources to evaluate the techniques presented in

this dissertation research. Some are document collections and others are hierarchy fragments.

Table 3.5 gives a quick summary of these datasets.
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Table 3.5: Summary of Datasets.
Datasets Type # datesets Relation Purpose Domain Chapter
Public
comments

document 6 user-
defined

tool training,
user study

emails 4, 6, 7

Web document 5 user-
defined

user study Web search 6, 7

NAICS hierarchy 10 is-a user study industry
standards

6, 7

WordNet hierarchy 100 is-a, part-
of

hierarchy
reconstruction

general
domain

5

ODP hierarchy 50 is-a hierarchy
reconstruction

Web classifi-
cation

5

3.4 Measuring Hierarchy Similarity

Measuring the quality of a concept hierarchy is challenging. To e↵ectively evaluate our

techniques, we review existing methods of hierarchy evaluation and present them in this

section.

Concept hierarchies are considered as trees in this dissertation. We therefore first look at

how to measure tree similarity. Specifically, concept hierarchies can be considered as labeled

and unordered trees. “Labeled” means that every node in the hierarchy has a name. We

often see “unlabeled” clusters generated by a hierarchical clustering algorithm and only the

nodes at the leaf level have names. In a “labeled” tree, all nodes, including both leaf and

non-leaf nodes, have names. “Unordered” means no ordering constraints are posed within

the sibling nodes. This property makes it more challenging to discover the similarities or

di↵erences for the “unordered” trees than for the “ordered” trees. This is because there

are n! orderings among n sibling nodes in an unordered tree whereas there is only a single

ordering among them in an ordered tree.

There are direct and indirect approaches being proposed to measure the similarity be-

tween concept hierarchies. The direct measurements include Tree Edit Distance and schema

similarity measures. The indirect methods that are mainly used by the Information Retrieval

(IR) research community to evaluate the browsing tasks.
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3.4.1 Tree Edit Distance

Tree is a commonly used data structure in computer science and other disciplines such

as biology. Research about tree similarity mainly focuses on identifying matches among

the trees from the topology perspective. Tree Edit Distance is generally accepted as the

standard method for measuring di↵erences between trees. However, Tree Edit Distance is

often infeasible to be used in real-life applications for the ine�ciency issue. In fact, [ZJ94] has

shown that computing Tree Edit Distances is not only NP-hard, but even a MAX SNP-hard

problem.

Tree Edit Distance is defined on the editing operations. The basic tree edit operations

include relabelling a node (Figure 3.2 (a)), inserting a new node (Figure 3.2 (b)), and deleting

a node (its children become children of its parent node) (Figure 3.2 (c)). Recently, researchers

also consider a move operation (move a subtree from one parent to a di↵erent parent) as the

fourth edit operation for trees (Figure 3.2 (d)). In this dissertation research, we refer to the

Tree Edit Distance which includes the relabelling, insertion, deletion, and move operations.

Formally, Tree Edit Distance between two trees T
1

and T
2

is defined as the minimum cost

of turning T
1

into T
2

via a sequence of edit operation functions. The sequence of the edit

operation functions is called an edit script. Tree Edit Distance is the minimum sum of the

cost of every relabelling, deleting, insertion, and move operations for the mapping between

the two trees.

Tree Edit Distance is usually applied to labeled trees, which can be further broke down

into ordered and unordered labeled trees. In this dissertation research, we focus on the

“unordered” labeled trees. A mapping between two unordered trees T
1

and T
2

happens

when both the “one-to-one” condition and the “ancestor” condition are satisfied. The “one-

to-one” condition says that an arbitrary node v in T
1

is found in T
2

as w. The “ancestor”

condition says that an ancestor of v in T
1

has the same label as an ancestor of w in T
2

.

The third condition is the “sibling” condition, which constrains the order of siblings in a

branch. However, it only applies to the “ordered” trees, not the “unordered” trees. This

more restricted sibling condition makes the similarity calculation easier as compared to the

“unordered” trees.

Most research on Tree Edit Distance was conducted for ordered trees for their relative

simplicity. With the help of dynamic programming, ordered Tree Edit Distance can be solved
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(a)�

(b)�

(�c�)�

l�3�

(d)�

l�1� l�3�

Figure 3.2: Tree Edit Operations. (a) Renaming node l
1

to l
2

. (b) Inserting node l
2

as the
child of l

1

. (c) Deleting node l
2

from l
1

. (d) Moving node l
2

from l
1

to l
3

.

in polynomial time [Bil05]. The popular algorithms include Klein’s algorithm [Bil05] and

Zhang and Shasha’s algorithm [ZS89].

For unordered trees, calculation of Tree Edit Distance is more complicated and much

more ine�cient. In fact, unordered Tree Edit Distance has been shown to be NP-complete

[ZSS92] even for binary trees with only two labels. Furthermore, it has been shown to

be MAX-SNP hard [ZJ94]. That means, unless P = NP , there is no polynomial-time

approximation scheme (PTAS) for the problem. Only under special cases, such as T
2

only

contains logarithmic number of leaves, there exists polynomial-time solution to calculate the

unordered Tree Edit Distance for T
1

and T
2

[ZSS92].
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Since calculation of Tree Edit Distance, especially unordered Tree Edit Distance, is com-

putationally intractable, much research focuses on finding e�cient approximations for Tree

Edit Distance. Among them, many are for approximating the ordered Tree Edit Distance

and a few for unordered Tree Edit Distance. We describe two approaches which are related

to our method.

Yang et al. presented an approximation method of Tree Edit Distance for ordered trees

[YKT05]. Their work transformed tree-structured data into binary branches by representing

the occurrences of the binary branches as a numerical vector. L
1

norm of the vectors were

calculated as the distance between two trees. This work characterized a tree as a set of

q-level binary branches. Within a Tree Edit Distance of d, two trees share [4(q � 1) + 1]d

q-level binary branches. The authors proved that L
1

norm of the vectors is a lower bound of

Tree Edit Distance. The computational complexity of the L
1

norm is O(|T1| + |T2|). This

approach is similar to our approach in terms of representing trees into vectors and using

vector similarity measure as the tree similarity metric. However, the approach is di↵erent

from ours in the method of mapping trees into vectors and the choice of vector similarity

measure. Most importantly, instead of the ordered trees, we deal with the more challenging

unordered Tree Edit Distance problem.

Kailing et al. presented an approach for unordered Tree Edit Distance in [KpKSS04].

They presented trees as histograms. Three kinds of histograms, including histogram of height

of nodes, histogram of degree of nodes, and histogram of node labels, were employed. The

authors used the maximal value among the L
1

norms calculated for the histograms as the

distance between two trees. They proved that this maximal value is a lower bound of Tree

Edit Distance between two unordered trees. The histogram of node labels is the piece of

work that is the most similar to our approach. However, their work divided the range of

node labels into bins (it isn’t clear how they divide the node labels into bins). Our approach

did not divide the terms into groups to best preserve the original form of the text. Instead,

we employ common text preparation techniques, such as stop word removal and stemming,

to create the vocabulary.
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3.4.2 Schema Measurement

COMA++ is a tool for matching schemas and complex ontologies [ADMR05]. In [RhDM04],

an earlier version of COMA++, the authors explained COMA++’s fragment-based schema

matching approach. The similarity measure for hierarchy fragments in COMA++ is mainly

based on metadata information including the schema types and metadata such as addresses

and customers. However, such metadata information is usually not available in a personal

concept hierarchy and hence not applicable to our task.

3.4.3 Indirect Measurement

The indirect measurements for hierarchy similarity are mainly used by the IR research com-

munity. When ontologies are used to represent and organize documents, how well a concept

hierarchy is established for these documents can be indirectly evaluated by the e↵ectiveness

of finding related documents using this hierarchy. They are not intended to compare two

concept hierarchies. Instead, they evaluate the quality for a very well-defined task - finding

documents. Therefore, indirect measurements only apply when a task is known in advance.

Lawrie and Croft evaluated the e↵ectiveness of a concept hierarchy by estimating the

time it took to find all relevant documents [LC03]. Their work calculated the total number

of menus that must be traversed and the number of documents that must be read as the

metrics for hierarchy e↵ectiveness.

Allan et al. studied how to evaluate hierarchical clusterings for the task of topic detection

and tracking (TDT) [AFB03]. The authors proposed two metrics. The first was called

“minimal cost”, which performed a best-first search to locate a node that associates with

the lowest cost. When determining the cost, this measure used a linear combination of

C
branch

(the number of child nodes) , C
title

(the cost of reading a document title), and

C
det

(the number of edges travelled). The second measure was “expected travel cost”, which

accumulated the costs of reading titles in subtrees, parents, and sibling subtrees of a relevant

document, and then averaged the cost over the number of on-topic stories. This measure

claimed to be more user-oriented since it mimicked how a user searches in a hierarchy.

However, it is also computationally expensive due to large branching factors and recursions

of computations within concept hierarchies.
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Figure 3.3: Hierarchy Examples (“tale characters”).
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Figure 3.4: Fragment View of Concept hierarchies (“tale characters”).

These indirect measures do not utilize the full hierarchical structures but only how docu-

ments are grouped at the leaf level. Moreover, they focus more on grouping and navigating to

relevant documents, which is a di↵erent task from concept hierarchy construction. Therefore

their evaluation approaches are not applicable to our problem.

3.5 Fragment-Based Similarity

We find that existing approaches are either too ine�cient or not applicable to hierarchy

evaluation. A good, practical hierarchy/hierarchy similarity measure is needed.We consider

such a measure should meet the following desirable properties:

• The calculation of the metric should be e�cient.

• It should be able to rank concept hierarchies based on their similarities as compared

to a gold standard.

Concept hierarchies can be similar in terms of content, topology, and both. Content

similarity refers to the similarity of node labels. Topology similarity refers to the similarity

of the hierarchy structure and positions of nodes in the hierarchy. Both content and topology

are important to determine how similar two concept hierarchies are.

Tree Edit Distance compares topology similarity and content similarity at a micro level.

It counts every single insertion, deletion, move, and relabelling operation into the distance
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score for two concept hierarchies. To obtain the minimum distance of every possible edit

scripts, it also needs to examine many combinations of a series of operations exhaustively.

This is one of the reasons why Tree Edit Distance is computationally intractable.

On the contrary, people tend to compare hierarchies at a macro-level. We observe that

when people compare two hierarchies, it is the fragments of similar concepts that first capture

their eyes. For example, Figure 3.3 presents two ontologies, H
a

and H
b

. Comparing these

two hierarchies, we can easily identify two distinct fragments that are rooted from “natural”

and “unnatural” in both hierarchies. We then compare the nodes within each fragment to

conclude whether the two hierarchies are similar. Moreover, the nodes outside the fragments,

for example, “mineral”, might be ignored or valued less in the comparison. Figure 3.4

illustrates the fragment view of Figure 3.3. Based on this observation, we are inspired to

propose a new approach to compare hierarchies fragment by fragment. We call our approach

Fragment-Based Similarity (FBS).

The idea is supported by the “subgraph isomorphism” approach in graph similarity.

Subgraph isomorphism compares graphs subgraph by subgraph and considers “two graphs

are similar if they are the same or one is contained in the other” [BDKW07]. This existing

graph similarity measure supports our intuition that it is sensible to compare hierarchies

fragment by fragment.

Based on these considerations, we take a fragment-by-fragment approach to calculate the

similarity between hierarchies. In the following sections, we will use “fragment”, “subtree”,

“branch”, and sometimes “non-leaf node” interchangeably to refer to fragments in a concept

hierarchy.

3.5.1 Vector Representation of Hierarchies

The bag-of-word model is widely used in IR for document retrieval, classification, and cluster-

ing. In this subsection, we elaborate how to use the bag-of-words representation to transform

hierarchies into vectors and how this representation can help in a fragment-based similarity

measure.

For a concept hierarchy T , a concept/a node label is treated as a term in the bag-of-

word model, where a term can be a word, a phrase, or a concept. Particularly, a node is

represented by a vector consisting of all the nodes in the subtree rooted from it. For a leaf
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tc natural fungi animal plant mineral unnatural rock ogre mythical mushroom dinosaur grass

tc 0 1 1 1 1 1 1 0 1 1 0 0 0

natural 0 0 1 1 1 0 0 0 0 0 0 0 0

unnatural 0 0 0 0 0 0 0 0 1 1 0 0 0

Figure 3.5: Vector representation for hierarchy H
a

(tc means “tale characters”).

tc natural fungi animal plant mineral unnatural rock ogre mythical mushroom dinosaur grass

tc 0 1 0 0 0 0 1 1 1 1 1 1 1

natural 0 0 0 0 0 0 0 0 0 0 1 1 1

unnatural 0 0 0 0 0 0 0 0 1 1 0 0 0

Figure 3.6: Vector representation for hierarchy H
b

(tc means “tale characters”).

node, its subtree is itself. With the bag-of-word representation, the ordering among concepts

within a subtree is ignored, hence the unordered nature of hierarchies are preserved.

Formally, suppose T
i

and T
j

’s sizes are M and N respectively. Assume T
i

consists of U

non-leaf nodes and T
j

consists of V non-leaf nodes. Using the vector representation, T
i

is

transformed into U vectors; each vector is of length Z = |T
i

[ T
j

| < M +N . Similarly, T
j

is

transformed into V vectors and each vector is of length Z too.

We define the vocabulary Z of two hierarchies as the union of all the concepts in two

hierarchies. For example, the vocabulary of H
a

and H
b

(Figure 3.3) , i.e. the union of their

concepts, including both leaf and non-leaf nodes, is:

{tale characters, natural, fungi, animal, plant, mineral, unnatural, rock, ogre,

mythical, mushroom, dinosaur, grass}.

Figure 3.5 and Figure 3.6 demonstrate the vector representations for hierarchies H
a

and

H
b

. A concept c
i

in these two hierarchies is represented by a vector of 1s and 0s to indicate

presence or absence of a concept in the subtree led by c
i

, excluding c
i

itself. For example,

the vector representing the non-leaf node “natural” in hierarchy H
a

displays 1s for “fungi”,

“animal”, and “plant”, and 0s for the other terms in the vocabulary. The vector representing

the non-leaf node “natural” in hierarchy H
b

displays 1s for “mushroom”, “dinosaur”, and

“grass”, and 0s for the other terms in the vocabulary. The length of the vectors equals to

the size of the vocabulary.

We exclude a non-leaf node from its own vector representation. Although a non-leaf

node trivially belongs to its own subtree, inclusion of itself in the similarity calculation may

under-estimate the similarity between two fragments that only di↵er in the root (the non-leaf
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node). If not excluding the root and there are only a few nodes in a fragment, such as four

nodes in the fragment “nature” in H
a

, the di↵erent roots make a big impact (decrease) in

the similarity calculation.

In summary, a concept hierarchy can be represented by a set of vectors. Each vector

corresponds to a non-leaf node. The vectors consist of 1s and 0s indicating concept presence

and absences in the subtrees. Once two hierarchies T
i

, and T
j

are represented as vectors,

the calculation of FBS between them can be carried out in two steps: identifying matching

fragments and aggregating the similarity scores.

3.5.2 Identifying Matching Fragments

To identify matching fragments, we first measure similarity between the fragments in T
i

and

the fragments in T
j

by calculating the cosine similarities for these fragments. The similarity

scores help us to align the fragments in the two hierarchies.

Calculating Subtree Similarity

Cosine similarity measures the angle between two vectors and is calculated by dividing the

inner product of two vectors by the product of the vectors’ lengths. Cosine similarity [MRS08]

between two subtrees t
p

✓ T
i

, t
q

✓ T
j

is calculated as follows:

sim
cos

(t
p

, t
q

) =
�!
t
p

•�!t
q

k�!t
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kk�!t
q

k
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(3.3)

where c denotes a term/concept in a subtree, Z = |T
i

[ T
j

| is the vocabulary size, • denotes

the vector dot product, and kk is the length of a vector. The cosine similarity values range in

[0,1], where a value of 0 means that two subtrees are unrelated and a value close to 1 means

that the subtrees are closely related. It is obvious that in order to have cosine similarity

greater than 0, two subtrees should have some concepts in common. When the concepts’

presences are the same in two subtrees, the cosine similarity between these two subtrees is

equal to 1. Figure 3.7 shows the cosine similarity values calculated for all the subtrees for

H
a

and H
b

.

We compare every non-leaf node in T
i

with every non-leaf node in T
j

by cosine similarity.
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tale character(H
b

) natural(H
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Figure 3.7: Cosine similarity between non-leaf nodes in H
a

and H
b

.

Thus there are UV cosine values computed in these two hierarchies. Looping over each pair

of non-leaf nodes gives a complexity of O(UV ). Assume that there are Z concepts in the

vocabulary, the calculation of cosine similarity between two term vectors gives a complexity

of O(Z). Hence the time complexity of this step is O(UV Z). In the worst case, the number

of non-leaf nodes is close to the hierarchy size, that is to say, U = M and V = N . In this

case, the time complexity can be written as O(MNZ). If M , N , and Z are equal (since

vocabulary is the union of two concept sets), the worse case time complexity is O(N3). In

practice, however, since the vectors are sparse, the time complexity is usually much lower

than O(N3).

Choices of Matching Criterion

After obtaining similarity values for every pair of fragments in T
i

and T
j

, we can align the

fragments in these two hierarchies. Basically, for each fragment in T
i

, we try to find its

most similar fragment(s) in T
j

. There are several options that can be used as the matching

criterion:

All pairs. All pairs of fragments whose cosine similarity values are above a threshold

� are considered a match and hence are aligned. For those pairs whose cosine similarity

values below �, they should not be considered as a match because they are not similar to

each other. The advantage of this option is its simplicity. The disadvantage is that there

may exist many subtrees in T
i

matched with a subtree in T
j

. Multiple matches for a single

subtree may produce ambiguous alignments.

Maximum matched subtree. With this option, every fragment/subtree in T
i

looks for a

maximum matched subtree in T
j

. The maximum matched subtree for a subtree t
p

in T
i

is a

subtree that is the largest subtree (i.e., a subtree that contains the most number of nodes)

in T
j

and the subtree’s cosine similarity to t
p

is greater than a threshold �. The intuition

is that when multiple matches occur, we should choose the largest subtree that is similar
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a� b�

c�

Sim
cos

(a, c) > Sim
cos

(a, b) > �
Matched pairs:
All pairs => (a, c), (a, b)
Maximum matched subtree => (a, b)
Highest value subtree => (a, c)

Figure 3.8: Matched fragments based on di↵erent criteria.

enough to t
p

to ensure that the matching is not partial. This results only one subtree in

T
j

matched with t
p

. For example, the maximum matched subtree for “unnatural” in H
a

is

“tale characters” in H
b

; the maximum matched subtree for “tale characters” in H
a

is “tale

characters” in H
b

.

Highest value subtree. For a subtree t
p

in T
i

, the highest value subtree is the subtree with

the highest cosine similarity to t
p

among all subtrees in T
j

. The similarity also needs to be

greater than a threshold �. Each non-leaf node in T
i

has exactly one matched fragments

in T
j

. This option guarantees that the matched pairs are the most similar pairs based on

their cosine similarity. To illustrate, the highest value subtree for “unnatural” in H
a

is

“unnatural” in H
b

, and the highest value subtree for “tale characters” in H
a

is “unnatural”

in H
b

. Other pairs’ similarities are 0 and not considered as matched.

Because the vector representations are sparse in general, many cosine similarity values

are in the lower range of [0,1]. Empirically, we set the threshold � as 0.2 for the above

options.

Figure 3.8 further illustrates how the above three matching criteria work by showing two

hierarchies T
i

and T
j

. Assume that node a belongs to T
i

, and nodes b and c belong to T
j

.

We look for a match for node a in T
j

. Suppose the cosine similarity calculation shows that

sim
cos

(a, c) > sim
cos

(a, b) > �. Di↵erent matching criteria output di↵erent subtrees in T
j

as the match for a. “All pairs” outputs two matched pairs for node a - (a, b) and (a, c) -

since both b and c pass the selection threshold �. “Maximum matched subtree” outputs b

as the match for a since b is the largest subtree among all the subtrees passing � (b and c).

“Highest value subtree” outputs c as the match since sim
cos

(a, c) is the highest similarity

value among that for all the subtrees passing �. We evaluate and compare the above three
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options of aligning fragments empirically in Section 3.5.4.

3.5.3 Aggregating Similarity Scores

After calculating cosine similarities and identifying the matched fragments, we aggregate the

values to produce a single similarity score for the two hierarchies as their FBS score.

Suppose there are m matched pairs of fragments from two hierarchies T
i

and T
j

, and

the cosine similarity values for the matched fragment pairs are known. We aggregate the

similarity scores by averaging them to obtain the final FBS score. The averaging can be done

by dividing the sum of all cosine similarity scores of the matched pairs over a normalizing

denominator D. Thus the overall FBS similarity of T
i

and T
j

can be written as:

FBS(T
i

, T
j

) =
1

D

mX

p=1

sim
cos

(t
ip

, t
jp

) (3.4)

where t
ip

✓ T
i

, t
jp

✓ T
j

, and they are the pth matched pair among the m matched fragment

pairs, D is the denominator.

Therefore, the aggregated FBS score consists two parts: the sum of scores of each matched

pairs and D. Since the matching is done, the sum of scores of matched pairs are known.

However, D could be computed in several di↵erent ways.

Choices of Denominator D

A natural choice of the denominator D is the number of matched pairs in T
i

and T
j

. Thus

Equation 3.4 becomes:

FBS(T
i

, T
j

) =
1

m

mX

p=1

sim
cos

(t
ip

, t
jp

) (3.5)

where m is the number of matched pairs in T
i

and T
j

. However, averaging by m may produce

false positives when a few small fragments matched with high cosine similarity values. For

example, suppose T
i

is about “education” and T
j

is about “war”. T
i

’s size is M = 200, and

T
j

’s size is N = 100. T
i

and T
j

are not similar to each other because they are very di↵erent in

topics and vocabulary. However, there exist two matched pairs of fragments between them.

The two matches are in small-size (<< M,<< N), but with high cosine similarity matching

values - 0.9 and 0.8. In this case, m = 2, the sum of the similarity values is 0.9 + 0.8 = 1.7,
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and the FBS according to Equation 3.5 is 0.85. Such a high FBS score suggests that the

similarity between T
i

and T
j

is high, however, because the matched fragments only account

for a small portion of the entire hierarchy, the true similarity should be low. In this case,

using the number of matched pairs as the denominator generates false positives.

Another choice for D is the hierarchy size. Suppose T
i

’s size is M , and T
j

’s size is N .

When M = N , it is straightforward for D to be M . However, when M 6= N , we may take

either the min or max of M and N as D. One may assume that a small hierarchy and a big

hierarchy’s similarity is 1 if the small one is a subgraph within the big one. Based on that,

min of M and N could be a good denominator. However, in this dissertation, we assume

that two hierarchies are not similar if they are very di↵erent in sizes because the chance that

they contain di↵erent concepts is high. Based on this assumption, we choose the max of M

and N as the denominator D. Thus, Equation 3.4 becomes:

FBS(T
i

, T
j

) =
1

max(M,N)

mX

p=1

sim
cos

(t
ip

, t
jp

) (3.6)

where M is the number of nodes in T
i

, N is the number of nodes in T
j

, and m is the number

of matched pairs of fragments.

As every subtree corresponds to a non-leaf node, the third choice of D is the number

of non-leaf nodes in a concept hierarchy. Suppose T
i

contains U non-leaf nodes, and T
j

contains V non-leaf nodes. For a similar reason as mentioned for the second option, we take

the maximum value of U and V as the denominator. Thus Equation 3.4 becomes:

FBS(T
i

, T
j

) =
1

max(U, V )

mX

p=1

sim
cos

(t
ip

, t
jp

) (3.7)

where U is the number of non-leaf nodes in T
i

, V is the number of non-leaf nodes in T
j

, and

m is the number of matched pairs. In Section 3.5.4, we evaluate the above options of the

denominator D for aggregating the similarity scores between two hierarchies.

Note that cosine similarities between the matched fragment pairs have been calculated

in the previous step. Thus the aggregation only needs to calculate an average and its

time complexity is O(1). Therefore the overall time complexity of calculating FBS for two

hierarchies remains as O(N3). If pairwise node similarities are pre-calculated, the time
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complexity can be further reduced to O(n).

We use FBS to directly evaluate the quality of the hierarchies built automatically against

gold standards in Chapter 5, as well as use it to find out how similar and how di↵erent people

construct hierarchies and whether they are self-consistent in Chapter 6 and Chapter 7.

3.5.4 Experiments

In this section, we empirically evaluate FBS. We show that it is a good approximation of

Tree Edit Distance for unordered trees. Moreover, it is much more e�cient than Tree Edit

Distance and can be used for large hierarchies. We first describe a simulation process of

Tree Edit Distance and based on that we create an evaluation dataset. We then examine the

options of FBS and show that FBS is able to approximate Tree Edit Distance by generating

highly correlated similarity rankings.

Datasets and Experimental Setup

It is a NP-complete problem to compute Tree Edit Distance between two trees. It is often

infeasible to apply it in real applications on real data. Due to its ine�ciency, instead of

actually computing Tree Edit Distance, we simulate it by tracking the edit operations that are

automated by computer. We create edit scripts by sequentially editing a tree and recording

the edit operations during the process. Tree Edit Distance simply equals to the length of

the edit script.

The simulation employs two functions, namely RandomTreeCreation and RandomTreeEdit.

The RandomTreeCreation function creates random unordered labeled trees of a given tree

size n. It takes in two inputs, n and a maximum branching factor b
max

, and outputs a

random labeled tree with n nodes. Each non-leaf node in this tree randomly branches up

to b
max

children. We call the hierarchies generated by RandomTreeCreation as “reference

hierarchies”. b
max

is set to 5 in this process.

The RandomTreeEdit function makes random edits to an existing tree. It takes in two

parameters - the total number of edit operations N
edit

, and an existing tree T . It outputs a

tree T 0 modified from T with N
edit

edit operations. We assume that N
edit

is the minimum

number of edit operations turning a reference hierarchy into a modified hierarchy. Obviously,

N
edit

equals to the Tree Edit Distance. This function performs four basic edit operations,
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including insertion, deletion, relabelling, and move. Based on a user study which involved

24 users (Chapter 7), the ratio of the editing operations insertion:deletion:relabeling:move

by real users is about 1:1:1:9. Within the N
edit

edit operations, the percentage of di↵erent

edit operations preserves this ratio.

We use RandomTreeCreation to create the reference hierarchies with 980 di↵erent sizes.

The sizes range from 20 to 1000. For each size, we create 50 random reference hierarchies. We

then use RandomTreeEdit to generate 10 modified hierarchies for each reference hierarchy.

Suppose a concept hierarchy’s size isM , the 10 modified hierarchies are created with N
edit

=1,

.1M, .2M, .3M,.4M, .5M, .6M, .7M, .8M, and .9M, respectively.

In the experiments, we illustrate that FBS is a good approximation of Tree Edit Distance.

We compute similarity between many pairs of hierarchies using both Tree Edit Distance and

FBS. We then rank these hierarchies based on FBS and Tree Edit Distance and show that

the ranked lists generated by these two methods are highly correlated. We then study and

compare the di↵erent options of the matching criterion, denominator D, and conclude the

best options for FBS.

Correlation of FBS and Tree Edit Distance

FBS and Tree Edit Distance cannot be directly compared because they have di↵erent value

ranges. FBS ranges from 0 to 1, while Tree Edit Distance ranges from 0 to 1. Moreover,

FBS measures similarity while Tree Edit Distance measures dissimilarity. A bigger FBS

value means that two hierarchies are more similar, but a bigger Tree Edit Distance value

means that they are less similar. Due to the above reasons, we compare the two methods via

comparing the similarity rankings that generated by them, instead of a direct comparison of

the values.

As described earlier, Tree Edit Distance scores are generated by simulations. FBS scores

are generated based on the algorithm presented in this section. We calculate FBS for each

pair of reference hierarchy and a modified version of it.

To evaluate whether the ranked lists generated by FBS and Tree Edit Distance are

correlated, we employ Spearman’s rank correlation coe�cient ⇢ [WMS02] to compare the

resulting ranked lists. Generally speaking, the higher the correlation between the rankings

by a method and by the “gold standard”, the better the method is concluded to be. In
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Tree Size 20 50 100 500
Denominator = # matched pairs

Match=All Pair 0.75 0.83 0.87 0.89
Match=Maximum Subtree 0.79 0.90 0.91 0.93
Match=High Value 0.80 0.90 0.92 0.94

Matching Criteria =highest value
Denominator=#Matched 0.80 0.88 0.89 0.94
Denominator=#Non-leaf 0.80 0.89 0.89 0.90
Denominator=Hierarchy Size 0.80 0.90 0.92 0.97

Table 3.6: Spearman’s ⇢ of FBS and Tree Edit Distance (Bold font indicates the best per-
formance in a column).

our case, the “gold standard” is Tree Edit Distance. Pairs of rankings whose Spearman’s ⇢

values are at or above 0.9 are often considered as “e↵ectively equivalent” [Voo01]. Given N

raw values X
i

, Y
i

, their ranks x
i

, y
i

, and the rank di↵erences d
i

= x
i

� y
i

, the Spearman’s ⇢

value (no tie) for two ranked lists is:

⇢ = 1� 6⇥ d2
i

N(N2 � 1)
(3.8)

Table 3.6 displays Spearman’s ⇢ values for the ranked lists generated by FBS and by Tree

Edit Distance averaged over 50 random hierarchies at di↵erent sizes. We pick hierarchies

in size of 20, 50, 100, and 500 as the representatives among the 980⇥50 randomly reference

hierarchies. We choose to these sizes because they are close to the sizes of the hierarchies

used in the user study. For hierarchies with other sizes, we observe the same trend. Bold

font indicates the best performance in a column.

Since there are di↵erent options of FBS, we first calculate FBS based on di↵erent match-

ing criterion while fixing the denominator to be the number of matched pairs. We then

calculate FBS using di↵erent denominators while fixing the matching criterion to be “high-

est value subtree”. In most runs, the correlations between FBS and Tree Edit Distance are

very high (> 80%). The results show that the best matching criterion is the “highest value

subtree” and the best denominator is “hierarchy size”. The best runs (bold fonts in Table

3.6) achieve an averaged ⇢=0.97, which indicates that FBS is a good very approximation to

Tree Edit Distance for rank similarities.
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Figure 3.9: Fragment matching using di↵erent matching criteria (Denominator = #matched
pairs).

Impact of the Matching Criteria

To further illustrate how well FBS approximates Tree Edit Distance as well as FBS’s behavior

under di↵erent matching criteria, we plot FBS scores vs. Tree Edit Distances.

Figure 3.9 plots the mean values of FBS for 50 random runs for hierarchies with size

20, 50, 100, and 500. The denominator is fixed to be the number of matched pairs, m.

The x-axis is the Tree Edit Distance scores, and the y-axis is the FBS scores. The plots

show the corresponding FBS score for a Tree Edit Distance score. The Tree Edit Distance

scores increase continuously. If FBS is a good approximation to Tree Edit Distance, the

plots of FBS should be smooth. That is, it should be either monotonically increasing or

monotonically decreasing. This is because if there are many disagreements between FBS
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and Tree Edit Distance, the plots will contain many jumps and not be monotonic or smooth.

In another word, whether the FBS scores are high or low is less important as whether the

plots are smooth.

Figure 3.9 plots the curves for the three matching criterion options: “all pairs”, “maxi-

mum matched subtree” and “highest value subtree”. The plots indicate that all options are

able to approximate Tree Edit Distance well by showing smooth curves.

We also observe that matching fragments based on “maximum matched subtree” and

“highest value subtree” produce similar FBS values. While matching fragments based on

“all pairs” produce FBS in a lower value range. Because in “all pairs”, for a fragment

there exist multiple matches and among which there are repeated matches with low cosine

similarity values. The plots suggest that both “maximum matched subtree” and “highest

value subtree” are good matching criteria to select a matched fragment pair. The latter

option shows a high correlation score in Table 3.6, therefore we recommend it as the matching

criterion for fragment alignment.

The error bars in Figure 3.9 indicate the standard deviations. The tighter the error

bars, the more confident the approximation. When hierarchy size is big (tree size=500),

the approximation is even better with smaller variance. When hierarchy size is small (tree

size=20), the curve is less smooth and the approximation is less reliable. Although Figure

3.9 only shows hierarchies in four di↵erent sizes, we observe the same trend in hierarchies

with other sizes.

Impact of the Denominator

After deciding the best matching criterion, we next determine the best denominator for

FBS calculation. We have presented three options for the denominator D: “the number of

matched pairs”, “the number of non-leaf nodes”, and “the hierarchy size”. In Figure 3.10,

we plot the corresponding FBS scores for continuously increasing Tree Edit Distance scores

and observe whether the plots are smooth.

Figure 3.10 shows that all options for the denominators enable FBS to well-approximate

Tree Edit Distance because the plots are all smooth. Moreover, we find that when using

“hierarchy size” as the denominator, FBS results at a range of lower values. It is because

that a hierarchy’s size is usually much bigger than the number of matched fragments and
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Figure 3.10: Similarity aggregation using di↵erent denominators (Matching=highest value).

the number of non-leaf nodes within it. Thus, as a bigger denominator, the hierarchy size

produces low absolute values. However, as we mentioned before, it does not matter whether

the curve is high or low and the values are big or small. What matters is whether the plots

are smooth.

In addition, the error bars in Figure 3.10 are tight for the curves. It again indicates that

FBS is a good approximation to Tree Edit Distance. As the hierarchies’ sizes become bigger,

the error bars become tighter, which indicates that the approximation works even better for

bigger hierarchies.

Although Figure 3.10 shows smooth curves from all three options, Table 3.6 indicates that

“hierarchy size” achieves a higher correlation score and is a better choice for the denominator.

Thus we choose the “highest value subtree” as the matching criterion and the “hierarchy
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size” as the denominator to calculate FBS.

3.6 Summary

This chapter presents the background knowledge for this dissertation research. It describes

the problem definition, the hierarchy construction tool, the datasets and the evaluation

metrics used in the dissertation research.

Specially, concept hierarchy construction can be defined as creating a concept hierarchy

with personal preference. Starting from a set of documents, concept hierarchy construction

help a user to sort through the materials in the document set, extract concepts from it, and

organize the concepts based on their relations identified from the documents. The user’s

personal idea of how to organize these concepts is the guidance for a concept hierarchy

construction system.

This chapter also describes OntoCop, an interactive tool to create hierarchies. It supports

both manual and interactive constructions of hierarchies. This chapter presents its editing

functions and its user interface. The more advanced interaction functions and how they work

will be presented in Chapter 6.

Moreover, this chapter describes the 171 datasets used in this dissertation research. The

“document collection” datasets contain no inherent concept sets and hence the concepts must

be extracted from the documents. This type of datasets includes the emails sent from the

public and well-edited Web pages as search results. The “reference hierarchy” datasets have

well-defined concept sets and relations that represent a community agreement about how

to organize information; they provide gold standards, but no documents. They are used to

test to a community-agreed gold standard how close a constructed hierarchical organization

can be. Using a variety of datasets enables us to better evaluate our system under various

situations.

In addition, this chapter presents Fragment-Based Similarity (FBS), a simple and e�cient

solution to measuring hierarchy similarity. Instead of comparing the entire hierarchy, our

approach compares fragments between hierarchies and aggregates their similarity values as

the final score. A comparison between the new metric and Tree Edit Distance shows that

the proposed metric can generate consistent rankings of similarities as Tree Edit Distance,
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but with a much e�cient time complexity of O(n3) (O(n) if pairwise node similarities are

pre-calculated).

With all the background knowledge, we are now ready to explore the techniques and

algorithms for concept hierarchy construction in the following chapters.



Chapter 4

Concept Extraction

A concept hierarchy consists of concepts and relations among the concepts. To construct

a concept hierarchy, the first step is to determine the concepts. Concept extraction is the

process of identifying concepts from an arbitrary document collection.

In concept hierarchy construction, for a given document collection (a domain), concepts

refer to the topics of interest for a user who constructs the hierarchy. Usually, concepts

are nouns or noun phrases since they are the topics, either subjects or objects, that people

concern about. For instance, in the sentence “I strongly urge you to cut mercury emissions

from power plants by 90 percent by 2008”, the phrases that draw one’s attention are probably

“mercury emissions”, “power plants”, and “90 percent”. Though we agree that verbs and

adjectives also play important roles in conveying meanings, they don’t determine the topic

for a sentence and hence are not considered as concepts in this dissertation research.

Various approaches have been proposed to identify concepts from documents. Most re-

search approaches adopt part-of-speech (POS) tagging. Other commonly used techniques

include verb predicate extraction [Sab04, WVH06], term frequency [RM04], and topic cen-

troid extraction [FMG05]. Recent studies, such as Never Ending Language Learner (NELL)

[CBK+10] and TextRunner [BE08], extract concepts by using open domain surface text

patterns, however, they are not yet common.

In this chapter, we employ a simple but e↵ective approach to identify concepts in three

steps: concept mining, concept filtering, and concept unification. Our strategy is to first mine

candidate concepts exhaustively and then select the good ones. We evaluate it by comparing

71
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the concepts with manually constructed gold standards and show that his approach achieves

a reasonable accuracy.

4.1 Concept Mining

Concept mining aims to extract all possible concept candidates from a document collection.

At this stage, we hope to extract as many concept candidates as possible while preserving

a certain degree of accuracy. As described earlier, concepts are nouns or noun phrases. We

therefore extract nominal unigrams, bigrams, trigrams, and even longer noun sequences as

concept candidates.

To obtain nominal unigrams, bigrams, and trigrams, documents are split into sentences.

Each sentence is labeled by a part-of-speech (POS) tagger1, which annotates each word with

its linguistic part-of-speech. For instance, the sentence “I strongly urge you to cut mercury

emissions from power plants by 90 percent by 2008.” is tagged as below:

I/PRP strongly/RB urge/VBP you/PRP to/TO cut/VB mercury/NN emis-

sions/NNS from/IN power/NN plants/NNS by/IN 90/CD percent/NN by/IN

2008/CD ./.

The tagged sentence is then scanned through a noun sequence generator to identify

noun sequences, i.e., sequences of words tagged only with NN (singular noun), NNP (proper

noun), NNS (plural nouns), or NNPS (plural proper nouns). In this example, mercury/NN

emissions/NNS and power/NN plants/NNS are two such noun sequences. As a result, the

noun sequence generator produces a collection of noun sequences with various lengths.

From these noun sequences, we generate four types of n-grams, including unigrams,

bigrams, trigrams, and longer n-grams (length>3). For each type of n-grams, the frequency

of occurrences are counted and they are sorted into a ranked list in the descending order based

on the frequency. Since more frequent n-grams are more likely to correspond to concepts,

we can easily apply a cut-o↵ threshold or select the top k n-grams from the ranked lists as

initial concept candidates. Table 4.1 shows the top ranked bigrams and trigrams generated

from the Mercury and the Polar Bear public comment datasets. In practice, we apply a

frequency cut-o↵ threshold of 5 to the ranked lists to select concept candidates.

1
http://nlp.stanford.edu/software/tagger.shtml
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Stats/Datasets Mercury Dataset Polar Bear Dataset
#unique bigrams 1,462 1,389
total # of bigrams 4,510 3,397
#unique trigrams 129 361
total # of trigrams 900 731

Top 5 bigrams

power plants(370) greenhouse gas(248)
mercury pollution(250) gas pollution(227)
mercury emissions(175) sea ice(143)
mercury levels(110) ice habitat(117)

clear air(70) endangered species(115)

Top 5 trigrams

clean air act(65) greenhouse gas pollution(227)
environmental protection agency(35) sea ice habitat(115)

air quality rule(30) endangered species act(104)
pollution control technology(25) arctic sea ice(62)

interstate air quality(25) greenhouse gas emissions(19)

Table 4.1: Top bigrams and trigrams for Mercury and Polar Bear datasets. (The numbers
in brackets indicate frequency.)

Frequent nominal n-grams are good concept candidates, however, sometimes the longer

but infrequent n-grams can also be good concept candidates, such as the 7-gram noun

sequence “Toxics/NNP Release/NNP Inventory/NNP Burden/NNP Reduction/NNP Pro-

posed/NNP Rule/NNP”. Such longer n-grams often capitalize their first letters in every

word. We hence develop an e�cient named entity (NE) recognizer for selecting concept

candidates from longer n-grams (length>3). Regardless the frequency of a noun sequence,

the NE tagger labels a noun sequence as a named entity if it capitalizes all the first letters.

These named entities are considered as concept candidates as well.

The frequent nominal unigrams, nominal bigrams, nominal trigrams, and longer n-grams

with capitalizations are selected as the initial concept candidates.

4.2 Concept Filtering

Concept mining produces many concept candidates. There are false positives among them.

Many errors are caused by the POS tagger’s mistakes in assigning labels. For example,

protect polar bear is incorrectly labeled by the POS tagger as three nouns, and hence concept

mining incorrectly returns protect polar bear as a candidate, however the correct concept
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should be polar bear. Moreover, when a document contains spelling errors, grammar errors,

inappropriate capitalizations, or wrong punctuations, a POS tagger is more likely to make

mistakes. To remove such errors in concept candidates, we perform concept filtering.

We observe that many false positive concept candidates contain a word which is not a

noun. These concept candidates have either a verb or an adjective attached before or after a

noun phrase. For example, protect polar bear consists of a verb before a noun phrase; mercury

pollution kills consists of a verb after a noun phrase. Recall that the desirable concepts are

noun phrases, such as polar bear and mercury pollution. We just need to remove the verb or

adjective.

We also observe that noun phrases are often used frequently in our daily language. Con-

versely, the joint occurrence of verb/adjective and noun phrase is used much less frequently.

Therefore, we design a web-based frequency test to filter out the false positives. Particu-

larly, we employ Google search results to evaluate and filter the concept candidates. Queries

formed by each concept candidate are sent to the Google search engine. For example, the

concept candidate “polar bear” is used as a search query on Google. Among the first 10

returned Google snippets (not including the titles nor the web page addresses), if a concept

candidate appears more than a cut-o↵ threshold number of times (the threshold is empiri-

cally set to 4), the concept candidate is considered as a commonly-used noun phrase, and

hence a good concept; otherwise, an error.

Figure 4.1 shows the snapshot of the first 10 Google snippets for protect polar bear. Since

the occurrences of this phrase is only 3 (< 4), the web-based frequency test judges that this

phrase is not a commonly-used noun phrase, hence it is not a valid concept candidate and

is filtered out. Figure 4.2 shows the snapshot of the first 10 Google snippets for another

concept candidate polar bear. Since the occurrences of this phrase is 14 (> 4), the web-based

frequency test judges it as a commonly-used noun phrase, thus a valid concept candidate,

and is kept.

Through concept filtering, false positives caused by POS tagging errors are e↵ectively

identified and removed. Moreover, spelling errors, such as polor bear, pulution, are also

removed. There are still other sources of errors in identifying concepts. For instance, personal

preference could be a source of error. Particularly, when a concept could be valid but it is not

interesting enough to be included in a hierarchy constructed by a user. It could be evaluated
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Figure 4.1: Google snippets for protect polar bear (an error): 3 occurrences.

as invalid by this user.

4.3 Concept Unification

Another problem in concept extraction is that many concept candidates share similar mean-

ings. For example, the top 2 and top 3 bigrams for the Mercury dataset, “mercury pollution”

and “mercury emissions”, actually refer to the same concept and only one of them needs to

be kept. We address this issue by concept unification.

We employ Latent Semantic Analysis (LSA) [DDF+90] for concept unification. LSA is

an Information Retrieval (IR) technique which is able to cope with two classic problems -

synonym and polysemy. Technically, LSA maps a document collection’s concept-document

matrix from a large space to a lower-dimension space through singular vector decomposition

(SVD) and dimension reduction. We recognize similar concepts from the current set of

concept candidates based on the following steps:

1. Create a concept-document matrix C. Each entry C
ij

in C represents the tf.idf weight

[MRS08] of concept c
i

in document d
j

.
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Figure 4.2: Google snippets for polar bear (a concept): 14 occurrences.

2. Perform SVD for C and obtain the SVD term matrix U , singular value matrix ⌃, and

SVD document matrix V . The rank of C is r, which indicates the first r non-zero

diagonal entries in ⌃.

3. Reduce the rank of C from r to k, where k is an integer much smaller than r. We

empirically test di↵erent k values and choose the k value based on [TWH00]. Basically,

k is selected if it generates an “elbow value” in the summary purity scores for the series

of concept clustering results. k is tested from 50 to 500 in our experiments.

4. Given k, set the last (r � k) diagonal entries in ⌃ to be zeros to obtain ⌃
k

. Calculate

a truncated concept-document matrix at rank-k: C
k

= U⌃
k

V T .

5. Compute the concept-concept matrix C
k

CT

k

, whose (m,n)th entries indicates the sim-

ilarity between two concepts c
m

and c
n

in the lower dimension space. Cluster the

concepts based on the scores in C
k

CT

k

. Repeat steps 3, 4 and 5 to pick the best k.

6. From each concept clusters, choose a concept with the highest corpus frequency to be
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kept in the final concept set.

Note that the computation cost of SVD is high when the number of documents is large.

Due to computational limitation, we build the LSA representation on a random sampled

subset (500 to 800 documents) of a document collection.

4.4 Experimental Results

To evaluate the performance of concept extraction, we invited experts to create ground truth

ontologies. We collaborated with the Qualitative Data Analysis Program (QDAP) at the

University of Pittsburgh’s University Center for Social and Urban Research (UCSUR) to

conduct the experiments. Twelve experts were all from Political Science background and

were familiar with the problem domain participated in the experiment. They were asked to

construct ontologies using OntoCop with the concept candidates produced by concept mining

in a bottom-up fashion until they felt satisfied with their work or reached a 90-minute limit.

The experiments were conducted in the domain of public comments. The situation given

in the evaluation was that the experts organized the comments into rule-specific ontologies

based on their short-term needs. For instance, an expert wanted to know important concerns

from the public about a rule proposed to protect polar bears. We use four public comment

datasets in the experiments: Mercury, Polar Bear, Wolf, and TRI.

The quality of concepts are measured by comparing the concept candidates produced at

each step in concept extraction and the ground truth. The evaluation metrics are Precision,

Recall and F1-measures. Precision (P) is calculated as the number of correctly returned

concepts divided by the number of returned concepts. Recall (R) is calculated as the number

of correctly returned concepts divided by the total number of correct concepts in the ground

truth. F1-measure is calculated as 2*P*R/(P+R).

In Tables 4.2, 4.3, and 4.4, we report the Precision, Recall and F1-measure after con-

cept mining, concept filtering, and concept unification. The tables show how the Precision

increases after each step in concept extraction.

Table 4.2 summarizes the performance of concept mining at di↵erent cut-o↵ thresholds

(2, 3, or 5) of frequency. Bold font indicates the best performance in a column. As the cut-

o↵ threshold increases, fewer concepts are kept, Precision increases, Recall slightly drops,
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Table 4.2: Performance of Concept Mining.
Dataset #Concepts P(Freq.�2) R(Freq.�2) F1(Freq.�2)
TRI 909 0.03 0.55 0.05
Wolf 6,446 0.03 0.75 0.06

Polar Bear 7,980 0.02 0.70 0.04
Mercury 23,605 0.02 0.59 0.03

#Concepts P(Freq.�3) R(Freq.�3) F1(Freq.�3)
TRI 475 0.33 0.54 0.42
Wolf 3,302 0.43 0.71 0.54

Polar Bear 2,862 0.42 0.68 0.52
Mercury 11,126 0.38 0.57 0.46

#Concepts P(Freq.�5) R(Freq.�5) F1(Freq.�5)
TRI 268 0.53 0.52 0.51
Wolf 1,645 0.63 0.71 0.67

Polar Bear 1,064 0.62 0.67 0.64
Mercury 4,148 0.68 0.56 0.61

Table 4.3: Performance After Concept Filtering.
Dataset #Concepts P R F1
TRI 128 0.76 0.52 0.62
Wolf 674 0.86 0.71 0.78

Polar Bear 568 0.80 0.67 0.73
Mercury 1,575 0.83 0.56 0.69

and F1 increases. Note that when the cut-o↵ threshold changes from 2 to 3, Precision and

F1 increase significantly. This result suggests that the concept candidates that appear at

low frequency are mostly noise. When the cut-o↵ threshold is set to 5, Precision of concept

mining ranges from 0.53 to 0.68, Recall ranges from 0.52 to 0.71, and F1 ranges from 0.51 to

0.67. These results are moderately good, but not good enough to build a reasonable concept

hierarchy.

We further evaluate the subsequent steps of concept extraction. We compare the concept

candidates after performing concept filtering with the concepts produced by the experts.

Table 4.3 shows the Precision, Recall and F1 after concept filtering. Particularly, Precision

ranges from 0.76 to 0.83, Recall remains from 0.52 to 0.71, and F1-measures range from

0.62 to 0.78. The Precision shows a 22%-43% improvement and the F1-measure show a
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Table 4.4: Performance After Concept Unification.
Dataset #Concepts P R F1
TRI 84 0.80 0.50 0.62
Wolf 117 0.88 0.68 0.77

Polar Bear 105 0.86 0.65 0.74
Mercury 423 0.85 0.56 0.68

13%-21% improvement over the best setting (frequency � 5) in concept mining. The results

demonstrate that concept filtering is e↵ective. By removing tagging errors, concept filtering

improves the overall concept extraction performance, especially Precision and F1.

We further compare the concept candidates after concept unification with the ground

truth. Table 4.4 shows the Precision, Recall and F1 after concept unification. Precision

ranges from 0.80 to 0.85, Recall drops a little and ranges from 0.50 to 0.68, F1-measures

remain from 0.62 to 0.77. The Precision shows a 3%-8% improvement over concept filtering.

These results demonstrate that concept unification e↵ectively groups the similar concepts

into single entries and further improves Precision of concept extraction.

4.5 Summary

This chapter describes our techniques for concept extraction. We present a simple but

e↵ective approach. It is performed in three steps: concept mining, concept filtering, and

concept unification. Concept mining examines a given document collection and outputs a

large set of concept candidates, including nominal unigrams, bigrams, and trigrams, and

longer n-grams with capitalizations. Concept filtering evaluates the candidates’ validity by

conducting a web-based frequency test. It e↵ectively removes invalid concepts created due

to POS tagging errors. Concept unification further conflates similar concepts using LSA and

outputs the unified concepts as the set of concept candidates.

By comparing the concepts obtained by concept extraction and the ground truth, we

find that the remaining errors are basically concepts created by the human experts. Those

concepts are related to the domain, however do not directly appear in the corpora.

Nonetheless, the techniques presented in this chapter are su�ciently accurate (Precision
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around 0.85 and Recall around 0.55 on average) for this dissertation research, which fo-

cuses more on organizing concepts into ontologies through relation formation. The following

chapters describe the techniques for relation formation.



Chapter 5

Metric-based Concept Hierarchy

Construction

Before the user participates in concept hierarchy construction and interacts with the system

to give her preferences, it is desirable that the system can propose an initial concept hierarchy

to save her e↵ort from building the concept hierarchy from scratch. The initial concept

hierarchy needs to be in good quality as a good starting point for the later interactive

concept hierarchy construction (Chapter 6). Moreover, the quality of the initial concept

hierarchy greatly a↵ects e�ciency in generating a concept hierarchy. We therefore need a

strong automatic method to create good initial concept hierarchies.

This chapter presents metric-based concept hierarchy construction, a high performance

automatic concept hierarchy construction framework [YC09b]. It is a comprehensive frame-

work that incrementally clusters concepts based on an hierarchy metric, a score indicating

semantic distance between concepts. It transforms the task of concept hierarchy construc-

tion into a multi-criterion optimization based on minimization of overall semantic distance

of concepts, modeling of concept abstractness, and modelling of concept coherence.

Here we assume that all necessary concepts for building a concept hierarchy are available

after concept extraction (Chapter 4). If some concept is missing, the algorithm will “make

do” with what it has. Unlike most concept hierarchy construction algorithms which need to

label new clusters, metric-based concept hierarchy construction bypass the cluster labeling

and focuses on finding an optimal position for each concept. This may lead to some errors,

81



CHAPTER 5. METRIC-BASED CONCEPT HIERARCHY CONSTRUCTION 82

but they can be later corrected interactively (Chapter 6).

This chapter begins with a discussion of the desirable properties in a concept hierarchy in

Section 5.1. Section 5.2 introduces the terminologies being used in this chapter. Section 5.3

details the metric-based concept hierarchy construction framework. Section 5.4 presents the

semantic feature functions. Section 5.5 elaborates the evaluation and experiments, which not

only show that our system achieves higher F1-measure than three state-of-the-art systems,

but also reveals the interaction between features and various types of relations, as well as

the interaction between features and concept abstractness.

5.1 Desirable Properties for A Concept hierarchy

A valid concept hierarchy should satisfy some commonsense requirements and preferably

come with a few desirable properties. In this section, we explore the properties that would

be desirable in a concept hierarchy. We study and learn from existing concept hierarchies

that people use in daily life and conclude some common characteristics in them. We believe

that a good concept hierarchy should represent a general and meaningful structure of the

data. Generally, we consider a good concept hierarchy possessing the following desirable

properties.

5.1.1 Minimum Semantic Distance and Minimum Evolution

One fundamental property of a good concept hierarchy is that concepts similar in meanings

should be positioned close to each other. The closeness/similarity of concepts in meanings

can be represented by a semantic distance. A good concept hierarchy should reflect the

semantic proximity among concepts by organizing them into proper structures.

It is not trivial to assign accurate numeric scores to define semantic distances between

concepts, however, we can at least expect them to be transitive, i.e., the nearer concepts have

smaller distance scores. For example, we can distinguish the distance in meanings between

“bird” and “wings” and the distance in meanings between “bird” and “university” - the

former is closer and the latter is farther apart.

Positioning a concept at is correct positions means putting it in a correct neighborhood

with correct parents, children, and siblings. Its semantic distance scores to its true neighbors
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ball� table�

Game Equipment�

Figure 5.1: A concept hier-
archy about “Game Equip-
ment”.

ball� table�

Game Equipment�

Figure 5.2: Add a new node
“snooker table”.

ball� table�

Game Equipment�

Figure 5.3: Add a new node
“volleyball”.

are small. If it is put into a wrong position, its semantic distance scores to the false neighbors

are big. Therefore, a good concept hierarchy should guarantee that concepts related to the

similar topics have small semantic distances among themselves and are put together. An

optimal concept hierarchy should require minimum semantic distances among these concepts.

This is a desirable property that we call “minimum semantic distance”. A concept hierarchy

with this property allows the users to have a good idea about why the concepts are put

together. This greatly increases the interpretability of a constructed concept hierarchy.

On top of a local neighborhood, this property can also be applied to the entire concept

hierarchy globally. When every part of a concept hierarchy satisfies “minimum semantic

distance”, it implies that every concept is placed in a neighborhood where it is most similar

to, which further implies that the overall semantic distance among all concepts is minimal

as well.

When a new concept being added into the concept hierarchy, there is an increase in the

overall semantic distance of the entire concept hierarchy because it introduces several dis-

tances, which are non-negative and do not exist before, from itself to other nodes. However,

how much this increase will be is decided by whether the new concept is inserted at the

correct position. We observe that when a concept is in its correct position, it should give

the least increase to the overall semantic distance in the concept hierarchy. Thus minimizing

the overall semantic distance is equivalent to searching for the best possible position for a

concept. Based on this principle, we can find the best positions for the concepts and orga-

nize them into ontologies. We call this property “minimum evolution”. This idea is very
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Figure 5.4: A good concept hierarchy. Figure 5.5: A problematic concept hierarchy.

similar to the minimum evolution tree selection criterion widely used in phylogeny [HP82]

and minimum spanning tree in graph theory.

5.1.2 Abstractness

Figure 5.4 shows a concept hierarchy about “mercury pollution”. It is a good concept

hierarchy and was actually generated by one of the users in our user study (Chapter 7). In

this concept hierarchy, concepts at the upper levels are more abstract, for example, “issues”

and “actions”; while concepts at the lower levels are more concrete, for example, “polar

bear” and “wolf”. Figure 5.5 shows a concept hierarchy about the same domain. However,

it is an problematic concept hierarchy in which some concepts are put into wrong positions.

If we color-code the concepts by abstraction levels in Figure 5.4, we find that in Figure 5.5,

concepts are misplaced at the wrong abstraction levels. This is the main reason why the

concept hierarchy in Figure 5.5 seem problematic.

In general, for a good concept hierarchy, concrete concepts usually lay at the bottom

of the hierarchy while abstract concepts often occupy the intermediate and the top levels.

Concrete concepts often represent physical entities, such as “basketball” and “polar bear”;

while abstract concepts, such as “issues” and “actions”, do not have a physical form thus

we must imagine their existence. This di↵erence suggests that there is a need to treat them

di↵erently in concept hierarchy construction. Therefore, a desirable property of a good
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Figure 5.6: A problematic concept hierarchy:
long distance incoherence.

Figure 5.7: A good concept hierarchy.

concept hierarchy is that within a concept hierarchy, concepts at the di↵erent abstraction

levels should be treated di↵erently. We call this property “abstractness” property.

5.1.3 Long Distance Coherence

Most concept hierarchy construction algorithms take a bottom-up approach and only use lo-

cal information to build ontologies. The bottom-up approaches focus on immediate relations,

such as parent-child and sibling relations, but fail to verify the long distance relations, such

as grandparent-grandchild and cousin-cousin relations. Therefore, it is common for them to

generate incoherent concept chains.

This inconsistency is mainly caused by polysemies. For example, in Figure 5.6, under

the concept “car”, there are two nodes “sedan” and “sport”; they refer to subtypes of

cars. Under “sport”, there are “swim”, “ball games”, and “athletics”; they refer to “sporty

games”. When we evaluate these two groups of concepts separately, they both seem correct.

However, without special constraints, the two groups are connected together because they

share the same concept “sport”. The resulting concept chain is obviously wrong due to the

inconsistency in meanings along the path.
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To avoid the long distance inconsistency, we require that for a good concept hierarchy,

concepts on a “root-to-leaf” path should be coherent. That is, the overall semantic distances

among the concepts along the path should be minimized. This property is called “long

distance coherence”.

By applying this property, we can change the concept hierarchy in Figure 5.6 to Figure

5.7 (with a few more nodes), where the two concept groups are put in di↵erent paths and

the concepts are coherent within each path.

5.1.4 Summary

The three desirable properties essentially introduce three optimization criteria that need

to be minimized when we look for a best concept hierarchy. In Section 5.3, we discuss

how to incorporate these optimization criteria into a unified concept hierarchy construction

framework as objective functions.

With the desirable properties for ontologies in mind, we now describe the metric-based

concept hierarchy construction framework. We start with a description of the definitions

and terminologies used in this chapter.

5.2 Terminology: Concept hierarchy, Hierarchy Met-

ric, and Information Function

To provide a theoretical formulation of the metric-based concept hierarchy construction

framework, this section presents related terminologies used in this chapter.

Full Concept Hierarchy and Partial Concept Hierarchy

We take an incremental clustering approach to organize concepts into ontologies. The learn-

ing framework builds a concept hierarchy step by step by considering the concepts one after

another and placing each concept at an optimal position in the concept hierarchy. The pro-

cess starts with an initial concept hierarchy. The initial concept hierarchy can be empty or

built either manually or by some simple techniques such as checking up in WordNet [Fel98]
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ball� table�

Game Equipment�

Figure 5.8: A full concept hierarchy. The con-
cept set is {game equipment, ball, table, bas-
ketball, volleyball, football, pingpong table,
snooker table}.

ball�

Game Equipment�

table�

Figure 5.9: A partial concept hierarchy. The
concept set is {game equipment, ball, table,
basketball, volleyball, football, pingpong ta-
ble, snooker table}. Concepts “basketball”,
“snooker table”, and “pingpong table” are
missing in the partial concept hierarchy.

or matching with lexico-syntactic patterns. We add concepts one by one to this initial con-

cept hierarchy and obtain a series of “partial ontologies”, each is formed after adding a new

concept. When all the concepts in C are added into the concept hierarchy, the concept

hierarchy is called a “full concept hierarchy”. Below we give the definitions for “full concept

hierarchy” and “partial concept hierarchy”.

A Full Concept Hierarchy is a tree containing all the concepts in C. Formally,

T
full

= (C,R|D)

s.t.

8c
x

2 C, c
y

2 C, c
x

6= c
y

, 9r(c
x

, c
y

) 2 R.

A partial concept hierarchy is a tree containing only a subset of concepts in C. Formally,

T
partial

= (C,R|D)

s.t.

9c
x

2 C, c
y

2 C, c
x

6= c
y

, r(c
x

, c
y

) 62 R.
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w�(1,5)=2�
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3� 4�

5�

w�(1,2)=1.5�

w�(2,3)=1� w�(2,4)=1�

d(1,2)=1.5�
d(1,3)=2.5�
d(1,4)=2.5�
d(1,5)=2�
d(2,3)=1�

d(2,4)=1�
d(2,5)=3.5�
d(3,4)=2�
d(3,5)=4.5�
d(4,5)=4.5�

Figure 5.10: Illustration of hierarchy metric.

Figure 5.8 shows an example of a full concept hierarchy and Figure 5.9 shows an example

of a partial concept hierarchy. The concept set C is {game equipment, ball, table, basketball,

volleyball, football, pingpong table, snooker table}. The full concept hierarchy contains all

the concepts in C while in the partial concept hierarchy, concepts “basketball”, “snooker

table”, and “pingpong table” are missing.

Hierarchy Metric

We use hierarchy metric to define the semantic distance between two concepts. It is similar to

tree metric used in graph theory [Tut01]. The di↵erence is that hierarchy metric is especially

designed for the metric-based concept hierarchy construction framework and is a function

which can be applied on both leaf and non-leaf nodes; while tree metric can only be applied

to leaf nodes.

Specifically, a hierarchy metric is a function d : C ⇥ C �! R
+

, where C is the set of

concepts in a concept hierarchy T . The hierarchy metric d on a concept hierarchy T with

edge weights w for any data pair (x, y) in the concept set C is defined as the sum of all edge

weights along the path between the data pair:

d
(T,w)

(x, y) =
X

e

xy

2P (x,y)

w(e
xy

) (5.1)

where P (x, y) is the set of edges defining the path from concept c
x

to concept c
y

.

Figure 5.10 illustrates hierarchy metrics on a 5-node concept hierarchy. The five nodes in

the concept hierarchy are labeled from 1 to 5, and the edge distances between two immediate

nodes are also shown in the figure. The hierarchy metrics are calculated based on the edge

distances. For example, the hierarchy metric between nodes 1 and 2 equals to their edge

weight 1.5 because there is only one edge between these two nodes; the hierarchy metric
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between nodes 1 and 4 equals to 2.5, which is the sum of two edge weights, w(1, 2)+w(2, 4) =

1.5 + 1 = 2.5.

As a valid metric, a hierarchy metric d has to fulfill the following criteria:

• Non-negativity. d(x, y) � 0.

• Symmetricity. d(x, y) = d(y, x).

• Equality condition. d(x, y) = 0, x = y.

• Triangular inequality. d(x, y) + d(y, z) � d(x, z).

Given the definition of hierarchy metric, triangular inequality falls into a special situation,

where the sum of the hierarchy metrics for the ending points on two connected and non-

overlapped paths equals the hierarchy metric for the ending points on the entire path. That

is:

d(x, y) + d(y, z) = d(x, z).

In this dissertation research, we attempt to represent semantic distances using numeric

scores, particularly, using hierarchy metrics. We formulate the hierarchy metric as a weighted

combination of a set of underlying feature functions, and learn the weights for each feature

from training data. The training data should come from reliable sources which can provide

numerical representations of semantic distances through good examples. The reliable sources

that we use include existing ontologies, such as WordNet and ODP, and direct instructions

from the user who creates the concept hierarchy.

Information Functions

In Section 5.1, we discussed that an optimal concept hierarchy should minimize its overall

semantic distance. In order to capture the overall semantic distance, we define an information

function as the sum of the semantic distances for a set of concepts. The information function

is a measure of information represented by a concept hierarchy or part of a concept hierarchy.

We name it this way because the sum of semantic distances can be viewed as the amount

of information or surprises in a concept hierarchy. The information function can also be

considered as a cost function that we can minimize.
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Formally, for a concept hierarchy T (C,R), we define its information function Info(T ) as

the sum of the hierarchy metrics among all pairs of concepts:

Info(T ) =
X

c

x

,c

y

2C,x<y

d(c
x

, c
y

) (5.2)

where x, y are the indices for the two concepts c
x

and c
y

. The less sign “<” indicates that

the index of c
x

is less than that of c
y

. The information function does not count the same

pair of concepts twice.

For example, in Figure 5.10, the information function sums up the hierarchy metrics for

all nodes in T : Info(T ) = d(1, 2) + d(1, 3) + d(1, 4) + d(1, 5) + d(2, 3) + d(2, 4) + d(2, 5) +

d(3, 4) + d(3, 5) + d(4, 5) = 1.5 + 2.5 + 2.5 + 2 + 1 + 1 + 3.5 + 2 + 4.5 + 4.5 = 25.

We can also define the information function over a subset of concept pairs in C. For

example, we can define the information function over the concepts that are along the same

root-to-leaf path P
s,t

.

Info
P

s,t

=
X

c

x

,c

y

2P
s,t

,x<y

d(c
x

, c
y

) (5.3)

where x, y are the indices for the two concepts c
x

and c
y

, the less sign “<” indicates that the

index of c
x

is less than that of c
y

. P
s,t

is the set of nodes along the path from s to t, where

s is the root of P , and t is a leaf node at P .

For example, in Figure 5.10, node 2 and node 3 both belong to the path P
1,3

, where node

1 is the root and node 3 is the leaf. The information function sums up the hierarchy metrics

for all three nodes along the path P
1,3

: Info
P1,3 = d(1, 2)+d(2, 3)+d(1, 3) = 1.5+1+2.5 = 5.

5.3 The Metric-based Concept Hierarchy Construction

Framework

This section presents the metric-based concept hierarchy construction framework. Based

on the definitions of ontologies, hierarchy metric, and information functions, this section

formulates the task of concept hierarchy construction as a optimization framework. It first

shows how to estimate a hierarchy metric by learning the weights for a weighted combination
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of the underlying feature functions. Then based on the three desirable properties (Section

5.1), we formulate a multi-criterion optimization and solve the optimization problem by a

greedy algorithm.

5.3.1 Estimating the Hierarchy Metric

A hierarchy metric defines the semantic distance between two concepts as the sum of edge

weights along a path between them (Section 5.2). This definition is based on the assumption

that the edge weights are known. However, in general this assumption is not true and we

need to learn the pair-wise hierarchy metrics from the training data. In this section, we

demonstrate how to estimate the hierarchy metrics.

Learning a good hierarchy metric is important for the metric-based concept hierarchy

construction framework. We adopt a general definition of distance for hierarchy metric and

assume that there are some underlying feature functions which measure semantic distances

from various aspects. Particularly, we represent a hierarchy metric as a Mahalanobis distance

function [Mah36]. The hierarchy metric for concepts (c
x

, c
y

) is formulated as:

d
c

x

,c

y

=
q
�(c

x

, c
y

)TW�1�(c
x

, x
y

) (5.4)

where �(c
x

, c
y

) represents a set of pairwise underlying feature functions for concepts c
x

and

c
y

, where each feature function is �
k

: (c
x

, c
y

) with k=1,...,|�|. W is a weight matrix, whose

diagonal values weigh the underlying feature functions.

Mahalanobis distance is a general parametric function widely used in distance metric

learning [Yan06]. It measures the dissimilarity between two random vectors of the same

distribution with a covariance matrix W . The covariance matrix W scales the data points

from their original values by W 1/2. When W is the identityl matrix, Mahalanobis distance

reduces to Euclidean distance. When only diagonal values of W are taken into account,

W is equivalent to assigning weights to di↵erent axes in the random vectors. Hence it can

be viewed as a weight matrix for weighing di↵erent feature functions if the random vectors

represent the feature vectors.

Note that a hierarchy metric is still a distance metric. One important characteristic of a

valid distance metric is that it must represent valid clustering partitions, which means that
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the clustering partitions represented by the distance metric should be consistent. Therefore,

certain constraints need to be satisfied. An obvious one is that concepts in the same cluster

should have smaller distance scores than those in di↵erent clusters. Moreover, a valid distance

metric should be non-negative and satisfy the triangle inequality. To ensure such regularities,

we need to constrain W to be positive semi-definite (PSD) [Bha06]: W ⌫ 0.

We choose Mahalanobis distance as the form of hierarchy metric for two main reasons. (1)

It is in a parametric form which allows us to learn a distance function by supervised learning.

Hence it provides an opportunity to assign di↵erent weights for each type of semantic features.

(2) When W is properly constrained to be positive semi-definite, a Mahalanobis-formatted

distance will be guaranteed to satisfy non-negativity and triangle inequality. Therefore, in

this research, we use the Mahalanobis-formulated distance to measure the semantic distance

between two concepts by assigning adaptive weights to di↵erent underlying feature functions.

As long as these two conditions are satisfied, one may use other forms of distance functions to

represent a hierarchy matric. For more information on distance metric learning, see [Yan06].

In Equation 5.4, the feature functions �(c
x

, c
y

) and their values are generated from the

data (both training and test data) itself. It is the weight matrix W that we need to learn

from the training data and then based on it to estimate the hierarchy metric for test data.

Therefore learning a hierarchy metric becomes two subproblems - getting good features and

learning the weight matrix from the training data.

A feature functions �(c
x

, c
y

) can be any function which measures semantic relations

between two concepts c
x

and c
y

. For example, it can be a contextual feature, co-occurrence,

a syntactic dependency feature, a lexico-syntactic pattern, word length di↵erence, or overlap

of two concept’s definitions. We use heterogonous feature functions to evaluate the semantic

relation between two concepts and aim to capture a wide range of characteristics for their

semantic relations. Section 5.4 gives more details on the feature functions.

We can estimate W by minimizing the expected loss between the hierarchy metrics d

generated from the training data and the expected value d̂. Theoretically, the expected loss

(or the risk) can be represented as :

R(d̂) =

Z
�(d, d̂)p(c,d)dcdd (5.5)
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where d̂ is the expected hierarchy metric, d is the observed hierarchy metric in the training

data, x is the concepts, and p(c,d) is the joint distribution of concepts and their hierarchy

metrics.

We choose to minimize the expected loss through minimizing the squared errors. Thus

the loss function � in Equation 5.5 is defined as the squared error loss of two hierarchy

metrics. In the training data, a hierarchy metric d
c

x

,c

y

for a concept pair (c
x

, c
y

) is generated

by assuming every edge weight as 1 and summing up all the edge weights along the shortest

path from c
x

to c
y

.

Using minimization of squared error and constraining the weight matrix W to be positive

semi-definite, the optimization function for the parameter estimation can be formulated as:

min
W

|C|X

x=1

|C|X

y=1

✓
d
xy

�
q
�(c

x

, c
y

)TW�1�(c
x

, c
y

)

◆
2

(5.6)

subject to W ⌫ 0

where d
xy

is the abbreviation of d
c

x

,c

y

, �(c
x

, c
y

) represents a set of pairwise underlying feature

functions; W is the weight matrix, which weighs the underlying feature functions.

The optimization can be done by any standard semi-definite programming (SDP) solver.

Matlab software packages sedumi1 and yalmip2 are used to perform the optimization in the

dissertation research.

5.3.2 The Minimum Evolution Objective

Section 5.1 described three desirable properties that a good concept hierarchy should pos-

sess. In this section and the following sections, we apply these properties to formally define

the optimization criteria for concept hierarchy construction. We start with the minimum

evolution property in this section.

Metric-based concept hierarchy construction takes an incremental clustering approach to

organize concepts into ontologies. The learning framework builds a concept hierarchy step by

step by considering the concepts one by one and placing each concept at an optimal position

1
http://sedumi.mcmaster.ca/

2
http://control.ee.ethz.ch/

˜

joloef/yalmip.php
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in the concept hierarchy. Based on the minimum evolution property presented in Section 5.1,

the algorithm inserts each concept into the concept hierarchy so that the insertion minimizes

the overall semantic distances. The algorithm searches through all the possible positions for

the new concept and evaluates the resulting overall semantic distance due to this insertion

and select the one minimizes the overall semantic distance at each step.

Moreover, the minimum evolution property suggests to avoid dramatic structure changes

when a new node is added. We thus define that the goal of concept hierarchy construction is

to find an optimal full concept hierarchy T̂ such that the information changes are the least

from the initial concept hierarchy T 0, i.e., to find:

T̂ = argmin
T

0
�Info(T 0, T 0) (5.7)

where T 0 is a full concept hierarchy, whose concept set equals to C.

To find the optimal solution for Equation 5.7, we need to find the optimal concept set Ĉ

and the optimal relation set R̂. Since the optimal concept set for a full concept hierarchy is

always C, the only unknown part is R̂. Thus, Equation 5.7 can be equivalently transformed

into:

R̂ = argmin
R

0
�Info(T 0(C,R0), T 0(S0, R0)) (5.8)

where S0 is the initial concept set, R0 is the initial relation set.

Every insertion of concepts produces a new partial concept hierarchy. Therefore the opti-

mal partial concept hierarchy at each insertion step is the one that gives the least information

change. At each insertion, after adding the nth concept, the best current concept hierarchy

T n is one that introduces the least change of information from the previous concept hierarchy

T n�1:

T n = argmin
T

0
�Info(T n�1, T 0) (5.9)

where the information change function is the absolute di↵erence between the information of

these two ontologies:

�Info(T n�1, T 0) = |Info(T n�1)� Info(T 0)|. (5.10)

The updating function for the set of relations Rn after the nth concept z is inserted can be
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calculated as:

R(n) = argmin
R

0
�Info(T n, T n�1) (5.11)

= argmin
R

0
�Info(T (Sn�1 [ {c

z

}, R0), T (Sn�1, Rn�1))

By plugging in the definitions of the information change function information function

Info(.) (Equation 5.2), the updating function becomes the minimization of the absolute

di↵erence in the information for the ontologies with and without the nth concept:

R(n) = argmin
R

0
|

X

c

x

,c

y

2Sn�1[{c
z

}

d(c
x

, c
y

)�
X

c

x

,c

y

2Sn�1

d(c
x

, c
y

)| (5.12)

where d
(c

x

,c

y

)

is the hierarchy metric between c
x

and c
y

.

After transforming the absolute function into constraints, we can formulate Equation

5.12 into a minimization problem as follows:

min u (5.13)

subject to u 
X

c

x

,c

y

2Sn[{c
z

}

d(c
x

, c
y

)�
X

c

x

,c

y

2Sn

d(c
x

, c
y

) (5.14)

u 
X

c

x

,c

y

2Sn

d(c
x

, c
y

)�
X

c

x

,c

y

2Sn[{c
z

}

d(c
x

, c
y

) (5.15)

x < y (5.16)

where the first two constraints (Equation 5.14 and Equation 5.15) guarantee that the infor-

mation changes are bounded by the absolute di↵erence between T n and T n�1. The third

constraint (Equation 5.16) defines the order of the concepts so that we do not compute the

pair-wise distances twice.

The minimization function follows the minimum evolution property; hence we call it the

minimum evolution objective.

To look for the best concept hierarchy according to this objective, we need to exhaustively

search for the best position among all the possible positions in a concept hierarchy for every

new concept. This process is not e�cient. We need to find good constraints to limit the
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search space. The constraints need to be reasonable and obey the desirable properties for

a good concept hierarchy. The other two desirable properties, “abstractness” and “long

distance coherence”, nicely provide such constraints to reduce the search space in minimum

evolution algorithm. Since this property requires that concepts at a horizontal level to follow

similar characteristics, this property is equivalent to posting many horizontal constraints

to a concept hierarchy. It not only produces a more sensible concept hierarchy since it

requires the learning algorithm to obey concept abstractness, but also reduces the possible

search space for the optimal concept positions hence improves the e�ciency. Similarly, the

coherence property emphasizes on the “root-to-leaf” path, and is equivalent to posting many

vertical constraints to a concept hierarchy. We describe the two constraints/objectives in

the following two sections.

5.3.3 The Abstractness Objective

Metric-based concept hierarchy construction addresses concept abstractness in ontologies.

Unlike most prior research (Chapter 2), which uses a single rule or a single feature func-

tion to infer the semantic relations between concepts at all levels of concept abstraction,

metric-based concept hierarchy construction supports di↵erent feature functions at di↵erent

abstraction levels.

According to the abstractness property (Section 5.1), we formulate the learning frame-

work such that concepts on the same abstraction level share the same weighted combinations

of the feature functions to derive hierarchy metrics; while concepts at di↵erent abstraction

levels do not share the same weights for their hierarchy metrics because they should have

di↵erent characteristics.

Particularly, we model concept abstractness explicitly by learning separate weight ma-

trices for concepts at di↵erent abstraction levels. Suppose L
i

is the subset of concepts lying

at the ith level of a concept hierarchy T , and i is the index of the levels in a concept hierar-

chy. The larger the indices are, the lower the levels. Higher levels contain abstract concepts,

while lower levels contain concrete concepts. L
1

is ignored here since it only contains a single

concept, the root. To demonstrate, in Figure 5.10, node 1 is at level L
1

, node 2 and node 5

are at level L
2

.

Based on the abstractness property and the above notations about abstraction levels, we
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formulate the abstractness property as follows:

8c
x

2 L
i

, c
y

2 L
j

, |i� j| > 1, (5.17)

d(c
x

, c0
x

) =
q

�(c
x

, c0
x

)TW�1

L

i

�(c
x

, c0
x

); (5.18)

d(c
y

, c0
y

) =
q

�(c
y

, c0
y

)TW�1

L

j

�(c
y

, c0
y

); (5.19)

W
L

i

6= W
L

j

(5.20)

where c0
x

is one of the immediate neighbors (parents or children) of c
x

, d(c
x

, c0
x

) is the hierar-

chy metric which measures the semantic distance between c
x

and its immediate neighbor c0
x

,

and �(c
x

, c0
x

) is the set of feature functions. c0
y

, d(c
y

, c0
y

), and �(c
y

, c0
y

) are defined for concept

c
y

similarly. W
L

i

and W
L

j

are the weight matrices used for concepts at abstraction levels

L
i

and L
j

respectively. Since we only consider the cases when c
x

and c
y

are not immediate

neighbors, L
i

and L
j

are not next to each other and their indices |i � j| > 1. In the case

that c
x

and c
y

are immediate neighbors, we do not force this property to be true since they

may share the same hierarchy metrics d(c
x

, c
y

).

An abstraction level L
i

is characterized by its own weight matrixW
L

i

. Using minimization

of squared error and constraining the weight matrix W to be positive semi-definite, the

parameter estimation for W at abstraction level L
i

is:

W
L

i

= min
W

|L
i

|X

x=1

|N(c

x

)|X

x

0
=1

⇣
d
xx

0 �
p
�(c

x

, c0
x

)TW�1�(c
x

, c0
x

)
⌘
2

(5.21)

subject to W ⌫ 0

where c0
x

is an immediate neighbor to c
x

, |N(c
x

)| is the number of concepts in the c
x

’s

neighborhood N(c
x

), d
xx

0 is the abbreviation for d(c
x

, c0
x

).

This minimization follows the abstractness property; hence we call it the abstractness

objective.

Since modeling of concept abstractness is done by approximating some characteristics for

each abstraction level as a weighted combination of a set of underlying feature functions, in

theory there is no specific constraint on quantity and definitions of the underlying feature

functions. In practice, the selection of good feature functions may depend on a specific



CHAPTER 5. METRIC-BASED CONCEPT HIERARCHY CONSTRUCTION 98

application. Nevertheless, the design of the learning framework o↵ers a flexible combination

of various features.

5.3.4 The Coherence Objective

Metric-based concept hierarchy construction addresses concept coherence in long distance.

Along a path from the root to a leaf in a concept hierarchy, the framework requires all the

concepts to be about the same topic. They need to be coherent no matter how far away two

concepts are apart in this path. This requires the sum of the semantic distances in the path

to be as small as possible.

When a new concept c
x

is added into a concept hierarchy T , the long distance coherence

property (Section 5.2) requires that the optimal root-to-leaf path P̂ containing c
x

should

satisfy the following condition:

P̂ = argmin
P

0
Info0

P

(5.22)

where P̂ is an optimal path which c
x

eventually goes to. P 0 is one of the possible paths that

c
x

can be added into T .

Recall that we define the information function for concepts in a root-to-leaf path in

Equation 5.3 as:

Info
P

s,t

=
X

c

x

,c

y

2P
s,t

,x<y

d(c
x

, c
y

)

where P
s,t

is the set of nodes along the path from concept s to concept t. By plugging in

the definition, when a new concept c
z

arrives at a path P , the information function for this

particular path should be minimized as follows:

P̂
c

z

= argmin
P

0
c

z

X

c

x

,c

y

2P 0
c

z

,x<y

d(c
x

, c
y

) (5.23)

where P
c

z

is a root-to-leaf path including c
z

, x < y defines the order of the concepts so we

only compute a pair-wise distance between two concepts once.

This minimization follows the long distance relation property; hence we call it the long

distance objective.



CHAPTER 5. METRIC-BASED CONCEPT HIERARCHY CONSTRUCTION 99

5.3.5 The Multi-Criterion Optimization Algorithm

We have presented three optimization objectives - minimum evolution, abstractness, and

coherence objectives. It is necessary to unify them into a single optimization framework

and seek the optimal solution for this framework. This section presents the unified objective

function and the optimization algorithm.

As an incremental concept hierarchy construction framework, metric-based concept hi-

erarchy construction handles the insertion of concepts one by one. At each insertion, a new

concept c
z

is added into the existing partial concept hierarchy, which produces a new partial

concept hierarchy and a new set of relations R(c
z

, .). The new set of relations decide where

to put this concept. The evaluation of the best position depends on evaluating the semantic

distances of concept c
z

and other concepts in the concept hierarchy. Particularly, we need to

know the hierarchy metrics d(c
z

, .) between concept c
z

and its immediate neighbors. Accord-

ing to the abstractness property, inserting c
z

to di↵erent abstraction levels yields di↵erent

hierarchy metrics between c
z

and other concepts. The prediction of the hierarchy metric is

done through estimation of the weight matrices at all di↵erent abstraction levels. The weight

matrices W
L

i

are estimated as in Equation 5.21.

Based on the learned weight matrices, the hierarchy metrics for c
z

can be predicted as:

8i = 1, ..., |depth(T )|,

d
L

i

(c
z

, .) =
q

�(c
z

, .)TW�1

L

i

�(c
z

, ) (5.24)

The minimum evolution and coherence objectives decide the best position that a new

concept should be added into the concept hierarchy. Particularly, c
z

is tried at every possible

position in the current partial concept hierarchy T n as either a parent or a child to an

existing node. The minimum evolution objective picks the optimal position to insert c
z

,

which minimizes both the overall semantic distances and the information change from the

previous partial concept hierarchy. The coherence objective watches for a root-to-leaf path

P 0
c

z

where c
z

is inserted into and requires that the semantic distances of the path is minimized.

To optimize the “minimum evolution” and “coherence” objectives, we introduce a variable

� 2 [0, 1] to control the contribution from each objective. The multi-criterion optimization

function is formulated as follows:
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ALGORITHM 5.3.5: Multi-Criteria Optimization.
foreach i = 1, ..., |depth(T

training

)|
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i

= min
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|
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;

foreach c
z

2 C \ S
S  S [ {c

z

};
foreach i = 1, ..., |depth(T )|

if W
L

i

⌫ 0

d
L

i

(c
z

, .) =
q

�(c
z

, .)TW�1

L

i

�(c
z

, );

R R [ {argmin
R(c

z

,.)
(�u+ (1� �)v)};

Output T (S,R)

Figure 5.11: The algorithm for multi-criteria optimization.

min�u+ (1� �)v (5.25)
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v =
X

c

j

,c

k

2P 0
c

z

,j<k

d(c
j

, c
k

), (5.28)

x < y, (5.29)

0  �  1. (5.30)

where u represents the “minimum evolution” objective, and v represents the “coherence”

objective, x < y defines the order of the concepts so we only compute a pair-wise distance

between two concepts once, P 0
c

z

is a root-to-leaf path where c
z

is inserted into, and Sn is the

concept set for the nth partial concept hierarchy.

The above optimization can be solved by a greedy algorithm. Moreover, the optimal

solution can be indicated by an optimal set of relations R(c
z

, .). Each time when a new

concept arrives, the algorithm first estimates its hierarchy metrics, and then based on that

to find the optimal position for the multi-criterion optimization. It is outlined as shown in

Algorithm 5.3.5.
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This greedy algorithm presents a general incremental procedure to construct ontologies.

By minimizing the concept hierarchy structure changes, modeling concept abstractness, and

modelling long distance coherence at each step, it finds the optimal position of each concept

in a concept hierarchy.

During this incremental process, every concept is added into the hierarchy one by one.

Suppose there are N concepts in total to be added. Among these N concepts, assume m

of them are already in the concept hierarchy, a new concept will be added into this size-m

concept hierarchy. We need to put this new concept at some temporary positions within the

current concept hierarchy, then compute the new overall semantic distance for the minimum

evolution objective and path semantic distance for the coherence objective. The temporary

positions that we try are either a dummy parent or a dummy child to an existing node in

the current hierarchy. For each new concept, this process yields 2m operations. Moreover,

for each temporary position, when calculating semantic distances for the minimum evolution

objective, the time complexity is O(m). This is because that we need to compute the

distance between the new concept at the temporary position to all existing m nodes in the

hierarchy. Note that for the pairwise distances between existing nodes in the hierarchy,

their distances should already have been calculated in the previous iterations and therefore

no additional computational cost remains for this iteration. The abstractness objective is

used to estimate semantic distances. Its computation mainly happens during training phrase

thus does not contribute time costs to the hierachy construction process. For the concept

coherence objective, it needs to compute the path semantic distance for each path. However,

all the pairwise distances have already been calculated either in the previous iterations or in

the step to calculate minimum evolution objective, therefore, coherence objective does not

introduce much overhead cost, its time complexity is O(1). Therefore, for each newly added

concept, the algorithm yields a time complexity of O(2m2): distances to existing nodes - m,

and trying di↵erent positions - 2m.

Since we grow the concept hierarchy by adding more and more nodes from scratch, m

increases from 1 to N � 1. Therefore the overall time complxity is O(2 ⇤ 12+2 ⇤ 22+2 ⇤ 32+
...+ 2 ⇤ (N � 1)2) = O(

P
N�1

i

2 ⇤ i2) = O(1
3

(N � 1)N(2N � 1)) = O(N3). Thus considering

all three objectives, the big O notation for this greedy algorithm is O(N3).

The order in which concepts are added into the concept hierarchy may a↵ect the structure
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of the final concept hierarchy. Currently we insert concepts in an arbitrary order for multiple

random restarts. The best resulting concept hierarchy is then selected as the final concept

hierarchy. In practice, we perform 5 to 15 random restarts with di↵erent random S0 and pick

the best resulting T 0, which gives the least information change among all possible candidates.

5.4 The Features

The features used in this dissertation research are indicators of semantic relations between

two concepts [YC09a]. Given two concepts c
x

and c
y

, a feature is defined as a function which

generates a numeric score �(c
x

, c
y

) 2 <. A weighted combination of these features functions

in the learning algorithm make it possible to learn and adjust the weights for each feature.

In this dissertation research, we concentrate on six commonly-used types of features

for measuring semantic distances. The types of features include contextual, co-occurrence,

syntactic dependency, lexico-syntactic patterns, and other features.

All feature values are normalized and lie in the range of [0,1]. The higher a feature value,

the more similar the concept pair is according to this feature.

5.4.1 Contextual Features

The first type of features employ context to measure the semantic distance between two

concepts. As stated in the Distributional Hypothesis [Har54], words appearing in similar

contexts tend to be similar. Therefore, word meanings can be inferred from and represented

by contexts. We hence develop the following contextual features:

Google Global Context KL-Divergence

This feature function measures the Kullback-Leibler divergence (KL divergence) [SMTC05]

between language models associated with two input concepts c
x

and c
y

.

We build a Web-based auxiliary dataset to assist generating this feature. Besides the

document collection for which we construct the concept hierarchy, an auxiliary dataset pro-

vides additional context for the concepts. Moreover, when only concepts but no documents

are given for concept hierarchy construction, the auxiliary datasets become the only source

to obtain contextual information for the concepts.
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The Google auxiliary dataset collects the top 1,000 documents returned by the Google

search engine when querying Google with a concept or a concept pair. The Web documents

in the auxiliary dataset are split into sentences, and parsed by a POS tagger3, a semantic role

tagger (ASSERT4), and a syntactic parser (Minipar5). This dataset is used to generate not

only this feature, but also other features, including Google local context KL-divergence, docu-

ment PMI, sentence PMI, Minipar syntactic distance, modifier/object/subject/verb overlap,

hypernym/sibling/part-of pattern-based features, and Google PMI.

The global context of a concept is considered as the Web documents returned for it. We

build the global context for each concept into a unigram language model. KL divergence

between two language models associated with the two input concepts is used as the output

value for this feature function. Particularly, if the language model for concept c
x

is p, for c
y

is q, the KL divergence can be calculated as:

D
KL

(p||q) =
X

i

p
i

log
2

p
i

q
i

where i is the index for the ith word in p, p
i

is this word’s frequency in p, and q
i

is its

frequency in q. If p
i

= 0 or q
i

= 0, Dirichlet smoothing [ZL04] is applied.

Wikipedia Global Context KL-Divergence

Similar to the Google Global Context KL-Divergence, this feature function calculates the

KL divergence between two unigram language models associated with the two input con-

cepts. The only di↵erence is that the Google auxiliary dataset is substituted by a Wikipedia

auxiliary dataset.

To create the Wikipedia auxiliary dataset, we download the entire Wikipedia document

collection and index it by the Indri search engine6. The Wikipedia auxiliary dataset collects

the top 100 documents returned by Indri when querying the index with a concept. If the

number of returned documents is less than 100, we just keep all the returned ones. We then

build unigram language models for the concepts and calculate the KL divergence between

3
http://nlp.stanford.edu/software/tagger.shtml.

4
http://cemantix.org/assert.

5
http://www.cs.ualberta.ca/lindek/minipar.htm.

6
http://www.lemurproject.org/indri/.
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the models in a way similar to the Google global context KL-divergence.

Google Local Context KL-Divergence

This feature function uses the Google auxiliary dataset to extract local contexts for concepts

and compares their local contexts. We define the local context of a concept c
x

is the left

two and the right two words surrounding it. Among all the documents containing c
x

in

the Google auxiliary dataset, the surrounding words around c
x

are collected and built into a

unigram language model for the concept. Similarly, we can derive a unigram language model

for the other concept c
y

using its surrounding words. This feature function outputs the KL

divergence of the two unigram models.

Wikipedia Local Context KL-Divergence

Similar to the Google local context KL-divergence, this feature function uses the local context

of concepts, i.e., the left two and the right two words surrounding the concepts, to calculate

a KL-divergence between two concepts. The only di↵erence is that we use the Wikipedia

auxiliary dataset as the document collection for extracting the local contexts.

5.4.2 Co-occurrence Features

The second type of features use co-occurrence information of two concepts. Specifically, we

measure the co-occurrence of two concepts c
x

and c
y

by their point-wise mutual information

(PMI):

pmi(c
x

, c
y

) = log
Count(c

x

, c
y

)

Count(c
x

)Count(c
y

)
(5.31)

where the Count() function can be defined at di↵erent levels of text granularity. For exam-

ple, it can be the number of documents containing one of the concepts or containing both

concepts. It can also be the number of sentences containing c
x

or c
y

alone or containing both.

Based on di↵erent definitions of Count(.), we have the following co-occurrence features:
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Document-level PMI

This feature function measures the document-level PMI, where Count(.) is defined as the

number of documents in a dataset containing the concept(s).

Sentence-level PMI

This feature function measures sentence-level PMI, where Count(.) is defined as the number

of sentences in a dataset containing the concept(s).

Google PMI

This feature function measures Web-based PMI according to the total number of search

results returned by Google for a concept or a pair of concepts. Count(.) is defined as n for

concept c
x

as in the line of “Results 1-10 of about n for c
x

” appearing on the first page of

Google search results using c
x

as the search query. For a concept pair, we query Google by

using a concatenation of the two concepts.

5.4.3 Syntactic Dependency Features

The third type of features employ syntactic dependency analysis. We use Minipar7 to gen-

erate syntactic parse trees and based on them to induce a feature called “Minipar syntactic

distance”. We also use ASSERT (Automatic Statistical SEmantic Role Tagger)8 to pro-

duce semantic role labels for each candidate predicate in sentences. The semantic similarity

between two concepts are measured based on how much they overlap in terms of their neigh-

boring semantic roles. We have the following syntactic dependency features:

Minipar Syntactic Distance

This feature function measures the number of edges between two concepts c
x

and c
y

in a

syntactic parse tree. It is the averaged length of the shortest syntactic paths (in the first

syntactic parse tree returned by Minipar) between two concepts. In particular, for each

sentence s
i

that contains both c
x

and c
y

, we use Minipar to generate a syntactic parse tree

7
http://www.cs.ualberta.ca/lindek/minipar.htm.

8
http://cemantix.org/assert.
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t
s

i

for s
i

; c
x

and c
y

appear as two nodes in t
s

i

. Let d
i

be the shortest edge distance, i.e., the

number of edges, between c
x

and c
y

in t
s

i

. Then this feature function outputs an averaged

value of d
i

for all i where sentences s
i

containing both c
x

and c
y

. The sentences are from

both the original document collection and the Google auxiliary dataset.

Modifier Overlap

This feature function measures the number of overlaps between modifiers for each of the two

concepts. The modifiers are identified based on the tags produced by Minipar. Suppose a

sentence s
i

contains c
x

. We parse the sentence with Minipar. Within a parse tree, we define

a modifier to a concept c
x

to be the Adjective (ADJ) or Noun (NN, NNS, NNP, or NNPS)

on the left hand side of c
x

but still within the scope of c
x

’s parent node.

For example, suppose concept c
x

is “federal rule”, a Minipar parsed tree for the sentence

“An EPA proposed federal rule applies.” is:

[S [NP [ [DET An] [NP [NN EPA] [ADJ proposed] [ADJ federal] [NN rule]]] [VP

applies].]

The parent node for “federal rule” is “NP”. Within its scope and on the left hand side

of “federal rule”, “EPA” is tagged as NN and “proposed” is tagged as ADJ; both words are

considered as the modifier for “federal rule”. Thus the modifier in this sentence for “federal

rule” is “EPA proposed”.

We gather all unique modifiers for c
x

in all sentences in the original document collection

and the Google auxiliary dataset. Thus we have a list of modifiers for c
x

. Similarly, we can

find the modifiers for c
y

. The number of overlaps between the two lists of modifiers is the

output value for this feature function.

Object Overlap

This feature function measures the number of overlaps between objects in sentences with two

concepts c
x

and c
y

as the sentences’ subjects. The objects and other semantic roles (such as

subjects or verbs) are recognized by ASSERT. Suppose a sentence s
i

contains c
x

. We parse

the sentence with ASSERT. The object for a concept c
x

is labeled as “OBJ” (or “ARG1” in

ASSERT’s codes) in the parsed sentence.
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For example, suppose c
x

is “the EPA”, and the sentence “The EPA should require power

plants to cut mercury pollution by 90% by 2008” is labeled as follows:

[ARG0 The EPA] [ARGM-MOD should] [TARGET require ] [ARG1 power plants]

[ARGM-PNC to cut mercury pollution by 90% by 2008]

In the labeled sentence, “the EPA” is the subject and is labeled as “ARG0” in ASSERT’s

codes. The object is “power plants”, which is labeled as “ARG1” in ASSERT’s codes. Thus

the object for “the EPA” is “power plants” in this sentence.

We gather all the unique objects for c
x

in all sentences in the original document collection

and the Google auxiliary dataset. Similarly, we can obtain a list of unique objects for c
y

. We

then compare the number of overlaps between the two lists of objects for these two concepts

and output the resulting value for this feature function.

Subject Overlap

This feature function measures the number of overlaps between subjects in sentences with c
x

or c
y

as the sentences’ object. We also use ASSERT to identify the subjects for two concepts

in a similar manner as we calculate the value for object overlap. The only di↵erence is that

c
x

and c
y

are now labeled as OBJ (or “ARG1” in ASSERT’s codes) and the subjects are

labeled as SUBJ (or “ARG0” in ASSERT’s codes). We gather all the unique objects for c
x

in all sentences in the original document collection and the Google auxiliary dataset.

Verb Overlap

This feature function measures the number of overlaps between verbs for c
x

and c
y

in sen-

tences containing them. We use ASSERT to identify the verbs for the two concepts in a

similar manner as we calculate the value for object overlap and subject overlap. The only

di↵erence is that c
x

and c
y

are either labeled as SUBJ (or “ARG0” in ASSERT’s codes) or

OBJ (or “ARG1” in ASSERT’s codes) and the verb are labeled as TARGET by ASSERT.

We gather all the unique objects for c
x

in all sentences in the original document collection

and the Google auxiliary dataset.
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Hypernym Patterns Part-of Patterns Sibling Patterns
NP

x

(,)? and/or other NP
y

NP
x

of NP
y

NP
x

and/or NP
y

such NP
x

(,)? as NP
y

NP
y

’s NP
x

NP
x

as well as NP
y

NP
y

(,)? such as NP
x

NP
y

has/had/have NP
x

NP
y

(,)? including NP
x

NP
y

is made (up)? of NP
x

NP
y

(,)? especially NP
x

NP
y

comprise(s) (of)? of NP
x

NP
y

like NP
x

NP
y

consist(s) (of)? of NP
x

NP
y

called NP
x

NP
x

is a/an NP
x

NP
x

, a/an NP
x

Table 5.1: Lists of lexico-syntactic patterns. In a hypernym pattern, NP
x

indicates the slot
for a hyponym concept and NP

y

indicates the slot for the hypernym concept. In a part-of
pattern, NP

x

indicates the slot for a meronym concept and NP
y

indicates the slot for the
coordinate concept. In a sibling pattern, both NP

x

and NP
y

indicate the slots for two sibling
concepts. ? indicates optional.

5.4.4 Lexico-Syntactic Patterns

The fourth type of features are lexico-syntactic patterns. Table 5.4.4 lists all patterns used

in this dissertation research. For a hypernym pattern, NP
x

indicates the slot for a hyponym

concept and NP
y

indicates the slot for a hypernym concept. For a part-of pattern, NP
x

indicates the slot for a meronym concept and NP
y

indicates the slot for a coordinate concept.

For a sibling pattern, both NP
x

and NP
y

indicate the slots for two sibling concepts. The

pattern-based features include:

Hypernym Patterns

This feature function is based on the patterns proposed by [Hea92] and [SJN05]. The feature

function returns a vector of scores for two concepts, one score per pattern. A score is 1 if

two concepts match a pattern in the original document collection or the Google auxiliary

dataset, 0 otherwise.

Sibling Patterns

This feature function contains patterns indicating a sibling relation. They are basically

conjunction patterns. The feature function returns a vector of scores for two concepts, one
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score per pattern. A score is 1 if two concepts match a pattern in the original document

collection or the Google auxiliary dataset, 0 otherwise.

Part-of Patterns

This feature function is based on patterns proposed by [GBM03] and [CW07]. The feature

function returns a vector of scores for two concepts, one score per pattern. A score is 1 if

two concepts match a pattern in the original document collection or the Google auxiliary

dataset, 0 otherwise.

5.4.5 Other Features

We also use simple features such as word length or definition di↵erences to measure the

semantic distance between two concepts. We call them “other features”. They include:

Word Length Di↵erence

Word length has been shown impact on how people recognize and memorize words. It is

influenced by a word’s abstractness. We measure the word length di↵erence between two

concepts (including both words and phrases) as one of the semantic distance measures. This

feature function returns the length di↵erence (excluding white spaces) between two concepts

c
x

and c
y

. For example, if c
x

is “basketball”, and c
y

is “sport”, their word length di↵erence

is 10� 5 = 5.

Definition Overlap

This feature function measures how similar the definitions for two concepts c
x

and c
y

are. In

particular, we submit a query for c
x

to Google to get its definitions. The query is in the format

of “define:c
x

”. For example, if c
x

is “government”, we form the query as “define:government”

and submit it to Google. Google returns a page containing a list of entries, each explaining

the meaning of the word. Here we only show two definitions for “government” in this example

as follows:

• the body with the power to make and/or enforce laws to control a country, land area,

people or organization. [en.wiktionary.org/wiki/government, 10/9/2011]
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• a political institution that decides, regulates, controls, and enforces public policy.

[www.teogathalaw.com/tax-glossary.php, 10/9/2011]

Similarly, we can get the definitions for c
y

. After removing stop words, and applying

stemming, we compare the number of word overlaps between the definitions for the two

concepts and normalize the value by the length of the definitions.

5.4.6 Summary

These heterogeneous features vary from simple statistics to complicated syntactic depen-

dency features, basic word length to comprehensive Web-based contextual features. The

flexible design of the learning framework allows us to use all of them. This more general

framework has the potential to learn more complex ontologies than prior studies.

5.5 Evaluation

This section presents the evaluation for the metric-based concept hierarchy construction

framework. In Section 5.5.1 we describe our training and test sets, measurement, and base-

line systems. We then present various experiments in the following sections. Section 5.5.2

tests the performance of the metric-based concept hierarchy construction framework for noun

concept hierarchy construction and also compares our system with three baseline systems.

Section 5.5.3 reports the e↵ect of concept abstractness. Section 5.5.4 presents the exper-

iments on concept coherence. Section 5.5.5 studies the impact of individual features on

di↵erent relations. Section 5.5.6 studies the interaction of individual features and abstrac-

tion levels. Section 5.5.7 studies the stability of concept hierarchies constructed under slight

document set changes.

5.5.1 Evaluation Methodology

The Training, Test Sets and Cross-Validation

To evaluate the metric-based concept hierarchy construction framework, we use the frame-

work to reconstruct concept hierarchy fragments from existing ontologies and compare the
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obtained concept hierarchy fragments with the ground truth. Particularly, we use concept hi-

erarchy fragments extracted from WordNet and ODP as described in Chapter 3. 50 datasets

from WordNet/is-a, 50 from WordNet/part-of, and 50 from ODP/is-a. Each concept hier-

archy fragment contains concepts and relations between the concepts. We can also transfer

the ontologies in to pairs of concepts.

With the extracted ontologies from WordNet and ODP, we create both training and test

sets. The training data is in the same format of an extracted concept hierarchy: a set of

concepts and a set of pairwise relations between the concepts. The test data only contain

the concepts in the corresponding concept hierarchy and the relations need to be identified

by an automatic concept hierarchy construction system.

We use leave-one-out cross validation to average the system performance across di↵erent

training and test sets. For each 50 datasets from WordNet hypernyms, WordNet meronyms

or ODP hypernyms, we pick 49 of them to generate the training data, and then test on the

remaining dataset. We repeat the process for 50 times, with di↵erent training and test sets

each time, and report the averaged system performance across all 50 runs.

Measurements

We use Fragment-Based Similarity (FBS) presented in Section 3.5 as one of the measurements

to evaluate the system performance.

Moreover, both a constructed concept hierarchy and a gold standard concept hierarchy

can be converted into a list of parent-child pairs if we enumerate all the pairs of parent and

child nodes in the concept hierarchy. Note that even if a concept hierarchy is a “part-of”

concept hierarchy, it still has parent-child nodes since the concept hierarchy is a tree. With

a list of node pairs from a concept hierarchy, we can compare it with a list generated from

the gold standard. We measure Precision, Recall, and F1-measure for the two lists.

Baseline Systems

We compare the metric-based concept hierarchy construction system with three state-of-the-

art automatic concept hierarchy construction systems.

The first baseline system is a re-implementation of the Hearst system proposed by Marti

Hearst with 6 hypernym patterns [Hea92]. We call this baseline system HE. In particular,
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this system uses a hand-crafted list of hypernym patterns, such as “NPx, and/or other NPy”

and “NPy including NPx”, as seeds and employs bootstrapping to discover new instances

and patterns for is-a relation. The instances were successfully used to verify and augment

the WordNet noun hierarchy as reported in [Hea92].

The second baseline system used in the evaluation is a re-implementation of the system

proposed by Girju et al. (2003) [GBM03]. We call the system GI. The system is for the part-

of relations. Part-of relation is a bit more complicated than is-a relation because there are

many di↵erent kinds of part-whole structures. The system uses 3 most common meronym

patterns [GBM03]. The patterns are either phrase-level patterns as in “high heel shoes”,

“girl’s mouth”, “eyes of a baby”, and “door knob”, or sentence-level patterns as in “the

wheel is part of the car” and“ the car contains four wheels”.

The third baseline system is proposed by Snow et al. at Standford University [SJN06].

We call it PR since it is a probabilistic framework. This system also take an incremental

approach to construct ontologies. However, in their work, a concept hierarchy grows based on

maximization of conditional probability of relations given evidence; while in our work it grows

based on optimization of concept hierarchy structures and modeling of concept abstractness

and concept coherence. Moreover, our approach employs heterogeneous features from a wide

range while they used only syntactic dependency. To have a fair comparison with PR, we

extend their work and estimate the conditional probability of a relation given the evidence

P (R
ij

|E
ij

) by using the same set of features as in our system.

5.5.2 Performance of Automatic Concept Hierarchy Construction

Our system is called ME, which is implemented based on the metric-based concept hierarchy

construction framework described in this chapter.

Table 5.2 shows Precision, Recall, F1-measure, and FBS of the three baseline systems

and our system for WordNet hypernyms (is-a), WordNet meronyms (part-of ) and ODP

hypernyms (is-a). The ground truth is generated from WordNet and ODP fragments. Bold

font indicates the best performance in a column. Note that HE is not applicable to the

part-of relation, and GI is not applicable to the is-a relation.

We observe that the proposed system ME consistently outperforms all baseline systems
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Table 5.2: System performance (measured in Precision, Recall, F1-measure, and FBS).
WordNet/is-a

System Precision Recall F1-measure FBS
HE 0.85 0.32 0.46 0.63
GI n/a n/a n/a n/a
PR 0.75 0.73 0.74 0.70
ME 0.82 0.79 0.82 0.92

ODP/is-a
System Precision Recall F1-measure FBS
HE 0.31 0.29 0.30 0.60
GI n/a n/a n/a n/a
PR 0.60 0.72 0.65 0.72
ME 0.64 0.70 0.67 0.83

WordNet/part-of
System Precision Recall F1-measure FBS
HE n/a n/a n/a n/a
GI 0.75 0.25 0.38 0.50
PR 0.68 0.52 0.59 0.71
ME 0.69 0.55 0.61 0.81

and produces the best F1-measures and FBS scores for all three tasks. Moreover, the F1-

measures and the FBS scores are high, especially for WordNet is-a, which shows that our

approach is very e↵ective.

We also notice that systems using heterogeneous features (ME and PR) achieve higher

F1-measure than systems only using patterns (HE and GI ) with a significant absolute gain

of >30%. There is also a significant absolutoin gain of 30%-40% for FBS. Generally speaking,

pattern-based systems show higher precision and lower recall, while systems using hetero-

geneous features show lower precision but higher recall. However, when considering both

precision and recall, using heterogeneous features is more e↵ective than just using patterns.

The results are statistically significant (p < 0.005, t-test).

The performance of the systems for ODP/is-a is worse than that for WordNet/is-a. This

may be because there is more noise in ODP than in WordNet. For example, under artificial

intelligence, ODP has neural networks, natural language and academic departments. Clearly,

academic departments is not a hyponym of artificial intelligence. The noise in ODP interferes

with the learning process, thus hurts the performance.
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ALGORITHM 5.5.3: Multi-Criteria Optimization w/o Abstractness.
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Figure 5.12: The algorithm for multi-criteria optimization w/o abstractness.

In Table 5.2, ME does not show a significantly better performance than PR. This is

because we use the same of heterogenous features for both systems. For the original PR

system presented in [SJN06], only syntactic dependency features are used and it would not

achieve such a good performance. Even though, ME consistently outperform PR.

5.5.3 Impact of Concept Abstractness

This experiment studies the impact of modeling concept abstractness on system performance.

Particularly, we test on two options: with or without optimizing the abstractness objective.

With the abstractness objective being optimized, we just use Algorithm 5.3.5 and learn

hierarchy metrics for concepts based on their abstraction levels. Without the abstractness

objective being optimized, we make no distinction between concepts at di↵erent abstraction

levels. Instead, we just learn from all concepts and relations in the training ontologies for a

test concept hierarchy. We follow a modified version of Algorithm 5.3.5 when not optimizing

the abstract objective. It is shown in Algorithm 5.5.3.

Table 5.3 presents the system performance of ME using the above two options. The runs

are indicated as “w/o abstractness” or “w/ abstractness”. We test the two options for the

WordNet is-a, ODP is-a, and WordNet part-of datasets.

The table shows that with the abstractness objective being optimized, the system gains a

6%-10% absolute improvement in F1-measure and a 7%-10% absolute improvement in FBS

as compared to without the abstractness objective being optimized. The improvements is

statistically significant (p < 0.005, t-test). It indicates that modelling concept abstractness is

important to improve the overall performance of an concept hierarchy construction system.
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Table 5.3: Impact of concept abstractness.
WordNet/is-a

Precision Recall F1-measure FBS
w/o abstractness 0.78 0.69 0.73 0.85
w/ abstractness 0.82 0.79 0.82 0.92

ODP/is-a
Precision Recall F1-measure FBS

w/o abstractness 0.59 0.61 0.60 0.73
w/ abstractness 0.64 0.70 0.67 0.83

WordNet/part-of
Precision Recall F1-measure FBS

w/o abstractness 0.59 0.52 0.55 0.72
w/ abstractness 0.69 0.55 0.61 0.81

The proposed strategy of treating concrete concepts and abstract concepts di↵erently is

e↵ective.

5.5.4 Impact of Concept Coherence

This experiment studies the impact of modeling concept coherence on system performance.

Figure 5.13(a) and (b) show the changes of system performance on WordNet is-a and ODP

is-a datasets when varying the coe�cient � in the Pareto objective as defined in Section

5.3.5. � adjusts the contributions of minimum evolution objective and coherence objective.

As �! 0, the system relies more on the coherence objective whereas as �! 1, the system

relies more on the minimum evolution objective. � is an indicator of the impact of concept

coherence.

When � = 1, the system purely relies on the minimum evolution objective. Figure 5.13

shows that as � decreases, the contribution of concept coherence increases, and the system

performance improves till reaching the maximum, where � lies in the range of 0.7 to 0.8.

After reaching the maximum, as � keeps decreasing, the contribution of concept coherence

increases, but the system performance drops. The optimal � values, 0.8 for WordNet and

0.7 for ODP, are used in experiments in Section 5.5.2, 5.5.3, 5.5.5, and 5.5.6.

It shows that a good combination of both objectives is important. Modeling concept co-

herence indeed improves the overall performance as compared to not modeling it at all (when
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Figure 5.13: Impact of Concept Coherence.

� = 1). However, the major contribution still comes from minimum evolution objective.

5.5.5 Features vs. Relations

This experiment studies the impact of di↵erent types of features on di↵erent types of rela-

tions. We group the fifteen features in Section 5.4 into six sets: contextual, co-concurrence,

patterns, syntactic dependency, word length di↵erence and definition. Each feature set is

turned on one by one for the following experiments.

Table 5.4 shows the F1-measure and FBS of using each set of features alone on automatic

concept hierarchy construction for WordNet is-a, sibling, and part-of relations. Bold font

indicates that a feature set makes a statistically significant contribution (p < 0.005, t-test)

to automatic concept hierarchy construction for a particular type of relation.

The table shows that di↵erent relations favor di↵erent sets of features. Both co-occurrence

and lexico-syntactic patterns work well for all three types of relations. It is interesting to see

that simple co-occurrence statistics work as good as lexico-syntactic patterns. Contextual

features work well for sibling relations, but not for is-a and part-of. Syntactic features also

work well for sibling, but not for is-a and part-of. The similar behaviors of contextual and

syntactic features may be because that four out of five syntactic features (Modifier, Subject,
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Table 5.4: F1-measure and FBS for Features vs. Relations: WordNet.
Feature is-a sibling part-of Benefited Relations

F1 FBS F1 FBS F1 FBS
Contextual 0.21 0.39 0.42 0.82 0.12 0.06 Sibling
Co-occurrence 0.48 0.82 0.41 0.81 0.28 0.50 All
Patterns 0.46 0.39 0.41 0.80 0.30 0.62 All
Syntactic 0.22 0.39 0.36 0.76 0.12 0.07 Sibling
Word Length 0.16 0.09 0.16 0.09 0.15 0.07 All but limited
Definition 0.12 0.07 0.18 0.11 0.10 0.05 Sibling but limited
All 0.82 0.92 0.79 0.90 0.61 0.81 All
Best Features co-occurrence,

patterns
contextual,
co-occurrence,
syntactic,
patterns

co-occurrence,
patterns

Table 5.5: F1-measure for Features vs. Abstractness: WordNet/is-a.
Feature L

2

L
3

L
4

L
5

L
6

Contextual 0.29 0.31 0.35 0.36 0.36
Co-occurrence 0.47 0.56 0.45 0.41 0.41

Patterns 0.47 0.44 0.42 0.39 0.40
Syntactic 0.31 0.28 0.36 0.38 0.40

Word Length 0.16 0.16 0.16 0.16 0.16
Definition 0.12 0.12 0.12 0.12 0.12

Object, and Verb overlaps) are actually surrounding context for a concept.

The second last row of Table 5.4 shows the F1-measures and FBS scores for WordNet

is-a, sibling, and part-of relations using all the features. We notice a statistically significant

absolute gain in F1-measure (>10%) and FBS (10%-30%) by using all features than using

any individual feature (p < 0.001, t-test). It indicates that combining heterogeneous features

gives significant rise to the system performance than any single type of feature does.

5.5.6 Features vs. Abstractness

This section studies the impact of di↵erent sets of features on concepts at di↵erent abstraction

levels. In the experiments, F1-measure and FBS are evaluated for concepts at each level of

a concept hierarchy, not the whole concept hierarchy. Table 5.5 and Table 5.6 demonstrate
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Table 5.6: F1-measure for Features vs. Abstractness: ODP/is-a.
Feature L

2

L
3

L
4

L
5

L
6

Contextual 0.30 0.30 0.33 0.29 0.29
Co-occurrence 0.34 0.36 0.34 0.31 0.31

Patterns 0.23 0.25 0.30 0.28 0.28
Syntactic 0.18 0.18 0.23 0.27 0.27

Word Length 0.15 0.15 0.15 0.14 0.14
Definition 0.13 0.13 0.13 0.12 0.12

Table 5.7: FBS for Features vs. Abstractness: WordNet/is-a.
Feature L

2

L
3

L
4

L
5

L
6

Contextual 0.33 0.62 0.76 0.76 0.76
Co-occurrence 0.85 0.88 0.83 0.81 0.81

Patterns 0.85 0.81 0.81 0.77 0.81
Syntactic 0.30 0.31 0.77 0.76 0.81

Word Length 0.09 0.09 0.09 0.09 0.09
Definition 0.07 0.07 0.07 0.07 0.07

F1-measure of using each set of features alone on each abstraction levels. Table 5.7 and

Table 5.8 demonstrate FBS for the same set of experiments. Columns 2-6 in the table show

the results for abstraction levels 2-6. The larger the indices are, the lower the levels. Higher

levels contain abstract concepts, while lower levels contain concrete concepts. L
1

is ignored

since it only contains a single concept, the root. Bold font indicates good performance in a

column.

All tables show that abstract concepts and concrete concepts favor di↵erent sets of fea-

tures. We find that contextual, co-occurrence, pattern, and syntactic features work well for

concepts at L
4

, L
5

, and L
6

, i.e., concrete concepts; co-occurrence works well for concepts at

L
2

and L
3

, i.e., abstract concepts. This di↵erence indicates that concepts at di↵erent ab-

straction levels have di↵erent characteristics; it confirms the desirable abstractness property

mentioned in Section 5.1.

We also observe that for abstract concepts in WordNet, patterns work better than con-

textual features; while for abstract concepts in ODP, the conclusion is the opposite. This

may be because that WordNet has a richer vocabulary and a more rigid definition for hy-

pernyms, and hence the is-a relations in WordNet are recognized more e↵ectively by using
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Table 5.8: FBS for Features vs. Abstractness: ODP/is-a.
Feature L

2

L
3

L
4

L
5

L
6

Contextual 0.71 0.71 0.74 0.38 0.50
Co-occurrence 0.75 0.75 0.76 0.42 0.40

Patterns 0.26 0.28 0.69 0.40 0.39
Syntactic 0.10 0.10 0.30 0.39 0.39

Word Length 0.09 0.09 0.08 0.08 0.08
Definition 0.07 0.07 0.07 0.07 0.07

lexico-syntactic patterns; while ODP contains more noise, and hence it favors features that

require less rigidity, such as the contextual features generated from the Web.

5.5.7 Stability

ME is a general framework which integrates many di↵erent kinds of features for concept

hierarchy construction. As we can expect, features originating from the pattern-based ap-

proaches (Section 2.1.1) should be able to produce stable relations and stable concept hi-

erarchies since their decisions are merely boolean-valued. On the contrary, many other

features used in ME, such as co-occurrence, contextual, syntactic features, are data-driven

and originate from clustering-based approaches (Section 2.1.2). A known problem with con-

cept hierarchies generated by clustering-based approaches which make use of the data-driven

features is that when there are slight changes to a given document set, the concept hierarchy

built by these approaches show dramatic changes. Because the data-driven features con-

tribute to ME and ME is essentially still an incremental clustering algorithm, we want to

know whether concept hierarchies generated by ME also su↵er from this instability problem.

To evaluate the stability of concept hierarchies constructed by the metric-based concept

hierarchy construction algorithm, we compare the similarity between concept hierarchies

with slight document set changes. The metric used to measure hierarchy similarity is FBS.

We perform the stability test on the WordNet is-a, ODP is-a, as well as the Web datasets.

The document sets for WordNet and ODP are part of the Wikipedia auxiliary datasets

that are used to generate Wikipedia Global/Local Context KL-Divergence features (Section

5.4.1). We choose Wikipedia documents for their cleanness. Basically, we use the top 3

Wikipedia documents returned by Indri for a concept in a WordNet or ODP dataset to
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Table 5.9: Stability of Concept Hierarchies (Measured by FBS).
mean stdv. max min

Web 0.90 0.03 0.94 0.85
WordNet 0.88 0.06 0.96 0.71
ODP 0.89 0.04 0.95 0.78

form the document set for this dataset. In general, a document set for WordNet or ODP

contains about 120 documents (about 40 concepts times 3 documents per concept). We also

perform this stability test on the Web datasets which are described in Section 3.3.2. Each

Web document set is a crawled Web search result set which contains about 100 documents

for a Web search topic as described in Table 3.2. In summary, we examine 50 WordNet, 50

ODP, and 5 Web (105 in total) document sets for the stability test. Each document set is

about 100 to 120 documents.

We create slightly di↵erent document sets for each document set by sampling with re-

placements and calculate similarities between concept hierarchies built for these slightly

changed document sets as the stability score. The procedure is described as follows:

1. For each document set, sample K (K = 85) out of N (N is the document set size,

around 100 to 120) documents. Repeat the sampling with replacement for 5 times to

get 5 slightly di↵erent sampled document sets.

2. Extract around 40 concepts based on the techniques presented in Chapter 4 and con-

struct a concept hierarchy by ME for each sample document set.

3. Calculate the similarity between two concept hierarchies generated for two sample

document sets. For the 5 samples created for an original document set, we can obtain

similarity scores between 10 (5 choose 2) pairs of hierarchies.

4. The stability score for a document set is the average of these 10 hierarchy similarity

scores.

We report the mean, standard deviation, max and min values for the stability scores for

the 50 WordNet is-a, 50 ODP is-a, and 5 Web datasets in Table 5.9. Across di↵erent types

of document sets, the stability scores between slightly changed sampled document sets are in
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the high-end - around 0.9 - in terms of FBS. This shows that concept hierarchies generated

by ME are stable for slighted alternated document sets.

We believe that there are two main reasons lying behind the stability. Our approach

exhaustively extracts concepts from a sampled document set and then filters and unifies some

of them. Di↵erent from most cluster labeling techniques, where concepts are selected from

a small partition of documents which clustered together, our approach discovers concepts

within the entire document set. This makes the concept selection more stable because more

documents are taken into account and less dramatic changes to the document partitions

(only 1 partition in our case) happen. Therefore, the concepts shown in our hierarchies are

quite stable when the document set changes slightly.

The second reason might be an even more important one. It is related to ME’s ability

to incorporate a wide range of features. The benefit of ME is that it not only has data-

driven features such as contextual features and co-occurrence, but also has semantically

meaningful features such as lexico-syntactic patterns, word definition, and modifier overlap.

The semantically meaningful features originate from the pattern-based approaches. They

are able to better capture the semantics among concepts as well as somehow decide the

relations among concepts as if in a rule-based system. This kind of decision is deterministic.

They help the concept hierarchies produced by ME remain stable even when a document

set changes.

5.6 Summary

This chapter presents a novel metric-based concept hierarchy construction framework which

incrementally clusters concepts and transforms the task of concept hierarchy construction

into a multi-criteria optimization based on minimization of concept hierarchy structures,

modeling of concept abstractness, and modelling of concept coherence. The experiments

show that our framework is e↵ective; it achieves higher F1-measure than three state-of-the-

art systems.

This chapter also studies which features are the best for di↵erent types of relations. The

experiments show that co-occurrence and patterns are good features for common relations,

such as is-a, sibling, and part-of. Contextual and syntactic features are only good for sibling
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relations. Moreover, this chapter studies which features are the best for concepts at di↵erent

abstraction levels. The experiments show that abstract concepts and concrete concepts favor

di↵erent sets of features. Contextual, co-occurrence, patterns, and syntactic features work

well for concrete concepts. Co-occurrence works well for abstract concepts; the performance

of patterns and contextual features for abstract concepts depends on data.

Most prior work uses a single rule or feature function for automatic concept hierarchy

construction at all levels of abstraction. Our work is a more general framework which allows

a wider range of features and di↵erent metric functions at di↵erent abstraction levels. This

more general framework is able to generate stable concept hierarchies as well as has the

potential to learn more complex ontologies than previous approaches.

Automatic concept hierarchy construction produces ontologies without human interven-

tion. The automatically-built ontologies maintain a fixed set of concepts and relations, which

are not able to adapt to one’s personal preference. In the next chapter, we present how to

put human into the loop and construct personalized ontologies.



Chapter 6

Human-Guided Concept Hierarchy

Construction

Personal concept hierarchy construction serves two goals: the first is to organize information

into concept hierarchies, the second is to customize the concept hierarchies in the way that a

user wants. Many Web search and text analysis situations require that a concept hierarchy

not only well-represents the content and the scope of the topics in a document collection, but

also suits an individual’s specific needs. Concept hierarchies constructed automatically are

not able to adapt to an individual user’s needs nor to special use cases because no opinion

or guidance from the user is considered. To support user-specific and task-specific concept

hierarchies, it is necessary to study how to take into account the user’s personal preferences

in organizing the information.

This chapter presents Human-Guided Concept Hierarchy Construction. Specifically, this

chapter studies how to incorporate user preferences in the concept hierarchy construction

process, how to allow the machine learning algorithm to learn from the user, and how to

produce a concept hierarchy according to the user’s guidance. The framework is expected

to produce concept hierarchies that reflect personal preferences as a consequence of learning

from manual guidance.

The most challenging part of incorporating manual guidance in the machine learning

process is how to translate it into a format that the machine can easily understand and

incorporate into its learning models. In particular, we convert a concept hierarchy from a

123
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tree to matrices of neighboring nodes and represent the di↵erences in matrices before and

after human edits as manual guidance. We then train the learning framework to adjust to

it and make predictions for unorganized concepts.

The metric-based concept hierarchy construction framework (Chapter 5) learns initial

distance functions from group/community opinions in existing concept hierarchies which

are constructed by a group of experts. In this chapter, human-guided concept hierarchy

construction uses user-feedback to adapt and refine these distance functions to better match

user preferences and task requirements.

This chapter consists of the following sections. We present an overview and a high-level

algorithm for human-guided concept hierarchy construction in Section 6.1. We then present

in Section 6.2 how to collect, represent, and translate manual guidance into a format that

a machine learning algorithm can easily follow and understand. Afterwards we describe in

Section 6.3 how the machine learns a distance function and makes prediction to organize

the concepts according to the manual guidance that a user provides. The evaluation of this

framework is detailed in Section 6.4.

6.1 The Human-Guided Concept Hierarchy Construc-

tion Framework

Human-guided concept hierarchy construction is an interactive process. Given a set of con-

cepts, the machine first organizes the concepts and presents an initial concept hierarchy.

In this dissertation research, the initial concept hierarchy are constructed by the automatic

metric-based concept hierarchy construction framework presented in Chapter 5. Starting

from the initial concept hierarchy, a user can teach the machine by providing manual guid-

ance to it. The machine learns from the manual guidance and adjusts the distance learning

function and modifies the concept hierarchy accordingly. The teaching and the learning al-

ternate until the user is satisfied with the concept hierarchy. This concept hierarchy contains

both the user’s inputs and the machine’s adjusted organization for the concepts.

Figure 6.1 shows an example of typical cycles of human-computer interactions in this

framework. In this example, the cycle starts when the machine presents an initial concept

hierarchy that consists of three concept groups: person, hunter and habitat. The user makes a
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Figure 6.1: The human-computer interaction cycle.

modification to the concept hierarchy by dragging and dropping the hunter group to be under

the person group. This modification makes hunter a child concept of person. The machine

recognizes the change, makes modifications, and shows an improved concept hierarchy to the

human. The human-computer interaction cycle continues until the user is satisfied with the

concept hierarchy.

Algorithm 6.1 provides the pseudo codes for human-guided concept hierarchy construc-

tion. Line 1 of Algorithm 6.1 indicates the creation of an initial concept hierarchy by the

machine (Chapter 5). Line 2 shows the initiation of three variables, U , G, and M , which are

indexed by the iteration number i. U is the set of concepts which have not been modified by

the user so far. U is initiated to be the entire set of concepts C, which can be acquired by the

techniques presented in Chapter 4. G is the set of concepts and relations which have been

modified by the user; it is initiated as empty. M is the manual guidance, the modifications

that made by the user in the current iteration; it is initiated as empty, too. In summary, U

keeps track of the concepts that the user has not visited or modified yet, G keeps track of
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Algorithm 6.1: Human-Guided Concept Hierarchy Construction
1. CreateInitialConceptHierarchy();
2. U (0)={Unmodified Concepts}=C, G(0)={Modified concepts}=;, M (0) = ;,i = 0;
3. while (not Satisfied) or U (i) 6= ;
4. M (i)=CollectManualGuidance(G(i),U (i));
5. F (i)=LearnDistanceMetricFunction(M (i));
6. D(i)=PredictDistanceScores(F (i),U (i));
7. (G(i+1), U (i+1)) = UpdateConceptHierarchy(D(i),U (i),G(i));
8. i = i+ 1;
9. end
10. output G(i) as the concept hierarchy.

the concepts that the user has visited or modified, and M is calculated by the algorithm as

a machine understandable format of guidance which reports the modifications made by the

user in the current iteration i.

Line 3 to Line 9 in Algorithm 1 correspond to the human-computer interaction cycle. In

particular, Line 4 indicates collecting manual guidance from the human. Line 5 shows that

the machine learns a distance function from the manual guidance. Line 6 indicates that the

machine applies this distance function to the unmodified concepts U , and obtains distance

scores D for them. Line 7 shows that the machine organizes the unmodified concepts and

updates the concept hierarchy with more modified concepts. Line 3 states the stopping

criteria.

Finally, in Line 10, the algorithm outputs the latest modified set of concepts (with re-

lations) G as the concept hierarchy, in which all concepts are organized based on their

relations.

6.2 Collecting Manual Guidance

Human-guided concept hierarchy construction needs to obtain manual guidance from a user

through human-computer interaction. It is challenging to collect manual guidance from the

user without degrading her experience of organizing concept hierarchy. Collecting manual

guidance with little interruption to the user’s activity is one of the major concerns in de-

signing a user interface. We use OntoCop (Chapter 3) to collect manual guidance. It is a

tool with a user interface allowing a user to freely move concepts around and organize them
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with ease. In Section 6.2.1, we describe more functions of OntoCop for collecting manual

guidance as well as interacting with users.

It is also challenging to represent manual guidance in a format that a learning algorithm

can easily understand and incorporate it into the learning framework. We discuss in more

details in Section 6.2.2 on how to represent concept hierarchy as matrix, and in Section 6.2.3

on how matrix representation can be used to collect manual guidance.

6.2.1 Interaction through OntoCop

Chapter 3 introduces the basic editing functions of OntoCop. In this section we focus on its

functions that handle human-computer interactions.

Figure 3.1 shows a screen capture of the user interface of OntoCop. The last button on

OntoCop’s upper toolbar is the “interact” button. If the user clicks this “interact” button,

the current edition of the concept hierarchy is submitted to the system, then the system

learns from the user’s most recent edits, updates the learning models, makes suggestions in

an improved concept hierarchy and shows it to the user. The improved concept hierarchy

is then displayed to the user with highlights to the system-suggested concepts within a few

seconds.

Figure 6.2 illustrates the screen capture of a machine-updated concept hierarchy with

highlights. The user can evaluate the suggestions by right-clicking any highlighted concept.

If she thinks that a suggestion is valid, she can accept the suggestion by selecting the “yes”

option from a drop-down menu which asks “(Do you want to) Accept the change?”. If the

user is not satisfied with a suggestion made by the system, she can reject it by selecting the

“no” option from the drop-down menu. She can then provide more guidance for the next

iteration if necessary.

The user is not required to make all modifications that she thinks necessary at once; she

can make only a few modifications at each human-computer interaction cycle. When the

user finishes a few modifications to the concept hierarchy, she triggers the system to take

over by clicking the “interact” button on the toolbar. The system then learns from the user

and suggests an improved concept hierarchy to her. The human-computer interaction cycle

continues until the human is satisfied with the concept hierarchy. Note that the human

modifications create di↵erent versions of a concept hierarchy. Each version is treated as an
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Figure 6.2: System suggestions in OntoCop.

independent concept hierarchy.

6.2.2 Matrix Representation of Concept hierarchies

OntoCop uses a tree structure to store and manage a concept hierarchy. However, trees are

not straightforward for a machine learning algorithm to manipulate. In order to capture the

changes between each version of the manual editions, the learning algorithm needs both the

training and the test data to be in a format which is easy to handle. Matrix representation can

be easily understood and manipulated by many machine learning algorithms. We therefore

convert concept hierarchies from trees to matrices and use a matrix representation for all

the intermediate editions in the concept hierarchy construction process.

In this dissertation research, we use an hierarchy matrix to represent a concept hierarchy.
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Formally, a concept hierarchy with n concepts can be represented by a n⇥n hierarchy matrix.

Each row and each column of the hierarchy matrix corresponds to a concept in the concept

hierarchy. The entries in the matrix indicate whether (or how confident) a relation r is

true for the concepts. Specifically, the (i, j)th entry of an hierarchy matrix indicates the

confidence in r(c
i

, c
j

). The value of the (i, j)th entry v
ij

is defined as:

v
ij

=

8
>><

>>:

1, if i = j,

1, if the relation r is true between c
i

and c
j

, i 6= j,

0, if the relation r is not true between c
i

and c
j

, i 6= j.

(6.1)

where r is a type of relation between the concepts. The positive entries in the hierarchy

matrix indicate that the relation between two concepts is true, and the zero entries indicate

that the relation between two concepts is false. If no confidence level is used, we simply

employ boolean values as entries in a concept hierarchy matrix.

In general there can be any relation between concepts. Depends on the types of relations

of interest, a concept hierarchy can be represented as is-a hierarchy matrix, sibling hierarchy

matrix, part-of hierarchy matrix or other types of concept hierarchy matrices. Di↵erent

relations may result in di↵erent hierarchy matrixes for the same dataset.

6.2.3 Defining the Manual Guidance

With the matrix representation, we can compare the changes in concept hierarchy matrices.

They are essential to understand manual guidance. Particularly, manual guidance can be

collected by comparing a concept hierarchy before and after human modifications, which

indicate a user’s preferences about how to construct a personal concept hierarchy. The

procedure for extracting manual guidance from a relation-specific matrix is described below.

We represent the organization of concepts before a user’s modifications as a before matrix ;

likewise, the new organization of concepts after her modifications is represented as a after

matrix. Given these two matrixes, manual guidance is a submatrix in after matrix that

shows the di↵erences between before matrix and after matrix.

Figure 6.3 illustrates a concept hierarchy which contains five concepts - {person, leader,
president, prime minister, Obama}. The concepts are in the political domain and the relation

type is sibling. The before matrix A for the concept hierarchy in Figure 6.3 can be represented
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Figure 6.3: An example concept hierarchy before and after human modifications (Concept
set unchanged; relation type = sibling).

as:

A =

0

BBBBBBB@

1 0 0 0 0

0 1 1 0 0

0 1 1 0 0

0 0 0 1 0

0 0 0 0 1

1

CCCCCCCA

.

Although a user can make multiple changes to the concept hierarchy during one iteration,

the user makes only one change in this example. She moves the node “president” to be

under “leader”; ‘president”’s child node “Obama” also moves together with it. After human

modifications, the example concept hierarchy can be represented as an after matrix B :

B =

0

BBBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1 1 0

0 0 1 1 0

0 0 0 0 1

1

CCCCCCCA

.
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We the compare the before matrix A and the after matrix B to derive the manual guidance

M. The manual guidance is not simply the matrix di↵erence between the before matrix and

the after hierarchy matrix. It is part of the after matrix because it is the after matrix that

indicates where the user wants the concept hierarchy to develop. We define manual guidance

M as a submatrix which consists of some entries of the after matrix B; at these entries, there

exist di↵erences between the before matrix A and the after matrix B. Formally,

M = B[r; c]

where r = {i : b
ij

� a
ij

6= 0}, c = {j : b
ij

� a
ij

6= 0}, a
ij

is the (i, j)th entry in A, and b
ij

is

the (i, j)th entry in B.

For the example in Figure 6.3, the di↵erence between B and A is:

B � A =

0

BBBBBBB@

0 0 0 0 0

0 0 �1 0 0

0 �1 0 1 0

0 0 1 0 0

0 0 0 0 0

1

CCCCCCCA

.

The positive entries in the di↵erence matrix indicate the user’s preference on how to group

the corresponding concepts together; the negative entries indicate her preference of keeping

the corresponding concepts apart. In this example, the 2nd, 3rd and 4th rows of (B�A) and

the 2nd, 3rd and 4th columns of (B � A) contain non-zero entries, which indicate existence

of di↵erences between A and B. The sign is not important since we only care about the

di↵erences. Hence, manual guidance M is:

M = B[2, 3, 4; 2, 3, 4] =

0

BB@

1 0 0

0 1 1

0 1 1

1

CCA =

leader president PM

leader 1 0 0

president 0 1 1

PM 0 1 1

.

This simple example illustrates the case when the set of concepts remain unchanged before

and after human modifications. Many human modifications produce unchanged concept set,



CHAPTER 6. HUMAN-GUIDED CONCEPT HIERARCHY CONSTRUCTION 132

Figure 6.4: An Example Concept Hierarchy Before and After Human Modifications (Concept
set changes; relation type = sibling).

for example, dragging and dropping, moving up and moving down, and promoting concepts.

However, oftentimes the user adds, deletes or renames concepts, and the concept set changes.

When the concept set changes, the above definition of manual guidance M needs a slight

alteration.

Figure 6.4 shows another example concept hierarchy whose concept set changes. The orig-

inal concept set before the human modification is {person, leader, president, Hu, Obama}.
The concept hierarchy’s before matrix A is:

A =

person leader president Hu Obama

person 1 0 0 0 0

leader 0 1 1 0 0

president 0 1 1 0 0

Hu 0 0 0 1 0

Obama 0 0 0 0 1

.

The user modifies the concept hierarchy at several places. In particular, leader is deleted,

Hu is moved to be under president, and prime minister is inserted as a new concept into

this concept hierarchy. Therefore the concept set changes to {person, president, Hu, Obama,
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prime minister}. The after matrix B is:

B =

person president Hu Obama PM

person 1 0 0 0 0

president 0 1 0 0 1

Hu 0 0 1 1 0

Obama 0 0 1 1 0

PM 0 1 0 0 1

.

Since the concept sets before and after the human modifications change, we cannot simply

use matrix subtraction to get the di↵erence between the before and after matrices. Suppose

the concept set in the concept hierarchy before the modifications is C
A

, and the concept set

after modifications is C
B

, we define an expanded set of concepts C
E

as the union of C
A

and

C
B

:

C
E

= C
A

[
C

B

.

We then define an expanded before matrix A0 and an expanded after matrix B0 over C
E

.

The expanded rows and columns in A0 and B0 are filled with 0 for non-diagonal entries, and

1 for diagonal entries. For the example in Figure 6.4, the expanded before matrix A0 is:

A0 =

person leader president Hu Obama PM

person 1 0 0 0 0 0

leader 0 1 1 0 0 0

president 0 1 1 0 0 0

Hu 0 0 0 1 0 0

Obama 0 0 0 0 1 0

PM 0 0 0 0 0 1

.

Note that the expanded concept set C
E

is {person, leader, president, Hu, Obama, prime

minister}. The 6th row and the 6th column are newly expanded. They correspond to the

concept prime minister, which is newly added to the concept hierarchy.
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The expanded after matrix B0 is:

B0 =

person leader president Hu Obama PM

person 1 0 0 0 0 0

leader 0 1 0 0 0 0

president 0 0 1 0 0 1

Hu 0 0 0 1 1 0

Obama 0 0 0 1 1 0

PM 0 0 1 0 0 1

.

Note that the 2nd row and the 2nd column are newly expanded. They correspond to concept

leader, which is deleted from the concept hierarchy.

For concept hierarchies with concept changes, we define the manual guidance M as a

submatrix which consists of some entries of the after matrix B; at these entries, there exist

di↵erences from the expanded before matrix A0 to the expanded after matrix B0. Note that the

concepts corresponding to these entries should exist in C
B

, the unexpanded set of concepts

after human modifications. Formally,

M = B[r; c]

where r = {i : b
ij

� a
ij

6= 0, c
i

2 C
B

}, c = {j : b
ij

� a
ij

6= 0, c
j

2 C
B

}, a
ij

is the (i, j)th entry

in A0, and b
ij

is the (i, j)th entry in B0.

For the example in Figure 6.4, the di↵erence between B0 and A0 is:

B0 � A0 =

person leader president Hu Obama PM

person 0 0 0 0 0 0

leader 0 0 �1 0 0 0

president 0 �1 0 0 0 1

Hu 0 0 0 0 1 0

Obama 0 0 0 1 0 0

PM 0 0 1 0 0 0

.

The 2nd to the 6th rows of (B0 � A0) and the 2nd to the 6th columns of (B0 � A0) contain
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non-zero entries, which indicate existence of di↵erences between A0 and B0. Among the rows

and columns, only the 3rd to the 6th rows, and the 3rd to the 6th columns exist in the original

after matrix B; and these rows and columns correspond to the 2nd to the 5th rows and the

2nd to the 5th columns of B. Hence, the manual guidance M is:

M = B[2, 3, 4, 5; 2, 3, 4, 5] =

0

BBBB@

1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1

1

CCCCA
=

president Hu Obama PM

president 1 0 0 1

Hu 0 1 1 0

Obama 0 1 1 0

PM 1 0 0 1

.

6.3 Predicting the Relations

Manual guidance indicates a user’s preference of how to organize the concepts into a person-

alized concept hierarchy. It provides guidance for the interactive machine learning algorithm

to further organize other concepts to agree with the user. Basically, we use it as training

data in the human-guided concept hierarchy construction framework. In Section 6.3.1, we

present how to learn a new distance function during each interaction based on the manual

guidance. We then describe how to predict the distances between the unmodified concepts in

Section 6.3.2 and how to organize those unmodified concepts based on the learned distances

in Section 6.3.3.

6.3.1 Learning the Distance Function

The human-guided concept hierarchy construction framework employs a supervised distance

learning algorithm to learn user preferences from manual guidance. The algorithm trains and

directs the learning models towards the user preferences and then predict new groupings for

the unmodified concepts. This section presents the supervised distance learning algorithm.

Manual Guidance as the Training Data

Section 6.2 presented how to collect manual guidance M from the human. Based on M ,

we can create training data for a supervised distance learning algorithm. In particular, we
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president Hu Obama PM
president 0 1 1 0
Hu 1 0 0 1
Obama 1 0 0 1
PM 0 1 1 0

Figure 6.5: Training distance matrix.

transform the manual guidance into a distance matrix and the distance matrix is used as

the training data.

Recall that manual guidance M contains the concepts modified by the user and the

relations the user determines for these concepts. The entries in M indicate whether a relation

r is true for two concepts at a particular row and a particular column. If the relation is true,

the two concepts should be connected together according to r, and their distance is 0. In

M , larger values indicate that two concepts are close to each other (their relation is true)

and smaller values indicate that they are further apart. In a distance matrix, larger values

mean that two concepts are further apart and smaller values mean that they are close to

each other and should be grouped together. Therefore, the distance matrix is the opposite of

the manual guidance. We transform manual guidance M to a distance matrix D as follows:

D = 1�M (6.2)

The relation type presented in the distance matrix is determined by the relation type

presented by the manual guidance. For example, if the relation r is is-a, in a training distance

matrix, the parent-child pairs are indicated as 0, and other nodes are indicates as 1. If the

relation r is sibling, within-cluster distances are defined as 0 and between-cluster distances

are defined as 1.

Figure 6.5 shows the training distance matrix derived from the example in Section 6.2.3.

This training distance matrix elaborates the distance between president, Hu, Obama and PM

(prime minister). It is used as the training data for a supervised distance learning algorithm.

A Supervised Distance Learning Algorithm

The goal of supervised distance learning is to learn a good pairwise distance metric function

which best preserves the regularity in the training distance matrix. We use the same distance
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learning method as proposed in Section 5.3.1. The di↵erence between the distance learning

in this chapter and in Chapter 5 is that in this chapter we directly use manual guidance

to derive the training data while in Chapter 5 we use existing concept hierarchies such as

WordNet and ODP as the training data.

According to Algorithm 6.1, human-guided concept hierarchy construction has three ma-

jor variables, the unmodified concepts U , the modified concepts G, and the manual guidance

M . At each iteration of the human-computer interaction, the user groups the concepts in

G by dragging and dropping, or by using other editing functions. The machine learns a

distance function from concepts in M and G, and further organizes concepts in U based on

this distance function. At each iteration, the machine updates U and G. In particular, at

the ith iteration of human-computer interactions, U (i), G(i), and M (i) denote the unmodified

concepts, modified concepts and manual guidance, respectively. The unmodified concepts

are those concepts which are not connected as any other concepts’ parent, child or sibling in

the previous i iterations. The training data consists of the set of concepts in G(i) and their

corresponding pair-wise distance matrix D(i).

Given concepts C = {c
1

, c
2

, . . . , c
n

}, we organizes these concepts and outputs a concept

hierarchy T (C 0, R). C 0 is the final set of concepts, which closely relate to C but do not

necessarily equal to C since our framework allows changing the concept set by adding or

deleting concepts, or changing names of concepts. However, for simplicity, we just use C to

denote concepts in this section.

Similar to Equation 5.21, we apply minimization of squared error and constrain the weight

matrix W (i) for the ith iteration to be positive semi-definite, the optimization function for

the parameter estimation is formulated as:

W (i) = min
W

|G(i)|X

x=1

|G(i)|X

y=1

✓
d
xy

�
q

�(c(i)
x

, c(i)
y

)TW�1�(c(i)
x

, c(i)
y

)

◆
2

(6.3)

subject to W ⌫ 0

where d
xy

is the abbreviation of d(c(i)
x

, c(i)
y

), �(c(i)
x

, c(i)
y

) represents a set of pairwise underlying

feature functions, W (i) is the ith weight matrix for the ith human-computer interaction, which

weighs the underlying feature functions at the ith iteration.
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After W (i) is learned from the manual guidance, we use it to predict the distance scores

for the unmodified concepts and further group them accordingly. The initial training from

WordNet and ODP is smoothed with this new training from the user.

Feature Representation

Both modified and unmodified concepts use the same feature representation. Each pair of

concepts are represented by a feature vector �!x , which contains numerical scores of features

such as patterns, co-occurrence, definition, contextual, and syntactic parse features (Section

5.4).

6.3.2 Predicting Distance Scores for Unmodified Concepts

To organize the concepts to agree with user preferences, the system learns from manual

guidance and predicts the labels for the unmodified pairs. The learning model predicts

whether two concepts c
x

2 U and c
y

2 U have the relation r true between them. For

example, if r is “sibling”, it decides whether c
x

and c
y

belong to the same concept group.

If r is “is-a”, it decides whether c
x

is the parent node of c
y

. Note that a sibling relation is

symmetric while a parent-child relation is asymmetric. The learning model uses all concept

pairs in G(i) to estimate a weight matrix W (i) based on Equation 6.3.

Given the learned parameter matrix W (i) in the ith iteration, we can generate distance

scores for any pair of unmodified concepts in U i. By calculating the distance for each concept

pair, we obtain the entries in a new distance matrix D̂
(i+1)

for the i + 1th iteration. Note

that this distance matrix should also result in a consistent clustering, which is guaranteed

by the positive semi-definiteness of the parameter matrix W (i). The entry values for D̂
(i+1)

is defined as:

d̂(i+1)

lm

=
q

�(c(i+1)

l

, c(i+1)

m

)TW (i)

�1�(c(i+1)

l

, c(i+1)

m

) (6.4)

where d(i+1)

lm

is the abbreviation of d(c(i+1)

l

, c(i+1)

m

), and (c(i+1)

l

, c(i+1)

m

) is an unmodified concept

pair from U (i).

The learned distance matrix ŷ(i+1) contains the distance scores for concepts in U (i).
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6.3.3 Organizing Concepts into Updated Concept Hierarchies

Based on the predicted distance scores, we group the unmodified concepts in a concept

hierarchy. When a pair-wise distance score is small (<0.5), we consider the relation between

the concept pair is true.

How to organize the concepts whose relation is true, is decided again by the relation type

in the distance matrix. If r is “sibling”, c
l

and c
m

are put into the same concept group. If r

is “is-a”, c
m

is put under c
l

as one of c
l

’s children.

The newly modified concepts are added into G(i) and form a new set of modified concepts

G(i+1). The algorithm updatesG(i+1) and U (i+1), and goes into the next iteration in a bottom-

up fashion. OntoCop then presents the modified concept hierarchy to the human and waits

for the next round of manual guidance.

6.4 Evaluation

We conduct a user study to evaluate e↵ectiveness and e�ciency of human-guided concept

hierarchy construction. We aim to evaluate how e↵ective is the interactive approach as

compared to a manual approach to construct concept hierarchies. We asked the users to

evaluate the suggestions made by OntoCop at each interaction cycle as well as tell us how

well the system learns from their human edits. As additional evidence of how well the

concept hierarchies are built by the users using OntoCop, we compare constructed concept

hierarchies with the reference concept hierarchies built manually by experts. We also evaluate

the e�ciency of OntoCop by evaluating how much time and editing e↵ort can be saved by

using the system. The evaluation is based on the final concept hierarchies created by the

users, their on-the-fly judgements to the system, and an after-task questionnaire.

In this section, we describe the tasks, procedure, datasets, and experimental results of

this user study.

6.4.1 Tasks

The user study involved 24 participants who are mainly undergraduate and graduate students

from Carnegie Mellon University and the University of Pittsburgh. They were required to use
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Participant’s Role Task
Rule maker Exploring important issues raised in a public comment set (5 tasks).
Concept hierarchy
constructor

Organizing concepts in a particular NAICS domain (10 tasks).

Web user Planning a trip to DC.
Groom-to-be/Bride-
to-be

Finding a good wedding videographer in the Pittsburgh area.

New parent to cook
for your son’s 1st
month party

Finding out how to make a cake.

Poor graduate student Finding useful information for buying a used car in the Pittsburgh area.
Parent of a toddler Finding a good kindergarten in the Pittsburgh area.

Table 6.1: Participants’ roles and tasks.

OntoCop to construct concept hierarchies for browsing document collections with real-life

tasks in mind.

When constructing a concept hierarchy for a dataset, the participants were asked to bear

in mind a particular task. Specifically, they were assigned tasks to organize concepts in a

document set1. Example tasks and roles include “planning a trip to DC as if you were an

ordinary Web user”, “find a good wedding videographer as if you were a groom-to-be/bride-

to-be”, “organizing information in the domain of financial businesses”, and “exploring issues

mentioned in a public comment set as if you were a rule maker”. The complete roles and

tasks are listed in Table 6.1.

For each task, the participants started from a flat list of concepts and used OntoCop to

organize them into concept hierarchies. During each task, the participants either construct a

concept hierarchy manually or interacted with OntoCop to construct the concept hierarchy

interactively.

6.4.2 Procedure

The user study was conducted in sessions. Each session is two hour long. The users were

first introduced to OntoCop for about 10 minutes so that they could get familiar with its

1
In the follow-up questionnaire, several participants mentioned that they would like to use the software

to write survey papers, which suggests that it might be the task that they thought they were performing
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functions. This training was then followed by another exercise task which lasted about 15

minutes. Afterwards, users started the real tasks and worked on the tasks for 90 minutes.

The tasks include both manual and interactive runs. Once the real tasks are done, users had

5 minute to answer a questionnaire regarding their experience.

To separately evaluate human-guided concept hierarchy construction and metric-based

concept hierarchy construction, the participants started from a flat list of concepts and

used OntoCop to organize them into concept hierarchies. Each participant was assigned

to construct concept hierarchies manually for half of the datasets, and interactively for the

other half; so that each participant had a chance to use both methods. We adopt a Latin

Square design and the order of construction methods were randomized to avoid order e↵ects.

For the manual runs, a participant had access to most functions of OntoCop, such as

dragging and dropping, and renaming a concept. However, she did not have access to the

“Interact” function. For the interactive runs, the participant have access to all functions

including “Interact”. A typical interactive run is as follows: a participant did a few edits

in a human-computer-interaction, and then clicked the “Interact” button. The system then

learned from this human edits and promoted some suggestions. These suggestions were

highlighted for the participant and she could then choose to either ‘accept’ or ‘reject’ the

suggestions. This choice is an on-the-fly evaluation to this iteration of system’s learning and

prediction. After that, the participant could either stop the process if she was satisfied with

the concept hierarchy or continued to update the concept hierarchy by making a few more

changes, and ‘interact’ with the system in the next iteration. The entire construction of a

concept hierarchy is finished when the participant felt satisfied with the concept hierarchy

or reached a 20-minute time limit for each task.

Note that the completion of a task was mainly decided by the participants, who stopped

when feeling satisfied with a construction. The 20-minutes limit was very generous. We

believe this is necessary for the participants to freely organize concepts in a way that they

personally liked, with no time pressure.

After completion of each task, the participants answered a few questions to qualitatively

evaluate the system’s performance and their own user experience. Example questions include

“How do you evaluate the di�culty to organize concept hierarchies for each dataset?”, “How

confident are you about the quality of your edits to the concept hierarchies”, and “How well
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Figure 6.6: Mean accuracy of system suggestions and mean number of system suggestions
(Interactive runs only).

did the system appear to learn your method of organizing the concept hierarchies? (Only for

datasets that you organized using the Interact function)”.

Similarly, after completion of all tasks, the participants were asked to answer a short

after-study questionnaire, including qualitative questions such as “Do you like constructing

concept hierarchies with interaction with the software? (yes, no, maybe)”, “Do you think

interacting with the software helps you construct a better hierarchy? (yes, no, maybe)”, and

free form comments.

We include the complete questionnaires in Appendix A.

6.4.3 Datasets

We evaluate our system for a variety types of datasets. We used 10 NAICS datasets, 5

public comment datasets, and 5 Web datasets. Each dataset is one task for the participants

to construct a concept hierarchy about it. Each dataset contains 40 concepts in order to fit

into one screen. The details of the datasets are in Chapter 3.
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6.4.4 Accuracy of System Suggestions

To evaluate the human-guided concept hierarchy construction framework presented in this

chapter, we measure the accuracy of system suggestions. The participants constructed con-

cept hierarchies for half of the tasks manually, and the other half interactively. During every

human-computer interaction cycle, the system made suggestions based on a participant’s

edits and the suggestions were evaluated by the participant according to her own standard.

She could judge a suggestion by selecting an option “yes” or “no” from the “Accept the

change?” menu (Figure 6.2). This on-the-fly evaluation directly reflects how well the system

learns from human edits. A high accuracy indicates that the system learns well from user

edits and the user accepts many of the suggestions. In particular, the accuracy of system

suggestions is calculated as:

Accuracy =
1

r

rX

i=1

number of accepted suggestions in ith cycle

number of suggestions in ith cycle
(6.5)

where r is the total number of human-computer interaction cycles when constructing a

concept hierarchy.

Figure 6.6 (a) shows the mean accuracy and its 95% confidence interval of the system

suggestions, broken down by dataset types. The accuracy is at least 0.92 for all datasets, and

0.94 on average, which is high. Note that the participants did not select “yes” to everything.

This high accuracy demonstrates that the system successfully learns from a participant and

makes highly-accurate predictions on how the participant would organize the concepts. It

shows that human-guided concept hierarchy construction is e↵ective.

Figure 6.6 (b) illustrates the average number and its 95% confidence interval of sugges-

tions made by the system when constructing a concept hierarchy. The average number of

suggestions across all datasets is 15.3. It indicates that about 38% of the relations in a fi-

nalized concept hierarchy were suggested by the system, and among them at least 92% were

accepted by the participants as correct suggestions.

We notice that the system made di↵erent number of suggestions to di↵erent types of

datasets. For public comment datasets, the average number of system suggestions is 18; for

NAICS datasets, 10; and for the Web datasets, 15. In general the NAICS datasets receive

less suggestions from the system than the public comment and the Web datasets. The reason
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Figure 6.7: Perceived system learning ability (Interactive runs only).

may be related to dataset di�culty. We will discuss it in Section 7.3.2.

6.4.5 Perceived System Learning Ability

The participants worked on twenty tasks. After completion of each interactive task, a partic-

ipant was asked immediately to rate how well the system learned from her edits in order to

produce a concept hierarchy. The question was “How well did the system appear to learn your

method of organizing the concept hierarchies? (Only for datasets that you organized using

the Interact function)”. A rating in 5-point scale, ranging from “very good”(5), “good”(4),

“fair”(3), “bad”(2), to “trash”(1), was used to rate perceived system learning ability.

Figure 6.7 shows the mean and 95% confidence interval for the perceived learning ability.

The average system learning ability perceived by the participants is 3.61. If breaking it

down by di↵erent types of datasets, the NAICS datasets have a mean perceived learning

ability of 2.95, which is statistically significant lower than that for the Web (Mean=3.92)

and the public comments datasets (Mean=3.79). One-way ANOVA test shows that there is

a statistically significant di↵erence for di↵erent dataset type on the perceived learning ability

(p < .015).

From the after session questionnaire, we found that participants thought that NAICS

datasets were more di�cult and they were not familiar with this domain. It is interesting

that when a dataset is less familiar or more di�cult for the users, the system was perceived
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Figure 6.8: Mean hierarchy construction time (in minutes; both manual and interactive
runs).

to perform badly too. The statistically significant di↵erence between NAICS and the other

two types of datasets may suggest that when people are not familiar with the tasks, they

provide less promising edits, the system learns from the lower quality training data, and

in the end the participants perceive the output as poor system learning ability. We study

dataset di�culty more in Section 7.3.2.

6.4.6 E�ciency

Both the accuracy of system suggestions directly judged by the participants and the per-

ceived system learning ability show that the human-guided concept hierarchy construction

framework is e↵ective in learning from manual guidance. We also concern with the e�ciency

of using the interactive system since it uses computational power and tries to save manual

e↵ort. In this experiment, we examine the construction time and the number of edits a user

needs in both the interactive runs and the manual runs.

Construction Time

Figure 6.8 (a) shows the average time (and its 95% confidence interval) used to construct

a concept hierarchy by di↵erent construction methods. For the interactive runs, the aver-

age construction time that the participants used is 3.87 minutes. For the manual runs, the
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Figure 6.9: Mean number of edits (For both manual and interactive runs).

average construction time is 5.18 minutes. We perform statistical significance tests to ana-

lyze the construction time. The results show that the interactive method used statistically

significantly less time (1-min or 20% less per dataset on average) than the manual construc-

tion method (p < .001 on a one-way ANOVA test). It indicates that human-guided concept

hierarchy construction can greatly reduce the time needed in concept hierarchy construction.

Figure 6.8 (b) shows the average time (and its 95% confidence interval) used to construct

a concept hierarchy for di↵erent dataset types (including both manual and interactive runs).

For the NAICS datasets, the average construction time is 6.05 minutes, the public comment

datasets 3.54 minutes, and the Web datasets 3.54 minutes. It is not surprising that par-

ticipants spent statistically significant (p < .001 in a one-way ANOVA test) more time to

finish constructing concept hierarchies with NAICS datasets than the other two datasets

since NAICS datasets are more ‘di�cult’. On average, participants spent about 2 minutes

(or 20-30%) more on an NAICS dataset than other datasets.

Number of Edits

The types of edits that a participant made to construct the concept hierarchies include

dragging and dropping a node, adding a node, deleting a node, renaming a node, promoting

a node, and undoing an editing action. The number of edits a participant used to construct

a concept hierarchy is an indicator of her manual e↵ort for the construction. We study how
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the human-guided concept hierarchy construction framework can save users’ editing e↵ort.

Figure 6.9 (a) shows the average number (and its 95% confidence interval) of edits used

to construct a concept hierarchy by di↵erent construction methods. For the interactive runs,

the average number of edits that the participants used is 31. For the manual runs, the

average number of edits is 42. The interactive method results in statistically significantly

fewer human edits than the manual method (p < .001 in a one-way ANOVA test). Given

that the size of each concept hierarchy is around 40 nodes, the interactive runs save about

25% human edits by suggesting groupings and organization for concepts.

Figure 6.9 (b) shows the average number (and its 95% confidence interval) of edits used

to construct a concept hierarchy for di↵erent dataset types. For the NAICS datasets, the

average number of edits is 38, for public comment datasets is 35, and for the Web datasets is

35 too. The number of edits for di↵erent types of datasets are not statistically significantly

from each other. Dataset type does not play a role in di↵erence in number of edits.

6.4.7 Comparing to Reference Concept Hierarchies

Concept hierarchy construction is a personalized task. Evaluating how good is a personalized

concept hierarchy is subjective and usually can only be judged by the person who constructs

it. However, we also notice that people share some commonality in organizing concepts and

may want to share their personal concept hierarchies with each other. Therefore, how much a

concept hierarchy is similar to or di↵erent from other concept hierarchies gives us more ideas

about whether a user constructs the concept hierarchy successfully enough to represent a

reasonable organization of the concepts. We hence use concept hierarchies created by experts

or popular concept hierarchies agreed by many participants as reference concept hierarchies

and compare the concept hierarchies constructed by the participants against the reference.

This measurement is not to measure whether a concept hierarchy satisfies a user’s need,

which we measured by system suggestion accuracy and perceived learning ability. This

measurement is to compare how di↵erent a concept hierarchy is from a reference concept

hierarchy which is conducted by experts or agreed by many people.

We use Fragment-Based Similarity (FBS), the concept hierarchy similarity measure pro-

posed in Chapter 3, to measure the similarity between a concept hierarchy created by a

participant, either manually or interactively, and a reference concept hierarchy. For the 10
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Figure 6.10: Fragment-based similarity (FBS) against reference concept hierarchies (For both
manual and interactive runs).

NAICS datasets, we used the 2007 NAICS codes as the reference concept hierarchies. For

the Web and the public comment datasets, we use the most popular concept hierarchy, i.e.,

the concept hierarchy whose mean FBS to other concept hierarchies is the highest among

the participants’ concept hierarchies pool.

In Figure 6.10 (a), we plot the mean similarity (and its 95% confidence interval) between

a concept hierarchy and a reference concept hierarchy using di↵erent construction methods.

The interactive runs produces an averaged similarity of 0.82, while the manual runs produces

an averaged similarity of 0.74. The di↵erence between the interactively constructed concept

hierarchies and the manually constructed concept hierarchies are statistically significant (p <

0.001 in a one-way ANOVA test). This result shows that when the participants interact with

the human-guided concept hierarchy construction system, they produce concept hierarchies

more similar to reference concept hierarchies than when they work manually without help

from the system. In general, we observe greater consistency among participants when they

used the interactive system.

This result implies that the manual runs allow a user to follow her own idea more freely

while the interactive runs somehow lead the user towards a concept hierarchy which is more

agreeable among di↵erent people. It may attribute to the fact that the interactive runs

suggested new organizations of concepts to a user, and some suggestions were accepted by
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the user. The system not only learns from the user, but also the user updates her views with

what the system suggests. It is a two-way learning through human-computer interactions.

The interactive system encourages people to be more consistent by suggesting choices that

are consistent with their previous choices. In addition, this machine-teaching e↵ect may also

happen during the tool training where all participants were given the same training data to

be familiar with OntoCop.

In Figure 6.10 (b), we plot the mean similarity (and its 95% confidence interval) between

a concept hierarchy and a reference concept hierarchy for di↵erent dataset types. The NAICS

datasets give an averaged similarity of 0.66, while the public comment datasets give 0.82 and

the Web datasets give 0.87. The di↵erence between the NAICS concept hierarchies and the

other two types of datasets are statistically significant (p < 0.001 in a one-way ANOVA

test).

This result implies that dataset type plays a significant role in the resulting concept

hierarchies. In particular, the concept hierarchies created for NAICS are less similar to the

reference concept hierarchies, as compared to the concept hierarchies created for the Web

and the public comment datasets.

6.5 Summary

This chapter describes the human-guided concept hierarchy construction framework for con-

structing concept hierarchies interactively through human-computer interaction. By incor-

porating personal preferences as manual guidance, the proposed supervised distance learning

algorithm and concept hierarchy construction framework is able to predict e↵ectively and

organize the concepts into concept hierarchies.

In human-guided concept hierarchy construction, the machine requests for manual guid-

ance at each iteration, and adjusts the the distance metric function accordingly. In particular,

by taking into account the human’s modification to the concept hierarchy, the machine learns

from her personalized grouping of concepts. The training data is updated at each learning

cycle and feed into the distance learning algorithm, which allows the formation of a concept

hierarchy to be based on the personal preferences from individuals.

Human-guided concept hierarchy construction has been tested on several di↵erent types
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of datasets. The evaluation on a variety of datasets give us a better idea of how well the

framework works under di↵erent situations. The framework has successfully demonstrated

its ability to deal with all these dataset types. In general, it is e↵ective in terms of being

highly accurate to make suggestions to the users and being perceived as learning well from

the users. It also greatly saves the users’ e↵ort in terms of time and number of edits.



Chapter 7

Study of User Behaviors

Concept hierarchy construction incorporates personalization into concept hierarchy construc-

tion. It aims to construct concept hierarchies that satisfy user-specific or task-specific needs.

In Chapter 6, we describe a user study that evaluates e↵ectiveness and e�ciency of the

human-guided concept hierarchy learning framework. In this chapter, we continue to de-

scribe the user study from the users’ perspective. Particularly, we study the user behaviors

and how human, system, and dataset work together to product di↵erences in the concept

hierarchies being constructed.

We start the chapter with a list of research questions that we want to get answer in Sec-

tion 7.1. We then identify the possible influencing factors in concept hierarchy construction

through an exploratory analysis in Section 7.2. We set up experiments and perform statis-

tical significance tests to evaluate whether these factors cause di↵erence in how to organize

information. Sections 7.3, 7.4, and 7.5 detail the experimental design and the results.

7.1 Research Questions

When people create concept hierarchies for a task, the subjectivity in how to organize the

information determines that everyone probably creates a di↵erent concept hierarchy for the

same task. Although it is possible for di↵erent people to create the entire concept hierarchy

in common, the chance of this coincidence is slim. In this chapter, we are interested in the

influencing factors of producing di↵erences in concept hierarchies.

151
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The possible influencing factors in creating di↵erent concept hierarchies may come from

three sources. The first source is the construction methods, including manual and interactive

methods. The second source is the datasets. The datasets belong to di↵erent types. In this

user study, we use three types of datasets: NAICS, public comments, and the Web datasets.

Datasets are di↵erent by nature and it is not surprising to see concept hierarchies created

for di↵erent datasets or di↵erent dataset types are di↵erent. However, for datasets that

belong to the same dataset type, the concept hierarchies created for them may show some

commonalities within this type and show di↵erences between the types. The third source of

the influencing factors are the participants.

There are twenty-four participants in this user study. They are from various majors in

Carnegie Mellon University and University of Pittsburgh. The age of the participants ranged

from 19 to 33 years old (Mean=24.3, SD=2.38). Eleven participants were females (46%).

All participants had basic computer skills and experience using software such as Microsoft

Windows Explorer at least twice a week. All participants had completed at least two years

of college, and were either native speaker (79%) or had high proficiency (21%) in English.

Of the 24 participants, 12 were randomly selected to re-perform the tasks again three weeks

later. Table 7.1 summarizes the statistics of the 24 participants in this user study.

The participants’s di↵erent organizing or editing habits could be caused by their demo-

graphics, errors/inconsistencies due to sloppiness, or other personal preferences which are

not captured by demographics. In our records, the di↵erence between the participants range

from their gender, major, and language proficiency. Some of these are possible influencing

factors to generate the di↵erences in the concept hierarchies.

With the possible influencing factors, we examine whether they are real influencing fac-

tors on concept hierarchies construction and on user behaviors by conducting statistically

significance tests. We examine these factors on various aspects of concept hierarchy con-

struction, including construction time, number of edits, quality of edits, and feature use.

We also study how consistent people are when they construct concept hierarchies. That

is, to find out if the variation among users is really due to personal preferences instead of

random variations.

In a nutshell, we evaluate various aspects of how people organize information and con-

struct concept hierarchies through finding answers to the following research questions:
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Institutes
Carnegie Mellon University 16
University of Pittsburgh 8

Gender
Male 13
Female 11

Majors
Arts 3
Business 1
Chemical Engineering 2
Cognitive Science 2
Computer Science 8
Math 1
Public Policy 3
Psychology 4

English Proficiency
Native speaker 19
Non-native speaker (with high proficiency) 5

Table 7.1: Statistics of participants.

Q1: What are the potential influencing factors (from the aforementioned three sources) for

the di↵erences of the concept hierarchies?

Q2: Do these factors make statistically significant di↵erences between concept hierarchies

and in user behaviors?

Q3: Whether people are self-consistent?

7.2 Influencing Factors

As stated in Section 7.1, the possible influencing factors of the di↵erences among the con-

cept hierarchies come from three sources: construction methods, datasets, and participants.

Construction method and dataset type are obvious possible influencing factors. From the

participant point of view, we need to find out the possible influencing participant factors in

creating di↵erent concept hierarchies.
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We take an exploratory approach to discover the participant factors. In particular, we

quantitatively compare the similarity among the concept hierarchies and cluster the partic-

ipants into groups based on how similar their concept hierarchies are. We then study the

common characteristics inside each user group. These group-wise characteristics could be

the factors that we are looking for.

We employ the following steps to form the user clusters.

1. Compute a user similarity matrix.

• There are 20 datasets and 24 participants. For each dataset D
i

, participant j

creates an concept hierarchy T
ij

. Among the 24 concept hierarchies created for

D
i

, we calculate the pair-wise Fragment-Based Similarity (FBS) scores for two

concept hierarchies T
ij

and T
ik

, where i = 1, ..., 20, j = 1, ..., 24, and k = 1, ..., 24.

• If FBS(T
ij

,T
ik

) > �, we consider that two concept hierarchies T
ij

and T
ik

are

similar, and participant j and participant k create similar concept hierarchies for

dataset D
i

. � is empirically set to 0.5.

• We count the number of similar datasets created by two participants and form a

user similarity matrix F . F is a 24 ⇥ 24 matrix with each row and each column

representing a participant. An entry (j, k) in F indicates the number of datasets

for which that participants j and k create similar concept hierarchies. In another

word, F records on how many datasets two participants agree.

2. Cluster the participants.

• With the user similarity matrix F , we can group the participants into clusters

based on how many datasets they agree with each other. We use the hclust

function in R programming1 to perform agglomerative hierarchical clustering over

F . The agglomeration option used is ward, a minimum variance method aims at

finding compact, spherical clusters [War63].

• The hierarchical clustering algorithm groups the participants into user clusters,

where each cluster represents a group of participants who tend to create similar

concept hierarchies.

1
http://www.r-project.org/.
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3. Study the participants’ characteristics within the user groups.

• For each user cluster, we mark the corresponding participants’ user ids.

• We also mark their gender, major, and language proficiency. Through observing

what characteristics being shared within a user group, we infer possible influencing

factors that make the users di↵erent between the clusters.

Figure 7.1 illustrates the results of the agglomerative hierarchical clustering. Overall, the

participants are clustered into two big groups: one user group consists of 10 participants,

and another group consists of 14. There are more finer groups being formed, however we

do not have enough data to distinguish the subtle di↵erences between the finer groups.

Instead, we focus on the two big user groups and study their within-cluster commonality

and between-cluster di↵erences.

Figure 7.1 (a) tags the gender information for each participant in the hierarchical clus-

tering results. The y-axis indicates values of the distance scores between the participants

based on the Ward agglomeration method. Eleven females and thirteen males participated

in the user study. The random female ratio is 0.46 and the random male ratio is 0.54. The

10-people group consists of six females out of ten, which gives a high female ratio of 0.6

within the group so that we consider this group as a “female” group. The 14-people group

consists of nine males out of fourteen, which gives a high male ratio of 0.64 within the group

so that we consider this group as a “male” group. It is interesting that the user groups

are formed based on whether the users create similar concept hierarchies, but the clusters

naturally show a slight gender di↵erence. No matter whether there is a gender di↵erence

when constructing concept hierarchies, we think gender is an interesting possible influencing

factor worth exploring in building concept hierarchies.

Figure 7.1 (b) tags the participants’ language proficiency information. Nineteen native

English speakers and five non-English speakers participated in the user study. The random

native speaker ratio is 0.79, and the random non-native speaker ratio is 0.21. The non-

English speakers all show high langauge proficiency as they reported and confirmed by us

through conversations. The 10-people group consists of nine native speakers out of ten,

which gives a high native speaker ratio of 0.9 so that we consider this group as a “native”

group. However, the 14-people group consists of four non-native speakers out of fourteen,
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Figure 7.1: Users form clusters based on how similar the concept hierarchies that they created
are.

which gives a non-native ratio of 0.28 that is not significantly larger than the random ratio.

Hence we can only consider this group as a “native” group too. The two user groups do
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not show di↵erence in terms of language proficiency. We therefore ignore it as a possible

influencing factor in concept hierarchy construction.

Figure 7.1 (c) tags the participants’ majors in the hierarchical clustering results. The par-

ticipants were from Computer Science, Mathematics, Engineering, Arts, Psychology, Cog-

nitive Science, Business, and Public Policy. The random CS-major ratio is 0.33, and the

non-CS major ratio is 0.67. We find that the 10-people group consists of nine non-CS ma-

jors out of ten, which gives a high non-CS ratio of 0.9 (significantly larger than 0.67) within

the group so that we consider this group as a “non-CS” group. The 14-people group consists

of seven CS majors out of fourteen, which gives a high CS ratio of 0.5 (significantly larger

than 0.33) within the group so that we consider this group as a “CS” group. Similar to

gender, it is interesting that CS majors and non-CS majors naturally fall into di↵erent user

groups based on how they organize the concept hierarchies. At this point of time, we are not

sure whether people majoring in CS indeed behave di↵erently from people majoring in other

non-CS majors. However, at least we can consider major as another possible influencing

factor in creating di↵erent concept hierarchies.

In summary, we take an exploratory data-driven approach to investigate what the possible

influencing factors are for the di↵erences of the concept hierarchies being created by di↵erent

people. We find that gender and major are two such possible influencing factors. Gender

di↵erence is not a new topic. It commonly appears in many tasks that involve humans.

However, we would like to know whether it also appears in the task of concept hierarchy

construction. Since CS-major apparently show di↵erences from the other majors, we also

would like to find out whether it is true that people majoring in CS think and organize

information di↵erently from people majoring in other majors do.

Recall that construction method and dataset type are two other possible influencing

factors. Together with gender and major, we investigate whether these factors really impact

on how people construct concept hierarchies by performing statistical significance tests.
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7.3 Impact of the Factors on Concept hierarchies

Based on the possible influencing factors suggested in the previous section, we analyze how

the participants organize information according to these factors. In this section, we com-

pare the concept hierarchies by measuring their similarities as well as by studying the user

behaviors. For example, we can compare how long it takes to create a concept hierarchy by

di↵erent participants, what is one’s use pattern of di↵erent types of editing functions, and

what is one’s use pattern of di↵erent types of feature functions.

7.3.1 Experimental Design

We employ the repeated measure analysis of variance (ANOVA) tests [Lin74] to study the

correlations and interactions among multiple influencing factors. In particular, we perform

two-way ANOVA tests to evaluate the significance of the influencing factors, which we call

independent variables (IV), on various aspects of the concept hierarchies being constructed,

which we call the dependent variables(DV).

A two-way ANOVA test involve two independent variables and one dependent variable.

Suppose the independent variables are A and B, the dependent variable is C. The test first

evaluates A’s individual e↵ect on C and B’s individual e↵ect on C, independently from

each other. If the test of A on C is statistically significant, i.e. the p-value is less than a

significance cut-o↵ threshold, we say A has a main e↵ect on C. Similar for B on C. The main

e↵ect indicate a correlation between the independent variable and the dependent variable.

The test then evaluates A and B’s e↵ects on C simultaneously. If the test of A and B on C

is statistically significant, i.e. the p-value is less than a significance cut-o↵ threshold, we say

that A and B has an interaction e↵ect on C.

Besides p-values, the significance of the tests can be observed through ANOVA interac-

tion plots. They straightforwardly reveal the correlations and the interactions among the

variables. Figure 7.2 illustrates a few interaction plots and their interpretations for several

two-way ANOVA tests involving two IVs A and B. A has two values A
1

and A
2

; B also has

two values B
1

and B
2

. The two color-coded lines represent B. The two end points at each

line represent the mean value of A given B. As we observe, a separation of the two lines

suggests a main e↵ect of B (Figure 7.2 (a), (c), and (f)). A steep slope of the lines suggests a
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(a) No e↵ect of A, main e↵ect of B. (b) Main e↵ect of A, no e↵ect of B.

(c) Both main e↵ects. (d) No main e↵ects, interaction e↵ect.

(e) Main e↵ect of A, no e↵ect of B, slight
interaction.

(f) Both main e↵ects, interaction e↵ect.

Figure 7.2: Interpretation of two-way ANOVA interaction plots. (Adapted from “Two-way
ANOVA tests” by Agilent Technologies, 2005.)

main e↵ect of A (Figure 7.2 (b), (c), (e), and (f)). The main e↵ects could be cancelled out if

the slopes are equal but with di↵erent signs (Figure 7.2 (d)). Moreover, a crossing of the two

lines suggests an interaction e↵ect of A and B (Figure 7.2 (d), (e), and (f)). Nonetheless, it

is the p-value that decides the significance of the tests.

Specifically, in this user study, the independent variables include two between-subject

independent variables: major (CS and non-CS2) and gender (male and female), and two

within-subject independent variables: construction method (manually or interactively) and

2
We do not study the major di↵erence among every major, instead, since the user groups suggest that

Computer Science major may show di↵erence against other majors, we break down all the majors into CS

and non-CS. Moreover, there is not enough data for each non-CS major to get reliable measurements.
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Table 7.2: Summary of variables.
Variables Description

Within-subject IV: Construction method Manual; Interactive.
Within-subject IV: Dataset type NAICS; Comments; Web.
Between-subject IV: Major Computer science; Non-Computer science.
Between-subject IV: Gender Male; Female.

DV:Dataset di�culty Perceived dataset di�culty (1-5).
DV:Construction time Time spent to construct a concept hierarchy (0-20

mins).
DV:Number of edits The amount of human edits made to a concept

hierarchy (0-1).
DV:Perceived quality of edits The quality of human edits perceived by a partic-

ipant (1-5).
DV:Top features The top weighted feature functions used by a par-

ticipant (pattern, co-occurrence, context, syntac-
tic, definition).

DV:Self-agreement Measured in FBS (0-1).

dataset type (NAICS, Web, or public comments). These independent variables represent

the potential influencing factors that could cause the di↵erences in the constructed concept

hierarchies and the user behaviors.

The dependent variables in the ANOVA tests represent di↵erent aspects of the concept

hierarchies being created. We asked the participants to rate the task di�culty and the

quality of their own edits for di↵erent datasets based on their perceptions. For the more

objective measures, we recorded the time that a participant spent to construct a concept

hierarchy, the number of edits that a participant made for a concept hierarchy, the features

that a participant used, and for some participants their self-agreement in a follow-up study.

We would like to know if there is a correlation or an interaction between these dependent

variables and the independent variables. Table 7.2 list all the independent and dependent

variables.

We perform multiple statistical significance tests according to the above independent

and dependent variables. In total we perform three two-way ANOVA tests: 2 (construction

method) ⇥ 3 (dataset type) ANOVA, 2 (construction method) ⇥ 2 (major) ANOVA, and 2

(construction method) ⇥ 2 (gender) ANOVA.
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Figure 7.3: Interaction plot for mean perceived dataset di�culty.

These tests allow us to find out the significant correlations and interactions among dif-

ferent variables and help us understand which potential factors really cause the di↵erence in

the resulting concept hierarchies. We report the results in the following sections.

7.3.2 Dataset Di�culty

Whether a dataset is di�cult for a participant is important, because it directly impacts

on whether this participant can successfully create a reasonable concept hierarchy. One’s

personal opinion of whether a dataset is di�cult or easy to deal with, depends on her own

experience and how familiar she is with the domain. We provide the participants datasets of

varying di�culty and collect the “perceived dataset di�culty”, which is a 5-point scale score

rated by every participant immediately after they completed the dataset. That participants

thought that NAICS datasets were more di�cult and they were not familiar with this domain.

On the contrary, the public comments are closely related to their daily life. The comments

are basically emails sent to the government agencies about environmental, transportation,

and other living-condition related issues. Similarly, the Web datasets are Web queries that

people sent to search engines. The topics such as “trip planning” are so familiar to the
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participants.

We perform three two-way ANOVA tests on the perceived dataset di�culty. The three

tests are “construction method vs. dataset type”, “construction method vs. major”, and

“construction method vs. gender”. We find that there is a statistically significant main e↵ect

for dataset type (p < .001) on perceived dataset di�culty. No main nor interaction e↵ect

was caused by major or gender.

Figure 7.3 shows the ANOVA interaction plot for the “construction method vs. dataset

type” test. It consists of two lines, one representing the interactive method and another

representing the manual method. The x-axis represents three di↵erent dataset types. The

y-axis is the rating scores from 1 to 5. The three points on each line show the mean values of

the perceived dataset di�culty for each dataset type. We observe a statistically significant

main e↵ect for dataset type (p < .001) on perceived dataset di�culty. Specifically, the

di↵erence comes from between the NAICS datasets vs. the other two dataset types. We find

no statistical significant di↵erence on perceived dataset di�culty between the Web dataset

and the public comment datasets.

This result suggests that di↵erent types of datasets indicate di↵erent di�culty levels for

the datasets. The NAICS datasets are more di�cult for participants than the Web and the

public comments datasets. One reason might be that both the Web and comments datasets

contain familiar topics to the participants. For example, “make a cake”, “find a used car”,

and “list polar bear as threatened species”. The topics in NAICS, for example “finance” and

“administrative services”, are more distant from the participants’ daily life as they are nearly

all students. The vocabulary in NAICS contains rare concepts such as “synthetic rubber

manufacturing” and “non-depository credit intermediation”, some of which the participants

complained in their free form comments as “never heard of”. Because the participants were

not familiar with the concepts in NAICS, they felt that the NAICS datasets were hard and

they could not well-organize the NAICS concepts into good concept hierarchies.

In Figure 7.3, the crossing of the two lines show that there is a slight interaction e↵ect

(p < .01) between construction method and dataset type on perceived dataset di�culty. In

particular, we observe a raise of the perceived di�culty in the NAICS datasets and a drop of

the perceived di�culty in the Web datasets in the interactive runs; we observe the opposite

trends in the manual runs.
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Figure 7.4: Interaction plot for mean construction time (in minutes).

7.3.3 Construction Time

Construction time is a good indicator for measuring the behavior of the participants and

the characteristics of the datasets. The twenty-minute time limit we set for each concept

hierarchy is a very generous upper limit so that the participants can adequately show their

preferences in constructing the concept hierarchies.

We perform three two-way ANOVA tests - “construction method vs. dataset type”,

“construction method vs. major”, and “construction method vs. gender” - to analyze the

di↵erences in construction time. Figure 7.4 (a), (b), and (c) show the interaction plots for

the ANOVA tests.

Figure 7.4 (a) confirms the statement we made in Section 6.4.6 that the NAICS datasets

need statistically significantly more time to construct concept hierarchies for them than the

Web and the public comment datasets (p < .001). The participants also spent more time

when they constructed the concept hierarchies manually than interactively (p < .001). No

interaction e↵ect is found between dataset type and construction method.

Figure 7.4 (b) shows that participants who major in Computer Science spent statistically

significant more time in constructing a concept hierarchy than participants who major in

other subjects spent. Moreover, the crossing of the lines indicates that there is also a

statistically significant interaction between majors and construction methods on construction
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Table 7.3: Statistics for participants’ editing activity.
Add Delete Drag&Drop Rename Promote Undo Total

Total 132.0 44.0 11,756.0 133.0 167.0 40.0 12272.0

Per user average 5.5 1.8 489.8 5.5 7.0 1.6 511.3

Per user per dataset average 0.4 0.1 35.3 0.4 0.5 0.1 37.0

Manual run average 0.6 0.2 40.5 0.6 0.5 0.1 42.5

Interactive run average 0.2 0.1 31.1 0.2 0.5 0.1 32.2

time (p < .05). Particularly, when using the interactive method, participants from di↵erent

majors did not show statistical significant di↵erence in time; while using the manual method,

participants majoring in Computer Science spent statistically significantly more time than

participants from other majors. If they use the manual method, the di↵erence in time

between Computer Science students and non-CS students is as large as 3.5 minutes, or

greater than 30%. For the interactive method, the di↵erence can nearly be detected. We

need a larger scale user study to confirm the results. Although the result is statistically

significant, it is tested on just 24 participants. We think it is necessary to use a larger scale

user study and more strictly controlled study to draw a conclusion about major di↵erence.

Figure 7.4 (c) shows that the male participants spent statistically significant more time

on a concept hierarchy than the female participants (p < .001). Similar to major di↵erence,

we think it is necessary to use a larger scale user study to draw a conclusion about gender

di↵erence.

7.3.4 Number of Edits

The participants’ editing activity is an interesting aspect to study. The types of editing that

a participant can perform when constructing concept hierarchies include “adding a node”,

“deleting a node”, “dragging and dropping a node”, “renaming a node”, “promoting a node”,

or “undoing” the previous actions.

Table 7.3 shows the total number of edits for each editing type, the average number of

edits of each editing type per participant, the average number of edits of each editing type

per participant per dataset, the average number of edits of each editing type per participant

per dataset for the manual runs, and the average number of edits of each editing type per

participant per dataset for the interactive runs.

The table shows that “drag & drop” is the most popular editing function. More than
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Figure 7.5: Interaction plot for mean number of edits.

90% of time, the participants used the “drag & drop” function to move the concepts around

to construct the concept hierarchies. We believe that it is due to the easiness of using this

function and the familiarity to this function through their past computer use experience.

Although all participants used the “drag & drop” function most frequently, they still

show di↵erent editing habits. When we study the number of edits each participant made to

build a concept hierarchy, we find statistical significant di↵erences between the participants

and between the datasets. We perform three two-way ANOVA tests as what we did for

other dependant variables. Figure 7.5 (a), (b), and (c) show the ANOVA interaction plots

for the tests of “construction method vs. dataset type”, “construction method vs. major”,

and “construction method vs. gender” accordingly.

Figure 7.5 (a) confirms our findings in Section 6.4.6. It indicates that there is a statisti-

cally significant correlation between the number of edits and construction method (p < .001).

Interactive runs use statistically significantly less number of edits than manual runs. No sta-

tistically significant correlation is found between number of edits and dataset type. There is

a slight interaction e↵ect between construction method and dataset type (p < .01). Specif-

ically, when using the interactive method, the participants spent more edits on the NAICS

datasets than the other two types of datasets. This trend did not repeat when they used the

manual method.

Figure 7.5 (b) shows that there is no statistically significant correlation between the



CHAPTER 7. STUDY OF USER BEHAVIORS 166

number of edits and major.

Figure 7.5 (c) shows that there is no statistically significant correlation between the

number of edits and gender.

Considering the study reported in Section 7.3.3, when a dataset is less familiar to the

participants, they spent statistically significant more time working on it, however, they did

not generate statistically significantly more edits for it. If they did not spend the time

on editing, they must have spent the time on thinking where to put a concept or how to

organize the concepts. This is an interesting finding. Section 7.4 gives an explanation for

this phenomenon.

7.3.5 Perceived Quality of Edits

The participants interacted with OntoCop to construct concept hierarchies. Both the human

and the system made edits to the concept hierarchies. As described in Section 6.4.5, we asked

the participants to evaluate the system’s learning ability by rating the edits suggested by

the system. We find that the ratings of system-generated edits are correlated with dataset

types. We also asked the participants to evaluate their own edits by providing a 5-point

scale rating: “very good”(5), “good”(4), “fair”(3), “bad”(2), and “trash”(1). This section

studies perceived quality of the participants’ own edits. We perform three two-way ANOVA

tests of “construction method vs. dataset type”, “construction method vs. major”, and

“construction method vs. gender” for perceived edit quality. Figure 7.6 (a), (b), and (c)

illustrate the interaction plots for the tests.

From these tests, we only find a statistical significant correlation between perceived qual-

ity of participants’ edits and dataset type (p < .001). Figure 7.6 (a) shows the interaction

plot for the ANOVA test for “construction method vs. dataset type”. From this figure we

find that when dataset type is NAICS, the perceived quality of edits is statistically significant

lower than when dataset type is public comments or the Web. No other e↵ects are found for

construction method, major, or gender.

We note that all perceived variables, including system learning ability (Section 6.4.5),

quality of human edits (this section), and dataset di�culty (Section 7.3.2), depend and only

depend on dataset type. The participants’ demographics, and even the construction methods

do not impact on these perceived dependent variables. We hypothesize that this may relate
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Figure 7.6: Interaction plot for mean perceived quality of edits.

to the fact that dataset type decides dataset di�culty; and dataset di�culty decides the

other perceived variables.

7.4 Feature Use

We use heterogenous semantic features in our system. As described in Section 5.4, the

semantic features include lexico-syntactic patterns, co-occurrence, contextual features, syn-

tactic dependency features, definition and word length. In this section, we examine the top

weighted features when each participant used OntoCop to construct concept hierarchies.

We obtain the top weighted features in the following steps:

1. Obtain weights for features.

For each dataset D
i

, participant j interacted with OntoCop and provided manual

guidance M (k)

ij

at the kth iteration. The system learned a weight matrix W (k)

ij

from

M (k)

ij

as described in Chapter 6. We obtain the diagonal vector w(k)

ij

from W (k)

ij

. w(k)

ij

contains the weights for each feature function for the kth iteration when participant j

constructed dataset D
i

, where i = 1, ..., 20 and j = 1, ..., 24.

2. Average the weights.

With the weight vectors, we can obtain an averaged weight vector for each participant.
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Figure 7.7: Use of di↵erent features.

Basically, we average all the weight vectors for a participant over all the datasets and

all the iterations she interacted with OntoCop. The averaged weight vector w̄
j

for

participant j is:

w̄
j

=
1

20

1

r
ij

20X

i=1

r

ijX

k=1

w(k)

ij

where r
ij

is the max number of iterations when participant j constructed concept

hierarchy for D
i

.

3. Pick the top weighted features for each person.

For each participant j, we pick the two top weighted features f
j1

and f
j2

with the

highest values in w̄
j

.

4. Count votes for top weighted features.

For each feature f
t

, we count how many participants used it as a top feature. Moreover,

we can count how many participants in a group used it as a top feature. t = (”pattern”,

”co-occurrence”, ”contextual”, ”syntactic”, ”definition”, ”word length”).

8f
t

, 8j 2 a group,

f
t

’s frequency of being a top feature = Count(f
t

== f
j1

, or f
t

== f
j2

).



CHAPTER 7. STUDY OF USER BEHAVIORS 169

Figure 7.7 (a) plots the top weighted features for CS-majors and non-CS majors. The

plot shows that CS-majors used a variety of features equally likely, while non-CS majors

used lexico-syntactic patterns much more frequently than other types of features.

Figure 7.7 (b) plots the top weighted features for males and females. It shows that

males used di↵erent types of features equally likely, while females used patterns much more

frequently than other types of features.

This is an interesting finding. The patterns are easy to use to quickly identify relations;

while other types of features are more complex to be evaluated by a human. We do not claim

that users make judgements based on the list of features provided in our system. However,

the finding suggests that non-CS majors and females may correlate with a simpler, pattern-

based strategy, whereas CS-majors and males correlate with a more complex strategy to

organize information.

The di↵erent use pattern of underlying feature functions, might be the reason why people

construct di↵erent concept hierarchies for the same dataset and why people show di↵erent

user behaviors such as construction time and number of edits. In Section 7.3.3 and Section

7.3.4, we find that although CS-majors and males spent more time, they did not make more

edits. Considering they may use a more complex strategy, this becomes understandable

because they might think more and hence spent longer time between each edit. Nonetheless,

we believe it needs more extensive user study to confirm this interesting hypothesis.

7.5 Self-agreement

The user study consisted of two phases, an initial phase and an repeat phase. At the end of

the initial phrase, one of the questions in the after-study questionnaire is “Would you like to

be invited to repeat the study a few weeks later?”. Among those participants agreed to come

back, we randomly invited 12 of them to join the repeat phase three weeks after the initial

phase. The three week period ensured that the participants only have limited memory of

the details about the tasks performed in the initial phase. The details of the participants in

the repeat phase is shown in Table 7.4.

The participants in the repeat phase were asked to organize concept hierarchies for the

same set of datasets and using the same order of construction methods as in the initial phase.
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Institutes
Carnegie Mellon University 7
University of Pittsburgh 5

Gender
Male 6
Female 6

Majors
Arts 1
Chemical Engineering 1
Cognitive Science 2
Computer Science 4
Public Policy 2
Psychology 2

English Proficiency
Native speaker 8
Non-native speaker (with high proficiency) 4

Table 7.4: Statistics of participants in the repeat phase.

we study self-agreement to find out if the variation among users is really due to personal

preferences instead of random variations. Particularly, we use Fragment-Based Similarity

(FBS) (Section 3.5) to calculate the similarity between the concept hierarchies constructed

in the initial phase and the corresponding concept hierarchies constructed in the repeat phase

by the same participant.

Table 7.5 shows the self-agreement measured in FBS. The first row indicates the maxi-

mum, minimum, and average self-agreement between concept hierarchies for any participant

and any dataset. The max self-agreement is as high as 1, which was a participant who inter-

actively constructed a concept hierarchy for the “wolf” dataset. The minimum self-agreement

is 0.37; the average self-agreement is 0.74, which is high.

The second row shows that the participant who was most self-agreeable could produce

a self-agreement of 0.81 on average across di↵erent datasets; the participant who was least

self-agreeable could produce a self-agreement of 0.63. The average is still 0.74.

The third row shows that for a dataset that produces the highest self-agreement among

all the participants, the self-agreement value is 0.95. For a dataset that produces the least
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Table 7.5: The maximum, minimum, and average Self-agreement values; measured in FBS.
Self agreement (in FBS) Max Min Average
per participant per dataset 1 0.37 0.74
per participant 0.81 0.63 0.74
per dataset 0.95 0.62 0.74
manual runs 0.98 0.37 0.73
interactive runs 1 0.45 0.76
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Figure 7.8: Interaction plot for self-agreement; measured in FBS.

self-agreement among all the participants, the self-agreement value is 0.62. The average is

still 0.74 for all datasets.

The fourth and the fifth rows illustrate the max, min, and average self-agreement for the

manual and the interactive runs, respectively. The max, min, and average self-agreements

of the interactive runs are a bit higher than the manual runs.

These self-agreement values are all at the high end of FBS, which shows that the partic-

ipants are quite self-consistent when constructing concept hierarchies at di↵erent times.

In order to understand what the influencing factors are for self-agreement, we perform

the three two-way ANOVA tests for self-agreement. Figure 7.8 (a) show that there is a

statistically significant correlation between self-agreement and dataset type (p < .001). More

di�cult datasets, i.e. the NAICS datasets, yield lower self-agreement for a participant and

hence less consistent concept hierarchies, but it is still very good.
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Figures 7.8 (a), (b), and (c) show that there is a slight correlation between self-agreement

and construction method (p < .05). Using the interactive method yields higher self-agreement

as compared to using the manual method. There are no other e↵ects caused by major or

gender.

Note that there were only 12 participants in the repeat phase. Although some results

about self-agreement are statistically significant, they are based on a small and somewhat

uniform user population (college students). We plan to extend the user study to a larger

scale evaluation.

7.6 Summary

This chapter reports the experiments and analysis for a user study in concept hierarchy

construction. We explore the commonality and di↵erences between the concept hierarchies

that constructed by di↵erent people. We find that every dataset has a part which most

participants agree on; every dataset also has a part which no one agrees on with each other.

In this user study, we emphasis on understanding what the di↵erences are and why they are

di↵erent. We find several possible influencing factors, including dataset type, construction

method, major, and gender of the participants. We then evaluate these factors on various

aspects of concept hierarchy construction through statistical significance tests.

Through the user study, we find that people are quite self-agreeable to themselves when

constructing concept hierarchies (Section 7.5). This novel finding provides a foundation to

study the personal preferences among people.

Moreover, we find that construction method is an important factor for concept hierarchy

construction. OntoCop’s interactive function helps concept hierarchy construction in several

aspects. Participants used much less time (Section 7.3.3) and much less edits (Section 7.3.4)

to construct concept hierarchies when using the interactive method as compared to using

the manual method. Using OntoCop’s interactive functions, the dataset also appear less

di�cult to the participants (Section 7.3.2). Moreover, interactive runs help the participants

to be more self-consistent (Section 7.5).

We also find that dataset di�culty, implied by dataset type, is another important indica-

tor for both the system’s and the user’s performance. When a dataset is more di�cult, both
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the user and the system may do poorly in various aspects of concept hierarchy construction.

The reason is mainly due to the user’s lack of prior knowledge or unfamiliarity with the

concepts and the relations in the domain. However, it maybe because the participants in

this user study were college undergraduates or graduates, they share similar vocabulary and

are familiar with the Web and emails, but not familiar with the industry standards (NAICS).

In addition, we find that people with di↵erent demographics show di↵erent feature use

patterns (Section 7.4). Feature use patterns could be a reason why people use di↵erent

amount of time and make di↵erent amount of edits to a concept hierarchy. However, fur-

ther investigation needs to be done to draw conclusions about gender di↵erence and major

di↵erence in feature use.



Chapter 8

Conclusion

This chapter concludes the dissertation by summarizing the research in Section 8.1 and

highlighting the contribution in Section 8.2, followed by a discussion of a few future directions

in Section 8.3.

8.1 Research Summary

This dissertation studies how to e↵ectively organize information and how to encode user-

specific or task-specific preferences in the organizing process. To “organize information”,

we present concept extraction (Chapter 4) and metric-based concept hierarchy construction

(Chapter 5). To “encode preferences”, we present human-guided concept hierarchy construc-

tion (Chapter 6). We also study how to evaluate user behaviors during concept hierarchy

construction (Chapter 7) and how to compare concept hierarchy similarity (Section 3.5). In

this section, we summarize the dissertation research as follows.

Metric-based concept hierarchy construction is a novel automatic concept hierarchy con-

struction framework. It constructs an initial concept hierarchy from data and presents it to

the user. Through an analysis of how people build a concept hierarchy step by step, the

framework mimics the steps and turns concept hierarchy construction into an incremental

clustering process. In this process, every step of adding a new concept into the concept

hierarchy is transformed into an optimization problem. The optimization is based on mini-

mum evolution of concept hierarchy structure and semantic distances, modelling of concept

174
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abstractness, and modelling of concept coherence. For each pair of concepts that have an

immediate relation, their semantic distance is modeled as an integration of many seman-

tic feature functions. Each feature is carefully chosen and corresponds to a state-of-the-art

technique. Therefore, this framework provides a general platform to include multiple state-

of-the-art techniques, and find the best weights for each technique through the optimization.

As a result, metric-based concept hierarchy construction generates initial concept hierarchies

with good quality.

Incorporating personal preferences in concept hierarchy construction is challenging. The

human-guided concept hierarchy construction framework allows a user to provide periodic

manual guidance and interacts with a learning algorithm to produce a concept hierarchy.

Through human-computer interaction, the human and the machine work together to organize

concepts into concept hierarchies. The user interfaces of such systems are required to be

user-friendly. OntoCop, our interactive concept hierarchy construction tool, satisfies such

requirements. Its interface captures how a user organizes the concept hierarchy and the

learning algorithm translates this information into matrices that can be easily adopted. The

algorithm uses the manual guidance represented by these matrices to train new concept

hierarchy construction models which adapt to the user’s preferences of how to organize the

concept hierarchy. The model is then used to make predictions of how to further construct

the concept hierarchy according to this particular user’s preferences. In this way, the user is

successfully put-into-the-loop and able to build personal concept hierarchies.

To evaluate the system e↵ectiveness and to study how to evaluate hierarchy similarity,

we propose a novel metric - Fragment-Based Similarity (FBS) - which employs a unique bag-

of-word representation for concept hierarchies and evaluates the similarity between concept

hierarchies fragment by fragment. The dissertation empirically evaluates various design

decisions that lead to this new metric. FBS can be an very e�cient similarity measure for

hierarchies in general. It well approximates Tree Edit Distance, however greatly improves

Tree Edit Distance’s e�ciency from NP-hard to a time complexity of only O(n3) (O(n) if

pairwise node similarities are pre-calculated).

We conduct a user study involving 24 participants to evaluate whether human-guided

concept hierarchy construction can successfully assist people to construct concept hierar-

chies that reflect their personal preferences, and whether the interactive system is able to
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accelerate the process as compared to constructing the concept hierarchies manually. The

users are asked to evaluate the system’s predictions on-the-fly during each human-computer

interaction. The results show that our system achieves a high prediction accuracy (above

92%). The time and edits used to construct a concept hierarchy are also greatly reduced by

20% to 30%. The user study demonstrates that human-guided concept hierarchy construc-

tion is able to generate concept hierarchies with manually-built quality and with much more

e�ciency.

Besides system e↵ectiveness and e�ciency, we also analyze user behaviors during concept

hierarchy construction in the user study. In particular, we explore what are the dataset-

specific or user-specific di↵erences in the concept hierarchies that people construct, whether

people are self-consistent, what are the influencing factors for producing di↵erent concept

hierarchies, and how these factors interact with di↵erent construction methods. We take

an exploratory approach to study the collected data, including user demographics, concept

hierarchies being constructed, editing logs, and answers to the questionnaires. Through a

clustering of users and concept hierarchies, we discover several possible influencing factors.

Based on them, we conduct statistical significance tests to identify the real influencing factors

that a↵ect people on constructing di↵erent concept hierarchies. We find that dataset di�-

culty is a major factor a↵ecting how people organize information into concept hierarchies.

Other factors, such as major, gender, and feature use patterns, need further experiments

to draw firm conclusions. We also find out that people are quite self-consistent in building

concept hierarchies when they are asked to construct concept hierarchies for the same topic

at di↵erent times. This novel finding provides foundations to study di↵erence in concept

hierarchy construction behaviors between di↵erent individuals.

8.2 Significance of the Dissertation

This dissertation addresses how to construct concept hierarchies from text collections both

automatically and with a-human-in-the-loop. It integrates techniques in machine learning,

natural language processing, and information retrieval into one framework to advance the

research of concept hierarchy construction. Moreover, this work not only just integrates

techniques from various research fields, but also contributes to the development of those
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fields. Particularly, it has a significant impact on research areas including concept hierarchy

construction, human-computer interaction, and hierarchy similarity measurement.

One of the major contributions of this dissertation research is the use of heterogenous

semantic features. Traditionally, researchers in knowledge acquisition or concept hierarchy

construction only use a single type of techniques in their work. Examples include lexico-

syntactic patterns, word co-occurrences, or syntactic dependency features. Each technique

usually requires a unique way to be applied on data. For example, patterns need to be

matched with instances in text and usually are used together with the bootstrapping tech-

nique; syntactic dependency features require splitting documents into sentences and parsing

the sentences before generating the features. Therefore, by default, di↵erent features do not

appear in a uniform format. Even if we can represent them all in numeric numbers, how to

incorporate multiple features to decide a concept hierarchy’s structure is still a problem. Re-

searcher has managed to apply patterns first then word co-occurrence statistics (e.g., PMI) to

control quality of patterns and instances. However, such an add-modules-one-by-one model

cannot be continued once the number of features goes up. This is one of the main reasons

why researchers usually just use one technique for concept hierarchy construction instead

of taking multiple perspectives. Instead of combining techniques using ad-hoc methods, in

this dissertation research we design a general framework to support multiple techniques.

Particularly, we combine all techniques into a semantic feature vector and use the vector

to calculate a semantic distance between concepts. Through optimizing the overall seman-

tic distance among concepts, we optimize the concept hierarchy structure to ensure that a

concept hierarchy is organized based on a sensible guideline. Through this process, each

feature’s weight is optimized. Our research moves beyond the limitation of traditional use of

features and incorporates heterogeneous semantic evidence into the learning process. This is

a significant contribution to concept hierarchy construction. Moreover, we can flexibly add

or reduce features, and study how each feature contributes to concept hierarchy construction

under various situations.

Besides optimization of concept hierarchy structure, we employ two more optimization

strategies for concept hierarchy construction. Both strategies are inspired by our observation

of concept hierarchies’ characteristics. The first is modeling of concept abstractness. Specif-

ically, we perform di↵erent modeling for concepts at di↵erent horizontal levels of a concept



CHAPTER 8. CONCLUSION 178

hierarchy to ensure that abstract concepts and concrete concepts are handled di↵erently.

The second is modeling of concept coherence. It aims to solve the inconsistency issue caused

by concept insertions which are only based on immediate/local pair-wise relations. If we

don’t deal with concept coherence, oftentimes an concept hierarchy construction algorithm

produces inconsistent vertical chain of concepts in a concept hierarchy. The problems ad-

dressed by these two strategies have actually been noticed by researchers in Computational

Linguistics and Information Retrieval [SC99]. However, researchers have not yet designed

new algorithms to handle them. We are fortunate enough to be the first to use statistical

machine learning and optimization techniques to approach these problems. We expect that

more followup research will emerge and a variety of approaches will be proposed to explore

these issues.

A very important factor in concept hierarchy construction is the human. In this disser-

tation research, we put much e↵ort in studying how to incorporate the human seamlessly

in the process of concept hierarchy construction to bring personality to the static, machine-

generated concept hierarchies. From another perspective, the machine must seamlessly help

the human organize information into concept hierarchies with no or little interruption to user

experience. OntoCop is such an easy-to-use software tool, in which people can easily drag

and drop concepts around to organize information. It captures human actions and uses them

as guidance to train statistical learning models and predict organizations of other concepts.

In this way, the system greatly reduces manual e↵orts for concept hierarchy construction

and realizes real-time interactive concept hierarchy construction.

For any empirical and experimental research, evaluation is always very important. Con-

cept hierarchy is not an exception. However, because it is a personalized task, it seems that

only the person who creates/uses the concept hierarchy has the authority to judge whether

a concept hierarchy is good or bad. This constraint greatly increases the di�culty to eval-

uate the e↵ectiveness of concept hierarchy construction. In this dissertation research, we

adopt several methods to evaluate concept hierarchies. One method is to let the user to

directly evaluate the system. This includes a subjective evaluation by questionnaires and

an on-the-fly evaluation on machine-generated concept pairs during each human-computer

interaction. Another method is to compare with existing concept hierarchies when we use
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the proposed approach to re-construct them. This kind of comparison to community opin-

ions should not be used as the final judge for a concept hierarchy, however, it provides good

references. Comparing with existing concept hierarchies is a problem of comparing hierarchy

similarity. So far, this problem has no su�ciently e�cient solution. Based on concept hier-

archies’ characteristics and our observation over how people compare hierarchies, we propose

a novel hierarchy similarity measure, Fragment-Based Similarity (FBS). FBS well approxi-

mates Tree Edit Distance but greatly reduces its complexity from NP-hard to polynomial

time. We expect FBS to be widely used in various applications where there exist needs

to compare hierarchies. We also welcome researchers to propose other methods based on a

fragment view of hierarchy structure.

In summary, the research in this dissertation is the first step of concept hierarchy con-

struction, and an important step forward of concept hierarchy construction. This dissertation

research addresses important problems of concept hierarchy construction, especially consid-

ering how to better model the problems with good theoretical foundations, to study the

problems via extensive empirical experiments and user studies, and to solve the problems

by developing practical applications for constructing concept hierarchies. It develops both

automated and interactive methods that assist information seeking, organization, and man-

agement activities. Methods proposed in the research will not only lead to practical systems

of immediate benefit for users, but also enhance our ability to reason about the sophisticated

information systems of the future. The better theoretical foundation, the more extensive em-

pirical experiments and user studies, and the better modeling of various aspects of concept

hierarchy construction in this new research show a bright future of concept hierarchy con-

struction.

8.3 Future Directions

Research on concept hierarchy construction is still in its infancy. The theoretical and con-

ceptual challenges are deep and exciting. The following are descriptions of some future

directions of this new research.
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8.3.1 Interactive Concept Suggestion

In human-guided concept hierarchy construction, the system and the user work together

to create a concept hierarchy through interactions. The system models manual guidance

provided by the user and learns the user preferences from it. The system then organizes

the unmodified concepts and updates the concept hierarchy based on the manual guidance.

Thus the organization of the concepts are updated in real-time from iteration to iteration

according to the user preferences. In this process, we assume that the concepts are fixed and

have been acquired by concept extraction. This separation of concept acquisition and relation

acquisition simplifies the task. However, it is not the most desirable method because not

only the organization needs to be customized, but also the concepts in a concept hierarchy

need to be customized based on the user’s guidance which arrives in real-time during the

human-computer interactions.

Although in the first step of concept extraction (Chapter 4), we have extracted almost

all possible concept candidates, only a few dozens to a few hundreds are kept in the concept

set and presented to the user. Some useful concepts might be thrown away during concept

filtering and concept unification, therefore at the end of concept extraction, we only reach

a recall around 60%. Such a recall value is not bad at all for a task that cares more about

precision (e.g., Web search), however it might be a little bit low for an information organi-

zation task which cares about both precision and recall. Another reason for this low recall

is that users create many self-defined concepts in the interactive process. These self-defined

concepts are about the domain, however do not explicitly appear in the document collection.

Therefore it is di�cult to discover them from the collection itself.

A new mechanism of interactive concept suggestion is an interesting extension to this

dissertation research. During human-computer interactions, both the concept sets and the

organization of these concepts should be updated by both the user and the system. When

a user adds a concept or deletes a concept in the concept hierarchy, she actually indicates

her interest of topics for the domain and for the task. Based on the concepts being added

or deleted, we should be able to predict and introduce new concepts that the user is in-

terested from the document collection and external resources such as the Web. Techniques

such as query suggestion and natural language generation should be reviewed and new solu-

tions should be explored for the task of interactive concept suggestion in concept hierarchy
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construction.

8.3.2 Multiple Inheritance

In Chapter 1, we argue that the best form of organizing information is multiple tree repre-

sentations with additional links between nodes in a tree. In this dissertation research, we

address this issue by having the users to participate in an interactive process and taking into

account their personal preferences in concept hierarchy construction so that each concept

hierarchy is one tree with one specific view to the data. However, we did not study how to

allow additional links in a concept hierarchy.

In order to introduce additional links into a tree, we must support multiple inheritance.

Some concepts could have multiple parents, such as “bank” is a “financial institute” and it

is also a part of a “river”. The current framework only chooses a single “best” position for

each concept. In the future work, we will allow some concepts to be positioned in multiple

positions in the concept hierarchy. In theory, this can be done within the framework by

relaxing the constraints when assigning a single position for a concept. This relaxation will

probably incur more computational cost. We hence must make careful decisions on two

issues: which concepts should be positioned in more than one locations and where are the

best locations. These decisions can be made in di↵erent ways.

We could first adopt a heuristic approach by setting a threshold on the changes that

a concept brings into a concept hierarchy. Recall that we adopt a minimum evolution

assumption that a concept hierarchy grows in a way that minimum changes to its structure

and minimum increases to its overall distances should be preserved. If the change of the

overall semantic distances caused by an insertion is less than a pre-determined threshold,

the position where a concept is inserted into will be considered as valid for this concept.

This method is simple and relatively e�cient. However, some concepts may introduce less

changes into the concept hierarchy’s overall structure, others may introduces more changes

to it. Hence it might not be trivial to set a good and general threshold.

Alternatively, we can train classification models to predict if a concept should be po-

sitioned into multiple locations in the concept hierarchy or not. Given a gold standard

concept hierarchy, we can extract features to determine if a concept should have multiple

parents or multiple children or neither. In general, this method could be more robust than
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the above heuristic method, but it requires more computational cost and training data to

achieve reasonable performance.

8.3.3 Study of User Behaviors

The user study presented in Chapter 7 provides a preliminary study of the impact of partic-

ipants’ demographic di↵erences and feature use di↵erences in constructing a concept hier-

archy. Among them, we are especially excited to explore whether and how di↵erent feature

use patterns might be the reason why people construct concept hierarchies di↵erently.

In the preliminary user study, we discover that some users such as females and non-CS

majors tend to often use lexico-syntactic patterns in their decision-making process to quickly

infer relations between concepts, and other users such as males and CS majors tend to often

take a more complex strategy to use many features together to identify relations. This makes

us think that it might not be the gender di↵erence nor the major di↵erence that yield the

di↵erences in concept hierarchies that people create. It might be the feature use patterns.

In another word, we suspect that people who mainly use patterns probably produce di↵erent

concept hierarchies than people who use a combination of many features. If we can prove the

hypothesis that di↵erent user groups tend to use one or more specific features to organize

information, that will be a very interesting and important finding. The results may have

many implications and we can take advantage of this knowledge to better serve a user.

For instance, in the concept hierarchy construction process, for a user who tends to use

patterns only, we can increase the weights for her pattern-based features; for a user who tends

to use a variety of features, we can constrain the variance of the weights for all features to

remain within a limited range. Using this more targeted strategy based on user groups, the

system could achieve the concept hierarchy in a user’s mind faster and better.

This may also be helpful for people who routinely need to organize information, e.g.,

government analysts and lawyers. Learning their general working preferences may enable

the system to begin a new dataset with features that are tuned for an individual, rather than

waiting for the individual to do some manual training.
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