
Advances in Generative Feature Learning

Zhilin Yang

CMU-LTI-19-010

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15213
www.lti.cs.cmu.edu

Thesis Committee:
Ruslan Salakhutdinov (Co-Chair), Carnegie Mellon University

William W. Cohen (Co-Chair), Carnegie Mellon University
Graham Neubig, Carnegie Mellon University

Jason Weston, Facebook AI Research

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2019 Zhilin Yang

Abstract
It is crucial to use unlabeled data to improve learning because unlabeled data is

more accessible and more abundant than labeled data. There are two major learning
paradigms towards this goal—the unsupervised pretraining method pretrains a lan-
guage model on unlabeled data and performs finetuning on downstream tasks, while
semi-supervised learning jointly optimizes loss functions on labeled and unlabeled
data. In this thesis, we study the problem of generative feature learning, which
aims to use generative modeling to leverage unlabeled data for boosting target task
performance.

We propose novel methods to address critical challenges in generative feature
leanring. In the context of unsupervised learning, Transformer-XL is a novel architec-
ture that enables modeling longer-range dependency. Built upon it, XLNet employs a
permutation language modeling objective to bridge the gap between language model-
ing and unsupervised pretraining, which opens the possibility of applying language
modeling progress to improve downstream tasks. In the setting of semi-supervised
learning, we theoretically answer two open questions of GAN-based semi-supervised
learning, which provides more fundamental understanding about why and how GANs
work for semi-supervised learning. In addition, we pioneered the research of genera-
tive modeling based semi-supervised learning for tasks with complex data structures
such as classification on graphs and question answering.

Empirically, our generative feature learning methods have played a leading role in
the development of a variety of research topics. The proposed methods obtained the
state-of-the-art results on more than 30 benchmarks at the time of their publication,
including natural language inference, question answering, text classification, language
modeling, semi-supervised learning, etc., demonstrating significant practical value.

iv

Acknowledgments

It is the luckiest thing ever to have the opportunities to work with my advisors—
Ruslan Salakhutdinov and William W. Cohen.

As a world-class expert in machine learning and deep learning, Russ has played
an important role in my PhD research career. When I started my journey in deep
learning, I did not have much experience or knowledge about deep learning. Russ
guided me through the very first steps by pointing me to important papers and teaching
me the core ideas of deep learning. As a result, I had the opportunities to work in
the exciting area of developing deep learning methods to solve natural language
understanding problems. I was thus lucky enough to witness and even contribute
to the rapid progress of the field. Moreover, Russ is very open-minded about what
research topics to work on. Because of this, I was able to explore different research
topics in the first year such as image captioning, graph embedding learning, and
transfer learning. I benefited a lot from such diversity of research topics in my first
year of research. On one hand, it made me aware of the most challenging problems in
each area, which essentially defines what are the most important problems in machine
learning and gives me vision about the future. On the other, different approaches in
these areas inspired my later research when I focused on the framework of generative
feature learning. He also taught me important lessons in terms of research ideas,
research methods, and paper writing.

William pays a lot of attention to the details including technical details and writing
details. He usually gives very detailed comments about wording and grammar, and
will carefully point out all the seemingly minor (but in fact very critical) issues about
the organization of multiple sections and the correct usage of mathematical symbols.
He also has a very rigorous attitude towards technical details. This is a very important
merit I learned from him, and I always try to ensure that every step in our paper or
experiments is well-motivated and logically solid. Our papers were seldom rejected
by any conference with an acceptance rate over 90%, and I believe this is one of the
most important reasons. Moreover, he made me believe that simplicity is among the
most important things in research. We should never introduce unnecessary complexity
or cosmetic maths into our methods if they do not lead to practical improvement or
theoretical insight. He also taught me important research methods such as ablation
studies. These lessons are valuable and pave the way for my research career.

Both Russ and William are very nice people to work with. And thus I was able to
enjoy research as an important part of my life in the last four years, without feeling
stress or discourage. We celebrated every successful breakthrough and tackled the
biggest challenges in the field together. They were also extremely intelligent and
knowledgeable, and it was my great pleasure and honor to work with two of the most
wonderful minds in the world. In addition, they offered the most important advices
for my career plan, for which I am very grateful.

I worked with Jason Weston at Facebook AI Research. I admired a lot of Jason’s
work because I believe they fundamentally shaped the field of NLP, with “NLP from
scratch” and memory networks being the most prominent examples. Therefore I was

thrilled to have the opportunity to work with him. The most important thing I learned
from Jason is the methodology of objective-driven research. The main idea is to think
about an ultimate goal such as solving dialog, identify the most critical challenges
to reach the goal, and then decouple the big challenges into smaller, reachable key
results. I believe this leads to a good trade-off between the significance of ultimate
goals and the technical feasibility of a single paper.

I was also honored to work with Quoc V. Le at Google Brain. Quoc is a strong
believer of big data and large computation. In fact, his groundbreaking work on
AutoML is the best example. The philosophy is that it is important to scale with big
data and large computation so that we focus on solving the most challenging problems
that are not solvable even when we reach the limits of data and computation. I very
much agree with this philosophy and have been deeply influenced. Another important
lesson I learned from Quoc is optimism about the future of deep learning or AI. The
golden era of AI has not passed, and the best is always yet to come. Recent evidence
seems to suggest that this might be true—when we looked at the success of LSTMs
and wondered if there is innovative work left to be done, the wave of Transformers
sweeps through the entire field. Quoc also advocates for the generality of methods
instead of being limited to specific applications. This is also an idea that I have been
following in my research career.

I would like to thank Graham Neubig for being on my thesis committee. I very
much appreciate his valuable advices on improving the quality of the thesis. These
advices also lead to deeper thinking about the relationship between our previous work
and the future of the field.

Zihang Dai has so far been my most important coauthor, excluding my advisors
and mentors. Together we created XLNet, Transformer-XL, complement GAN, and
the high-rank language models. I believe these are among the best papers I have
written so far. I am surprised and deeply impressed by his strong, full-stack research
skills, including implementation, hyperparameter tuning, brainstorming about new
ideas, paper writing, understanding and analyzing results, deriving equations and
theorems, and visualization. Our collaboration has led to numerous interesting ideas
and significant insights.

I would like to thank my best friends at CMU. I have been lucky to meet Zihang
Dai, Jiateng Xie, Qizhe Xie, Dylan Du, Guokun Lai, and Jingzhou Liu. I don’t think
I need to say much here, and you guys all understand.

Edward Chen, Yutao Zhang, and Jeff Jie are valuable friends that give me guidance
in the startup world. Their passion, leadership and vision have greatly inspired me.

I would like to thank Hanxiao Liu for giving me numerous useful advices and
suggestions both in terms of research and career plans. His opinions and experiences
have been very inspiring. I would like to thank Ye Yuan for going to Chengdu Gourmet
with me every week :), and of course the great collaborations and discussions we had.
I also had a lot of discussions and wrote a couple of papers with Bhuwan Dhingra.
He usually gives me new perspectives to a problem, and I really enjoyed working
and brainstorming with him. Adams Yu has also been one of my good friends and I
learned a lot from his experiences and insights. I would like to thank Peng Qi, Jake

vi

Zhao, and Saizheng Zhang for our great collaborations on HotpotQA and GLoMo,
from which I have learned a lot. I am grateful for the suggestions and ideas Thang
Luong gave me during my internship at Google, and it was my pleasure to work with
him. I would also like to thank Guoqing Zheng, Fan Yang, Diyi Yang, Wei-Cheng
Chang, Junjie Hu, Yuexin Wu, Yichong Xu, Simon Du, Han Zhao, Zhiting Hu,
Pengtao Xie, Yao-Hung Tsai, Max Ma, Ruochen Xu, Pengcheng Yin, Xinyu Wang,
Hector Liu, Shikun Zhang, Keyang Xu, Xingyu Lin, Di Wang and many others for
their support.

Jie Tang and Yuchun Ma gave me the opportunities to start my research career and
explore the magical world of machine learning when I was at Tsinghua University.
They continued to give me important and helpful advices after I graduated. I would
like to say thank you to them.

Thank you, Ning, for going through the ups and downs with me. Thank you for
the support, advices, understanding, and everything.

I thank my parents for everything they gave me, including the opportunity to be
educated and the freedom to pursue my passion. Thank you so very much.

vii

viii

Contents

1 Introduction 1
1.1 Motivation: Learning from Unlabeled Data . 1
1.2 Background . 2
1.3 Challenges . 3
1.4 Contributions . 4

2 Unsupervised Pretraining with Generative Modeling 7
2.1 Attentive Language Models Beyond a Fixed-Length Context 7

2.1.1 Motivation . 7
2.1.2 Background . 8
2.1.3 Approach . 10
2.1.4 Experiments . 16

2.2 XLNet: Generalized Autoregressive Pretraining 31
2.2.1 Motivation . 31
2.2.2 Approach . 32
2.2.3 Experiments . 42

3 Semi-Supervised Learning with Generative Modeling 49
3.1 Semi-Supervised Learning with GANs . 49

3.1.1 Motivation . 49
3.1.2 Related Prior Work . 51
3.1.3 Theoretical Analysis . 51
3.1.4 Case Study on Synthetic Data . 57
3.1.5 Approach . 58
3.1.6 Experiments . 61
3.1.7 Conclusions . 64

3.2 Semi-Supervised QA by Generating Questions 64
3.2.1 Motivation . 65

ix

3.2.2 Related Prior Work . 65
3.2.3 Problem Definition . 66
3.2.4 Approach . 67
3.2.5 Experiments . 72
3.2.6 Conclusions . 74

3.3 Semi-Supervised Learning on Graphs . 78
3.3.1 Motivation . 78
3.3.2 Background and Related Prior Work . 78
3.3.3 Approach . 80
3.3.4 Experiments . 85
3.3.5 Conclusions . 90

4 Conclusions 91
4.1 Summary and Comparison . 91
4.2 Future Work . 92

Bibliography 95

x

List of Figures

2.1 The Transformer architecture. 9

2.2 Illustration of the vanilla model with a segment length 4. 10

2.3 Illustration of the Transformer-XL model with a segment length 4. 11

2.4 Visualizing unnormalized relative perplexity gains with r = 0.1. 21

2.5 Perplexity vs context length. 22

2.6 Illustration of the permutation language modeling objective for predicting x3
given the same input sequence x but with different factorization orders. 33

2.7 (a): Content stream attention, which is the same as the standard self-attention.
(b): Query stream attention, which does not have access information about the
content xzt . (c): Overview of the permutation language modeling training with
two-stream attention. 34

2.8 A detailed illustration of the content stream of the proposed objective with
both the joint view and split views based on a length-4 sequence under the
factorization order [3, 2, 4, 1]. Note that if we ignore the query representation,
the computation in this figure is simply the standard self-attention, though with a
particular attention mask. 38

2.9 A detailed illustration of the query stream of the proposed objective with both
the joint view and split views based on a length-4 sequence under the factorization
order [3, 2, 4, 1]. The dash arrows indicate that the query stream cannot access
the token (content) at the same position, but only the location information. 39

3.1 Percentage of the test samples that satisfy the assumption under our best model. . 56

3.2 Labeled and unlabeled data are denoted by cross and point respectively, and different
colors indicate classes. 57

3.3 Left: Classification decision boundary, where the white line indicates true-fake boundary;
Right: True-Fake decision boundary . 57

3.4 Feature space at convergence . 57

3.5 Left: Blue points are generated data, and the black shadow indicates unlabeled data.
Middle and right can be interpreted as above. 57

3.6 Comparing images generated by FM and our model. FM generates collapsed samples,
while our model generates diverse “bad” samples. 62

xi

3.7 Model architecture and training. Red boxes denote the modules being updated. “d_true”
and “d_gen” are two domain tags. D is the discriminative model and G is the generative
model. The objectives for the three cases are all to minimize the cross entropy loss of the
answer chunks. 70

3.8 Comparison of discriminator training loss −J(UG, d_gen, D) on generated QA pairs.
The lower the better. MLE refers to questions generated by maximum likelihood training,
and RL refers to questions generated by reinforcement learning. 74

3.9 An example of sampling from context distribution p(i, c, γ) when γ = 1 and
d = 2. In circles, +1 denotes positive instances, −1 denotes negative instances,
and ? denotes unlabeled instances. If random < r2, we first sample a random
walk 2 → 1 → 4 → 6, and then sample two nodes in the random walk within
distance d. If random ≥ r2, we sample two instances with the same labels. . . . 81

3.10 Network architecture: transductive v.s. inductive. Each dotted arrow represents a
feed-forward network with an arbitrary number of layers (we use only one layer
in our experiments). Solid arrows denote direct connections. 84

3.11 t-SNE Visualization of embedding spaces on the Cora dataset. Each color denotes
a class. 88

xii

List of Tables

2.1 Comparison with state-of-the-art results on WikiText-103. � indicates contempo-
rary work. 16

2.2 Comparison with state-of-the-art results on enwik8. 17
2.3 Comparison with state-of-the-art results on text8. 17
2.4 Comparison with state-of-the-art results on Billion Word. � indicates contempo-

rary work. 18
2.5 Comparison with state-of-the-art results on Penn Treebank. † indicates use of

two-step finetuning. 19
2.6 Ablation study on WikiText-103. For the first two blocks, we use a slightly smaller

model (128M parameters). † indicates that the corresponding row is reduced to the
same setting as the Transformer network in [1], except that two auxiliary losses are
not implemented in our experiments. “PPL init” refers to using the same length
as training. “PPL best” indicates the perplexity obtained by using the optimal
length. “Attn Len” is the shortest possible attention length during evaluation
to achieve the corresponding result (PPL best). Increasing the attention length
during evaluation improves performance only when our positional encoding is
used. The “Transformer-XL (151M)” setting uses a standard parameter budget
as previous work [104], where we observe a similar effect when increasing the
attention length during evaluation. 20

2.7 Ablation study on Billion Word, a dataset without long-term dependency. 21
2.8 Ablation study on WikiText-103 with the same GPU memory constraints. 21
2.9 Relative effective context length (RECL) comparison. See text for the definition

of RECL and r. The first three models and the last four models are compared
as two model groups when we calculate RECL (RECL is computed on a model
group rather than a single model). Each group has the same parameter budget. . 22

2.10 Slowdown in terms of running time during evaluation. Evaluation is based on
per-token time on one GPU. 22

2.14 Comparison with state-of-the-art results on the test set of RACE, a reading comprehension
task. ∗ indicates using ensembles. “Middle” and “High” in RACE are two subsets
representing middle and high school difficulty levels. All BERT and XLNet results are
obtained with a 24-layer architecture with similar model sizes (aka BERT-Large). Our
single model outperforms the best ensemble by 7.6 points in accuracy. 43

xiii

2.15 A single model XLNet outperforms human and the best ensemble by 7.6 EM and 2.5 EM
on SQuAD1.1. ∗ means ensembles, † marks our runs with the official code. 43

2.16 Comparison with state-of-the-art error rates on the test sets of several text classification
datasets. All BERT and XLNet results are obtained with a 24-layer architecture with
similar model sizes (aka BERT-Large). 44

2.17 Results on GLUE. ∗ indicates using ensembles, and † denotes single-task results in a
multi-task row. All results are based on a 24-layer architecture with similar model sizes
(aka BERT-Large). See the upper-most rows for direct comparison with BERT and the
lower-most rows for comparison with state-of-the-art results on the public leaderboard. . 45

2.18 Comparison with state-of-the-art results on the test set of ClueWeb09-B, a document
ranking task. † indicates our implementations. 45

2.19 Ablation study. The results of BERT on RACE are taken from [199]. We run BERT on
the other datasets using the official implementation and the same hyperparameter search
space as XLNet. K is a hyperparameter to control the optimization difficulty (see Section
2.2.2). All models are pretrained on the same data. 47

3.1 Comparison with state-of-the-art methods as of the time of our publication (i.e., May
2017) on three benchmark datasets. Only methods without data augmentation are included.
∗ indicates using the same (small) discriminator architecture, † indicates using a larger
discriminator architecture, and ‡ means self-ensembling. 62

3.2 Ablation study. FM is feature matching. LD is the low-density enforcement term in
Eq. (3.4). VI and PT are two entropy maximization methods described in Section 3.1.5.
Ent means the conditional entropy term in Eq. (3.6). Max log-p is the maximum log
probability of generated samples, evaluated by a PixelCNN++ model. 10-quant shows
the 10-quantile of true image log probability. Error means the number of misclassified
examples on MNIST, and error rate (%) on others. 63

3.3 Sampled generated questions given the paragraphs and the answers. P means paragraphs,
A means answers, GQ means groundtruth questions, and Q means questions generated by
our models. MLE refers to maximum likelihood training, and RL refers to reinforcement
learning so as to maximize J(UG, d_true, D). We truncate the paragraphs to only show
tokens around the answer spans with a window size of 20. 76

3.4 Performance with various labeling rates, unlabeled data sizes |U |, and methods. “Dev”
denotes the development set, and “test” denotes the test set. F1 and EM are two metrics. . 77

3.5 Dataset statistics. 85

3.6 Accuracy on text classification. Upper rows are inductive methods and lower rows
are transductive methods. 86

3.7 Recall@k on DIEL distantly-supervised entity extraction. Upper rows are induc-
tive methods and lower rows are transductive methods. Results marked with ∗ are
taken from the original DIEL paper [12] with the same data splits. 87

3.8 Accuracy on NELL entity classification with labeling rates of 0.1, 0.01, and 0.001.
Upper rows are inductive methods and lower rows are transductive methods. . . . 87

xiv

4.1 Summary and comparison of how different methods proposed in this work in-
stantiate generative feature learning. AR means autoregressive modeling. “Comp
GAN” refers to Complement GAN, “Semi QA” means semi-supervised QA, and
“Planetoid” is our graph-based semi-supervised learning method. 91

4.2 Summary of key goals and potential future directions. 94

xv

xvi

Chapter 1

Introduction

1.1 Motivation: Learning from Unlabeled Data

For most machine learning applications and tasks, unlabeled data is more accessible and more
abundant than labeled data. For example, major question answering datasets [84, 128, 196]
nowadays typically have around 100K training examples in the form of question-answer pairs,
which are tens of millions of words. In comparison, it is relatively easy to obtain 1,000 times
more unlabeled English text data [15, 25, 118, 206]. In addition, there is a large number of other
natural language understanding datasets that are significantly smaller, with only a few thousand
training examples or less [170]. Furthermore, given a specific task, while it is possible to collect
more labeled data, the procedure of labeled data collection is expensive and time-consuming.
Therefore, it is unlikely to create a labeled dataset that matches the scale of unlabeled data. As
a result, apart from the standard paradigm of learning on labeled data with supervised training
signals, it is crucial to devise methods that use unlabeled data to aid the learning procedure.

In this thesis, we are interested in the problem of learning from unlabeled data, which can be
generically formulated as follows. Given a set of labeled data and a (much larger) set of unlabeled
data, we aim to design machine learning algorithms and models to fully leverage the unlabeled
data and improve over systems that only have access to the labeled data.

There are two directions of research in the literature that fit into the above problem definition,
namely unsupervised pretraining and semi-supervised learning.1 Although both directions have
the same generic goal and motivation, they mainly differ in two aspects.
• Paradigm of knowledge transfer. The knowledge transfer procedure of unsupervised

pretraining usually consists of two phases—pretraining and finetuning. Specifically, a
model is first pretrained on unlabeled data and then finetuned on labeled data.2 On the
contrary, in the setting of semi-supervised learning, a model is often jointly trained on both
labeled and unlabeled data in one single training phase. As a consequence, unsupervised

1In the most general definition of semi-supervised learning, unsupervised pretraining is a special case of semi-
supervised learning. However, in this thesis, we use the term “semi-supervised learning” in the narrow sense.

2Throughout the thesis, we use “unsupervised pretraining” to refer to either the sole pretraining phase or both
phases combined, interchangeably depending on the context.

1

pretraining targets multiple tasks while semi-supervised learning mainly focuses on one
task.

• Data scale and distribution. The scale of unlabeled data in the setting of unsupervised
pretraining is usually much larger than that of semi-supervised learning, which is both the
cause and effect of the knowledge transfer paradigm. For example, in the field of natural
language understanding, unsupervised pretraining typically uses billions of tokens or more
during the pretraining phase. In comparison, in a normal setting of semi-supervised learning,
the scale of unlabeled data can be 10 to 1000 times smaller. The difference in data scale also
results in a difference in data distribution. Typical unsupervised pretraining covers a wider
range of unlabeled data distribution such as the entire Web, while semi-supervised learning
uses unlabeled data that is relatively more domain-specific with a distribution closer to
labeled data.

1.2 Background

Among other approaches, generative modeling has been an important method for leveraging
unlabeled data, in the settings of both unsupervised pretraining and semi-supervised learning. In
the most generic form, given some data x, a generative model aims to estimate the log likelihood
log p(x). The log likelihood might be defined explicitly by a model that maps data to probabilities,
or implicitly modeled as a transformation from a prior distribution to data as in generative
adversarial networks (GANs) [47]. The benefits of using generative modeling objectives are their
wide applicability. In principle, it is possible to estimate the log likelihood of data in any format,
including text, images, and complex structures such as graphs.

For unsupervised pretraining, generative modeling has played an important role. Generative
models such as Boltzmann machines and autoencoders were employed to learn unsupervised
features [135, 168]. The framework was later extended by using new objectives such as puzzle-
based objectives [114] and adversarial objectives [38]. Most of these approaches target image
classification. In the field of NLP, [27] proposed to optimize a language modeling (i.e., a form of
generative modeling on text) loss on unsupervised text corpora, and the learned model parameters
along with the architecture are used as initialization for finetuning on target supervised tasks. The
learning paradigm obtained increasing attention since 2017 with the success of a series of models,
including ELMo [122], CoVe [100], GPT [126], and BERT [34]. These methods differ in terms
of training data sizes, model sizes, amounts of computation, model architectures, and objective
functions. From the perspectives of models and algorithms, there are three major advances.

1. Architecture. The field of unsupervised pretraining has witnessed a transition from recur-
rent neural networks (RNNs) [106], especially long short-term memories (LSTMs) [60], to
Transformers [166] (see Section 2.1.2 for technical details). Due to the architectural design
that involves direct connections between any two input units, Transformers have been shown
to obtain better performance in machine translation [166] compared to RNNs. The most
substantial improvement of Transformers over RNNs is in language modeling. Recent work
[1, 31] shows Transformers and their variants substantially improve the ability of modeling
long-range dependency and are able to scale without much optimization difficulty. These

2

advantages of Transformers pave the road for the success of applications in pretraining.

2. Finetuning. While some of the earlier methods [100, 122] use the pretrained models
as feature extractors, GPT [126] reinvented the idea of finetuning on downstream tasks,
which was originally proposed by [27]. The finetuning approach increases the percentage
of pretrained parameters among all trainable parameters. Critically, when the input has
multiple sequences, such as a question and a context for the task of question answering,
GPT uses special symbols to join multiple sequences into one, so that finetuning can be
performed on the concatenated sequence. As a result, this allows modeling the dependency
between multiple input sequences with multiple pretrained layers. For some tasks such as
question answering, this design proved important [126].

3. Bidirectional context. Earlier approaches are based on the standard language modeling
objective. As a result, these approaches suffer from not being able to model bidirectional
contexts with a multi-layer, deep pretrained network. BERT [34] addressed this issue
by using a denoising autoencoding [168] based method, which yields improvement over
previous methods.

Generative modeling has also been applied to semi-supervised learning. Variational au-
toencoders [74] were adapted to the semi-supervised learning setting in [75] by treating the
classification label as an additional latent variable in a directed generative model. [98] adds auxil-
iary variables to the deep VAE structure to make variational distribution more expressive. Later,
GANs started to be applied to semi-supervised learning as well. One of the earliest examples was
CatGAN [149], which substitutes the binary discriminator in a standard GAN with a multi-class
classifier, and trains both the generator and the discriminator using a information theoretical
criteria on unlabeled data. This multi-class formulation has been a successful framework for semi-
supervised learning. Under this framework, the feature matching GAN [136] further improves
performance by considering a feature matching objective for the the generator.

1.3 Challenges

Although generative modeling based methods have been successful in the setting of learning from
unlabeled data, there remain a few critical challenges.
• In the setting of unsupervised pretraining, although BERT allows modeling bidirectional

contexts, it introduces a new problem—BERT is not able to model the dependencies between
the target tokens for prediction due to the assumption that all target tokens are independent.
On the contrary, standard language modeling is based on the product rule and thus does not
suffer from this problem, but it is only able to model unidirectional contexts. It is not clear
how to combine the advantages of different approaches while avoiding their disadvantages.

• Language modeling has been a long-standing, rapidly-developing area of research. However,
not being able to model bidirectional contexts poses a question regarding whether there are
meaningful applications of language modeling besides text generation.

• Conventional language modeling approaches rely on RNNs, which are not the best models
for capturing long-range dependency due to the problem of gradient explosion and vanishing

3

[119]. Transformers demonstrate a large potential in this aspect because of the direct
connections between all input units. However, previous Transformer language models
employ a fixed-length context, which prohibits capturing any longer-range dependency
beyond the predefined context length. In addition, the fixed-length segments are created
by selecting a consecutive chunk of symbols without respecting the sentence or any other
semantic boundary. Hence, the models lacks necessary contextual information to well
predict the first few symbols, leading to inefficient optimization and inferior performance.

• In the setting of semi-supervised learning, although GAN-based approaches have shown
superior performance, little has been understood about why it works. Prominently, there are
two questions. First, why does the performance of classification seem contradictory to the
quality of generated samples in empirical studies? Second, how does the classifier benefit
from joint training with a generator?

• Despite the success of generative modeling based semi-supervised learning, most efforts
focus on the standard setting of classification. However, these methods are not directly
applicable to tasks with more complex data structures, such as classification on graphs and
question answering.

1.4 Contributions

This thesis aims to tackle the above challenges using generative modeling. We first use a generic
language to describe the idea of our learning framework called generative feature learning and
then introduce technical advances under this framework.

The framework of generative feature learning can be described as follows. Given unlabeled
data Du = {x} and labeled data Dl = {(x, y)}, we optimize the following two losses:

Lg = Ex∼Dulg(x,Gθ,φ)

Lt = Ex,y∼Dllt(y, Tθ,ψ(x))

where lg and lt are loss functions defined on each data point, Gθ,φ is a generative model with two
parameters θ and φ, and Tθ,ψ is a target task model with parameters θ and ψ, where θ is shared
between the two models. The target task model maps some input x to output ŷ, which could be
predictions of classification labels, question answers, etc.

The above formulation is kept generic to allow flexible design choices:
• The generative model G can be an implicit model or an explicit model. An implicit model

transforms a noise vector z sampled from some prior distribution into a data point x = G(z).
An explicit model predicts the log probability log pG(x) = G(x) of some data point x.
• The loss function lg can be instantiated in different ways. For explicit generative models, lg

is usually defined as the negative log likelihood of x, written as −G(x) or − log pG(x). For
implicit generative models, the definition of lg is more flexible and more closely integrated
with the target loss function lt.
• The target loss function lt could be instantiated based on specific target tasks, such as a

standard classification cross entropy loss.

4

• The optimization paradigm could vary. It is possible to employ a multi-phase training
procedure where each phase optimizes either Lg or Lt. In other cases, the two losses might
be jointly optimized.

In Chapter 2, we will introduce generative feature learning methods in the context of unsuper-
vised pretraining:
• The neural architecture Transformer-XL advances the state of the art in language modeling.

Transformer-XL enables capturing longer-range dependency and also resolves the context
fragmentation problem. This makes it possible to truly unleash the potential of Transformers
and improves language modeling performance for both long and short sequences.

• XLNet is an unsupervised pretraining framework that bridges the gap between language
modeling and unsupervised pretraining. XLNet employs a permutation language modeling
objective that provides more effective training signals. Moreover, with XLNet, it is now
possible to translate language modeling progress into improvement on target tasks via
unsupervised pretraining. For example, we show that Transformer-XL, the latest advance in
language modeling, improves unsupervised pretraining performance. This also opens the
possibility of applying language modeling progress to improve downstream tasks.

In Chapter 3, generative semi-supervised learning methods will be discussed:
• For GAN-based semi-supervised learning, we prove that under a widely-used discriminator

objective in GAN-based semi-supervised learning, a preferred generator should instead
generate complement data. We provide a theoretical framework to illustrate two points: (1)
how a discriminator benefits from joint training with a GAN; (2) it is contradictory to have
a good generative model and a good classifier. This framework provides more fundamental
understanding about why and how GANs work for semi-supervised learning and improves
performance empirically.

• Going beyond the standard semi-supervised learning formulation, we pioneered the research
of generative feature learning for tasks with complex data structures. For semi-supervised
question answering, we train a generative model to generate questions based on unlabeled
text, and combine model-generated questions with human-generated questions for training
question answering models. Domain adaptation techniques based on reinforcement learning
are integrated into the training procedure to alleviate data distribution discrepancy. For semi-
supervised classification on graphs, we define the unsupervised loss function as generating
random walk paths on the graphs.

Overall, the approaches proposed in the thesis have played a leading role in the development
of a variety of research topics. Specifically, we hold or used to gold the state-of-the-art results
on more than 30 benchmarks, including natural language inference, question answering, text
classification, language modeling, semi-supervised learning, etc.

5

6

Chapter 2

Unsupervised Pretraining with Generative
Modeling

This chapter introduces our generative feature learning methods in the setting of unsupervised
pretraining. We attempt to answer the following questions:
• Is it possible to truly unleash the potential of Transformers at capturing long-range depen-

dency?
• Is it possible to combine the advantages of autoregressive and autoencoding approaches

while avoiding their disadvantages?
• Is it possible to bridge the gap between language modeling and pretraining, making it

possible to leverage language modeling progress to improve target tasks?

Our approach decouples the problem of unsupervised pretraining into two subproblems:
(1) improving language modeling; (2) building a learning paradigm with which progress in
language modeling can be translated into benefits in unsupervised pretraining. Following this
idea, in Section 2.1, we will first present our neural architecture Transformer-XL that substantially
improves language modeling by capturing longer-range dependency and resolving the context
fragmentation problem. In Section 2.2, a learning paradigm called XLNet will be introduced to
bridge the gap between language modeling and unsupervised pretraining.

2.1 Attentive Language Models Beyond a Fixed-Length Con-
text

This section introduces the work originally published at ACL 2019 [31].

2.1.1 Motivation

Language modeling is among the important problems that require modeling long-term dependency,
with successful applications such as unsupervised pretraining [27, 34, 122, 126]. However, it has

7

been a challenge to equip neural networks with the capability to model long-term dependency
in sequential data. Recurrent neural networks (RNNs), in particular Long Short-Term Memory
(LSTM) networks [60], have been a standard solution to language modeling and obtained strong
results on multiple benchmarks. Despite the wide adaption, RNNs are difficult to optimize due to
gradient vanishing and explosion [61], and the introduction of gating in LSTMs and the gradient
clipping technique [51] might not be sufficient to fully address this issue. Empirically, previous
work has found that LSTM language models use 200 context words on average [73], indicating
room for further improvement.

On the other hand, the direct connections between long-distance word pairs baked in attention
mechanisms might ease optimization and enable the learning of long-term dependency [5, 166].
Recently, Al-Rfou et al. [1] designed a set of auxiliary losses to train deep Transformer networks
for character-level language modeling, which outperform LSTMs by a large margin. Despite the
success, the LM training in Al-Rfou et al. [1] is performed on separated fixed-length segments
of a few hundred characters, without any information flow across segments. As a consequence
of the fixed context length, the model cannot capture any longer-term dependency beyond the
predefined context length. In addition, the fixed-length segments are created by selecting a
consecutive chunk of symbols without respecting the sentence or any other semantic boundary.
Hence, the model lacks necessary contextual information needed to well predict the first few
symbols, leading to inefficient optimization and inferior performance. We refer to this problem as
context fragmentation.

To address the aforementioned limitations of fixed-length contexts, we propose a new archi-
tecture called Transformer-XL (meaning extra long). We introduce the notion of recurrence into
our deep self-attention network. In particular, instead of computing the hidden states from scratch
for each new segment, we reuse the hidden states obtained in previous segments. The reused
hidden states serve as memory for the current segment, which builds up a recurrent connection
between the segments. As a result, modeling very long-term dependency becomes possible
because information can be propagated through the recurrent connections. Meanwhile, passing
information from the previous segment can also resolve the problem of context fragmentation.
More importantly, we show the necessity of using relative positional encodings rather than ab-
solute ones, in order to enable state reuse without causing temporal confusion. Hence, as an
additional technical contribution, we introduce a simple but more effective relative positional
encoding formulation that generalizes to attention lengths longer than the one observed during
training.

2.1.2 Background

In the last few years, the field of language modeling has witnessed many significant advances,
including but not limited to devising novel architectures to better encode the context [1, 10,
102, 106], improving regularization and optimization algorithms [42] , speeding up the Softmax
computation [49] , and enriching the output distribution family [195].

To capture the long-range context in language modeling, a line of work directly feeds a
representation of the wider context into the network as an additional input. Existing works range
from ones where context representations are manually defined [66, 105, 173] to others that rely

8

Figure 2.1: The Transformer architecture.

on document-level topics learned from data [37, 174].
More broadly, in generic sequence modeling, how to capture long-term dependency has

been a long-standing research problem. From this perspective, since the ubiquitous adaption
of LSTM, many efforts have been spent on relieving the vanishing gradient problem, including
better initialization [86], additional loss signal [159], augmented memory structure [72] and others
that modify the internal architecture of RNNs to ease the optimization [91, 182]. Different from
them, our work is based on the Transformer architecture and shows that language modeling as a
real-world task benefits from the ability to learn longer-term dependency.

Transformers

Transformers are a deep self-attention network proposed by [166]. The model architecture is
illustrated in Figure 2.1. Each layer consists of a self-attention sublayer and a feed-forward
sublayer. A positional encoding is added to the word embedding so that the model is aware of the
input sequence order. Formally, Transformer with a single attention head can be summarized as
follows. For n = 1, . . . , N :

qn,kn,vn =hn−1Wn
q
>,hn−1Wn

k
>,hn−1Wn

v
>

An
i,j =qni

>knj

9

Nx

Add & Norm

Feed
Forward

Inputs

Output
Probabilities

Attention

Add &Norm

Masked
Multi-Head

Attention

Outputs
(shifted right)

Nx

Positional
Encoding

Segment 1

x1 x2 x4x3

Segment 2

x8x5 x6 x7

(a) Train phase.

Limited Context

x1 x2 x4x3 x5 x6

Limited Context

x2 x3 x5x4 x6x1

Limited Context

x3 x4 x6x5x2x1

(b) Evaluation phase.

Figure 2.2: Illustration of the vanilla model with a segment length 4.

an = Masked-Softmax(An)vn

on = LayerNorm(Linear(an) + hn−1)

hn = Positionwise-Feed-Forward(on)

with h0 defined as the sum of the word embedding sequence and the positional encoding sequence.
The amount of computation is quadratic with respect to the sequence length, while the number of
parameters is constant to the sequence length. Because of the self-attention operation, Transformer
directly connects any pairs of input units, which has a potential of better optimization and modeling
longer-range dependency.

2.1.3 Approach

Given a corpus of tokens x = (x1, . . . , xT), the task of language modeling is to estimate the
joint probability P (x), which is often auto-regressively factorized as P (x) =

∏
t P (xt | x<t),

where x<t represents (x1, . . . , xt−1). With the factorization, the problem reduces to estimating
each conditional factor. In this work, we stick to the standard neural approach to modeling the
conditional probability. Specifically, a trainable neural network is used to encode the context x<t
into a fixed size hidden state, which is multiplied with the word embeddings to obtain the logits.
The logits are then fed into the Softmax function, yielding a categorical probability distribution
over the next token.

Vanilla Transformer Language Models

In order to apply Transformer or self-attention to language modeling, the central problem is how to
train a Transformer to effectively encode an arbitrarily long context into a fixed size representation.
Given infinite memory and computation, a simple solution would be to process the entire context
sequence using an unconditional Transformer decoder, similar to a feed-forward neural network.
However, this is infeasible because resources are finite in practice.

One feasible but crude approximation is to split the entire corpus into shorter segments
of manageable sizes, and only train the model within each segment, ignoring all contextual
information from previous segments. This is the idea adopted by Al-Rfou et al. [1]. We call it
the vanilla model and visualize it in Fig. 2.2a. Under this training paradigm, information never

10

0 0 .

•O 0

0 0

0 "

flows across segments in either the forward or backward pass. There are two critical limitations of
using a fixed-length context. First, the largest possible dependency length is upper bounded by
the segment length, which is a few hundred on character-level language modeling [1]. Therefore,
although the self-attention mechanism is less affected by the vanishing gradient problem compared
to RNNs, the vanilla model is not able to fully exploit this optimization advantage. Second, though
it is possible to use padding to respect the sentence or other semantic boundaries, in practice it
has been standard practice to simply chunk long text into fixed-length segments due to improved
efficiency [1, 34, 122]. However, simply chunking a sequence into fixed-length segments will
lead to the context fragmentation problem as discussed in Section 2.1.1.

During evaluation, at each step, the vanilla model also consumes a segment of the same length
as in training, but only makes one prediction at the last position. Then, at the next step, the
segment is shifted to the right by only one position, and the new segment has to be processed
all from scratch. As shown in Fig. 2.2b, this procedure ensures that each prediction utilizes the
longest possible context exposed during training, and also relieves context fragmentation issue
encountered in training. However, this evaluation procedure is extremely expensive. We will show
that our proposed architecture is able to substantially improve the evaluation speed.

Segment-Level Recurrence with State Reuse

x1 x2 x4x3 x8x5 x6 x7

New Segment

x12x9 x10 x11

Fixed (No Grad)

x1 x2 x4x3 x8x5 x6 x7

Fixed (No Grad) New Segment

(a) Training phase.

x1 x2 x4x3 x8x5 x6 x7 x12x9 x10 x11

Extended Context

(b) Evaluation phase.

Figure 2.3: Illustration of the Transformer-XL model with a segment length 4.

To address the limitations of using a fixed-length context, we propose to introduce a recurrence
mechanism to the Transformer architecture. During training, the hidden state sequence computed
for the previous segment is fixed and cached to be reused as an extended context when the model
processes the next new segment, as shown in Fig. 2.3a. Although the gradient still remains within a
segment, this additional input allows the network to exploit information in the history, leading to an
ability of modeling longer-term dependency and avoiding context fragmentation. Formally, let the
two consecutive segments of length L be sτ = [xτ,1, · · · , xτ,L] and sτ+1 = [xτ+1,1, · · · , xτ+1,L]
respectively. Denoting the n-th layer hidden state sequence produced for the τ -th segment sτ by
hn
τ ∈ RL×d, where d is the hidden dimension. Then, the n-th layer hidden state for segment sτ+1

is produced (schematically) as follows,

h̃n−1
τ+1 =

[
SG(hn−1

τ) ◦ hn−1
τ+1

]
,

qn
τ+1,k

n
τ+1,v

n
τ+1 = hn−1

τ+1W
�
q , h̃

n−1
τ+1W

�
k , h̃

n−1
τ+1W

�
v ,

hn
τ+1 = Transformer-Layer

(
qn
τ+1,k

n
τ+1,v

n
τ+1

)
.

11

where the function SG(·) stands for stop-gradient, the notation [hu ◦ hv] indicates the concate-
nation of two hidden sequences along the length dimension, and W· denotes model parameters.
Compared to the standard Transformer, the critical difference lies in that the key knτ+1 and value
vnτ+1 are conditioned on the extended context h̃n−1τ+1 and hence hn−1τ cached from the previous
segment. We emphasize this particular design by the green paths in Fig. 2.3a.

With this recurrence mechanism applied to every two consecutive segments of a corpus, it
essentially creates a segment-level recurrence in the hidden states. As a result, the effective
context being utilized can go beyond just two segments. However, notice that the recurrent
dependency between hnτ+1 and hn−1τ shifts one layer downwards per-segment, which differs
from the same-layer recurrence in conventional RNN-LMs. Consequently, the largest possible
dependency length grows linearly w.r.t. the number of layers as well as the segment length, i.e.,
O(N × L), as visualized by the shaded area in Fig. 2.3b. This is analogous to truncated BPTT
[106], a technique developed for training RNN-LMs. However, different from truncated BPTT,
our method caches a sequence of hidden states instead of the last one, and should be applied
together with the relative positional encoding technique described in Section 2.1.3.

Besides achieving extra long context and resolving fragmentation, another benefit that comes
with the recurrence scheme is significantly faster evaluation. Specifically, during evaluation, the
representations from the previous segments can be reused instead of being computed from scratch
as in the case of the vanilla model. In theory, the recurrence mechanism improves the evaluation
speed by O(l), where l is the attention length during evaluation time. In our experiments on
enwik8, Transformer-XL is up to 1,800+ times faster than the vanilla model during evaluation
(see Section 2.1.4).

Finally, notice that the recurrence scheme does not need to be restricted to only the previous
segment. In theory, we can cache as many previous segments as the GPU memory allows, and
reuse all of them as the extra context when processing the current segment. Thus, we can cache
a predefined length-M old hidden states spanning (possibly) multiple segments, and refer to
them as the memory mn

τ ∈ RM×d, due to a clear connection to the memory augmented neural
networks [52, 179]. In our experiments, we set M equal to the segment length during training,
and increase it by multiple times during evaluation.

Relative Positional Encodings

While we found the idea presented in the previous subsection very appealing, there is a crucial
technical challenge we haven’t solved in order to reuse the hidden states. That is, how can we
keep the positional information coherent when we reuse the states? Recall that, in the standard
Transformer, the information of sequence order is provided by a set of positional encodings,
denoted as U ∈ RLmax×d, where the i-th row Ui corresponds to the i-th absolute position within
a segment and Lmax prescribes the maximum possible length to be modeled. Then, the actual
input to the Transformer is the element-wise addition of the word embeddings and the positional
encodings. If we simply adapt this positional encoding to our recurrence mechanism, the hidden

12

state sequence would be computed schematically by

hτ+1 = f(hτ ,Esτ+1 + U1:L)

hτ = f(hτ−1,Esτ + U1:L),

where Esτ ∈ RL×d is the word embedding sequence of sτ , and f represents a transformation
function. Notice that, both Esτ and Esτ+1 are associated with the same positional encoding U1:L.
As a result, the model has no information to distinguish the positional difference between xτ,j and
xτ+1,j for any j = 1, . . . , L, resulting in a sheer performance loss.

In order to avoid this failure mode, the fundamental idea is to only encode the relative
positional information in the hidden states. Conceptually, the positional encoding gives the model
a temporal clue or “bias” about how information should be gathered, i.e., where to attend. For the
same purpose, instead of incorporating bias statically into the initial embedding, one can inject
the same information into the attention score of each layer. More importantly, it is more intuitive
and generalizable to define the temporal bias in a relative manner. For instance, when a query
vector qτ,i attends on the key vectors kτ,≤i, it does not need to know the absolute position of each
key vector to identify the temporal order of the segment. Instead, it suffices to know the relative
distance between each key vector kτ,j and itself qτ,i, i.e. i− j. Practically, one can create a set of
relative positional encodings R ∈ RLmax×d, where the i-th row Ri indicates a relative distance of
i between two positions. By injecting the relative distance dynamically into the attention score,
the query vector can easily distinguish the representations of xτ,j and xτ+1,j from their different
distances, making the state reuse mechanism feasible. Meanwhile, we won’t lose any temporal
information, as the absolute position can be recovered recursively from relative distances.

Previously, the idea of relative positional encodings has been explored in the context of
machine translation [141] and music generation [63]. Here, we offer a different derivation, arriving
at a new form of relative positional encodings, which not only has a one-to-one correspondence to
its absolute counterpart but also enjoys much better generalization empirically (see Section 2.1.4).
Firstly, in the standard Transformer [166], the attention score between query qi and key vector kj
within the same segment can be decomposed as

Aabs
i,j = q>i W

>
q Wkkj

= (Exi + Ui)
>W>

q Wk(Exj + Uj)

= E>xiW
>
q WkExj︸ ︷︷ ︸
(a)

+E>xiW
>
q WkUj︸ ︷︷ ︸
(b)

+ U>i W
>
q WkExj︸ ︷︷ ︸
(c)

+U>i W
>
q WkUj︸ ︷︷ ︸
(d)

.

Following the idea of only relying on relative positional information, we propose to re-

13

parameterize the four terms as follows

Arel
i,j = E>xiW

>
q Wk,EExj︸ ︷︷ ︸
(a)

+E>xiW
>
q Wk,RRi−j︸ ︷︷ ︸

(b)

+ u>Wk,EExj︸ ︷︷ ︸
(c)

+ v>Wk,RRi−j︸ ︷︷ ︸
(d)

.

• The first change we make is to replace all appearances of the absolute positional embedding Uj

for computing key vectors in term (b) and (d) with its relative counterpart Ri−j . This essentially
reflects the prior that only the relative distance matters for where to attend. Note that R is a
sinusoid encoding matrix [166] without learnable parameters.

• Secondly, we introduce a trainable parameter u ∈ Rd to replace the query U>i W
>
q in term

(c). In this case, since the query vector is the same for all query positions, it suggests that the
attentive bias towards different words should remain the same regardless of the query position.
With a similar reasoning, a trainable parameter v ∈ Rd is added to substitute U>i W

>
q in term

(d).

• Finally, we deliberately separate the two weight matrices Wk,E and Wk,R for producing the
content-based key vectors and location-based key vectors respectively.

Under the new parameterization, each term has an intuitive meaning: term (a) represents content-
based addressing, term (b) captures a content-dependent positional bias, term (c) governs a global
content bias, and (d) encodes a global positional bias.

In comparison, the formulation in Shaw et al. [141] only has terms (a) and (b), dropping the
two bias terms (c) and (d). Moreover, Shaw et al. [141] merge the multiplication WkR into
a single trainable matrix R̂, which abandons the inductive bias built into the original sinusoid
positional encoding [166]. In contrast, our relative positional embedding R adapts the sinusoid
formulation. As a benefit of the inductive bias, a model trained on a memory of some certain
length can automatically generalize to a memory several times longer during evaluation.

Equipping the recurrence mechanism with our proposed relative positional embedding, we
finally arrive at the Transformer-XL architecture. For completeness, we summarize the com-
putational procedure for a N -layer Transformer-XL with a single attention head here. For
n = 1, . . . , N :

h̃n−1τ =
[
SG(mn−1

τ) ◦ hn−1τ

]
qnτ ,k

n
τ ,v

n
τ =hn−1τ Wn

q
>, h̃n−1τ Wn

k,E
>, h̃n−1τ Wn

v
>

An
τ,i,j =qnτ,i

>knτ,j + qnτ,i
>Wn

k,RRi−j

+ u>kτ,j + v>Wn
k,RRi−j

anτ = Masked-Softmax(An
τ)vnτ

onτ = LayerNorm(Linear(anτ) + hn−1τ)

hnτ = Positionwise-Feed-Forward(onτ)

with h0
τ := Esτ defined as the word embedding sequence. In addition, it is worth mentioning

that a naive way to compute A requires computing Wn
k,RRi−j for all pairs (i, j), whose cost is

14

quadratic w.r.t. the sequence length. However, noticing that the value of i− j only ranges from
zero to the sequence length, we show a simple computation procedure in Section 2.1.3, which
reduces the cost to be linear w.r.t. the sequence length.

Efficient Computation of the Attention with Relative Positional Embedding

As we discussed in Section 2.1.3, the naive way of computing the Wk,RRi−j for all pairs (i, j)
is subject to a quadratic cost. Here, we present a simple method with only a linear cost. Firstly,
notice that the relative distance i− j can only be integer from 0 to M + L− 1, where M and L
are the memory length and segment length respectively. Hence, the rows of the matrix

Q :=

R>M+L−1
R>M+L−2

...
R>1
R>0

Wk,R
> =

[Wk,RRM+L−1]

>

[Wk,RRM+L−2]
>

...
[Wk,RR1]

>

[Wk,RR0]
>

 ∈ R(M+L)×d

consist of all possible vector outputs of Wk,RRi−j for any (i, j). Note that we have defined Q in
a reversed order, i.e., Qk = Wk,RRM+L−1−k, to make further discussion easier.

Next, we collect the term (b) for all possible i, j into the following L× (M + L) matrix,

B =

q>0 Wk,RRM · · · q>0 Wk,RR0 0 · · · 0
q>1 Wk,RRM+1 · · · q>1 Wk,RR1 q>1 Wk,RR0 · · · 0

...
...

...
...

q>L−1Wk,RRM+L−1 · · · q>L−1Wk,RRM+L−1 q>L−1Wk,RRL−1 · · · q>L−1Wk,RR0

=

q>0 QL−1 · · · q>0 QM+L−1 0 · · · 0
q>1 QL−2 · · · q>1 QM+L−2 q>1 QM+L−1 · · · 0

...
...

q>L−1Q0 · · · q>L−1QM q>L−1QM+1 · · · q>L−1QM+L−1

Then, we further define

B̃ = qQ> =

q>0 Q0 · · · q>0 QM q>0 QM+1 · · · q>0 QM+L−1
q>1 Q0 · · · q>1 QM q>1 QM+1 · · · q>1 QM+L−1

...
...

q>L−1Q0 · · · q>L−1QM q>L−1QM+1 · · · q>L−1QM+L−1

 .

Now, it is easy to see an immediate relationship between B and B̃, where the i-th row of B is
simply a left-shifted version of i-th row of B̃. Hence, the computation of B only requires a matrix
multiplication qQ> to compute B̃ and then a set of left-shifts.

15

Model #Param PPL

Grave et al. [50] - LSTM - 48.7
Bai et al. [6] - TCN - 45.2
Dauphin et al. [33] - GCNN-8 - 44.9
Grave et al. [50] - Neural cache - 40.8
Dauphin et al. [33] - GCNN-14 - 37.2
Merity et al. [104] - QRNN 151M 33.0
Rae et al. [127] - Hebbian + Cache - 29.9
Ours - Transformer-XL Standard 151M 24.0

Baevski and Auli [4] - Adaptive Input� 247M 20.5
Ours - Transformer-XL Large 257M 18.3

Table 2.1: Comparison with state-of-the-art results on WikiText-103. � indicates contemporary
work.

Similarly, we can collect all term (d) for all possible i, j into another L× (M + L) matrix D,

D =

v>QL−1 · · · v>QM+L−1 0 · · · 0
v>QL−2 · · · v>QM+L−2 v>QM+L−1 · · · 0

...
...

v>Q0 · · · v>QM v>QM+1 · · · v>QM+L−1

 .
Then, we can follow the same procedure to define

d̃ = [Qv]> =
[
v>Q0 · · · v>QM v>QM+1 · · · v>QM+L−1

]
.

Again, each row of D is simply a left-shifted version of d̃. Hence, the main computation cost
comes from the matrix-vector multiplication d̃ = [Qv]>, which is not expensive any more.

2.1.4 Experiments

Main Results

We apply Transformer-XL to a variety of datasets on both word-level and character-level language
modeling to have a comparison with state-of-the-art systems, including WikiText-103 [102],
enwik8 [99], text8 [99], Billion Word [17], and Penn Treebank [105].

WikiText-103 is the largest available word-level language modeling benchmark with long-term
dependency. It contains 103M training tokens from 28K articles, with an average length of 3.6K
tokens per article, which allows testing the ability of long-term dependency modeling. We set the
attention length to 384 during training and 1600 during evaluation. We adopted adaptive softmax
and input representations [4, 49]. As shown in Table 2.1, Transformer-XL reduces the previous
state-of-the-art (SoTA) perplexity from 20.5 to 18.3, which demonstrates the superiority of the
Transformer-XL architecture.

16

Model #Param bpc

Ha et al. [57] - LN HyperNetworks 27M 1.34
Chung et al. [21] - LN HM-LSTM 35M 1.32
Zilly et al. [207] - RHN 46M 1.27
Mujika et al. [112] - FS-LSTM-4 47M 1.25
Krause et al. [80] - Large mLSTM 46M 1.24
Knol [78] - cmix v13 - 1.23
Al-Rfou et al. [1] - 12L Transformer 44M 1.11
Ours - 12L Transformer-XL 41M 1.06

Al-Rfou et al. [1] - 64L Transformer 235M 1.06
Ours - 18L Transformer-XL 88M 1.03
Ours - 24L Transformer-XL 277M 0.99

Table 2.2: Comparison with state-of-the-art results on enwik8.

Model #Param bpc

Cooijmans et al. [24] - BN-LSTM - 1.36
Chung et al. [21] - LN HM-LSTM 35M 1.29
Zilly et al. [207] - RHN 45M 1.27
Krause et al. [80] - Large mLSTM 45M 1.27
Al-Rfou et al. [1] - 12L Transformer 44M 1.18

Al-Rfou et al. [1] - 64L Transformer 235M 1.13
Ours - 24L Transformer-XL 277M 1.08

Table 2.3: Comparison with state-of-the-art results on text8.

The dataset enwik8 contains 100M bytes of unprocessed Wikipedia text. We compare our
architecture with the previous results in Table 2.2. Under the model size constraint, the 12-layer
Transformer-XL achieves a new SoTA result, outperforming the 12-layer vanilla Transformer from
Al-Rfou et al. [1] by 0.05, while both Transformer variants have a large margin over conventional
RNN-based models. Notably, our 12-layer architecture achieves the same result as the 64-layer
network from Al-Rfou et al. [1], using only 17% of the parameter budget. In order to see whether
better performances can be obtained by increasing the model size, we train 18-layer and 24-layer
Transformer-XLs with increased model sizes. With the attention length 784 during training and
3,800 during evaluation, we obtained a new SoTA result and our method is the first to break
through 1.0 on widely-studied character-level benchmarks. Different from Al-Rfou et al. [1],
Transformer-XL does not need any auxiliary losses, and thus all benefits are due to a better
architecture.

Similar to but different from enwik8, text8 contains 100M processed Wikipedia characters
created by lowercasing the text and removing any character other than the 26 letters a through
z, and space. Due to the similarity to enwik8, we simply adapt the best model and the same
hyper-parameters on enwik8 to text8 without further tuning. The comparison with previous

17

Model #Param PPL

Shazeer et al. [142] - Sparse Non-Negative 33B 52.9
Chelba et al. [17] - RNN-1024 + 9 Gram 20B 51.3
Kuchaiev and Ginsburg [81] - G-LSTM-2 - 36.0
Dauphin et al. [33] - GCNN-14 bottleneck - 31.9
Jozefowicz et al. [70] - LSTM 1.8B 30.6
Jozefowicz et al. [70] - LSTM + CNN 1.04B 30.0
Shazeer et al. [143] - Low-Budget MoE ∼5B 34.1
Shazeer et al. [143] - High-Budget MoE ∼5B 28.0
Shazeer et al. [144] - Mesh Tensorflow 4.9B 24.0
Baevski and Auli [4] - Adaptive Input� 0.46B 24.1
Baevski and Auli [4] - Adaptive Input� 1.0B 23.7

Ours - Transformer-XL Base 0.46B 23.5
Ours - Transformer-XL Large 0.8B 21.8

Table 2.4: Comparison with state-of-the-art results on Billion Word. � indicates contemporary
work.

methods is summarized in Table 2.3. Again, Transformer-XL achieves the new SoTA result with
a clear margin.

The Billion Word dataset does not preserve any long-term dependencies because sentences
have been shuffled. Consequently, this dataset tests the ability of modeling only short-term
dependency. The comparison between Transformer-XL and the other methods is shown in Table
2.4. Although Transformer-XL is mainly designed to better capture longer-term dependency, it
dramatically improves the single-model SoTA from 23.7 to 21.8. Specifically, Transformer-XL
significantly outperforms a contemporary method using vanilla Transformers [4], suggesting the
advantage of Transformer-XL is generalizable to modeling short sequences. We conjecture that
this is because we resolve the segment fragmentation problem as discussed in Section 2.1.3.

We also report the results on word-level Penn Treebank in Table 2.5. Similar to AWD-
LSTM [103], we apply variational dropout and weight average to Transformer-XL. With proper
regularization, Transformer-XL achieves a new SoTA result among models without two-step
finetuning. Penn Treebank has only 1M training tokens, which implies that Transformer-XL also
generalizes well even on small datasets.

Ablation Study

We conduct two sets of ablation studies to examine the effects of two proposed techniques used in
Transformer-XL: the recurrence mechanism and the new positional encoding scheme.

The first study is performed on WikiText-103, which requires modeling long-term dependency.
The results are reported in Table 2.6. Among the compared encoding schemes, Shaw et al. [141]
is relative, while Vaswani et al. [166] and Al-Rfou et al. [1] are absolute. “Full” and “half” losses
refer to applying a cross entropy loss to all or the recent half positions in the segment. We

18

Model #Param PPL

Inan et al. [64] - Tied Variational LSTM 24M 73.2
Zilly et al. [207] - Variational RHN 23M 65.4
Zoph and Le [208] - NAS Cell 25M 64.0
Merity et al. [103] - AWD-LSTM 24M 58.8
Pham et al. [123] - Efficient NAS 24M 58.6
Liu et al. [94] - Differentiable NAS 23M 56.1
Yang et al. [195] - AWD-LSTM-MoS 22M 55.97
Melis et al. [101] - Dropout tuning 24M 55.3

Ours - Transformer-XL 24M 54.52

Merity et al. [103] - AWD-LSTM+Finetune† 24M 57.3
Yang et al. [195] - MoS+Finetune† 22M 54.44

Table 2.5: Comparison with state-of-the-art results on Penn Treebank. † indicates use of two-step
finetuning.

experimented with the “half” setting because we found some positional encodings are only able
to work with the “half” setting due to the context fragmentation problem (see Section 2.1.3).
We found that absolute encodings only work well with half losses because half losses exclude
positions with very short attention lengths during training for better generalization. Table 2.6
shows that both the recurrence mechanism and our encoding scheme are necessary to achieve the
best performance, as well as generalizing to longer attention sequences during evaluation time.
Although the backpropagation length during training is only 128, with the two techniques the
attention length can be increased to 640 at test time. In the standard setting with 151M parameters,
the perplexity decreases as the attention length increases.

Since the recurrence mechanism costs additional memory, we also compare Transformer-XL
with baselines under the same GPU memory constraints. As shown in Table 2.8, despite using a
shorter backpropagation length, Transformer-XL remains superior to the baselines.

The second study targets at isolating the effects of resolving the context fragmentation problem
from the benefit of capturing longer context length. In order to achieve this goal, we deliberately
choose a dataset that does not require long-term dependency, so that any improvement from
establishing the recurrence can be attributed to solving the context fragmentation. Specifically,
we perform this controlled experiment on the Billion Word dataset, which can only benefit from
removing the context fragmentation. We train a 20-layer Transformer-XL with ∼0.3B parameters
for 400K steps. As shown in Table 2.7, using segment-level recurrence substantially improves
performance even when long-term dependency is not needed, which is consistent with our previous
discussion that the recurrence mechanism resolves the context fragmentation problem. Moreover,
our relative positional encodings is also superior to Shaw et al. [141] on short sequences.

Relative Effective Context Length

Khandelwal et al. [73] proposed a method to evaluate the Effective Context Length (ECL) of a

19

Remark Recurrence Encoding Loss PPL init PPL best Attn Len

Transformer-XL (128M) 3 Ours Full 27.02 26.77 500
- 3 Shaw et al. [141] Full 27.94 27.94 256
- 3 Ours Half 28.69 28.33 460
- 7 Ours Full 29.59 29.02 260
- 7 Ours Half 30.10 30.10 120

- 7 Shaw et al. [141] Full 29.75 29.75 120
- 7 Shaw et al. [141] Half 30.50 30.50 120
- 7 Vaswani et al. [166] Half 30.97 30.97 120
Transformer (128M)† 7 Al-Rfou et al. [1] Half 31.16 31.16 120

Transformer-XL (151M) 3 Ours Full 23.43
23.09 640
23.16 450
23.35 300

Table 2.6: Ablation study on WikiText-103. For the first two blocks, we use a slightly smaller
model (128M parameters). † indicates that the corresponding row is reduced to the same setting
as the Transformer network in [1], except that two auxiliary losses are not implemented in our
experiments. “PPL init” refers to using the same length as training. “PPL best” indicates the
perplexity obtained by using the optimal length. “Attn Len” is the shortest possible attention
length during evaluation to achieve the corresponding result (PPL best). Increasing the attention
length during evaluation improves performance only when our positional encoding is used. The
“Transformer-XL (151M)” setting uses a standard parameter budget as previous work [104], where
we observe a similar effect when increasing the attention length during evaluation.

sequence model. ECL is the longest length to which increasing the context span would lead to a
gain more than a threshold. However, ECL ignores the fact that it is harder to get improvement
when a model already achieves a lower perplexity using only a shorter context, and thus it is
not suitable for fair comparison among multiple models. We instead propose a new metric
called Relative Effective Context Length (RECL). RECL is defined on a model group instead
of a single model, and the gain of a long context is measured by the relative improvement over
the best short-context model. As such, the model group shares the same baseline to enable fair
comparison. RECL also has a parameter r, which means constraining the comparison to the
top-r hard examples. See Appedix 2.1.4 for more details about RECL. As shown in Table 2.9,
Transformer-XL manages to model dependency of 900 words long on average with r = 0.1. The
RECL of Transformer-XL is 80% and 450% longer than recurrent networks and Transformer
respectively. Both the recurrence mechanism and our positional encodings contribute to a longer
RECL. This further substantiates our argument that Transformer-XL is able to model longer-term
dependency.

20

Method PPL

Ours 25.2
With Shaw et al. [141] encodings 25.7
Without recurrence 27.1

Table 2.7: Ablation study on Billion Word, a dataset without long-term dependency.

Backprop Len Recurrence Encoding Loss pplx best pplx init Attn Len

128 3 Ours Full 26.77 27.02 500
128 3 Ours Partial 28.33 28.69 460

176 7 Ours Full 27.98 28.43 400
172 7 Ours Partial 28.83 28.83 120

Table 2.8: Ablation study on WikiText-103 with the same GPU memory constraints.

Evaluation Speed

Finally, we compare the evaluation speed of our model with the vanilla Transformer model [1].
As shown in Table 2.10, due to the state reuse scheme, Transformer-XL achieves an up to 1,874
times speedup during evaluation.

Details About RECL

(a) Transformer-XL vs RNNs (b) Transformer-XL vs Baseline

Figure 2.4: Visualizing unnormalized relative perplexity gains with r = 0.1.

In this section, we describe the details of the metric RECL. LetM = {m1,m2, · · · ,mN} be
a model group consisting of N models. Let li(c, t) denote the loss of model mi on the t-th token
in the corpus with a context length c. Concretely, the loss can be written as

li(c, t) = − logPmi(xt|xt−1, · · · , xt−c)

where Pmi is the probability distribution given by model mi, and xt is the t-th token in the corpus.
Given a short context length c and a long context length c′ such that c′ ≥ c, we can further define

21

ioo,--~--~-~G~a,~n-;fc~om~,n~c~,e~asc;c,n~g~c~on~t~ex~t,c-cle~ng~t~h---;=======;i

I\ 1- Transformer-XL
ORNN

00 = I ~-----~,

~-

Context length change

2500 ,--______ Ga_ln_f_ro_m_l_n_cc--;ea=,='n=g ='o=n=te=''='=•n=g=th========

I

- Transformer-XL

Transformer-XL with Shaw et al encoding

Transformer-XL w/o recurrence

!::::\· ; '

~ ',

!1000 ',·\

] '~
f ~00 ~

-~-----------------~ ,L_~--~~~~:_c_:__;_~~~::=======~d
:oo----> 200 200----> 300 300---, 400 400 - 500 500----> 600 ECO----> 700 700----> 800 800----> 900 900----> 1000

Context length change

Model r = 0.1 r = 0.5 r = 1.0

Transformer-XL 151M 900 800 700
QRNN 500 400 300
LSTM 400 300 200

Transformer-XL 128M 700 600 500
- use Shaw et al. [141] encoding 400 400 300
- remove recurrence 300 300 300
Transformer 128 128 128

Table 2.9: Relative effective context length (RECL) comparison. See text for the definition of
RECL and r. The first three models and the last four models are compared as two model groups
when we calculate RECL (RECL is computed on a model group rather than a single model). Each
group has the same parameter budget.

Attn Len How much Al-Rfou et al. [1] is slower

3,800 1,874x
2,800 1,409x
1,800 773x
800 363x

Table 2.10: Slowdown in terms of running time during evaluation. Evaluation is based on
per-token time on one GPU.

(a) Transformer-XL vs RNNs (b) Transformer-XL vs Baseline

Figure 2.5: Perplexity vs context length.

a baseline for each position t,

b(c, t) =
N

min
i=1

li(c, t)

The relative loss of mi w.r.t. the model groupM is written as

fi(c, c
′) =

1

|T |
∑
t∈T

min (b(c, t), li(c
′, t))

22

45

40

1-
35

?;-

~

l 30

25~

20
100 200 300 400 500 600 700 800

Context length

30.5
Transformer-XL

QRNN 30.0

LSTM

29.5

29.0

.~28.5
~
f2a.o

27.5

27.0

26.5

26.0
900 1000 100 200 300 400 500

Transformer-XL

Transformer-XL with Shaw et al encoding

Transformer-XL w/o recurrence

600 700 800 900 1000
Context length

The above equation uses the minimum loss of all models on the short length c as a baseline, and
only losses smaller than the baseline will be effectively counted towards the relative loss. This
enables fair comparison between multiple models because all models with a long context length c′

need to improve over the same baseline. Sometimes we only care about those positions where
the baseline performs poorly (which means short-term dependency with context length c is not
sufficient), so given a ratio parameter r, we define the set T is the above equation as

T = top-r positions t with largest b(c, t)

The relative gain is subsequently defined as the relative perplexity reduction:

gi(c, c
′) =

exp fi(c, c)− exp fi(c, c
′)

exp fi(c, c)

Given a step size ∆, we then use an algorithm to find the RECL by thresholding the relative
gain:

1. Set initial short context length c, and long context length c′ = c+ ∆

2. Compute gi(c, c′). If gi(c, c′) < 0.01, return RECL = c. If gi(c, c′) ≥ 0.01, set c = c′, c′ =
c+ ∆ and go to step 1.

In Figure 2.4, we visualize the unnormalized relative perplexity gains (exp fi(c, c)−exp fi(c, c
′))

with various pairs of (c, c′) when r = 0.1. It is clear that Transformer-XL has a longer RECL
compared to RNNs and other baselines because the relative gains are substantially larger.

For reference, we plot the perplexities with varying context lengths in Figure 2.5. The y-axis
denotes the “normal” perplexity (not calibrated by baselines).

Generated Text

In this section, we present some generated text from our best model trained the Wikitext-103
dataset. Since it is difficult to quantitatively evaluate unconditional text generation due to the lack
of effective evaluation metrics, we focus on qualitative case studies. Trained only on WikiText-103
which is medium-sized, Transformer-XL is already able to generate relatively coherent articles
with thousands of tokens without manual cherry picking, despite minor flaws. We seed our
Transformer-XL with a context of at most 512 consecutive tokens randomly sampled from the test
set of Wikitext-103. Then, we run Transformer-XL to generate a pre-defined number of tokens
(500 or 1,000 in our case). For each generation step, we first find the top-40 probabilities of the
next-step distribution and sample from top-40 tokens based on the re-normalized distribution. To
help reading, we detokenize the context, the generated text and the reference text. Three generated
examples are shown in Tables 2.11, 2.12, and 2.13. Note that we do not perform any cherry
picking and present the first three examples we generate. In the text, “= text =”, “= = text = =” and
“= = = text = = =” denote the Wikipedia page tile, section title and subsection title, respectively,
due to the original data preprocessing procedure of Wikitext-103 [102].

As we can see, though only trained on 100M tokens, Transformer-XL is a strong model at
generating long text articles, particularly in the following aspects:

23

• Transformer-XL is able to structurally maintain the sectional arrangement of Wikipedia.
• Transformer-XL manages to semantically stay on the same topic throughout the course of

generation.
• Long-range references are common in the generated text.
• Transformer-XL often generates novel content that is not present in the training data.

For more detailed explanation of the interesting observations in each example, please refer to the
corresponding caption.

Despite the overall excellence of the generation quality, the model can only perceive the seed
context and hallucinate what to generate based on the limited knowledge (100M tokens only) it is
trained on. As a result, the generated text sometimes looks clearly relevant but not close enough or
to the point compared to what human writer would do. That said, we believe this issue is mostly a
problem of limited training data size and could be alleviated by using a larger training set.

24

Context:
Kershaw started the 2010 season by posting a 3.07 ERA in April, but did so by walking 22 batters in 29 innings. On May 4, he had his worst
start of his career against the Milwaukee Brewers at Dodger Stadium, throwing just 57 pitches in 11 / 3 innings, while retiring only four of the
13 batters he faced — including the pitcher. He was booed loudly upon being pulled from the game. Kershaw said after the game, " I didn’t give
our team any kind of chance. It’s just not a good feeling to let your teammates down, let everybody down. It stings, it hurts. I ’ve got to figure
things out. " Kershaw rebounded his next start by pitching an 8 inning two-hitter and out-dueling the then undefeated Ubaldo Jiménez. He
credited his control of the slider being the major turning point for him. Later in the season, he was suspended for five games after hitting Aaron
Rowand of the Giants with a pitch in a game on July 20. The incident occurred after both teams were given a warning following Giants ace
Tim Lincecum hitting Matt Kemp earlier in the game. He threw his first career complete game shutout on September 14, 2010 also against San
Francisco and finished the season with a record of 13 – 10 and a 2.91 ERA in 32 starts, pitching 2041 / 3 innings and recording 212 strikeouts.
= = = = 2011 season: 1st Cy Young Award = = = =
After finishing the 2010 season strong, the Dodgers named Kershaw as the Opening Day Starter for the 2011 season. On May 29, he pitched
the second complete-game shutout of his career, striking out 10 while winning a two-hitter against the Florida Marlins, 8 – 0; he also had two
singles and an RBI, scoring twice in the game. He produced his third career shutout on June 20, a two-hit, 11-strikeout effort against the Detroit
Tigers. Kershaw became the first Dodgers starter to strike out the side in the 9th inning since Sandy Koufax’s perfect game. In his next start, on
June 26, Kershaw pitched another complete game (against the Los Angeles Angels of Anaheim). He became the first Dodger starter to have
back-to-back complete game victories since Jeff Weaver in the 2005 season and the first Dodger to have double-digit strikeouts in consecutive
starts since Chan-Ho Park in the 2000 season. He was awarded the National League Player of the Week award for the week of June 20 – 26 as
a result of those two starts. Midway through June, Kershaw had amassed 32 career victories

XL Generation: Reference:
, tying him with Luis Castillo for the third best start total in the
league and trailing only Johnny Bench and Eddie Mathews (37). The
Dodgers signed Kershaw to a one-year deal on July 14, 2011, with
a player option for 2012, in a deal worth just under $ 300,000. The
Dodgers entered the 2011 season as the major league leaders, and Ker-
shaw had the best record in the National League in saves (39), games
started (78) and walks (120); he also had the lowest win / loss ratio in
the league (1.87), and he had the worst on-base percentage (.349). He
had the best ERA (2.00), most wins (16), or most shutouts (29) in his
career (25), while leading the league in losses per nine innings pitched
(4.01). Following the 2011 season, the Dodgers traded Kershaw to the
Kansas City Royals on July 29 for pitcher Javier Torres.
= = = Kansas City Royals = = =
= = = = 2012 season = = = =
During spring training, Kershaw played very well. He was selected to
spring training as a relief pitcher for the Royals for the 2012 season.
After an injury to closer Javier Vázquez, he was activated on April 29
to replace Matt Holliday in the Royals ’ starting rotation. In his only
start with the Royals, on August 6, 2012, Kershaw struck out five bat-
ters in seven innings pitched to help the Royals to their first victory
in franchise history. On September 27, 2012, it appeared Kershaw
was going to pitch a complete game shutout against the Detroit Tigers,
but did not manage to do so since the Tigers won 3 – 1. At the con-
clusion of the season, Kershaw was named Major League Baseball’s
Most Valuable Player, was chosen to the All-Star Game at Busch Sta-
dium and was named to the All-Star Game as the starting pitcher at
shortstop. The Royals announced on February 4, 2013 that Kershaw
would spend 2013 as starting pitcher, though he was expected to miss
the season as a result of a shoulder injury.
= = = = 2013 season = = = =
On May 17, 2013, Kershaw sustained another back injury and did not
start in August and October 2013. He appeared in 22 starts, all starts,
finishing with a strikeout-to-walk ratio of 1.50 and a 2.91 ERA. He
also had the third most strikeouts in the league: 10. On May 20, 2013,
he

, a 3.15 ERA and 593 career strikeouts in 568.2 innings. According
to the Elias Sports Bureau, Kershaw was the first 23-year-old pitcher
to have that many victories, an ERA that low and an average of more
than one strikeout per inning since ERA became an official statistic in
1910. Kershaw was selected to the National League team for the 2011
Major League Baseball All-Star Game, his first All-Star selection. In
the month of July, Kershaw was 4 – 1 with a 2.02 ERA and NL-leading
45 strikeouts, earning him the National League Pitcher of the Month
Award. On August 23, he struck out Matt Holliday of the St. Louis
Cardinals for his 200th strikeout of the season and became the 10th
Dodger pitcher to record back-to-back 200 strikeout seasons and the
first since Chan-Ho Park did it in the 2001 season. Kershaw finished
the 2011 season by leading the NL with 21 wins, 248 strikeouts and
a 2.28 ERA, winning the NL pitching Triple Crown, the first Triple
Crown winner since Jake Peavy of the 2007 San Diego Padres and the
first Dodger since Sandy Koufax won it in the 1966 season. Justin Ver-
lander of the Detroit Tigers won the American League Triple Crown
the same season, marking the first major-league season since 1924 to
feature Triple Crown-winning pitchers in both leagues. Kershaw’s 21
wins were the most by a Dodger pitcher since Orel Hershiser won 23
during the 1988 season. His ERA was the lowest by a Dodger since
Hershiser’s 2.03 in the 1985 season, his strikeouts were the most by a
Dodger since Koufax’s 317 in 1966 and his 233 1 / 3 innings pitched
were the most since Chan Ho Park pitched 234 in 2001. Since 1965
when Koufax did it, Peavy and Kershaw are only two pitchers in the
National League have led the league in wins, strikeouts, ERA, and
WHIP (walks plus hits per inning pitched). Kershaw also became just
the second <unk> to have a 240-plus strikeouts in a season before the
age of 24, joining Vida Blue. After the season, Kershaw was awarded
the Warren Spahn Award as the best left-handed pitcher in 2011, the
Players Choice Award for Most Outstanding National League pitcher,
the Gold Glove Award as the top fielding pitcher in the NL and the
Sporting News (TSN) National League Pitcher of the Year. He was
additionally selected as the starting pitcher for the TSN NL All-Star
Team. On November 17, he was honored with the National League
Cy Young Award, making him the youngest Cy Young winner since
Dwight Gooden

Table 2.11: Example 1 – 500 tokens generated by XL using a snippet from the Wikitext-103 test set as
initial context. The sample is randomly generated without any cherry picking.

Original Wikipedia page: https://en.wikipedia.org/wiki/Clayton_Kershaw

25

https://en.wikipedia.org/wiki/Clayton_Kershaw

There are many interesting observations from this example:

• Firstly, Kershaw never went to Royals in real life. Despite that, Transformer-XL stays on the
fully imagined topic and keeps hallucinating the experience of Kershaw in Royals across the
generated text.

• Secondly, notice that XL correctly tracks the chronological order from 2011 to 2012 and to the
finally 2013 season in the section titles.

• In addition, notice that Transformer-XL accurately uses the the phrase “another back injury” in
the 2013 season paragraph, since it has talked about one earlier injure in the 2012 season. This
shows again Transformer-XL’s ability of capturing long-term dependency.

26

Context:
= = Distribution = =
Species range across the Neotropics from Mexico in the north to Bolivia, Paraguay, and southern Brazil in the south. According to <unk> and
coauthors, three species are found in Mexico, four in Central America, and 62 in South America. Three species are present in the Caribbean —
two in Trinidad and Tobago, along the southern edge of the region, and one in Haiti.
= = Habitat and ecology = =
<unk> includes both large trees and small acaulescent palms which occupy a number of different ecological niches. Dense stands of some of
the larger species are conspicuous elements on the landscape, while smaller species are found in both in the forest understorey and in savannas.
Disturbance has been implicated in the formation of vegetation dominated by large <unk> species. In seasonally dry Amazonian forests the
density of large adult A. <unk> palms was correlated with canopy openness; the species also dominates savannas formed by repeated forest
fires in Trinidad and Tobago. <unk> speciosa forms pure stands in many parts of Brazil where natural forest vegetation has been cleared.
Similarly, stands of A. <unk> in Bahia, Brazil (which are cultivated for <unk> fibre) are managed using fire — the seedlings survive cutting
and burning, and are able to dominate burned forest patches. The fruit are dispersed by animals; fruit which are not dispersed frequently suffer
seed predation by <unk> beetles. Certain species of <unk> have been mentioned as examples of " anachronistic " species which are adapted
for dispersal by now-extinct Pleistocene megafauna. On <unk> Island, <unk>, in the Brazilian Amazon, <unk> <unk> fruit were consumed by
tapirs, collared peccaries, deer and primates. Rodents, including agoutis, fed upon the fruit and, as the fruit availability declined, they fed on
the seeds. Other dispersers of <unk> fruit include Crested <unk> which consume the fruit and disperse the seeds of A. <unk> in the Brazilian
Pantanal.
= = Uses = =
<unk> species have a long history of human utilisation. <unk> <unk> <unk> seeds have been found in archaeological sites in Colombia dating
back to 9000 BP. A variety of species remain important sources of edible oil, thatch, edible seeds and fibre. The leaves of <unk> <unk> and
A. <unk> are used extensively for thatching. Several species are oil palms, with A. speciosa among the most important economically. Products
extracted from A. speciosa were reported to support over 300,000 households in the Brazilian state of Maranhão in 2005, and in 1985 it was
estimated to support over 450,000 households throughout the Brazil. <unk> fibres, extracted from the leaf bases of A. <unk>, are commercially
important, and generated about US $

XL Generation: Reference:
700,000 in 2013 on the black market. In 2004 the plant was reported
to be responsible for a net profit of around US $ 3 million in Brazil. A
2012 study found A. speciosa to cause agricultural production at least
2 – 3 times greater than those achieved without prior knowledge of
land management.
= The Tale of Mrs. Tittlemouse =
The Tale of Mrs. Tittlemouse is a children’s book written and illus-
trated by H. M. Potter. It was first published in February 1910 by
Frederick Warne & Co. and included illustrations by Frederick Warne.
Mrs. Tittlemouse was intended to be a children’s book, rather than a
musical, and the tale describes her attempts to find her own home. Mrs.
Tittlemouse is an average kitten and the tale follows a mischievous rab-
bit named Mr. Tittlemouse who tries to kill her in an attempt to get
a ride on a horse. Potter later wrote of the rabbit and her attempts to
kill her, " If [she] were a fox, I should like to have been able to show
her the way. " Potter’s work was inspired by The Tale of Little Black
Sambo and her two nieces, Petunia and Petunia. It was the first book
in the Potter family to be published in a hardback format, and was also
the first book in the Peter Rabbit series. The tale was released on 13
November 1910 and was accompanied by a greeting card by Potter’s
brother-in-law, Frederick Warne. The tale was well received by critics
and children, and sold over 600,000 copies in its first few years. In
the first year of its publication, Potter’s The Tale of Mrs. Tittlemouse
won children’s book awards in England, America and Australia. It
was selected as a " recommended reading " by children in the US and
Canada.
= = Plot summary = =
The tale opens with the pet rabbit Mrs. Tittlemouse wandering
through a forest in a small litter of four. He is shot and badly in-
jured by a deer after she attempts to escape. Mrs. Tittlemouse decides
that she wants to find her own home, because she is eager to go on her
own. She goes alone to the farm where she makes a little money by
selling a few seeds and building a small cabin in the woods. She is
approached by a wealthy hunter named Mr. Tittlemouse, who tries to
kill her but Mrs. Tittlemouse kills him by stuffing a rope into his nose
and killing him. She is rescued by Mr. Tittlemouse’s wife Ruth, but
Mrs. Tittlemouse then leaves the woodland with the baby. When she
is spotted by

20 million in annual income to Brazilian farmers in 1996.
= The Heart of Ezra Greer =
The Heart of Ezra Greer is a 1917 American silent drama film pro-
duced by the Thanhouser Company and directed by Emile <unk>.
The film focuses on Ezra Greer, a successful middle-aged man who
searches for his college age daughter, Mary. The wayward Mary was
romanced and abandoned by Jack <unk>, later bearing his child. Once
Ezra becomes broke he finds employment as the valet for Jack <unk>.
After Jack’s engagement to a cabaret girl, Mary becomes upset and
leaves her child at Jack’s home. Contrary to Jack’s wishes, Ezra keeps
the child and Jack ultimately reveals that the child is his own. Ezra
convinces Jack to make things right and Ezra convinces the cabaret
girl to leave Jack. After a carriage accident in which the baby is in-
jured, Ezra and Jack rush to the hospital and find Mary as a nurse cry-
ing over the child. The film ends with the marriage of Jack and Mary.
The film was released by Pathé on October 7, 1917. The film was
the final release from Thanhouser and was deemed to be an average
film by most reviewers. Criticism for the film hinged on far-fetched
coincidences to drive the plot. The film is presumed lost.
= = Plot = =
The film follows Ezra Greer, a middle-aged man who has worked
hard since his youth. He cares deeply for his motherless daughter,
Mary, but was unable to attend the annual commencement at her co-
educational college. He awaits for her to return from college, but
Mary leaves with her romantic interest, Jack <unk>. On promise of
marriage and wealth, Mary is romanced and gives birth to a father-
less child. Without word from his daughter, Ezra resigns from his job
and attempts to seek her out and finds a poor motherless child, Marie.
With Ezra’s money exhausted he seeks employment and finds it as the
valet of Jack. One day, Mary seeks an announcement of Jack’s en-
gagement to a cabaret girl known as " The Baby Vamp ". Bitter over
the prospect of her child’s future, she leaves the child at Jack’s home
during his absence with a note. Jack orders Ezra to take the baby to
an orphanage, but Marie begs Ezra to keep him. After continually see-
ing the child, Jack is overcome with remorse and explains to Ezra and
seeks his advice. Not knowing he was making the case for his own
daughter, Ezra convinces Jack to seek out Mary and forget the Baby
Vamp. The Baby

Table 2.12: Example 2 – 500 tokens generated by XL using a snippet from the Wikitext-103 test set as
initial context. The sample is randomly generated without any cherry picking.

27

Original Wikipedia page: https://en.wikipedia.org/wiki/The_Tale_of_Mrs._Tittlemouse.
This example exhibit some additional interesting properties of Transformer-XL:

• After finishing the last paragraph of the seed context, both the reference and generated text start
a new topic (i.e., Wikipedia page), as marked by the single “= title =” line. This suggests the
model has the ability of identifying the end of a topic / page, and randomly starting with a new
topic.

• Even more interestingly, a newly-started page is on a book called “The Tale of Mrs. Tittlemouse”.
Transformer-XL manages to copy the same book title and some related information from
the training set, but hallucinates novel content of the book. This demonstrates a degree
of generalization instead of memorization. Please refer to the original book content at the
Wikipedia page.

28

https://en.wikipedia.org/wiki/The_Tale_of_Mrs._Tittlemouse

Context:
= Battle of Dürenstein =
The Battle of Dürenstein (also known as the Battle of <unk>, Battle of <unk> and Battle of <unk>; German: <unk> bei <unk>), on 11
November 1805 was an engagement in the Napoleonic Wars during the War of the Third Coalition. Dürenstein (modern <unk>) is located
in the <unk> Valley, on the River Danube, 73 kilometers (45 mi) upstream from Vienna, Austria. The river makes a crescent-shaped curve
between <unk> and nearby Krems an der Donau and the battle was fought in the flood plain between the river and the mountains. At Dürenstein
a combined force of Russian and Austrian troops trapped a French division commanded by Théodore Maxime Gazan. The French division
was part of the newly created VIII Corps, the so-called Corps Mortier, under command of Édouard Mortier. In pursuing the Austrian retreat
from Bavaria, Mortier had over-extended his three divisions along the north bank of the Danube. Mikhail <unk> Kutuzov, commander of the
Coalition force, enticed Mortier to send Gazan’s division into a trap and French troops were caught in a valley between two Russian columns.
They were rescued by the timely arrival of a second division, under command of Pierre Dupont de l ’Étang. The battle extended well into the
night. Both sides claimed victory. The French lost more than a third of their participants, and Gazan’s division experienced over 40 percent
losses. The Austrians and Russians also had heavy <unk> to 16 <unk> perhaps the most significant was the death in action of Johann Heinrich
von Schmitt, one of Austria’s most capable chiefs of staff. The battle was fought three weeks after the Austrian capitulation at Ulm and three
weeks before the Russo-Austrian defeat at the Battle of Austerlitz. After Austerlitz Austria withdrew from the war. The French demanded a
high indemnity and Francis II abdicated as Holy Roman Emperor, releasing the German states from their allegiance to the Holy Roman Empire.
= = Background = =
In a series of conflicts from 1803-15 known as the Napoleonic Wars, various European powers formed five coalitions against the First French
Empire. Like the wars sparked by the French Revolution (1789), these further revolutionized the formation, organization and training of
European armies and led to an unprecedented militarization, mainly due to mass conscription. Under the leadership of Napoleon, French power
rose quickly as the Grande Armée conquered most of Europe, and collapsed rapidly

XL Generation: Reference:
after the French conquest of Italy. This victory marked the begin-
ning of the Second Coalition. Napoleon’s rapid advance caused Aus-
tria – Russia, Britain and Russia to make peace negotiations. The
Russian army under Prince Mikhail Mikhailovich Mikhailovich Chaf-
fee, commander of the Imperial Russian Army in Switzerland, was
able to drive off the Austrians in the Battle of Stockach (1805) and to
take Pressburg (modern Ö3 Austria) from the Austrians. At an early
stage the Austro-Hungarian fleet had been damaged in a storm off
Cape Matapan; this allowed the Allies to launch a full-scale invasion
of Italy in February 1805. The Battle of Austerlitz was the decisive
French victory against Napoleon and the largest naval battle in history,
involving more modern-day European navies. The French military sit-
uation worsened as Napoleon faced several threats related to his newly
formed Army of Europe, particularly Russia itself, which was now on
the verge of collapse. The Russian general and friend of Napoleon,
Alexander, had been dissatisfied with the conduct of the Austrians; he
was still in conflict with Emperor Napoleon, the French Republic’s
king, who had declared war on Austria during the summer of 1804.
With the war over, Napoleon decided to launch a second invasion of
Italy in October 1805.
= = Prelude = =
In July 1805, the French 1st Army entered southern Italy. The army,
under the command of Marshal Marmont, were reinforced by a few
battalions of infantry under Claude General Auguste de Marmont at
the town of Philippsburg and another battalion at Belluno. On 17
September 1805, the army marched from Belluno towards Krems. By
29 September, they had reached Belluno and conducted its advance
against a small Austrian force. By 31 September, the whole force
had been reinforced by a brigade from the Army of Tyrol under the
command of Pierre Augereau. The Austrians were now under the
command of Marshal Jean Victor Marie Moreau, a member of the Di-
rectory. Moreau had taken command of the Austrian invasion force in
the spring of 1805. His command included the VI Corps commanded
by Jean Baptiste Drouet de Ney and the VI Corps commanded by
Generals Jean Victor Marie Moreau and Joseph Souham. Ney’s corps
consisted of the III. Corps and VI. Corps, which consisted of the III
Corps and VI. Corps, located in the Austrian Netherlands, was com-
manded by Friedrich Joseph, Count Baillet de Latour. Moreau’s army
consisted of six divisions and several associated brigades.

after the disastrous invasion of Russia in 1812. Napoleon’s empire ulti-
mately suffered complete military defeat in the 1813 – 14 campaigns,
resulting in the restoration of the Bourbon monarchy in France. Al-
though Napoleon made a spectacular return in 1815, known as the
Hundred Days, his defeat at the Battle of Waterloo, the pursuit of his
army and himself, his abdication and banishment to the Island of Saint
Helena concluded the Napoleonic Wars.
= = Danube campaign = =
From 1803-06 the Third Coalition fought the First French Empire and
its client states (see table at right). Although several naval battles
determined control of the seas, the outcome of the war was decided
on the continent, predominantly in two major land operations in the
Danube valley: the Ulm campaign in the upper Danube and the Vi-
enna campaign, in the middle Danube valley. Political conflicts in
Vienna delayed Austria’s entry into the Third Coalition until 1805.
After hostilities of the War of the Second Coalition ended in 1801,
Archduke <unk> emperor’s <unk> advantage of the subsequent years
of peace to develop a military restructuring plan. He carefully put
this plan into effect beginning in 1803 – 04, but implementation was
incomplete in 1805 when Karl Mack, Lieutenant Field Marshal and
Quartermaster-General of the Army, implemented his own restructur-
ing. Mack bypassed Charles ’ methodical approach. Occurring in
the field, Mack’s plan also undermined the overall command and or-
ganizational structure. Regardless, Mack sent an enthusiastic report
to Vienna on the military’s readiness. Furthermore, after misread-
ing Napoleon’s maneuvers in Württemberg, Mack also reported to Vi-
enna on the weakness of French dispositions. His reports convinced
the war party advising the emperor, Francis II, to enter the conflict
against France, despite Charles ’ own advice to the contrary. Respond-
ing to the report and rampant anti-French fever in Vienna, Francis
dismissed Charles from his post as generalissimo and appointed his
<unk> brother-in-law, Archduke Ferdinand, as commander. The inex-
perienced Ferdinand was a poor choice of replacement for the capable
Charles, having neither maturity nor aptitude for the assignment. Al-
though Ferdinand retained nominal command, day-to-day decisions
were placed in the hands of Mack, equally ill-suited for such an impor-
tant assignment. When Mack was wounded early in the campaign, he
was unable to take full charge of the army. Consequently, command
further devolved to Lieutenant Field Marshal Karl Philipp, Prince of
Schwarzenberg, an able cavalry officer but inexperienced in the com-
mand of such a large army.

29

= = Aftermath = =
= = = First Coalition forces = = =
On 9 October 1805 the French Army of the Danube was attacked by an
Austrian army under Archduke Charles at the Battle of Austerlitz. Al-
though Charles and Charles had not had much time to regroup, on 10
October, he launched his attack on the Polish forces under Friedrich
Joseph, Count of Lauenburg. After three days, Charles’ army cap-
tured Lauenburg. The French forces pursued the Austrians to the Sile-
sian border, where they encountered strong Austrian resistance. These
conflicts forced the Austrians to retreat into Tyrol and Austria agreed
to a truce. The Austrian army, commanded by Wenzel Anton Karl,
Count of Merveldt, was reduced to around 10,000 men. It was ini-
tially planned that Archduke Charles would launch a counter-attack
against the French army on the same day, as Napoleon had hoped,
but this was not carried out. On 25 October, Merveldt left Styria for
Tyrol. On the same day, Austria launched its new offensive against
the French at Ulm. Charles withdrew his army from the region for
a third time at the Battle of Elchingen, under the overall command
of the Austrian generals, Ferdinand and Friedrich Wilhelm of Jülich-
Cleves-Berg. To prevent Archduke Charles from escaping from the
battlefield, the commander of the Habsburg army, Archduke Charles,
planned to occupy the fortress Linz; instead, he decided to force Franz
von Hipper to surrender the city. However, as Charles moved to the
south, Moreau arrived on the scene with additional soldiers – includ-
ing the entire Imperial Guard – and defeated the Austrians at the Battle
of Hohenlinden on 28 October. The loss of Linz resulted in Austria’s
complete defeat at Hohenlinden. In the meantime, the French Army of
Observation and Preparedness was reorganized into the Army of the
Danube under Feldzeugmeister (Colonel-General) Friedrich Freiherr
von Hotze. The army was composed of the I, IV, VI, VI, VII, VIII and
IX Corps. With reinforcements from Italy and France, it formed new
battalions, companies, and squadrons in the Austrian army. On 17
November 1804, at the Battle of Jena-Auerstadt the Army of Silesia
and the Army of Silesia joined forces, but by the time that the

= = = Road to Ulm = = =
The campaign in the upper Danube valley began in October, with sev-
eral clashes in Swabia. Near the Bavarian town of Wertingen, 40 kilo-
meters (25 mi) northwest of Augsburg, on 8 October the 1st Regiment
of dragoons, part of Murat’s Reserve Cavalry Corps, and grenadiers of
Lannes ’ V Corps surprised an Austrian force half its size. The Austri-
ans were arrayed in a line and unable to form their defensive squares
quickly enough to protect themselves from the 4,000 dragoons and
8,000 grenadiers. Nearly 3,000 Austrians were captured and over 400
were killed or wounded. A day later, at another small town, <unk>
south of the Danube <unk> French 59th Regiment of the Line stormed
a bridge over the Danube and, humiliatingly, chased two large Aus-
trian columns toward Ulm. The campaign was not entirely bad news
for Vienna. At Haslach, Johann von Klenau arranged his 25,000 in-
fantry and cavalry in a prime defensive position and, on 11 October,
the overly confident General of Division Pierre Dupont de l’Étang at-
tacked Klenau’s force with fewer than 8,000 men. The French lost
1,500 men killed and wounded. Aside from taking the Imperial Ea-
gles and <unk> of the 15th and 17th Dragoons, Klenau’s force also
captured 900 men, 11 guns and 18 ammunition wagons. Klenau’s vic-
tory was a singular success. On 14 October Mack sent two columns
out of Ulm in preparation for a breakout to the north: one under Jo-
hann Sigismund Riesch headed toward Elchingen to secure the bridge
there, and the other under Franz von Werneck went north with most
of the heavy artillery. Recognizing the opportunity, Marshal Michel
Ney hurried the rest of his VI Corps forward to re-establish contact
with Dupont, who was still north of the Danube. In a two-pronged
attack Ney sent one division to the south of Elchingen on the right
bank of the Danube. This division began the assault at Elchingen. At
the same time another division crossed the river to the east and moved
west against Riesch’s position. After clearing Austrian pickets from a
bridge, the French attacked and captured a strategically located abbey
at

French approached Vienna, the Prussians had already surrendered. As
the Austrians did not want to allow the war to continue, they decided
to abandon their territories in the north and move their army to the
north and west, cutting off Charles from Vienna. The Battle of War-
saw was fought on 23 November 1805 between the French Army of
the Danube and the Austrian Army of Styria in the vicinity of War-
saw and Pressburg (modern Trnava, Slovakia). At that time Habsburg
forces

the top of the hill at bayonet point. The Austrian cavalry unsuccess-
fully tried to fend off the French, but the Austrian infantry broke and
ran. In this engagement alone, the Austrians lost more than half their
reserve artillery park, 6,000 (out of 8,000 total participants) dead,
wounded or captured and four colors. Reisch’s column also failed
to destroy the bridges across the Danube. Napoleon’s lightning cam-
paign exposed the Austrian indecisive command structure and poor
supply apparatus. Mack

Table 2.13: Example 3 – 1,000 tokens generated by XL using a snippet from the Wikitext-103 test set as
initial context. The sample is randomly generated without any cherry picking.

Original Wikipedia page: https://en.wikipedia.org/wiki/Battle_of_D%C3%BCrenstein.

• Although this example is significantly longer, we can see that Transformer-XL is still able to
stay on the same topic and makes up non-existing stories about the Napoleon wars.

• Notably, from the second section on, the generated text correctly follows a fine-grained chrono-
logical order on the level of month and day to narrate events in 1805, except a mistake (1804
instead of 1805) near the end of the paragraph. To ease reading which we have highlighted all
the date related phrases by magenta in the generation.

30

https://en.wikipedia.org/wiki/Battle_of_D%C3%BCrenstein

2.2 XLNet: Generalized Autoregressive Pretraining

2.2.1 Motivation

Unsupervised representation learning has been highly successful in the domain of natural language
processing [27, 34, 100, 122, 126]. Typically, these methods first pretrain neural networks on
large-scale unlabeled text corpora, and then finetune the models or representations on downstream
tasks. Under this shared high-level idea, different unsupervised pretraining objectives have been
explored in literature. Among them, autoregressive (AR) language modeling and autoencoding
(AE) have been the two most successful pretraining objectives.

AR language modeling seeks to estimate the probability distribution of a text corpus with
an autoregressive model [27, 122, 126]. Specifically, given a text sequence x = (x1, · · · , xT),
AR language modeling factorizes the likelihood into a forward product p(x) =

∏T
t=1 p(xt | x<t)

or a backward one p(x) =
∏1

t=T p(xt | x>t). A parametric model (e.g. a neural network) is
trained to model each conditional distribution. Since an AR language model is only trained to
encode a uni-directional context (either forward or backward), it is not effective at modeling
deep bidirectional contexts. On the contrary, downstream language understanding tasks often
require bidirectional context information. This results in a gap between AR language modeling
and effective pretraining.

In comparison, AE based pretraining does not perform explicit density estimation but instead
aims to reconstruct the original data from corrupted input. A notable example is BERT [34],
which has been the state-of-the-art pretraining approach. Given the input token sequence, a
certain portion of tokens are replaced by a special symbol [MASK], and the model is trained to
recover the original tokens from the corrupted version. Since density estimation is not part of the
objective, BERT is allowed to utilize bidirectional contexts for reconstruction. As an immediate
benefit, this closes the aforementioned bidirectional information gap in AR language modeling,
leading to improved performance. However, the artificial symbols like [MASK] used by BERT
during pretraining are absent from real data at finetuning time, resulting in a pretrain-finetune
discrepancy. Moreover, since the predicted tokens are masked in the input, BERT is not able to
model the joint probability using the product rule as in AR language modeling. In other words,
BERT assumes the predicted tokens are independent of each other given the unmasked tokens,
which is oversimplified as high-order, long-range dependency is prevalent in natural language
[31].

Faced with the pros and cons of existing language pretraining objectives, in this work, we
propose XLNet, a generalized autoregressive method that leverages the best of both AR language
modeling and AE while avoiding their limitations.

Related Work The idea of permutation-based AR modeling has been explored in [44, 164],
but there are several key differences. Previous models are orderless, while XLNet is essentially
order-aware with positional encodings. This is important for language understanding because an
orderless model is degenerated to bag-of-words, lacking basic expressivity. The above difference
results from the fundamental difference in motivation—previous models aim to improve density
estimation by baking an “orderless” inductive bias into the model while XLNet is motivated by
enabling AR language models to learn bidirectional contexts.

31

2.2.2 Approach

Background

In this section, we first review and compare the conventional AR language modeling and BERT for
language pretraining. Given a text sequence x = [x1, · · · , xT], AR language modeling performs
pretraining by maximizing the likelihood under the forward autoregressive factorization:

max
θ

log pθ(x) =
T∑
t=1

log pθ(xt | x<t) =
T∑
t=1

log
exp

(
hθ(x1:t−1)

>e(xt)
)∑

x′ exp (hθ(x1:t−1)>e(x′))
, (2.1)

where hθ(x1:t−1) is a context representation produced by neural models, such as RNNs or Trans-
formers, and e(x) denotes the embedding of x. In comparison, BERT is based on denoising
auto-encoding. Specifically, for a text sequence x, BERT first constructs a corrupted version x̂ by
randomly setting a portion (e.g. 15%) of tokens in x to a special symbol [MASK]. Let the masked
tokens be x̄. The training objective is to reconstruct x̄ from x̂:

max
θ

log pθ(x̄ | x̂) ≈
T∑
t=1

mt log pθ(xt | x̂) =
T∑
t=1

mt log
exp

(
Hθ(x̂)>t e(xt)

)∑
x′ exp

(
Hθ(x̂)>t e(x

′)
) , (2.2)

where mt = 1 indicates xt is masked, and Hθ is a Transformer that maps a length-T text sequence
x into a sequence of hidden vectors Hθ(x) = [Hθ(x)1, Hθ(x)2, · · · , Hθ(x)T]. The pros and cons
of the two pretraining objectives are compared in the following aspects:
• Independence Assumption: As emphasized by the ≈ sign in Eq. (2.2), BERT factorizes

the joint conditional probability p(x̄ | x̂) based on an independence assumption that all
masked tokens x̄ are separately reconstructed. In comparison, the AR language modeling
objective equation 2.1 factorizes pθ(x) using the product rule that holds universally without
such an independence assumption.

• Input noise: The input to BERT contains artificial symbols like [MASK] that never occur
in downstream tasks, which creates a pretrain-finetune discrepancy. Replacing [MASK] with
original tokens as in [34] does not solve the problem because original tokens can be only used
with a small probability — otherwise Eq. (2.2) will be trivial to optimize. In comparison, AR
language modeling does not rely on any input corruption and does not suffer from this issue.

• Context dependency: The AR representation hθ(x1:t−1) is only conditioned on the tokens up
to position t (i.e. tokens to the left), while the BERT representation Hθ(x)t has access to the
contextual information on both sides. As a result, the BERT objective allows the model to be
pretrained to better capture bidirectional context.

Objective: Permutation Language Modeling

According to the comparison above, AR language modeling and BERT possess their unique
advantages over the other. A natural question to ask is whether there exists a pretraining objective
that brings the advantages of both while avoiding their weaknesses.

32

!"!# !$!%

&"
'#(&#

'#(&$
'#(

&"
'$(&#

'$(&$
'$(

Factorization order: 3 ! 2 ! 4 ! 1

!"!# !$!%

&#
'#(

&"
'$(&#

'$(&$
'$(&%

'$(

Factorization order: 1 ! 4 ! 2 ! 3

&"
'#(&$

'#(&%
'#(

&%
'#(

&%
'$(

)*)'+(

)*)'+(

!"!# !$!%

&"
'#(&#

'#(

&"
'$(&#

'$(&%
'$(

Factorization order: 2 ! 4 ! 3 ! 1

&$
'#(&%

'#(

&$
'$(

!"!# !$!%

&"
'#(&#

'#(&$
'#(&%

'#(

&"
'$(&#

'$(&$
'$(&%

'$(

Factorization order: 4 ! 3 ! 1 ! 2

)*)'+(

)*)'+(

)*)'#()*)'#(

)*)'#()*)'+(

!% !%

!% !%

Figure 2.6: Illustration of the permutation language modeling objective for predicting x3 given
the same input sequence x but with different factorization orders.

Borrowing ideas from orderless NADE [164], we propose the permutation language modeling
objective that not only retains the benefits of AR models but also allows models to capture
bidirectional contexts. Specifically, for a sequence x of length T , there are T ! different orders to
perform a valid autoregressive factorization. Intuitively, if model parameters are shared across all
factorization orders, in expectation, the model will learn to gather information from all positions
on both sides.

To formalize the idea, let ZT be the set of all possible permutations of the length-T index
sequence [1, 2, . . . , T]. We use zt and z<t to denote the t-th element and the first t− 1 elements
of a permutation z ∈ ZT . Then, our proposed permutation language modeling objective can be
expressed as follows:

max
θ

Ez∼ZT

[
T∑
t=1

log pθ(xzt | xz<t)

]
. (2.3)

Essentially, for a text sequence x, we sample a factorization order z at a time and decompose the
likelihood pθ(x) according to factorization order. Since the same model parameter θ is shared

33

across all factorization orders during training, in expectation, xt has seen every possible element
xi �= xt in the sequence, hence being able to capture the bidirectional context. Moreover, as this
objective fits into the AR framework, it naturally avoids the independence assumption and the
pretrain-finetune discrepancy discussed in Section 2.2.2.

Remark on Permutation The proposed objective only permutes the factorization order, not
the sequence order. In other words, we keep the original sequence order, use the positional encod-
ings corresponding to the original sequence, and rely on a proper attention mask in Transformers
to achieve permutation of the factorization order. Note that this choice is necessary, since the
model will only encounter text sequences with the natural order during finetuning.

To provide an overall picture, we show an example of predicting the token x3 given the same
input sequence x but under different factorization orders in Figure 2.6.

Architecture: Two-Stream Self-Attention for Target-Aware Representations

Sample a factorization order:
3 ! 2 ! 4 ! 1

Attention Masks

!"#$% & !"#'% & !"#(% & !"#)% &

*$
"$% +$

"$% *'
"$% +'

"$% *(
"$% +(

"$% *)
"$% +)

"$%

*$
"'% +$

"'% *'
"'% +'

"'% *(
"'% +(

"'% *)
"'% +)

"'%

Content stream:
can see self

Query stream:
cannot see self

#$ #' #(#)

Masked Two-stream Attention

Masked Two-stream Attention

(c)

*$
",% +$

",% *'
",% +'

",% *(
",% +(

",% *)
",% +)

",%

*$
"$% +$

"$%

Attention

- K, V

*$
"$% +$

"$%

Attention

- K, V

(b)

(a)

*$
",% +$

",% *'
",% +'

",% *(
",% +(

",% *)
",% +)

",%

Figure 2.7: (a): Content stream attention, which is the same as the standard self-attention. (b):
Query stream attention, which does not have access information about the content xzt . (c):
Overview of the permutation language modeling training with two-stream attention.

While the permutation language modeling objective has the desired properties, a naive im-
plementation with standard Transformer parameterization may not work. To see the problem,
assume we parameterize the next-token distribution pθ(Xzt | xz<t) using the standard Softmax

formulation, i.e., pθ(Xzt = x | xz<t) =
exp(e(x)�hθ(xz<t))∑
x′ exp(e(x′)�hθ(xz<t))

, where hθ(xz<t) denotes the hidden

representation of xz<t produced by the shared Transformer network after proper masking. Now
notice that the representation hθ(xz<t) does not depend on which position it will predict, i.e.,
the value of zt. Consequently, the same distribution is predicted regardless of the target posi-
tion, which is not able to learn useful representations. Specifically, let’s consider two different

34

DQ______

Q Q Q Q
oO oO oO oO

~

LJ

0 0 OD DD DD
~

D~ D D DD m LJDD DD

permutations z(1) and z(2) satisfying the following relationship

z
(1)
<t = z

(2)
<t = z<t but z

(1)
t = i 6= j = z

(2)
t .

Then, substituting the two permutations respectively into the naive parameterization, we have

pθ(Xi = x | xz<t)︸ ︷︷ ︸
z
(1)
t =i, z

(1)
<t=z<t

= pθ(Xj = x | xz<t)︸ ︷︷ ︸
z
(1)
t =j, z

(2)
<t=z<t

=
exp

(
e(x)>h(xz<t)

)∑
x′ exp (e(x′)>h(xz<t))

.

Effectively, two different target positions i and j share exactly the same model prediction. However,
the ground-truth distribution of two positions should certainly be different.

To avoid this problem, we propose to re-parameterize the next-token distribution to be target
position aware:

pθ(Xzt = x | xz<t) =
exp

(
e(x)>gθ(xz<t , zt)

)∑
x′ exp (e(x′)>gθ(xz<t , zt))

, (2.4)

where gθ(xz<t , zt) denotes a new type of representations which additionally take the target position
zt as input.

Two-Stream Self-Attention While the idea of target-aware representations removes the
ambiguity in target prediction, how to formulate gθ(xz<t , zt) remains a non-trivial problem.
Among other possibilities, we propose to “stand” at the target position zt and rely on the position
zt to gather information from the context xz<t through attention. For this parameterization to
work, there are two requirements that are contradictory in a standard Transformer architecture:
1. to predict the token xzt , gθ(xz<t , zt) should only use the position zt and not the content xzt ,

otherwise the objective becomes trivial;
2. to predict the other tokens xzj with j > t, gθ(xz<t , zt) should also encode the content xzt to

provide full contextual information.
To resolve such a contradiction, we propose to use two sets of hidden representations instead

of one:
• The content representation hθ(xz≤t), or abbreviated as hzt , which serves a similar role to the

standard hidden states in Transformer. This representation encodes both the context and xzt
itself.

• The query representation gθ(xz<t , zt), or abbreviated as gzt , which only has access to the
contextual information xz<t and the position zt, but not the content xzt , as discussed above.

Computationally, the first layer query stream is initialized with a trainable vector, i.e. g(0)i = w,
while the content stream is set to the corresponding word embedding, i.e. h(0)i = e(xi). For each
self-attention layer m = 1, . . . ,M , the two streams of representations are schematically1 updated
with a shared set of parameters as follows (illustrated in Figures 2.7 (a) and (b)):

g(m)
zt ← Attention(Q = g(m−1)zt ,KV = h(m−1)

z<t ; θ), (query stream: use zt but cannot see xzt)

h(m)
zt ← Attention(Q = h(m−1)zt ,KV = h(m−1)

z≤t
; θ), (content stream: use both zt and xzt).

1To avoid clutter, we omit the implementation details including multi-head attention, residual connection, layer
normalization and position-wise feed-forward as used in Transformer(-XL).

35

where Q, K, V denote the query, key, and value in an attention operation [166]. The update rule of
the content representations is exactly the same as the standard self-attention, so during finetuning,
we can simply drop the query stream and use the content stream as a normal Transformer(-XL).
Finally, we can use the last-layer query representation g(M)

zt to compute Eq. (2.4).
Partial Prediction While the permutation language modeling objective equation 2.3 has

several benefits, it is a much more challenging optimization problem due to the permutation and
causes slow convergence in preliminary experiments. To reduce the optimization difficulty, we
choose to only predict the last tokens in a factorization order. Formally, we split z into a non-target
subsequence z≤c and a target subsequence z>c, where c is the cutting point. The objective is to
maximize the log-likelihood of the target subsequence conditioned on the non-target subsequence,
i.e.,

max
θ

Ez∼ZT

[
log pθ(xz>c | xz≤c)

]
= Ez∼ZT

 |z|∑
t=c+1

log pθ(xzt | xz<t)

. (2.5)

Note that z>c is chosen as the target because it possesses the longest context in the sequence given
the current factorization order z. A hyperparameter K is used such that about 1/K tokens are
selected for predictions; i.e., |z| /(|z|−c) ≈ K. For unselected tokens, their query representations
need not be computed, which saves speed and memory.

Incorporating Ideas from Transformer-XL

Since our objective function fits in the AR framework, we incorporate the state-of-the-art AR
language model, Transformer-XL [31], into our pretraining framework, and name our method
after it. We integrate two important techniques in Transformer-XL, namely the relative positional
encoding scheme and the segment recurrence mechanism. We apply relative positional encodings
based on the original sequence as discussed earlier, which is straightforward. Now we discuss
how to integrate the recurrence mechanism into the proposed permutation setting and enable the
model to reuse hidden states from previous segments. Without loss of generality, suppose we
have two segments taken from a long sequence s; i.e., x̃ = s1:T and x = sT+1:2T . Let z̃ and z be
permutations of [1 · · ·T] and [T + 1 · · · 2T] respectively. Then, based on the permutation z̃, we
process the first segment, and then cache the obtained content representations h̃(m) for each layer
m. Then, for the next segment x, the attention update with memory can be written as

h(m)
zt ← Attention(Q = h(m−1)zt ,KV =

[
h̃(m−1),h(m−1)

z≤t

]
; θ)

where [., .] denotes concatenation along the sequence dimension. Notice that positional encodings
only depend on the actual positions in the original sequence. Thus, the above attention update
is independent of z̃ once the representations h̃(m) are obtained. This allows caching and reusing
the memory without knowing the factorization order of the previous segment. In expectation, the
model learns to utilize the memory over all factorization orders of the last segment. The query
stream can be computed in the same way. Finally, Figure 2.7 (c) presents an overview of the
proposed permutation language modeling with two-stream attention.

Bidirectional Input Pipeline. Because Transformer-XL relies on reusing the hidden states
from the previous batch as memory, our approach has to enforce an order between batches. The

36

order can be either forward or backward, where each batch is the next or previous token sequence
of the last batch. Our implementation allocates half of the batch size for each order. Note that
autoencoding approaches like BERT do not have an order between batches, so the batches can be
loaded uniformly random without dependency.

Visualizing Memory and Permutation

In this section, we provide a detailed visualization of the proposed permutation language modeling
objective, including the mechanism of reusing memory (aka the recurrence mechanism), how we
use attention masks to permute the factorization order, and the difference of the two attention
streams. As shown in Figure 2.8 and 2.9, given the current position zt, the attention mask is
decided by the permutation (or factorization order) z such that only tokens the occur before zt
in the permutation can be attended; i.e., positions zi with i < t. Moreover, comparing Figure
2.8 and 2.9, we can see how the query stream and the content stream work differently with a
specific permutation through attention masks. The main difference is that the query stream cannot
do self-attention and does not have access to the token at the position, while the content stream
performs normal self-attention.

Modeling Multiple Segments

Many downstream tasks have multiple input segments, e.g., a question and a context paragraph in
question answering. We now discuss how we pretrain XLNet to model multiple segments in the
autoregressive framework. During the pretraining phase, following BERT, we randomly sample
two segments (either from the same context or not) and treat the concatenation of two segments as
one sequence to perform permutation language modeling. We only reuse the memory that belongs
to the same context. Specifically, the input to our model is similar to BERT: [A, SEP, B, SEP,
CLS], where “SEP” and “CLS” are two special symbols and “A” and “B” are the two segments.
Although we follow the two-segment data format, XLNet-Large does not use the objective of next
sentence prediction [34] as it does not show consistent improvement in our ablation study (see
Section 2.2.3).

Relative Segment Encodings Architecturally, different from BERT that adds an absolute
segment embedding to the word embedding at each position, we extend the idea of relative
encodings from Transformer-XL to also encode the segments. Given a pair of positions i and j
in the sequence, if i and j are from the same segment, we use a segment encoding sij = s+ or
otherwise sij = s−, where s+ and s− are learnable model parameters for each attention head. In
other words, we only consider whether the two positions are within the same segment, as opposed
to considering which specific segments they are from. This is consistent with the core idea of
relative encodings; i.e., only modeling the relationships between positions. When i attends to
j, the segment encoding sij is used to compute an attention weight aij = (qi + b)>sij , where
qi is the query vector as in a standard attention operation and b is a learnable head-specific bias
vector. Finally, the value aij is added to the normal attention weight. There are two benefits
of using relative segment encodings. First, the inductive bias of relative encodings improves
generalization [31]. Second, it opens the possibility of finetuning on tasks that have more than

37

Position-3 View Position-2 View

!! ! !

"#
$%&"%

$%& "'
$%&

"#
$'&"%

$'& "'
$'&

"(
$%&

"(
$'&

)*)$+&

)*)$%&

,#,% ,' ,(

-#
$%&-%

$%& -'
$%& -(

$%&

-#
$'&-%

$'& -'
$'& -(

$'&

!! ! !

"#
$%&-%

$%& "'
$%&

"#
$'&"%

$'& "'
$'&

"(
$%&

"(
$'&

)*)$+&

)*)$%&

,#,% ,' ,(

-#
$%&-%

$%& -'
$%& -(

$%&

-#
$'&-%

$'& -'
$'& -(

$'&

!! ! !

"#
$%&"%

$%& "'
$%&

"#
$'&"%

$'& "'
$'&

"(
$%&

"(
$'&

)*)$+&

)*)$%&

,#,% ,' ,(

-#
$%&-%

$%& -'
$%& -(

$%&

-#
$'&-%

$'& -'
$'& -(

$'&

Position-4 View

!! ! !

"#
$%&"%

$%& "'
$%&

"#
$'&"%

$'& "'
$'&

"(
$%&

"(
$'&

)*)$+&

)*)$%&

,#,% ,' ,(

-#
$%&-%

$%& -'
$%& -(

$%&

-#
$'&-%

$'& -'
$'& -(

$'&

Position-1 View

Split View of the Content Stream
(Factorization order: 3 ! 2 ! 4 ! 1)

Joint View of the Content Stream
(Factorization order: 3 ! 2 ! 4 ! 1)

!! ! !)*)$+& ,#,% ,' ,(

"#
$%&"%

$%& "'
$%& "(

$%&)*)$%& -#
$%&-%

$%& -'
$%& -(

$%&

"#
$'&"%

$'& "'
$'& "(

$'& -#
$'&-%

$'& -'
$'& -(

$'&

Split View

Figure 2.8: A detailed illustration of the content stream of the proposed objective with both the
joint view and split views based on a length-4 sequence under the factorization order [3, 2, 4, 1].
Note that if we ignore the query representation, the computation in this figure is simply the
standard self-attention, though with a particular attention mask.

38

!! ! !

"#
$%&"%

$%& "'
$%&

"#
$'&"%

$'& "'
$'&

"(
$%&

"(
$'&

)*)$+&

)*)$%&

,#,% ,' ,(

-#
$%&-%

$%& -'
$%& -(

$%&

-#
$'&-%

$'& -'
$'& -(

$'&

!! ! !

"#
$%&-%

$%& "'
$%&

"#
$'&"%

$'& "'
$'&

"(
$%&

"(
$'&

)*)$+&

)*)$%&

,#,% ,' ,(

-#
$%&-%

$%& -'
$%& -(

$%&

-#
$'&-%

$'& -'
$'& -(

$'&

!! ! !

"#
$%&"%

$%& "'
$%&

"#
$'&"%

$'& "'
$'&

"(
$%&

"(
$'&

)*)$+&

)*)$%&

,#,% ,' ,(

-#
$%&-%

$%& -'
$%& -(

$%&

-#
$'&-%

$'& -'
$'& -(

$'&

!! ! !

"#
$%&"%

$%& "'
$%&

"#
$'&"%

$'& "'
$'&

"(
$%&

"(
$'&

)*)$+&

)*)$%&

,#,% ,' ,(

-#
$%&-%

$%& -'
$%& -(

$%&

-#
$'&-%

$'& -'
$'& -(

$'&

Position-3 View Position-2 View

Position-4 View Position-1 View

Split View of the Query Stream
(Factorization order: 3 ! 2 ! 4 ! 1)

Split View

!! ! !)*)$+& ,#,% ,' ,(

"#
$%&"%

$%& "'
$%& "(

$%&)*)$%& -#
$%&-%

$%& -'
$%& -(

$%&

"#
$'&"%

$'& "'
$'& "(

$'& -#
$'&-%

$'& -'
$'& -(

$'&

Joint View of the Query Stream
(Factorization order: 3 ! 2 ! 4 ! 1)

Figure 2.9: A detailed illustration of the query stream of the proposed objective with both the
joint view and split views based on a length-4 sequence under the factorization order [3, 2, 4, 1].
The dash arrows indicate that the query stream cannot access the token (content) at the same
position, but only the location information.

39

-----=====~:
....,-lilf - - 1111

I
I

:
I
I
I
I
I
I

•

I
I -- -· - ----

two input segments, which is not possible using absolute segment encodings.

Discussion and Analysis

Comparison with BERT Comparing Eq. (2.2) and (2.5), we observe that both BERT and
XLNet perform partial prediction, i.e., only predicting a subset of tokens in the sequence. This
is a necessary choice for BERT because if all tokens are masked, it is impossible to make any
meaningful predictions. In addition, for both BERT and XLNet, partial prediction plays a role
of reducing optimization difficulty by only predicting tokens with sufficient context. However,
the independence assumption discussed in Section 2.2.2 prevents BERT from modeling the
dependency between targets.

To better understand the difference, let’s consider a concrete example [New, York, is, a, city].
Suppose both BERT and XLNet select the two tokens [New, York] as the prediction targets and
maximize log p(New York | is a city). Also suppose that XLNet samples the factorization order
[is, a, city, New, York]. In this case, BERT and XLNet respectively reduce to the following
objectives:

JBERT = log p(New | is a city) + log p(York | is a city),

JXLNet = log p(New | is a city) + log p(York | New, is a city).

Notice that XLNet is able to capture the dependency between the pair (New, York), which is
omitted by BERT. Although in this example, BERT learns some dependency pairs such as (New,
city) and (York, city), it is obvious that XLNet always learns more dependency pairs given the
same target and contains “denser” effective training signals.

We now turn to a more general discussion with formal expressions. Inspired by previous
work [195], given a sequence x = [x1, · · · , xT], we define a set of target-context pairs of interest,
I = {(x,U)}, where U is a set of tokens in x that form a context of x. Intuitively, we want
the model to learn the dependency of x on U through a pretraining loss term log p(x | U). For
example, given the above sentence, the pairs of interest I could be instantiated as:

I =
{(
x = York,U = {New}

)
,
(
x = York,U = {city}

)
,
(
x = York,U = {New, city}

)
, · · ·

}
.

Note that I is merely a virtual notion without unique ground truth, and our analysis will hold
regardless of how I is instantiated.

Given a set of target tokens T and a set of non-target tokens N = x\T , BERT and XLNet
both maximize log p(T | N) but with different formulations:

JBERT =
∑
x∈T

log p(x | N); JXLNet =
∑
x∈T

log p(x | N ∪ T<x)

where T<x denote tokens in T that have a factorization order prior to x. Both objectives consist
of multiple loss terms in the form of log p(x | Vx). Intuitively, if there exists a target-context
pair (x,U) ∈ I such that U ⊆ Vx, then the loss term log p(x | Vx) provides a training signal to
the dependency between x and U . For convenience, we say a target-context pair (x,U) ∈ I is
covered by a model (objective) if U ⊆ Vx.

Given the definition, let’s consider two cases:

40

• If U ⊆ N , the dependency (x,U) is covered by both BERT and XLNet.
• If U ⊆ N ∪ T<x and U ∩ T<x 6= ∅, the dependency can only be covered by XLNet but not

BERT. As a result, XLNet is able to cover more dependencies than BERT. In other words, the
XLNet objective contains more effective training signals, which empirically leads to better
performance in Section 2.2.3.

Note that it might be possible to predict only one token for each input sequence with all the
other tokens as the context. In this case, a BERT objective does not suffer from the independence
assumption. However, this modified objective will lead to extremely low data efficiency as only
one training signal is provided, i.e., 85 times less training signals compared to XLNet because
XLNet predicts 85 tokens for each sequence of length 512. From this perspective, XLNet can be
viewed as achieving a trade-off between dependency modeling and data efficiency.

Comparison with Language Modeling Borrowing the above examples and notations, a
standard AR language model like GPT [126] is only able to cover the dependency (x = York,U =
{New}) but not (x = New,U = {York}). XLNet, on the other hand, is able to cover both in
expectation over all factorization orders. Such a limitation of AR language modeling can be
critical in real-world applications. For example, consider a span extraction question answering
task with the context “Thom Yorke is the singer of Radiohead” and the question “Who is the singer
of Radiohead”. The representations of “Thom Yorke” are not dependent on “Radiohead” with
AR language modeling and thus they will not be chosen as the answer by the standard approach
that employs softmax over all token representations. More formally, consider a context-target pair
(x,U):
• If U ∩ T<x 6= ∅, where T<x denotes the tokens prior to x in the original sequence, AR language

modeling is not able to cover the dependency.
• In comparison, XLNet is able to cover all dependencies in expectation.

Approaches like ELMo [122] concatenate forward and backward language models in a shallow
manner, which is not sufficient for modeling deep interactions between the two directions.

Bridging the Gap Between Language Modeling and Pretraining With a deep root in
density estimation2 [9, 115, 164], language modeling has been a rapidly-developing research area
[1, 4, 31]. However, there has been a gap between language modeling and pretraining due to
the lack of the capability of bidirectional context modeling, as analyzed above. It has even been
challenged by some machine learning practitioners whether language modeling is a meaningful
pursuit if it does not directly improve downstream tasks 3. XLNet generalizes language modeling
and bridges such a gap. As a result, it further “justifies” language modeling research. Moreover, it
becomes possible to leverage the rapid progress of language modeling research for pretraining.
As an example, we integrate Transformer-XL into XLNet to demonstrate the usefulness of the
latest language modeling progress.

Connection with the Generative Feature Learning Framework

XLNet instantiated the generative feature learning framework in Section 1.4 as follows:

2The problem of language modeling is essentially density estimation for text data.
3https://openreview.net/forum?id=HJePno0cYm

41

https://openreview.net/forum?id=HJePno0cYm

• The generative model G is a Transformer-XL model with the two-stream attention mecha-
nism.

• The generative loss function lg is defined as the permutation language modeling loss func-
tion, which optimizes the expectation of the negative log-likelihood w.r.t. all permutations
of the factorization order.

• The target loss function lt is defined as downstream task loss. There are in fact multiple
target loss functions as a pretrained model can be finetuned on multiple downstream tasks.

• The training paradigm is two-phase. First the model is pretrained on unlabeled data using lg
and finetuned on each downstream target task respectively using the target loss lt.

2.2.3 Experiments

Pretraining and Implementation

Following BERT [34], we use the BooksCorpus [206] and English Wikipedia as part of our
pretraining data, which have 13GB plain text combined. In addition, we include Giga5 (16GB
text) [118], ClueWeb 2012-B (extended from [15]), and Common Crawl [25] for pretraining.
We use heuristics to aggressively filter out short or low-quality articles for ClueWeb 2012-B
and Common Crawl, which results in 19GB and 78GB text respectively. After tokenization
with SentencePiece [82], we obtain 2.78B, 1.09B, 4.75B, 4.30B, and 19.97B subword pieces for
Wikipedia, BooksCorpus, Giga5, ClueWeb, and Common Crawl respectively, which are 32.89B
in total.

Our largest model XLNet-Large has the same architecture hyperparameters as BERT-Large,
which results in a similar model size. The sequence length and memory length are set to 512
and 384 respectively. We train XLNet-Large on 512 TPU v3 chips for 500K steps with an Adam
optimizer, linear learning rate decay and a batch size of 2048, which takes about 2.5 days. It was
observed that the model still underfits the data at the end of training but continuing training did
not help downstream tasks, which indicates that given the optimization algorithm, the model does
not have enough capacity to fully leverage the data scale. However, in this work, we refrain from
training a larger model as its practical usage for finetuning might be limited. Further, we train an
XLNet-Base, analogous to BERT-Base, on BooksCorpus and Wikipedia only, for ablation study
and fair comparison with BERT. Related results are presented in Section 2.2.3.

Since the recurrence mechanism is introduced, we use a bidirectional data input pipeline
where each of the forward and backward directions takes half of the batch size. For training
XLNet-Large, we set the partial prediction constant K as 6 (see Section 2.2.2). Our finetuning
procedure follows BERT [34] except otherwise specified. We employ an idea of span-based
prediction, where we first sample a length L ∈ [1, · · · , 5], and then randomly select a consecutive
span of L tokens as prediction targets within a context of (KL) tokens.

42

RACE Accuracy Middle High

GPT [126] 59.0 62.9 57.4
BERT [117] 72.0 76.6 70.1
BERT+OCN∗ [130] 73.5 78.4 71.5
BERT+DCMN∗ [199] 74.1 79.5 71.8

XLNet 81.75 85.45 80.21

Table 2.14: Comparison with state-of-the-art results on the test set of RACE, a reading comprehension
task. ∗ indicates using ensembles. “Middle” and “High” in RACE are two subsets representing middle and
high school difficulty levels. All BERT and XLNet results are obtained with a 24-layer architecture with
similar model sizes (aka BERT-Large). Our single model outperforms the best ensemble by 7.6 points in
accuracy.

SQuAD1.1 EM F1 SQuAD2.0 EM F1

Dev set results without data augmentation
BERT [34] 84.1 90.9 BERT† [34] 78.98 81.77
XLNet 88.95 94.52 XLNet 86.12 88.79

Test set results on leaderboard, with data augmentation (as of June 19, 2019)
Human [128] 82.30 91.22 BERT+N-Gram+Self-Training [34] 85.15 87.72
ATB 86.94 92.64 SG-Net 85.23 87.93
BERT∗ [34] 87.43 93.16 BERT+DAE+AoA 85.88 88.62
XLNet 89.90 95.08 XLNet 86.35 89.13

Table 2.15: A single model XLNet outperforms human and the best ensemble by 7.6 EM and 2.5 EM on
SQuAD1.1. ∗ means ensembles, † marks our runs with the official code.

RACE Dataset

The RACE dataset [83] contains near 100K questions taken from the English exams for middle
and high school Chinese students in the age range between 12 to 18, with the answers generated
by human experts. This is one of the most difficult reading comprehension datasets that involve
challenging reasoning questions. Moreover, the average length of the passages in RACE are
longer than 300, which is significantly longer than other popular reading comprehension datasets
such as SQuAD [129]. As a result, this dataset serves as a challenging benchmark for long text
understanding. We use a sequence length of 640 during finetuning. As shown in Table 2.14, a
single model XLNet outperforms the best ensemble by 7.6 points in accuracy. It is also clear that
XLNet substantially outperforms other pretrained models such as BERT and GPT. Since RACE
contains relatively long passages, we believe one of the reasons why XLNet obtains substantial
gains on this dataset is that the integration of the Transformer-XL architecture improves the
capability of modeling long text, besides the AR objective. More analysis on the sequence length
is presented in Section 2.2.3.

43

Model IMDB Yelp-2 Yelp-5 DBpedia AG Amazon-2 Amazon-5

CNN [69] - 2.90 32.39 0.84 6.57 3.79 36.24
DPCNN [69] - 2.64 30.58 0.88 6.87 3.32 34.81
Mixed VAT [108, 134] 4.32 - - 0.70 4.95 - -
ULMFiT [62] 4.6 2.16 29.98 0.80 5.01 - -
BERT [184] 4.51 1.89 29.32 0.64 - 2.63 34.17

XLNet 3.79 1.55 27.80 0.62 4.49 2.40 32.26

Table 2.16: Comparison with state-of-the-art error rates on the test sets of several text classification
datasets. All BERT and XLNet results are obtained with a 24-layer architecture with similar model sizes
(aka BERT-Large).

SQuAD Dataset

SQuAD is a large-scale reading comprehension dataset with two tasks. SQuAD1.1 [128] contains
questions that always have a corresponding answer in the given passages, while SQuAD2.0 [129]
introduces unanswerable questions. To finetune an XLNet on SQuAD2.0, we jointly apply a
logistic regression loss for answerability prediction similar to classification tasks and a standard
span extraction loss for question answering [34]. Since v1.1 and v2.0 share the same answerable
questions in the training set, we simply remove the answerability prediction part from the model
finetuned on v2.0 for evaluation on v1.1. As the top leaderboard entries all employ some form
of data augmentation, we jointly train an XLNet on SQuAD2.0 and NewsQA [160] for our
leaderboard submission. As shown in Table 2.15, XLNet obtains the state-of-the-art single model
results on the leaderboard, outperforming a series of BERT-based methods. Notably, on v1.1,
an XLNet single model outperforms human and the best ensemble by 7.6 and 2.5 points in
EM. Finally, for direct comparison with BERT to eliminate the effects of additional tricks in
leaderboard submissions, we compare XLNet against BERT on the dev set. XLNet substantially
outperforms BERT by 3.6 and 7.0 points in F1 for v1.1 and v2.0.

Text Classification

Following previous work on text classification [108, 200], we evaluate XLNet on the following
benchmarks: IMDB, Yelp-2, Yelp-5, DBpedia, AG, Amazon-2, and Amazon-5. According to
Table 2.16, XLNet achieves new state-of-the-art results on all the considered datasets, reducing
the error rate by 16%, 18%, 5%, 9% and 5% on IMDB, Yelp-2, Yelp-5, Amazon-2, and Amazon-5
respectively compared to BERT.

GLUE Dataset

The GLUE dataset [171] is a collection of 9 natural language understanding tasks. The test set
labels are removed from the publicly released version, and all the practitioners must submit their
predictions on the evaluation server to obtain test set results. In Table 2.17, we present results of
multiple settings, including single-task and multi-task, as well as single models and ensembles.

44

Model MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B WNLI

Single-task single models on dev
BERT [2] 86.6/- 92.3 91.3 70.4 93.2 88.0 60.6 90.0 -
XLNet 89.8/- 93.9 91.8 83.8 95.6 89.2 63.6 91.8 -

Single-task single models on test
BERT [34] 86.7/85.9 91.1 89.3 70.1 94.9 89.3 60.5 87.6 65.1

Multi-task ensembles on test (from leaderboard as of June 19, 2019)
Snorkel∗ [132] 87.6/87.2 93.9 89.9 80.9 96.2 91.5 63.8 90.1 65.1
ALICE∗ 88.2/87.9 95.7 90.7 83.5 95.2 92.6 68.6 91.1 80.8
MT-DNN∗ [95] 87.9/87.4 96.0 89.9 86.3 96.5 92.7 68.4 91.1 89.0
XLNet∗ 90.2/89.7† 98.6† 90.3† 86.3 96.8† 93.0 67.8 91.6 90.4

Table 2.17: Results on GLUE. ∗ indicates using ensembles, and † denotes single-task results in a multi-task
row. All results are based on a 24-layer architecture with similar model sizes (aka BERT-Large). See
the upper-most rows for direct comparison with BERT and the lower-most rows for comparison with
state-of-the-art results on the public leaderboard.

Model NDCG@20 ERR@20

DRMM [56] 24.3 13.8
KNRM [28] 26.9 14.9
Conv [28] 28.7 18.1
BERT† 30.53 18.67

XLNet 31.10 20.28

Table 2.18: Comparison with state-of-the-art results on the test set of ClueWeb09-B, a document ranking
task. † indicates our implementations.

In the multi-task setting, we jointly train an XLNet on the four largest datasets—MNLI, SST-2,
QNLI, and QQP—and finetune the network on the other datasets. Only single-task training is
employed for the four large datasets. For QNLI, we employed a pairwise relevance ranking
scheme as in [95] for our test set submission. However, for fair comparison with BERT, our
result on the QNLI dev set is based on a standard classification paradigm. For WNLI, we use the
loss described in [79]. A multi-task ensemble XLNet achieves the state-of-the-art results on 7
out of 9 tasks on the public leaderboard. On the most widely-benchmarked task MNLI, XLNet
improves the “matched” and “mismatched” settings by 2.0 and 1.8 points respectively. Note
that the leaderboard competitors employ improved techniques over BERT such as distillation,
modified multi-task losses, or meta learning, but still underperform XLNet which does not employ
additional tricks besides using a standard multi-task learning method. Since the leaderboard is
not intended for ablation study or hyperparameter tuning, we only evaluated our best multi-task
models on the test set. To obtain a direct comparison with BERT, we run a single-task XLNet
on the dev set. As shown in the upper-most rows of Table 2.17, XLNet consistently outperforms
BERT, with an improvement of 13.4 points, 3.2 points, 3.0 points, 2.4 points, 1.8 points on RTE,
MNLI, CoLA, SST-2, and STS-B respectively.

45

ClueWeb09-B Dataset

Following the setting in previous work [28], we use the ClueWeb09-B dataset to evaluate the
performance on document ranking. The queries were created by the TREC 2009-2012 Web
Tracks based on 50M documents and the task is to rerank the top 100 documents retrieved using a
standard retrieval method. Since document ranking, or ad-hoc retrieval, mainly concerns the low-
level representations instead of high-level semantics, this dataset serves as a testbed for evaluating
the quality of word embeddings. We use a pretrained XLNet to extract word embeddings for the
documents and queries without finetuning, and employ a kernel pooling network [187] to rank
the documents. According to Table 2.18, XLNet substantially outperforms the other methods,
including a BERT model that uses the same training procedure as ours. This illustrates that XLNet
learns better low-level word embeddings than BERT. Note that for fair comparison we exclude the
results (19.55 in ERR@20, slightly worse than ours) in [186] as it uses additional entity-related
data.

Ablation Study

We perform an ablation study to understand the importance of each design choice based on four
datasets with diverse characteristics. Specifically, there are three main aspects we hope to study:
• The effectiveness of the permutation language modeling objective, especially compared to the

denoising auto-encoding objective used by BERT.
• The importance of using Transformer-XL as the backbone neural architecture and employing

segment-level recurrence (i.e. using memory).
• The necessity of some implementation details including span-based prediction, the bidirectional

input pipeline, and next-sentence prediction.
With these purposes in mind, in Table 2.19, we compare 6 XLNet-Base variants with different
implementation details (rows 3 - 8), the original BERT-Base model (row 1), and an additional
Transformer-XL baseline trained with the denoising auto-encoding (DAE) objective used in BERT
but with the bidirectional input pipeline (row 2). For fair comparison, all models are based on a
12-layer architecture with the same model hyper-parameters as BERT-Base and are trained on
only Wikipedia and the BooksCorpus. All results reported are the median of 5 runs.

Examining rows 1 - 4 of Table 2.19, we see the two full XLNet-Base models trained with
different values of K significantly outperform both BERT and the DAE trained Transformer-XL
across tasks, showing the superiority of the permutation language modeling objective. Meanwhile,
it is also interesting to see that the DAE trained Transformer-XL achieves better performance
than BERT on tasks with long text such as RACE and SQuAD, suggesting the excellence of
Transformer-XL in language modeling also benefits pretraining. Next, if we remove the memory
caching mechanism (row 5), the performance clearly drops, especially for RACE which involves
the longest context among the 4 tasks. In addition, rows 6 - 7 show that both span-based prediction
and the bidirectional input pipeline play important roles in XLNet. Finally, we unexpectedly find
the the next-sentence prediction objective proposed in the original BERT does not necessarily lead
to an improvement in our setting. Instead, it tends to harm the performance except for the RACE
dataset. Hence, when we train XLNet-Large, we exclude the next-sentence prediction objective.

46

Model RACE SQuAD2.0 MNLI SST-2
F1 EM m/mm

1 BERT-Base 64.3 76.30 73.66 84.34/84.65 92.78
2 DAE + Transformer-XL 65.03 79.56 76.80 84.88/84.45 92.60
3 XLNet-Base (K = 7) 66.05 81.33 78.46 85.84/85.43 92.66
4 XLNet-Base (K = 6) 66.66 80.98 78.18 85.63/85.12 93.35
5 - memory 65.55 80.15 77.27 85.32/85.05 92.78
6 - span-based pred 65.95 80.61 77.91 85.49/85.02 93.12
7 - bidirectional data 66.34 80.65 77.87 85.31/84.99 92.66
8 + next-sent pred 66.76 79.83 76.94 85.32/85.09 92.89

Table 2.19: Ablation study. The results of BERT on RACE are taken from [199]. We run BERT on the
other datasets using the official implementation and the same hyperparameter search space as XLNet. K is
a hyperparameter to control the optimization difficulty (see Section 2.2.2). All models are pretrained on the
same data.

47

48

Chapter 3

Semi-Supervised Learning with Generative
Modeling

This chapter focuses on using generative modeling to improve downstream task performance
in a semi-supervised learning setting. Semi-supervised learning has been extensively studied
in literature [67, 202, 205]. A batch of novel models have been recently proposed for semi-
supervised learning based on representation learning techniques, such as generative models [75]
and ladder networks [131].

Despite the progress, the following questions remain:
• Can we understand GAN-based semi-supervised learning in a more fundamental way? How

does the classifier benefit from joint training with the generator?
• Can we apply generative modeling based approaches to semi-supervised tasks with more

complex data structures, such as classification on graphs and question answering?

We consider three scenarios: 1) semi-supervised classification by generating low-density
adversarial samples, 2) semi-supervised question answering by generating natural language
questions given context, and 3) semi-supervised learning on graphs by modeling the generation of
random walk.

3.1 Semi-Supervised Learning with GANs

This section introduces the work originally published at NeurIPS 2017 [30].

3.1.1 Motivation

Deep neural networks are usually trained on a large amount of labeled data, and it has been a
challenge to apply deep models to datasets with limited labels. Semi-supervised learning (SSL)
aims to leverage the large amount of unlabeled data to boost the model performance, particularly
focusing on the setting where the amount of available labeled data is limited. Traditional graph-
based methods [8, 205] were extended to deep neural networks [76, 178, 190], which involves

49

applying convolutional neural networks [88] and feature learning techniques to graphs so that the
underlying manifold structure can be exploited. [131] employs a Ladder network to minimize
the layerwise reconstruction loss in addition to the standard classification loss. Variational auto-
encoders have also been used for semi-supervised learning [75, 98] by maximizing the variational
lower bound of the unlabeled data log-likelihood.

Recently, generative adversarial networks (GANs) [47] were demonstrated to be able to
generate visually realistic images. GANs set up an adversarial game between a discriminator
and a generator. The goal of the discriminator is to tell whether a sample is drawn from true
data or generated by the generator, while the generator is optimized to generate samples that are
not distinguishable by the discriminator. Feature matching (FM) GANs [136] apply GANs to
semi-supervised learning on K-class classification. The objective of the generator is to match the
first-order feature statistics between the generator distribution and the true distribution. Instead of
binary classification, the discriminator employs a (K + 1)-class objective, where true samples are
classified into the first K classes and generated samples are classified into the (K + 1)-th class.
This (K + 1)-class discriminator objective leads to strong empirical results, and was later widely
used to evaluate the effectiveness of generative models [40, 163].

Though empirically feature matching improves semi-supervised classification performance,
the following questions still remain open. First, it is not clear why the formulation of the
discriminator can improve the performance when combined with a generator. Second, it seems
that good semi-supervised learning and a good generator cannot be obtained at the same time.
For example, [136] observed that mini-batch discrimination generates better images than feature
matching, but feature matching obtains a much better semi-supervised learning performance. The
same phenomenon was also observed in [163], where the model generated better images but failed
to improve the performance on semi-supervised learning.

In this work, we take a step towards addressing these questions. First, we show that given
the current (K + 1)-class discriminator formulation of GAN-based SSL, good semi-supervised
learning requires a “bad” generator. Here by bad we mean the generator distribution should not
match the true data distribution. Then, we give the definition of a preferred generator, which is to
generate complement samples in the feature space (see Section 3.1.3). Theoretically, under mild
assumptions, we show that a properly optimized discriminator obtains correct decision boundaries
in high-density areas in the feature space if the generator is a complement generator.

Based on our theoretical insights, we analyze why feature matching works on 2-dimensional
toy datasets. It turns out that our practical observations align well with our theory. However,
we also find that the feature matching objective has several drawbacks. Therefore, we develop
a novel formulation of the discriminator and generator objectives to address these drawbacks.
In our approach, the generator minimizes the KL divergence between the generator distribution
and a target distribution that assigns high densities for data points with low densities in the true
distribution, which corresponds to the idea of a complement generator. Furthermore, to enforce our
assumptions in the theoretical analysis, we add the conditional entropy term to the discriminator
objective.

50

3.1.2 Related Prior Work

Besides the adversarial feature matching approach [136], several previous works have incorporated
the idea of adversarial training in semi-supervised learning. Notably, [149] proposes categorical
generative adversarial networks (CatGAN), which substitutes the binary discriminator in standard
GAN with a multi-class classifier, and trains both the generator and the discriminator using
information theoretical criteria on unlabeled data. From the perspective of regularization, [109,
110] propose virtual adversarial training (VAT), which effectively smooths the output distribution
of the classifier by seeking virtually adversarial samples. It is worth noting that VAT bears a similar
merit to our approach, which is to learn from auxiliary non-realistic samples rather than realistic
data samples. Despite the similarity, the principles of VAT and our approach are orthogonal,
where VAT aims to enforce a smooth function while we aim to leverage a generator to better
detect the low-density boundaries. Different from aforementioned approaches, [193] proposes to
train conditional generators with adversarial training to obtain complete sample pairs, which can
be directly used as additional training cases. Recently, Triple GAN [90] also employs the idea of
conditional generator, but uses adversarial cost to match the two model-defined factorizations of
the joint distribution with the one defined by paired data.

Apart from adversarial training, there has been other efforts in semi-supervised learning
using deep generative models recently. As an early work, [75] adapts the original Variational
Auto-Encoder (VAE) to a semi-supervised learning setting by treating the classification label as
an additional latent variable in the directed generative model. [98] adds auxiliary variables to the
deep VAE structure to make variational distribution more expressive. With the boosted model
expressiveness, auxiliary deep generative models (ADGM) improve the semi-supervised learning
performance upon the semi-supervised VAE. Different from the explicit usage of deep generative
models, the Ladder networks [131] take advantage of the local (layerwise) denoising auto-encoding
criterion, and create a more informative unsupervised signal through lateral connection.

The idea of using samples to define the domain distribution has been explored in [177]. The
main difference is that we consider using generative models to generate complement samples
instead of using existing data.

3.1.3 Theoretical Analysis

Given a labeled set L = {(x, y)}, let {1, 2, · · · , K} be the label space for classification. LetD and
G denote the discriminator and generator, and PD and pG denote the corresponding distributions.
Consider the discriminator objective function of GAN-based semi-supervised learning [136]:

max
D

Ex,y∼L logPD(y|x, y ≤ K) + Ex∼p logPD(y ≤ K|x) + Ex∼pG logPD(K + 1|x), (3.1)

where p is the true data distribution. The probability distribution PD is over K + 1 classes where
the first K classes are true classes and the (K+1)-th class is the fake class. The objective function
consists of three terms. The first term is to maximize the log conditional probability for labeled
data, which is the standard cost as in supervised learning setting. The second term is to maximize
the log probability of the first K classes for unlabeled data. The third term is to maximize the
log probability of the (K + 1)-th class for generated data. Note that the above objective function

51

bears a similar merit to the original GAN formulation if we treat P (K + 1|x) to be the probability
of fake samples, while the only difference is that we split the probability of true samples into K
sub-classes.

Let h(x) be a nonlinear vector-valued function, and wk be the weight vector for class k. As a
standard setting in previous work [40, 136], the discriminator D is defined as

PD(k|x) =
exp(w>k h(x))∑K+1
k′=1 exp(w>k′h(x))

.

Since this is a form of over-parameterization, wK+1 is fixed as a zero vector [136]. We next
discuss the choices of different possible G’s.

Perfect Generator

Here, by perfect generator we mean that the generator distribution pG exactly matches the true
data distribution p, i.e., pG = p. We now show that when the generator is perfect, it does not
improve the generalization over the supervised learning setting.
Proposition 1. If pG = p, and D has infinite capacity, then for any optimal solution D = (w, h)
of the following supervised objective,

max
D

Ex,y∼L logPD(y|x, y ≤ K), (3.2)

there exists D∗ = (w∗, h∗) such that D∗ maximizes Eq. (3.1) and that for all x, PD(y|x, y ≤
K) = PD∗(y|x, y ≤ K).

Proof. Given an optimal solution D = (w, h) for the supervised objective, due to the infinite
capacity of the discriminator, there exists D∗ = (w∗, h∗) such that for all x and k ≤ K,

exp(w∗>k h∗(x)) =
exp(w>k h(x))∑
k′ exp(w>k′h(x))

(3.3)

For all x,

PD∗(y|x, y ≤ K) =
exp(w∗>k h∗(x))∑
k′ exp(w∗>k′ h

∗(x))
=

exp(w>k h(x))∑
k′ exp(w>k′h(x))

= PD(y|x, y ≤ K)

Let LD be the supervised objective in Eq. (3.1). Since p = pG, the objective in Eq. (3.1) can be
written as

JD = LD + Ex∼p [logPD(K + 1|x) + log(1− PD(K + 1|x))]

Given Eq. (3.3), we have

PD∗(K + 1|x) =
1

1 +
∑

k expw∗>k h∗(x)
=

1

2

Therefore, D∗ maximizes the second term of JD. Because D maximizes LD, D∗ also maximizes
LD. It follows that D∗ maximizes JD.

52

D

Proposition 1 states that for any optimal solution D of the supervised objective, there exists
an optimal solution D∗ of the (K + 1)-class objective such that D and D∗ share the same
generalization error. In other words, using the (K + 1)-class objective does not prevent the
model from experiencing any arbitrarily high generalization error that it could suffer from under
the supervised objective. Moreover, since all the optimal solutions are equivalent w.r.t. the
(K + 1)-class objective, it is the optimization algorithm that really decides which specific solution
the model will reach, and thus what generalization performance it will achieve. This implies that
when the generator is perfect, the (K + 1)-class objective by itself is not able to improve the
generalization performance. In fact, in many applications, an almost infinite amount of unlabeled
data is available, so learning a perfect generator for purely sampling purposes should not be useful.
In this case, our theory suggests that not only the generator does not help, but also unlabeled data
is not effectively utilized when the generator is perfect.

Complement Generator

The function h maps data points in the input space to the feature space. We use f = h(x) to
denote feature space data points, as opposed to x that denotes input space data points. Let pk(f)
be the density of the data points of class k in the feature space. Given a threshold εk, let Fk be
a subset of the data support where pk(f) > εk, i.e., Fk = {f : pk(f) > εk}. We assume that
given {εk}Kk=1, the Fk’s are disjoint with a margin. More formally, for any fj ∈ Fj , fk ∈ Fk,
and j 6= k, we assume that there exists a real number 0 < α < 1 such that αfj + (1 − α)fk /∈
Fj ∪ Fk. As long as the probability densities of different classes do not share any mode, i.e.,
∀i 6= j, argmaxfpi(f) ∩ argmaxfpj(f) = ∅, this assumption can always be satisfied by tuning
the thresholds εk’s. With the assumption held, we will show that the model performance would be
better if the thresholds could be set to smaller values (ideally zero). We also assume that each Fk
contains at least one labeled data point.

Suppose ∪Kk=1Fk is bounded by a convex set B. If the support FG of a generator G in the
feature space is a relative complement set in B, i.e., FG = B − ∪Kk=1Fk, we call G a complement
generator. The reason why we utilize a bounded B to define the complement is presented in
Section 3.1.3. Note that the definition of complement generator implies that G is a function of h.
By treating G as a function of h, theoretically D can optimize the original objective function in
Eq. (3.1).

Now we present the assumption on the convergence conditions of the discriminator. Let U
and G be the sets of unlabeled data and generated data.
Assumption 1. Convergence conditions. When D converges on a finite training set {L,U ,G},
D learns a (strongly) correct decision boundary for all training data points. More specifically,
• (A1) for any (x, y) ∈ L, we have w>y h(x) > w>k h(x) for any other class k 6= y;
• (A2) for any x ∈ G, we have 0 > maxKk=1w

>
k h(x);

• (A3) for any x ∈ U , we have maxKk=1w
>
k h(x) > 0.

In Assumption 1, conditions (A1) and (A2) assume classification correctness on labeled
data and true-fake correctness on generated data respectively, which is directly induced by the
objective function. Likewise, it is also reasonable to assume true-fake correctness on unlabeled

53

data, i.e., log
∑

k expw>k h(x) > 0 for x ∈ U . However, condition (A3) goes beyond this and
assumes maxk w

>
k h(x) > 0. We discuss this issue in detail in Section 3.1.3 and argue that

these assumptions are reasonable. Moreover, in Section 3.1.5, our approach addresses this issue
explicitly by adding a conditional entropy term to the discriminator objective to enforce condition
(A3).
Lemma 1. Suppose for all k, the L2-norms of weights wk are bounded by ‖wk‖2 ≤ C. Suppose
that there exists ε > 0 such that for any fG ∈ FG, there exists f ′G ∈ G such that ‖fG − f ′G‖2 ≤ ε.
With the conditions in Assumption 1, for all k ≤ K, we have w>k fG < Cε.

Proof. Let ∆f = fG − f ′G, then we have ‖∆f‖2 ≤ ε. Because w>k f
′
G < 0 by assumption, it

follows
w>k fG = w>k (f ′G + ∆f) = w>k f

′
G + w>k ∆f < w>k ∆f ≤ Cε

Corollary 1. When unlimited generated data samples are available, with the conditions in Lemma
1, we have lim|G|→∞w

>
k fG ≤ 0.

Proposition 2. Given the conditions in Corollary 1, for all class k ≤ K, for all feature space
points fk ∈ Fk, we have w>k fk > w>j fk for any j 6= k.

Proof. Without loss of generality, suppose j = arg maxj 6=k w
>
j fk. Now we prove it by contra-

diction. Suppose w>k fk ≤ w>j fk. Since Fk’s are disjoint with a margin, B is a convex set and
FG = B − ∪kFk, there exists 0 < α < 1 such that fG = αfk + (1− α)fj with fG ∈ FG and fj
being the feature of a labeled data point in Fj . By Corollary 1, it follows that w>j fG ≤ 0. Thus,
w>j fG = αw>j fk + (1 − α)w>j fj ≤ 0. By Assumption 1, w>j fk > 0 and w>j fj > 0, leading to
contradiction. It follows that w>k fk > w>j fk for any j 6= k.

Proposition 2 guarantees that when G is a complement generator, under mild assumptions,
a near-optimal D learns correct decision boundaries in each high-density subset Fk (defined by
εk) of the data support in the feature space. Intuitively, the generator generates complement
samples so the logits of the true classes are forced to be low in the complement. As a result, the
discriminator obtains class boundaries in low-density areas. This builds a connection between our
approach with manifold-based methods [8, 205] which also leverage the low-density boundary
assumption.

With our theoretical analysis, we can now answer the questions raised in Section 3.1.1. First,
the (K + 1)-class formulation is effective because the generated complement samples encourage
the discriminator to place the class boundaries in low-density areas (Proposition 2). Second, good
semi-supervised learning indeed requires a bad generator because a perfect generator is not able
to improve the generalization performance (Proposition 1).

On the Feature Space Bound Assumption

To obtain our theoretical results, we assume that ∪Kk=1Fk is bounded by a convex set B. And the
definition of complement generator requires that FG = B−∪Kk=1Fk. Now we justify the necessity
of the introduction of B.

54

D

D

The bounded B is introduced to ensure that Assumption 1 is realizable. We first show that for
Assumption 1 to hold, FG must be a convex set.

We define S = {f : maxKk=1w
>
k f < 0}.

Lemma 2. S is a convex set.

Proof. We prove it by contradiction. Suppose S is a non-convex set, then there exists f1, f2 ∈ S,
and 0 < α < 1, such that f = αf1 + (1− α)f2 6∈ S. For all k, we have w>k f1 < 0 and w>k f2 < 0,
and thus it follows

w>k f = αw>k f1 + (1− α)w>k f2 < 0

Therefore, maxKk=1w
>
k f < 0, and we have f ∈ S, leading to contradiction.

We conclude that S is a convex set.

If the feature space is unbounded and FG is defined as Rd − ∪Kk=1Fk, where d is the feature
space dimension, then by Assumption 1, we have S = FG. Since FG is the complement set of
∪Kk=1Fk and Fk’s are disjoint, FG is a non-convex set, if K ≥ 2. However, by Lemma 2, FG is
convex, leading to contradiction. We therefore define the complement generator using a bound B.

The Reasonableness of Assumption 1

Here, we justify the proposed Assumption 1.

Classification correctness on L. For (A1), it assumes the correctness of classification on
labeled data L. This only requires the transformation h(x) to have high enough capacity, such
that the limited amount of labeled data points are linearly separable in the feature space. Under
the setting of semi-supervised learning, where |L| is quite limited, this assumption is usually
reasonable.

True-Fake correctness on G. For (A2), it assumes that on generated data, the classifier can
correctly distinguish between true and generated data. This can be seen by noticing that w>K+1f =
0, and the assumption thus reduces to w>K+1h(x) > maxKk=1w

>
k h(x). For this part to hold, again

we essentially require a transformation h(x) with high enough capacity to distinguish true and
fake data, which is a standard assumption made in GAN literature.

Strong true-fake belief on U . Finally, (A3) of the assumption is a little bit trickier than the
other two.
• Firstly, note that (A3) is related to the true-fake correctness, because maxKk=1w

>
k h(x) >

0 = w>K+1h(x) is a sufficient (but not necessary) condition for x being classified as a
true data point. Instead, the actual necessary condition is that log

∑K
k=1 exp(w>k h(x)) ≥

w>K+1h(x) = 0. Thus, it means the condition (A3) might be violated.

55

D

• However, using the relationship log
∑K

k=1 exp(w>k h(x)) ≤ logK maxKk=1 exp(w>k h(x)), to
guarantee the necessary condition log

∑K
k=1 exp(w>k h(x)) ≥ 0, we must have

logK
K

max
k=1

exp(w>k h(x)) ≥ 0

=⇒ K
max
k=1

w>k h(x) ≥ log 1/K

Hence, if the condition (A3) is violated, it means

log 1/K ≤ K
max
k=1

w>k h(x) ≤ 0

Note that this is a very small interval for the logit w>k h(x), whose possible range expands the
entire real line (−∞,∞). Thus, the region where such violation happens should be limited
in size, making the assumption reasonable in practice. Moreover, even there exists a limited
violation region, as long as part (A1) and part (A2) in Assumption 1 hold, Proposition 2
always holds for regions inside U where maxKk=1w

>
k h(x) > 0. This can be viewed as a

further Corollary.

Figure 3.1: Percentage of the test samples that satisfy the assumption under our best model.

Empirically, we find that it is easy for the model to satisfy the correctness assumption on
labeled data perfectly. To verify the other two assumptions, we keep track of the percentage of
test samples that the two assumptions hold under our best models. More specifically, to verify the
true-fake correctness on G, we calculate the ratio after each epoch∑

x∼T I[maxKi=1w
>
i h(x) > 0]

|T |
,

where T denotes the test set and |T | is number of sample in it. Similarly, for the strong true-fake
belief on U , we generate the same number of samples as |T | and calculate∑

x∼pG I[maxiw
T
i h(x) < 0]

|T |

56

1.0 .-- ,- - , -
,,...,,,,---... _ - L_ -,- _r-....,,.. , _ _ "':.., , ..,.. ~ ,:_
rr· - ..,....- -- - ...,, - - - - -r- ----~

0.8

0.6

0.4

0.2

f\nl~Xu·; /(.c) > O . .c-. IJ) - svhn

ii,m~w[f(x) <U,x"' U) - SVl'ln

f1:TIJ:1""'! f{.r) ;, O •. r •-· 1-~ - c:ifilr

R:m~w!f(x) <O,x 0
, G) - cifar

0.0 L_ ___ L__ __ __JL___-===========::::::'J
o.c 0.2 0,4 0.6 0.8 1.0

Figure 3.2: Labeled and unlabeled data are denoted
by cross and point respectively, and different colors
indicate classes.

Figure 3.3: Left: Classification decision boundary,
where the white line indicates true-fake boundary;
Right: True-Fake decision boundary

Figure 3.4: Feature
space at convergence

Figure 3.5: Left: Blue points are generated data, and the black shadow
indicates unlabeled data. Middle and right can be interpreted as above.

The plot is presented in Fig. 3.1. As we can see, the two ratios are both above 0.9 for both SVHN
and CIFAR-10, which suggests our assumptions are reasonable in practice.

3.1.4 Case Study on Synthetic Data

In the previous section, we have established the fact a complement generator, instead of a perfect
generator, is what makes a good semi-supervised learning algorithm. Now, to get a more intuitive
understanding, we conduct a case study based on two 2D synthetic datasets, where we can easily
verify our theoretical analysis by visualizing the model behaviors. In addition, by analyzing how
feature matching (FM) [136] works in 2D space, we identify some potential problems of it, which
motivates our approach to be introduced in the next section. Specifically, two synthetic datasets
are four spins and two circles, as shown in Fig. 3.2.

Soundness of complement generator. Firstly, to verify that the complement generator is a
preferred choice, we construct the complement generator by uniformly sampling from the a
bounded 2D box that contains all unlabeled data, and removing those on the manifold. Based on
the complement generator, the result on four spins is visualized in Fig. 3.3. As expected, both
the classification and true-fake decision boundaries are almost perfect. More importantly, the
classification decision boundary always lies in the fake data area (left panel), which well matches
our theoretical analysis.

57

..

~ -)
-In

.... -'l -, --,_,, _,. -, "
,.

Visualization of feature space. Next, to verify our analysis about the feature space, we choose
the feature dimension to be 2, apply the FM to the simpler dataset of two circles, and visualize the
feature space in Fig. 3.4. As we can see, most of the generated features (blue points) resides in
between the features of two classes (green and orange crosses), although there exists some overlap.
As a result, the discriminator can almost perfectly distinguish between true and generated samples
as indicated by the black decision boundary, satisfying the our required Assumption 1. Meanwhile,
the model obtains a perfect classification boundary (blue line) as our analysis suggests.

Pros and cons of feature matching. Finally, to further understand the strength and weakness of
FM, we analyze the solution FM reaches on four spins shown in Fig. 3.5. From the left panel, we
can see many of the generated samples actually fall into the data manifold, while the rest scatters
around in the nearby surroundings of data manifold. It suggests that by matching the first-order
moment by SGD, FM is performing some kind of distribution matching, though in a rather weak
manner. Loosely speaking, FM has the effect of generating samples close to the manifold. But
due to its weak power in distribution matching, FM will inevitably generate samples outside of
the manifold, especially when the data complexity increases. Consequently, the generator density
pG is usually lower than the true data density p within the manifold and higher outside. Hence, an
optimal discriminator PD∗(K+ 1 | x) = p(x)/(p(x) +pG(x)) could still distinguish between true
and generated samples in many cases. However, there are two types of mistakes the discriminator
can still make.

1. Higher density mistake inside manifold: Since the FM generator still assigns a significant
amount of probability mass inside the support, wherever pG > p > 0, an optimal discriminator
will incorrectly predict samples in that region as “fake”. Actually, this problem has already
shown up when we examine the feature space (Fig. 3.4).

2. Collapsing with missing coverage outside manifold: As the feature matching objective for the
generator only requires matching the first-order statistics, there exists many trivial solutions the
generator can end up with. For example, it can simply collapse to mean of unlabeled features,
or a few surrounding modes as along as the feature mean matches. Actually, we do see such
collapsing phenomenon in high-dimensional experiments when FM is used (see Fig. 3.6a
and Fig. 3.6c) As a result, a collapsed generator will fail to cover some gap areas between
manifolds. Since the discriminator is only well-defined on the union of the data supports of p
and pG, the prediction result in such missing area is under-determined and fully relies on the
smoothness of the parametric model. In this case, significant mistakes can also occur.

3.1.5 Approach

As discussed in previous sections, feature matching GANs suffer from the following drawbacks:
1) the first-order moment matching objective does not prevent the generator from collapsing
(missing coverage); 2) feature matching can generate high-density samples inside manifold; 3)
the discriminator objective does not encourage realization of condition (A3) in Assumption 1 as
discussed in Section 3.1.3. Our approach aims to explicitly address the above drawbacks.

Following prior work [47, 136], we employ a GAN-like implicit generator. We first sample a

58

latent variable z from a uniform distribution U(0, 1) for each dimension, and then apply a deep
convolutional network to transform z to a sample x.

Generator Entropy

Fundamentally, the first drawback concerns the entropy of the distribution of generated features,
H(pG(f)). This connection is rather intuitive, as the collapsing issue is a clear sign of low
entropy. Therefore, to avoid collapsing and increase coverage, we consider explicitly increasing
the entropy.

Although the idea sounds simple and straightforward, there are two practical challenges.
Firstly, as implicit generative models, GANs only provide samples rather than an analytic density
form. As a result, we cannot evaluate the entropy exactly, which rules out the possibility of naive
optimization. More problematically, the entropy is defined in a high-dimensional feature space,
which is changing dynamically throughout the training process. Consequently, it is difficult to
estimate and optimize the generator entropy in the feature space in a stable and reliable way.
Faced with these difficulties, we consider two practical solutions.

The first method is inspired by the fact that input space is essentially static, where estimating
and optimizing the counterpart quantities would be much more feasible. Hence, we instead
increase the generator entropy in the input space, i.e.,H(pG(x)), using a technique derived from
an information theoretical perspective and relies on variational inference (VI). Specially, let Z
be the latent variable space, and X be the input space. We introduce an additional encoder,
q : X 7→ Z , to define a variational upper bound of the negative entropy [29], −H(pG(x)) ≤
−Ex,z∼pG log q(z|x) = LVI. Hence, minimizing the upper bound LVI effectively increases the
generator entropy. In our implementation, we formulate q as a diagonal Gaussian with bounded
variance, i.e. q(z|x) = N (µ(x), σ2(x)), with 0 < σ(x) < θ, where µ(·) and σ(·) are neural
networks, and θ is the threshold to prevent arbitrarily large variance.

Alternatively, the second method aims at increasing the generator entropy in the feature space
by optimizing an auxiliary objective. Concretely, we adapt the pull-away term (PT) [201] as the

auxiliary cost, LPT = 1
N(N−1)

∑N
i=1

∑
j 6=i

(
h(xi)

>h(xj)
‖h(xi)‖‖h(xj)‖

)2
, where N is the size of a mini-batch

and x are samples. Intuitively, the pull-away term tries to orthogonalize the features in each
mini-batch by minimizing the squared cosine similarity. Hence, it has the effect of increasing the
diversity of generated features and thus the generator entropy.

Generating Low-Density Samples

The second drawback of feature matching GANs is that high-density samples can be generated
in the feature space, which is not desirable according to our analysis. Similar to the argument
in Section 3.1.5, it is infeasible to directly minimize the density of generated features. Instead,
we enforce the generation of samples with low density in the input space. Specifically, given a
threshold ε, we minimize the following term as part of our objective:

Ex∼pG log p(x)I[p(x) > ε] (3.4)

59

where I[·] is an indicator function. Using a threshold ε, we ensure that only high-density samples
are penalized while low-density samples are unaffected. Intuitively, this objective pushes the
generated samples to “move” towards low-density regions defined by p(x). To model the prob-
ability distribution over images, we simply adapt the state-of-the-art density estimation model
for natural images, namely the PixelCNN++ [137] model. The PixelCNN++ model is used to
estimate the density p(x) in Eq. (3.4). The model is pretrained on the training set, and fixed
during semi-supervised training.

Generator Objective and Interpretation

Combining our solutions to the first two drawbacks of feature matching GANs, we have the
following objective function of the generator:

min
G

−H(pG) + Ex∼pG log p(x)I[p(x) > ε] + ‖Ex∼pGh(x)− Ex∼Uh(x)‖2. (3.5)

This objective is closely related to the idea of complement generator discussed in Section 3.1.3.
To see that, let’s first define a target complement distribution in the input space as follows

p∗(x) =

{
1
Z

1
p(x)

if p(x) > ε and x ∈ Bx
C if p(x) ≤ ε and x ∈ Bx,

where Z is a normalizer, C is a constant, and Bx is the set defined by mapping B from the feature
space to the input space. With the definition, the KL divergence (KLD) between pG(x) and p∗(x)
is

KL(pG‖p∗) = −H(pG)+Ex∼pG log p(x)I[p(x) > ε]+Ex∼pG
(
I[p(x) > ε] logZ−I[p(x) ≤ ε] logC

)
.

The form of the KLD immediately reveals the aforementioned connection. Firstly, the KLD shares
two exactly the same terms with the generator objective equation 3.5. Secondly, while p∗(x) is
only defined in Bx, there is not such a hard constraint on pG(x). However, the feature matching
term in Eq. equation 3.5 can be seen as softly enforcing this constraint by bringing generated
samples “close” to the true data (Cf. Section 3.1.4). Moreover, because the identity function I[·]
has zero gradient almost everywhere, the last term in KLD would not contribute any informative
gradient to the generator. In summary, optimizing our proposed objective equation 3.5 can be
understood as minimizing the KL divergence between the generator distribution and a desired
complement distribution, which connects our practical solution to our theoretical analysis.

Conditional Entropy

In order for the complement generator to work, according to condition (A3) in Assumption 1, the
discriminator needs to have strong true-fake belief on unlabeled data, i.e., maxKk=1w

>
k h(x) > 0.

However, the objective function of the discriminator in [136] does not enforce a dominant class.
Instead, it only needs

∑K
k=1 PD(k|x) > PD(K + 1|x) to obtain a correct decision boundary,

while the probabilities PD(k|x) for k ≤ K can possibly be uniformly distributed. To guarantee

60

the strong true-fake belief in the optimal conditions, we add a conditional entropy term to the
discriminator objective and it becomes,

max
D

Ex,y∼L log pD(y|x, y ≤ K) + Ex∼U log pD(y ≤ K|x)+

Ex∼pG log pD(K + 1|x) + Ex∼U
K∑
k=1

pD(k|x) log pD(k|x).
(3.6)

By optimizing Eq. (3.6), the discriminator is encouraged to satisfy condition (A3) in Assumption
1. Note that the same conditional entropy term has been used in other semi-supervised learning
methods [110, 149] as well, but here we motivate the minimization of conditional entropy based
on our theoretical analysis of GAN-based semi-supervised learning.

To train the networks, we alternatively update the generator and the discriminator to optimize
Eq. (3.5) and Eq. (3.6) based on mini-batches. If an encoder is used to maximize H(pG), the
encoder and the generator are updated at the same time.

Connection with the Generative Feature Learning Framework

Our approach substantiated the generative feature learning framework in Section 1.4 as follows:
• The generative model G is a GAN.
• The generative loss function lg is defined as in Eq. (3.5).
• The target loss function lt is defined as in Eq. (3.6).
• The two loss functions are jointly trained.

3.1.6 Experiments

We mainly consider three widely used benchmark datasets, namely MNIST, SVHN, and CIFAR-
10. As in previous work, we randomly sample 100, 1,000, and 4,000 labeled samples for MNIST,
SVHN, and CIFAR-10 respectively during training, and use the standard data split for testing. We
use the 10-quantile log probability to define the threshold ε in Eq. equation 3.5. We add instance
noise to the input of the discriminator [3, 146], and use spatial dropout [157] to obtain faster
convergence.

Main Results

We compare the the results of our best model with state-of-the-art methods on the benchmarks
in Table 3.1. Our proposed methods consistently improve the performance upon feature match-
ing. We achieve new state-of-the-art results on all the datasets when only small discriminator
architecture is considered. Our results are also state-of-the-art on MNIST and SVHN among all
single-model results, even when compared with methods using self-ensembling and large discrim-
inator architectures. Finally, note that because our method is actually orthogonal to VAT [110],
combining VAT with our presented approach should yield further performance improvement in
practice.

61

Methods MNIST (# errors) SVHN (% errors) CIFAR-10 (% errors)

CatGAN [149] 191 ± 10 - 19.58 ± 0.46
SDGM [98] 132 ± 7 16.61 ± 0.24 -
Ladder network [131] 106 ± 37 - 20.40 ± 0.47
ADGM [98] 96 ± 2 22.86 -
FM [136] ∗ 93 ± 6.5 8.11 ± 1.3 18.63 ± 2.32
ALI [39] - 7.42 ± 0.65 17.99 ± 1.62
VAT small [110] ∗ 136 6.83 14.87
Our best model ∗ 79.5 ± 9.8 4.25 ± 0.03 14.41 ± 0.30

Triple GAN [90] ∗‡ 91± 58 5.77 ± 0.17 16.99 ± 0.36
Π model [85] †‡ - 5.43 ± 0.25 16.55 ± 0.29
VAT+EntMin+Large [110]† - 4.28 13.15

Table 3.1: Comparison with state-of-the-art methods as of the time of our publication (i.e., May 2017) on
three benchmark datasets. Only methods without data augmentation are included. ∗ indicates using the
same (small) discriminator architecture, † indicates using a larger discriminator architecture, and ‡ means
self-ensembling.

(a) FM on SVHN (b) Ours on SVHN (c) FM on CIFAR (d) Ours on CIFAR

Figure 3.6: Comparing images generated by FM and our model. FM generates collapsed samples, while
our model generates diverse “bad” samples.

Ablation Study

We report the results of ablation study in Table 3.2. In the following, we analyze the effects of
several components in our model, subject to the intrinsic features of different datasets.

First, the generator entropy terms (VI and PT) (Section 3.1.5) improve the performance on
SVHN and CIFAR by up to 2.2 points in terms of error rate. Moreover, as shown in Fig 3.6, our
model significantly reduces the collapsing effects present in the samples generated by FM, which
also indicates that maximizing the generator entropy is beneficial. On MNIST, probably due to
its simplicity, no collapsing phenomenon was observed with vanilla FM training [136] or in our
setting. Under such circumstances, maximizing the generator entropy seems to be unnecessary,
and the estimation bias introduced by approximation techniques can even hurt the performance.

Second, the low-density (LD) term is useful when FM indeed generates samples in high-

62

Setting Error Setting Error

MNIST FM 85.0 ± 11.7 CIFAR FM 16.14
MNIST FM+VI 86.5 ± 10.6 CIFAR FM+VI 14.41
MNIST FM+LD 79.5 ± 9.8 CIFAR FM+VI+Ent 15.82
MNIST FM+LD+Ent 89.2 ± 10.5

Setting Error Setting Max log-p

SVHN FM 6.83 MNIST FM -297
SVHN FM+VI 5.29 MNIST FM+LD -659
SVHN FM+PT 4.63 SVHN FM+PT+Ent -5809
SVHN FM+PT+Ent 4.25 SVHN FM+PT+LD+Ent -5919
SVHN FM+PT+LD+Ent 4.19 SVHN 10-quant -5622

Setting ε as q-th centile q = 2 q = 10 q = 20 q = 100

Error on MNIST 77.7 ± 6.1 79.5 ± 9.8 80.1 ± 9.6 85.0 ± 11.7

Table 3.2: Ablation study. FM is feature matching. LD is the low-density enforcement term in Eq. (3.4).
VI and PT are two entropy maximization methods described in Section 3.1.5. Ent means the conditional
entropy term in Eq. (3.6). Max log-p is the maximum log probability of generated samples, evaluated by
a PixelCNN++ model. 10-quant shows the 10-quantile of true image log probability. Error means the
number of misclassified examples on MNIST, and error rate (%) on others.

density areas. MNIST is a typical example in this case. When trained with FM, most of the
generated hand written digits are highly realistic and have high log probabilities according to
the density model (Cf. max log-p in Table 3.2). Hence, when applied to MNIST, LD improves
the performance by a clear margin. By contrast, few of the generated SVHN images are realistic
(Cf. Fig. 3.6a). Quantitatively, SVHN samples are assigned very low log probabilities (Cf. Table
3.2). As expected, LD has a negligible effect on the performance for SVHN. Moreover, the “max
log-p” column in Table 3.2 shows that while LD can reduce the maximum log probability of the
generated MNIST samples by a large margin, it does not yield noticeable difference on SVHN.
This further justifies our analysis. Based on the above conclusion, we conjecture LD would not
help on CIFAR where sample quality is even lower. Thus, we did not train a density model on
CIFAR due to the limit of computational resources.

Third, adding the conditional entropy term has mixed effects on different datasets. While the
conditional entropy (Ent) is an important factor of achieving the best performance on SVHN,
it hurts the performance on MNIST and CIFAR. One possible explanation relates to the classic
exploitation-exploration tradeoff, where minimizing conditional entropy favors exploitation and
minimizing the classification loss favors exploration. During the initial phase of training, the
discriminator is relatively uncertain and thus the gradient of the conditional entropy term might
dominate. As a result, the discriminator learns to be more confident even on incorrect predictions,
and thus gets trapped in local minima.

Lastly, we vary the values of the hyper-parameter ε in Eq. (3.5). As shown at the bottom of
Table 3.2, reducing ε clearly leads to better performance, which further justifies our analysis in

63

Sections 3.1.4 and 3.1.3 that off-manifold samples are favorable.

Generated Samples

We compare the generated samples of FM and our approach in Fig. 3.6. The FM images in Fig.
3.6c are extracted from previous work [136]. While collapsing is widely observed in FM samples,
our model generates diverse “bad” images, which is consistent with our analysis.

3.1.7 Conclusions

Contributions

For the first time, we provided theoretical answers to the following open questions in GAN-based
semi-supervised learning:
• Why are good classification and good generation contradictory?
• How does the classifier benefit from joint training with the generator?

We showed that different from previous belief, we in fact need to generate complement data in
order to achieve better classification performance. Essentially, we built a connection between
GAN-based semi-supervised learning and the low-density separation principle.

Empirically, our approach substantially improves over vanilla feature matching GANs, and
obtains state-of-the-art results at the time of publication on MNIST, SVHN, and CIFAR-10 when
all methods are compared under the same discriminator architecture. Our results on MNIST
and SVHN also represent the state of the art at the time of publication amongst all single-model
results.

Subsequent Work

The idea of generating complement examples has inspired subsequent work on using generative
models in the settings of semi-supervised learning and few-shot learning [77, 89, 175, 198].
Subsequent work has also explored different ideas in the field of semi-supervised learning,
including using GANs to perform manifold regularization [87], using GANs to model local
manifold [124], cross-view training [22], exploiting the similarities between data points with
graph structures [97], GANs with a new Integral Probability Metric [111], deep co-training [125],
and unsupervised data augmentation [184]. The unsupervised data augmentation achieves the
current state-of-the-art results on SVHN and CIFAR-10, while it is possible that recent progress
can be combined to yield better performance.

3.2 Semi-Supervised QA by Generating Questions

This section introduces the work originally published at ACL 2017 [193].

64

3.2.1 Motivation

Recently, various neural network models were proposed and successfully applied to the tasks of
questions answering (QA) and/or reading comprehension [35, 185, 192]. While achieving state-of-
the-art performance, these models rely on a large amount of labeled data. However, it is extremely
difficult to collect large-scale question answering datasets. Historically, many of the question
answering datasets have only thousands of question answering pairs, such as WebQuestions
[11], MCTest [133], WikiQA [189], and TREC-QA [169]. Although larger question answering
datasets with hundreds of thousands of question-answer pairs have been collected, including
SQuAD [128], MSMARCO [113], and NewsQA [160], the data collection process is expensive
and time-consuming in practice. This hinders real-world applications for domain-specific question
answering.

Compared to obtaining labeled question answer pairs, it is trivial to obtain unlabeled text
data. In this work, we study the following problem of semi-supervised question answering: is
it possible to leverage unlabeled text to boost the performance of question answering models,
especially when only a small amount of labeled data is available? The problem is challenging
because conventional manifold-based semi-supervised learning algorithms [190, 204] cannot be
straightforwardly applied. Moreover, since the main foci of most question answering tasks are
extraction rather than generation, it is also not sensible to use unlabeled text to improve language
modeling as in machine translation [54].

To better leverage the unlabeled text, we propose a novel neural framework called Generative
Domain-Adaptive Nets (GDANs). The starting point of our framework is to use linguistic tags to
extract possible answer chunks in the unlabeled text, and then train a generative model to generate
questions given the answer chunks and their contexts. The model-generated question-answer
pairs and the human-generated question-answer pairs can then be combined to train a question
answering model, referred to as a discriminative model in the following text. However, there
is discrepancy between the model-generated data distribution and the human-generated data
distribution, which leads to suboptimal discriminative models. To address this issue, we further
propose two domain adaptation techniques that treat the model-generated data distribution as a
different domain. First, we use an additional domain tag to indicate whether a question-answer pair
is model-generated or human-generated. We condition the discriminative model on the domain
tags so that the discriminative model can learn to factor out domain-specific and domain-invariant
representations. Second, we employ a reinforcement learning algorithm to fine-tune the generative
model to minimize the loss of the discriminative model in an adversarial way.

In addition, we present a simple and effective baseline method for semi-supervised question
answering. Although the baseline method performs worse than our GDAN approach, it is
extremely easy to implement and can still lead to substantial improvement when only limited
labeled data is available.

3.2.2 Related Prior Work

Semi-Supervised Learning. Semi-supervised learning has been extensively studied in litera-
ture [203]. A batch of novel models have been recently proposed for semi-supervised learning

65

based on representation learning techniques, such as generative models [75], ladder networks
[131] and graph embeddings [190]. However, most of the semi-supervised learning methods
are based on combinations of the supervised loss p(y|x) and an unsupervised loss p(x). In the
context of reading comprehension, directly modeling the likelihood of a paragraph would not
possibly improve the supervised task of question answering. Moreover, traditional graph-based
semi-supervised learning [204] cannot be easily extended to modeling the unlabeled answer
chunks.

Domain Adaptation. Domain adaptation has been successfully applied to various tasks,
such as classification [43] and machine translation [19, 68]. Several techniques on domain
adaptation [45] focus on learning distribution invariant features by sharing the intermediate
representations for downstream tasks. Another line of research on domain adaptation attempt
to match the distance between different domain distributions in a low dimensional space [7, 96].
There are also methods seeking a domain transition from the source domain to the target domain
[46, 48, 116]. Our work gets inspiration from a practice in [68] and [19] based on appending
domain tags. However, our method is different from the above methods in that we apply domain
adaptation techniques to the outputs of a generative model rather than a natural data domain.

Question Answering. Various neural models based on attention mechanisms [18, 26, 35, 71,
140, 148, 161, 172, 176, 185] have been proposed to tackle the tasks of question answering and
reading comprehension. However, the performance of these neural models largely relies on a
large amount of labeled data available for training.

Learning with Multiple Models. GANs [47] formulated a adversarial game between a
discriminative model and a generative model for generating realistic images. Ganin and Lempitsky
[43] employed a similar idea to use two models for domain adaptation. Review networks [191]
employ a discriminative model as a regularizer for training a generative model. In the context of
machine translation, given a language pair, various recent work studied jointly training models to
learn the mappings in both directions [162, 183].

3.2.3 Problem Definition

Let us first introduce the problem of semi-supervised question answering.
Let L = {q(i), a(i), p(i)}Ni=1 denote a question answering dataset of N instances, where q(i),

a(i), and p(i) are the question, answer, and paragraph of the i-th instance respectively. The goal of
question answering is to produce the answer a(i) given the question q(i) along with the paragraph
p(i). We will drop the superscript ·(i) when the context is unambiguous. In our formulation,
following the setting in SQuAD [128], we specifically focus on extractive question answering,
where a is always a consecutive chunk of text in p. More formally, let p = (p1, p2, · · · , pT)
be a sequence of word tokens with T being the length, then a can always be represented as
a = (pj, pj+1, · · · , pk−1, pk), where j and k are the start and end token indices respectively. The
questions can also be represented as a sequence of word tokens q = (q1, q2, · · · , qT ′) with length
T ′.

In addition to the labeled dataset L, in the semi-supervised setting, we are also given a set of
unlabeled data, denoted as U = {a(i), p(i)}Mi=1, where M is the number of unlabeled instances.

66

Note that it is usually trivial to have access to an almost infinite number of paragraphs p from
sources such as Wikipedia articles and other web pages. And since the answer a is always a
consecutive chunk in p, we argue that it is also sensible to extract possible answer chunks from
the unlabeled text using linguistic tags. We will discuss the technical details of answer chunk
extraction in Section 3.2.5, and in the formulation of our framework, we assume that the answer
chunks a are available.

Given both the labeled data L and the unlabeled data U , the goal of semi-supervised question
answering is to learn a question answering model D that captures the probability distribution
P(a|p, q). We refer to this question answering model D as the discriminative model, in contrast to
the generative model that we will present in Section 3.2.4.

A Simple Baseline

We now present a simple baseline for semi-supervised question answering. Given a paragraph
p = (p1, p2, · · · , pT) and the answer a = (pj, pj+1, · · · , pk−1, pk), we extract

(pj−W , pj−W+1, · · · , pj−1, pk+1, pk+2, pk+W)

from the paragraph and treat it as the question. Here W is the window size and is set at 5 in our
experiments so that the lengths of the questions are similar to human-generated questions. The
context-based question-answer pairs on U are combined with human-generated pairs on L for
training the discriminative model. Intuitively, this method extracts the contexts around the answer
chunks to serve as hints for the question answering model. Surprisingly, this simple baseline
method leads to substantial improvements when labeled data is limited.

3.2.4 Approach

Though the simple method described in Section 3.2.3 can lead to substantial improvement, we aim
to design a learning-based model to move even further. In this section, we will describe the model
architecture and the training algorithms for the GDANs. We will use a notation in the context
of question answering following Section 3.2.3, but one should be able to extend the notion of
GDANs to other applications as well.

The GDAN framework consists of two models, a discriminative model and a generative model.
We will first discuss the two models in detail in the context of question answering, and then
present an algorithm based on reinforcement learning to combine the two models.

Discriminative Model

The discriminative model learns the conditional probability of an answer chunk given the para-
graph and the question, i.e., P(a|p, q). We employ a gated-attention (GA) reader [35] as our base
model in this work, but our framework does not make any assumptions about the base models
being used. The discriminative model is referred to as D.

67

The GA model consists of K layers with K being a hyper-parameter. Let Hk
p be the interme-

diate paragraph representation at layer k, and Hq be the question representation. The paragraph
representation Hk

p is a T ×dmatrix, and the question representation Hq is a T ′×dmatrix, where d
is the dimensionality of the representations. Given the paragraph p, we apply a bidirectional Gated
Recurrent Unit (GRU) network [20] on top of the embeddings of the sequence (p1, p2, · · · , pT),
and obtain the initial paragraph representation H0

p. Given the question q, we also apply another
bidirectional GRU to obtain the question representation Hq.

The question and paragraph representations are combined with the gated-attention (GA)
mechanism [35]. More specifically, for each paragraph token pi, we compute

αj =
exphTq,jh

k−1
p,i∑T ′

j′=1 exphTq,j′h
k−1
p,i

hkp,i =
T ′∑
j=1

αjhq,j � hk−1p,i

where hkp,i is the i-th row of Hk
p and hq,j is the j-th row of Hq.

Since the answer a is a sequence of consecutive word tokens in the paragraph p, we apply two
softmax layers on top of HK

p to predict the start and end indices of a, following Yang et al. [192].
Domain Adaptation with Tags
We will train our discriminative model on both model-generated question-answer pairs and

human-generated pairs. However, even a well-trained generative model will produce questions
somewhat different from human-generated ones. Learning from both human-generated data and
model-generated data can thus lead to a biased model. To alleviate this issue, we propose to view
the model-generated data distribution and the human-generated data distribution as two different
data domains and explicitly incorporate domain adaptation into the discriminative model.

More specifically, we use a domain tag as an additional input to the discriminative model.
We use the tag “d_true” to represent the domain of human-generated data (i.e., the true data),
and “d_gen” for the domain of model-generated data. Following a practice in domain adaptation
[19, 68], we append the domain tag to the end of both the questions and the paragraphs. By
introducing the domain tags, we expect the discriminative model to factor out domain-specific
and domain-invariant representations. At test time, the tag “d_true” is appended.

Generative Model

The generative model learns the conditional probability of generating a question given the
paragraph and the answer, i.e., P(q|p, a). We implement the generative model as a sequence-to-
sequence model [151] with a copy mechanism [53, 55].

The generative model consists of an encoder and a decoder. An encoder is a GRU that encodes
the input paragraph into a sequence of hidden states H. We inject the answer information by
appending an additional zero/one feature to the word embeddings of the paragraph tokens; i.e., if
a word token appears in the answer, the feature is set at one, otherwise zero.

68

Algorithm 1 Training Generative Domain-Adaptive Nets
Input: labeled data L, unlabeled data U , #iterations TG and TD
Initialize G by MLE training on L
Randomly initialize D
while not stopping do

for t← 1 to TD do
Update D to maximize J(L, d_true, D) + J(UG, d_gen, D) with SGD

end for
for t← 1 to TG do

Update G to maximize J(UG, d_true, D) with Reinforce and SGD
end for

end while
return model D

The decoder is another GRU with an attention mechanism over the encoder hidden states
H. At each time step, the generation probabilities over all word types are defined with a copy
mechanism:

poverall = gtpvocab + (1− gt)pcopy (3.7)

where gt is the probability of generating the token from the vocabulary, while (1 − gt) is the
probability of copying a token from the paragraph. The probability gt is computed based on the
current hidden state ht:

gt = σ(wT
g ht)

where σ denotes the logistic function and wg is a vector of model parameters. The generation
probabilities pvocab are defined as a softmax function over the word types in the vocabulary, and the
copying probabilities pcopy are defined as a softmax function over the word types in the paragraph.
Both pvocab and pcopy are defined as a function of the current hidden state ht and the attention
results [53].

Training Algorithm

We first define the objective function of the GDANs, and then present an algorithm to optimize
the given objective function. Similar to the Generative Adversarial Nets (GANs) [47] and
adversarial domain adaptation [43], the discriminative model and the generative model have
different objectives in our framework. However, rather than formulating the objective as an
adversarial game between the two models [43, 47], in our framework, the discriminative model
relies on the data generated by the generative model, while the generative model aims to match
the model-generated data distribution with the human-generated data distribution using the signals
from the discriminative model.

Given a labeled dataset L = {p(i), q(i), a(i)}Ni=1, the objective function of a discriminative
model D for a supervised learning setting can be written as

∑
p(i),q(i),a(i)∈L logPD(a(i)|p(i), q(i)),

where PD is a probability distribution defined by the model D. Since we also incorporate domain
tags into the model D, we denote the objective function as

69

(a) Training the discriminative
model on labeled data.

(b) Training the discriminative
model on unlabeled data.

(c) Training the generative
model on unlabeled data.

Figure 3.7: Model architecture and training. Red boxes denote the modules being updated. “d_true” and
“d_gen” are two domain tags. D is the discriminative model and G is the generative model. The objectives
for the three cases are all to minimize the cross entropy loss of the answer chunks.

J(L, tag, D) =
1

|L|
∑

p(i),q(i),a(i)∈L

logPD,tag(a(i)|p(i), q(i))

meaning that the domain tag, “tag”, is appended to the dataset L. We use |L| = N to denote the
number of the instances in the dataset L. The objective function is averaged over all instances
such that we can balance labeled and unlabeled data.

Let UG denote the dataset obtained by generating questions on the unlabeled dataset U with
the generative model G. The objective of the discriminative model is then to maximize J for
both labeled and unlabeled data under the domain adaptation notions, i.e., J(L, d_true, D) +
J(UG, d_gen, D).

Now we discuss the objective of the generative model. Similar to the dual learning [183]
framework, one can define an auto-encoder objective. In this case, the generative model aims
to generate questions that can be reconstructed by the discriminative model, i.e., maximizing
J(UG, d_gen, D). However, this objective function can lead to degenerate solutions because the
questions can be thought of as an overcomplete representation of the answers [168]. For example,
given p and a, the generative model might learn to generate trivial questions such as copying the
answers, which does not contributed to learning a better D.

Instead, we leverage the discriminative model to better match the model-generated data
distribution with the human-generated data distribution. We propose to define an adversarial
training objective J(UG, d_true, D). We append the tag “d_true” instead of “d_gen” for the
model-generated data to “fool” the discriminative model. Intuitively, the goal of G is to generate
"useful" questions where the usefulness is measured by the probability that the generated questions
can be answered correctly by D.

70

cross entropy cross entropy

i i
answer answer

cross entropy

i
answer

paragraph question d_gen paragraph question d_true

J+J
paragraph question d_true paragraph answer paragraph answer

The overall objective function now can be written as

max
D

J(L, d_true, D) + J(UG, d_gen, D) (3.8)

max
G

J(UG, d_true, D) (3.9)

With the above objective function in mind, we present a training algorithm in Algorithm 1
to train a GDAN. We first pretrain the generative model on the labeled data L with maximum
likelihood estimation (MLE):

max
G

N∑
i=1

T ′∑
t=1

logPG(q
(i)
t |q

(i)
<t, p

(i), a(i))

where PG is the probability defined by Eq. 3.7.
We then alternatively update D and G based on their objectives. To update D, we sample one

batch from the labeled data L and one batch from the unlabeled data UG, and combine the two
batches to perform a gradient update step. Since the output of G is discrete and non-differentiable,
we use the Reinforce algorithm [181] to update G. The action space is all possible questions with
length T ′ (possibly with padding) and the reward is the objective function J(UG, d_true, D). Let
θG be the parameters of G. The gradient can be written as

∂J(UG, d_true, D)

∂θG

= EPG(q|p,a)(logPD,d_true(a|p, q)− b)
∂ logPG(q|p, a)

∂θG

where we use an average reward from samples as the baseline b. We approximate the expectation
EPG(q|p,a) by sampling one instance at a time from PG(q|p, a) and then do an update step. This
training algorithm is referred to as reinforcement learning (RL) training in the following sections.
The overall architecture and training algorithm are illustrated in Figure 3.7.

MLE vs RL. The generator G has two training phases–MLE training and RL training, which
are different in that: 1) RL training does not require labels, soG can explore a broader data domain
of p using unlabeled data, while MLE training requires labels; 2) MLE maximizes logP (q|p, a),
while RL maximizes logPD(a|q, p). Since logP (q|a, p) is the sum of logP (q|p) and logP (a|q, p)
(plus a constant), maximizing logP (a|q, p) does not require modeling logP (q|p) that is irrelevant
to QA, which makes optimization easier. Moreover, maximizing logP (a|q, p) is consistent with
the goal of QA.

Connection to the Generative Feature Learning Framework

Our approach substantiated the generative feature learning framework in Section 1.4 as follows:
• The generative model G is an LSTM autoregressive language model.
• The generative loss function lg is defined in Eq. (3.9).
• The target loss function lt is defined in Eq. (3.8).
• The two loss functions are jointly trained.

71

3.2.5 Experiments

Answer Extraction

As discussed in Section 3.2.3, our model assumes that answers are available for unlabeled data.
In this section, we introduce how we use linguistic tags and rules to extract answer chunks from
unlabeled text.

To extract answers from massive unlabelled Wikipedia articles, we first sample 205,511
Wikipedia articles that are not used in the training, development and test sets in the SQuAD1.1
dataset. We extract the paragraphs from each article, and limit the length of each paragraph at the
word level to be less than 850. In total, we obtain 950,612 paragraphs from unlabelled articles.

Answers in the SQuAD dataset can be categorized into ten types, i.e., “Date”, “Other Numeric”,
“Person”, “Location”, “Other Entity”, “Common Noun Phrase”, “Adjective Phrase”, “Verb Phrase”,
“Clause” and “Other” [128]. For each paragraph from the unlabeled articles, we utilize Stanford
Part-Of-Speech (POS) tagger [158] to label each word with the corresponding POS tag, and
implement a simple constituency parser to extract the noun phrase, verb phrase, adjective and
clause based on a small set of constituency grammars. Next, we use Stanford Named Entity
Recognizer (NER) [41] to assign each word with one of the seven labels, i.e., “Date”, “Money”,
“Percent”, “Location”, “Organization” and “Time”. We then categorize a span of consecutive
words with the same NER tags of either “Money” or “Percent” as the answer of the type “Other
Numeric”. Similarly, we categorize a span of consecutive words with the same NER tags of
“Organization” as the answer of the type “Other Entity”. Finally, we subsample five answers from
all the extracted answers for each paragraph according to the percentage of answer types in the
SQuAD dataset. We obtain 4,753,060 answers in total, which is about 50 times larger than the
number of answers in the SQuAD dataset.

Settings and Comparison Methods

The original SQuAD dataset consists of 87,636 training instances and 10,600 development
instances. Since the test set is not published, we split 10% of the training set as the test set, and
the remaining 90% serves as the actual training set. Instances are split based on articles; i.e.,
paragraphs in one article always appear in only one set. We tune the hyper-parameters and perform
early stopping on the development set using the F1 scores, and the performance is evaluated on
the test set using both F1 scores and exact matching (EM) scores [128].

We compare the following methods. SL is the supervised learning setting where we train the
model D solely on the labeled data L. Context is the simple context-based method described
in Section 3.2.3. Context + domain is the “Context” method with domain tags as described in
Section 3.2.4. Gen is to train a generative model and use the generated questions as additional
training data. Gen + GAN refers to the domain adaptation method using GANs [43]; in contrast
to the original work, the generative model is updated using Reinforce. Gen + dual refers to the
dual learning method [183]. Gen + domain is “Gen” with domain tags, while the generative
model is trained with MLE and fixed. Gen + domain + adv is the approach we propose (Cf.
Figure 3.7 and Algorithm 1), with “adv” meaning adversarial training based on Reinforce. We

72

use our own implementation of “Gen + GAN” and “Gen + dual”, since the GAN model [43]
does not handle discrete features and the dual learning model [183] cannot be directly applied
to question answering. When implementing these two baselines, we adopt the learning schedule
introduced by Ganin and Lempitsky [43], i.e., gradually increasing the weights of the gradients
for the generative model G.

Results and Analysis

We study the performance of different models with varying labeling rates and unlabeled dataset
sizes. Labeling rates are the percentage of training instances that are used to train D. The results
are reported in Table 3.4. Though the unlabeled dataset we collect consists of around 5 million
instances, we also sample a subset of around 50,000 instances to evaluate the effects of the size of
unlabeled data. The highest labeling rate in Table 3.4 is 0.9 because 10% of the training instances
are used for testing. Since we do early stopping on the development set using the F1 scores, we
also report the development F1. We report two metrics, the F1 scores and the exact matching
(EM) scores [128], on the test set. All metrics are computed using the official evaluation scripts.

SL v.s. SSL. We observe that semi-supervised learning leads to consistent improvements over
supervised learning in all cases. Such improvements are substantial when labeled data is limited.
For example, the GDANs improve over supervised learning by 9.87 points in F1 and 7.26 points
in EM when the labeling rate is 0.1. With our semi-supervised learning approach, we can use only
0.1 training instances to obtain even better performance than a supervised learning approach with
0.2 training instances, saving more than half of the labeling costs.

Comparison with Baselines. By comparing “Gen + domain + adv” with “Gen + GAN” and
“Gen + Dual”, it is clear that the GDANs perform substantially better than GANs and dual learning.
With labeling rate 0.1, GDANs outperform dual learning and GANs by 2.47 and 4.29 points
respectively in terms of F1.

Ablation Study. We also perform an ablation study by examining the effects of “domain” and
“adv” when added to “gen”. It can be seen that both the domain tags and the adversarial training
contribute to the performance of the GDANs when the labeling rate is equal to or less than 0.5.
With labeling rate 0.9, adding domain tags still leads to better performance but adversarial training
does not seem to improve the performance by much.

Unlabeled Data Size. Moreover, we observe that the performance can be further improved
when a larger unlabeled dataset is used, though the gain is relatively less significant compared to
changing the model architecture. For example, increasing the unlabeled dataset size from 50K to
5M, the performance of GDANs increases by 0.38 points in F1 and 0.52 points in EM.

Context-Based Method. Surprisingly, the simple context-based method, though performing
worse than GDANs, still leads to substantial gains; e.g., 7.00 points in F1 with labeling rate 0.1.
Adding domain tags can improve the performance of the context-based method as well.

MLE vs RL. We plot the loss curve of−J(UG, d_gen, D) for both the MLE-trained generator
(“Gen + domain”) and the RL-trained generator (“Gen + domain + adv”) in Figure 3.8. We
observe that the training loss for D on RL-generated questions is lower than MLE-generated
questions, which confirms that RL training maximizes logP (a|p, q).

73

Figure 3.8: Comparison of discriminator training loss −J(UG, d_gen, D) on generated QA pairs. The
lower the better. MLE refers to questions generated by maximum likelihood training, and RL refers to
questions generated by reinforcement learning.

Samples of Generated Questions. We present some questions generated by our model in
Table 3.3. The generated questions are post-processed by removing repeated subs-sequences.
Compared to MLE-generated questions, RL-generated questions are more informative (Cf., P1,
P2, and P4), and contain less “UNK” (unknown) tokens (Cf., P1). Moreover, both semantically
and syntactically, RL-generated questions are more accurate (Cf., P3 and P5).

Limitations

Despite the improvement shown in Table 3.4, there are a couple of limitations of our study. First,
our approach was developed right after the release of the SQuAD dataset [128] based on an
early question answering architecture GA Reader [35]. As a result, the results we obtained using
semi-supervised learning are far behind the current state of the art based on pretrained models
(see Section 2.2). Second, our approach does not yield much improvement when all of the labeled
data is used. It will be interesting future work to investigate the gains based on using pretrained
models as the baselines, as well as using pretraining to improve the generator.

3.2.6 Conclusions

Contributions

Our work was the first to explore joint training of a neural question generator with a question
answering model to improve the performance of question answering. Moreover, we propose
the Generative Domain-Adaptive Nets that employ domain adaptation techniques on generative
models with reinforcement learning. In addition, we show that our framework leads to substantial
improvements over the GA supervised learning baseline by a large margin when limited labeled
data is available.

74

C ·a
·a
,=

12~--------------------
10

Fr-iLEl
~

0 o~-,~o~o~o -~.,~,~,-~6~,o~,-~a~,o~,~~,~,,~,~,~,~,~,,~,-,~.~o,~,~~16,..,ooo
Iterations

Subsequent Work

Subsequent work has built upon the idea of jointly training a question generation model and a
question answering model [147, 150, 153, 154, 197]. Different from the approaches based on
generative modeling, [36] proposed to create cloze-style questions based on unlabeled corpora
and used these questions to pretrain a question answering model.

75

Table 3.3: Sampled generated questions given the paragraphs and the answers. P means paragraphs,
A means answers, GQ means groundtruth questions, and Q means questions generated by our models.
MLE refers to maximum likelihood training, and RL refers to reinforcement learning so as to maximize
J(UG, d_true, D). We truncate the paragraphs to only show tokens around the answer spans with a window
size of 20.

P1: is mediated by ige , which triggers degranulation of mast cells and basophils when cross -
linked by antigen . type ii hypersensitivity occurs when antibodies bind to antigens on the patient ’
s own cells , marking them for destruction . this
A: type ii hypersensitivity
GQ: antibody - dependent hypersensitivity belongs to what class of hypersensitivity ?
Q (MLE): what was the UNK of the patient ’ s own cells ?
Q (RL): what occurs when antibodies bind to antigens on the patient ’ s own cells by antigen when
cross
P2: an additional warming of the earth ’ s surface . they calculate with confidence that co0 has
been responsible for over half the enhanced greenhouse effect . they predict that under a “ business
as usual " (bau) scenario ,
A: over half
GQ: how much of the greenhouse effect is due to carbon dioxide ?
Q (MLE): what is the enhanced greenhouse effect ?
Q (RL): what the enhanced greenhouse effect that co0 been responsible for
P3:) narrow gauge lines , which are the remnants of five formerly government - owned lines which
were built in mountainous areas .
A: mountainous areas
GQ: where were the narrow gauge rail lines built in victoria ?
Q (MLE): what is the government government government - owned lines built ?
Q (RL): what were the remnants of government - owned lines built in
P4: but not both). in 0000 , bankamericard was renamed and spun off into a separate company
known today as visa inc .
A: visa inc .
GQ: what present - day company did bankamericard turn into ?
Q (MLE): what was the separate company bankamericard ?
Q (RL): what today as bankamericard off into a separate company known today as spun off into a
separate company known today
P5: legrande writes that " the formulation of a single all - encompassing definition of the term is
extremely difficult , if
A: legrande
GQ: who wrote that it is difficult to produce an all inclusive definition of civil disobedience ?
Q (MLE): what is the term of a single all all all all encompassing definition of a single all
Q (RL): what writes " the formulation of a single all - encompassing definition of the term all
encompassing encompassing encompassing encompassing

76

Table 3.4: Performance with various labeling rates, unlabeled data sizes |U |, and methods. “Dev” denotes
the development set, and “test” denotes the test set. F1 and EM are two metrics.

Labeling rate |U | Method Dev F1 Test F1 Test EM

0.1 50K SL 0.4262 0.3815 0.2492
0.1 50K Context 0.5046 0.4515 0.2966
0.1 50K Context + domain 0.5139 0.4575 0.3036
0.1 50K Gen 0.5049 0.4553 0.3018
0.1 50K Gen + GAN 0.4897 0.4373 0.2885
0.1 50K Gen + dual 0.5036 0.4555 0.3005
0.1 50K Gen + domain 0.5234 0.4703 0.3145
0.1 50K Gen + domain + adv 0.5313 0.4802 0.3218
0.2 50K SL 0.5134 0.4674 0.3163
0.2 50K Context 0.5652 0.5132 0.3573
0.2 50K Context + domain 0.5672 0.5200 0.3581
0.2 50K Gen 0.5643 0.5159 0.3618
0.2 50K Gen + GAN 0.5525 0.5037 0.3470
0.2 50K Gen + dual 0.5720 0.5192 0.3612
0.2 50K Gen + domain 0.5749 0.5216 0.3658
0.2 50K Gen + domain + adv 0.5867 0.5394 0.3781
0.5 50K SL 0.6280 0.5722 0.4187
0.5 50K Context 0.6300 0.5740 0.4195
0.5 50K Context + domain 0.6307 0.5791 0.4237
0.5 50K Gen 0.6237 0.5717 0.4155
0.5 50K Gen + GAN 0.6110 0.5590 0.4044
0.5 50K Gen + dual 0.6368 0.5746 0.4163
0.5 50K Gen + domain 0.6378 0.5826 0.4261
0.5 50K Gen + domain + adv 0.6375 0.5831 0.4267
0.9 50K SL 0.6611 0.6070 0.4534
0.9 50K Context 0.6560 0.6028 0.4507
0.9 50K Context + domain 0.6553 0.6105 0.4557
0.9 50K Gen 0.6464 0.5970 0.4445
0.9 50K Gen + GAN 0.6396 0.5874 0.4317
0.9 50K Gen + dual 0.6511 0.5892 0.4340
0.9 50K Gen + domain 0.6611 0.6102 0.4573
0.9 50K Gen + domain + adv 0.6585 0.6043 0.4497
0.1 5M SL 0.4262 0.3815 0.2492
0.1 5M Context 0.5140 0.4641 0.3014
0.1 5M Context + domain 0.5166 0.4599 0.3083
0.1 5M Gen 0.5099 0.4619 0.3103
0.1 5M Gen + domain 0.5301 0.4703 0.3227
0.1 5M Gen + domain + adv 0.5442 0.4840 0.3270
0.9 5M SL 0.6611 0.6070 0.4534
0.9 5M Context 0.6605 0.6026 0.4473
0.9 5M Context + domain 0.6642 0.6066 0.4548
0.9 5M Gen 0.6647 0.6065 0.4600
0.9 5M Gen + domain 0.6726 0.6092 0.4599
0.9 5M Gen + domain + adv 0.6670 0.6102 0.4531

77

3.3 Semi-Supervised Learning on Graphs

In this section, we consider semi-supervised learning on graphs. We define a generative process to
generate the random walk paths on a graph, and this generative modeling objective is jointly trained
with the supervised learning objective for classification on graphs. This work was originally
published at ICML 2016 [190].

3.3.1 Motivation

A large number of semi-supervised learning algorithms jointly optimize two training objective
functions: the supervised loss over labeled data and the unsupervised loss over both labeled and
unlabeled data. Graph-based semi-supervised learning defines the loss function as a weighted
sum of the supervised loss over labeled instances and a graph Laplacian regularization term
[8, 178, 202, 205]. The graph Laplacian regularization is based on the assumption that nearby
nodes in a graph are likely to have the same labels. Graph Laplacian regularization is effective
because it constrains the labels to be consistent with the graph structure.

Recently developed unsupervised representation learning methods learn embeddings that
predict a distributional context, e.g. a word embedding might predict nearby context words
[107, 120], or a node embedding might predict nearby nodes in a graph [121, 155]. Embeddings
trained with distributional context can be used to boost the performance of related tasks. For
example, word embeddings trained from a language model can be applied to part-of-speech
tagging, chunking and named entity recognition [23, 194].

In this paper we consider not word embeddings but graph embeddings. Existing results show
that graph embeddings are effective at classifying the nodes in a graph, such as user behavior
prediction in a social network [121, 155]. However, the graph embeddings are usually learned
separately from the supervised task, and hence do not leverage the label information in a specific
task. Hence graph embeddings are in some sense complementary to graph Laplacian regularization
that does not produce useful features itself and might not be able to fully leverage the distributional
information encoded in the graph structure.

The main highlight of our work is to incorporate embedding techniques into the graph-based
semi-supervised learning setting. We propose a novel graph-based semi-supervised learning
framework, Planetoid (Predicting Labels And Neighbors with Embeddings Transductively Or
Inductively from Data).

3.3.2 Background and Related Prior Work

Graph-Based Semi-Supervised Learning

Let L and U be the number of labeled and unlabeled instances. Let x1:L and xL+1:L+U denote the
feature vectors of labeled and unlabeled instances respectively. The labels y1:L are also given.
Based on both labeled and unlabeled instances, the problem of semi-supervised learning is defined
as learning a classifier f : x → y. There are two learning paradigms, transductive learning

78

and inductive learning. Transductive learning [202, 205] only aims to apply the classifier f
on the unlabeled instances observed at training time, and the classifier does not generalize to
unobserved instances. For instance, transductive support vector machine (TSVM) [67] maximizes
the “unlabeled data margin” based on the low-density separation assumption that a good decision
hyperplane lies on a sparse area of the feature space. Inductive learning [8, 178], on the other
hand, aims to learn a parameterized classifier f that is generalizable to unobserved instances.

In addition to labeled and unlabeled instances, a graph, denoted as a (L + U) × (L + U)
matrix A, is also given to graph-based semi-supervised learning methods. Each entry aij indicates
the similarity between instance i and j, which can be either labeled or unlabeled. The graph
A can either be derived from distances between instances [205], or be explicitly derived from
external data, such as a knowledge graph [180] or a citation network between documents [65].
In this paper, we mainly focus on the setting that a graph is explicitly given and represents
additional information not present in the feature vectors (e.g., the graph edges correspond to
hyperlinks between documents, rather than distances between the bag-of-words representation of
a document).

Graph-based semi-supervised learning is based on the assumption that nearby nodes tend to
have the same labels. Generally, the loss function of graph-based semi-supervised learning in the
binary case can be written as

L∑
i=1

l(yi, f(xi)) + λ
∑
i,j

aij‖f(xi)− f(xj)‖2

=
L∑
i=1

l(yi, f(xi)) + λfT∆f (3.10)

In Eq. (3.10), the first term is the standard supervised loss function, where l(·, ·) can be log
loss, squared loss or hinge loss. The second term is the graph Laplacian regularization, which
incurs a large penalty when similar nodes with a large wij are predicted to have different labels
f(xi) 6= f(xj). The graph Laplacian matrix ∆ is defined as ∆ = A−D, where D is a diagonal
matrix with each entry defined as dii =

∑
j aij . λ is a constant weighting factor. (Note that we

omit the parameter regularization terms for simplicity.) Various graph-based semi-supervised
learning algorithms define the loss functions as variants of Eq. (3.10). Label propagation [205]
forces f to agree with labeled instances y1:L; f is a label lookup table for unlabeled instances
in the graph, and can be obtained with a closed-form solution. Learning with local and global
consistency [202] defines l as squared loss and f as a label lookup table; it does not force f to
agree with labeled instances. Modified Adsorption (MAD) [152] is a variant of label propagation
that allows prediction on labeled instances to vary and incorporates node uncertainty. Manifold
regularization [8] parameterizes f in the Reproducing Kernel Hilbert Space (RKHS) with l being
squared loss or hinge loss. Since f is a parameterized classifier, manifold regularization is
inductive and can naturally handle unobserved instances.

Semi-supervised embedding [178] extends the regularization term in Eq. (3.10) to be∑
i,j

aij‖g(xi)− g(xj)‖2,

79

where g represents embeddings of instances, which can be the output labels, hidden layers or
auxiliary embeddings in a neural network. By extending the regularization from f to g, this
method imposes stronger constraints on a neural network. Iterative classification algorithm (ICA)
[139] uses a local classifier that takes the labels of neighbor nodes as input, and employs an
iterative process between estimating the local classifier and assigning new labels.

Learning Embeddings

Extensive prior research has been done on learning graph embeddings. A probabilistic generative
model was proposed to learn node embeddings that generate the edges in a graph [145]. A
clustering method [58] was proposed to learn latent social states in a social network to predict
social ties.

More recently, a number of embedding learning methods are based on the Skipgram model,
which is a variant of the softmax model. Given an instance and its context, the objective of
Skipgram is usually formulated as minimizing the log loss of predicting the context using the
embedding of an instance as input features. Formally, let {(i, c)} be a set of pairs of instance i
and context c, the loss function can be written as

−
∑
(i,c)

log p(c|i) = −
∑
(i,c)

(
wT
c ei − log

∑
c′∈C

exp(wT
c′ei)

)
(3.11)

where C is the set of all possible context, w’s are parameters of the Skipgram model, and ei is
the embedding of instance i. Skipgram was first introduced to learn representations of words,
known as word2vec [107]. In word2vec, for each training pair (i, c), the instance i is the current
word whose embedding is under estimation; the context c is each of the surrounding words of
i within a fixed window size in a sentence; the context space C is the vocabulary of the corpus.
Skipgram was later extended to learn graph embeddings. Deepwalk [121] uses the embedding of
a node to predict the context in the graph, where the context is generated by random walk. More
specifically, for each training pair (i, c), the instance i is the current node whose embedding is
under estimation; the context c is each of the neighbor nodes within a fixed window size in a
generated random walk sequence; the context space C is all the nodes in the graph. LINE [155]
extends the model to have multiple context spaces C for modeling both first and second order
proximity.

Although Skipgram-like models for graphs have received much attention, many other models
exist. TransE [13] learns the embeddings of entities in a knowledge graph jointly with their
relations. Autoencoders were used to learn graph embeddings for clustering on graphs [156].

3.3.3 Approach

Following the notations in the previous section, the input to our method includes labeled instances
x1:L, y1:L, unlabeled instances xL+1:L+U and a graph denoted as a matrix A. Each instance i has
an embedding denoted as ei.

80

Figure 3.9: An example of sampling from context distribution p(i, c, γ) when γ = 1 and d = 2.
In circles, +1 denotes positive instances, −1 denotes negative instances, and ? denotes unlabeled
instances. If random < r2, we first sample a random walk 2 → 1 → 4 → 6, and then sample
two nodes in the random walk within distance d. If random ≥ r2, we sample two instances with
the same labels.

We formulate our framework based on feed-forward neural networks. Given the input feature
vector x, the k-th hidden layer of the network is denoted as hk, which is a nonlinear function of the
previous hidden layer hk−1 defined as: hk(x) = ReLU(Wkhk−1(x) + bk), where Wk and bk are
parameters of the k-th layer, and h0(x) = x. We adopt rectified linear unit ReLU(x) = max(0, x)
as the nonlinear function in this work.

The loss function of our framework can be expressed as

Ls + λLu,

where Ls is a supervised loss of predicting the labels, and Lu is an unsupervised loss of predicting
the graph context. In the following sections, we first formulate Lu by introducing how to sample
context from the graph, and then formulate Ls to form our semi-supervised learning framework.

Sampling Context

We formulate the unsupervised loss Lu as a variant of Eq. (3.11). Given a graph A, the basic idea
of our approach is to sample pairs of instance i and context c, and then formulate the loss Lu using
the log loss − log p(c|i) as in Eq. (3.11). We first present the formulation of Lu by introducing
negative sampling, and then discuss how to sample pairs of instance and context.

It is usually intractable to directly optimize Eq. (3.11) due to normalization over the whole
context space C. Negative sampling was introduced to address this issue [107], which samples
negative examples to approximate the normalization term. In our case, we are sampling (i, c, γ)
from a distribution, where i and c denote instance and context respectively, γ = +1 means (i, c)

81

Sampling based on graph
, ------- ,-...... -.... - .. -.............. -···· ··-

random< r2

(i = 1,c = 4,y = 1)

2 3 5 6
random~ r2

(i = 2,c = 3,y = 1)

Sampling based on labels

is a positive pair and γ = −1 means negative. Given (i, c, γ), we minimize the cross entropy loss
of classifying the pair (i, c) to a binary label γ:

−I(γ = 1) log σ(wT
c ei)− I(γ = −1) log σ(−wT

c ei),

where σ is the sigmoid function defined as σ(x) = 1/(1 + e−x), and I(·) is an indicator function
that outputs 1 when the argument is true, otherwise 0. Therefore, the unsupervised loss with
negative sampling can be written as

Lu = −E(i,c,γ) log σ(γwT
c ei) (3.12)

The distribution p(i, c, γ) is conditioned on labels y1:L and the graph A. However, since they are
the input to our algorithm and kept fixed, we drop the conditioning in our notation.

We now define the distribution p(i, c, γ) directly using a sampling process, which is illustrated
in Algorithm 2. There are two types of context that are sampled in this algorithm. The first type
of context is based on the graph A, which encodes the structure (distributional) information, and
the second type of context is based on the labels, which we use to inject label information into the
embeddings. We use a parameter r1 ∈ (0, 1) to control the ratio of positive and negative samples,
and use r2 ∈ (0, 1) to control the ratio of two types of context.

With probability r2, we sample the context based on the graph A. We first uniformly sample
a random walk sequence S. More specifically, we uniformly sample the first instance S1 from
the set 1 : L + U . Given the previous instance Sk−1 = i, the next instance Sk = j is sampled
with probability aij/

∑L+U
j′=1 aij′ . With probability r1, we sample a positive pair (i, c) from the

set {(Sj, Sk) : |j − k| < d}, where d is another parameter determining the window size. With
probability (1− r1), we uniformly corrupt the context c to sample a negative pair.

With probability (1− r2), we sample the context based on the class labels. Positive pairs have
the same labels and negative pairs have different labels. Only labeled instances 1 : L are sampled.

Our random walk based sampling method is built upon Deepwalk [121]. In contrast to their
method, our method handles real-valuedA, incorporates negative sampling, and explicitly samples
from labels with probability (1− r2) to inject supervised information.

An example of sampling when γ = 1 is shown in Figure 3.9.

Transductive Formulation

In this section, we present a method that infers the labels of unlabeled instances yL+1:L+U without
generalizing to unobserved instances. Transductive learning usually performs better than inductive
learning because transductive learning can leverage the unlabeled test data when training the
model [67].

We apply k layers on the input feature vector x to obtain hk(x), and l layers on the embedding
e to obtain hl(e), as illustrated in Figure 3.10a. The two hidden layers are concatenated, and fed
to a softmax layer to predict the class label of the instance. More specifically, the probability of
predicting the label y is written as:

p(y|x, e) =
exp[hk(x)T ,hl(e)T]wy∑
y′ exp[hk(x)T ,hl(e)T]wy′

, (3.13)

82

Algorithm 2 Sampling Context Distribution p(i, c, γ)

Input: graph A, labels y1:L, parameters r1, r2, q, d
Initialize triplet (i, c, γ)
if random < r1 then γ ← +1 else γ ← −1
if random < r2 then

Uniformly sample a random walk S of length q
Uniformly sample (Sj, Sk) with |j − k| < d
i← Sj , c← Sk
if γ = −1 then uniformly sample c from 1 : L+ U

else
if γ = +1 then

Uniformly sample (i, c) with yi = yc
else

Uniformly sample (i, c) with yi 6= yc
end if

end if
return (i, c, γ)

where [·, ·] denotes concatenation of two row vectors, the super script hT denotes the transpose of
vector h, and w represents the model parameter.

Combined with Eq. (3.12), the loss function of transductive learning is defined as:

− 1

L

L∑
i=1

log p(yi|xi, ei)− λE(i,c,γ) log σ(γwT
c ei),

where the first term is defined by Eq. (3.13), and λ is a constant weighting factor. The first term
is the loss function of class label prediction and the second term is the loss function of context
prediction. This formulation is transductive because the prediction of label y depends on the
embedding e, which can only be learned for instances observed in the graph A during training
time.

Inductive Formulation

While we consider transductive learning in the above formulation, in many cases, it is desirable
to learn a classifier that can generalize to unobserved instances, especially for large-scale tasks.
For example, machine reading systems [16] very frequently encounter novel entities on the Web
and it is not practical to train a semi-supervised learning system on the entire Web. However,
since learning graph embeddings is transductive in nature, it is not straightforward to do it in
an inductive setting. Perozzi et al. [121] addressed this issue by retraining the embeddings
incrementally, which is time consuming and does not scale (and not inductive essentially).

To make the method inductive, the prediction of label y should only depend on the input
feature vector x. Therefore, we define the embedding e as a parameterized function of feature

83

(a) Transductive Formulation (b) Inductive Formulation

Figure 3.10: Network architecture: transductive v.s. inductive. Each dotted arrow represents a feed-
forward network with an arbitrary number of layers (we use only one layer in our experiments).
Solid arrows denote direct connections.

x, as shown in Figure 3.11d. Similar to the transductive formulation, we apply k layers on the
input feature vector x to obtain hk(x). However, rather than using a “free” embedding, we apply
l1 layers on the input feature vector x and define it as the embedding e = hl1(x). Then another l2
layers are applied on the embedding hl2(e) = hl2(hl1(x)), denoted as hl(x) where l = l1 + l2.
The embedding e in this formulation can be viewed as a hidden layer that is a parameterized
function of the feature x.

With the above formulation, the label y only depends on the feature x. More specifically,

p(y|x) =
exp[hk(x)T ,hl(x)T]wy∑
y′ exp[hk(x)T ,hl(x)T]wy′

(3.14)

Replacing ei in Eq. (3.12) with hl1(xi), the loss function of inductive learning is

− 1

L

L∑
i=1

log p(yi|xi)− λE(i,c,γ) log σ(γwT
c h

l1(xi))

where the first term is defined by Eq. (3.14).

Training

We adopt stochastic gradient descent (SGD) [14] to train our model in mini-batch mode. We
first sample a batch of labeled instances and take a gradient step to optimize the loss function
of class label prediction. We then sample a batch of context (i, c, γ) and take another gradient
step to optimize the loss function of context prediction. We repeat the above procedures for T1
and T2 iterations respectively to approximate the weighting factor λ. Algorithm 3 illustrates
the SGD-based training algorithm for the transductive formulation. Similarly, we can replace
p(yi|xi, ei) with p(yi|xi) in Ls to obtain the training algorithm for the inductive formulation. Let
θ denote all model parameters. We update both embeddings e and parameters θ in transductive
learning, and update only parameters θ in inductive learning. Before the joint training procedure,
we apply a number of training iterations that optimize the unsupervised loss Lu alone and use the
learned embeddings e as initialization for joint training.

84

Predict class label Predict graph context

............................

Input feature Embedding

Predict class label Predict graph context

Softmax

...........................
.... \..,,

.-',_,,__,'..,',.....:-;;..··-----~---------~~-bedding

Input feature

Algorithm 3 Model Training (Transductive)
Input: A, x1:L+U , y1:L, λ, batch iterations T1, T2 and sizes N1, N2

repeat
for t← 1 to T1 do

Sample a batch of labeled instances i of size N1

Ls = − 1
N1

∑
i p(yi|xi, ei)

Take a gradient step for Ls
end for
for t← 1 to T2 do

Sample a batch of context from p(i, c, γ) of size N2

Lu = − 1
N2

∑
(i,c,γ) log σ(γwT

c ei)
Take a gradient step for Lu

end for
until stopping

Table 3.5: Dataset statistics.

DATASET #CLASSES #NODES #EDGES

CITESEER 6 3,327 4,732
CORA 7 2,708 5,429

PUBMED 3 19,717 44,338
DIEL 4 4,373,008 4,464,261
NELL 210 65,755 266,144

Connection to the Generative Feature Learning Framework

Our approach substantiated the generative feature learning framework in Section 1.4 as follows:
• The generative model G is a multi-layer feed-forward network.
• The generative loss function lg is to predict the neighbors in the random walk paths.
• The target loss function lt is the standard classification loss.
• The two loss functions are jointly trained.

3.3.4 Experiments

In our experiments, Planetoid-T and Planetoid-I denote the transductive and inductive formulation
of our approach. We compare our approach with label propagation (LP) [205], semi-supervised
embedding (SemiEmb) [178], manifold regularization (ManiReg) [8], TSVM [67], and graph
embeddings (GraphEmb) [121]. Another baseline method, denoted as Feat, is a linear softmax
model that takes only the feature vectors x as input. We also derive a variant Planetoid-G
that learns embeddings to jointly predict class labels and graph context without use of feature
vectors. The architecture of Planetoid-G is similar to Figure 3.10a except that the input feature

85

Table 3.6: Accuracy on text classification. Upper rows are inductive methods and lower rows are
transductive methods.

METHOD CITESEER CORA PUBMED

FEAT 0.572 0.574 0.698
MANIREG 0.601 0.595 0.707
SEMIEMB 0.596 0.590 0.711

PLANETOID-I 0.647 0.612 0.772

TSVM 0.640 0.575 0.622
LP 0.453 0.680 0.630

GRAPHEMB 0.432 0.672 0.653
PLANETOID-G 0.493 0.691 0.664
PLANETOID-T 0.629 0.757 0.757

and the corresponding hidden layers are removed. Among the above methods, LP, GraphEmb and
Planetoid-G do not use the features x, while TSVM and Feat do not use the graph A. We include
these methods into our experimental settings to better evaluate our approach. Our preliminary
experiments on the text classification datasets show that the performance of our model is not
very sensitive to specific choices of the network architecture1. We adapt the implementation of
GraphEmb2 to our Skipgram implementation. We use the Junto library [152] for label propagation,
and SVMLight3 for TSVM. We also use our own implementation of ManiReg and SemiEmb by
modifying the symbolic objective function in Planetoid. In all of our experiments, we set the
model hyper-parameters to r1 = 5/6, q = 10, d = 3, N1 = 200 and N2 = 200 for Planetoid. We
use the same r1, q and d for GraphEmb, and the same N1 and N2 for ManiReg and SemiEmb. We
tune r2, T1, T2, the learning rate and hyper-parameters in other models based on an additional data
split with a different random seed.

The statistics for five of our benchmark datasets are reported in Table 3.5. For each dataset, we
split all instances into three parts, labeled data, unlabeled data, and test data. Inductive methods
are trained on the labeled and unlabeled data, and tested on the test data. Transductive methods,
on the other hand, are trained on the labeled, unlabeled data, and test data without labels.

Text Classification

We first considered three text classification datasets4, Citeseer, Cora and Pubmed [139]. Each
dataset contains bag-of-words representation of documents and citation links between the doc-
uments. We treat the bag-of-words as feature vectors x. We construct the graph A based on
the citation links; if document i cites j, then we set aij = aji = 1. The goal is to classify each

1We note that it is possible to develop other architectures for different applications, such as using a shared hidden
layer for feature vectors and embeddings.

2https://github.com/phanein/deepwalk
3http://svmlight.joachims.org/
4http://linqs.umiacs.umd.edu/projects//projects/lbc/

86

https://github.com/phanein/deepwalk
http://svmlight.joachims.org/
http://linqs.umiacs.umd.edu/projects//projects/lbc/

Table 3.7: Recall@k on DIEL distantly-supervised entity extraction. Upper rows are inductive
methods and lower rows are transductive methods. Results marked with ∗ are taken from the
original DIEL paper [12] with the same data splits.

METHOD RECALL@k

∗FEAT 0.349
MANIREG 0.477
SEMIEMB 0.486

PLANETOID-I 0.501
∗DIEL 0.405
∗LP 0.162

GRAPHEMB 0.258
PLANETOID-G 0.394
PLANETOID-T 0.500
∗UPPER BOUND 0.617

Table 3.8: Accuracy on NELL entity classification with labeling rates of 0.1, 0.01, and 0.001.
Upper rows are inductive methods and lower rows are transductive methods.

METHOD 0.1 0.01 0.001

FEAT 0.621 0.404 0.217
MANIREG 0.634 0.413 0.218
SEMIEMB 0.654 0.438 0.267

PLANETOID-I 0.702 0.598 0.454

LP 0.714 0.448 0.265
GRAPHEMB 0.795 0.725 0.581

PLANETOID-G/T 0.845 0.757 0.619

document into one class. We randomly sample 20 instances for each class as labeled data, 1, 000
instances as test data, and the rest are used as unlabeled data. The same data splits are used for
different methods, and we compute the average accuracy for comparison.

The experimental results are reported in Table 3.6. Among the inductive methods, Planetoid-I
achieves the best performance on all the three datasets with the improvement of up to 6.1% on
Pubmed, which indicates that our embedding techniques are more effective than graph Laplacian
regularization. Among the transductive methods, Planetoid-T achieves the best performance on
Cora and Pubmed, while TSVM performs the best on Citeseer. However, TSVM does not perform
well on Cora and Pubmed. Planetoid-I slightly outperforms Planetoid-T on Citeseer and Pubmed,
while Planetoid-T gets up to 14.5% improvement over Planetoid-I on Cora. We conjecture that
in Planetoid-I, the feature vectors impose constraints on the learned embeddings, since they are
represented by a parameterized function of the input feature vectors. If such constraints are
appropriate, as is the case on Citeseer and Pubmed, it improves the non-convex optimization of

87

(a) GraphEmb (b) Planetoid-T

(c) SemiEmb (d) Planetoid-I

Figure 3.11: t-SNE Visualization of embedding spaces on the Cora dataset. Each color denotes a
class.

embedding learning and leads to better performance. However, if such constraints rule out the
optimal embeddings, the inductive model will suffer.

Planetoid-G consistently outperforms GraphEmb on all three datasets, which indicates that
joint training with label information can improve the performance over training the supervised
and unsupervised objectives separately. Figure 3.11 displays the 2-D embedding spaces on the
Cora dataset using t-SNE [165]. Note that different classes are better separated in the embedding
space of Planetoid-T than that of GraphEmb and SemiEmb, which is consistent with our empirical
findings. We also observe similar results for the other two datasets.

Distantly-Supervised Entity Extraction

We next considered the DIEL (Distant Information Extraction using coordinate-term Lists) dataset
[12]. The DIEL dataset contains pre-extracted features for each entity mention in text, and a graph
that connects entity mentions to coordinate lists. The goal is to extract medical entities from text
given feature vectors and the graph.

We follow the exact experimental setup as in the original DIEL paper [12], including data

88

40~ ---------~-----~--~-~ 40~---------~-----~--~-~

30 30

20 20

10 10

: . ; •'l('
·;.ft.:!

-10 ., - 10

- 20 -20

-30 - 30

- 40~-~--~--~-~--~--~-~~-~ - 40~-~--~--~-~--~--~--~-~
- 40 - 30 - 20 - 10 0 10 20 30 40 - 40 - 30 - 20 - 10 10 20 30 40

20~------~--------~--~-~ 30~------~--~----------~

15

20

10

10

-5

-10 - 10

- 15

- 20

- 20

- 25~-~-~--~-~--~-~-~--~-~ - 3o~--~---~--~---~---~--~
- 20 - 15 - 10 - 5 0 10 15 20 25 - 30 - 20 - 10 10 20 30

splits of different runs, preprocessing of entity mentions and coordinate lists, and evaluation.
We treat the top-k entities given by a model as positive instances, and compute recall@k for
evaluation (k is set to 240, 000 following the DIEL paper). We report the average result of 10
runs in Table 3.7, where Feat refers to a result obtained by SVM (referred to as DS-Baseline in
the DIEL paper). The result of LP was also taken from [12]. DIEL in Table 3.7 refers to the
method proposed by the original paper, which is an improved version of label propagation that
trains classifiers on feature vectors based on the output of label propagation. We did not include
TSVM into the comparison since it does not scale. Since we use Freebase as ground truth and
some entities are not present in text, the upper bound of recall as shown in Table 3.7 is 0.617.

Both Planetoid-I and Planetoid-T significantly outperform all other methods. Each of
Planetoid-I and Planetoid-T achieves the best performance in 5 out of 10 runs, and they give a
similar recall on average, which indicates that there is no significant difference between these
two methods on this dataset. Planetoid-G clearly outperforms GraphEmb, which again shows the
benefit of joint training.

Entity Classification

We sorted out an entity classification dataset from the knowledge base of Never Ending Language
Learning (NELL) [16] and a hierarchical entity classification dataset [32] that links NELL entities
to text in ClueWeb09. We extracted the entities and the relations between entities from the NELL
knowledge base, and then obtained text description by linking the entities to ClueWeb09. We use
text bag-of-words representation as feature vectors of the entities.

We next describe how to construct the graph based on the knowledge base. We first remove
relations that are not populated in NELL, including “generalizations”, “haswikipediaurl”, and
“atdate”. In the knowledge base, each relation is denoted as a triplet (e1, r, e2), where e1, r, e2
denote head entity, relation, and tail entity respectively. We treat each entity e as a node in the
graph, and each relation r is split as two nodes r1 and r2 in the graph. For each (e1, r, e2), we add
two edges in the graph, (e1, r1) and (e2, r2).

We removed all classes with less than 10 entities. The goal is to classify the entities in the
knowledge base into one of the 210 classes given the feature vectors and the graph. Let β be the
labeling rate. We set β to 0.1, 0.01, and 0.001. max(βN, 1) instances are labeled for a class with
N entities, so each class has at least one entity in the labeled data.

We report the results in Table 3.8. We did not include TSVM since it does not scale to such a
large number of classes with the one-vs-rest scheme. Adding feature vectors does not improve
the performance of Planetoid-T, so we set the feature vectors for Planetoid-T to be all empty, and
therefore Planetoid-T is equivalent to Planetoid-G in this case.

Planetoid-I significantly outperforms the best of the other compared inductive methods—i.e.,
SemiEmb—by 4.8%, 16.0%, and 18.7% respectively with three labeling rates. As the labeling
rate decreases, the improvement of Planetoid-I over SemiEmb becomes more significant.

Graph structure is more informative than features in this dataset, so inductive methods perform
worse than transductive methods. Planetoid-G outperforms GraphEmb by 5.0%, 3.2% and 3.8%.

89

3.3.5 Conclusions

Contributions

For the first time, we proposed generative feature learning based methods in the setting of graph-
based semi-supervised learning, in contrast to the conventional approaches that rely on graph
Laplacian regularization. Since it is difficult to generalize graph embeddings to novel instances,
we design a novel inductive approach that conditions embeddings on input features. Empirically,
we show substantial improvement over existing methods.

Subsequent Work

Our method Planetoid has been extended and improved in subsequent work with wider applications
such as recommendation systems and link prediction [59, 93, 188].

Subsequent to graph embedding based methods, graph neural networks [138] have also been
popular for graph-based semi-supervised learning. These methods use the graph structure to define
the computational graph, and as a result, the graph structure serves as passages of information.
Notable examples include gated graph sequence neural networks [92], graph convolution networks
[76], and graph attention networks [167]. Our Planetoid method has been used as a standard
baseline for the development of a number of these methods and their variants.

90

Chapter 4

Conclusions

4.1 Summary and Comparison

Method Model G Loss lg Loss lt Training

Transformer-XL AR Likelihood - One-Phase
XLNet AR Likelihood Target task loss Pretraining & Finetuning

Comp GAN GAN Feature matching (K + 1)-class loss Joint training
Semi QA AR Adversarial QA loss Joint training
Planetoid MLP Likelihood Classification loss Joint training

Table 4.1: Summary and comparison of how different methods proposed in this work instan-
tiate generative feature learning. AR means autoregressive modeling. “Comp GAN” refers to
Complement GAN, “Semi QA” means semi-supervised QA, and “Planetoid” is our graph-based
semi-supervised learning method.

We have presented the following generative feature learning methods:

1. Transformer-XL. Transformer-XL consists of a segment-level recurrence mechanism and
a new relative positional encoding scheme. As a result, the architecture allows capturing
longer-range dependency and resolves the context fragmentation problem. Transformer-XL
achieves better language modeling performance on both long and short sequences, learns
dependency that is 80% longer than RNNs and 450% longer than vanilla Transformers, and
is up to 1,800 times faster than vanilla Transformers during language modeling evaluation.

2. XLNet. XLNet is a pretraining method based on the novel permutation language modeling
objective. By using this objective, XLNet enables modeling bidirectional contexts using
autoregressive models, avoiding making the independence assumption. XLNet also consists
of a series of techniques to properly optimize the permutation language modeling objective,
including a new way of parameterizing the conditional distribution and the two-stream
attention mechanism. XLNet bridges the gap between language modeling and unsupervised
pretraining and shows that progress in language modeling can be used to improve pretraining
and thus downstream tasks.

91

3. Complement GAN. Theoretically we show that given the (K+1)-class classifier objective,
good semi-supervised learning requires a complement generator that generates off-manifold
samples. Our theoretical analysis answers the questions of how the classifier benefits from
joint training with a generator and why good semi-supervised classification performance and
a good generator cannot be obtained at the same time. Driven by theoretical understanding,
we propose the definition of a preferred generator and use a new training objective to realize
the goal.

4. Generative Domain-Adaptive Nets. Our semi-supervised question answering method
trains a generative model to generate questions based on the unlabeled text, and combines
model-generated questions with human-generated questions for training question answering
models. We develop novel domain adaptation algorithms, based on reinforcement learning,
to alleviate the discrepancy between the model-generated data distribution and the human-
generated data distribution.

5. Planetoid. Given a graph between instances, Planetoid trains an embedding for each in-
stance to jointly predict the class label and the neighborhood context in the graph. Planetoid
has both transductive and inductive variants. In the transductive variant of our method, the
class labels are determined by both the learned embeddings and input feature vectors, while
in the inductive variant, the embeddings are defined as a parametric function of the feature
vectors, so predictions can be made in instances not seed during training. Our method
extends the concept of generative modeling to semi-supervised learning on graphs, which is
essentially generating random walk paths on the graphs.

The above methods are summarized and compared in Table 4.1. We follow the notations
in the definition of generative feature learning and describe how different methods instantiate
the generative feature learning framework with custom loss functions, model formulation, and
training paradigm.

Overall, our approaches obtained state-of-the-art results on over 30 benchmarks at the time of
their publication, including natural language inference, question answering, text classification,
language modeling, semi-supervised learning, etc., demonstrating the practical effectiveness.

4.2 Future Work

Although the generative feature learning methods proposed in this thesis have achieved remarkable
success, there are still many questions remaining open.
• Combining unsupervised pretraining and semi-supervised learning. In the literature,

unsupervised pretraining and semi-supervised learning have been developed to tackle dif-
ferent challenges. Unsupervised learning focuses on leveraging all-domain data, while
semi-supervised learning is more about learning from unlabeled data with the same distri-
bution. Clearly, there is a quality-quantity tradeoff. While unsupervised pretraining benefits
from quantity, semi-supervised learning has the advantages of data quality (i.e., closer
to the i.i.d assumption). Recently [184] attempted to combine the advantages of both by
performing semi-supervised learning on top of pretrained models. However, the main focus

92

was classification, and it will be interesting to study unifying or combining semi-supervised
learning and unsupervised learning in a more effective way with applications to more tasks.

• Efficient unsupervised pretraining. Unsupervised pretraining methods heavily rely on
large-scale computation and data, which prohibits most of the research community from
working on meaningful related research and might eventually slow down the development
of the area. There are two possible, interesting future directions to alleviate this problem.
The first is to develop architectures that are more data efficient and parameter efficient.
The second is to find a medium-scale surrogate setting where progress could be translated
to benefits in pretraining. For example, since XLNet bridges the gap between language
modeling and unsupervised pretraining, progress in language modeling might improve
pretraining. At the same time, medium-scale language modeling benchmarks are prevalent,
which forms a meaningful surrogate.
• Pretraining for few-shot learning. Unsupervised pretraining still does not solve all the

NLP tasks, especially on tasks with little labeled data. For one thing, as mentioned above,
combination with semi-supervised learning approaches might lead to improvements. For
another, it is critical to develop unsupervised pretraining methods that are able to perform
few-shot learning.

• Effects of data scale/quality in unsupervised pretraining. The effects of adding more
data to unsupervised pretraining are not yet clear. Since curated corpora like Wikipedia and
BooksCorpus are relatively scarce, additional data often come from the Web, which results
in decrease of quality. It becomes a critical question of how to learn from relatively low
quality but more abundant data. It will also be interesting to study how to jointly learn from
curated text and Web text without being dominated by Web text.

• XLNet for computer vision. It will be intriguing to extend XLNet to computer vision,
because Transformer-XL might have the potential of modeling longer-range dependency in
images, which is very hard for CNNs.

• GAN-based semi-supervised learning for text. Applying our complement GANs ap-
proach to text requires generating discrete data, which results in the problem of non-
differentiability. It will be interesting to explore ideas to tackle this challenge, such as
methods that do not use explicit generators [109] or generation in the feature space.

• Improving generator quality in semi-supervised QA. The generator in semi-supervised
QA was trained on limited data and thus was not able to generate realistic data. We
conjecture that this is one of the reasons why semi-supervised QA was not able to improve
performance when all training data was used. In the future, it will be interesting to also
pretrain the generator using unlabeled data to address this problem.

• More general intelligence. It is one of our ultimate goals to achieve general intelligence
that has the ability to reason, plan, and make decisions. For example, the ability of complex
reasoning is one of the key signs of intelligence and has been targeted in a few benchmarks
such as RACE [84] and HotpotQA [196]. The explainability issue has also been central for
many settings [196]. We believe developing more effective, harder, more comprehensive
datasets will provide proper testbeds for technical development and will be necessary for
measuring the progress towards more general intelligence.

93

Specific to the field of NLP, we summarize the key goals and potential directions to explore
for future work in Table 4.2

Goal Direction

More general intelligence Harder, more comprehensive datasets
Few-shot learning Multi-task pretraining, long-range dependency modeling

Efficiency Model compression, distillation, efficient architectures
Dialog and other seq2seq tasks Unified encoder-decoder pretraining such as XLNet

Larger-scale model with more data Improved optimization algorithms that scale better

Table 4.2: Summary of key goals and potential future directions.

94

Bibliography

[1] Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy Guo, and Llion Jones. Character-
level language modeling with deeper self-attention. arXiv preprint arXiv:1808.04444, 2018.
xiii, 2, 8, 10, 11, 17, 18, 20, 21, 22, 41

[2] Anonymous. Bam! born-again multi-task networks for natural language understanding.
anonymous preprint under review, 2018. 45

[3] Martin Arjovsky and Léon Bottou. Towards principled methods for training generative
adversarial networks. In NIPS 2016 Workshop on Adversarial Training, volume 2016,
2017. 61

[4] Alexei Baevski and Michael Auli. Adaptive input representations for neural language
modeling. arXiv preprint arXiv:1809.10853, 2018. 16, 18, 41

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014. 8

[6] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convo-
lutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271,
2018. 16

[7] Mahsa Baktashmotlagh, Mehrtash T Harandi, Brian C Lovell, and Mathieu Salzmann. Un-
supervised domain adaptation by domain invariant projection. In International Conference
on Computer Vision, pages 769–776, 2013. 66

[8] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric
framework for learning from labeled and unlabeled examples. Journal of Machine Learning
Research, 7:2399–2434, 2006. 49, 54, 78, 79, 85

[9] Yoshua Bengio and Samy Bengio. Modeling high-dimensional discrete data with multi-
layer neural networks. In Advances in Neural Information Processing Systems, pages
400–406, 2000. 41

[10] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural proba-
bilistic language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.
8

[11] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on
freebase from question-answer pairs. In Conference on Empirical Methods in Natural
Language Processing, 2013. 65

[12] Lidong Bing, Sneha Chaudhari, Richard C Wang, and William W Cohen. Improving distant

95

supervision for information extraction using label propagation through lists. In Conference
on Empirical Methods in Natural Language Processing, 2015. xiv, 87, 88, 89

[13] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In Advances in
Neural Information Processing Systems, pages 2787–2795, 2013. 80

[14] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Interna-
tional Conference on Computational Statistics, pages 177–186. Springer, 2010. 84

[15] Jamie Callan, Mark Hoy, Changkuk Yoo, and Le Zhao. Clueweb09 data set, 2009. 1, 42

[16] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R Hruschka Jr, and
Tom M Mitchell. Toward an architecture for never-ending language learning. In AAAI
Conference on Artificial Intelligence, volume 5, page 3, 2010. 83, 89

[17] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn,
and Tony Robinson. One billion word benchmark for measuring progress in statistical
language modeling. arXiv preprint arXiv:1312.3005, 2013. 16, 18

[18] Danqi Chen, Jason Bolton, and Christopher D Manning. A thorough examination of the
cnn/daily mail reading comprehension task. In Annual Meeting of the Association for
Computational Linguistics, 2016. 66

[19] Chenhui Chu, Raj Dabre, and Sadao Kurohashi. An empirical comparison of simple domain
adaptation methods for neural machine translation. In Annual Meeting of the Association
for Computational Linguistics, 2017. 66, 68

[20] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014. 68

[21] Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recurrent
neural networks. arXiv preprint arXiv:1609.01704, 2016. 17

[22] Kevin Clark, Minh-Thang Luong, Christopher D Manning, and Quoc V Le. Semi-
supervised sequence modeling with cross-view training. arXiv preprint arXiv:1809.08370,
2018. 64

[23] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. Natural language processing (almost) from scratch. Journal of Machine
Learning Research, 12(Aug):2493–2537, 2011. 78

[24] Tim Cooijmans, Nicolas Ballas, César Laurent, Çağlar Gülçehre, and Aaron Courville.
Recurrent batch normalization. arXiv preprint arXiv:1603.09025, 2016. 17

[25] Common Crawl. Common crawl. URl: http://http://commoncrawl. org, 2019. 1, 42

[26] Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang, Ting Liu, and Guoping Hu. Attention-
over-attention neural networks for reading comprehension. In Annual Meeting of the
Association for Computational Linguistics, 2016. 66

[27] Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. In Advances in Neural
Information Processing Systems, pages 3079–3087, 2015. 2, 3, 7, 31

96

[28] Zhuyun Dai, Chenyan Xiong, Jamie Callan, and Zhiyuan Liu. Convolutional neural
networks for soft-matching n-grams in ad-hoc search. In Proceedings of the eleventh ACM
international conference on web search and data mining, pages 126–134. ACM, 2018. 45,
46

[29] Zihang Dai, Amjad Almahairi, Philip Bachman, Eduard Hovy, and Aaron Courville.
Calibrating energy-based generative adversarial networks. In International Conference on
Learning Representations, 2017. 59

[30] Zihang Dai, Zhilin Yang, Fan Yang, William W Cohen, and Ruslan R Salakhutdinov. Good
semi-supervised learning that requires a bad gan. In Advances in Neural Information
Processing Systems, pages 6510–6520, 2017. 49

[31] Zihang Dai, Zhilin Yang, Yiming Yang, William W Cohen, Jaime Carbonell, Quoc V
Le, and Ruslan Salakhutdinov. Transformer-xl: Attentive language models beyond a
fixed-length context. arXiv preprint arXiv:1901.02860, 2019. 2, 7, 31, 36, 37, 41

[32] Bhavana Dalvi and William W Cohen. Hierarchical semi-supervised classification with
incomplete class hierarchies. In ACM International Conference on Web Search and Data
Mining, 2016. 89

[33] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling
with gated convolutional networks. arXiv preprint arXiv:1612.08083, 2016. 16, 18

[34] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 2, 3, 7, 11, 31, 32, 37, 42, 43, 44, 45

[35] Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov.
Gated-attention readers for text comprehension. In Annual Meeting of the Association for
Computational Linguistics, 2017. 65, 66, 67, 68, 74

[36] Bhuwan Dhingra, Danish Pruthi, and Dheeraj Rajagopal. Simple and effective semi-
supervised question answering. In North American Chapter of the Association for Compu-
tational Linguistics Conference, 2018. 75

[37] Adji B Dieng, Chong Wang, Jianfeng Gao, and John Paisley. Topicrnn: A recurrent neural
network with long-range semantic dependency. arXiv preprint arXiv:1611.01702, 2016. 9

[38] Jeff Donahue and Karen Simonyan. Large scale adversarial representation learning. arXiv
preprint arXiv:1907.02544, 2019. 2

[39] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. In
International Conference on Learning Representations, 2016. 62

[40] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martin Arjovsky, Olivier
Mastropietro, and Aaron Courville. Adversarially learned inference. In International
Conference on Learning Representations, 2017. 50, 52

[41] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorporating non-local
information into information extraction systems by gibbs sampling. In Annual Meeting of
the Association for Computational Linguistics, pages 363–370, 2005. 72

[42] Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in

97

recurrent neural networks. In Advances in Neural Information Processing Systems, pages
1019–1027, 2016. 8

[43] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropaga-
tion. In International Conference on Machine Learning, 2014. 66, 69, 72, 73

[44] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked
autoencoder for distribution estimation. In International Conference on Machine Learning,
pages 881–889, 2015. 31

[45] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for large-scale
sentiment classification: A deep learning approach. In International Conference on Machine
Learning, pages 513–520, 2011. 66

[46] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsuper-
vised domain adaptation. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 2066–2073, 2012. 66

[47] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
neural information processing systems, pages 2672–2680, 2014. 2, 50, 58, 66, 69

[48] Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Domain adaptation for object
recognition: An unsupervised approach. In International Conference on Computer Vision,
pages 999–1006, 2011. 66

[49] Edouard Grave, Armand Joulin, Moustapha Cissé, David Grangier, and Hervé Jégou.
Efficient softmax approximation for gpus. arXiv preprint arXiv:1609.04309, 2016. 8, 16

[50] Edouard Grave, Armand Joulin, and Nicolas Usunier. Improving neural language models
with a continuous cache. In International Conference on Learning Representations, 2017.
16

[51] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013. 8

[52] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014. 12

[53] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK Li. Incorporating copying mechanism
in sequence-to-sequence learning. In Annual Meeting of the Association for Computational
Linguistics, 2016. 68, 69

[54] Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun Cho, Loic Barrault, Huei-Chi Lin,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. On using monolingual corpora in
neural machine translation. arXiv preprint arXiv:1503.03535, 2015. 65

[55] Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati, Bowen Zhou, and Yoshua Bengio.
Pointing the unknown words. In Annual Meeting of the Association for Computational
Linguistics, 2016. 68

[56] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Croft. A deep relevance matching
model for ad-hoc retrieval. In ACM International on Conference on Information and
Knowledge Management, pages 55–64. ACM, 2016. 45

98

[57] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106,
2016. 17

[58] Mark S Handcock, Adrian E Raftery, and Jeremy M Tantrum. Model-based clustering for
social networks. Journal of the Royal Statistical Society: Series A (Statistics in Society),
170(2):301–354, 2007. 80

[59] Ryohei Hisano. Semi-supervised graph embedding approach to dynamic link prediction.
In International Workshop on Complex Networks, pages 109–121. Springer, 2018. 90

[60] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997. 2, 8

[61] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al. Gradient flow
in recurrent nets: the difficulty of learning long-term dependencies, 2001. 8

[62] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text
classification. arXiv preprint arXiv:1801.06146, 2018. 44

[63] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Curtis
Hawthorne, Andrew M Dai, Matthew D Hoffman, and Douglas Eck. An improved relative
self-attention mechanism for transformer with application to music generation. arXiv
preprint arXiv:1809.04281, 2018. 13

[64] Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word vectors and word
classifiers: A loss framework for language modeling. arXiv preprint arXiv:1611.01462,
2016. 19

[65] Ming Ji, Yizhou Sun, Marina Danilevsky, Jiawei Han, and Jing Gao. Graph regularized
transductive classification on heterogeneous information networks. In Machine Learning
and Knowledge Discovery in Databases, pages 570–586. Springer, 2010. 79

[66] Yangfeng Ji, Trevor Cohn, Lingpeng Kong, Chris Dyer, and Jacob Eisenstein. Document
context language models. arXiv preprint arXiv:1511.03962, 2015. 8

[67] Thorsten Joachims. Transductive inference for text classification using support vector
machines. In International Conference on Machine Learning, volume 99, pages 200–209,
1999. 49, 79, 82, 85

[68] Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen,
Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, et al. Google’s multi-
lingual neural machine translation system: Enabling zero-shot translation. Transactions of
the Association for Computational Linguistics, 2017. 66, 68

[69] Rie Johnson and Tong Zhang. Deep pyramid convolutional neural networks for text
categorization. In Annual Meeting of the Association for Computational Linguistics, pages
562–570, 2017. 44

[70] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Explor-
ing the limits of language modeling. arXiv preprint arXiv:1602.02410, 2016. 18

[71] Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and Jan Kleindienst. Text understand-
ing with the attention sum reader network. In Annual Meeting of the Association for
Computational Linguistics, 2016. 66

99

[72] Nan Rosemary Ke, Anirudh Goyal ALIAS PARTH GOYAL, Olexa Bilaniuk, Jonathan
Binas, Michael C Mozer, Chris Pal, and Yoshua Bengio. Sparse attentive backtrack-
ing: Temporal credit assignment through reminding. In Advances in Neural Information
Processing Systems, pages 7650–7661, 2018. 9

[73] Urvashi Khandelwal, He He, Peng Qi, and Dan Jurafsky. Sharp nearby, fuzzy far away:
How neural language models use context. arXiv preprint arXiv:1805.04623, 2018. 8, 19

[74] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013. 3

[75] Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-
supervised learning with deep generative models. In Advances in Neural Information
Processing Systems, pages 3581–3589, 2014. 3, 49, 50, 51, 66

[76] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017. 49, 90

[77] Mark Kliger and Shachar Fleishman. Novelty detection with gan. arXiv preprint
arXiv:1802.10560, 2018. 64

[78] Bryon Knol. cmix v13. http://www.byronknoll.com/cmix.html, 2017. 17

[79] Vid Kocijan, Ana-Maria Cretu, Oana-Maria Camburu, Yordan Yordanov, and Thomas
Lukasiewicz. A surprisingly robust trick for winograd schema challenge. arXiv preprint
arXiv:1905.06290, 2019. 45

[80] Ben Krause, Liang Lu, Iain Murray, and Steve Renals. Multiplicative lstm for sequence
modelling. arXiv preprint arXiv:1609.07959, 2016. 17

[81] Oleksii Kuchaiev and Boris Ginsburg. Factorization tricks for lstm networks. arXiv preprint
arXiv:1703.10722, 2017. 18

[82] Taku Kudo and John Richardson. Sentencepiece: A simple and language independent sub-
word tokenizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226,
2018. 42

[83] Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale
reading comprehension dataset from examinations. arXiv preprint arXiv:1704.04683, 2017.
43

[84] Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale
reading comprehension dataset from examinations. arXiv preprint arXiv:1704.04683, 2017.
1, 93

[85] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. In
International Conference on Learning Representations, 2017. 62

[86] Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize recurrent
networks of rectified linear units. arXiv preprint arXiv:1504.00941, 2015. 9

[87] Bruno Lecouat, Chuan-Sheng Foo, Houssam Zenati, and Vijay R Chandrasekhar. Semi-
supervised learning with gans: Revisiting manifold regularization. arXiv preprint
arXiv:1805.08957, 2018. 64

100

http://www.byronknoll.com/cmix.html

[88] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. 50

[89] Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training confidence-calibrated
classifiers for detecting out-of-distribution samples. arXiv preprint arXiv:1711.09325,
2017. 64

[90] Chongxuan Li, Kun Xu, Jun Zhu, and Bo Zhang. Triple generative adversarial nets. In
Advances in Neural Information Processing Systems, 2017. 51, 62

[91] Shuai Li, Wanqing Li, Chris Cook, Ce Zhu, and Yanbo Gao. Independently recurrent neural
network (indrnn): Building a longer and deeper rnn. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 5457–5466, 2018. 9

[92] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence
neural networks. arXiv preprint arXiv:1511.05493, 2015. 90

[93] Jiongqian Liang, Peter Jacobs, Jiankai Sun, and Srinivasan Parthasarathy. Semi-supervised
embedding in attributed networks with outliers. In SIAM International Conference on Data
Mining, pages 153–161. SIAM, 2018. 90

[94] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search.
arXiv preprint arXiv:1806.09055, 2018. 19

[95] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep neural
networks for natural language understanding. arXiv preprint arXiv:1901.11504, 2019. 45

[96] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I Jordan. Learning transferable
features with deep adaptation networks. In International Conference on Machine Learning,
pages 97–105, 2015. 66

[97] Yucen Luo, Jun Zhu, Mengxi Li, Yong Ren, and Bo Zhang. Smooth neighbors on teacher
graphs for semi-supervised learning. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 8896–8905, 2018. 64

[98] Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, and Ole Winther. Auxiliary
deep generative models. In International Conference on Machine Learning, 2016. 3, 50,
51, 62

[99] Matt Mahoney. Large text compression benchmark, 2011. 16

[100] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned in transla-
tion: Contextualized word vectors. In Advances in Neural Information Processing Systems,
pages 6297–6308, 2017. 2, 3, 31

[101] Gábor Melis, Charles Blundell, Tomáš Kočiskỳ, Karl Moritz Hermann, Chris Dyer, and
Phil Blunsom. Pushing the bounds of dropout. arXiv preprint arXiv:1805.09208, 2018. 19

[102] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel
mixture models. arXiv preprint arXiv:1609.07843, 2016. 8, 16, 23

[103] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing
lstm language models. arXiv preprint arXiv:1708.02182, 2017. 18, 19

[104] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. An analysis of neural language

101

modeling at multiple scales. arXiv preprint arXiv:1803.08240, 2018. xiii, 16, 20

[105] Tomas Mikolov and Geoffrey Zweig. Context dependent recurrent neural network language
model. SLT, 12(234-239):8, 2012. 8, 16

[106] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur.
Recurrent neural network based language model. In Interspeech, volume 2, page 3, 2010.
2, 8, 12

[107] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in Neural
Information Processing Systems, pages 3111–3119, 2013. 78, 80, 81

[108] Takeru Miyato, Andrew M Dai, and Ian Goodfellow. Adversarial training methods for
semi-supervised text classification. arXiv preprint arXiv:1605.07725, 2016. 44

[109] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, Ken Nakae, and Shin Ishii. Distribu-
tional smoothing with virtual adversarial training. In International Conference on Learning
Representations, 2016. 51, 93

[110] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial
training: a regularization method for supervised and semi-supervised learning. IEEE
transactions on pattern analysis and machine intelligence, 2018. 51, 61, 62

[111] Youssef Mroueh, Chun-Liang Li, Tom Sercu, Anant Raj, and Yu Cheng. Sobolev gan.
arXiv preprint arXiv:1711.04894, 2017. 64

[112] Asier Mujika, Florian Meier, and Angelika Steger. Fast-slow recurrent neural networks. In
Advances in Neural Information Processing Systems, pages 5915–5924, 2017. 17

[113] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder,
and Li Deng. Ms marco: A human generated machine reading comprehension dataset.
arXiv preprint arXiv:1611.09268, 2016. 65

[114] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by
solving jigsaw puzzles. In European Conference on Computer Vision, pages 69–84.
Springer, 2016. 2

[115] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural
networks. arXiv preprint arXiv:1601.06759, 2016. 41

[116] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain adaptation
via transfer component analysis. IEEE Transactions on Neural Networks, 22(2):199–210,
2011. 66

[117] Xiaoman Pan, Kai Sun, Dian Yu, Heng Ji, and Dong Yu. Improving question answering
with external knowledge. arXiv preprint arXiv:1902.00993, 2019. 43

[118] Robert Parker, David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda. English gigaword
fifth edition, linguistic data consortium. Linguistic Data Consortium, Philadelphia., 2011.
1, 42

[119] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding the exploding
gradient problem. CoRR, abs/1211.5063, 2012. 4

102

[120] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for
word representation. Conference on Empirical Methods in Natural Language Processing,
12:1532–1543, 2014. 78

[121] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In SIGKDD Conference on Knowledge Discovery and Data Mining, pages
701–710, 2014. 78, 80, 82, 83, 85

[122] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton
Lee, and Luke Zettlemoyer. Deep contextualized word representations. arXiv preprint
arXiv:1802.05365, 2018. 2, 3, 7, 11, 31, 41

[123] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural
architecture search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018. 19

[124] Guo-Jun Qi, Liheng Zhang, Hao Hu, Marzieh Edraki, Jingdong Wang, and Xian-Sheng
Hua. Global versus localized generative adversarial nets. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 1517–1525, 2018. 64

[125] Siyuan Qiao, Wei Shen, Zhishuai Zhang, Bo Wang, and Alan Yuille. Deep co-training for
semi-supervised image recognition. In European Conference on Computer Vision, pages
135–152, 2018. 64

[126] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving lan-
guage understanding by generative pre-training. URL https://s3-us-west-2. amazonaws.
com/openai-assets/research-covers/languageunsupervised/language understanding paper.
pdf, 2018. 2, 3, 7, 31, 41, 43

[127] Jack W Rae, Chris Dyer, Peter Dayan, and Timothy P Lillicrap. Fast parametric learning
with activation memorization. arXiv preprint arXiv:1803.10049, 2018. 16

[128] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+
questions for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016. 1,
43, 44, 65, 66, 72, 73, 74

[129] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for squad. arXiv preprint arXiv:1806.03822, 2018. 43, 44

[130] Qiu Ran, Peng Li, Weiwei Hu, and Jie Zhou. Option comparison network for multiple-
choice reading comprehension. arXiv preprint arXiv:1903.03033, 2019. 43

[131] Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko. Semi-
supervised learning with ladder networks. In Advances in Neural Information Processing
Systems, pages 3546–3554, 2015. 49, 50, 51, 62, 66

[132] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christopher
Ré. Snorkel: Rapid training data creation with weak supervision. Proceedings of the VLDB
Endowment, 11(3):269–282, 2017. 45

[133] Matthew Richardson, Christopher JC Burges, and Erin Renshaw. Mctest: A challenge
dataset for the open-domain machine comprehension of text. In Conference on Empirical
Methods in Natural Language Processing, 2013. 65

[134] Devendra Singh Sachan, Manzil Zaheer, and Ruslan Salakhutdinov. Revisiting lstm

103

networks for semi-supervised text classification via mixed objective function. 2018. 44

[135] Ruslan Salakhutdinov and Geoffrey Hinton. Deep boltzmann machines. In Artificial
Intelligence and Statistics, pages 448–455, 2009. 2

[136] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. Improved techniques for training gans. In Advances in Neural Information
Processing Systems, 2016. 3, 50, 51, 52, 57, 58, 60, 62, 64

[137] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixelcnn++: Improving
the pixelcnn with discretized logistic mixture likelihood and other modifications. In Annual
Meeting of the Association for Computational Linguistics, 2017. 60

[138] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. The graph neural network model. IEEE Transactions on Neural Networks, 20
(1):61–80, 2008. 90

[139] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina
Eliassi-Rad. Collective classification in network data. AI Magazine, 29(3):93, 2008. 80, 86

[140] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension. In International Conference on Learning
Representations, 2017. 66

[141] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position
representations. arXiv preprint arXiv:1803.02155, 2018. 13, 14, 18, 19, 20, 21, 22

[142] Noam Shazeer, Joris Pelemans, and Ciprian Chelba. Skip-gram language modeling using
sparse non-negative matrix probability estimation. arXiv preprint arXiv:1412.1454, 2014.
18

[143] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-
of-experts layer. arXiv preprint arXiv:1701.06538, 2017. 18

[144] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn
Koanantakool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, et al.
Mesh-tensorflow: Deep learning for supercomputers. In Advances in Neural Information
Processing Systems, pages 10434–10443, 2018. 18

[145] Tom AB Snijders and Krzysztof Nowicki. Estimation and prediction for stochastic block-
models for graphs with latent block structure. Journal of Classification, 14(1):75–100,
1997. 80

[146] Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi, and Ferenc Huszár.
Amortised map inference for image super-resolution. In International Conference on
Learning Representations, 2017. 61

[147] Linfeng Song, Zhiguo Wang, and Wael Hamza. A unified query-based generative model
for question generation and question answering. arXiv preprint arXiv:1709.01058, 2017.
75

[148] Alessandro Sordoni, Philip Bachman, Adam Trischler, and Yoshua Bengio. Iterative
alternating neural attention for machine reading. arXiv preprint arXiv:1606.02245, 2016.

104

66

[149] Jost Tobias Springenberg. Unsupervised and semi-supervised learning with categorical
generative adversarial networks. In International Conference on Learning Representations,
2016. 3, 51, 61, 62

[150] Yibo Sun, Duyu Tang, Nan Duan, Tao Qin, Shujie Liu, Zhao Yan, Ming Zhou, Yuanhua
Lv, Wenpeng Yin, Xiaocheng Feng, Bing Qin, and Ting Liu. Joint learning of question an-
swering and question generation. IEEE Transactions on Knowledge and Data Engineering,
2019. 75

[151] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in Neural Information Processing Systems, pages 3104–3112, 2014.
68

[152] Partha Pratim Talukdar and Koby Crammer. New regularized algorithms for transductive
learning. In Machine Learning and Knowledge Discovery in Databases, pages 442–457.
Springer, 2009. 79, 86

[153] Duyu Tang, Nan Duan, Tao Qin, Zhao Yan, and Ming Zhou. Question answering and
question generation as dual tasks. arXiv preprint arXiv:1706.02027, 2017. 75

[154] Duyu Tang, Nan Duan, Zhao Yan, Zhirui Zhang, Yibo Sun, Shujie Liu, Yuanhua Lv, and
Ming Zhou. Learning to collaborate for question answering and asking. In North American
Chapter of the Association for Computational Linguistics Conference, 2018. 75

[155] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line:
Large-scale information network embedding. In The Web Conference, pages 1067–1077,
2015. 78, 80

[156] Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. Learning deep representations
for graph clustering. In AAAI Conference on Artificial Intelligence, pages 1293–1299, 2014.
80

[157] Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler. Effi-
cient object localization using convolutional networks. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 648–656, 2015. 61

[158] Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer. Feature-rich
part-of-speech tagging with a cyclic dependency network. In Annual Conference of the
North American Chapter of the Association for Computational Linguistics, pages 173–180,
2003. 72

[159] Trieu H Trinh, Andrew M Dai, Thang Luong, and Quoc V Le. Learning longer-term
dependencies in rnns with auxiliary losses. arXiv preprint arXiv:1803.00144, 2018. 9

[160] Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni, Philip
Bachman, and Kaheer Suleman. Newsqa: A machine comprehension dataset. arXiv
preprint arXiv:1611.09830, 2016. 44, 65

[161] Adam Trischler, Zheng Ye, Xingdi Yuan, and Kaheer Suleman. Natural language com-
prehension with the epireader. In Annual Meeting of the Association for Computational
Linguistics, 2016. 66

105

[162] Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu, and Hang Li. Modeling coverage
for neural machine translation. In Annual Meeting of the Association for Computational
Linguistics, 2016. 66

[163] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Adversarial generator-encoder
networks. arXiv preprint arXiv:1704.02304, 2017. 50

[164] Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, and Hugo Larochelle.
Neural autoregressive distribution estimation. The Journal of Machine Learning Research,
17(1):7184–7220, 2016. 31, 33, 41

[165] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9(2579-2605):85, 2008. 88

[166] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 6000–6010, 2017. 2, 8, 9, 13, 14, 18, 20, 36

[167] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017. 90

[168] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine
Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep
network with a local denoising criterion. Journal of Machine Learning Research, 11(Dec):
3371–3408, 2010. 2, 3, 70

[169] Ellen M Voorhees and Dawn M Tice. Building a question answering test collection. In
International ACM SIGIR Conference, 2000. 65

[170] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R
Bowman. Glue: A multi-task benchmark and analysis platform for natural language
understanding. arXiv preprint arXiv:1804.07461, 2018. 1

[171] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R.
Bowman. GLUE: A multi-task benchmark and analysis platform for natural language
understanding. In International Conference on Learning Representations, 2019. 44

[172] Shuohang Wang and Jing Jiang. Machine comprehension using match-lstm and answer
pointer. In International Conference on Learning Representations, 2016. 66

[173] Tian Wang and Kyunghyun Cho. Larger-context language modelling. arXiv preprint
arXiv:1511.03729, 2015. 8

[174] Wenlin Wang, Zhe Gan, Wenqi Wang, Dinghan Shen, Jiaji Huang, Wei Ping, Sanjeev
Satheesh, and Lawrence Carin. Topic compositional neural language model. arXiv preprint
arXiv:1712.09783, 2017. 9

[175] Yu-Xiong Wang, Ross Girshick, Martial Hebert, and Bharath Hariharan. Low-shot learning
from imaginary data. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 7278–7286, 2018. 64

[176] Zhiguo Wang, Haitao Mi, Wael Hamza, and Radu Florian. Multi-perspective context
matching for machine comprehension. arXiv preprint arXiv:1612.04211, 2016. 66

106

[177] Jason Weston, Ronan Collobert, Fabian Sinz, Léon Bottou, and Vladimir Vapnik. Inference
with the universum. In International Conference on Machine Learning, pages 1009–1016.
ACM, 2006. 51

[178] Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert. Deep learning via
semi-supervised embedding. In Neural Networks: Tricks of the Trade, pages 639–655.
Springer, 2012. 49, 78, 79, 85

[179] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv preprint
arXiv:1410.3916, 2014. 12

[180] Derry Wijaya, Partha Pratim Talukdar, and Tom Mitchell. Pidgin: ontology alignment using
web text as interlingua. In ACM International Conference on Information and Knowledge
Management, pages 589–598, 2013. 79

[181] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256, 1992. 71

[182] Yuhuai Wu, Saizheng Zhang, Ying Zhang, Yoshua Bengio, and Ruslan R Salakhutdinov.
On multiplicative integration with recurrent neural networks. In Advances in Neural
Information Processing Systems, pages 2856–2864, 2016. 9

[183] Yingce Xia, Di He, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, and Wei-Ying Ma.
Dual learning for machine translation. In Advances in Neural Information Processing
Systems, 2016. 66, 70, 72, 73

[184] Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V. Le. Unsupervised
data augmentation. arXiv preprint arXiv:1904.12848, 2019. 44, 64, 92

[185] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for
question answering. In International Conference on Learning Representations, 2017. 65,
66

[186] Chenyan Xiong, Jamie Callan, and Tie-Yan Liu. Word-entity duet representations for
document ranking. In International ACM SIGIR Conference, pages 763–772. ACM, 2017.
46

[187] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. End-to-end
neural ad-hoc ranking with kernel pooling. In International ACM SIGIR Conference, pages
55–64. ACM, 2017. 46

[188] Carl Yang, Lanxiao Bai, Chao Zhang, Quan Yuan, and Jiawei Han. Bridging collaborative
filtering and semi-supervised learning: a neural approach for poi recommendation. In
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
1245–1254. ACM, 2017. 90

[189] Yi Yang, Wen-tau Yih, and Christopher Meek. Wikiqa: A challenge dataset for open-
domain question answering. In Conference on Empirical Methods in Natural Language
Processing, 2015. 65

[190] Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised
learning with graph embeddings. In International conference on Machine learning, 2016.
49, 65, 66, 78

107

[191] Zhilin Yang, Ye Yuan, Yuexin Wu, William W Cohen, and Ruslan R Salakhutdinov. Review
networks for caption generation. In Advances in Neural Information Processing Systems,
pages 2361–2369, 2016. 66

[192] Zhilin Yang, Bhuwan Dhingra, Ye Yuan, Junjie Hu, William W Cohen, and Ruslan Salakhut-
dinov. Words or characters? fine-grained gating for reading comprehension. In International
Conference on Learning Representations, 2017. 65, 68

[193] Zhilin Yang, Junjie Hu, Ruslan Salakhutdinov, and William W Cohen. Semi-supervised qa
with generative domain-adaptive nets. In Annual Meeting of the Association for Computa-
tional Linguistics, 2017. 51, 64

[194] Zhilin Yang, Ruslan Salakhutdinov, and William Cohen. Multi-task cross-lingual sequence
tagging from scratch. In International Conference on Learning Representations, 2017. 78

[195] Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W Cohen. Breaking the
softmax bottleneck: A high-rank rnn language model. In International Conference on
Learning Representations, 2018. 8, 19, 40

[196] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhut-
dinov, and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop
question answering. In Conference on Empirical Methods in Natural Language Processing,
2018. 1, 93

[197] Xingdi Yuan, Tong Wang, Caglar Gulcehre, Alessandro Sordoni, Philip Bachman, Sandeep
Subramanian, Saizheng Zhang, and Adam Trischler. Machine comprehension by text-to-
text neural question generation. arXiv preprint arXiv:1705.02012, 2017. 75

[198] Ruixiang Zhang, Tong Che, Zoubin Ghahramani, Yoshua Bengio, and Yangqiu Song.
Metagan: An adversarial approach to few-shot learning. In Advances in Neural Information
Processing Systems, pages 2365–2374, 2018. 64

[199] Shuailiang Zhang, Hai Zhao, Yuwei Wu, Zhuosheng Zhang, Xi Zhou, and Xiang Zhou.
Dual co-matching network for multi-choice reading comprehension. arXiv preprint
arXiv:1901.09381, 2019. xiv, 43, 47

[200] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for
text classification. In Advances in Neural Information Processing Systems, pages 649–657,
2015. 44

[201] Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based generative adversarial
network. In International Conference on Learning Representations, 2017. 59

[202] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and Bernhard
Schölkopf. Learning with local and global consistency. Advances in Neural Information
Processing Systems, 16(16):321–328, 2004. 49, 78, 79

[203] Xiaojin Zhu. Semi-supervised learning literature survey. 2005. 65

[204] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label
propagation. Citeseer, 2002. 65, 66

[205] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using
gaussian fields and harmonic functions. In International conference on Machine learning,

108

pages 912–919, 2003. 49, 54, 78, 79, 85

[206] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Tor-
ralba, and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations
by watching movies and reading books. In International Conference on Computer Vision,
pages 19–27, 2015. 1, 42

[207] Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutník, and Jürgen Schmidhuber.
Recurrent highway networks. arXiv preprint arXiv:1607.03474, 2016. 17, 19

[208] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578, 2016. 19

109

	1 Introduction
	1.1 Motivation: Learning from Unlabeled Data
	1.2 Background
	1.3 Challenges
	1.4 Contributions

	2 Unsupervised Pretraining with Generative Modeling
	2.1 Attentive Language Models Beyond a Fixed-Length Context
	2.1.1 Motivation
	2.1.2 Background
	2.1.3 Approach
	2.1.4 Experiments

	2.2 XLNet: Generalized Autoregressive Pretraining
	2.2.1 Motivation
	2.2.2 Approach
	2.2.3 Experiments

	3 Semi-Supervised Learning with Generative Modeling
	3.1 Semi-Supervised Learning with GANs
	3.1.1 Motivation
	3.1.2 Related Prior Work
	3.1.3 Theoretical Analysis
	3.1.4 Case Study on Synthetic Data
	3.1.5 Approach
	3.1.6 Experiments
	3.1.7 Conclusions

	3.2 Semi-Supervised QA by Generating Questions
	3.2.1 Motivation
	3.2.2 Related Prior Work
	3.2.3 Problem Definition
	3.2.4 Approach
	3.2.5 Experiments
	3.2.6 Conclusions

	3.3 Semi-Supervised Learning on Graphs
	3.3.1 Motivation
	3.3.2 Background and Related Prior Work
	3.3.3 Approach
	3.3.4 Experiments
	3.3.5 Conclusions

	4 Conclusions
	4.1 Summary and Comparison
	4.2 Future Work

	Bibliography

