
Recognizing Sloppy Speech

Hua Yu

CMU-LTI-05-190

Language Technology Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
www.lti.cs.cmu.edu

Thesis Committee:
Alex Waibel

Tanja Schultz
Richard Stern

Mari Ostendorf (University of Washington)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

In Language and Information Technologies

Copyright c© 2004 Hua Yu





Abstract

As speech recognition moves from labs into the real world, the sloppy speech problem
emerges as a major challenge. Sloppy speech, or conversational speech, refers to the
speaking style people typically use in daily conversations. The recognition error rate
for sloppy speech has been found to double that of read speech in many circumstances.
Previous work on sloppy speech has focused on modeling pronunciation changes,
primarily by adding pronunciation variants to the dictionary. The improvement,
unfortunately, has been unsatisfactory.

To improve recognition performance on sloppy speech, we revisit pronunciation
modeling issues and focus on implicit pronunciation modeling, where we keep the
dictionary simple and model reductions through phonetic decision trees and other
acoustic modeling mechanisms. Another front of this thesis is to alleviate known
limitations of the current HMM framework, such as the frame independence assump-
tion, which can be aggravated by sloppy speech. Three novel approaches have been
explored:

• flexible parameter tying : We show that parameter tying is an integral part of
pronunciation modeling, and introduce flexible tying to better model reductions
in sloppy speech. We find that enhanced tree clustering, together with single
pronunciation dictionary, improves performance significantly.

• Gaussian transition modeling : By modeling transitions between Gaussians in
adjacent states, this alleviates the frame independence assumption and can be
regarded as a pronunciation network at the Gaussian level.

• thumbnail features : We try to achieve segmental modeling within the HMM
framework by using these segment-level features. While they improve perfor-
mance significantly in initial passes, the gain becomes marginal when combined
with more sophisticated acoustic modeling techniques.

We have also worked on system development on three large vocabulary tasks:
Broadcast News, Switchboard and meeting transcription. By empirically improving
all aspects of speech recognition, from front-ends to acoustic modeling and decoding
strategies, we have achieved a 50% relative improvement on the Broadcast News task,
a 38% relative improvement on the Switchboard task, and a 40% relative improvement
on the meeting transcription task.
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Chapter 1

The Sloppy Speech Problem

Sloppy speech refers to the casual style of speech that people use in daily conversa-
tions, as opposed to read speech, or carefully articulated speech. It is a natural form
of communication that people would hardly anticipate to become a major problem
for automatic speech recognition.

In the early 1990s, Hidden Markov Models (HMMs) are working quite well on
“read speech” tasks, such as the Wall Street Journal (WSJ) task, where the data is
recorded from people reading newspapers in quiet rooms. As speech recognition moves
from controlled lab conditions into real world scenarios, the speech style problem
becomes more and more pronounced.

In the NIST Hub4 (Broadcast News) evaluation, the Broadcast News data contains
a variety of different conditions, among them a significant portion of spontaneous
speech. While state-of-the-art systems can achieve word error rates (WERs) of below
10% on clean, planned speech, they perform much worse on the spontaneous speech
part of the same corpus. WER typically doubles.

Another major benchmark test, the Hub5 (Switchboard) evaluation, specifically
targets conversational speech over telephone lines. WERs on this data are quite high,
around 40% in the beginning years. While people initially suspected the telephone
bandwidth and the relatively high signal-to-noise ratio, an experiment by Weintraub
et al. clearly showed that speaking style is the key issue [Weintraub et al., 1996]. In
the corpus later known as the SRI Multi-Register corpus, both read and spontaneous
speech are collected under similar conditions. The spontaneous part was collected in
the same way as in Switchboard. Speakers were asked to come back later to read the
transcript of their conversation. This creates a perfect parallel corpus for comparing
speaking styles. Recognition experiments show that with everything else (microphone,
speaker, sentence) being equal, the WER on spontaneous speech more than doubles
that on read speech in the SRI Multi-Register corpus.

While the Switchboard task has been the main focus for the LVCSR community
over the past 8 years, automatic meeting transcription has gradually gained impor-
tance. It is a much harder task. Our initial experiments on internal group meeting
data have a WER of over 40% [Yu et al., 1998]. We carried out a controlled exper-
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iment similar to the SRI Multi-Register experiment, where we asked three meeting
participants to come back to read transcripts of an earlier meeting. Recognition re-
sults show a similar trend: everything else being equal, real meeting data is much
harder than the read version. WER increases from 36.7% for read speech to 54.8%
for the actual meeting data.

All evidence suggests that sloppy speech is prevalent in the real world, be it
broadcast news, telephone conversations, or meetings, and the conventional HMM
framework is inadequate to handle it.

In this chapter, we try to define a framework for studying sloppy speech and
present some linguistic analysis. Since the ultimate goal is better recognition perfor-
mance, it is helpful to keep the following questions in mind: why and when people
speak sloppily, and why sloppy speech does not seem to bother us as human listeners.
A better understanding of these issues will guide us towards a better modeling of
sloppy speech.

1.1 Defining Sloppy Speech

One of the main sources of variability in speech is speaking style. There are a plethora
of descriptive terms for speaking styles: careful / clear / formal / casual/ informal
/ conversational / spontaneous / scripted / unscripted / reading, etc. Sloppy speech
is loosely associated with conversational speech or spontaneous speech. But to give
a more accurate definition, we will need a framework to put all speaking styles in
perspective.

Defining speaking styles is not an easy task. Here we follow mostly the work of
[Eskenazi, 1993], where styles are defined from the point of view of human communi-
cation:

Style reflects the action of the environment upon the individual and the
individual upon the environment. It is his perception of the various “sta-
tus” levels of his listener and of the type of situation in which he finds
himself. It is also a projection of himself, his background, and is a setting
of the type and tone of conversation he wishes to have. All of this is a
mixture of conscious and unconscious (voluntary/involuntary) effort on
his part and is not always perceived in the same way it was intended.

In other words, style is a conscious or unconscious choice of the speaker, when
reacting to the current situation. For example, one would use a formal tone when
speaking in public, but use a casual style when chatting with friends.

Styles often change within the same conversation, so does the degree of attention
to the clarity of the discourse. A change in speaking style may be caused by a change
in either

• the self-image that the speaker wishes to project;
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• the type of information to be communicated;

• the situation in which the conversation takes place (including background noise,
arrival or departure of other persons, the dialogue context);

• the image the speaker has of the listener (can’t hear well, personal background,
etc.).

For example, a speaker would speak differently in a noisy environment than he/she
would in a quiet room.

LEAST INTELLIGIBLE

VERY INTELLIGIBLE

"LOWER STRATA"

FAMILIAR NON−FAMILIAR

important info to a friend

reading to a child

"UPPER STRATA"

everyday conversation
sportscast

speaking to a foreigner

formal conference

Figure 1.1: Speech Style Space

This definition leads to a characterization of styles along three dimensions, as
shown in Figure 1.1.

• Intelligibility measures the degree of clarity the speaker intends his message to
have. It varies from minimum effort to be clear, to much effort when the channel
is noisy, or the listener has a problem understanding.

• Familiarity between the speaker and the listener plays a major role in determin-
ing styles. Extremes may go from identical twins to talking to someone from
another culture and another language.

• Social Strata takes into account the context in which the conversation is taking
place, as well as the backgrounds of the participants. This goes from a totally
colloquial or “lower class” tone to a “highly cultivated” or “upper class” tone.

Figure 1.1 attempts to organize speaking styles in this three-dimensional space.
For example, when reading to a child, one tries to be a good cultural vehicle and easily
understood before a very familiar listener. Another example is everyday conversation,
which happens between acquaintances, in a casual (less intelligible) and informal
manner. Sloppy speech typically refers to this kind of speech style. As discussed
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before, styles often change within the same conversation. For example, when it comes
to important information, the speaking style can become more intelligible. This
implies that in a corpus such as Switchboard, the degree of sloppiness can vary widely.
Some part of the data can be, or come very close to clear speech.

It should be noted that the definition of speech style is not the only one available.
There are other definitions. Here we are mostly interested in finding a good framework
to discuss the sloppy speech problem.

1.2 Characteristics of Sloppy Speech

Sloppy speech differs from clear speech in many aspects, such as articulation, phonol-
ogy, and prosody.

1.2.1 Articulation Factors

Several studies have compared the degree of attention to the articulation between
sloppy speech and clear/read speech. A good review can be found in [Eskenazi, 1993].
Attention to articulation is defined to be the degree of attainment of articulatory
targets, such as a given formant frequency or stop releases. In general, articulatory
targets are reached much more often in clear/read speech than in sloppy speech, for
both consonants and vowels. Especially for vowels, there is much evidence suggesting
increased articulatory efforts in clear speech, or equivalently, decreased articulatory
efforts in sloppy speech:

• Formant values tend to achieve the extremes of the “vowel triangle” in clear
speech, compared to more “central” values in sloppy speech. Variability of
formant values is also found to be smaller in clear speech, indicated by a smaller
cluster in a plot of F1/F2 values.

• Transition rates measure the movement of the formants at the onset and the
offset of a vowel. They reflect the coarticulation of the vowel with its neighbors
and indicate whether articulatory targets are achieved for the vowel or not.
Some authors relate this to the casualness of speech. Some studies find greater
transition rates in clear speech, and more CV (consonant-vowel) coarticulation
in spontaneous speech.

1.2.2 Phonology

Sloppy speech exhibits increased phonological variability. In the Switchboard Tran-
scription Project [Greenberg, 1996], linguists manually transcribed a portion of the
Switchboard corpus at the phonetic level [Greenberg et al., 1996]. It is clear that
many words are not pronounced in the canonical way. Phonemes could be either
deleted, or have their phonetic properties drastically changed, to such a degree that
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only the barest hint of a phoneme segment can be found. Table 1.1 shows the num-
ber of variants for some of the most common words encountered in the Switchboard
Transcription Project. According to Table 1.1, the word and has 87 different pronun-
ciations. Some of the most frequent variants are listed in Table 1.2.

word # occurrences # PVs most common
pronunciation

I 649 53 ay
and 521 87 ae n
the 465 76 dh ax
you 406 68 y ix
that 328 117 dh ae
a 319 28 ax
to 288 66 tcl t uw
know 249 34 n ow
of 242 44 ax v
it 240 49 ih
yeah 203 48 y ae

Table 1.1: Pronunciation variability for the most common words in the phonetically
segmented portion of the Switchboard Transcription Project (from [Greenberg, 1998]).
“#PVs” is the number of pronunciation variants (distinct phonetic expressions) for
each word.

Greenberg also questioned the appropriateness of the phonetic representation in
this project. Portions of the data are found to be quite hard to transcribe phonet-
ically. It was reported that 20% of the time even experienced transcribers cannot
agree upon the exact surface form being spoken. The transcribing process was unex-
pectedly time consuming (taking on average nearly 400 times real time to complete
[Greenberg, 1996]). For this reason, it was decided to transcribe only at the sylla-
ble level later on. Greenberg argues that syllables are a more stable, and therefore,
a better unit for representing conversational speech. Syllables are much less likely
to be deleted. Within the three constituents of a syllable, onsets are generally well
preserved, nucleus exhibits more deviation from the canonical, while codas are often
deleted or assimilated into the onset of the following syllable [Greenberg, 1998].

1.2.3 Prosody

When comparing clear speech and casual speech, it was found that non-uniform
changes in duration make speech more comprehensible, be it for slowing down, or
for speeding up speech. Some studies found clear speech to have longer durations in
general. When speakers lengthen their speech to be more clear, they lengthen many
parts of the speech, especially the stable parts. However, the key here is non-uniform
changes: faster speech is not necessarily less intelligible than normal or slow speech.
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# occurrences phonetic transcription
82 ae n
63 eh n
45 ix n
35 ax n
34 en
30 n
20 ae n dcl d
17 ih n
17 q ae n
11 ae n d
· · · · · ·

Table 1.2: Pronunciation variants of the word “and” in the Switchboard Transcription
Project

It was also found that fundamental frequency (F0) range is greater in clear speech
than in casual speech. Some found it to be even greater in read speech than in clear
speech. There is also evidence that the F0 maxima/median is higher in clear speech
than in casual speech. In contrast, amplitude does not seem to be a main factor in
comparing clear speech against sloppy speech. It is found that only a subpopulation
of speakers speak louder when trying to be clearer.

As speakers do not have enough time to plan their speech, sloppy speech contains
much more ungrammatical pauses and disfluencies than clear speech. Disfluencies are
especially worth more discussion, which we describe next.

1.2.4 Disfluencies

Shriberg showed that the majority of disfluencies in spontaneous speech can be an-
alyzed as having a three-region surface structure: reparandum, editing phase and
repair [Shriberg, 1999]. Typical disfluencies and their analyses are listed in Table 1.3.
The initial attempt is known as the reparandum, a region that will later be replaced.
The end of this region is called the interruption point, marked with a “.”, where
the speaker has detected some problem. The editing phase may be empty, contain a
silent pause, or contain editing phrases or filled pauses (“I mean”, “uh”, “um”). The
repair region, which can be either a repetition or a corrected version of the reparan-
dum, restores the fluency. These regions are contiguous, and removal of the first two
(reparandum and editing phase) yields a lexically “fluent” version. Most phonetic
consequences of disfluency are located in the reparandum and the editing phase. But
certain effects can also be seen in the repair (such as prosodic marking), which means
we cannot simply remove the first two phases and expect a perfectly fluent repair.

Disfluencies affect a variety of phonetic aspects, including segment durations, in-
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Type (Prior Reparandum Editing Repair (Continuation)
context) Phase

Filled pause . um we’re fine
it’s . uh after five

Repetition have the . the tools
Repair to res- . relax at home
False start all this . this paper

it’s . did you?

Table 1.3: Typical disfluencies and their analyses

tonation, voice quality, vowel quality and coarticulation patterns.
Proper modeling of disfluencies is important for speech recognition. For example,

filled pauses occur so frequently that most speech recognition systems define spe-
cial words for them. From a word-error-rate point of view, some of the disfluencies
are more troublesome than others. Broken words (or partial words) usually disrupt
recognition as there are no proper HMMs to account for them. Not only will they
be recognized incorrectly, neighboring words may suffer as well. As for repetition,
repairs, and false starts, as long as they are well-formed word sequences, they don’t
pose a severe problem for acoustic modeling. They have potential language model-
ing consequences though, since language models are usually trained on written text,
where disfluencies are rare [Schultz and Rogina, 1995].

The ability to detect disfluencies is equally important. Even when ASR can pro-
duce accurate transcriptions of conversational speech, the presence of disfluencies is
still annoying since it disrupts the flow of the text. It might be helpful to automat-
ically detect and mark disfluencies so that the text can be rendered in a desirable
way.

1.3 The WH-questions of Sloppy Speech: When,

Why and How?

Is sloppiness in speech caused by ignorance or apathy?
I don’t know and I don’t care.

Williams Safire

If we know when sloppy speech occurs and how it differs from clear/read speech,
we can potentially build a better model and deploy it at the right time. The previous
sections provide the necessary background to answer these questions: when, why and
how people speak sloppily.

Section 1.1 provides the answer to the first question. Sloppy speech is likely to
occur when the conversation parties are familiar with each other, when the social
setting is informal, and the speaker does not intend to achieve high intelligibility. For
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example, we can expect important information to be more intelligible than chitchat,
content words more intelligible than function words, and so on. This has been verified
from data analysis. Fosler-Lussier et al. showed that a word is more likely to be
reduced when it is predictable, and/or it is in fast speech [Fosler-Lussier and Morgan,
1998]. Jurafsky et al. showed that words with high language model probabilities tend
to be shorter, more likely to have a reduced vowel, and more likely to have a deleted
final t or d [Jurafsky et al., 2001]. This suggests that we could potentially use LM
perplexities or dialog states to predict when and how reductions are likely to occur.
In general, however, predicting reductions is difficult, since there are many factors
and some of them, such as the internal state of the speaker, are not easy to model.

Section 1.2 looks at the question how sloppy speech differs from clear/read speech.
A related question is whether reductions follow certain rules, and if so, what kinds of
rules. At the articulator level, I suspect that reductions can be explained, to a large
extent, from a mechanical point of view. If we have a working articulatory model,
many reductions can probably be modeled by “target undershooting”. At a higher
level, it is likely that which reduction form to use is largely determined by a speaker’s
pronunciation habit.

It is also useful to consider the entire communication process, from both the pro-
duction side and the perception side. Humans are obviously much more comfortable
with sloppy speech than current ASR systems are. The reason is that since we in-
vented sloppy speech, it must suit our purposes well, otherwise we would not be using
it. Greenberg argues that there exists an auditory basis for pronunciation variation
[Greenberg, 1998]:

The auditory system is particularly sensitive and responsive to the be-
ginning of sounds, be they speech, music or noise. Our sense of hearing
evolved under considerable selection pressure to detect and decode con-
stituents of the acoustic signal possessing potential biological significance.
Onsets, by their very nature, are typically more informative than medial
or terminal elements, serving both to alert, as well as to segment the
incoming acoustic stream. · · · Over the course of a lifetime, control of
pronunciation is beveled so as to take advantage of the ear’s (and the
brain’s) predilection for onsets · · ·

“Cue trading” can also be explained from the communication perspective. In
sloppy speech, the speaker only needs to supply enough discriminative information
in order to be understood. For example, when it is obvious from the context what
words are going to follow, the speaker can assume that a relaxed pronunciation will
be fine. Humans choose to be sloppy almost always at non-essential places, where the
impact on communication is minimal: function words are more likely to be reduced
than content words; our tone/volume tapers off after we expressed the main idea and
just want to finish a sentence.

It could be misleading, though, to think of a speaker as an efficient encoder.
While we may exploit redundancies in various ways, we don’t consciously adjust our
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pronunciation patterns on the fly. Our pronunciation habits are established gradually
over the years and are quite stable.

1.4 Thesis Structure

The thesis has two main parts: an approaches part where novel approaches are de-
signed to effectively handle sloppy speech, and a systems part where we focus on build-
ing better systems for three large vocabulary tasks. We start with a brief overview
of the current ASR framework and a detailed analysis of pronunciation modeling.
This provides motivations for the proposed new approaches: flexible parameter tying,
Gaussian transition modeling and thumbnail features, described in Chapter 3,4, and
5, respectively. The second part describes our efforts in system development for three
tasks: Broadcast News (Chapter 6), Switchboard (Chapter 7) and meeting transcrip-
tion (Chapter 8). All of them contain sloppy speech, but the amount and the degree
of sloppiness vary. Chapter 9 concludes the thesis.



10 The Sloppy Speech Problem



Chapter 2

Background and Related Work

In this chapter, we briefly review the current ASR (Automatic Speech Recognition)
framework and related work in pronunciation modeling. The goal is to motivate
approaches we undertake in this thesis, namely, to address weaknesses of the current
HMM framework and to implicitly model pronunciation changes.

For a detailed review of LVCSR (Large Vocabulary Continuous Speech Recog-
nition), readers are referred to [Young, 1995] and more recently [Young, 2001]; for
a detailed review of pronunciation modeling, see [Strik and Cucchiarini, 1999] and
[Saraclar et al., 2000].

2.1 Overview of Automatic Speech Recognition

Automatic speech recognition has made significant progress over the last decade. A
modern LVCSR system is very complex, yet the basic framework remains largely
unchanged. From a modeler’s point of view, it can be roughly divided into several
major components: front-end, acoustic model, lexical model and language model
(Figure 2.1). Typically, the front-end parameterizes the input speech waveform into a
sequence of observation vectors (frames); the acoustic model computes likelihood for
each frame; lexicon specifies how a word is pronounced; the language model estimates
a probability for each word sequence.

Armed with the aforementioned knowledge sources, the search problem is to find
the best hypothesis through a huge space of all possible sentences:

H∗ = arg max
H

P (H|O) = arg max
H

P (O|H)P (H)

where O (observation) is an utterance, H (hypothesis) a word sequence, P (O|H) is
the acoustic likelihood of an hypothesis, P (H) is the language model probability, and
H∗ is the best hypothesis found. Traditionally, sophisticated data structures and
algorithms are necessary to make the search problem tractable, due to the use of
cross-word acoustic models and trigram (or higher order) language models. [Mohri
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recognition
hypothesis

lexicon language model

speech
search

acoustic model

front−end

Figure 2.1: Large Vocabulary Speech Recognition

et al., 2002] showed that many of these components can be conveniently viewed as
weighted finite-state transducers. Together, they define a huge transducer that con-
verts a sequence of input frames into a sequence of words. Rather than dynamically
expanding the search space, Mohri showed that it is possible to pre-compute the
search network by exploiting redundancies in the transducer in a principled way.

2.1.1 Modeling Sequences with HMMs

The acoustic modeling problem is concerned with computing the probability P (O|H).
To make the problem tractable, two important steps are taken:

• O is parameterized as a sequence of frames (o1, · · · , oT );

• H is split into a linear sequence of models (m1, · · · ,mN), where mi models one
third (begin, middle, or end) of a phone. This multi-stage process is illustrated
in Figure 2.2. A word sequence is first converted into a phone sequence through
dictionary lookup; triphones are simply phones in contexts; each triphone is
then divided into three substates: begin/middle/end; finally, each sub-triphone
is mapped to a mixture model through phonetic decision trees.

The benefit of these two steps is that we can now reduce the original problem P (O|H),
which involves two sequences, to a series of local computations, namely, P (ot|st),
where ot is the tth frame and st is the state/model at time t. The component model
P (ot|st) is typically the well understood Gaussian mixture model.

To cast P (o1, · · · , oT |m1, · · · ,mN) in terms of P (ot|st), HMMs are the most fa-
vored framework. The application of HMMs to ASR is well explained in [Rabiner,
1989]. If we further take the Viterbi approximation and ignore HMM transition prob-
abilities — both are common practices — P (o1, · · · , oT |m1, · · · ,mN) becomes simply∏T

t=1 P (ot|st), where (s1, · · · , sT ) is the most likely state alignment. Weaknesses of
the current modeling practice becomes clear in this particular form1.

1Note these weaknesses exist even without the Viterbi assumption, which is used here mainly to
simplify the argument.
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· · · m12 m17 m4 m24 m53 m7 m33 · · ·

?

?

?

?

Figure 2.2: Mapping from words to models

• Each frame is assumed to be conditionally independent of any other frame given
the current state. This is widely known as the frame independence assumption.
Clearly there are correlations between successive speech frames since they are
produced by a continuous process.

• The linear model sequence is criticized as a “beads-on-a-string” approach [Os-
tendorf et al., 1996b]. It ignores any higher level model structure and performs
mostly template matching.

2.1.2 Modeling Variations

From a generative model point of view, acoustic modeling is all about modeling
variations. Variations could come from different speakers, different speaking styles,
different acoustic environments, speaking rates, and so on. Various mechanisms are
deployed to deal with them: Vocal Tract Length Normalization (VTLN), Cepstral
Mean Normalization (CMN), Speaker Adaptive Training (SAT), pronunciation net-
works, and mixture models 2. The first three belong to the category of normalization
approaches, each trying to factor out a particular cause of variation:

• By estimating speaker-specific warping factors, VTLN allows building gender-
normalized models [Kamm et al., 1995, Lee and Rose, 1996, Eide and Gish,
1996, Zhan and Westphal, 1997];

• By estimating channel-specific offsets and variations, CMN makes models less
sensitive to channel conditions [Acero, 1990, Westphal, 1997].

• By estimating speaker-specific transforms, SAT trains acoustic models in a
speaker-normalized space [Anastasakos et al., 1996, Bacchiani, 2001].

2Decision-tree-based state tying is also one such mechanism. It helps to robustly model variations
caused by different phonetic contexts.
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Variations in pronunciations can be accommodated by adding alternative model
sequences, such as pronunciation variants or pronunciation networks, which we will
discuss in the next section.

Variations not captured by the aforementioned mechanisms are left to mixture
models. The probability density function of a single Gaussian is unimodal. By
increasing the number of components, a mixture model becomes increasingly mul-
timodal. In theory, it can approximate any arbitrary distribution.

From this discussion, one can already see that there are several ways to model
pronunciation variations. We can either add an extra pronunciation variant, or in-
crease the number of Gaussians in a mixture model, or even use speaker adaptation
techniques. It might be difficult to determine what is the best option for a particular
situation, but it should be clear that the boundary between pronunciation modeling
and acoustic modeling is not clearly drawn.

2.2 Pronunciation Modeling at the Phone Level

Pronunciation modeling for sloppy speech has received lots of attention since the start
of the Switchboard evaluation. The majority of pronunciation modeling work has fo-
cused on the phone level, by adding pronunciation variants to the lexicon [Lamel and
Adda, 1996, Finke and Waibel, 1997, Holter and Svendsen, 1997, Nock and Young,
1998, Ravishankar and Eskenazi, 1993, Sloboda and Waibel, 1996, Byrne et al., 1998].
This is the most natural choice, since phones are the de facto unit in lexical repre-
sentation. Variants may be added by either enumerating alternative pronunciations
or using pronunciation networks, as shown in Figure 2.3.

0 1 2 3 4 5 6
!NULL/0.064

HH/0.935

IH/0.052

AX/0.062

EH/0.331

AE/0.466

!NULL/0.082

D/0.746

JH/0.147

!NULL/0.175

Y/0.656

UW/0.936 !NULL/0.061

R/0.938

Figure 2.3: Pronunciation network for the word sequence HAD YOUR (!NULL indi-
cates a deletion) (Reproduced from the WS97 pronunciation modeling group final
presentation by M. Riley, et al.)

Cheating experiments have shown that WERs can be greatly reduced, when the
“right” pronunciation variants are added to the dictionary [Saraclar et al., 2000,
McAllaster et al., 1998].

However, finding the “right” variants proves to be a difficult task. The first prob-
lem is to obtain phonetic transcriptions for all the words. This can be done either
manually or automatically. Manually editing a lexicon has the drawbacks of being
both tedious, time consuming and error-prone. Automatic procedures include

• rule-based approach [Nock and Young, 1998, Ravishankar and Eskenazi, 1993],
where phonological rules are used to generate alternative pronunciations. Rules
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are typically obtained from linguistic studies and are therefore hand-crafted;

• phone recognizers [Nock and Young, 1998, Ravishankar and Eskenazi, 1993,
Sloboda and Waibel, 1996];

• decision trees [Fosler-Lussier and Morgan, 1998, Riley et al., 1999], which map
baseform pronunciations to surface forms estimated from either phonetically
labeled data or automatic phone transcriptions;

• and many others.

While adding pronunciation variants increases the chance that a word can be better
matched to the speech signal, it also increases acoustic confusability within the lex-
icon. One needs to be careful about how much to add, in order to balance between
solving old errors and introducing new ones. Different criteria have been proposed
to select variants, such as the frequency of occurances [Ravishankar and Eskenazi,
1993, Riley et al., 1999], maximum likelihoods [Holter and Svendsen, 1997], confi-
dence measures [Sloboda and Waibel, 1996], or the degree of confusability between
the variants [Sloboda and Waibel, 1996]. Several works find it helpful to use pro-
nunciation probabilities with each pronunciation variant [Peskin et al., 1999, Finke
et al., 1997]. Multi-words can also be added to the lexicon, in an attempt to model
cross-word variation at the lexicon level [Nock and Young, 1998, Finke et al., 1997].
For example, to can be pronounced as AX, when preceded by going, as in:

GOING TO G AA N AX

Despite extensive efforts, improvements from this line of work are quite small.

2.3 Revisiting Pronunciation Modeling

Phone-level pronunciation modeling focuses on expanding dictionaries so that they
contain more phone sequences (surface forms) that better match with acoustics. There
are two major issues in this approach. First, dictionaries, as well as phone sets, are
essentially a phonemic representation, not a phonetic representation. Second, phone
sequences are only an intermediate representation, which will further be mapped to
model sequences by decision trees. It is model sequences – not phone sequences – that
we ultimately use for training and decoding. We will elaborate on these two issues
next.

2.3.1 Issues with Dictionaries and Phone Sets

A dictionary is the knowledge source that describes how each word is pronounced, in
terms of a set of phones. The acoustic identity of a word is completely determined
by a dictionary. If two words have exactly the same pronunciation in the dictionary



16 Background and Related Work

(homophones), they would be acoustically indistinguishable. A good dictionary is
therefore essential for good system performance. A phone set is equally important,
since it specifies the granularity of the dictionary.

Over the years, various research groups have developed different dictionaries and
phone sets, such as the Sphinx dictionary, Pronlex (or Comlex), the LIMSI dictio-
nary, as well as our own dictionary. While they may have been derived from a limited
number of sources, their differences are significant and reflect beliefs of different re-
searchers on what constitutes a good design. Seldom can one find two dictionaries
that use exactly the same phone set. The phone sets are all different for the four
dictionaries mentioned above, let alone the actual pronunciation entries. To illus-
trate the issues in dictionary design, we quote here from the PRONLEX [PRONLEX]
documentation:

· · · Our idea is that the best current basis for speech recognition is to start
with a simple and internally-consistent surface phonemic (allophonic) rep-
resentation of citation forms in standard American dialect(s). Predictable
variation due to dialect, reduction, or transcription uncertainty will be
added in a second stage. In each such case, we have tried to define a
standard transcription that will be suitable to support generation of the
set of variant forms.

An illustrative example: some American dialects distinguish the vowels in
sawed and sod, while others do not; the ending -ing can be pronounced
with a vowel more like heed or one more like hid, and with a final conso-
nant like that of sing or like that of sin. This does not take account of
considerable variation of actual quality in these sounds: thus some (New
Yorkers) pronounce the vowel of sawed as a sequence of a vowel like that
in Sue followed by one like that in Bud, while in less stigmatized dialects
it is a single vowel (that may or may not be like that in sod).

Combining all these variants for the transcription of the word dogging

we would get 12 pronunciations — three versions of the first vowel, two
versions of the second vowel, and two versions of the final consonant.
Then someone else comes along to tell us that some Midwestern speakers
not only merge the vowels in sawed and sod but also move both of them
towards the front of mouth, with a sound similar (in extreme cases) to
the more standard pronunciation of sad. Now we have 4 × 2 × 2 = 16
pronunciations for the simple word dogging — with a comparable 16
available for logging and hogging and so forth, and plenty of variants
yet to catalogue.

Our approach is to give just one pronunciation in such a case. Some
speech recognition researchers will want to use our lexicon to generate a
network of predictable alternative transcriptions, taking account of dialect
variation and reduction phenomena. Others may prefer to let statistical
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modeling of acoustic correlates handle some or all of such variation.

We want to present a consistent transcription for each lexical set — so that
in our example, dogging is not transcribed in one of the 16 ways while a
second, different choice is made for logging, and a third one for hogging.
We also want to choose a transcription that will support generation of
all variants, so that distinctions made in some dialects should be made
in our transcription if possible. Finally, we do want the transcription to
indicate those variants that are lexically specific. Thus many cases of
the prefix re- have both reduced and full variants (e.g. reduction), but
many others do not (e.g. recapitalization). The difference apparently
depends on how separable the prefix is from the rest of the word, but our
lexicon simply has to list explicitly the cases that permit reduction. · · ·

This design issue is more acute for sloppy speech. People tend to introduce
more phones and more variants to account for the fact that there are more varia-
tions/reductions in sloppy speech. For example, the last vowel of the word AFFECTIONATE

can be pronounced in a slightly reduced way. Some dictionaries model this by using
two variants: AX (as in DATA and IX (as in CREDIT).

In a sense, the central issue we are grappling with is a choice between phonemic
representations and phonetic representations. Phonemes are well defined. The mini-
mal pair test is used to decide whether a new phoneme is necessary or not. Minimal
pairs are pairs of words whose pronunciation differ at only one segment, such as sheep
and ship, lice and rice. Linguists introduce a new phoneme only when such a min-
imal pair involving that phoneme can be found. Since the definition of phonemes
does not rely on sound similarity or dissimilarity, it is easy to maintain simplicity
and consistency in a dictionary. In contrast, if we are to adopt a phonetic represen-
tation — if we try to faithfully capture the phonetic details — we would lose the
simplicity and almost inevitably the consistency. First, the dictionary to start with
is most likely a phonemic one. Second, transcribing sound with a finite set of phones
is like quantization. There will be uncertainties with boundary cases, which open
the door for mistakes and inconsistencies. As the PRONLEX documentation above
illustrated, it is better to keep the dictionary simple and leave predictable variations,
transcription uncertainties to automatic procedures.

2.3.2 Implicit Pronunciation Modeling

As indicated in Section 2.1.2, there are several mechanisms we could use to model
pronunciation variations. Besides pronunciation variants or networks, we can always
use the poor-man’s model — adding more Gaussians to the mixture model. Pho-
netic decision trees are an important, yet commonly ignored, part of pronunciation
modeling as well.

As shown in Figure 2.4, a given word sequence is first converted — by looking
up a dictionary — into a phone sequence, which is subsequently translated into a
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Figure 2.4: Pronunciation model as a mapping from symbolic level to model level

state/model sequence using a phonetic decision tree. The state sequence is ulti-
mately used to align with acoustic observations, while the phone sequence is merely
an intermediate representation. If we take a broader view of pronunciation modeling
as the mapping from a symbolic (word) level to a model/state level, we can see that
decision trees, or state tying schemes in general, are an integral part of this process.

As a historical comment, decision tree based state tying was originally introduced
to model coarticulation effects. For example, the flapping of T in BETTER can be
modeled by introducing an alternative lexical entry BETTER(2):

BETTER B EH T AXR

BETTER(2) B EH DX AXR

where DX is the “flap” phone. But not every T can be flapped. One has to go
through the entire dictionary to mark all such cases. This is tedious and error-prone.
Since most flapping can be predicted from contexts, an alternative solution is to
keep the dictionary unchanged, and instead let the decision tree to automatically
determine the right model for each T. This example illustrates the idea of implicit
pronunciation modeling. Rather than explicitly representing pronunciation changes
in the dictionary, we try to model them implicitly through decision trees.

Implicit pronunciation modeling can be achieved through other means as well.
In the example of AFFECTIONATE, some use the following two variants to allow for
reductions in the final syllable:

AFFECTIONATE AX F EH K SH AX N AX T

AFFECTIONATE(2) AX F EH K SH AX N IX T

We suspect that there is a continuous spectrum between the vowel IX and AX, all
of them being a potential reduction form. Hence, just adding one variant to the
dictionary won’t capture all possible variations. As a matter of fact, both PRONLEX
and the LIMSI dictionary use only AX. The phone IX is not used at all. In this case
all the variations are captured by the Gaussian mixture model of AX. This is again
an example for implicit pronunciation modeling.
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The idea of implicit pronunciation modeling was first proposed by Hain [Hain,
2002], together with the term single pronunciation dictionary. State level pronunci-
ation modeling [Saraclar et al., 2000] also keeps a simple dictionary, while modeling
pronunciation variations at the state level. The first two approaches in this thesis are
motivated by implicit pronunciation modeling. Flexible parameter tying aims at im-
proving the traditional state tying scheme; Gaussian transition modeling is conceived
to be a pronunciation network at the Gaussian level.

2.3.3 Drawbacks of Explicit Pronunciation Modeling

To emphasize, here we list the drawbacks of explicit pronunciation modeling, i.e.
directly modifying a dictionary:

• Manually editing a lexicon is both labor intensive and error prone;

• Explicit pronunciation modeling focuses primarily on the phone level. The role
of decision trees and the mapping to the model level are largely overlooked;

• Adding variants increases lexical confusability during recognition;

• If not performed properly, adding variants can also increase model confusability.
As illustrated in Figure 2.5, when a variant replaces phone A by phone B, we
are distributing to model B the data that was originally used to train model A.
In cases where the variant is spurious, model B will be contaminated with data
belonging to A, making A and B more confusable.

variants 
B’s training data 

A’s training data 

 

 

model A 

model B 

Figure 2.5: Model Contamination

In summary, explicit pronunciation modeling by adding pronunciation variants is
not as simple as it seems to be. It should be exercised with great care.
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2.4 Roadmap for the Proposed Approaches

We follow two main themes in this thesis to better model sloppy speech. First, we
share with previous works the intuition that pronunciation modeling is important.
Two of the proposed approaches are designed for this purpose: flexible parameter
tying (Chapter 3) and Gaussian transition modeling (Chapter 4). Second, we try to
alleviate invalid assumptions in HMMs, such as the frame independence assumption.
While they may not be a serious limitation for read speech, they are now for sloppy
speech due to increased coarticulation and reductions. Both Gaussian transition
models and thumbnail features (Chapter 5) belong to this category.

2.5 Related Work

Many researchers have sought to move beyond the phone level. We break down these
efforts into the following categories:

Syllable-based Modeling Greenberg [Greenberg, 1998] argued that it is better to
model pronunciations at the syllable level. Syllables are much more stable than
phones, in the sense that they are easily identifiable and much less likely to
be deleted in sloppy speech. However, how to model reductions remains to be
a key issue. Switching to the syllable level doesn’t necessarily make it easier.
Another issue is trainability, as the number of syllables is far greater than the
number of phones. In the 1997 Johns Hopkins summer workshop, researchers
tried a hybrid phone/syllable approach, where they model the most frequent
syllables on top of a conventional triphone system [Ganapathiraju et al., 1997].
This approach yielded small improvements.

Articulatory Feature based Modeling Deng proposed a feature-based modeling
scheme to better integrate modern phonological theory, namely, autosegmental
phonology and articulatory phonology into ASR [Deng, 1997]. The basic idea
is to represent each phone as a vector of articulatory features, such as voicing,
lip rounding, tongue position, etc. When constructing a word model, feature
spreading and overlapping are allowed to model asynchrony between different
articulators. Therefore it offers a more flexible lexical representation over the
conventional “beads-on-a-string” model. Ultimately, a word is represented as
a fixed finite-state graph, where each state is specified by the articulatory fea-
tures. Deng argues this is also a more parsimonious state space, compared to
conventional triphone modeling. We feel this scheme relies critically on the
soundness of the underlying linguistic theory. New developments in linguistic
research on sloppy speech representation, as well as better integration with the
data-driven framework, may be crucial to its success.

Another model for asynchrony in speech production is loosely coupled HMMs
[Nock and Young, 2000]. Instead of modeling with a single HMM chain, mul-
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tiple HMM chains are used, each representing an articulator. Observations are
conditioned on all HMM chains, which are loosely coupled to accommodate
asynchronous transitions. Training can be made tractable under certain ap-
proximations, but these approximations have serious limitations and should be
revisited.

State-Level Pronunciation Modeling Based on research from the 1997 Johns
Hopkins pronunciation modeling workshop, Saraclar proposed state-level pro-
nunciation modeling [Saraclar et al., 2000]. Rather than introducing pronuncia-
tion variants at the phone level, he chose instead to model variations with more
mixture components at the state level. As an example, to allow the word HAD

(baseform /HH AE D/ to be alternatively realized as the surface form /HH EH D/,
he allows the model of AE to share Gaussians from EH, as shown in Figure 2.6.
This approach was motivated in part by soft-tying [Luo and Jelinek, 1999]. A
small improvement is observed when compared to the traditional approach of
adding pronunciation variants.

AE

EH

D

(b) State−level pronunciation model

HH D

AE+EH

HH

(a) Phone−level pronunciation model (pronunciation variants)

Figure 2.6: State-level pronunciation model for phone AE to be realized as phone EH,
context independent models.

Implicit Pronunciation Modeling Recently, Hain proposed implicit pronuncia-
tion modeling [Hain, 2002], which shares much of the same motivation with
us. As shown in Figure 2.2, the mapping from a phone sequence to a model se-
quence is traditionally provided by the phonetic decision tree, and is completely
deterministic. Hain introduced hidden model sequence HMMs, as shown in Fig-
ure 2.7, as a replacement for the decision tree, so that a probabilistic mapping
between the two sequences can be achieved.
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M1
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M5
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M8

M7

M3

M2

ax ah vb

Figure 2.7: Hidden model sequence model for the word above. Each node is a phone
level HMM. Probabilities are associated with transitions.

The new model (mapping) can be estimated using the EM (expectation max-
imization) algorithm. To have a consistent pronunciation dictionary to begin
with, he also introduces the concept of single pronunciation dictionary, where
only a single pronunciation is allowed for each word. The single pronuncia-
tion dictionary can be extracted from a multi-pronunciation dictionary using
mostly a frequency-based criterion. Hain showed that the single pronuncia-
tion dictionary achieves similar or better performance over the original multi-
pronunciation dictionary on both the Wall Street Journal task and the Switch-
board task. Hidden sequence modeling gives an additional small improvement
on top of single pronunciation dictionary.

Mode-Dependent Pronunciation Modeling This line of work attempts to ac-
tively predict pronunciation changes to curtail increased confusability [Osten-
dorf et al., 1996a]. The idea is that if pronunciation changes are systematic,
one could potentially be able to predict the set of possible pronunciation vari-
ants in a certain context. Mode is a hidden variable that reflects the speaking
style, such as sloppy, clear, or exaggerated. Mode can be conditioned on various
acoustic features such as speaking rates and SNR (Signal to Noise Ratio), or
linguistic features such as the syntactic structure. Along the same line, Finke
proposed to weigh each variant by a factor depending on the “speaking mode”
[Finke et al., 1999]. Speaking mode can be either speaker identity, speech rate,
emotion, or anything that helps to predict the exact form of pronunciation. This
is a powerful idea, but many details still need to be worked out, for example,
how to robustly identify the speaking mode.

Joint Lexicon and Acoustic Unit Inventory Design While not specifically tar-
geted at sloppy speech, joint lexicon and acoustic unit inventory design seeks a
fully data-driven representation of the lexicon. A main motivation for this work
is to improve the quality of a lexicon. The current lexicon design is purely ad
hoc and error prone. Perhaps more importantly, it is likely to be inconsistent
with the data-driven nature of acoustic modeling. Bacchiani et al. [Bacchiani
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and Ostendorf, 1999], Holter et al. [Holter and Svendsen, 1997], and Singh et
al. [Singh et al., 2002] have shown positive results on the Resource Manage-
ment task. This is an ambitious line of work. As they pointed out, there are
many important issues to be explored, such as the assumption of a single linear
pronunciation per word and how to generalize to unseen words.
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Chapter 3

Flexible Parameter Tying

As an integral part of pronunciation modeling, parameter tying schemes, such as
phonetic decision trees, determine the mapping from phones to models/states. In
this chapter, we first review decision tree based state tying, then introduce two new
parameter tying methods for implicit pronunciation modeling: Gaussian tying and
enhanced tree clustering.

3.1 Decision-Tree-Based State Tying

State tying arises out of the need for robust context dependent modeling. Realization
of a phone is heavily influenced by its neighboring phones, a phenomenon known as
coarticulation. It is therefore necessary to treat each phone differently depending on
its left and right contexts. A phone with a context window of 1 — the preceding
phone and the following phone — is called a triphone. Since there are a large number
of them, it is impossible to model every triphone individually. Decision trees are
typically used to cluster them to achieve parameter sharing [Young et al., 1994]. As
illustrated in Figure 2.4, decision trees also play an important role in the mapping
from phones to models. Here we give a brief overview of the Janus tying scheme and
also introduce several important Janus terms which will be used later on.

The context dependent modeling unit in Janus is called a polyphone. Compared
to triphones, polyphones can have wider contexts. They can be either triphones,
quinphones (±2 phones), septaphones(±3 phones), and so on.

In Janus, the parameters of a Gaussian mixture model are split into two com-
ponents: a codebook, which corresponds to a set of Gaussians; and a distribution,
which specifies the mixture weights. This division allows for more flexibility in pa-
rameter tying. Two polyphones can share both the distribution and the codebook, in
other words, the same model; or they can share just the codebook, but have different
mixture weights; or they can use completely different codebooks.

Janus uses a two-stage decision-tree-based state tying scheme [Finke and Rogina,
1997]. The same tree is used for tying both the codebooks and the distributions.
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(a) Codebook clustering

(b) Distribution clustering

Figure 3.1: Two stage clustering of acoustic models. After the first stage, one code-
book is created for each leaf node (shaded node). The second stage only adds more
distributions.

The “standard” Janus decision tree growing scheme is shown in Figure 3.1. In the
first stage, the decision tree is grown to a certain size, say, 2000 leaf nodes. A fully
continuous Gaussian mixture model (a codebook and a distribution) is assigned to
each leaf node. In the second stage, we continue to grow the tree to the final size of,
say, 6000 leaf nodes. Only a distribution (mixture weights) is defined and trained for
each leaf; the number of codebooks remains unchanged. Overall, we have 6000 tied
states, which are parameterized as 6000 distributions sharing 2000 codebooks. Since
the second stage introduces only more mixture weights, there is only a small increase
in the overall number of parameters. This is similar in essence to soft-tying [Luo and
Jelinek, 1999].

Note that the second stage can be skipped, in which case we have exactly one
distribution for each codebook, a configuration known as “fully-continuous” system
in some literature. Since the second stage increases modeling granularity without
heavily increasing the number of parameters, two-stage clustering typically leads to
better performance, compared to a fully-continuous system with the same number of
parameters.

The criterion for tree splitting can be either information gain or likelihood changes.
A polyphone is typically modeled by a Gaussian mixture model, i.e. a distribution
over some underlying codebook (for example, context independent codebooks). We
have also tried to use a single Gaussian model for each polyphone, as is the case in
HTK [Young et al., 1995]. This has certain advantages in implementation: we do not
need any codebooks to begin with, and parameter estimation for a single Gaussian
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is much easier than updating a Gaussian mixture model. In terms of performance,
these two implementations turn out to be comparable.

3.2 Flexible Parameter Tying

3.2.1 Why Flexible Parameter Tying

In the traditional decision tree based tying scheme, one decision tree is grown for each
sub-state (begin/middle/end) of each phone. With 50 phonemes in the phone set, 150
separate trees are grown (Figure 3.2). Since parameter tying is only possible within
the same tree, the drawback is that no parameter sharing is allowed across different
phones or sub-states. However, this needs not to be the case. For example, it is
reasonable to expect that neighboring states, such as the end state of one phone and
the beginning state of the next phone, may have many similarities. A more flexible
tying scheme would be more desirable.

. . .

CH-beg CH-mid CH-end AA-beg AA-mid AA-end

. . .

Figure 3.2: The traditional clustering approach: one tree per phone and sub-state

Flexible tying is especially needed for sloppy speech. Due to reduced pronunciation
efforts, different phones (especially vowels) tend to exhibit more similarities. For
example, vowel formants tend to take more central values in the “vowel triangle”,
as opposed to more extreme values in clear/read speech [Eskenazi, 1993]. There are
also evidences in the Switchboard transcription project, where increased confusability
causes difficulties in determining the phonetic identities for certain segments, which
leads to slow transcription progress and low transcriber agreement [Greenberg et al.,
1996].

Sharing parameters across phones also alleviates certain problems in a dictionary,
namely, over-specification and inconsistencies. Examples of these include the handling
of T and DX, AX and IX, as mentioned in Section 2.3.2. Some dictionaries choose to
differentiate them, while others do not. In dictionaries that do, they are probably not
marked consistently throughout the dictionary. By allowing parameter sharing across
phones, we no longer face this tough decision: if certain phones are indistinguishable
under certain contexts, they will be allowed to share the same model; if they show
significant differences under certain other contexts, they will be allowed to use different
models.

Next we present two approaches to achieve flexible parameter tying.
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3.2.2 Gaussian Tying

Gaussian tying is a direct extension of the state level pronunciation modeling (SLPM)
[Saraclar et al., 2000], introduced in Section 2.5. If a baseform phone, say, AX, is
alternately realized as the surface form IX in certain contexts, SLPM augments the
mixture model of AX with all Gaussians from the mixture model of IX. Gaussian tying
generalizes SLPM in that it allows sharing of a selected subset of Gaussians from the
IX model (rather than all of them), hence providing a finer level of control.

Gaussian tying is a general parameter tying framework, covering all different fami-
lies of tied mixture models. Let G, the Gaussian pool, be the complete set of Gaussians
in a system. A model, mi, is then defined by mixture weights over a subset of G.

p(·|mi) =
∑

j∈Si
πijgj(·)

where Si ⊂ G is the set of Gaussians used by mi. Any acoustic modeling scheme
can be completely specified by the weights matrix (Πij), where the ith row represents
model mi, the jth column the jth Gaussian in G. Hence Gaussian tying covers a wide
range of tying schemes, such as tied mixture [Kimball and Ostendorf, 1993], senones
[Hwang et al., 1996], genones [Digalakis et al., 1996] and soft tying [Luo and Jelinek,
1999].

Note that most tying schemes allow only tying within the same phone and the
same sub-state (begin/middle/end), corresponding to a very constrained form of the
tying matrix. But as we discussed earlier, this may be undesirable.

We applied Gaussian tying as a way to fix this deficiency of an existing state-tying
framework. While Gaussian tying allows more flexibility, it is not trivial to determine
the optimal form of tying. We explored the following approaches:

• similarity based tying : Gaussians that are close together in the model space are
tied. Three similarity measures are tried:

– Euclidean distance between Gaussian means (variances are ignored)

– KL2 (symmetric Kullback-Leibler) distance:

KL2(A;B) =
σ2
A

σ2
B

+
σ2
B

σ2
A

+ (µA − µB)2(
1

σ2
A

+
1

σ2
B

)

– Likelihood loss: this measures how much we lose in likelihood if we choose
to model the data as a single Gaussian rather than two.

With a chosen distance measure, greedy iterative bottom-up clustering is per-
formed until a desired number of Gaussians are tied. One design issue concerns
the size and quality of a cluster. Big clusters are likely to be problematic, as
it causes too much smoothing and reduces discrimination between models. We
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tried two solutions: simply imposing a hard limit on the cluster size, or us-
ing complete linkage clustering rather than single linkage clustering in order
to create “tight” clusters. In general, the improvement is quite small, despite
extensive experimentation.

• error corrective tying : The idea is similar to [Nakamura, 1998]. We monitor
competition between models on the training data. In a perfect world, the correct
model, as specified by transcripts, should achieve the best likelihood. If there is
a strong competing model, we can augment the reference model with Gaussians
from the competing model.

For error corrective tying, we consider two model sequences side by side: the
“correct” model sequence obtained by viterbi alignment, and the most likely
model/Gaussian sequence. If a particular Gaussian g of model m′ “out-votes”
a correct model m frequently enough, g is added to the mixture of m.

We conducted a cheating experiment to verify the concept. Model competition
statistics is collected on the test set itself, using reference text for the correct
model sequence. On our Broadcast News system, we are able to reduce WER
from 19.1% to 15.1% (on 1998 Hub4e test set) by error-corrective tying. How-
ever, the gain doesn’t hold when we repeat the same procedure on the training
data.

The ineffectiveness of these methods might be blamed on their post-processing
nature. It can be difficult to fix an existing sub-optimal tying scheme (as determined
by decision trees). This leads us to enhanced tree clustering.

3.2.3 Enhanced Tree Clustering

With enhanced tree clustering, a single decision tree is grown for all sub-states of
all the phones (Figure 3.3). The clustering procedure starts with all polyphones at
the root. Questions can be asked regarding the identity of the center phone and its
neighboring phones, plus the sub-state identity (begin/middle/end). At each node,
the question that yields the highest information gain is chosen and the tree is split.
This process is repeated until either the tree reaches a certain size or a minimum
count threshold is reached at a leaf node. Compared to the traditional multiple-tree
approach, a single tree allows more flexible sharing of parameters. Any node can
potentially be shared by multiple phones, as well as sub-states.

Using a single tree for clustering triphones has been proposed in several occasions.
[Paul, 1997] pointed out that single tree clustering is useful when the amount of
training (or adaptation) data is very small. Successive state splitting and maximum-
likelihood successive state splitting can be used for HMM topology design and state
tying based on both contextual and temporal factors, which effectively achieves cross-
phone/cross-substate tying [Takami and Sagayama, 1992, Ostendorf and Singer, 1997].
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However, single tree clustering has never been associated with or considered in the
context of pronunciation modeling. Our thesis work is novel in this aspect.

0=vowel?

0=obstruent?

n

-1=syllabic?
n

0=mid?
y

0=begin?

y

0=end?
n

+1=obstruent?
y

Figure 3.3: Enhanced clustering using a single tree. “−1=”,“0=”,“+1=” questions
ask about the immediately left phone, the center phone, and the right phone, respec-
tively.

Single tree clustering is quite easy to implement. The only change necessary is to
expand the question set so that it includes questions about the identity of the center
phone and its substate. Computational cost is the main difficulty for growing a single
big tree, particularly for the first few splits. As the number of unique quinphones on
the Switchboard task is around 600k, the cost of evaluating a question is quite high.
The traditional approach does not have this problem, since polyphones are divided
naturally according to center phones and sub-states, and each tree has only a fraction
of the polyphones to work with. For this reason, we conducted two experiments to
investigate the effects of cross-phone tying and cross-substate tying separately.

Experiment setup

Experiments are performed on the Switchboard (SWB) task. The test set is a 1 hour
subset of the 2001 Hub5e evaluation set. The full training set includes 160 hours
of SWB data and 17 hours of CallHome data. A 66 hour subset of the 160 hours
SWB data is also used for fast experimentation. The front-end will be described in
Section 7.1. We use a 15k vocabulary and a trigram language model trained on SWB
and CallHome.

The baseline acoustic model is a quinphone model that uses a two-stage state tying
scheme, with 24k distributions sharing 6k codebooks, and a total of 74k Gaussians. It
has a word error rate (WER) of 34.4%. Unless otherwise stated, all results reported
here are based on first-pass decoding, i.e. no adaptation or multi-pass decoding.

Cross-Substate Clustering

In this experiment, we build one tree for each phone, which covers all three sub-states.
Three new questions regarding sub-state identities are added to the question set. We
find these three questions to be highly important. For most phones, they are chosen
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as the top two questions and the tree splits naturally into three subtrees, one for each
substate. This result is therefore not any different from the traditional clustering
where we explicitly use three separate trees.

This outcome is surprising. The fact that substate identity achieves the highest
information gain seems to indicate that the model resolution is not sufficient along
the time line. In other words, acoustic characteristics change significantly during the
course of a phone, more so than any contextual effects. This probably merits further
investigation.

Cross-Phone Clustering

We grow six triphone trees for cross-phone clustering: one for each of the substate
of vowels and consonants. We could have built only three trees, without differentiat-
ing between vowels and consonants. The primary reason is to reduce computation.
Even with the vowel/consonant division, it still takes 48 hours to grow a tree. The
vowel/consonant division is chosen because we suspect that there is little parameter
sharing between vowels and consonants.

As shown in Table 3.1, initial experiment on the 66 hours training subset gives a
small, albeit significant, improvement (from 34.4% to 33.9%).

Single Pronunciation Dictionary

Motivated by Hain’s work on single pronunciation dictionaries (SPD) [Hain, 2002], we
tried to reduce the number of pronunciation variants in the dictionary. The procedure
to derive a new lexicon is even simpler than Hain’s. First, we count the frequency
of pronunciation variants in the training data. Variants with a relative frequency of
less than 20% are removed. For unobserved words, we keep only the baseform (which
is more or less a random decision). Using this procedure, we reduced the dictionary
from an average 2.2 variants per word to 1.1 variants per word. Unlike in [Hain,
2002], we are not strictly enforcing single pronunciation, so that we can keep the
most popular variants, while pruning away spurious ones. For example, the word A
has two variants in the final dictionary:

A AX

A(2) EY

Simply using SPD with traditional clustering gives a 0.3% improvement, which
is comparable to Hain’s results. More interestingly, cross-phone clustering responds
quite well with SPD. Overall, we achieve a 1.3% gain by cross-phone clustering on a
single pronunciation dictionary (Table 3.1).

So far we have used only the 66 hour training set and triphone clustering. The
gain holds when we switch to the full 180 hour training data and quinphone clus-
tering. Due to the high computational cost, we only compared two systems: one
with multi-pronunciation lexicon and no cross-phone clustering, and the other with
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Dictionary Clustering WER(%)
66 hrs, triphone 180 hrs, quinphone

multi- regular 34.4 33.4
pronunciation cross-phone 33.9 -

single regular 34.1 -
pronunciation cross-phone 33.1 31.6

Table 3.1: Cross-Phone Clustering Experiments. 66 hrs and 180 hrs denote the size
of different training sets.

single-pronunciation lexicon and cross-phone clustering. WER improves from 33.4%
to 31.6%, a 1.8% absolute gain.

Analysis

As the tree is grown in a purely data-driven fashion, one may wonder how much cross-
phone sharing there actually is. Could it be possible that questions regarding center
phones are highly important, and get asked earlier in the tree, resulting in a system
which is not much different from a phonetically tied system? The top portion of the
tree for the begin state of vowels is shown in Figure 3.4, which clearly shows that
questions about center phone identities are not necessarily preferred over contextual
questions. We also examined the leaf nodes of the six trees, and found 20% to 40% of
the leaf nodes are shared by multiple phones. Consonants that are most frequently
tied together are: DX and HH, L and W, N and NG. Vowels that are most frequently tied
together are: AXR and ER, AE and EH, AH and AX. Table 3.2 lists phones that frequently
share the same model in each tree. For each of the 6 trees, we list the top 5 most
frequently shared phone tuples, together with the frequencies: how many times they
end up at a same leaf node.

-1=voiced?

-1=consonant?

n

0=front-vowel?
n

0=high-vowel?
y

0=high-vowel?

y

-1=obstruent?

n
-1=L|R|W?

y

Figure 3.4: Top part of Vowel-beg tree (beginning state of vowels). “−1=” questions
ask about the immediately left phone, “0=” questions ask about the center phone.

The fact that cross-phone clustering helps more with SPD (from 34.1% to 33.1%),
than with a regular dictionary (from 34.4% to 33.9%), shows the advantage of implicit
pronunciation modeling. Comparing to directly modifying the dictionary, it is better
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vowel-beg vowel-mid vowel-end
120 AE EH 114 EH IH 144 AH AX
87 IH IX UH 113 AXR ER 123 IH IX UH UW
82 IX UH 103 AX IX UW 117 AXR ER
69 IX UH UW 91 AY OY 69 AE EH
61 OW OY 63 IX UH 69 AXR EN ER

consonant-beg consonant-mid consonant-end
164 N NG 166 DX HH 95 DX HH N Y
156 L W 118 DX N 84 DX HH
117 M NG 111 T TH 68 M NG
71 DX HH M N 96 L W 59 DX HH N NG Y
70 D T 85 D T 49 P T

Table 3.2: Phones that frequently share to the same model in each tree

to keep it simple and consistent, and use automatic procedures to model pronunciation
variations.

3.3 Conclusion

We discussed why flexible parameter tying is important for the modeling of sloppy
speech, and presented two novel techniques, of which enhanced tree clustering is
found to improve recognition performance on the Switchboard task together with a
simplified pronunciation dictionary.

It is worth mentioning that enhanced tree clustering could also be used for the
modeling of multilingual speech and non-native speech. Phone sets are typically not
well defined in those scenarios. The same IPA phones have slightly different counter-
parts in different languages. One may want to take advantage of their similarities to
achieve robust modeling.
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Chapter 4

Gaussian Transition Model

4.1 Motivation

4.1.1 Single Model Sequence or Multiple Model Sequences?

While flexible parameter tying improves the mapping from a phone sequence to a
model sequence, it uses only a single model sequence for a given phone sequence. To-
gether with a single pronunciation dictionary, only one model sequence is allowed for
each word. Whereas in the pronunciation variants approach, since multiple variants
are used, a word can be mapped to multiple model sequences.

Intuitively, the latter is better at capturing trajectory information. If there are
indeed two distinct pronunciations, they can be correctly modeled by two model
sequences. If a single model sequence is used instead, the two trajectories have to be
collapsed into one, with local variations modeled by Gaussian mixture models, but
the distinction between the two trajectories lost.

The reader may recall that there are arguments for the former approach as well.
Indeed, as shown in Figure 2.6, state level pronunciation modeling favors merging two
variants into a single model sequence and increasing the number of Gaussians in each
mixture.

In this chapter, we introduce Gaussian transition models (GTM), which can be
regarded as implicit pronunciation networks at the Gaussian level. This way, we do
not need to explicitly change the dictionary, while still being able to capture different
ways of pronunciation.

4.1.2 A Pronunciation Network at the Gaussian Level

To introduce the idea of GTM, consider the probability of a sequence of frames
O = (o1, · · · ,oT ) given a sequence of states S = (s1, · · · , sT ), with each state modeled
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as a Gaussian mixture model:

p(O|S) =
T∏

t=1

p(ot|st) (4.1)

=
T∏

t=1

∑

kt

πtktgtkt(ot) (4.2)

=
∑

k1

∑

k2

· · ·
∑

kT

T∏

t=1

πtktgtkt(ot) (4.3)

where gtk(·) is the kth Gaussian in the tth state, πtk is the mixture weight. Equa-
tion 4.1 follows from the conditional independence assumption of HMMs. Rearranging
terms in Equation 4.2 leads to Equation 4.3.

(a) Linear Sequence of Mixture Models

(c) Pruned Gaussian Transition Model

(b) The Equivalent Full Gaussian Transition Model

Figure 4.1: Gaussian Transition Network

These equations have an intuitive interpretation, as shown in Figure 4.1. Fig-
ure 4.1(a) corresponds to Equation 4.1, a sequence of Gaussian mixture models. Fig-
ure 4.1(b) corresponds to Equation 4.3, a full Gaussian transition network. If we
consider each Gaussian gtkt(.) to be a modeling unit by itself, each

∏
t gtkt(.) repre-

sents a unique trajectory, weighted by
∏

t πtkt . Hence, all possible trajectories are
allowed in the traditional HMM-GMM (Equation 4.2).

GTM restricts the set of allowable trajectories by modeling transition probabilities
between Gaussians in adjacent states.

aij = P (qt = gj|qt−1 = gi) (4.4)
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where aij is the probability of transition from Gaussian gi to Gaussian gj, subject to
the constraint

∑
j aij = 1. Figure 4.1(c) shows a GTM after pruning away unlikely

transitions.
From the pronunciation modeling point of view, each trajectory

∏
t gtkt(.) can be

regarded as a particular pronunciation variant,
∏

t πtkt is the corresponding pronunci-
ation probability. Figure 4.1(c) is then a pronunciation network, similar to Figure 2.3,
albeit at the Gaussian level rather than the phone level. It can potentially capture
fine pronunciation changes that is too subtle to be represented as a different phone
sequence.

4.1.3 The Conditional Independence Assumption

GTM also alleviates a well known problem in HMMs: the conditional independence
assumption. Speech production differs from a random process in that articulators
move along a low dimensional manifold. As a result, the speech trajectory is relatively
smooth in the feature space. But an HMM, as a generative model, does not necessarily
generate a smooth trajectory, due to the conditional independence assumption. Under
this assumption, all speech frames are conditionally independent, given the hidden
state sequence. This makes HMMs ineffective in modeling trajectories.

This is best illustrated by considering a gender independent HMM, using Gaussian
Mixture Model (GMM) as output density function (Figure 4.2). Assuming certain
mixture components are trained mostly on male speakers, while other components
of the same mixture are trained on females. Sampling the HMM produces a frame
sequence randomly switching between male and female at any time 1.

. . . . . .

Models . . . . . .

Frames

Figure 4.2: Deficiencies of HMM-GMM as a generative model (shaded area stands
for male speech, non-shaded area stands for female.)

Variations in speaker, context and speaking style can all produce completely dif-
ferent trajectories for the same phone sequence. If modeled by a single state sequence
as in a regular HMM, trajectories will be mixed up, resulting in poor discrimination
between trajectories. By modeling Gaussian transitions, GTM allows us to capture
trajectory information within the single state sequence. For example, in Figure 4.2,
GTM can capture the difference between “legal” and “illegal” transitions: a “male”
Gaussian is most likely to follow “male” Gaussians rather than “female” Gaussians.

1Sampling a Gaussian mixture model can be performed by first selecting a Gaussian, then sam-
pling from the chosen Gaussian.
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4.1.4 Relevant Approaches

In the case of sloppy speech, previous efforts have focused on dictionary expansion
by adding alternative pronunciations. The net result of dictionary expansion is a
phone level pronunciation network for each word. But many reductions are too subtle
to be classified as either phoneme substitutions or deletions. Partial reduction or
partial realization may actually be better modeled at a sub-phoneme level. Gaussian
transition models provide a way to model such variations implicitly. It allows finer
model resolution, compared to pronunciation modeling at either the phoneme level
or even the state level [Saraclar et al., 2000].

Iyer et al. proposed the parallel path HMM to better model multiple trajectories
[Iyer et al., 1998]. This is probably the closest proposal to GTM, and it also stays
within the HMM framework. The basic idea is to use multiple paths for each phone-
level HMM, therefore maintaining trajectory information and avoiding path mixing
up. Paths are allowed to cross over only at phone boundaries. However, the number
of parallel paths is normally quite limited (two or three). Choosing the right number
of paths is also an unsolved problem.

In comparison, the GTM models multiple paths implicitly through Gaussian tran-
sitions. It is able to model a large number of trajectories. It also fits nicely into the
HMM framework. However, as a first order model, GTM has a relatively short mem-
ory compared to parallel path HMMs.

Hidden model sequence modeling aims at deriving a stochastic mapping from
phone sequences to HMMs automatically [Hain, 2001]. As shown in Figure 2.7, it
can also model multiple trajectories for the same phone sequence. The optimization
criterion is maximum likelihood, similar to that of GTM. While hidden model se-
quence model operates at the HMM (phone) level or the state level, GTM looks at
the Gaussian level. GTM can therefore achieve a more fine-grained modeling of subtle
pronunciation changes.

Segment models also attempt to exploit time-dependencies in the acoustic sig-
nal [Ostendorf et al., 1996b], by modeling trajectories either parametrically or non-
parametrically. Since these approaches typically fall outside the HMM framework,
it is hard to take full advantage of the efficient HMM training and recognition algo-
rithms.

4.2 Training of the Gaussian Transition Model

The GTM models transition probabilities between Gaussians in adjacent states, as in
Equation 4.4, where aij are the parameters to be estimated.

The GTM models can be readily trained using the standard Baum-Welch algo-
rithm. Each Gaussian in a mixture will be treated as a state by itself. GTM pa-
rameters can then be estimated as regular HMM transition probabilities. Below we
give the Baum-Welch formulae, following notations of [Rabiner, 1989]. The formulae
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are essentially the same, only that each Gaussian is now a state by itself, i.e. i, j de-
note individual Gaussians rather than mixture models, and bj(o) is a single Gaussian
distribution rather than a Gaussian mixture.

The forward probability:

αt+1(j) = P (O1O2 · · ·Ot+1, qt+1 = gj)

=

(∑

i

αt(i)aij

)
bj(ot+1) (4.5)

The backward probability:

βt(i) = P (Ot+1Ot+2 · · ·OT |qt = gi)

=
∑

j

aijbj(ot+1)βt+1(j) (4.6)

Accumulating statistics:

γt(i) = P (qt = gi)

=
αt(i)βt(i)∑
j αt(j)βt(j)

ξt(i, j) = P (qt = gi, qt+1 = gj)

=
αt(i)aijbj(ot+1)βt+1(j)∑

i

∑
j αt(i)aijbj(ot+1)βt+1(j)

Updating transition probability:

aij =

∑
t ξt(i, j)∑
t γt(i)

Note that GTM changes the parameterization of the acoustic model. A conven-
tional acoustic model consists of mixture weights, Gaussian means and variances, and
state transition probabilities. With Gaussian transition probabilities, there are two
changes.

• We have now two sets of transition probabilities, one for state transitions and
another for Gaussian transitions. It is easier to think that transitions take
place in two steps. First, we decide whether to stay in the same state, or transit
into a different state, according to the HMM transition model. After knowing
which state to transit to, we apply GTM to determine Gaussian occupancy
probabilities, in other words, how likely it is to transit to a Gaussian in that
state.
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• Theoretically, mixture weights are no longer needed. They are replaced by
GTMs. After the aforementioned two-step transition, both the forward proba-
bility and the backward probability are already determined for each Gaussian.

Mixture weights can be regarded as a special case of GTM, where aij = πj, in
other words, the transition probability into Gaussian j is simply the mixture
weight πj, regardless of which Gaussian it comes from.

In practice, due to data insufficiency, we can’t always estimate a GTM for every
state transition. In these scenarios, we naturally use mixture weights as a back-
off solution. Details will be given in the next section on how to handle back-off
transitions in GTM training.

4.2.1 Trainability and the Handling of Back-off Transitions

GTM can take a large number of parameters. First, a transition between two mixtures
of n components each requires n2 transition probabilities. Second, in an LVCSR
system with thousands of mixture models, the potential number of transitions could
be millions. Hence data sufficiency becomes a concern. In our experiments, we choose
to model only frequent transitions, i.e. state transitions that receive enough counts
during training. For everything else, we revert to the traditional HMM-GMM model:
aij = πj, where πj is the mixture weight for the jth Gaussian.

This implies that we need to switch between full transition (GTM) cases and
traditional GMM transitions at certain points in the forward-backward algorithm.
For better understanding, it is helpful to consider a back-off transition between two
GMMs as a “sum-and-distribute” operation (Figure 4.3).

Let us consider the computation of forward and backward probabilities. For for-
ward probabilities (Equation 4.5), there are two cases:

• For frequent state transitions, since they are modeled by GTMs, they are com-
puted as is. No mixture weights are needed.

• For infrequent state transitions,

(∑

i∈S1

αt(i)aij

)
bj(ot+1) =

(∑

i∈S1

αt(i)

)
πjbj(ot+1)

where S1 denotes one of the “from” states, πj is the mixture weight for Gaussian
j of the “to” state. As

∑
i∈S1

αt(i) depends only on the “from” state, it can
be stored as αt(S1) to save computation. This is the “sum” part in Figure 4.3.
After we sum over all possible “from” states, each target Gaussian gets a piece of
the total sum according to the corresponding mixture weight (the “distribution”
step).

Similarly, there are two cases for backward probabilities:
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(a) Transition between two mixture models

1

1

1

(b) The full Gaussian transition models

(c) The back−off case: sum and distribute

S1 S2

S1 S2

π3
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Figure 4.3: Handling back-off transitions in GTM training

• Frequent state transitions (with GTM models) are computed as is;

• For infrequent state transitions,

∑

j∈S2

aijbj(ot+1)βt+1(j) =
∑

j∈S2

πjbj(ot+1)βt+1(j)

where S2 is the “to” state, πj is the mixture weight for Gaussian j in S2. It’s
obvious that this doesn’t depend on the incoming state. To save computation,
this quantity can be stored as βt+1(S2).

Furthermore, it can be established that

αt(ik) = αt(i)
πkgik(ot)∑
m πmgim(ot)

αt(i) =
∑

k

αt(ik)

βt(ik) = βt(i),∀k

where i, k denotes the kth Gaussian in the ith state. αt(i) and βt(i) are state-level
(rather than Gaussian level) probabilities as defined before. Since they are used quite
often, storing them separately speeds up training in the back off case.
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With back-off transitions, we also need to accumulate statistics for mixture weights.
When πj is used in a back off case, we need to add

∑

i

ξt(i, j) =
(
∑

i αt(i)aij) bj(ot+1)βt+1(j)

P (O)

=
(
∑

i αt(i))πjbj(ot+1)βt+1(j)

P (O)

to its sufficient statistics.

4.2.2 HMM-GMM as a Special Case of GTM

Based on what we have established in the previous section, if we always have aij = πj,
GTM reduces to the standard HMM-GMM. In other words, HMM-GMM is a special
case of GTM where transition models — which happens to be mixture weights — are
tied for all Gaussians in the same mixture.

4.2.3 Pruning

GTM, similar to HMM transition models, might suffer from the same problem that
the dynamic range of their scores is too small, comparing to HMM observation proba-
bilities. Final acoustic scores are normally dominated by observation scores. GTM, or
HMM transition models have only a marginal impact on either scores or recognition
accuracies. In our experience, HMM transition probabilities can often be ignored.
HMM topologies, on the other hand, are quite important. As will be shown in Sec-
tion 6.2, there could be a big difference by just adding or removing an extra transition
to the “standard” 3-state left-to-right topology.

In terms of trajectory modeling, while GTM offers better discrimination between
trajectories, all trajectories are nonetheless still permitted, including both “legal” and
“illegal” ones. The difference in scores, introduced by GTM, might be overwhelmed
by acoustic likelihoods.

One solution is to prune away unlikely transitions. As in Figure 4.1(c), this creates
a transition network at the Gaussian level. Like removing the skipping arc in HMM
topologies, this could lead to a model that is more compact and more prudent.

In reality, however, it is difficult to find a good pruning strategy. A frequency
based approach is taken in this work. But it is possible that unseen trajectories will
be pruned away due to a limited training set.

4.2.4 Computation

GTM training is computationally very demanding. A transition between two mixture
models is now expanded to a full transition network between all Gaussians. Com-
putational complexity is multiplied a factor of n2, where n is the average number of
Gaussians per mixture.
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For back-off transitions, one can take advantage of the “sum and distribute” op-
eration (Figure 4.3) to speed up the computation.

4.3 Experiments

Experiments are carried out on the Switchboard (SWB) task. The test set is a 1 hour
subset of the 2001 Hub5e evaluation set. Acoustic training uses a 66 hours subset of
the SWB data. The front-end will be described in Section 7.1. The acoustic model has
roughly 6000 distributions, sharing 6000 codebooks, with a total of 86K Gaussians,
on average 14 Gaussians per model. Cross-phone clustering is used together with
single pronunciation dictionary, as described in Chapter 3. We use a 15k vocabulary
and a trigram language model trained on SWB and CallHome.

As discussed before, we only model frequent model transitions with GTMs. Before
training, we count the number of transitions for each model pair on the training data.
Only state transitions with counts above a certain threshold are modeled with a GTM.
Of the 6000 mixture models in the acoustic model set, a total of 40K model pairs
(out of a potential 6K×6K=36M) has been observed. The most frequent 9400 model
pairs are selected for GTM modeling. It turns out that most of them (6000 pairs, or
64%) are transitions within the same model (corresponding to self-loops in HMM).

Since each model/state transition is comprised of a number of Gaussian transition
models — one for each Gaussian in the source model — there still may not be enough
data to robustly update each individual GTM. Therefore, we also apply a minimum
count criterion during training: a transition model is updated only if the Gaussian
receives enough training counts, otherwise the model remains unchanged.

One iteration of Baum-Welch training gives significant improvement in term of
likelihood. Log likelihood per frame improves from −50.67 to −49.18, while conven-
tional HMM training can only improve the log likelihood by less than 0.1 on the same
data. Considering the baseline acoustic model has already been highly optimized,
this indicates improved acoustic modeling.

Pruning Avg. # Transitions WER
Threshold per Gaussian (%)

baseline 14.4 34.1
1e-5 9.7 33.7
1e-3 6.6 33.7
0.01 4.6 33.6
0.05 2.7 33.9

Table 4.1: Gaussian Transition Modeling Experiments on Switchboard

We tried several different minimum count values. The best is found to be 20, at
which point a majority of the transition models (86%) are updated. Within them, we
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further prune Gaussian transitions if their probabilities fall below a certain threshold.
Table 4.1 shows word error rates for GTM models pruned against different thresholds.
N-Best rescoring is used in these experiments where N=100. The average number
of transitions is measured for Gaussians in the updated transition models. The best
performance, a 0.5% gain, is obtained after pruning away almost 2/3 of the transitions.

In further experiments, we tried to retrain on top of some pruned GTM models,
as well as several different parameter settings, but found that the improvement is
marginal at best, even worse in some cases.

4.4 Conclusion

In this chapter, we presented a new Gaussian transition model, which is motivated
both as an implicit pronunciation modeling approach, and as a way to alleviate the
frame independence assumption. Unfortunately, only a marginal gain has been ob-
served in experiments.

One possible explanation is that the frame independence assumption has already
been mitigated by the use of dynamic features in the front-end. By capturing depen-
dencies between adjacent frames, dynamic features expand the coverage of the final
feature vector from a single frame (∼ 20 milliseconds) to a segment of typically ∼ 100
milliseconds. This, in a rough sense, is segmental modeling already, which makes it
less effective to model dependencies at the model level.

There are several possibilities for future investigations. First, the pruning strategy
needs to be revisited. Currently, the pruning threshold is set by hand, in a “trial-and-
error” fashion. Also, frequency based pruning may not be well suited for structural
discovery. Second, the current GTM is designed for mild variations in pronunciation,
not deletions. It could be worthwhile to extend the GTM to handle deletions.



Chapter 5

Thumbnail Features

5.1 Motivation

Conventional speech analysis (front-end) provides a sequence of frames as input to
the acoustic model. Due to the frame independence assumption, each triphone model
can only have a very “short-sighted” view of the data, one frame at a time. Dynamic
features — delta and double deltas — alleviate the problem by increasing the coverage
(window size) of a frame, as will be explained in Section 6.3. This greatly improves
performance. However, having a fixed window size may still be suboptimal. In
Figure 5.1, if the same phoneme is realized twice in different speeds, it will end up
with different number of frames. When a fixed window size is used for dynamic
features, it will contain a different image each time: the entire phone the first time,
but more than a phone the second time. This creates unnecessary variations that
must be modeled by the underlying Gaussian mixture model.

t

dynamic features

raw signal

Figure 5.1: Problems with a fixed window size for dynamic features. The dynamic
features shown are the results of stacking 7 adjacent frames (±3). Due to speech rate
differences, the two features have quite different shapes.

To overcome this problem, we propose the thumbnail feature, where we directly
compute a feature vector on a segmental basis and model it as such. A segment can
be either a senone (sub-phone), a syllable, a phone, two phones (diphone), etc. It is
not limited to any fixed duration. In our work, we choose to subsample frames in
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a segment to derive the segmental feature, which can be thought of as a thumbnail
image of the entire senone/phone/syllable. In other words, we are now modeling each
segment as whole, rather than a sequence of frames.

The idea of deriving segmental features by subsampling is not new. A good
review of related works can be found in [Ostendorf et al., 1996b]. As discussed in
[Ostendorf et al., 1996b], there are certain problems with this kind of approaches.
First, segmental features are dependent on segment boundaries, which are not known
a priori; second, different hypotheses are conditioned on different events, making a
fair comparison between them difficult. In this chapter, we describe our particular
solution to these issues. The MIT SUMMIT speech recognizer, a segment-based
system, uses the so-called anti-phone models to cope with the score compatibility
issue. We will discuss it in Section 5.4.

5.2 Computing Thumbnail Features

5.2.1 Hypothesis Driven Features

There is a salient distinction between thumbnail features and conventional features.
Unlike conventional features (front-ends), thumbnail features cannot be computed
beforehand and fixed during recognition. To compute thumbnail features, we need
segmentation information, which is different for each hypothesis. In other words, each
hypothesis has its own observation space.

We therefore face a “chicken-and-egg” problem. The features cannot be computed
without a segmentation; but to find a reasonable segmentation (or the hypothesis that
implies the segmentation), we need to begin with some acoustic feature. To avoid
the problem of simultaneously searching for both the feature and the hypothesis, we
adopt a two stage approach. A conventional system is used to find a set of hypotheses
and their segmentation. Then, thumbnail features are computed and hypotheses are
rescored using a second set of thumbnail models.

5.2.2 Score Compatibility

Comparing scores between hypotheses also becomes an issue. If we take the straight-
forward approach and compute one feature vector for each segment, it is likely that
different hypotheses will have different number of feature vectors. Scores are no longer
comparable. Hypotheses with fewer segments are favored because of the smaller num-
ber of probability terms.

One solution is to use a length-dependent weighting factor. Longer segments are
weighted more, to approximate the traditional HMM scoring paradigm.

The solution we adopted here is to compute thumbnail features on a frame-by-
frame basis. At any time point (frame), we assume there is a hypothetical segment
centered around that point (frame), from which we can subsample to derive the
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thumbnail feature. Some of these segments will coincide with the real segments; the
others are transitions, or interpolations, between two real segments. This is illustrated
in Figure 5.2, where a segment is defined to be 5 subphones. The derivation of two
thumbnail features is shown. The first is located at the center (50%) of AH-m. 5
frames from the adjacent subphones, all at their respective 50% points, are extracted
to form thumbnail. The second example is at the end of AH-e. Its thumbnail is
formed by the last frames from ±2 subphone segments. In general, to compute a
thumbnail feature at a particular time point, we first calculate its relative position in
the current subphone; frames at the same relative position in neighboring subphones
are extracted, and stacked together to form a super-vector, which is then projected
down to a subspace using LDA.
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Stacking + LDA
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. . . . . .

thumbnail features

segmentation

cepstral features . . . . . .
B−e AH−b AH−m AH−e D−b D−m

Figure 5.2: Computing thumbnail features on a frame-by-frame basis. The two ex-
amples shown are located at 50% and 100% percentage points of their respective
segment. Here a thumbnail feature covers 5 subphone segments.

In this way, we can compute a thumbnail feature stream that looks exactly the
same as any traditional feature stream. The number of feature vectors are guaranteed
to be equal for different hypotheses. Although the observation space is still different
for each hypothesis, at least we have the same number of probability terms now.

Compared to the “standard” segmental feature, which computes one feature vector
per segment, our approach also achieves greater time resolution. We can now model
at the segmental level without deviating too much from the frame-synchronous basis
of current ASR framework.

5.2.3 Hybrid Segmental/Dynamic Features

There is a natural link between dynamic features and thumbnail features obtained by
subsampling a segment.

As shown in section 6.3, dynamic features can be computed in general by stacking
consecutive frames together, followed by a linear projection. If we instead choose
frames from evenly spaced locations in a segment (subsampling), the set of frames is
then a thumbnail sketch of the segment. The linear projection can be computed as
usual, for example, by LDA.

Because of this link, we can easily derive a hybrid version from the two, by stacking
frames subsampled at a segmental level, and frames immediately adjacent to the
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current time point. LDA is then applied as usual. The result is a mixture between
conventional dynamic features and segmental features. By varying the number of
“segmental” frames vs. the number of “dynamic” frames, we can move smoothly
between pure dynamic features and pure segmental features.

5.3 Experiments

5.3.1 Initial Experiments

Experiments are carried out on the Switchboard task. The test set is a 1 hour subset
of the 2001 Hub5e evaluation set. A 66 hour subset of the SWB-I corpus is used
for training. The front-end will be described in Section 7.1. The triphone-clustered
acoustic models have 24000 distributions, sharing 6000 codebooks, with a total of
86k Gaussians. For testing, we use a 15k vocabulary and a trigram language model
trained on SWB and CallHome. The baseline system has a word error rate (WER)
of 34.5%. Note MLLT is not used here, so we can compare with various thumbnail
models without updating MLLT each time.

Training thumbnail models is straightforward. We first generate segmentations
by forced aligning reference texts on the training data using the baseline models.
Then thumbnail features can be computed, from which LDA and acoustic model are
estimated. For testing, the ideal would be to search through all hypotheses, each
with its own features. Since this involves significant changes to the search code, we
pursued two alternative methods:

• N-Best list rescoring: N-Best lists represent a reduced search space [Schwartz
and Austin, 1993]. The advantage of N-Best lists is that we can accurately
compute acoustic/language scores for each hypothesis. However, N-Best lists
are known to be quite restrictive, compared to lattices.

• decoding with fixed thumbnail features: Since we can produce a thumbnail
feature stream just like a standard front-end, we can use the baseline system
to find segmentations and produce a fixed stream of thumbnail features. Then
decoding can be carried out on this fixed set of features as usual.

In our initial experiments, N-Best rescoring results are worse than that of decoding
on fixed thumbnail features. Subsequent experiments are therefore conducted using
mostly the second approach.

As shown in Table 5.1, we mainly experimented with hybrid segmental features by
adding segmental frames to the baseline dynamic features. First, we add segmental
features at the senone (sub-phoneme) level. Using 11 context frames and 5 segmental
frames, initial WER is 34.6%. If we recompute alignments using the thumbnail models
and recompute thumbnail features, we get a small gain of 0.4%. With N-Best rescoring
(N=800), the best WER we can achieve is 34.5%.
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segment # segments # context WER comments
level frames

- - 11 34.5 baseline (w/o thumbnail)
senone 5 11 34.6

34.2 iterative feature estimation during testing
34.5 N-Best rescoring (N=800)

phone 5 11 34.0
33.7 retrain after iterative feature estimation

phone 7 11 33.9
phone 7 7 34.3

Table 5.1: Initial Experiments with Thumbnail Features

Next, we move on to phone-level segments. Using 11 context frames and 5 frames
from ±2 phone segments, WER is 34.0%. This is done after iterative refinement of
segmentation during test. If we also reestimate segmentation on the training set,
WER improves to 33.7%. We also tried to vary the number of segments and the
number of context frames, no further gain has been observed.

All the above experiments use only a 66 hours subset for training, no MLLT, and
first pass decoding without adaptation. In the next section, we add all advanced
features and present results on our RT-03 Switchboard evaluation setup, to gauge the
potential improvements on the final system.

5.3.2 Experiments on RT-03 Final Stages

As will be explained in Chapter 7, the RT-03 Switchboard evaluation system utilizes
several additional features, such as MLLT, feature space adaptation, MLLR, and
speaker adaptive training. After incorporating MLLT and FSA-SAT in training the
thumbnail models, we observed typical improvements in likelihoods on the training
set.

WER(%)

best single system (pass 15), w/o thumbnail features 24.3
best thumbnail model (MLLT, FSA-SAT, MLLR) 24.4
N-Best rescoring on 6 final hypos 24.1

system combination (final submission) 23.5

Table 5.2: Experiments on RT-03

We started testing on top of the best single system result (pass 15 in Table 7.7,
which is 24.3% on the full 6 hours RT-03 test set. This set of hypotheses is used
to provide initial segmentations for thumbnail features. After both FSA and MLLR,
WER is 24.4% for the final thumbnail model.
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As we suspect it could be suboptimal to use a fixed set of thumbnail features, we
performed a “mini” N-Best rescoring experiment. Hypotheses from several final passes
are collected and rescored using the thumbnail model. Six sets of hypotheses are used,
with WER ranging from 24.3% to 24.7%. This way we get a 0.2% improvement, from
24.3% to 24.1%. This improvement is likely to be insignificant, especially if we are to
perform the final system combination step. In the RT-03 evaluation, the final system
combination (consensus network combination and ROVER) reduces WER from 24.4%
to 23.5% (See Section 7.4.2 for details).

5.3.3 Analysis and Discussion

Since it is possible that the hybrid thumbnail features may degenerate into the con-
ventional dynamic features, we examined the LDA matrix in the thumbnail models,
to see whether it makes use of segmental dynamics or not. We did find large variations
in the part of the LDA matrix that corresponds to segmental frames.

Thumbnail features can be interpreted as a kind of speech rate normalized feature
extraction. A thumbnail feature always covers an entire “logical” segment, no matter
how long or short it is. As a result, thumbnail models are more robust to changes in
speaking rate. They are speech rate normalized models, similar in essence to models
obtained by speaker adaptive training or VTLN. This is illustrated in Figure 5.3.
During test, it is therefore important to have the correct speech rate estimation,
which is implicitly represented by the initial segmentation. Otherwise, performance
could be worse than models trained without normalization.

thumbnail
features

thumbnail
features

normalization

normalization

normalization

normalization

utt2

segmentation

segmentation

utt3

segmentation

hypothesis

speech rate
normalized model

utt1

segmentation

testing

training

decoding
test utt

Figure 5.3: Another view of thumbnail models: speech rate normalized training

We conducted a cheating experiment to measure the impact of initial segmen-
tation. We used the best thumbnail model in Table 5.1, which uses 5 frames from
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adjacent phone segments, 11 context frames, and has a WER of 33.7%. A cheating
segmentation, which is way better than the baseline segmentation, is obtained from
a set of hypotheses that has a WER of 29.4%.1 The WER is 32.5% by decoding
on thumbnail features based on this segmentation. This is significantly better than
33.7%, indicating the importance of initial segmentations, but still somewhat below
our expectation.

5.4 Future Work

Experiments presented so far are still preliminary. It is worth investigating why N-
Best rescoring does not perform as well as decoding with fixed thumbnail features.
This could be because N-Best lists are an inefficient representation of the search space.
Another possible reason concerns the different observation space for different hypoth-
esis. Although the same number of probability terms are guaranteed in our current
implementation, it could still be problematic to compare hypotheses on different basis.

In the conventional ASR framework, two hypotheses are compared by

P (h1|O) ≷ P (h2|O)

where O, the frame sequence, serves as a common ground for all comparisons. If we
compute a different set of features for each hypothesis, we are comparing

P (h1|O1) ≷ P (h2|O2)

The common ground is lost.
This is an important issue that affects much more than just thumbnail features.

To use any hypothesis (or class) dependent feature, we will face this problem. We
will need a way to normalize scores to make them comparable.

The MIT SUMMIT speech recognizer uses a segment-based framework, where
feature vectors are extracted over both hypothesized phonetic segments and at their
boundaries [Glass, 2003]. To ensure score compatibility, each hypothesis needs to
account for the complete observation space O = {O1, O2, · · ·}. For example,

P (O|h1) = P (O1, O2, · · · |h1) =
∏

i

P (Oi|h1)

P (O1|h1) is straightforward to compute. For i 6= 1, P (Oi|h1) is modeled by anti-
phones. In other words, a generic anti-phone model is used for observations(features)
that are not related to the current hypothesis. As an extension, near-miss models
are proposed as a more accurate alternative to anti-phone models.

A potentially better solution is maximum entropy models [Berger et al., 1996].
The ability to use arbitrary features is one of the hallmarks for this kind of models.

1It would be ideal to derive segmentation directly from reference text. However, this is not easy
due to practical reasons.
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There are several recent works on extending the maximum entropy principle to se-
quence modeling, such as maximum entropy Markov models [McCallum et al., 2000],
conditional random fields [Lafferty et al., 2001]. It has also been successfully applied
to many natural language processing tasks, such as shallow parsing and machine
translation [Och, 2002].



Part II

Tasks
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In this part we describe our system development efforts. ASR systems nowadays
are very sophisticated. To build a good system, one needs to pay close attention to
details in data preparation/cleanup, phone set and dictionary design, front-end design,
various acoustic modeling and language modeling issues, adaptation, decoding and
system combination strategies. A good amount of improvements in various DARPA
evaluations, such as the Hub4 Broadcast News evaluation and the Hub5 Switchboard
evaluation, actually come from such so-called “engineering” aspects. Although some
improvements, for example, a better front-end, may not seem to be directly related
to sloppy speech, they improve recognition performance in general and therefore are
highly important in modeling sloppy speech. Besides, good systems also provide a
solid baseline for evaluating new ideas.

Over the years, we have worked on three major tasks: Broadcast News (BN),
Switchboard (SWB) and meeting recognition. As a brief overview, we experimented
and gained a lot of experience in optimizing the front-end in the BN task, which will
be described in Chapter 6. These experiences were successfully carried over to the
Switchboard task, when we were preparing for the RT-03 evaluation. Both the BN
and the SWB system were then applied to the meeting transcription task.

LEAST INTELLIGIBLE

VERY INTELLIGIBLE

"LOWER STRATA"

FAMILIAR NON−FAMILIAR

"UPPER STRATA"

Broadcast News

Switchboard
Meetings

Figure 5.4: Comparing three tasks in the speech style space

In terms of speaking styles, it is interesting to compare the three tasks in the
style space introduced in Section 1.1. The Broadcast News data contains both read
speech and spontaneous speech. It is very formal and highly intelligible, intended for
a large and unfamiliar audience. The Switchboard corpus is primarily conversational
telephone speech. However, it is different from everyday conversation in that speakers
did not know each other in advance, and they were asked to converse on selected
topics, although the actual conversation may drift away from the assigned topic.
Compared to Switchboard, meetings represent face-to-face interactions containing
both verbal and non-verbal exchanges. There are a variety of different meeting types,
from highly formal scenario to casual discussions. The internal group meeting data
used in this thesis is mostly informal and between colleagues or classmates. Figure 5.4
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shows the location of the three tasks in the style space. If we rank these tasks in
terms of sloppiness, meetings are worse than Switchboard, which in turn is worse
than Broadcast News. It should be emphasized that this is only a sketch and not
meant to be exact.



Chapter 6

The Broadcast News Task

6.1 The Broadcast News Task

The Broadcast News task, also known as the Hub4 evaluation in the ASR community,
concerns about recognition of recorded broadcasts from television networks (such as
ABC, CNN and CSPAN) and radio networks (such as NPR and PRI).

The Hub4 evaluation started in 1995, as a successor to the Wall Street Journal
task. While the Wall Street Journal task is in a sense artificial — professional speakers
read Wall Street Journal text in quiet studios — Broadcast News is found speech
from the real world, where one can find both native and non-native speakers, various
background noise and channel conditions, as well as every possible speaking style. To
facilitate the analysis of ASR system performance, the BN data is labeled according
to six so-called F-conditions (Table 6.1).

F0 clean, prepared speech
F1 clean, spontaneous speech
F2 speech over telephone channels
F3 speech in the presence of background music
F4 speech under degraded acoustic conditions
F5 speech from non-native speakers
FX all other speech

Table 6.1: F(ocus)-Conditions in Broadcast News

The BN data is recorded in 16kHz sampling rate, 16-bit, single channel format.
Of all available BN data, we use the 1996 BN training corpus (LDC catalog number:
LDC97S44), roughly 80 hours, for acoustic training, and the 1998 Hub4e evaluation
set 1 (1.5 hours) for testing.

We bootstrapped the BN system from acoustic models trained on the Wall Street
Journal task. The initial WER on the test set is 37%. Over time we reduced WER
to 18.5%. Improvements come from a variety of sources: widening search beams,
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increasing vocabulary size and language model size, introducing VTLN and CMN,
using two-stage polyphone clustering, model complexity tuning, switching phone sets
and dictionaries, cleanup of the dictionary and transcripts, and of course, numerous
bug fixes. Among all experiments, the following two are of particular relevance to
this thesis: modeling HMM topology and duration, and improving the front-end.

The current system uses quinphone models, with 6000 distributions sharing 2000
codebooks, and a total of 105k Gaussians. The front-end, which will be described in
greater detail in Section 6.3, uses VTLN, CMN, LDA and MLLT. A trigram language
model is trained with a 40k vocabulary on 130 million words broadcast news text,
plus 10 times the acoustic training transcripts (800k words). The LM has 7 million
bigrams and 6 million trigrams.

6.2 HMM Topology and Duration Modeling

We experimented with several different HMM topologies at an early point of our BN
system development: the regular 3-state left to right topology, and the fast topology:
3-state topology with skipping arcs [Yu et al., 1999]. They are shown in Figure 6.1.

b m e

b m e

(a) regular left−to−right topology

(b) left−to−right topology with a skip arc

Figure 6.1: HMM Topologies

Training Testing WER
Topology Topology (%)

skip skip 34.3
skip regular 32.7

regular regular 32.1

Table 6.2: Topology Experiments on Broadcast News

The fast topology allows a shorter duration for each phoneme, and achieves better
likelihood on the training data. However, the extra flexibility does not translate well
into better WER. As in Table 6.2, using the fast topology in both training and testing
is 2.2% worse than using the regular topology.
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The explanation is that the more restrictive non-skipping topology enforces a
certain trajectory which a phone must go through: begin, middle, end. Removing
this trajectory constraint is equivalent to adding a large number of pronunciation
variants to the lexicon, which causes a drastic increase in confusability. In this sense,
HMM topology should be taken into account in pronunciation modeling.

Another way to enforce trajectory constraints is duration modeling. We choose
to model the minimum number of frames a phoneme has to pass before transiting
into the next phoneme. A context-dependent decision tree is grown to cluster all the
triphone duration statistics. The minimum duration, found at the leaf level of the
tree, is applied at decoding time to constrain the search. Initial experiments showed
only a 0.3% absolute gain over the regular topology (32.1% → 31.8%) [Yu et al.,
1999].

The same is observed on the Switchboard task. In the 1997 Switchboard system,
the skip topology is also used, although only for DX and plosives. By completely
switching back to the non-skip topology, we actually see a slight, though insignifi-
cant, improvement. Therefore, we decide to use the non-skip topology for all future
experiments.

6.3 Improving the Front-End

This section details our effort in the front-end, which is an important source of im-
provements for the BN task.

A front-end processes raw speech signal into a sequence of feature vectors, in a form
suitable for subsequent acoustic modeling. Popular front-ends include Mel-Frequency
Cepstral Coefficients (MFCC) and Perceptual Linear Prediction (PLP). We will focus
on optimizing the MFCC front-end here, although most of the our discussion extends
to non-MFCC front-ends as well. We will first examine the traditional MFCC front-
end, which can be considered as a “pipeline” consisting of various components, each
designed a different purpose. Our key insights are that each of these components
should not be designed in isolation, and that the ultimate goal of the front-end is to
achieve better acoustic modeling. Hence, the design of any front-end component needs
to be scrutinized in the context of other components, as well as the acoustic model
scheme to be used. Section 6.3.2 examines and optimizes the delta and double-delta
features. Section 6.3.3 looks at the overall front-end pipeline in its entirety and tries
to consolidate various linear transforms, which leads to a greatly simplified front-
end design. In Appendix A, we also present a novel phase space interpretation of
the front-end, which explains how dynamic features are used to alleviate the frame
independence assumption of HMMs.
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6.3.1 The MFCC Front-End

Mel-Frequency Cepstral Coefficients (MFCC) has been a popular front-end in speech
recognition for many years. It has been repeatedly shown to be quite robust for a
variety of tasks. Over the years, several enhancements have been added on top of
the basic MFCC design. Figure 6.2 shows a typical front-end that we use for LVCSR
tasks.

FFT→ VTLN→ Mel-scale
Filterbank

→ log→ DCT→ CMN→∆,∆∆→ LDA→MLLT

Figure 6.2: A Typical MFCC Front End

Below we give a brief account of various components in Figure 6.2, with an em-
phasis on their connections to acoustic modeling:

1. The continuous time signal is digitized and divided into a sequence of (over-
lapping) frames, which will be the unit for subsequent processing. The frames
have a fixed length, typically from 16 milli-seconds to 30 milli-seconds, and are
evenly spaced (almost always 10 milli-seconds apart).

2. FFT is performed on each frame. The power spectrum is extracted and warped
to compensate for gender/speaker differences in vocal tract lengths. This is
known as Vocal Tract Length Normalization, or VTLN [Kamm et al., 1995,
Lee and Rose, 1996, Eide and Gish, 1996, Zhan and Westphal, 1997]. The
implementation we use is based on [Zhan and Westphal, 1997].

3. The warped spectrum is then smoothed by a series of triangular shaped filters
(30 of them in our case) placed evenly along a non-linear frequency scale. Mel
scale, among the most commonly used, is designed to approximate the frequency
resolution of the human ear, which is more sensitive at lower frequencies.

4. Cepstral analysis is performed by applying a Discrete Cosine Transform (DCT)
to the log of the filterbank output. Log is used to compress the dynamic range
of the spectrum, so that the statistics are approximately Gaussian. DCT decor-
relates the coefficients, so that it is more sensible to use diagonal covariance
matrices later in acoustic modeling. Typically, the first 13 DCT coefficients are
retained, the rest are discarded as irrelevant details.

5. Cepstral Mean Normalization (CMN) normalizes for channel variations, to make
the acoustic model more robust to changes in channel conditions. CMN can
be divided into two parts: cepstral mean subtraction and cepstral variance
normalization.
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6. Delta and double-delta features, also known as dynamic (or derivative) features,
capture speech dynamics across different frames by incorporating differences
between adjacent frames in feature vectors.

7. Linear Discriminant Analysis (LDA) reduces dimensionality, while retaining as
much discriminative information as possible [Fukunaga, 1990]. LDA maximizes
the ratio of between-class scatter and within-class scatter.

8. On top of LDA, there can be another linear transform, so that the final feature
vectors fit well with the diagonal covariance assumption in acoustic model-
ing. This is called Maximum Likelihood Linear Transform (MLLT, [Gopinath,
1998]), which is a special case of semi-tied covariance matrices [Gales, 1998].
Recently, several extensions have been proposed to achieve more sophisticated
covariance tying, by constraining the inverse covariance matrices to be a linear
combination of many rank one matrices [Olsen and Gopinath, 2002], or more
generally, symmetric matrices [Axelrod et al., 2002].

The term MFCC comes from the use of the Mel-scale filterbank and cepstral
analysis. The basic MFCC front-end has only four stages: FFT, Mel-scale filterbank,
log and DCT. This may work reasonably well for a small, controlled task, but not
good enough for LVCSR. Each additional component provides some extra sizable
improvement. Altogether, the difference in performance can be dramatic.

6.3.2 Optimizing the Dynamic Features

The simplest implementation of the delta and double-delta features is to subtract the
preceding frame from the current frame:

{
~∆i = ~xi − ~xi−1

~∆∆i = ~∆i − ~∆i−1

(6.1)

where (~xi−2, ~xi−1, ~xi, · · ·) is a sequence of cepstral vectors.
Furui uses the following formulae that can be regarded as a filter over the frame

sequence [Furui, 1986]:

{
~∆i = −3~xi−3 − 2~xi−2 − ~xi−1 + ~xi+1 + 2~xi+2 + 3~xi+3

~∆∆i = −3~∆i−3 − 2~∆i−2 − ~∆i−1 + ~∆i+1 + 2~∆i+2 + 3~∆i+3

(6.2)

This performs better than Equation 6.1 in general, and is used by many researchers.
We will refer to this as the traditional delta and double delta feature henceforth.

If we express both in the matrix form, Equation 6.1 becomes




~xi
~∆i

~∆∆i


 =




~xi
~xi − ~xi−1

~xi − 2~xi−1 + ~xi−2


 =




1 0 0
−1 1 0

1 −2 1






~xi
~xi−1

~xi−2


 (6.3)
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Equation 6.2 can be written as




~xi
~∆i

~∆∆i


 =




1
−3 −2 −1 0 1 2 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .







~xi−6
...
~xi
...

~xi+6




(6.4)

The matrix form makes it easy to understand the nature of dynamic features.
There are two components: stacking of several adjacent cepstral frames, followed by
a linear projection. The linear projection could potentially reduce dimensionality,
as is the case in Equation 6.4. In terms of information flow, the stacking operation
increases the amount of information in each frame, while the linear projection reduces
the amount of information per frame.

There are two main differences between Equation 6.1 and Equation 6.2: context
window size (measured by the number of cepstral frames used to form the extended
vector), and the exact form of the transformation.

As shown in Equation 6.3, the former has a context window of 3 frames. The
latter has a window size of 13: ~∆i takes into account 7 adjacent frames; ~∆∆i, when
written out in terms of ~x, uses 13 adjacent frames. The wider the context window,
the more information there will be in the final feature vector that a classifier can
make use of. Note the necessity to pack more information into every feature vector
comes from the frame independence limitation in acoustic modeling. If an acoustic
model could capture dynamics across frames, there would be no need for the dynamic
features.

As for the form of the transformation, Equation 6.2 uses a seemingly more elab-
orate filter: (−3,−2,−1, 0, 1, 2, 3), compared to the simple step function in Equa-
tion 6.1. However, both are hand-crafted, and there is no guarantee about their
optimality. The key effect of the transformation is dimensionality reduction. The
filter in Equation 6.2 is equivalent to a projection from a high dimensional space (13
frames × 13 cepstral coefficients = 169) into a 39-dimensional subspace. Choosing
the subspace by hand is sub-optimal. A better approach, adopted here and at some
other research groups [Haeb-Umbach and Ney, 1992], is to explicitly construct the
extended vector by stacking adjacent cepstral vectors together, skip any hand-crafted
transformation, and use LDA to choose the optimal subspace in a data-driven man-
ner. The only decision to make here is the context window size. This has indeed led
to significant improvements on the BN task.

Table 6.3 compares different front-ends on the Broadcast News task. All numbers
reported are first pass decoding results. The traditional front-end uses Equation 6.2 to
compute dynamic features. As discussed before, this corresponds to a nominal context
window size of 13 frames. Together with power, delta-power and double-delta-power,
the final feature vector has 42 dimensions. For data-driven derivation of the dynamic
feature, we tried several different context window sizes. To be fair in the comparison,
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∆,∆∆ Context Window Size WER (%)
Style (# frames) no MLLT MLLT

traditional 13 21.6 21.2
data-driven 7 20.8 19.2
data-driven 13 20.1 19.0
data-driven 15 - 18.5

Table 6.3: Word error rates on 1998 Hub4e (Broadcast News) eval set 1. LDA is used
throughout all experiments to reduce the final dimensionality to 42.

VTLN and CMN are always applied, and the final feature dimensionalities are always
42. LDA is used and re-estimated for all experiments. In the case of traditional
dynamic features, LDA does not reduce dimensionality at all. It simply chooses the
most discriminative dimensions within the same space. In our experience, this makes
a 5% to 10% relative WER reduction compared to the case when LDA is not applied.

The following conclusions can be drawn from Table 6.3:

• Although the traditional dynamic feature has a nominal 13 frame context win-
dow, it is outperformed by data-driven projection using only a 7-frame context
window. This indicates that the linear projection in Equation 6.2 makes a poor
decision in choosing the subspace. LDA, on the other hand, chooses the most
discriminative subspace.

The difference is even more pronouncing after MLLT is applied. For the tradi-
tional dynamic feature, MLLT gives little gain (21.6%→ 21.2%), comparing to
almost 8% relative in the data-driven case (21.2%→ 19.0%).

• The size of the context window also matters. By doubling the number of frames
(from 7 to 15) used to derive the final feature vector, we reduced WER by 0.7%
absolute. It remains unclear what the optimal context window size is. It may
have some correlation with the context width in context dependent acoustic
modeling. For a context independent system, we may not need to look far
beyond the current frame to decide its identity. But as we go from triphone to
quinphone, it makes sense to use more and more adjacent frames for accurate
modeling.

This also coincides with the TRAPs idea [Hermansky and Sharma, 1999]. TRAPs
examine the temporal pattern of critical band energies over a long time span
(about one second). Hermansky et al. argue that for phone classification, tem-
poral relationships are as important as short time spectral correlations. In one
extreme, they extracted feature vectors from the temporal evolution of spectral
energy at a single critical band.

In the data-driven formulation of the dynamic features, we can easily increase
the window size to cover a longer time span. Both temporal and spectral pat-
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terns are captured, which can be regarded as a joint time-freqency filtering
(which will be illustrated later in Figure 6.5). The only concern is increased
computational cost in estimating the LDA matrix. Experimentally, a window
of 15 frames (about 170 milli-seconds) is usually good enough for LVCSR tasks.

6.3.3 Streamlining the Front-End

Many of the stages in Figure 6.2 are linear transformations. As a matter of fact,
except for FFT1, VTLN and log, everything else is a linear transformation. Mel-
scale filtering, for example, can be considered as a matrix multiplication on FFT
coefficients. Delta and double delta can be casted as a linear transform over the
extended cepstral vector.

As a combination of linear transforms is also linear, we can simplify the MFCC
front end. There are two potential benefits:

• Unnecessary computation can be eliminated;

• Different components in the MFCC front-end are designed with different moti-
vations. Their interaction with each other is typically overlooked. When putting
them together, the overall optimality of the front-end is not guaranteed. Here,
we try to consolidate various components of the front-end to achieve better
overall performance.

Combining two linear transforms per se is no problem, since a matrix multiplica-
tion is all we need. The real question is whether we can completely eliminate a linear
transform from both training and decoding, without adversely affecting system per-
formance. For example, if we eliminate the DCT step completely from Figure 6.2 and
retrain acoustic models, we could get a different set of model parameters. Will it give
the same word error rate? The answer turns out to be yes in most cases. Next, we
present a formal analysis on how linear transforms in the feature space affect recog-
nition performance. We first examine the effect of full (dimensionality preserving)
linear transforms, then discuss the effect of dimensionality reduction.

Invariance Properties of Speech Recognizers

As a simple example, consider adding a linear transform to Figure 6.2, after the LDA
step. The linear transform is diagonal, i.e. it stretches or compresses each dimension
of the final feature vector independently. This gives rise to a different feature stream
as input for acoustic training and decoding. One can expect the new acoustic model to
be different, but decoding result to remain unchanged, since the new linear transform
does not affect discrimination at all. It is, after all, a simple scaling of coordinates.
In fact, this is why CMN schemes need not worry about whether to normalize the
variance to 1, or 0.5, or any other constant, as long as it is consistently normalized.

1FFT is linear by itself, but taking the magnitude of the spectrum is not.
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We try to determine for the following cases, whether recognition performance will
remain the same upon adding (or removing) a linear transform in the front-end. We
consider here only non-singular linear transforms and we assume that the acoustic
model parameters will be reestimated.

1. A linear transform immediately before LDA

LDA was initially introduced as a dimensional reduction technique that tries to
retain as much discrimination information as possible in a reduced space.

One criterion for choosing the LDA matrix is

arg max
B

|BΣbB
T |

|BΣwBT |

where Σb is the between-class scatter matrix, Σw is the within-class scatter
matrix.

Note that the LDA solution is not unique. If B is found to maximize this
criterion, it is easy to verify that AB also maximize the criterion, where A
is square and non-singular. In other words, LDA specifies only the optimal
subspace, but not the exact set of coordinates. This is exactly why it would
matter to have an additional MLLT transform on top of LDA. However, given
a particular LDA implementation — such as simultaneous diagonalization —
which usually finds a single solution, the uniqueness of the transform could be
empirically guaranteed.

Under this assumption, if we add an extra non-singular linear transform A
before LDA, the combination of the newly found LDA matrix B ′ and A will be
equal to the original LDA matrix B:

B′ = arg max
B

|BAΣbA
TBT |

|BAΣwATBT |

=⇒ B′A = arg max
B

|BΣbB
T |

|BΣwBT |

This means that the final feature vectors, as well as the model parameters, will
remain unchanged.

If the uniqueness of the LDA solution is not guaranteed, we can only establish
that the new subspace (after the new LDA) will be the same as the original
subspace. Equivalently, the new subspace is a linear transform of the original
subspace. To determine whether recognition performance will remain invariant,
we need to consider the following scenario (case 2).

2. A linear transform immediately after LDA
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If a random variable X ∈ Rd is modeled by a Gaussian N(µ,Σ), a linear trans-
form of X, Y = AX, can be modeled by N(Aµ,AΣAT ). It can be shown that
their acoustic scores are related by:

p(x|µ,Σ) = |A| ∗ p(Ax|Aµ,AΣAT )

log p(x|µ,Σ) = log |A|+ log p(Ax|Aµ,AΣAT ) (6.5)

• If full-covariance matrices are used in acoustic modeling, Equation 6.5 in-
dicates that the additional linear transform A causes a constant shift in
log-likelihood. This will not affect discrimination between models. There-
fore, recognition performance will remain the same, although we may need
to adjust some parameters such as the search beam size and the language
model weight.

• If semi-tied covariance matrices or MLLT is used, Σ is represented as two
components in the acoustic model: H and Σd.

Σ = HΣdH
T

where Σd is a diagonal matrix, defined for each Gaussian, H is tied between
certain Gaussians. Since

X ∼ N(µ,HΣdH
T ) =⇒ AX ∼ N(Aµ,AHΣdH

TAT )

the additional linear transform A can be absorbed into the non-diagonal
part of the covariance matrices, or the MLLT matrix. Recognition perfor-
mance will stay unchanged, as in the full-covariance case.

• If diagonal covariance matrices are used, recognition performance will stay
the same if A is diagonal too.

X ∼ N(µ, σ2) =⇒ aX ∼ N(aµ, (aσ)2)

where X is a particular feature dimension, a is a scaling factor. Any non-
diagonal transformation, such as rotation or affine transformation, may
result in a performance difference.

To summarize, LDA reestimation will most likely take care of any non-singular
linear transform immediately before it; acoustic model reestimation will absorb any
non-singular linear transform on the final features, with the exception that under the
diagonal covariance assumptions, only diagonal transforms are allowed.

Dimensionality Reduction

Dimensionality reduction happens at many places in the MFCC front-end. Some
are easy to recognize, such as spectrum smoothing using the Mel-scale filterbank,
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truncation of the cepstrum after DCT, and LDA. Some are less obvious, such as the
delta and double delta stage. As mentioned before, it is equal to two operations:
stacking several adjacent cepstral vectors, followed by a linear projection. Stacking
effectively increases the dimensionality of the feature vector, while linear projection
reduces dimensionality.

While it makes training more feasible, dimensionality reduction can potentially
lose useful information, and therefore, should be treated with great care. For example,
as shown in Section 6.3.2, the linear projection in the traditional dynamic features
make a poor choice in the subspace, which seriously degrades system performance.
Our practice is to adopt a data-driven approach, typically LDA, to retain as much
discriminative information as possible in the subspace.

Some of the dimensionality reduction stages mentioned above seem to be well mo-
tivated. Mel-scale filterbank assigns lower resolution at high frequencies to simulate
the sensitivity of human ear; DCT retains only the top 13 coefficients to capture the
spectral envelope. However, these intuitions may not correspond well with a data-
driven criterion like LDA. As it indicates by our previous experiments in optimizing
dynamic features, there could be potential improvements by streamlining these oper-
ations as well.

Experiments

In the traditional MFCC front end (Figure 6.2), there is a chain of linear transforms
after the log stage. Following the analysis developed in the previous sections, we
can eliminate unnecessary linear transforms in the front end. We expect no loss in
recognition accuracy, and even potential improvements.

We tried two simplified front-end schemes. The first consolidates DCT, the linear
projection in the delta and double-delta step, and LDA. This effectively eliminates
DCT from the front-end. The second scheme goes one step further to eliminate the
Mel-scale filterbank as well.

Before we begin, some special consideration is needed from CMN. CMN is typi-
cally performed on an utterance (or speaker) basis. It is therefore linear within each
utterance (or speaker), but not globally linear. For this reason it can’t be absorbed
into the single linear transform described above. However, it can be shown that in
a series of linear transforms, it doesn’t matter where exactly mean subtraction takes
place. Since the net effect of CMS (Cepstral Mean Subtraction) is to center feature
vectors around 0, we can move the CMS step anywhere we want. The resulted feature
vector will remain the same.

Variance normalization is a little different. Since it is typically applied for each
dimension separately, variance normalization at a different stage produces a different
set of feature vectors. However, this may not be a major problem, as shown in the
following experiments, since variances are still normalized somewhat.
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FFT→ VTLN→ Mel-scale
Filterbank

→ log→Mean & Variance
Normalization

→ Stacking→ LDA→MLLT

Figure 6.3: Simplified MFCC Front End

Eliminating DCT DCT is an integral part of the original MFCC front-end. It
serves to decorrelate cepstral coefficients to make the dimensional independence as-
sumption more valid.

In Figure 6.3, we try to eliminate the DCT step in the simplified MFCC front
end. Now, we no longer need to choose the form of DCT or the form of the linear
projection for dynamic features. They are implicitly chosen in a data-driven fashion
by LDA. In addition, instead of reducing dimensionality at several stages, LDA now
handles all the dimensionality reduction. Both could lead to improved performance.

Avg F0 F1 F2 F3 F4 FX

with DCT 21.6 10.2 21.8 31.2 34.3 16.5 31.7

without DCT 21.6 10.2 20.7 30.8 36.6 16.3 32.6

Table 6.4: WER(%) on Hub4e98 Set1, comparing two front-ends with or without
DCT. Both use data-driven dynamic features with a 7-frame context window and no
MLLT.

As shown in Table 6.4, the front-end without DCT achieves the same performance
as the one that uses DCT. These two front-ends are still different, as can be seen from
the WER breakdown into different focus-conditions. However, the overall difference is
not significant. Two conclusions can be drawn. First, DCT, as well as the truncation
of the cepstrum afterwards, is well motivated, since the data-driven transform couldn’t
find a better alternative. On the other hand, DCT is dispensable. One can leave it
out without hurting system performance.

Eliminating Mel-scale filterbank Going one step further, since the Mel-scale
filterbank is just another linear transform that reduces dimensionality, one would
naturally question its optimality too. After all, it’s motivated perceptually, and is
not necessarily consistent with the overall statistical framework.

Due to the nonlinearity of the log step, it’s not straightforward how to optimize
this stage directly. Instead, we tried to leave out this stage completely, since the
function it serves, namely to smooth the spectra and to reduce dimensionality, can
be well captured in the linear transform after the log step. This leads to an even
simpler and highly unconventional front end, which we call the emphLLT2 front end

2LLT is mainly an internal acronym, reflecting the fact that the front-end has two parts: log and
a linear transform.
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(Figure 6.4). Alternatively, one can think of the LLT front end as the result of
switching the order of log and the Mel-scale filterbank, after which the Mel-scale
filterbank can be integrated with the other linear transforms.

FFT→ VTLN→ log→Mean & Variance
Normalization

→ Stacking→ LDA→MLLT

Figure 6.4: The LLT Front End

Front-End Context Window Size WER (%)
(# frames) w/o MLLT w/ MLLT

MFCC 7 20.8 19.2
LLT 7 20.4 19.0

Table 6.5: Effect of the LLT Front-End on the BN task. Data-driven dynamic features
are used in both cases.

Table 6.5 shows the performance of the LLT front-end on the BN task. LLT gives
roughly the same performance as the MFCC front-end, if not better. This indicates
that, first, the Mel-scale filterbank is well designed; second, it is possible to leave out
the Mel-scale filterbank and let LDA decide how to smooth the spectrum. The LLT
transform has significantly more parameters, though. To project 7 frames of FFT
coefficients (129 per frame) into a 42 dimensional feature space, the size of the LLT
matrix is 903 by 42.

In Figure 6.5, the LLT matrix in the BN system is visualized. We remind the
reader that the LLT matrix here is a combination of LDA and MLLT; interpretation
of these plots should be drawn with this in mind. Since each row of the 42 × 903
matrix computes one final feature dimension from 7 adjacent frames of 129 log-FFT
coefficients, it can be considered a joint time-frequency filter. Figure 6.5 shows the
first 4 dimensions of the LLT transform in the BN system. For clarity, only coefficients
for the first (lowest) 30 FFT indices are shown. The higher frequency part is relatively
flat comparing to the lower frequency region. It is interesting that the third dimension
is mostly a frequency-domain filter; little is happening along the time axis. But for
most other dimensions, the filter is undoubtedly operating on the joint time-frequency
domain. It is also worth noting that most of the activities happen at the low frequency
region. This supports the traditional wisdom behind the Mel-scale filter, which has
higher resolution on low frequency regions.

We speculate the following reasons why LLT does not outperform MFCC:

• Cepstral mean and variance are 13 dimensional for MFCC, while they are 129-
dimensional for LLT. Their estimation could be more susceptible to the data
sparseness problem.
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Figure 6.5: Visualizing the LLT projection as Joint Time-Frequency Filtering

• The LLT matrix has far more parameters than the LDA matrix in the MFCC
front-end. It could overfit on the training data. Smoothing techniques may be
needed.

Although LLT is conceptually simpler than MFCC, it is computationally more
expensive. LLT delays dimensionality reduction until the very last step, at the cost
of using a big LDA matrix. In the MFCC front-end, Mel-scale filterbank and cepstral
truncating cut dimensionalities at an earlier stage, which keep the cost low.

6.4 Conclusion

Overall, we achieved a 50% relative improvement (37% to 18.5%) on the BN task,
of which 14% comes from front-end optimization. An important side product of this
process is a better understanding of the modern MFCC front-end:

• We showed that dynamic features should be optimized in a data-driven fashion;

• We empirically verified the validity of DCT and the Mel-scale filterbank;

• We proposed a conceptually simplified front-end which leaves out both DCT
and the Mel-scale filterbank, yet achieves a comparable performance.



Chapter 7

The Switchboard Task

This chapter describes experiments on the RT-03 (Rich Transcription) Switchboard
experiments, where we integrate techniques such as the optimized front-end, single
pronunciation dictionary and enhanced tree clustering into the final system.

7.1 The Switchboard Task

The Switchboard corpus is a large collection of conversational telephone speech [God-
frey et al., 1992]. The original SWB corpus, SWB-1 Release 2, contains roughly 2500
conversations from 500 U.S. speakers. The speakers are previously unknown to each
other, and are asked to converse on a certain topic over the phone. The data is
recorded in two channels using a 4-wire setup, 8kHz sampling rate, and 8-bit u-law
encoding. An echo cancellation algorithm is applied for all the data.

#conv #conv #sides #hours
collected transcribed used used

SWB-1 Release 2 2400 all 4876 317
CallHome English 120 all 200 17
SWB-2 Phase I 3638 0 0 0
SWB-2 Phase II 4472 473 944 33
SWB-2 Phase III 2728 0 0 0
SWB-Cellular 1309 728 1456 63

Total - - 7476 430

Table 7.1: Composition of the SWB Training Set. conv is short for conversation.
Each conversation has two sides.

The collection and transcription of the SWB data is a long and still ongoing
effort. Switchboard-1 is the “original” SWB corpus. It has been released two times.
There are certain differences between the two. Release 2 is the most commonly
used, with over 240 hours of speech. There are two major versions of transcripts
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for SWB-1: the original LDC (Linguistic Data Consortium) transcript and the ISIP
transcript. The ISIP transcript is an effort, conducted by ISIP (Institute for Signal
and Information Processing) at Mississippi State University, to fix certain problems
in the original LDC release. We experimented with both versions of transcript and
didn’t find major differences in performance. SWB-2 is collected somewhat later, and
largely untranscribed. SWB-Cellular aims at capturing cellular data, but it contains
a portion of landline calls as well. Transcription of the SWB-2 data and a large
chunk of the cellular data (the CTRAN data) was completed recently using a quick
transcription approach, as opposed to the traditional careful transcription approach.
The objective is to produce large volumes of transcribed speech at a reasonable quality
and relatively low budget.

From 1996 to 2001, NIST held an (almost) annual evaluation on the Switchboard
task, known as the Hub5 evaluation. Starting in 2002, the Rich Transcription (RT)
project continues to evaluate system performance on conversational telephone speech
(CTS), with an emphasis towards using more the so-called Fisher data, which is
collected in a way that closely resembles Switchboard.

Table 7.1 gives a dissection of the entire SWB training set at the time of the
RT-03 evaluation. The entire training set we have contains 7476 sides, roughly 430
hours of speech. The RT-03 evaluation set is 6-hours long, half from Switchboard
and half from the Fisher data. For most of our SWB experiments, we use a 66 hour
training subset with 1088 sides, all from SWB-1 Release 2, and a 1-hour development
set extracted from the 2001 Hub5e evaluation data.

7.2 The Switchboard Baseline System

Our Switchboard baseline system is the 1997 ISL Hub5e evaluation system [Finke
et al., 1997]. We give here a brief overview of this system.

For pre-processing, 13 MFCC coefficients, together with power, and their first
and second derivatives form a 42-dimensional vector. LDA is used to map it into a
final 32-dimensional space. Maximum likelihood vocal tract length normalization is
performed to build a gender-independent acoustic model.

For acoustic modeling, continuous mixture density models are used, together with
two-stage quinphone clustering. There is a total of 24000 distributions, defined on top
of 6000 codebooks, with 16 Gaussians in each codebook. 161 hours of Switchboard-I
data and 17 hours of CallHome data are used for acoustic training.

The phone set is composed of 44 regular phones, 1 silence, 6 noise phones, 4
interjections (to model filled pauses such as uh, oh, um, uh-huh, mm-hm), and a mumble
phone. The vocabulary size is 15k, including the most frequent words from the
Switchboard and CallHome text. The baseline dictionary is expanded by applying
a number of hand-chosen rules. The final dictionary has about 30k pronunciation
entries (2 variants per word on average), after pruning away unlikely candidates.
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For language modeling, the best result comes from interpolating a plain trigram
Switchboard LM, a class-based Switchboard LM, and a 4-gram Broadcast News LM.

During decoding, VTLN factors are first estimated and refined, followed by iter-
ative MLLR estimation and adapted decoding.

This system achieved a top ranking in the 1997 Hub5e evaluation. With ex-
actly the same setup (and multi-pass decoding), the WER is 35.1% on the 1 hour
development set defined above. In the following section, we describe our efforts in
improving the system for the RT-03 evaluation. Our final RT-03 evaluation system is
quite sophisticated, which uses multiple sets of acoustic models and language models.
Our RT-03 evaluation is a joint effort by members of the ISL at both University of
Karlsruhe and Carnegie Mellon University [Soltau et al., 2004]. Most experiments
described here are conducted by the author, unless indicated otherwise.

7.3 Training Experiments

7.3.1 Front-End

Based on the experiments on the BN task, we performed a series of front-end opti-
mizations for the SWB system. Results are summarized in Table 7.2. The baseline
system, the 1997 evaluation system, is trained on 180 hours of data, while the others
are trained on a 66 hours subset. The baseline front-end uses the traditional delta and
double delta setup, similar to the original BN front-end. The baseline also performs
cepstral mean subtraction per conversation side, but no variance normalization, nor
MLLT.

We gained 1% absolute, from 39.8% to 38.9%, by switching the delta and double-
delta feature to data-driven projection, with a context window of 11 frames. If we
take into account the difference in the size of the training set, the improvement is
actually larger. The difference in WER between the 180 hours training data and the
66 hours subset is estimated to be 1% to 2% absolute.

System WER(%)

baseline 39.8
data-driven ∆,∆∆ 38.9

+ plain CVN 39.7
+ speech-based CMN 37.8

+ MLLT 35.6

Table 7.2: Experiments on Switchboard. Context window size is 11 frames except for
the baseline.

In the first two experiments, only cepstral mean subtraction is used. We then
added cepstral variance normalization (CVN). While channel distortion causes a shift
in cepstral mean, additive noise has two major effects on the distribution of MFCC
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parameters, reduced variance and shift in the means [Jain, 2001]. CMS therefore
compensates for both channel distortion and part of the noise effect, while CVN tries
to restore the reduced variance. However, as many have noted, variance compensa-
tion is quite sensitive to the amount of silence in a utterance [Jain, 2001, Woodland
et al., 2001]. In case of mismatched training / testing scenario, this can cause signif-
icant degradation in WER. In our Switchboard experiments, we have verified that a
straightforward CVN can indeed hurt performance (38.9% to 39.7%). As suggested
in [Westphal, 1997], speech and silence regions need different treatment in the joint
compensation situation. A simple solution is Speech-based Cepstral Mean Normal-
ization (SCMN). The idea is to use a power based speech detector to mark speech
region in every utterance, and estimate cepstral mean and variance only on the speech
region. SCMN helps about 1% absolute on the Switchboard task. MLLT contributes
another 2.2% extra improvement.

Front-End Context Window Size WER (%)
(# frames) w/o MLLT w/ MLLT

MFCC 11 37.8 35.6
LLT 7 37.9 35.5

Table 7.3: Effects of the LLT Front-End on SWB. Data-driven dynamic features are
used in both cases.

We also experimented with the LLT front-end as illustrated in Figure 6.4. Results
are shown in Table 7.3. Even with a smaller context window size, the performance is
comparable to that of the MFCC front-end. For computational efficiency reasons, we
choose the MFCC front-end for all subsequent experiments.

7.3.2 Acoustic Modeling

Most of the acoustic models use VTLN, MLLT, and FSA-SAT. During training, we
iteratively estimate VTLN parameters and the acoustic model. VTLN parameters
typically converge after a couple of iterations. Then we estimate MLLT and add it
to the front-end.

FSA-SAT is similar in essence to constrained model space SAT [Bacchiani, 2001].
A linear transform is computed for each conversation side during both training and
decoding, and acoustic models are estimated in the normalized feature space. This
improves recognition accuracy with only a fraction of the computational cost of model
space SAT.

As shown in Table 7.4, FSA-SAT reduces WER by 1.3% absolute. The gain is
smaller when MLLR is used, but still in the 1% range.

Feature space adaptation can be used to adapt a non-SAT model as well. The gain
is typically much smaller comparing to MLLR, but combining the two, FSA gives an
additional ∼ 0.3% improvement on top of MLLR.
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Setup WER(%)

non FSA-SAT model 31.6
FSA-SAT model 30.3

Table 7.4: The Effect of FSA-SAT (w/o MLLR) on the full training set

We also get improvements from single pronunciation dictionary and enhanced tree
clustering, as described in Section 3.2.3.

7.3.3 Language Modeling

We use an interpolated language model on a 40k vocabulary1. The baseline LM is

LM WER(%)

3gram SWB 31.4
+ 5gram class SWB 31.0

+ 4gram BN 30.3

Table 7.5: Language Modeling

a trigram model, trained on the Switchboard corpus. It is interpolated first with a
5-gram class-based Switchboard LM, and then a 4-gram LM trained on the Broadcast
News corpus. The overall improvement from the 3-fold interpolation is ∼ 1%.

7.4 RT-03 Switchboard Decoding Experiments

7.4.1 Model Profiles

sys-id description

base non-SAT model, quinphone, 168k Gaussians
AM SAT FSA-SAT model, quinphone, 168k Gaussians

MMIE MMIE, FSA-SAT, septaphone, 288k Gaussians
3g small 3gram SWB LM on 15k vocabulary

LM 3g big 3gram SWB LM on 40k vocabulary
full 3-fold interpolated SWB LM

Table 7.6: Model Profiles

The final models used in decoding are listed in Table 7.6. All acoustic models
are trained on roughly 430 hours of the SWB training data. The MMIE models are

1The LM experiments are performed by Christian Fügen.
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estimated using maximum mutual information criterion, while the other two uses the
conventional maximum likelihood criterion. The MMIE models are also trained with
a different lexicon that has an average of 2 pronunciations per word, while the other
two uses single pronunciation lexicon described inSection 3.2.3.2

A scaled-down trigram LM is used in early decoding passes. It uses a smaller
vocabulary and, therefore, is much faster to load.

7.4.2 Decoding Experiments

Table 7.7 lists the decoding steps on the RT-03 Switchboard evaluation set.

step # decode AM LM adapt WER comments

1 x base 3g small warp=1.0
2 x base 3g small reestimate warp
3 base 3g small MLLR reestimate warp
4 x SAT 3g small FSA 32.7 reestimate warp
5 base 3g small MLLR 30
6 SAT 3g small both 29.4
7 x SAT full both 27.6
8 base full MLLR 27.5
9 SAT 3g big both 27.7
10 SAT full both 26.4
11 base full MLLR 26.5
12 x MMIE full both 24.7
13 x base full both 24.9
14 SAT full both 25 adapt on hypo13
14b SAT full both 24.7 adapt on hypo12
15 x 8ms MMIE full both 24.3 adapt on hypo14
16 base full both 24.7
16b SAT full both 24.4
16c 8ms SAT full both 24.4

Table 7.7: Decoding Steps on RT-03 Switchboard Eval Set. Decoding is performed
only on steps marked with “x”. Acoustic lattice rescoring is used for the rest. 8ms
means frame shift is changed to 8 milli-seconds (125 frames per second). The default
is 10ms. Adaptation mode “both” means adapting with both FSA and MLLR.

The first 4 steps are used to establish reasonable VTLN warping factors. To save
time, only the first minute from each conversation side (5 minutes long on average) is
decoded in the first 3 steps, since we only need 30 seconds of voiced speech to reliably

2The MMIE models are trained by Hagen Soltau, Florian Metze and Christian Fügen. Details
about the MMIE training can be found in [Soltau et al., 2004].
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estimate a warping factor. This also prevents us from computing WERs for these
steps.

After establishing VTLN parameters, we progressively apply more sophisticated
acoustic models and language models. The organization of these steps is based on
decoding experiments on the RT-03 dry-run set. Major improvements come from SAT
and MMIE models, larger vocabulary, LM interpolation and system combination. In
particular, the following items are worth mentioning:

Cross-adaptation By adapting one system using hypotheses produced by another
system, we can achieve a certain degree of system combination [Peskin et al.,
1999]. As is evident from Table 7.7, cross-adaptation is used extensively, where
we switch either the acoustic model, the language model, or both. Step 9, for
example, deliberately switches back to a simpler LM get some cross-adaptation
effect. We observed that when WER seems to get stuck, we can drive it further
down by cross-adaptation using hypotheses in the same WER range.

Different frame rates Changing frame shift to 8ms is another way to generate some
“jittering” effect. Feature vectors are computed as usual, only that more frames
are generated.

Decoding vs. lattice rescoring We don’t carry out full decoding every time. Acous-
tic lattice rescoring is an effective technique we use to approximate full decoding.
It uses information in a lattice to greatly cut down the search space. Typically
we get a speedup of at least 10 fold and still very accurate WER estimation.

Speed vs. accuracy It is possible to reduce the number of steps. The particular
decoding strategy in Table 7.7 is what we found to be optimal on the dry-run
data. Some steps can be eliminated with only a marginal loss on accuracy.

System combination The numbers shown here are roughly comparable to the re-
sults in the official ISL submission to the RT-03 evaluation, except for the
omission of the final step: confusion network combination [Mangu et al., 1999]
and ROVER [Fiscus, 1997]. That step reduces WER from 24.4% to 23.5%.

Overall, our RT-03 Switchboard system reduces WER by 38% relative (35.1% to
23.5%) from the baseline Switchboard system we started a year ago [Soltau et al.,
2004].
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Chapter 8

The Meeting Transcription Task

8.1 The Meeting Transcription Task

Meeting transcription is a new task that attracts more and more interest. Over the
years a number of internal group meetings have been recorded here at the Interactive
Systems Laboratories at Carnegie Mellon University [Burger et al., 2002]. To minimize
interference with normal styles of speech, we used clip-on lapel microphones rather
than close-talking microphones. While lapel microphones are not as intrusive as close-
talking microphones, they cause degraded sound quality. A variety of noises, such
as crosstalk, laughter, electric humming and paper scratching noise are picked up
during recording. For simultaneous recording of multiple speakers, a 8-channel sound
card is used. This simplifies the recording setup and also eliminates the need for
synchronizing multiple channels.

Meeting transcription is more challenging than Switchboard in the following as-
pects.

• Meetings contain a significant amount of crosstalk, where people speak simul-
taneously. Recognition is virtually impossible on regions of severe crosstalk.
While crosstalk is also present in telephone conversations, it is quite rare and
of a mild nature.

• Compared to Switchboard, meetings represent multi-party face to face interac-
tions between familiar parties. The sloppy speech style issue only becomes more
severe.

• Meeting data is very noisy, partly due to the use of lapel microphones, as de-
scribed before.

A total of 14 meetings are used for our experiments. All of them are internal group
meetings, where people discuss various projects and research issues. Each meeting
lasts about 1 hour, with an average of 5-6 participants. The test set consists of
randomly selected segments from six meetings (roughly 1 hour, 11,000 words).
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8.2 The Effect of Speaking Styles

As mentioned in Chapter 1, we conducted an experiment similar to the SRI Multi-
Register experiment [Weintraub et al., 1996] to assess the effect of sloppy speaking
styles.

For one of the meetings, we asked three of the meeting participants to come back
to read the transcript of the meeting. They were recorded using the same lapel
microphone in the same meeting room. They were first asked to read the transcript
in a clear voice, which is denoted as “read” speech in Table 8.1. Then each of them
were asked to read the transcript, but this time “act out” his/her part in the real
meeting, in other words, to simulate the spontaneous speech style. This is denoted
as “acted”.

condition read acted spontaneous

speaker1 36.8 36.7 46.1
speaker2 35.2 61.0 63.3
speaker3 37.0 61.3 73.6

Overall 36.7 48.2 54.8

Table 8.1: WER(%) with different speaking styles

Recognition was carried out using the Broadcast News system on all three con-
ditions. The overall WER increases from 36.7% for read speech, to 48.2% for acted
speech, and finally to 54.8% for the real meeting. This clearly shows that the sloppy
speech style is a major concern for meetings.

8.3 Meeting Recognition Experiments

8.3.1 Early Experiments

Since we did not have enough data to develop a meeting specific system, we exper-
imented with various other systems in the beginning, including the ESST (English
Spontaneous Scheduling Task) system, the WSJ system and the 1997 Switchboard
system. [Yu et al., 1998, 1999, 2000, Waibel et al., 2001].

Different system matches the meeting task in different aspects:

• The ESST system is an in-house system developed for an English spontaneous
scheduling task [Waibel et al., 2000]. It has 16kHz sampling rate and is trained
on 26.5 hours of spontaneous dialogs in a travel reservation domain.

• The WSJ system is trained on 83 hours of wideband read speech for the Wall
Street Journal task.
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• The Switchboard system is the 1997 ISL Switchboard evaluation system. It
matches the meeting task on speaking styles, but not on bandwidth. Before
decoding, we need to first downsample the meeting data from 16kHz to 8kHz,
under the risk of losing information in the higher frequency regions.

Table 8.2 shows recognition results using various existing systems on the meeting
task1. Unsupervised MLLR adaptation was performed, leading to significant reduc-
tion in WER. Overall, the SWB system is significantly better, which is likely due to
the match in speaking styles. While the ESST system is also spontaneous, it has a
fairly limited amount of training data and is highly specialized for the travel domain.

bandwidth speaking adaptation iterations
(Hz) style 0 1 2

ESST 16k spontaneous 67.4 57.5 55.2
WSJ 16k read 54.8 49.6 49.9
SWB 8k conversational 47.0 42.3 41.6

Table 8.2: WER(%) of various systems on meetings

8.3.2 Experiments with the BN System

At a later stage, we developed the BN system, which achieves a first pass WER of
18.5% on the 1998 hub4e eval set 1, as described in Chapter 6. The BN system is an
attractive choice for meetings for the following reasons.

• It matches the meeting task in terms of bandwidth (16kHz wideband).

• The availability of large amounts of training data and the presence of various
acoustic conditions make the models more robust acoustically. Notice the ESST
system, the WSJ system and the SWB system are all trained on fairly clean
data.

• In terms of speaking styles, the BN training data also contains a fair amount of
spontaneous speech.

As shown in Table 8.3, the ESST system has a WER of 54.1% on this test set. The
BN baseline system achieves a significantly lower WER of 44.2%. After acquiring more
meeting data, we tried to adapt the BN system to the meeting domain. Maximum a-
posteriori (MAP) adaptation of the BN system on 10 hours of meeting data improves
the WER to 40.4%. By further interpolating the BN LM with a meeting specific LM
trained on 14 meetings, we reduce WER to 38.7%.

1These are early experiments performed on a 1 hour long meeting.
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WER (%)

Baseline ESST system 54.1
Baseline BN system 44.2
+ acoustic MAP Adaptation (10h meeting data) 40.4
+ language model interpolation (14 meetings) 38.7

Table 8.3: Adapting the BN system to meetings

8.3.3 Experiments with the Switchboard System

More recently, encouraged by the results on the RT-03 Switchboard task, we applied
the improved SWB system on the meeting transcription task.

pass # decode AM LM adapt WER comments

1 x base 3g small warp=1.0
2 x base 3g small 41.2 reestimate warp
3 SAT 3g small FSA 38.7
4 base 3g small both 38.1
5 x base 4g BN MLLR 34.6
6 SAT 4g BN both 33.5
7 SAT full both 32.6

Table 8.4: Decoding the meeting data using the Switchboard system. “4g BN” denotes
the 4-gram BN component of the full SWB LM.

The new Switchboard system uses multiple sets of acoustic models and language
models, as described in Section 7.4. Compared to the RT-03 SWB experiments in
Table 7.7, a simpler decoding strategy is taken (Table 8.4). The first two passes are
to establish reasonable warping factors. With better acoustic models and language
models, WER gradually drops to the final 32.6%. A more elaborate decoding setup
may yield even lower WERs. Comparing to our previous best results, we achieved a
15% relative reduction (from 38.7% to 32.6%) in WER, without using any meeting
specific data or tuning. The reason, we suspect, is that the Switchboard system better
matches the meeting task in terms of the sloppy speaking style, which outweighs a
better matching in bandwidth and acoustic conditions as the BN system does.

The overall improvement since the onset of the meeting transcript project is 40%
relative (54.1% to 32.6%).
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Conclusions

9.1 Summary

Sloppy speech is a challenging problem for the current generation of ASR systems.
This thesis explored several fronts to improve the modeling of sloppy speech.

One important difference of sloppy speech from read speech is the deviation from
standard pronunciations. Most previous work has focused on explicit pronunciation
modeling. After examining the lexicon design problem and the overall pronuncia-
tion modeling strategy, we explored two implicit pronunciation modeling methods:
flexible parameter tying and Gaussian transition modeling. Together with a single
pronunciation dictionary, enhanced tree clustering — a flexible tying method — has
led to significant improvements (5% relative) on the Switchboard task.

Sloppy speech also exacerbates the known weaknesses of the HMM framework,
such as the frame independence assumption and/or the “beads-on-a-string” model-
ing approach. Another front of the thesis is to alleviate these problems. Gaussian
transition modeling introduces explicit dependencies between Gaussians in successive
states. Thumbnail features are essentially segmental level features that capture higher
level events. We haven’t been able to achieve significant improvements with Gaussian
transition models. Thumbnail features improve performance in initial passes, but the
improvement becomes marginal when combined with advanced acoustic modeling and
adaptation techniques.

One may argue that all three methods are not really specific to sloppy speech.
They can be applied as general speech recognition techniques to other types of speech
as well. In a sense, this stems from the fact that the boundary between sloppy
speech and other types of speech is not clearly drawn, especially since styles can
often change within the same conversation, as discussed in Section 1.1. It is therefore
difficult to imagine a technique that works only on sloppy speech, but not on non-
sloppy speech. From a historic point of view, sloppy speech is largely a “found”
problem — people didn’t even realize that sloppy speech was an issue in the earlier
days. If ASR technologies were more accurate, we may not even need to worry about
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the sloppy speech issue. Hence, it is possible that advances in generic modeling
techniques can make the sloppy speech problem largely obsolete. On the other hand,
all three approaches are designed with sloppy speech in mind. Their utility might be
greatly diminished if applied to read speech. For example, the author believes that
single tree clustering is necessary only when there is reason for cross-phone/substate
parameter sharing, such as increased pronunciation reduction in sloppy speech. While
this technique was proposed quite early [Takami and Sagayama, 1992, Ostendorf and
Singer, 1997, Paul, 1997], there was little interest at that time in applying it to read
speech.

In addition to exploring new ideas, we also focus on empirically improving system
performances. Overall, we have achieved significant word error rate reduction on
three tasks: 50% relative on Broadcast News, 38% relative on Switchboard (which is
a team effort) and 40% relative on meetings.

Although the three tasks differ in many aspects and it may not be appropriate
to compare WERs between them, it is still interesting that there seems to exist a
direct relationship between the amount/degree of sloppiness and the recognition per-
formance: our best WERs for BN, SWB, and meetings are 18.5%1, 23.5% and 32.6%,
respectively. The degree of sloppiness seems to be a good indicator of recognition
performance. On the other hand, this suggests that sloppy speech is still a major
problem for automatic speech recognition.

9.2 Future Work

Despite the progress, the sloppy speech problem is far from being solved. We think
there is ample room for research in the following areas:

Richer acoustic models beyond HMMs There have been many proposals to go
beyond the HMM framework. One would like to have, for example, the ability
to use higher level features, such as prosodic features or segmental features.
Maximum entropy model is one of the most promising proposals. It is designed
to take advantage of arbitrary features, without requiring these features to be
independent. When used in a conditional setting, it is a discriminative model
by design. It has also been extended to sequence modeling, such as maximum
entropy Markov models [McCallum et al., 2000] and conditional random fields
[Lafferty et al., 2001]. There has been some recent work in using them for
acoustic modeling as well [Likhodedov and Gao, 2002], [Macherey and Ney,
2003].

Language modeling While it has been very hard to improve upon the plain trigram
language model, most researchers believe the full potential of language modeling

1We haven’t actively worked on the BN task since 2001. This number should be significantly
lower if we incorporate the latest technology improvements.
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is yet to be unleashed. The challenge could be either to improve language models
per se, or to find a better integration with acoustic models.

Prosodic modeling We haven’t really tapped into prosody features in this thesis.
However, things like stress and intonation are known to be very important in
human communication. In addition to reliably tracking prosodic features, a
major difficulty in prosodic modeling is also how to integrate with acoustic
models and language models.
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Appendix A

Phase Space Interpretation of
Dynamic Features

Typically, a front-end is designed with the following objectives in mind: dimensional-
ity reduction, for removing irrelevant details from subsequent modeling; discrimina-
tion, to keep as much class-specific information as possible; data transformation, to
better fit any particular acoustic modeling scheme or assumptions, such as Gaussian
mixture models with diagonal covariance matrices

In this section, we present a different view of the front-end, which is to recover the
speech generation process. If the goal of ASR is to decipher words spoken, it would
be desirable to first recover the physical process that produces the acoustic signal. If
one could directly measure articulatory movements in a non-intrusive way, ASR could
be a lot more successful nowadays. At least, channel distortion and additive noise
would not be an issue. Since articulatory measurements are not readily available,
the challenge is to recover information about the production process directly from
speech signal. In this section, we first introduce the concept of phase space as a
way to represent a dynamic process; then discuss the general idea of phase space
reconstruction; and show how the current dynamic features are, in a way, a phase
space representation.

A.1 Phase Space

In dynamical system research, the dynamics of a physical system can be described
mathematically in a phase space or a state space. Each dimension of the space repre-
sents an independent (state) variable of the system, such as position or velocity. Each
point in the phase space corresponds to a unique state of the system. The evolution
of a system over time produces a phase portrait in the phase space. Much can be
learned about the system dynamics from its phase portrait.

Common in physics text, a simple mechanical system can be described in a phase
space of two dimensions: position versus velocity. A complex system with many
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degrees of freedom needs a high dimensional phase space.

An example is shown in Figure A.1, where articulatory movements are measured
while a person is producing the syllable /ba/ repeatedly [Kelso et al., 1985]. The left
panel shows the traditional time domain measurements of jaw and lower lip move-
ments; the right panel shows the corresponding phase portraits for the two articula-
tors, plotted in a plane of position vs. instantaneous velocity.

Certain aspects about speech production become clear in the phase portraits.
The most visible is the repetitive syllable pattern. Each circle represents an instance
of /ba/, where the half denoted as CLOSED corresponds to /b/, OPEN for /a/. Inter-
syllable events, such as stress, can be seen as alternating patterns of larger and smaller
circles. It is also clear that the motion of the articulators is less variable during the
production of the consonant (CLOSED) than of the vowel (OPEN). In addition, inter-
articulator timing (articulatory synchrony/asynchrony) can be studied if we plot a
phase space that covers multiple articulators (not shown here).

Figure A.1: Phase portraits of two articulators during production of reiterant /ba/.
(From Kelso et al. 1985, c©1985 Acoustical Society of America)

The phase space of the speech production process is roughly the configuration
of the human vocal tract, which, in turn, depends on the position of various speech
articulators, such as tongue, lips, jaw, velum, and larynx. It is the behavior of
the articulators over time that produces continually varying acoustics. A recurrent
belief among speech researchers is that what the listener extracts from the speech
signal might be information about the speech production process itself [Rubin and
Vatikiotis-Bateson, 1998].

If measurements of various articulators could be made easily and accurately, it
would be an inherently superior representation than the one based on acoustics. It
gives a more direct access to the information source, and besides, there is less con-
tamination by noise or channel distortion. Generally, however, only the speech signal
is available to an ASR system. Therefore, it would be desirable to reconstruct the
phase space from acoustics.
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A.2 Phase Space Reconstruction using Time-Delayed

Embedding

To study the dynamics of a system, all we need is the phase portrait. But in many
cases, the system is not fully observable. We may only get a scalar measurement one
at a time, denoted by {sn}. Vectors in a new space, the embedding space, are formed
from time-delayed values of the scalar measurements:

~sn = (sn−(m−1)τ , sn−(m−2)τ , · · · , sn)

The number of samples m is called the embedding dimension, the time τ is called
delay or lag. The celebrated reconstruction theorem by Takens states that under
fairly general assumptions, time-delayed embedding {~sn} provides a one-to-one image
of the original phase portrait, provided m is large enough [Takens, 1981].

Time-delayed embedding is a fundamental tool for studying the chaotic behavior
of nonlinear systems. For a detailed discussion, as well as how to choose the right
value for m and τ , readers are referred to [Kantz and Schreiber, 1997].

A.2.1 A Linear Oscillator Example

For simplicity, we use a linear system here to illustrate the idea of phase space and
phase space reconstruction.
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Figure A.2: A linear oscillator, its phase portrait and reconstructed phase space from
time series observation

Consider a linear oscillator consisting of a mass attached to a linear elastic spring
(Figure A.2(a)). According to Newton’s law of motion, the acceleration of the object
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is the total force acting on the object divided by the mass.

ẍ =
f

m

Assuming no friction, the spring force f is proportional to the amount that the spring
has been compressed, which is equal to the amount that the object has been displaced.

f = −kx

Combining the two, the system dynamics can be uniquely described by

ẍ = − k
m
x (A.1)

Solving this differential equation, we have

x = a sin(wt+ b)

where w2 = k
m

, the values of a and b depend on the initial condition.
The phase space for such a system is typically (x, ẋ). The system moves along a

closed ellipse periodically (Figure A.2(b)). When friction is taken into account, the
phase portrait becomes an inward spiral, since the system will gradually lose velocity.

Now, suppose we only observe a time series {xn}, under a certain sampling rate
(Figure A.2(c)). We can reconstruct the phase space, as shown in Figure A.2(d),
where the embedding dimension m is set to 2, delay τ equals 3. Clearly the recon-
structed phase portrait has the same structure as the original system, although a
strong correlation exists between the delayed coordinates.

A.2.2 Chaotic Systems

Time-delayed embedding is used extensively in the study of chaotic systems, which
have been found to be quite common in daily life. Speech, among other things, has
been shown to be chaotic. The phase portrait of a chaotic system is very complex,
with the existence of strange attractors being its hallmark. Examples of chaotic
systems, their phase portraits, and reconstruction of their dynamics can be found in
many books and websites, for example, [Diks, 1999, Kantz and Schreiber, 1997].

A.3 Phase Space Reconstruction for Speech Recog-

nition

In recent years, there has been a growing interest in applying phase space reconstruc-
tion to speech recognition. In the classic source-filter model, the speech signal is the
combined outcome of a sound source (excitation) modulated by a transfer (filter) func-
tion determined by the shape of the supralaryngeal vocal tract. This model is based



A.3 Phase Space Reconstruction for Speech Recognition 93

on the linear system theory, so are most traditional speech parameterizations, such
as the linear predictive coding. It has been argued that phase space reconstruction,
as a nonlinear time series analysis technique, fits better with the nonlinear nature of
speech. Using delayed embedding directly on the time domain signal, various chaotic
features (such as correlation dimension and Lyapunov exponents) are extracted as
the basis for recognition. It is reported that although the new chaotic feature does
not outperform the traditional MFCC (Mel-Frequency Cepstral Coefficients) feature,
a combination of the two tends to improve recognition accuracy [Pitsikalis and Mara-
gos, 2002, Lindgren et al., 2003].

While these works all use time-delayed embedding directly on the time domain
signal, we argue that it is more appropriate to embed in the cepstral domain. As a
result, the delta and double delta features are actually a phase space representation.

A.3.1 Why Embedding in the Cepstral Domain

filtering
(source−filter model)

articulatory
dynamic system

neural−muscular
controls

speech signalexcitation

Figure A.3: Two Sub-systems in Speech production

Upon closer examination, there are really two systems involved in speech produc-
tion (Figure A.3): the filtering system (as in source-filter model) and the articulatory
system. The coordinated motion of various articulators determines the shape of the
vocal tract, which then filters the sound source, producing the speech signal. Since
the ultimate goal of ASR is to infer the phase space of the articulatory system, it
is more appropriate to start from a representation of the instantaneous vocal tract
shape, rather than directly from the speech signal.

According to the traditional theory, cepstral coefficients are designed to capture
the spectral envelope, which is largely determined by the shape of the vocal tract
[Rabiner and Juang, 1993]. In other words, cepstrum is a fairly good representation
of the vocal tract characteristics. It gives a reasonable source/vocal tract separation.
Working in the cepstral domain allows us to focus on the (nonlinear) dynamics of
the articulatory system, whereas the dynamics reconstructed from the time domain
contains the compounding effects of both systems.
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A.3.2 Delta and Double-delta Features

As noted before, delta and double delta features can be computed by stacking sev-
eral adjacent frames of cepstral vectors together, then projecting down to a lower
dimension space by a linear transform.

It should be clear now that modulo the linear transform, dynamic features are
exactly time-delayed embedding in the cepstral domain. This leads to the revelation
that dynamic features have a fundamental meaning, which is to recover the phase
space of the speech production system, i.e. the time-varying articulatory configura-
tion.

There are several caveats, though. First, we are embedding a vector series, not a
scalar time series. This is equivalent to taking simultaneous measurements of multiple
variables of a system, and, therefore, not a problem at all. Second, speech production
is not deterministic. The existence of measurement noise (environmental noise and
channel distortion) further complicates the picture of the reconstructed dynamics.
Some of the issues are discussed in [Kantz and Schreiber, 1997, Diks, 1999].

One may argue that after all, delayed embedding is only a different representation
of the data, without introducing any new information. In the case of speech recogni-
tion, we need to justify any changes at the feature level with respect to the underlying
modeling framework. The next section will show why time-delayed embedding is es-
sential for HMMs.

A.4 Time-delayed Embedding and HMMs

As many researchers have pointed out, HMMs fail to capture speech dynamics accu-
rately, due to the conditional independence assumption: each frame is conditionally
independent of each other, given the state sequence. Several alternative approaches
have been proposed to compensate for this weakness, such as segmental models [Os-
tendorf et al., 1996b], parallel-path HMMs [Iyer et al., 1998], and Gaussian Transition
Models [Yu and Schultz, 2003]. Unfortunately, these sophisticated models have yet
to show improvements over the seemingly simple HMMs.

Part of the reason is due to the use of time-delayed embedding, i.e. delta and
double-delta features. By changing the feature representation, each feature vector now
covers a window of consecutive frames, rather than a single frame. Hence, the entity
being modeled with HMMs is an entire segment, typically around 100 milliseconds in
duration, rather than a single frame of ∼20 milliseconds. In a sense, this is segmental
modeling in disguise.

The effect of time-delayed embedding on the underlying model can be more for-
mally established in the following scenarios.
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A.4.1 Deterministic Dynamic Systems

It is well known that for dynamic systems that can be described by differential equa-
tions, a set of first order differential equations is general enough, even for second or
higher order systems.

In the above example of a second order linear oscillator, it is easy to convert the
system equation to a set of first order differential equations. By introducing a new
variable y = ẋ, equation A.1 can be rewritten as

{
ẋ = y
ẏ = − k

m
x

In the phase space of (x, y), this is a first order system. In the same spirit,
first order Markov models can be elevated to a higher-order model by phase space
reconstruction.

A.4.2 Markov Models

A Markov model of order m is a model where the probability at time t depends
only on the last m steps. These last m steps define the state of the system. Hence,
using time-delayed embedding of the past m samples, the state of the system can be
accurately determined.

If the data indeed comes from anm-th order Markov source, we needm-dimensional
embedding to model it properly with a first order HMM, since now the probability of
the next state (or observation) depends only on the current state (or observation).

A.4.3 Hidden Markov Models

Markov models can be thought of as a special case of HMMs where there is a one-
to-one correspondence between states and observations, i.e. states are not hidden.
For HMMs, we can no longer strictly prove that a first order HMM can model an
mth order source using delayed embedding of order m. It may be a little difficult
here to think of HMMs as a generative model in this context. Nonetheless, from a
discriminative point of view, each delay vector contains more information about the
identity of the HMM state than a single frame.

This is also related to the false nearest neighbor method, commonly used in non-
linear time series analysis to determine the minimal sufficient embedding dimension
[Kantz and Schreiber, 1997]. If the embedding dimension m is less than the dimen-
sionality of the original system, the reconstructed dynamics won’t be a one-to-one
image of the original attractor. Instead, “folding” will occur: points are projected
into neighborhoods of other points to which they don’t belong to. False nearest
neighbor can therefore be used as a test for insufficient embedding dimension.

Similarly, with no embedding or insufficient embedding dimension, the feature
vector in ASR doesn’t carry enough information to accurately determine the state of
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the articulatory system. Hence, embedding empowers a first order HMM by increasing
the mutual information between feature vectors and their class labels.

A.5 Linear Transformation of the Phase Space

A linear transformation of the phase space does not change the validity of the embed-
ding theorem. It can actually lead to a better representation of the data. As shown in
Figure A.2(d), a strong correlation exists between the delayed measurements, which
is irrelevant to the structure of the system dynamics. Derivative coordinates (simi-
lar to delta and double delta) and principal component analysis have been proposed
as alternatives to delayed coordinates [Kantz and Schreiber, 1997]. Both are linear
transforms of the original phase space. In the case of ASR, it is clearly worthwhile to
apply LDA and MLLT on dynamic features.
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